WO2017221922A1 - Alcohol-modified polyamide-imide resin and process for producing same - Google Patents

Alcohol-modified polyamide-imide resin and process for producing same Download PDF

Info

Publication number
WO2017221922A1
WO2017221922A1 PCT/JP2017/022653 JP2017022653W WO2017221922A1 WO 2017221922 A1 WO2017221922 A1 WO 2017221922A1 JP 2017022653 W JP2017022653 W JP 2017022653W WO 2017221922 A1 WO2017221922 A1 WO 2017221922A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
polyamideimide resin
acid anhydride
resin
type polyisocyanate
Prior art date
Application number
PCT/JP2017/022653
Other languages
French (fr)
Japanese (ja)
Inventor
康介 桑田
高橋 誠治
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2018521670A priority Critical patent/JP6432814B2/en
Priority to KR1020187035118A priority patent/KR102351942B1/en
Priority to CN201780039072.9A priority patent/CN109312045B/en
Publication of WO2017221922A1 publication Critical patent/WO2017221922A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyamideimide resin, a curable resin composition containing the polyamideimide resin, and a cured product thereof.
  • the present invention is a field that requires transparency in addition to heat resistance, for example, a field for optical materials, a solder resist material for printed wiring boards, a protective material and insulation for household appliances such as refrigerators and rice cookers.
  • liquid crystal displays and liquid crystal display elements organic and inorganic electroluminescence displays, organic and inorganic electroluminescence elements, LED displays, light emitting diodes, electronic paper, solar cells, TSVs, protective materials used for optical fibers and optical waveguides, insulating materials, Polyamideimide resin that can be suitably used in fields such as adhesives, reflective materials, and display device fields such as liquid crystal alignment films and protective films for color filters, and curable resin compositions containing the polyamideimide resin and It relates to the cured product.
  • Polyamideimide resin is excellent in heat resistance and mechanical properties and has been used in various fields mainly in the electric and electronic industries. Recently, PGMAc (propylene glycol-1-monomethyl ether-2- The ability to be dissolved in general-purpose solvents such as acetate and EDGA (diethylene glycol monoethyl ether acetate) has been demanded.
  • a polyamide-imide resin obtained by reacting an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure with a tricarboxylic acid anhydride (a1) having an aliphatic structure is soluble in general-purpose solvents.
  • a cured product (cured coating film) having excellent transparency can be provided by blending with a curable resin and further curing while maintaining the above (see Patent Document 1).
  • the curable resin composition obtained by blending the polyamide-imide resin with a curable resin or a reaction diluent tends to have insufficient storage stability and pot life and insufficient handleability. .
  • the acid anhydride group of the terminal group of the polyamideimide resin obtained by reacting the isocyanurate type polyisocyanate (a2) synthesized from the isocyanate having an aliphatic structure with the tricarboxylic acid anhydride (a1) is an alcohol compound. It is known that by modifying, a polyamideimide resin having a long storage stability and a long usable time when blended with a curable resin or a reaction diluent and excellent in handleability can be obtained (see Patent Document 2). . However, the polyamide-imide resin has room for improvement in solvent dilutability and developability of a cured coating film obtained by blending with a curable resin or a reactive diluent.
  • the problem of the present invention includes a polyamideimide resin that is soluble in a general-purpose solvent and excellent in solvent dilutability, and is a curable resin composition that has a long storage stability and pot life even when blended with a curable resin. And it is providing the hardened
  • the present inventors have reacted a tricarboxylic acid anhydride (a1) with an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure in the step of producing a polyamideimide resin.
  • a1 a tricarboxylic acid anhydride
  • a2 an isocyanurate type polyisocyanate synthesized from an isocyanate having an aliphatic structure
  • a polyamide-imide resin that is soluble in a general-purpose solvent and excellent in solvent dilutability can be obtained by modifying with alcohol, and further, by blending the polyamide-imide resin with a curable resin, storage stability and goodness can be obtained.
  • a curable resin composition having a long working time is obtained, and further, developability is excellent. It found that the product (cured film) is obtained, and have completed the present invention.
  • the present invention is a process for producing a polyamideimide resin (A1) by reacting a tricarboxylic acid anhydride (a1) with an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure ( 1), Alcohol-modified polyamide having a step (2) of producing an alcohol-modified polyamideimide resin (A2) by further adding an alcohol compound (a3) to the polyamideimide resin (A1) obtained in the step (1) and reacting with the polyamide-imide resin (A1) A method for producing an imide resin, In the step (1), the isocyanurate type polyisocyanate (a2) and the tricarboxylic acid are added to the tricarboxylic acid anhydride (a1) by adding the isocyanurate type polyisocyanate (a2) at least twice.
  • An alcohol-modified polyamideimide resin characterized by comprising a step (1a) of reacting the isocyanurate type polyisocyanate (a2) with the obtained reactant after reacting with the anhydride (a1). It relates to a manufacturing method.
  • the present invention relates to a polyamide-imide resin in which a tricarboxylic acid anhydride (a1) and an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure are bonded together by forming an amide or imide.
  • Alcohol-modified comprising an alcohol-modified polyamideimide in which the alcohol compound (a3) is bonded to the acid anhydride group of A1) by forming an ester bond, and the molecular weight distribution is in the range of 2.0 or less It relates to the polyamide-imide resin (A).
  • the present invention also relates to a curable resin composition containing the alcohol-modified polyamideimide resin (A) and the curable resin (B).
  • this invention relates to the hardened
  • a curable resin composition that includes a polyamide-imide resin that is soluble in a general-purpose solvent and has excellent solvent dilutability, and has long storage stability and pot life even when blended with a curable resin, and developability It is possible to provide a cured product (cured coating film) excellent in.
  • the method for producing the alcohol-modified polyamideimide resin (A2) of the present invention is obtained by reacting a tricarboxylic anhydride (a1) with an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure.
  • Step (1) for producing an imide resin (A1) The step (2) of producing an alcohol-modified polyamideimide resin (A2) by further reacting the alcohol compound (a3) with the polyamideimide resin (A1) obtained in the step (1),
  • the isocyanurate type polyisocyanate (a2) is added to the tricarboxylic acid anhydride (a1) in at least two portions, whereby the tricarboxylic acid anhydride (a1) and the isocyanurate are added.
  • the product obtained further comprises a step (1a) of reacting the isocyanurate type polyisocyanate (a2).
  • the transparency of the cured coating film of the resulting polyamideimide resin is improved.
  • tricarboxylic acid anhydrides include tricarboxylic acid anhydrides having an aromatic structure in the molecule and tricarboxylic acids having an aliphatic structure in the molecule.
  • a tricarboxylic acid having an aliphatic structure in the molecule is preferable because the storage stability of the curable resin composition is excellent, the pot life is long, and the thermal decomposition temperature of the cured product tends to be excellent.
  • Examples of the tricarboxylic acid anhydride having an aromatic structure in the molecule include trimellitic anhydride and naphthalene-1,2,4-tricarboxylic acid anhydride.
  • Examples of the tricarboxylic acid anhydride having an aliphatic structure include a tricarboxylic acid anhydride having a linear aliphatic structure and a tricarboxylic acid anhydride having a cyclic aliphatic structure.
  • Examples of the tricarboxylic acid anhydride having a linear aliphatic structure include propane tricarboxylic acid anhydride.
  • Examples of the tricarboxylic acid anhydride having a cycloaliphatic structure include cyclohexanetricarboxylic acid anhydride, methylcyclohexanetricarboxylic acid anhydride, cyclohexentricarboxylic acid anhydride, methylcyclohexentricarboxylic acid anhydride, and the like.
  • a tricarboxylic acid anhydride having a cyclic aliphatic structure is preferable because a cured coating film having high Tg and excellent thermal properties can be obtained in addition to transparency.
  • the isocyanurate type polyisocyanate (a2) is an isocyanurate type polyisocyanate synthesized from an isocyanate having a cycloaliphatic structure
  • the tricarboxylic acid anhydride (a1) has a cycloaliphatic structure. More preferably, it is a tricarboxylic acid anhydride.
  • tricarboxylic acid anhydride having a cycloaliphatic structure examples include cyclohexane tricarboxylic acid anhydride. One or more of these can be used. In some cases, bifunctional dicarboxylic acid compounds such as adipic acid, sebacic acid, phthalic acid, fumaric acid, maleic acid and acid anhydrides thereof may be used in combination.
  • cyclohexanetricarboxylic acid anhydride examples include cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid-3,5-anhydride, cyclohexane-1 2,3-tricarboxylic acid-2,3-anhydride and the like.
  • cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride is obtained because it becomes a polyamideimide resin excellent in solvent solubility in addition to transparency, and a cured coating film having high Tg and excellent thermal properties can be obtained. Is preferred.
  • cyclohexanetricarboxylic acid anhydride is represented by the structure of the following general formula (1), and cyclohexane-1,2,3-tricarboxylic acid, cyclohexane-1,3,4, which is used as a production raw material.
  • impurities such as tricarboxylic acid do not impair the curing of the present invention, for example, 10 mass% or less, preferably 5 mass% or less, they may be mixed.
  • the isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure used in the present invention includes an isocyanurate type polyisocyanate synthesized from an isocyanate having a linear aliphatic structure, and a cyclic aliphatic.
  • Examples of the isocyanurate type polyisocyanate synthesized from an isocyanate having a linear aliphatic structure include HDI3N (isocyanurate type triisocyanate synthesized from hexamethylene diisocyanate (including polymers such as pentamers)), HTMDI3N, and the like. (Isocyanurate-type triisocyanate synthesized from trimethylhexamethylene diisocyanate (including polymers such as pentamers)) and the like. These may be used in combination or alone.
  • Examples of the isocyanurate type polyisocyanate synthesized from an isocyanate having a cycloaliphatic structure include IPDI3N (isocyanurate type triisocyanate synthesized from isophorone diisocyanate (including polymers such as pentamers)), HTDI3N ( Isocyanurate type triisocyanate (including polymer such as pentamer) synthesized from hydrogenated tolylene diisocyanate, HXDI3N (Isocyanurate type triisocyanate synthesized from hydrogenated xylene diisocyanate (polymer such as pentamer) ), NBDI3N (isocyanurate-type triisocyanate synthesized from norbornane diisocyanate (including polymers such as pentamers)), HMDI3N (isocyanur synthesized from hydrogenated diphenylmethane diisocyanate) Chromatography (including 5-mers, etc. of the polymer)
  • the isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure used in the present invention has a cycloaliphatic structure since a cured coating film having a high Tg and excellent thermal properties can be obtained.
  • Isocyanurate type polyisocyanate synthesized from isocyanate is preferable, and isocyanurate type triisocyanate synthesized from isophorone diisocyanate is particularly preferable.
  • the isocyanurate type triisocyanate synthesized from isophorone diisocyanate may contain a polymer such as a pentamer.
  • the isocyanurate type polyisocyanate synthesized from the isocyanate having a cyclic aliphatic structure in the isocyanurate type polyisocyanate (a2) synthesized from the isocyanate having an aliphatic structure is based on the mass of the compound (a2). 50 to 80% by mass is preferable because a cured coating film having a high Tg and excellent thermal properties can be obtained, more preferably 80 to 100% by mass, and most preferably 100% by mass.
  • an adduct obtained by urethanization reaction of the above isocyanate compound and various polyols can be used as long as the solvent solubility of the polyamideimide resin of the present invention is not impaired.
  • the polyamide-imide resin (A1) containing a carboxy group used in the present invention has a problem in stability or the like by directly forming an imide bond from the above-mentioned tricarboxylic acid anhydride (a1) and the above-mentioned isocyanate compound (a2). Without passing through a certain polyamic acid intermediate, it is possible to synthesize a polyamide-imide resin that provides a cured coating film with good reproducibility, good solubility, and excellent transparency.
  • the carboxylic acid component of the tricarboxylic acid anhydride (a1) reacts with the isocyanate component in the polyisocyanate (a2), an imide and an amide are formed, and the resin of the present invention becomes an amide-imide resin.
  • the polyisocyanate (a2) is reacted with the tricarboxylic acid anhydride (a1), the tricarboxylic acid anhydride (a1) and the polyisocyanate (a1) are left in such a ratio that the carboxylic acid component of the tricarboxylic acid anhydride (a1) remains.
  • the resulting polyamideimide resin has a carboxy group.
  • This carboxy group reacts with a polymerizable group such as an epoxy group of an epoxy resin contained in the curable resin composition of the present invention described later to form a crosslinked structure of the cured product. Since the reaction rate is fast imidization, even in the reaction of tricarboxylic acid and triisocyanate, tricarboxylic acid selectively forms an imide at the acid anhydride.
  • the tricarboxylic acid anhydride (a1) and the isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure are reacted to obtain the polyamideimide resin (A1) used in the present invention, nitrogen is used. It is preferable to make it react in the polar solvent which does not contain both an atom and a sulfur atom. In the presence of a polar solvent containing nitrogen or sulfur atoms, environmental problems are likely to occur, and in the reaction of tricarboxylic acid anhydride (a1) with isocyanurate type polyisocyanate (a2), Growth is likely to be hindered. When such a molecule is cut, the physical properties of the composition are likely to deteriorate, and film defects such as “repellency” tend to occur.
  • the polar solvent containing neither a nitrogen atom nor a sulfur atom is more preferably an aprotic solvent.
  • a cresol solvent is a phenolic solvent having protons, but is somewhat unfavorable in terms of the environment, and easily reacts with an isocyanate compound to hinder molecular growth.
  • the cresol solvent easily reacts with an isocyanate group to easily become a blocking agent. Therefore, it is difficult to obtain good physical properties by reacting with other curing components (for example, epoxy resin) during curing.
  • other curing components for example, epoxy resin
  • alcohol solvents are not preferred because they react with isocyanates or acid anhydrides.
  • Examples of the aprotic solvent include ether solvents having no hydroxyl groups, ester solvents having no hydroxyl groups, and ketone solvents having no hydroxyl groups.
  • Examples of ester solvents that do not have a hydroxyl group include ethyl acetate, propyl acetate, and butyl acetate.
  • Examples of the ketone solvent having no hydroxyl group include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Of these, an ether solvent having no hydroxyl group is particularly preferred.
  • the ether solvent having no hydroxyl group has weak polarity and is excellent in the reaction of the isocyanate having the aliphatic structure described above with the isocyanurate type polyisocyanate (a2) and the tricarboxylic acid anhydride (a1).
  • ether solvents known and commonly used solvents can be used.
  • ethylene glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether , Polyethylene glycol dialkyl ethers such as triethylene glycol dimethyl ether, triethylene glycol diethyl ether and triethylene glycol dibutyl ether; ethylene glycol monomers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate and ethylene glycol monobutyl ether acetate Alkyl ether acetates; polyethylene glycol monoalkyl ether acetates such as diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triethylene glycol monomethyl ether acetate, triethylene glycol monoeth
  • step (1) the isocyanurate type polyisocyanate (a2) and the tricarboxylic acid anhydride are added to the tricarboxylic acid anhydride (a1) by adding the isocyanurate type polyisocyanate (a2) at least twice.
  • step (1) the product obtained further comprises a step (1a) of reacting the isocyanurate type polyisocyanate (a2).
  • the isocyanurate type polyisocyanate (a2) is divided into at least two times, more preferably 3 to 5 times, with respect to the tricarboxylic acid anhydride (a1). Addition is preferable because a polyamideimide resin having excellent solvent dilutability can be obtained.
  • step (1a) first, one or more types of tricarboxylic acid anhydride (a1) and one or more types of the isocyanurate type polyisocyanate (a2) are mixed in a solvent or in the absence of a solvent and stirred. (Amide) imidization reaction is carried out while heating. At that time, the ratio of the isocyanurate type polyisocyanate (a2) added to the tricarboxylic acid anhydride (a1) at each time was determined based on the number of moles of isocyanate groups of the isocyanurate type polyisocyanate (a2). What is necessary is just the ratio by which the sum total of the number of moles of the carboxy group of acid anhydride (a1) and the number of moles of acid anhydride group becomes an excess amount.
  • the reaction While confirming the progress of the (amide) imidization reaction, preferably, after the reaction is allowed to proceed until the isocyanate group of the isocyanurate type polyisocyanate (a2) disappears, more preferably, the (amide) imidization reaction It is preferable to stir while maintaining the reaction temperature, and to add the isocyanurate-type polyisocyanate (a2) to the resulting reaction product for reaction.
  • the isocyanurate type polyisocyanate (a2) is added to the tricarboxylic acid anhydride (a1) in three or more times, the isocyanurate type polyisocyanate (a2) is further added to the reaction product obtained above. ) To be reacted, that is, the step (a1) may be repeated.
  • the amount of the component (a2) to be added may be evenly allocated or biased. May be.
  • a method for imparting bias for example, the amount of the component (a2) to be added at the first time is the largest and the balance is made equal or the amount to be added later is reduced, or the component (a2) to be added at the first time.
  • There are various methods such as a method of making the balance the smallest and making the balance evenly, or making the balance more the amount added later, but the amount of the component (a2) added first time is the largest and the balance is added later.
  • a method of decreasing the amount added is preferable. For example, when component (a2) is added in three portions, 40 to 80% by mass of the component (a2) to be added is first added, and 40 to 15% by mass is added the second time. 20 to 5% by mass thereof can be added.
  • the reaction temperature of the (amide) imidation reaction is preferably in the range of 50 ° C to 250 ° C, particularly preferably in the range of 70 ° C to 180 ° C. By setting such a reaction temperature, the reaction rate is increased, and the side reaction and decomposition are less likely to occur.
  • the progress of the (amide) imidization reaction can be traced by an analytical means such as an infrared vector, acid value, or quantitative determination of an isocyanate group.
  • an analytical means such as an infrared vector, acid value, or quantitative determination of an isocyanate group.
  • 2270 cm -1 which is the characteristic absorption of an isocyanate group was reduced as the reaction further acid anhydride group is reduced with a characteristic absorption at 1860 cm -1 and 850 cm -1.
  • the absorption of imide groups increases at 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the reaction may be terminated by lowering the temperature while confirming the target acid value, viscosity, molecular weight and the like. However, it is more preferable to continue the reaction until the isocyanate group disappears from the standpoint of stability over time.
  • a catalyst, an antioxidant, a surfactant, other solvents, and the like may be added as long as the physical properties of the synthesized resin are not impaired.
  • the ratio of the total amount of the isocyanurate type polyisocyanate (a2) subjected to the (amide) imidization reaction in the step (1) and the amount of the tricarboxylic acid anhydride (a1) is determined by the isocyanurate type polyisocyanate ( Ratio of the total number of moles (N) of isocyanate groups in a2) to the total number of moles of carboxy groups (M1) and acid anhydride groups (M2) in tricarboxylic acid anhydride (a1) [ The reaction is carried out so that (M1) + (M2)) / (N)] is 1.1 to 3, since the polarity in the reaction system becomes high and the reaction proceeds to lubrication, the isocyanate group does not remain, It is preferable because the stability of the resulting polyamideimide resin is good, the residual amount of the tricarboxylic acid anhydride (a1) is small, and separation problems such as recrystallization hardly occur. Among these, 1.2 to 2 is more prefer
  • Examples of the polyamideimide resin (A1) used in the present invention include imide resins represented by the following (formula 2).
  • N is a repeating unit of 0-30.
  • Rb is, for example, a structural unit represented by the following structural formula (Formula 3) or (Formula 4).
  • R 2 is, for example, an aromatic or aliphatic tricarboxylic acid residue that may have a substituent having 6 to 20 carbon atoms.
  • Rc is represented by the following structural formula (formula 5), for example. A structural unit.
  • Rd is, for example, a trivalent organic group represented by the following (formula 6):
  • Ra represents, for example, a residue of a divalent aliphatic diisocyanate.
  • step (2) for producing the alcohol-modified polyamideimide resin (A2) of the present invention will be described.
  • the alcohol-modified polyamideimide resin (A2) of the present invention is obtained by producing the polyamideimide resin (A1) by the above method and subsequently reacting with the alcohol compound (a3).
  • the reaction between the polyamideimide resin (A1) and the alcohol compound (a3) is not particularly limited as long as the effects of the present invention are not impaired.
  • the reaction can be performed by the following esterification reaction.
  • the polyamideimide resin (A1) used as a raw material the one produced by the above method can be used.
  • the side reaction of urethanization can be suppressed during the reaction with the alcohol compound (a3), the isocyanate group is completely It is preferable to use those that have disappeared.
  • the disappearance of the isocyanate group can be confirmed by the disappearance of 2270 cm ⁇ 1, which is the characteristic absorption of the isocyanate group in the infrared spectrum, for example.
  • the reaction between the polyamideimide resin (A1) and the alcohol compound (a3) is carried out by the number of moles of acid anhydride groups (M3) in the polyamideimide resin (A1) and the number of moles of hydroxyl groups (L) of the alcohol compound (a3).
  • M3 acid anhydride groups
  • L hydroxyl groups
  • the number of moles of acid anhydride groups (M3) in the polyamideimide resin (A1) is determined by the following method because the tricarboxylic acid anhydride (a1) is consumed by the reaction with the polyisocyanate (a2). Can be obtained.
  • the polyamideimide resin (A1) is diluted with a solvent or the like, and the acid value (a) is determined by titration with an aqueous KOH solution.
  • the polyamide-imide resin (A1) is diluted with a solvent or the like, an excess amount of n-butanol is reacted with the acid anhydride group, and then the acid value (b) is obtained by titration with an aqueous KOH solution.
  • Examples of the alcohol compound (a3) include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, ethylene glycol, propylene glycol, trimethylolpropane and benzyl alcohol.
  • Alcohols having 10 or less carbon atoms 2-methoxyethyl alcohol, 2-ethoxyethyl alcohol, 1-methoxy-2-propyl alcohol, 1-ethoxy-2-propyl alcohol, 3-methoxy-1-butyl alcohol, 2- An alcohol having 10 or less carbon atoms containing an ether bond such as isopropoxyethyl alcohol; an alcohol having 10 or less carbon atoms containing a ketone group such as 3-hydroxy-2-butanone; Number of carbon atoms including ester groups such as methyl acid 10 ppm alcohol are exemplified.
  • monohydric alcohols having 5 or less carbon atoms are preferred.
  • the dehydration esterification reaction is preferably carried out by mixing the polyamideimide resin (A1) and one or more alcohol compounds (a3) in a solvent or without a solvent and raising the temperature while stirring.
  • the reaction temperature is preferably in the range of 50 ° C. to 150 ° C., particularly preferably in the range of 70 ° C. to 130 ° C. By setting such a reaction temperature, the reaction rate is increased, and the side reaction and decomposition are less likely to occur.
  • the reaction forms an ester bond with a dehydration reaction.
  • the progress of the reaction can be traced by an analytical means such as an infrared vector, acid value, or ester bond quantification.
  • the infrared spectrum, 1860 cm -1 and 850 cm -1 which is the characteristic absorption of an acid anhydride group decreases with the reaction.
  • the reaction may be terminated by lowering the temperature while confirming the target acid value, viscosity, molecular weight and the like. However, it is more preferable to continue the reaction until the acid anhydride group disappears from the viewpoint of stability over time.
  • the solvent used for the dehydration esterification reaction can be the same as the solvent used for the (amide) imidization reaction.
  • a catalyst, an antioxidant, a surfactant, other solvents, and the like may be added as long as the physical properties of the synthesized resin are not impaired.
  • the alcohol-modified polyamide-imide resin (A2) obtained by the above production method includes at least an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure and a tricarboxylic acid anhydride (a1).
  • the alcohol-modified polyamideimide resin (A2) obtained by the production method of the present invention has a molecular weight distribution of 2.0 or less, preferably 1.5 to 2.0, A range of 1.7 to 1.9 is particularly preferable.
  • the alcohol-modified polyamideimide resin of the present invention is not only soluble in a general-purpose solvent and excellent in solvent dilutability, but also has long storage stability and a long working life even when blended with a curable resin described later. Resin composition and cured product (cured coating film) excellent in developability are obtained.
  • the number average molecular weight is preferably 800 to 20000, more preferably 850 to 8000, and particularly preferably in the range of 900 to 2500 in terms of good solubility in a solvent and a cured product having excellent mechanical strength.
  • the mass average molecular weight is not particularly limited as long as it satisfies the above range of molecular weight distribution with respect to the above number average molecular weight, but is preferably 1600 to 40000 in view of good solubility in a solvent. 1650 to 10000 is more preferable, and a range of 1700 to 5000 is particularly preferable.
  • the molecular weight can be measured by gel permeation chromatography (GPC) or quantitative analysis of the terminal functional group amount.
  • the number average molecular weight and the mass average molecular weight were measured using GPC under the following conditions.
  • Measuring device Tosoh Corporation HLC-8120GPC, UV8020
  • Measurement conditions Column temperature 40 ° C Solvent THF Flux 1.0ml / min Standard: Calibration curve prepared with polystyrene standard sample Sample: 0.1% by mass THF solution in terms of resin solids filtered through microfilter (injection amount: 200 ⁇ l)
  • the acid value of the alcohol-modified polyamideimide resin (A2) of the present invention is preferably 70 to 210 KOHmg / g, and particularly preferably 90 to 190 KOHmg / g. When it is 70 to 210 KOHmg / g, it exhibits excellent performance as a cured material.
  • polyamideimide resins (A2) of the present invention polyamideimide resins that are soluble in polar solvents that do not contain any of the nitrogen and sulfur atoms are preferred.
  • examples of such polyamideimide resins include branched polyamideimide resins having a branched structure and an acid value of the resin of 60 KOHmg / g or more.
  • Examples of components contained in the alcohol-modified polyamideimide resin (A2) used in the present invention include imide resins represented by the following (formula 7).
  • Ra represents, for example, a residue of a divalent aliphatic diisocyanate.
  • Rb represents, for example, the above structural formula (Formula 3) or (Formula 4).
  • Rd is, for example, a trivalent organic group represented by the above (formula 6), and Rc ′ is, for example, a structure represented by the following structural formula (formula 8) Unit.
  • R 2 is, for example, the same as described above.
  • R 3 represents a residue obtained by removing a hydroxyl group from an alcohol compound.
  • the curable resin composition of the present invention contains the alcohol-modified polyamideimide resin (A2) of the present invention, the curable resin (B) and / or the organic solvent (C).
  • the curable resin (B) examples include an epoxy compound (B1) having two or more epoxy groups in the molecule, a compound having two or more maleimide groups in the molecule, a benzoxazine resin, and a cyanate ester resin. Is mentioned.
  • the component (B1) known and commonly used epoxy resins can be used, and two or more kinds may be mixed and used.
  • Other examples include melamine resins, isocyanate compounds, silicates and alkoxysilane compounds, (meth) acrylic resins, etc., which are excellent in heat resistance, dimensional stability and mechanical properties (toughness, flexibility).
  • An epoxy resin is preferable in that a cured product such as a cured coating film is obtained.
  • cured material property mentioned above and below-mentioned described in this invention is the polyamideimide resin of this invention alone or the polyamideimide resin of this invention other than the hardened
  • Examples of the epoxy resin (B1) include reaction of bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene and various phenols. Epoxidized products of various dicyclopentadiene-modified phenolic resins, 2,2 ′, 6,6′-tetramethylbiphenol epoxidized product, 4,4′-methylenebis (2,6-dimethylphenol) epoxidized product, Epoxy derived from naphthalene skeleton, such as naphthol, binaphthol or novolak modification of naphthol or binaphthol, aromatic epoxy resin such as epoxy resin obtained by epoxidizing phenol resin of fluorene skeleton, etc. It is.
  • aliphatic epoxy resins such as neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, 3,4-epoxycyclohexylmethyl- 3,4-epoxycyclohexanecarboxylate, bis- (3,4-epoxybicyclohexyl) adipate, 1,2-epoxy-4- (2-oxiranyl) cyclohexane of 2,2-bis (hydroxymethyl) -1-butanol
  • a cycloaliphatic epoxy resin such as an adduct, an epoxy resin containing a polyalkylene glycol chain in the main chain, such as polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and triglycidyl isocyanurate Heterocycle-containing epoxy resins can be used.
  • an epoxy group-containing polymerization resin obtained by polymerizing an unsaturated group of an epoxy compound having a polymerizable unsaturated double bond such as a (meth) acryloyl group or a vinyl group, and other monomers having a polymerizable unsaturated bond Copolymers with can also be used.
  • Examples of the compound having both (meth) acryloyl group and epoxy group include glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate glycidyl ether, hydroxypropyl (meth) acrylate glycidyl ether, 4-hydroxydibutyl (meth) acrylate glycidyl ether.
  • 6-hydroxyhexyl (meth) acrylate glycidyl ether 5-hydroxy-3-methylpentyl (meth) acrylate glycidyl ether, (meth) acrylic acid-3,4-epoxycyclohexyl, lactone modified (meth) acrylic acid-3, 4-epoxycyclohexyl, vinylcyclohexene oxide and the like.
  • the epoxy resin (B1) component having two or more epoxy groups in the molecule is particularly preferably a cycloaliphatic epoxy resin. If it is a cycloaliphatic epoxy resin, a cured coating film having a high Tg and excellent thermal properties can be obtained, and a cured product having a high light transmittance in the ultraviolet region (around 300 nm) can be obtained.
  • cycloaliphatic epoxy resins hydrogenated bisphenol A type epoxy resin, 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol and the like are preferable. .
  • Such cycloaliphatic epoxy resins can be obtained on the market, and examples thereof include Denacol EX-252 (manufactured by Nagase ChemteX Corporation), EHPE3150, EHPE3150CE (manufactured by Daicel Chemical Industries, Ltd.), and the like.
  • the alcohol-modified polyamideimide resin (A2) and the epoxy resin (B1) having two or more epoxy groups in the molecule can be freely blended according to various desired physical properties, such as Tg.
  • the number of moles of carboxy groups (COOH) of the alcohol-modified polyamideimide resin (A2) and two or more epoxy groups in the molecule The epoxy resin (B1) having a ratio [n (EPOXY) / n (COOH)] to the number of moles of epoxy groups n (EPOXY) of the epoxy resin (B1) is 0.3 to 4, preferably 0.8 to 1.
  • the blend of the alcohol-modified polyamideimide resin (A2) and the epoxy resin (B1) within the range of .2 makes it easy to obtain Tg as a property of the cured product, and a cured product having excellent mechanical properties and the like. Is preferred because the transparency of the further cured product is improved.
  • the curable resin composition of the present invention may be mixed with an epoxy-carboxylic acid-based curing catalyst or the like.
  • epoxy-carboxylic acid-based curing catalysts include primary to tertiary amines for promoting the reaction, quaternary ammonium salts, nitrogen compounds such as dicyandiamide and imidazole compounds, TPP (triphenylphosphine). ),
  • TPP triphenylphosphine
  • Known epoxy curing accelerators such as phosphine compounds such as alkyl-substituted trialkyl phonylphosphine and derivatives thereof, phosphophonium salts thereof, dialkylureas, carboxylic acids, phenols, or methylol group-containing compounds. Etc., and a small amount of these can be used in combination.
  • maleimide compound (B2) examples include, for example, N-cyclohexylmaleimide, N-methylmaleimide, Nn-butylmaleimide, N-aliphatic maleimides such as N-hexylmaleimide and N-tert-butylmaleimide; N-aromatic maleimides such as N-phenylmaleimide, N- (P-methylphenyl) maleimide and N-benzylmaleimide; 4,4 ′ -Diphenylmethane bismaleimide, 4,4'-diphenylsulfone bismaleimide, m-phenylene bismaleimide, bis (3-methyl-4-maleimidophenyl) methane, bis (3-ethyl-4-maleimidophenyl) methane, bis (3 , 5-Dimethyl-4-maleimidophenyl) methane, bis 3-eth
  • bismaleimide is particularly preferable because the cured product has good heat resistance, and 4,4′-diphenylmethane bismaleimide, bis (3,5-dimethyl-4-maleimidophenyl) methane, bis (3 Preferred examples include -ethyl-5-methyl-4-maleimidophenyl) methane and bis (3,5-diethyl-4-maleimidophenyl) methane.
  • a curing accelerator can be used as necessary.
  • the curing accelerator that can be used here include amine compounds, phenol compounds, acid anhydrides, imidazoles, and organic metal salts.
  • the curable resin composition of the present invention may further contain an organic solvent (C) as necessary.
  • organic solvent (C) the same organic solvent as that used to prepare the alcohol-modified polyamideimide resin (A2) can be used.
  • the curable resin composition of the present invention further comprises a photopolymerization initiator (D) and, if necessary, a reactive diluent (E) when curing by irradiating with energy rays, particularly ultraviolet rays.
  • a photopolymerization initiator (D) is not particularly limited, and a known and commonly used polymerizable photoinitiator can be used. Typical examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether.
  • Benzoin and benzoin alkyl ethers such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, acetophenones such as 1,1-dichloroacetophenone, 2-methylanthraquinone, 2 -Anthraquinones such as ethylanthraquinone, 2-tertiarybutylanthraquinone, 1-chloroanthraquinone, 2-aluminumanthraquinone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chloro Thioxanthones such as thioxanthone, 2,4-diisopropylthioxanthone, trimethylbenzoyl such as bis (2,6dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, 2,4,6-tri
  • the amount of the photopolymerization initiator (D) used is not particularly limited as long as it does not impair the effects of the present invention, but usually 0.1 to 30 masses per 100 mass parts of the alcohol-modified polyamideimide resin (A2). Part range, more preferably 0.5 to 10 parts by mass.
  • Such photopolymerization initiators can also be used in combination with one or more known and commonly used photopolymerization accelerators.
  • the reactive diluent (E) used in the present invention known and commonly used photopolymerizable vinyl monomers can be used. Typical examples include dimethylaminoethyl acrylate, diethylaminoethyl acrylate, ethylene glycol diacrylate, Diethylene glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, propylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, trimethylolpropane diacrylate, trimethylolpropane triacrylate, penta Erythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol Polyhexaacrylate, acryloylmorpholine, vinylpyrrolidone, styrene, tris (2-acryloyloxyethyl) isocyanurate, alkyl (meth
  • the alcohol-modified polyamideimide resin (A2) and the reactive diluent (E) can be freely blended in accordance with various desired physical properties, such as thermal properties such as Tg, mechanical properties, etc.
  • the ratio [A2 / E] of the alcohol-modified polyamideimide resin (A2) to the photopolymerizable group of the reactive diluent (E) is 0.2 to Mixing the alcohol-modified polyamideimide resin (A2) and the reactive diluent (E) within a range of 5.0 makes it easy to obtain Tg as a property of the cured product, and a cured product having excellent mechanical properties and the like is obtained. Further, it is preferable because the transparency of the cured product is improved.
  • Curing of the curable resin composition of the present invention is basically performed while appropriately selecting and adjusting the type and blending ratio of the alcohol-modified polyamideimide resin (A2), curable resin (B), other components, and curing conditions. be able to.
  • active energy ray curing, curing by heat, and both are used in combination, that is, semi-curing by active energy ray curing, then curing by heat, semi-curing by curing by heat It is also possible to carry out active energy ray curing and both at the same time.
  • ultraviolet rays and electron beams can be used.
  • an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a black light lamp, a metal halide lamp, or the like can be used.
  • As the ultraviolet wavelength a wavelength of 1900 to 3800 angstroms is mainly used.
  • an apparatus having an irradiation source such as various electron beam accelerators can be used, and electrons having an energy of 100 to 1000 KeV are irradiated.
  • the curing is carried out in the range of a curing temperature of 80 ° C. to 300 ° C., preferably in the range of 120 ° C. to 250 ° C. in the presence of a catalyst for starting thermal polymerization and additives.
  • the material to be coated can be cured by heating after being painted or cast. Further, step curing at various temperatures may be performed. Alternatively, a sheet-like or film-like composition semi-cured at a temperature of about 50 ° C. to 170 ° C. may be stored and treated at the above-described curing temperature when necessary.
  • the active energy ray and heat there is no limitation in using the active energy ray and heat in combination.
  • curable resin composition of the present invention if necessary, other solvents than the above, various leveling agents, antifoaming agents, antioxidants, anti-aging agents, ultraviolet absorbers, anti-settling agents, rheology control agents
  • Various known additives such as barium sulfate, silicon oxide, talc, clay, calcium carbonate, silica, colloidal silica, glass and the like, various metal powders, glass fibers, carbon fibers, fiber shapes such as Kevlar fibers, etc. You may mix
  • blend polymers such as an acrylic resin, a cellulose resin, a polyvinyl resin, polyphenylene ether, and polyether sulfone, as needed.
  • a non-halogen flame retardant containing substantially no halogen atom is blended so long as the effect of the present invention is not impaired so that the cured product exhibits flame retardancy. May be.
  • the non-halogen flame retardants include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants.
  • the flame retardants may be used alone or in combination, and a plurality of flame retardants of the same system may be used, or different types of flame retardants may be used in combination.
  • the phosphorus flame retardant either inorganic or organic can be used.
  • the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide.
  • the red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like.
  • Examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide
  • a method of double coating with a resin may be used.
  • general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phospholane compounds, organic nitrogen-containing phosphorus compounds,
  • the blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy.
  • the polyamide-imide resin (A2) In 100 parts by mass of the curable resin composition containing all of the curable resin (B) and / or the organic solvent (C), the curing agent, the non-halogen flame retardant, and other fillers and additives, red phosphorus is not contained.
  • a halogen-based flame retardant it is preferably blended in the range of 0.1 to 2.0 parts by mass.
  • an organophosphorus compound is used, it is similarly blended in the range of 0.1 to 10.0 parts by mass.
  • the phosphorous flame retardant may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.
  • nitrogen-based flame retardant examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazines, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
  • triazine compound examples include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, (i) guanylmelamine sulfate, melem sulfate, sulfate (Iii) co-condensates of phenols such as phenol, cresol, xylenol, butylphenol and nonylphenol with melamines such as melamine, benzoguanamine, acetoguanamine and formguanamine and formaldehyde, (iii) (Ii) a mixture of a co-condensate of (ii) and a phenolic resin such as a phenol formaldehyde condensate, (iv) those obtained by further modifying (ii) and (iii) with paulownia oil, isomerized linseed oil
  • the cyanuric acid compound examples include cyanuric acid and cyanuric acid melamine.
  • the amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardant. In 100 parts by mass of curable resin composition (A2), curable resin (B) and / or organic solvent (C), curing agent, non-halogen flame retardant and other fillers and additives, etc. It is preferably blended in the range of 0.05 to 10 parts by mass, and particularly preferably in the range of 0.1 to 5 parts by mass. Moreover, when using the said nitrogen-type flame retardant, you may use together a metal hydroxide, a molybdenum compound, etc.
  • the silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • the amount of the silicone flame retardant is appropriately selected depending on the type of the silicone flame retardant, the other components of the curable resin composition, and the desired degree of flame retardant. In 100 parts by mass of curable resin composition (A2), curable resin (B) and / or organic solvent (C), curing agent, non-halogen flame retardant and other fillers and additives, etc. It is preferable to blend in the range of 0.05 to 20 parts by mass.
  • Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.
  • Specific examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.
  • Specific examples of the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide. Bismuth oxide, chromium oxide, nickel oxide, copper oxide, tungsten oxide and the like.
  • the metal carbonate compound examples include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.
  • the metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.
  • Specific examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
  • the low-melting-point glass include, for example, Shipley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO system, P—Sn—O—F system, PbO—V 2 O 5 —TeO 2 system, Al 2 O 3 —H 2 O system, lead borosilicate system, etc.
  • the glassy compound can be mentioned.
  • the blending amount of the inorganic flame retardant is appropriately selected depending on the kind of the inorganic flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy.
  • curable resin composition (A2) 100 parts by mass of curable resin composition (A2), curable resin (B) and / or organic solvent (C), curing agent, non-halogen flame retardant and other fillers and additives, etc. It is preferably blended in the range of 0.05 to 20 parts by mass, and particularly preferably in the range of 0.5 to 15 parts by mass.
  • organic metal salt flame retardant include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.
  • the amount of the organic metal salt flame retardant is appropriately selected depending on the type of the organic metal salt flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy.
  • the curable resin composition of the present invention provides a cured coating film that is soluble in a general-purpose solvent and is excellent in heat resistance and light transmittance. For this reason, in particular, in the field where the transparency of the cured product is required, for example, the field for optical materials, solder resist materials for printed wiring boards, protective materials and insulating materials for household appliances such as refrigerators and rice cookers, liquid crystal displays, Protective materials used for liquid crystal display elements, organic and inorganic electroluminescence displays, organic and inorganic electroluminescence elements, LED displays, light emitting diodes, electronic paper, solar cells, through silicon electrodes (Through Silicon Via: TSV), optical fibers, optical waveguides, etc. It can be suitably used in fields such as insulating materials, adhesives and reflective materials, and display device fields such as liquid crystal alignment films and color filter protective films.
  • the field where the transparency of the cured product is not required, for example, various heat-resistant coating materials, heat-resistant adhesives; sealing materials for electric and electronic parts, insulating varnishes, laminates, insulating powder coatings, semiconductor passivation Electrical insulating materials such as films and gate insulating films; Conductive materials such as conductive films and conductive adhesives; Adhesives for structural materials such as laminates for printed wiring boards, prepregs and honeycomb panels; glass fibers and carbon fibers , Fiber reinforced plastics using various reinforcing fibers such as aramid fibers and prepregs thereof; patterning materials such as resist inks; gaskets for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries Can do.
  • the curable resin composition of the present invention includes a white prepreg, a white laminate, and the white laminate because a cured coating film that is soluble in a general-purpose solvent and has excellent heat resistance and light transmittance is obtained. It can be suitably used for a chip LED. Details will be described below.
  • the white prepreg of the present invention is characterized in that a mixture containing the curable resin composition of the present invention and a white pigment is impregnated or applied to a sheet-like glass fiber substrate and then dried. Specifically, the mixture containing the curable resin composition of the present invention and a white pigment is impregnated or applied to a sheet-like glass fiber base material, and then in a dryer in the range of 100 to 200 ° C. for 1 to 60 minutes. It is characterized by being semi-cured within the range.
  • the white prepreg and the production method thereof will be specifically described below.
  • the white pigment examples include zinc oxide, calcium carbonate, titanium dioxide, alumina, and synthetic smectite.
  • the white pigment is not particularly limited as long as it is a white inorganic powder, but is not limited to visible light reflectance, whiteness, or electricity. It is most preferable to use titanium dioxide from the viewpoint of characteristics.
  • the crystal structure of titanium dioxide includes anatase type and rutile type.
  • the anatase type has good reflectance in the visible light short wavelength region
  • the rutile type has excellent long-term durability and discoloration resistance. Either may be sufficient as a white pigment added to the curable resin composition of this invention, and it does not specifically limit. It is of course possible to use a mixture of both.
  • the content of the white pigment contained in the mixture is preferably in the range of 10 to 75% by mass in the formulation. If it is 10% by mass or more, sufficient whiteness and reflectance can be obtained, and if it is 75% by mass or less, the impregnation property to the sheet-like glass fiber substrate is lowered or the adhesive strength to the metal foil is lowered. There will be no problems.
  • the titanium dioxide When titanium dioxide is used as the white pigment, the titanium dioxide may be subjected to alumina or silica treatment as a surface treatment. Moreover, a silane coupling agent or titanate coupling agent treatment is also possible.
  • the mixture impregnated into the sheet-like glass fiber base material may contain an inorganic filler such as silica, if necessary.
  • the inorganic filler that can be contained include silica, aluminum hydroxide, magnesium hydroxide, E glass powder, magnesium oxide, potassium titanate, calcium silicate, clay, and talc. Two or more types may be used in combination.
  • the blending amount is not particularly limited, but is preferably 50% by mass or less with respect to the mixture. If it is 50 mass% or less, there is almost no possibility that the impregnation property to a sheet-like glass fiber base material will fall or the adhesive strength with metal foil will generate
  • Fluorescent agent can be blended in the mixture impregnated into the sheet-like glass fiber substrate, if necessary, in addition to the white pigment and the inorganic filler.
  • the fluorescent agent is a compound that has the property of absorbing light energy such as light, radiation, and ultraviolet light and emitting it by changing to light of other wavelengths.
  • diaminostilbene derivatives, anthracene, sodium salicylate , Diaminostilbene disulfonic acid derivatives, imidazole derivatives, coumarin derivatives, pyrazoline derivatives, decalylamine derivatives, and the like are examples of organic substances.
  • the fluorescent agent preferably has a radiation wavelength in the visible light short wavelength region (380 to 470 nm) in which the reflectance is remarkably lowered.
  • the fluorescent agent is generally called a fluorescent whitening agent.
  • Diaminostilbene disulfonic acid derivatives, imidazole derivatives, coumarin derivatives, pyrazoline derivatives and the like are suitable.
  • the addition amount is not limited, but in the case of a pyrazoline derivative, the effect is exhibited from the addition of about 0.1% by mass with respect to the mixture, and the effect is increased as the addition amount is increased. Further, it is desirable that the optical brightener to be added is soluble in a solvent.
  • the sheet-like glass fiber substrate used for the white prepreg of the present invention may be either a glass cloth or a nonwoven fabric, and a glass cloth and a nonwoven fabric may be used in combination.
  • a plain weave structure is basically used, but a woven structure such as Nanako weave, satin weave or twill weave may be used, and is not particularly limited.
  • a woven structure such as Nanako weave, satin weave or twill weave may be used, and is not particularly limited.
  • the thickness of the glass cloth is not particularly limited, but is preferably in the range of 0.02 to 0.3 mm because it is easy to handle.
  • the sheet-like glass fiber base material may be subjected to a surface treatment with a silane coupling agent or the like. Furthermore, the sheet-like glass fiber base material itself may be colored white.
  • a solvent such as methyl ethyl ketone is added to the mixture described above to prepare a resin varnish, impregnated into a sheet-like glass fiber substrate made of glass cloth or the like, and dried to produce a white prepreg.
  • the method for impregnating and drying the resin varnish on the sheet glass fiber substrate is not particularly limited. For example, after impregnating the resin varnish by immersing the sheet glass fiber substrate in the resin varnish, 100 ° C. to A method of removing the solvent and semi-curing the curable resin by heating at a temperature of about 200 ° C. for 1 to 60 minutes can be employed.
  • the impregnation amount of the curable resin composition of the white prepreg produced by impregnating and drying the sheet-like glass fiber substrate is not particularly limited, but is preferably in the range of 30 to 60% by mass.
  • drying conditions for the prepreg for example, it is preferable to previously measure the gel time of the resin varnish with a gel time tester (manufactured by Yasuda Seiki Seisakusho).
  • the gel time measurement conditions the gel time at 160 ° C. (curing time: the time required for the rotor torque to reach about 3.3 kg ⁇ cm) is measured by the above-mentioned apparatus, and the gel time of the varnish resin is 5 minutes or more.
  • the range of ⁇ 15 minutes is preferable, and the gel time is more preferably 5 minutes to less than 10 minutes. If the gel time of the resin varnish is short, the semi-cured state cannot be maintained, and it becomes difficult to produce a uniform prepreg. Further, when the half-curing cannot be maintained and the curing is reached, it becomes difficult to bond with a metal foil described later. Therefore, it is preferable to semi-cure under conditions suitable for the process by varnish gel time measurement.
  • a combination of the obtained white prepreg and copper foil or aluminum foil is heated and pressed to produce a white laminate.
  • the number of white prepregs to be overlaid is not particularly limited, but as a single-layer substrate, one or two to ten white prepregs are stacked. In general, the foils are laminated.
  • the multilayer substrate is manufactured by laminating a plurality of the single-layer substrates, but there is no particular limitation on the number of the stacked substrates.
  • the metal foil copper foil, aluminum foil or the like is used as the metal foil. Further, the thickness of the metal foil is generally 1 ⁇ m to 105 ⁇ m, and particularly preferably in the range of 1.5 ⁇ m to 35 ⁇ m.
  • the white laminates and metal foil-clad white laminates obtained in this way have high reflectivity in the visible light region, remarkably little discoloration due to heating and ultraviolet rays, and high heat resistance and excellent thickness accuracy. It becomes the white laminated board for wiring boards, and a metal foil clad white laminated board.
  • the lamination molding conditions for the metal foil-clad laminate the usual method for laminates for printed wiring boards can be applied. For example, a multistage press, a multistage vacuum press, a continuous molding, an autoclave molding machine, etc.
  • a temperature 100- A range of 300 ° C.
  • pressure 2 to 100 kgf / cm 2
  • heating time range of 0.1 to 5 hours is general, but in terms of uniform insulation layer thickness, removal of bubbles, etc., lamination molding is It is preferable to carry out under a vacuum of 70 mmHg or less.
  • a conductive pattern is formed on the obtained white laminate by an additive method to obtain a printed wiring board.
  • a circuit pattern is printed on the metal foil of the obtained metal foil-clad white laminate and etched to obtain a printed wiring board.
  • solder is applied on the printed wiring board, and the chip LED is placed on the printed wiring board, and then the chip LED is melted by passing it through reflow or the like. Is fixed to the printed circuit board.
  • chip LEDs By integrating chip LEDs with high density, it can be used as a surface light source, and such a surface light source is suitably used for a backlight for a liquid crystal display that is particularly required to be thin.
  • it is applied to induction display illumination lamps, evacuation exit illumination lamps, advertisement lights, etc. as surface emitting illumination devices.
  • the thickness accuracy of the chip LED mounting substrate is extremely important when the elements mounted on the substrate are sealed by transfer molding.
  • transfer molding refers to a method of press-fitting a resin into a clamped mold.
  • the thickness of the substrate used for the chip LED is generally 0.06 mm to 1.0 mm.
  • the required accuracy of the substrate thickness in such transfer molding is, for example, a tolerance of ⁇ 0.05 mm or less (range is 0.1 mm), preferably a tolerance of ⁇ 0.03 mm or less for a substrate having a thickness of 1.0 mm. (The range is 0.06 mm). Therefore, if there is a substrate with high thickness accuracy, the defect rate can be greatly reduced in the manufacturing process of the chip LED, which is extremely significant in the industry.
  • the curable resin composition of the present invention is used as a patterning material
  • the curable resin composition of the present invention is applied onto a substrate, the solvent is dried, and then energy is passed through a mask having a pattern.
  • a pattern can be formed by irradiating a line and developing with an alkaline aqueous solution or a solvent. Furthermore, a stronger pattern can be formed by heat treatment at 80 ° C. or higher. Details will be described below.
  • a photosensitive film comprising a support and a photosensitive resin composition layer made of the curable resin composition of the present invention formed on the support is produced.
  • the photosensitive resin composition layer is formed by dissolving the curable resin composition of the present invention in a solvent or mixed solvent to obtain a solution having a solid content of about 30 to 70% by mass, and then applying the solution onto a support. It is preferable to do.
  • the thickness of the photosensitive resin composition layer varies depending on the use, but it is preferably 10 to 100 ⁇ m, more preferably 20 to 60 ⁇ m, after drying after removing the solvent by heating and / or hot air blowing. . If the thickness is less than 10 ⁇ m, there is a tendency that it is difficult to apply industrially, and if it exceeds 100 ⁇ m, the above-described effects produced by the present invention tend to be reduced, and in particular, physical properties and resolution tend to be reduced.
  • the support provided in the photosensitive film examples include polyesters such as polyethylene terephthalate, polymer films having heat resistance and solvent resistance such as polypropylene and polyethylene.
  • the thickness of the support is preferably 5 to 100 ⁇ m, and more preferably 10 to 30 ⁇ m. If the thickness is less than 5 ⁇ m, the support tends to be broken when the support is peeled off before development, and if it exceeds 100 ⁇ m, the resolution and flexibility tend to decrease.
  • the photosensitive film consisting of two layers of the support and the photosensitive resin composition layer as described above or the photosensitive film consisting of three layers of the support, the photosensitive resin composition layer, and the protective film, for example, is stored as it is. Alternatively, the protective film may be interposed and wound around the core in a roll shape and stored.
  • the method for forming a resist pattern when the curable resin composition of the present invention is used as a photosensitive resin composition or a photosensitive film is firstly applied to a known screen printing or roll coater, or protection, respectively.
  • the film is laminated on the substrate on which the resist is formed.
  • a removal step of removing the support film from the photosensitive film described above is performed, or actinic rays are passed through the mask pattern without removing the support film to a predetermined portion of the photosensitive resin composition layer. Irradiation is performed to perform an exposure process for photocuring the photosensitive resin composition layer of the irradiated portion.
  • the photosensitive resin composition layer other than the irradiated part is removed by the next development step after removing the support film.
  • substrate which forms a resist points out a printed wiring board, a board
  • a known light source such as a carbon arc lamp, a mercury vapor arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, or a xenon lamp is used.
  • a known light source such as a carbon arc lamp, a mercury vapor arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, or a xenon lamp is used.
  • what emits visible light effectively such as a photographic flood light bulb and a solar lamp, is also used.
  • direct drawing direct laser exposure may be used.
  • An excellent pattern can be formed by using a photopolymerization initiator (D) corresponding to each laser light source and exposure method.
  • an alkaline developer such as a dilute solution of sodium carbonate (1 to 5% by mass aqueous solution) at 20 to 50 ° C. is used as the developer, and known spraying, rocking immersion, brushing, scraping, etc. Develop by the method of.
  • the irradiation amount can be adjusted as necessary.
  • irradiation can be performed at an irradiation amount of about 0.2 to 10 J / cm 2 .
  • the resist pattern is heated, it is preferably performed in the range of about 100 to 170 ° C. for about 15 to 90 minutes.
  • ultraviolet irradiation and heating can be performed at the same time, and after either one is performed, the other can be performed. When ultraviolet irradiation and heating are performed simultaneously, heating to 60 to 150 ° C. is more preferable from the viewpoint of effectively imparting solder heat resistance, chemical resistance, and the like.
  • This photosensitive resin composition layer also serves as a protective film for wiring after soldering to the substrate, and has excellent crack resistance, HAST resistance, and gold plating properties, so for printed wiring boards and semiconductor package substrates It is useful as a solder resist for flexible wiring boards.
  • the substrate provided with the resist pattern in this manner is then mounted with a semiconductor element or the like (for example, wire bonding, solder connection), and then mounted on an electronic device such as a personal computer.
  • a semiconductor element or the like for example, wire bonding, solder connection
  • Example 1 [Preparation of polyamideimide resin (A1-1)]
  • PGMAc propylene glycol monomethyl ether acetate
  • 197.6 g (0 .27 mol) and 506.9 g (2.56 mol) of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride were added and heated to 140 ° C. over 2 hours. The reaction proceeded with foaming. The reaction was carried out at this temperature for 2 hours.
  • the characteristic absorption was measured in the infrared spectrum, and the characteristic absorption of the isocyanate group, 2270 cm ⁇ 1 , completely disappeared, and the absorption of the imide group was confirmed at 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the acid value was 190 KOHmg / g in terms of solid content.
  • This resin solution is abbreviated as an imide resin (A1-1) solution.
  • PGMAc propylene glycol monomethyl ether acetate
  • Characteristic absorption was measured in the infrared spectrum, and after confirming that 2270 cm ⁇ 1, which is the characteristic absorption of the isocyanate group, was completely extinguished, 35.1 g (0.05 mol) of IPDI3N was further added to continue the reaction. . Characteristic absorption was measured in the infrared spectrum, and after confirming that 2270 cm ⁇ 1, which is the characteristic absorption of the isocyanate group, was completely extinguished, 35.1 g (0.05 mol) of IPDI3N was further added to continue the reaction. .
  • the characteristic absorption was measured by infrared spectrum, and the characteristic absorption of the isocyanate group, 2270 cm ⁇ 1 , disappeared completely, and the absorption of the imide group was confirmed at 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the acid value was 196 KOH mg / g in terms of solid content.
  • This resin solution is abbreviated as an imide resin (A2-1) solution.
  • PGMAc propylene glycol monomethyl ether acetate
  • the characteristic absorption was measured in the infrared spectrum, and the characteristic absorption of the isocyanate group, 2270 cm ⁇ 1 , completely disappeared, and the absorption of the imide group was confirmed at 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the acid value was 185 KOH mg / g in terms of solid content.
  • This resin solution is abbreviated as an imide resin (A3-1) solution.
  • PGMAc propylene glycol monomethyl ether acetate
  • the characteristic absorption was measured in the infrared spectrum, and the characteristic absorption of the isocyanate group, 2270 cm ⁇ 1 , completely disappeared, and the absorption of the imide group was confirmed at 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the acid value was 190 KOHmg / g in terms of solid content.
  • This resin solution is abbreviated as an imide resin (A4-1) solution.
  • curable resin compositions 1 to 6 were produced under the blending conditions shown in Table 1.
  • Footnote EHPE3150 in Table 1 Cycloaliphatic epoxy resin manufactured by Daicel Chemical Industries, Ltd. (1,2-epoxy-4- (2-oxiranyl) cyclohexane of 2,2-bis (hydroxymethyl) -1-butanol Adduct). Epoxy equivalent is 177. The resin content is 100% by mass.
  • the resin was coated on a glass substrate so as to have a film thickness of 17 ⁇ m after drying.
  • the coated plate was dried with a dryer at 90 ° C. for 15 minutes to obtain a coating film.
  • the coated plate was immersed in a 1% Na 2 CO 3 aqueous solution at 25 ° C., and the time until the coating film disappeared was measured. It is shown in Table 3.

Abstract

Provided are: a curable resin composition which contains a polyamide-imide resin that is soluble in common solvents and can be highly easily diluted with solvents and which, although a curable resin is further contained therein, has storage stability and a long pot life; and a cured object (cured coating film) which has excellent developability. The polyamide-imide resin is an alcohol-modified polyamide-imide resin and is produced by a process comprising: a step (1) including a step (1a) in which an isocyanurate-type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure is mixed and reacted with tricarboxylic anhydride (a1) and thereafter the isocyanurate-type polyisocyanate (a2) is further added to and reacted with the mixture; and a step (2) in which alcohol modification is conducted.

Description

アルコール変性ポリアミドイミド樹脂およびその製造方法Alcohol-modified polyamideimide resin and method for producing the same
 本発明は、ポリアミドイミド樹脂、該ポリアミドイミド樹脂を含有する硬化性樹脂組成物及びその硬化物に関するものである。具体的には、本発明は耐熱性に加えその透明性も要求される分野、例えば、光学材料用分野、プリント配線基板のソルダーレジスト材料、冷蔵庫や炊飯器など家庭用電化製品の保護材料および絶縁材料、液晶ディスプレーや液晶表示素子、有機及び無機エレクトロルミネッセンスディスプレーや有機及び無機エレクトロルミネッセンス素子、LEDディスプレー、発光ダイオード、電子ペーパー、太陽電池、TSV、光ファイバーや光導波路等に用いる保護材料、絶縁材料、接着剤や、反射材料等の分野や、液晶配向膜、カラーフィルター用保護膜等の表示装置分野等に好適に用いることができるポリアミドイミド樹脂、該ポリアミドイミド樹脂を含有する硬化性樹脂組成物及びその硬化物に関するものである。 The present invention relates to a polyamideimide resin, a curable resin composition containing the polyamideimide resin, and a cured product thereof. Specifically, the present invention is a field that requires transparency in addition to heat resistance, for example, a field for optical materials, a solder resist material for printed wiring boards, a protective material and insulation for household appliances such as refrigerators and rice cookers. Materials, liquid crystal displays and liquid crystal display elements, organic and inorganic electroluminescence displays, organic and inorganic electroluminescence elements, LED displays, light emitting diodes, electronic paper, solar cells, TSVs, protective materials used for optical fibers and optical waveguides, insulating materials, Polyamideimide resin that can be suitably used in fields such as adhesives, reflective materials, and display device fields such as liquid crystal alignment films and protective films for color filters, and curable resin compositions containing the polyamideimide resin and It relates to the cured product.
 ポリアミドイミド樹脂は耐熱性や機械物性に優れ、電気電子産業を中心に各種分野において使用されてきているが、近年、環境への負担軽減を目的としてPGMAc(プロピレングリコール-1-モノメチルエーテル-2-アセタート)やEDGA(ジエチレングリコールモノエチルエーテルアセテート)等の汎用溶剤に溶解する性能が求められてきている。たとえば、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)と脂肪族構造を有するトリカルボン酸無水物(a1)とを反応させて得られたポリアミドイミド樹脂が、汎用溶剤に対する可溶性を維持しつつ、硬化性樹脂と配合し、さらに硬化して、優れた透明性を有する硬化物(硬化塗膜)を提供できることが知られている(特許文献1参照)。しかし、該ポリアミドイミド樹脂を硬化性樹脂や反応希釈剤と配合して得られる硬化性樹脂組成物は、保存安定性や可使時間が短く、取扱性が不十分なものとなる傾向であった。 Polyamideimide resin is excellent in heat resistance and mechanical properties and has been used in various fields mainly in the electric and electronic industries. Recently, PGMAc (propylene glycol-1-monomethyl ether-2- The ability to be dissolved in general-purpose solvents such as acetate and EDGA (diethylene glycol monoethyl ether acetate) has been demanded. For example, a polyamide-imide resin obtained by reacting an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure with a tricarboxylic acid anhydride (a1) having an aliphatic structure is soluble in general-purpose solvents. It is known that a cured product (cured coating film) having excellent transparency can be provided by blending with a curable resin and further curing while maintaining the above (see Patent Document 1). However, the curable resin composition obtained by blending the polyamide-imide resin with a curable resin or a reaction diluent tends to have insufficient storage stability and pot life and insufficient handleability. .
 そこで、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)とトリカルボン酸無水物(a1)とを反応させて得られるポリアミドイミド樹脂の末端基の酸無水物基をアルコール化合物で変性することにより、硬化性樹脂や反応希釈剤と配合した際の保存安定性や可使時間が長く、取扱性に優れたポリアミドイミド樹脂が得られることが知られている(特許文献2参照)。しかしながら、該ポリアミドイミド樹脂は溶剤希釈性や、硬化性樹脂や反応希釈剤と配合して得られる硬化塗膜の現像性に改善の余地があった。 Therefore, the acid anhydride group of the terminal group of the polyamideimide resin obtained by reacting the isocyanurate type polyisocyanate (a2) synthesized from the isocyanate having an aliphatic structure with the tricarboxylic acid anhydride (a1) is an alcohol compound. It is known that by modifying, a polyamideimide resin having a long storage stability and a long usable time when blended with a curable resin or a reaction diluent and excellent in handleability can be obtained (see Patent Document 2). . However, the polyamide-imide resin has room for improvement in solvent dilutability and developability of a cured coating film obtained by blending with a curable resin or a reactive diluent.
WO2010/107045パンフレットWO2010 / 107045 pamphlet WO2015/068744パンフレットWO2015 / 068744 pamphlet
 そこで、本発明の課題は、汎用溶剤に可溶で、かつ溶剤希釈性に優れるポリアミドイミド樹脂を含み、硬化性樹脂と配合しても保存安定性や可使時間の長い硬化性樹脂組成物、および、現像性に優れた硬化物(硬化塗膜)を提供することにある。 Therefore, the problem of the present invention includes a polyamideimide resin that is soluble in a general-purpose solvent and excellent in solvent dilutability, and is a curable resin composition that has a long storage stability and pot life even when blended with a curable resin. And it is providing the hardened | cured material (cured coating film) excellent in developability.
 本発明者らは鋭意検討した結果、ポリアミドイミド樹脂を製造する工程において、トリカルボン酸無水物(a1)と、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)とを反応させる際、トリカルボン酸無水物に対して、該イソシアヌレート型ポリイソシアネートを分割して加えて反応させることで、分子量分布のシャープなポリアミドイミド樹脂が得られることを見出し、得られたポリアミドイミド樹脂に、さらにアルコール変性することで、汎用溶剤に可溶で、かつ溶剤希釈性に優れるポリアミドイミド樹脂が得られることを見出し、さらに当該ポリアミドイミド樹脂を硬化性樹脂と配合することで、保存安定性や可使時間の長い硬化性樹脂組成物が得られ、さらに、現像性に優れた硬化物(硬化塗膜)が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have reacted a tricarboxylic acid anhydride (a1) with an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure in the step of producing a polyamideimide resin. At that time, by adding the isocyanurate type polyisocyanate to the tricarboxylic acid anhydride and reacting it, it was found that a polyamideimide resin having a sharp molecular weight distribution was obtained. Furthermore, it was found that a polyamide-imide resin that is soluble in a general-purpose solvent and excellent in solvent dilutability can be obtained by modifying with alcohol, and further, by blending the polyamide-imide resin with a curable resin, storage stability and goodness can be obtained. A curable resin composition having a long working time is obtained, and further, developability is excellent. It found that the product (cured film) is obtained, and have completed the present invention.
 即ち、本発明は、トリカルボン酸無水物(a1)と、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)とを反応させることによりポリアミドイミド樹脂(A1)を生成する工程(1)、
 工程(1)で得られたポリアミドイミド樹脂(A1)に、さらにアルコール化合物(a3)を加えて反応させることによりアルコール変性ポリアミドイミド樹脂(A2)を生成する工程(2)、を有するアルコール変性ポリアミドイミド樹脂の製造方法であって、
 前記工程(1)は、トリカルボン酸無水物(a1)に対して、前記イソシアヌレート型ポリイソシアネート(a2)を少なくとも2回に分けて加えることにより、前記イソシアヌレート型ポリイソシアネート(a2)とトリカルボン酸無水物(a1)とを反応させた後、得られた反応物に、さらに、前記イソシアヌレート型ポリイソシアネート(a2)を反応させる工程(1a)を含むことを特徴とするアルコール変性ポリアミドイミド樹脂の製造方法に関する。
That is, the present invention is a process for producing a polyamideimide resin (A1) by reacting a tricarboxylic acid anhydride (a1) with an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure ( 1),
Alcohol-modified polyamide having a step (2) of producing an alcohol-modified polyamideimide resin (A2) by further adding an alcohol compound (a3) to the polyamideimide resin (A1) obtained in the step (1) and reacting with the polyamide-imide resin (A1) A method for producing an imide resin,
In the step (1), the isocyanurate type polyisocyanate (a2) and the tricarboxylic acid are added to the tricarboxylic acid anhydride (a1) by adding the isocyanurate type polyisocyanate (a2) at least twice. An alcohol-modified polyamideimide resin characterized by comprising a step (1a) of reacting the isocyanurate type polyisocyanate (a2) with the obtained reactant after reacting with the anhydride (a1). It relates to a manufacturing method.
 また、本発明は、トリカルボン酸無水物(a1)と、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)とがアミドまたはイミドを形成して結合しているポリアミドイミド樹脂(A1)の酸無水物基に、アルコール化合物(a3)がエステル結合を形成して結合しているアルコール変性ポリアミドイミドを含み、分子量分布が2.0以下の範囲であることを特徴とするアルコール変性ポリアミドイミド樹脂(A)に関する。 Further, the present invention relates to a polyamide-imide resin in which a tricarboxylic acid anhydride (a1) and an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure are bonded together by forming an amide or imide. Alcohol-modified, comprising an alcohol-modified polyamideimide in which the alcohol compound (a3) is bonded to the acid anhydride group of A1) by forming an ester bond, and the molecular weight distribution is in the range of 2.0 or less It relates to the polyamide-imide resin (A).
 また、本発明は、前記アルコール変性ポリアミドイミド樹脂(A)と、硬化性樹脂(B)とを含有する硬化性樹脂組成物に関する。 The present invention also relates to a curable resin composition containing the alcohol-modified polyamideimide resin (A) and the curable resin (B).
 更に、本発明は、前記硬化性樹脂組成物を硬化させてなることを特徴とする硬化物に関する。 Furthermore, this invention relates to the hardened | cured material characterized by hardening the said curable resin composition.
 本発明により、汎用溶剤に可溶で、かつ溶剤希釈性に優れるポリアミドイミド樹脂を含み、硬化性樹脂と配合しても保存安定性や可使時間の長い硬化性樹脂組成物、および、現像性に優れた硬化物(硬化塗膜)を提供することができる。 According to the present invention, a curable resin composition that includes a polyamide-imide resin that is soluble in a general-purpose solvent and has excellent solvent dilutability, and has long storage stability and pot life even when blended with a curable resin, and developability It is possible to provide a cured product (cured coating film) excellent in.
 本発明のアルコール変性ポリアミドイミド樹脂(A2)の製造方法は、トリカルボン酸無水物(a1)と、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)とを反応させることによりポリアミドイミド樹脂(A1)を生成する工程(1)、
 工程(1)で得られたポリアミドイミド樹脂(A1)に、さらにアルコール化合物(a3)を反応させることによりアルコール変性ポリアミドイミド樹脂(A2)を生成する工程(2)を有し、
 前記工程(1)は、トリカルボン酸無水物(a1)に対して、前記イソシアヌレート型ポリイソシアネート(a2)を少なくとも2回に分けて加えることにより、トリカルボン酸無水物(a1)と、前記イソシアヌレート型ポリイソシアネート(a2)とを反応させた後、得られた生成物に、さらに前記イソシアヌレート型ポリイソシアネート(a2)を反応させる工程(1a)を含むことを特徴とする。
The method for producing the alcohol-modified polyamideimide resin (A2) of the present invention is obtained by reacting a tricarboxylic anhydride (a1) with an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure. Step (1) for producing an imide resin (A1),
The step (2) of producing an alcohol-modified polyamideimide resin (A2) by further reacting the alcohol compound (a3) with the polyamideimide resin (A1) obtained in the step (1),
In the step (1), the isocyanurate type polyisocyanate (a2) is added to the tricarboxylic acid anhydride (a1) in at least two portions, whereby the tricarboxylic acid anhydride (a1) and the isocyanurate are added. After reacting with the polyisocyanate type (a2), the product obtained further comprises a step (1a) of reacting the isocyanurate type polyisocyanate (a2).
 始めに、ポリアミドイミド樹脂(A1)を生成する工程(1)について説明する。 First, the process (1) for producing the polyamideimide resin (A1) will be described.
 本発明ではトリカルボン酸無水物(a1)をポリアミドイミドの原料として用いることにより、得られるポリアミドイミド樹脂の硬化塗膜の透明性が向上する。このようなトリカルボン酸無水物としては、分子内に芳香族構造を有するトリカルボン酸無水物と分子内に脂肪族構造を有するトリカルボン酸が挙げられる。このうち、硬化性樹脂組成物の貯蔵安定性に優れ、可使時間も長いものであり、硬化物の耐熱分解温度に優れる傾向にあることから、分子内に脂肪族構造を有するトリカルボン酸が好ましい。 In the present invention, by using the tricarboxylic acid anhydride (a1) as a raw material for polyamideimide, the transparency of the cured coating film of the resulting polyamideimide resin is improved. Examples of such tricarboxylic acid anhydrides include tricarboxylic acid anhydrides having an aromatic structure in the molecule and tricarboxylic acids having an aliphatic structure in the molecule. Among these, a tricarboxylic acid having an aliphatic structure in the molecule is preferable because the storage stability of the curable resin composition is excellent, the pot life is long, and the thermal decomposition temperature of the cured product tends to be excellent.
 前記分子内に芳香族構造を有するトリカルボン酸無水物としては、無水トリメリット酸、ナフタレン-1,2,4-トリカルボン酸無水物等が挙げられる。また、前記脂肪族構造を有するトリカルボン酸無水物としては、例えば、線状脂肪族構造を有するトリカルボン酸無水物、環式脂肪族構造を有するトリカルボン酸無水物等が挙げられる。線状脂肪族構造を有するトリカルボン酸無水物としては、例えば、プロパントリカルボン酸無水物等が挙げられる。環式脂肪族構造を有するトリカルボン酸無水物としては、例えば、シクロヘキサントリカルボン酸無水物、メチルシクロヘキサントリカルボン酸無水物、シクロヘキセントリカルボン酸無水物、メチルシクロヘキセントリカルボン酸無水物等が挙げられる。 Examples of the tricarboxylic acid anhydride having an aromatic structure in the molecule include trimellitic anhydride and naphthalene-1,2,4-tricarboxylic acid anhydride. Examples of the tricarboxylic acid anhydride having an aliphatic structure include a tricarboxylic acid anhydride having a linear aliphatic structure and a tricarboxylic acid anhydride having a cyclic aliphatic structure. Examples of the tricarboxylic acid anhydride having a linear aliphatic structure include propane tricarboxylic acid anhydride. Examples of the tricarboxylic acid anhydride having a cycloaliphatic structure include cyclohexanetricarboxylic acid anhydride, methylcyclohexanetricarboxylic acid anhydride, cyclohexentricarboxylic acid anhydride, methylcyclohexentricarboxylic acid anhydride, and the like.
 本発明で用いる脂肪族構造を有するトリカルボン酸無水物の中でも、透明性に加え、Tgが高く熱的物性に優れる硬化塗膜が得られることから環式脂肪族構造を有するトリカルボン酸無水物が好ましく、さらに前記イソシアヌレート型ポリイソシアネート(a2)が環式脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネートである場合に、前記トリカルボン酸無水物(a1)が環式脂肪族構造を有するトリカルボン酸無水物であることがさらに好ましい。環式脂肪族構造を有するトリカルボン酸無水物の例としては、シクロヘキサントリカルボン酸無水物等が挙げられる。これらを1種又は2種以上を用いることが可能である。また場合により、2官能のジカルボン酸化合物、例えばアジピン酸、セバシン酸、フタル酸、フマル酸、マレイン酸及びこれらの酸無水物等を併用することも可能である。 Among the tricarboxylic acid anhydrides having an aliphatic structure used in the present invention, a tricarboxylic acid anhydride having a cyclic aliphatic structure is preferable because a cured coating film having high Tg and excellent thermal properties can be obtained in addition to transparency. Further, when the isocyanurate type polyisocyanate (a2) is an isocyanurate type polyisocyanate synthesized from an isocyanate having a cycloaliphatic structure, the tricarboxylic acid anhydride (a1) has a cycloaliphatic structure. More preferably, it is a tricarboxylic acid anhydride. Examples of the tricarboxylic acid anhydride having a cycloaliphatic structure include cyclohexane tricarboxylic acid anhydride. One or more of these can be used. In some cases, bifunctional dicarboxylic acid compounds such as adipic acid, sebacic acid, phthalic acid, fumaric acid, maleic acid and acid anhydrides thereof may be used in combination.
 前記シクロヘキサントリカルボン酸無水物としては、例えば、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、シクロヘキサン-1,3,5-トリカルボン酸-3,5-無水物、シクロヘキサン-1,2,3-トリカルボン酸-2,3-無水物等が挙げられる。中でも、透明性に加え、溶剤溶解性に優れるポリアミドイミド樹脂となり、Tgが高く熱的物性に優れる硬化塗膜が得られることからシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物が好ましい。 Examples of the cyclohexanetricarboxylic acid anhydride include cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid-3,5-anhydride, cyclohexane-1 2,3-tricarboxylic acid-2,3-anhydride and the like. Among them, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride is obtained because it becomes a polyamideimide resin excellent in solvent solubility in addition to transparency, and a cured coating film having high Tg and excellent thermal properties can be obtained. Is preferred.
 ここで上述のシクロヘキサントリカルボン酸無水物としては、以下の一般式(1)の構造で示されるものであり、製造原料として用いるシクロヘキサン-1,2,3-トリカルボン酸、シクロヘキサン-1,3,4-トリカルボン酸等の不純物が本発明の硬化を損なわない範囲、例えば、10質量%以下、このましくは5質量%以下であれば混入しても良いものである。 Here, the above-mentioned cyclohexanetricarboxylic acid anhydride is represented by the structure of the following general formula (1), and cyclohexane-1,2,3-tricarboxylic acid, cyclohexane-1,3,4, which is used as a production raw material. -In the range where impurities such as tricarboxylic acid do not impair the curing of the present invention, for example, 10 mass% or less, preferably 5 mass% or less, they may be mixed.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一方、本発明で用いる、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)としては、線状脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート、環式脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート等が挙げられる。 On the other hand, the isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure used in the present invention includes an isocyanurate type polyisocyanate synthesized from an isocyanate having a linear aliphatic structure, and a cyclic aliphatic. An isocyanurate type polyisocyanate synthesized from an isocyanate having a structure.
 線状脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネートとしては、例えば、HDI3N(ヘキサメチレンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート(5量体等の重合体を含む))、HTMDI3N(トリメチルヘキサメチレンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート(5量体等の重合体を含む))等が挙げられる。これらは併用しても単独で用いても良い。 Examples of the isocyanurate type polyisocyanate synthesized from an isocyanate having a linear aliphatic structure include HDI3N (isocyanurate type triisocyanate synthesized from hexamethylene diisocyanate (including polymers such as pentamers)), HTMDI3N, and the like. (Isocyanurate-type triisocyanate synthesized from trimethylhexamethylene diisocyanate (including polymers such as pentamers)) and the like. These may be used in combination or alone.
 環式脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネートとしては、例えば、IPDI3N(イソホロンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート(5量体等の重合体を含む))、HTDI3N(水添トリレンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート(5量体等の重合体を含む))、HXDI3N(水添キシレンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート(5量体等の重合体を含む))、NBDI3N(ノルボルナンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート(5量体等の重合体を含む))、HMDI3N(水添ジフェニルメタンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート(5量体等の重合体を含む))等が挙げられる。 Examples of the isocyanurate type polyisocyanate synthesized from an isocyanate having a cycloaliphatic structure include IPDI3N (isocyanurate type triisocyanate synthesized from isophorone diisocyanate (including polymers such as pentamers)), HTDI3N ( Isocyanurate type triisocyanate (including polymer such as pentamer) synthesized from hydrogenated tolylene diisocyanate, HXDI3N (Isocyanurate type triisocyanate synthesized from hydrogenated xylene diisocyanate (polymer such as pentamer) ), NBDI3N (isocyanurate-type triisocyanate synthesized from norbornane diisocyanate (including polymers such as pentamers)), HMDI3N (isocyanur synthesized from hydrogenated diphenylmethane diisocyanate) Chromatography (including 5-mers, etc. of the polymer) preparative triisocyanate), and the like.
 本発明で用いる、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)としては、特にTgが高く熱的物性に優れる硬化塗膜が得られることから環式脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネートが好ましく、中でもイソホロンジイソシアネートから合成されたイソシアヌレート型トリイソシアネートが好ましい。尚、イソホロンジイソシアネートから合成されたイソシアヌレート型トリイソシアネートは5量体等の重合体を含んでいても良い。 The isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure used in the present invention has a cycloaliphatic structure since a cured coating film having a high Tg and excellent thermal properties can be obtained. Isocyanurate type polyisocyanate synthesized from isocyanate is preferable, and isocyanurate type triisocyanate synthesized from isophorone diisocyanate is particularly preferable. The isocyanurate type triisocyanate synthesized from isophorone diisocyanate may contain a polymer such as a pentamer.
 脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)中の環状脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネートの含有率は、該化合物(a2)の質量を基準として50~80質量%が、Tgが高く熱的物性に優れる硬化塗膜が得られることからから好ましく、80~100質量%がより好ましく、100質量%が最も好ましい。 The isocyanurate type polyisocyanate synthesized from the isocyanate having a cyclic aliphatic structure in the isocyanurate type polyisocyanate (a2) synthesized from the isocyanate having an aliphatic structure is based on the mass of the compound (a2). 50 to 80% by mass is preferable because a cured coating film having a high Tg and excellent thermal properties can be obtained, more preferably 80 to 100% by mass, and most preferably 100% by mass.
 また、本発明のポリアミドイミド樹脂の溶剤溶解性を損なわない範囲で上記イソシアネート化合物と各種ポリオールとのウレタン化反応によって得られるアダクト体も使用できる。 Also, an adduct obtained by urethanization reaction of the above isocyanate compound and various polyols can be used as long as the solvent solubility of the polyamideimide resin of the present invention is not impaired.
 本発明で用いるカルボキシ基を含有するポリアミドイミド樹脂(A1)は、上述のトリカルボン酸無水物(a1)と上述のイソシアネート化合物(a2)から直接イミド結合を形成させることにより、安定性等に問題のあるポリアミック酸中間体を経ずに、再現性良く、溶解性が良好で、透明性に優れる硬化塗膜が得られるポリアミドイミド樹脂を合成できる。 The polyamide-imide resin (A1) containing a carboxy group used in the present invention has a problem in stability or the like by directly forming an imide bond from the above-mentioned tricarboxylic acid anhydride (a1) and the above-mentioned isocyanate compound (a2). Without passing through a certain polyamic acid intermediate, it is possible to synthesize a polyamide-imide resin that provides a cured coating film with good reproducibility, good solubility, and excellent transparency.
 前記トリカルボン酸無水物(a1)のカルボン酸成分とポリイソシアネート(a2)中のイソシアネート成分とが反応すると、イミド及びアミドが形成され、本発明の樹脂はアミドイミド樹脂となる。また、ポリイソシアネート(a2)とトリカルボン酸無水物(a1)とを反応させる際に、トリカルボン酸無水物(a1)のカルボン酸成分を残すような割合でトリカルボン酸無水物(a1)とポリイソシアネート(a2)とを反応させると、得られるポリアミドイミド樹脂はカルボキシ基を有する。このカルボキシ基は、後述する本発明の硬化性樹脂組成物中に含まれるエポキシ樹脂のエポキシ基等の重合性基と反応し、硬化物の架橋構造を形成する。尚、反応速度はイミド化が速いため、トリカルボン酸とトリイソシアネートとの反応でも、トリカルボン酸は無水酸のところで選択的にイミドを形成する。 When the carboxylic acid component of the tricarboxylic acid anhydride (a1) reacts with the isocyanate component in the polyisocyanate (a2), an imide and an amide are formed, and the resin of the present invention becomes an amide-imide resin. In addition, when the polyisocyanate (a2) is reacted with the tricarboxylic acid anhydride (a1), the tricarboxylic acid anhydride (a1) and the polyisocyanate (a1) are left in such a ratio that the carboxylic acid component of the tricarboxylic acid anhydride (a1) remains. When reacted with a2), the resulting polyamideimide resin has a carboxy group. This carboxy group reacts with a polymerizable group such as an epoxy group of an epoxy resin contained in the curable resin composition of the present invention described later to form a crosslinked structure of the cured product. Since the reaction rate is fast imidization, even in the reaction of tricarboxylic acid and triisocyanate, tricarboxylic acid selectively forms an imide at the acid anhydride.
 トリカルボン酸無水物(a1)と、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)とを反応させて、本発明に用いるポリアミドイミド樹脂(A1)を得る際には、窒素原子及び硫黄原子のいずれも含まない極性溶剤中で反応させることが好ましい。窒素原子または硫黄原子を含有した極性溶剤が存在すると、環境上の問題が生じやすく、また、トリカルボン酸無水物(a1)と、イソシアヌレート型ポリイソシアネート(a2)との反応に於いて、分子の成長が妨げられやすくなる。かかる分子の切断は、組成物とした場合に物性が低下しやすく、さらに「はじき」等の塗膜欠陥が生じやすくなる。 When the tricarboxylic acid anhydride (a1) and the isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure are reacted to obtain the polyamideimide resin (A1) used in the present invention, nitrogen is used. It is preferable to make it react in the polar solvent which does not contain both an atom and a sulfur atom. In the presence of a polar solvent containing nitrogen or sulfur atoms, environmental problems are likely to occur, and in the reaction of tricarboxylic acid anhydride (a1) with isocyanurate type polyisocyanate (a2), Growth is likely to be hindered. When such a molecule is cut, the physical properties of the composition are likely to deteriorate, and film defects such as “repellency” tend to occur.
 本発明において、窒素原子及び硫黄原子のいずれも含まない極性溶剤は、非プロトン性溶剤であることがより好ましい。例えばクレゾール系溶剤は、プロトンを有するフェノール性溶剤であるが、環境面でやや好ましくなく、イソシアネート化合物と反応して分子成長を阻害しやすい。また、クレゾール溶剤は、イソシアネート基との反応を起こしブロック化剤となりやすい。したがって、硬化時に他の硬化成分(例えばエポキシ樹脂など)と反応することで良好な物性が得られ難い。さらにブロック化剤がはずれる場合、使用機器や他の材料の汚染を起こしやすい。またアルコール系溶剤については、イソシアネートあるいは酸無水物と反応するため好ましくない。非プロトン性溶剤としては、例えば水酸基を有さないエーテル系、水酸基を有さないエステル系、水酸基を有さないケトン系等の溶剤が挙げられる。水酸基を有さないエステル系の溶剤としては、例えば、酢酸エチル、酢酸プロピル、および酢酸ブチル等が挙げられる。水酸基を有さないケトン系の溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、およびシクロヘキサノン等が挙げられる。このうち水酸基を有さないエーテル系溶剤が特に好ましい。 In the present invention, the polar solvent containing neither a nitrogen atom nor a sulfur atom is more preferably an aprotic solvent. For example, a cresol solvent is a phenolic solvent having protons, but is somewhat unfavorable in terms of the environment, and easily reacts with an isocyanate compound to hinder molecular growth. In addition, the cresol solvent easily reacts with an isocyanate group to easily become a blocking agent. Therefore, it is difficult to obtain good physical properties by reacting with other curing components (for example, epoxy resin) during curing. Furthermore, if the blocking agent is removed, it is likely to cause contamination of the equipment used and other materials. Also, alcohol solvents are not preferred because they react with isocyanates or acid anhydrides. Examples of the aprotic solvent include ether solvents having no hydroxyl groups, ester solvents having no hydroxyl groups, and ketone solvents having no hydroxyl groups. Examples of ester solvents that do not have a hydroxyl group include ethyl acetate, propyl acetate, and butyl acetate. Examples of the ketone solvent having no hydroxyl group include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Of these, an ether solvent having no hydroxyl group is particularly preferred.
 本発明において、水酸基を有さないエーテル系溶剤は、弱い極性を有し、上述の脂肪族構造を有するイソシアネートのイソシアヌレート型ポリイソシアネート(a2)とトリカルボン酸無水物(a1)との反応において優れた反応場を提供する。かかるエーテル系溶剤としては、公知慣用のものが使用可能であるが、例えばエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエチレングリコールジアルキルエーテル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジブチルエーテル等のポリエチレングリコールジアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、トリエチレングリコールモノブチルエーテルアセテート等のポリエチレングリコールモノアルキルエーテルアセテート類;プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル類;ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールジブチルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル等のポリプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノエチルエーテルアセテート、トリプロピレングリコールモノブチルエーテルアセテート等のポリプロピレングリコールモノアルキルエーテルアセテート類;あるいは低分子のエチレン-プロピレン共重合体の如き共重合ポリエーテルグリコールのジアルキルエーテルや、共重合ポリエーテルグリコールのモノアセテートモノアルキルエーテル類;あるいはこうしたポリエーテルグリコールのアルキルエステル類;ポリエーテルグリコールのモノアルキルエステルモノアルキルエーテル類などである。 In the present invention, the ether solvent having no hydroxyl group has weak polarity and is excellent in the reaction of the isocyanate having the aliphatic structure described above with the isocyanurate type polyisocyanate (a2) and the tricarboxylic acid anhydride (a1). Provide a reaction field. As such ether solvents, known and commonly used solvents can be used. For example, ethylene glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether , Polyethylene glycol dialkyl ethers such as triethylene glycol dimethyl ether, triethylene glycol diethyl ether and triethylene glycol dibutyl ether; ethylene glycol monomers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate and ethylene glycol monobutyl ether acetate Alkyl ether acetates; polyethylene glycol monoalkyl ether acetates such as diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether acetate, triethylene glycol monobutyl ether acetate Propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dibutyl ether; dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol dibutyl ether Polypropylene glycol dialkyl ethers such as tellurium, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol dibutyl ether; propylene glycol monoalkyl such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate Ether acetates: Dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monobutyl ether acetate, tripropylene glycol monomethyl ether acetate, tripropylene glycol monoethyl ether acetate, tripropylene group Polypropylene glycol monoalkyl ether acetates such as recall monobutyl ether acetate; or dialkyl ethers of copolymerized polyether glycols such as low molecular weight ethylene-propylene copolymers; monoacetate monoalkyl ethers of copolymerized polyether glycols; or Such polyether glycol alkyl esters; polyether glycol monoalkyl esters monoalkyl ethers, and the like.
 工程(1)は、トリカルボン酸無水物(a1)に対して、前記イソシアヌレート型ポリイソシアネート(a2)を少なくとも2回に分けて加えることにより、前記イソシアヌレート型ポリイソシアネート(a2)とトリカルボン酸無水物(a1)とを反応させた後、得られた生成物に、さらに前記イソシアヌレート型ポリイソシアネート(a2)を反応させる工程(1a)を含む。 In step (1), the isocyanurate type polyisocyanate (a2) and the tricarboxylic acid anhydride are added to the tricarboxylic acid anhydride (a1) by adding the isocyanurate type polyisocyanate (a2) at least twice. After reacting the product (a1), the product obtained further comprises a step (1a) of reacting the isocyanurate type polyisocyanate (a2).
 本発明は、ポリアミドイミド樹脂(A1)を生成するにあたって、トリカルボン酸無水物(a1)に対して、前記イソシアヌレート型ポリイソシアネート(a2)を少なくとも2回、さらに好ましくは3~5回に分けて加えることにより、優れた溶剤希釈性を有するポリアミドイミド樹脂を得ることができるため好ましい。 In the present invention, in producing the polyamideimide resin (A1), the isocyanurate type polyisocyanate (a2) is divided into at least two times, more preferably 3 to 5 times, with respect to the tricarboxylic acid anhydride (a1). Addition is preferable because a polyamideimide resin having excellent solvent dilutability can be obtained.
 工程(1a)では、まず始めに、溶剤中あるいは無溶剤中で、トリカルボン酸無水物(a1)の1種以上と、前記イソシアヌレート型ポリイソシアネート(a2)の1種類以上とを混合し、撹拌を行いながら昇温して(アミド)イミド化反応を行う。その際、各回において、トリカルボン酸無水物(a1)に対し、前記イソシアヌレート型ポリイソシアネート(a2)の加える割合は、前記イソシアヌレート型ポリイソシアネート(a2)のイソシアネート基のモル数に対して、トリカルボン酸無水物(a1)のカルボキシ基のモル数及び酸無水物基モル数の合計が過剰量となる割合であればよい。 In the step (1a), first, one or more types of tricarboxylic acid anhydride (a1) and one or more types of the isocyanurate type polyisocyanate (a2) are mixed in a solvent or in the absence of a solvent and stirred. (Amide) imidization reaction is carried out while heating. At that time, the ratio of the isocyanurate type polyisocyanate (a2) added to the tricarboxylic acid anhydride (a1) at each time was determined based on the number of moles of isocyanate groups of the isocyanurate type polyisocyanate (a2). What is necessary is just the ratio by which the sum total of the number of moles of the carboxy group of acid anhydride (a1) and the number of moles of acid anhydride group becomes an excess amount.
 (アミド)イミド化反応の進行を確認しながら、好ましくは、前記イソシアヌレート型ポリイソシアネート(a2)のイソシアネート基が消滅するまで反応を進行させた後、さらに、好ましくは(アミド)イミド化反応の反応温度を維持しながら、撹拌を行い、得られた反応物に、さらに前記イソシアヌレート型ポリイソシアネート(a2)を加えて反応させることが好ましい。トリカルボン酸無水物(a1)に対して、前記イソシアヌレート型ポリイソシアネート(a2)を3回以上に分けて加える場合には、上記の得られた反応物に、さらに前記イソシアヌレート型ポリイソシアネート(a2)を加えて反応させる操作、すなわち、工程(a1)を繰り返し行えば良い。 While confirming the progress of the (amide) imidization reaction, preferably, after the reaction is allowed to proceed until the isocyanate group of the isocyanurate type polyisocyanate (a2) disappears, more preferably, the (amide) imidization reaction It is preferable to stir while maintaining the reaction temperature, and to add the isocyanurate-type polyisocyanate (a2) to the resulting reaction product for reaction. When the isocyanurate type polyisocyanate (a2) is added to the tricarboxylic acid anhydride (a1) in three or more times, the isocyanurate type polyisocyanate (a2) is further added to the reaction product obtained above. ) To be reacted, that is, the step (a1) may be repeated.
 前記イソシアヌレート型ポリイソシアネート(a2)(以下、単に(a2)成分と略す場合がある)を分けて加える際、各回の(a2)成分の加える量は均等に割り振っても良いし、偏りを付けても良い。偏りを付ける方法としては、たとえば、初回に加える(a2)成分の量を最も多く、かつ、残部を均等にする、または残部を後に加える量ほどより少なくする方法や、初回に加える(a2)成分の量を最も少なく、かつ、残部を均等にする、または残部を後に加える量ほどより多くする方法などが種々挙げられるが、初回に加える(a2)成分の量を最も多く、かつ、残部を後に加える量ほどより少なくする方法が好ましい。たとえば、(a2)成分を3回に分けて加える場合、加えるべき(a2)成分のうち初回に40~80質量%を加えておき、2回目にその40~15質量%を加えておき、最後にその20~5質量%を加えることができる。 When adding the isocyanurate type polyisocyanate (a2) (hereinafter sometimes simply referred to as the component (a2)) separately, the amount of the component (a2) to be added may be evenly allocated or biased. May be. As a method for imparting bias, for example, the amount of the component (a2) to be added at the first time is the largest and the balance is made equal or the amount to be added later is reduced, or the component (a2) to be added at the first time. There are various methods such as a method of making the balance the smallest and making the balance evenly, or making the balance more the amount added later, but the amount of the component (a2) added first time is the largest and the balance is added later. A method of decreasing the amount added is preferable. For example, when component (a2) is added in three portions, 40 to 80% by mass of the component (a2) to be added is first added, and 40 to 15% by mass is added the second time. 20 to 5% by mass thereof can be added.
 (アミド)イミド化反応の反応温度は、好ましくは50℃~250℃の範囲、特に好ましくは70℃~180℃の範囲である。このような反応温度にすることにより、反応速度が早くなり、且つ、副反応や分解等が起こりにくい効果を奏する。 The reaction temperature of the (amide) imidation reaction is preferably in the range of 50 ° C to 250 ° C, particularly preferably in the range of 70 ° C to 180 ° C. By setting such a reaction temperature, the reaction rate is increased, and the side reaction and decomposition are less likely to occur.
 (アミド)イミド化反応の進行は、赤外スベクトルや、酸価、イソシアネート基の定量等の分析手段により追跡することができる。例えば、赤外スペクトルでは、イソシアネート基の特性吸収である2270cm-1が反応とともに減少し、さらに1860cm-1と850cm-1に特性吸収を有する酸無水物基が減少する。一方、1780cm-1と1720cm-1にイミド基の吸収が増加する。反応は、目的とする酸価、粘度、分子量等を確認しながら、温度を下げて終了させても良い。しかしながら、経時の安定性等の面からイソシアネート基が消失するまで反応を続行させることがより好ましい。また、反応中や反応後は、合成される樹脂の物性を損なわない範囲で、触媒、酸化防止剤、界面活性剤、その他溶剤等を添加してもよい。 The progress of the (amide) imidization reaction can be traced by an analytical means such as an infrared vector, acid value, or quantitative determination of an isocyanate group. For example, in the infrared spectrum, 2270 cm -1 which is the characteristic absorption of an isocyanate group was reduced as the reaction further acid anhydride group is reduced with a characteristic absorption at 1860 cm -1 and 850 cm -1. On the other hand, the absorption of imide groups increases at 1780 cm −1 and 1720 cm −1 . The reaction may be terminated by lowering the temperature while confirming the target acid value, viscosity, molecular weight and the like. However, it is more preferable to continue the reaction until the isocyanate group disappears from the standpoint of stability over time. In addition, during the reaction or after the reaction, a catalyst, an antioxidant, a surfactant, other solvents, and the like may be added as long as the physical properties of the synthesized resin are not impaired.
 工程(1)において(アミド)イミド化反応に供される前記イソシアヌレート型ポリイソシアネート(a2)の合計量と、トリカルボン酸無水物(a1)の量との割合は、前記イソシアヌレート型ポリイソシアネート(a2)のイソシアネート基の合計のモル数(N)と、トリカルボン酸無水物(a1)のカルボキシ基のモル数(M1)及び酸無水物基モル数(M2)の合計のモル数との比〔(M1)+(M2))/(N)〕が1.1~3となるように反応させるのが、反応系中の極性が高くなり反応が潤滑に進行する、イソシアネート基が残存せず、得られるポリアミドイミド樹脂の安定性が良好である、トリカルボン酸無水物(a1)の残存量も少なく再結晶等の分離の問題も起こりにくい等の理由により好ましい。中でも1.2~2がより好ましい。なお、本発明において酸無水物基とは、カルボン酸2分子が分子内脱水縮合して得られた-CO-O-CO-基を指す。 The ratio of the total amount of the isocyanurate type polyisocyanate (a2) subjected to the (amide) imidization reaction in the step (1) and the amount of the tricarboxylic acid anhydride (a1) is determined by the isocyanurate type polyisocyanate ( Ratio of the total number of moles (N) of isocyanate groups in a2) to the total number of moles of carboxy groups (M1) and acid anhydride groups (M2) in tricarboxylic acid anhydride (a1) [ The reaction is carried out so that (M1) + (M2)) / (N)] is 1.1 to 3, since the polarity in the reaction system becomes high and the reaction proceeds to lubrication, the isocyanate group does not remain, It is preferable because the stability of the resulting polyamideimide resin is good, the residual amount of the tricarboxylic acid anhydride (a1) is small, and separation problems such as recrystallization hardly occur. Among these, 1.2 to 2 is more preferable. In the present invention, the acid anhydride group refers to a —CO—O—CO— group obtained by intramolecular dehydration condensation of two molecules of carboxylic acid.
 本発明で用いるポリアミドイミド樹脂(A1)としては、例えば以下の(式2)で表されるイミド樹脂等が挙げられる。 Examples of the polyamideimide resin (A1) used in the present invention include imide resins represented by the following (formula 2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (nは、繰り返し単位で0~30である。また、Rbは、例えば、以下の構造式(式3)または(式4)で示される構造単位である。 (N is a repeating unit of 0-30. Rb is, for example, a structural unit represented by the following structural formula (Formula 3) or (Formula 4).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(R2は、例えば、炭素数6~20の置換基を有しても良い芳香族又は脂肪族トリカルボン酸残基である。)Rcは、例えば、以下の構造式(式5)で示される構造単位である。 (R 2 is, for example, an aromatic or aliphatic tricarboxylic acid residue that may have a substituent having 6 to 20 carbon atoms.) Rc is represented by the following structural formula (formula 5), for example. A structural unit.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (R2は、例えば、前記と同一である。) (R 2 is, for example, the same as described above.)
 Rdは、例えば、以下の(式6)で表される3価の有機基であり、 Rd is, for example, a trivalent organic group represented by the following (formula 6):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 Raは、例えば、2価の脂肪族ジイソシアネート類の残基を示す。 Ra represents, for example, a residue of a divalent aliphatic diisocyanate.
 次に、本発明のアルコール変性ポリアミドイミド樹脂(A2)を生成する工程(2)について説明する。 Next, the step (2) for producing the alcohol-modified polyamideimide resin (A2) of the present invention will be described.
 本発明のアルコール変性ポリアミドイミド樹脂(A2)は、上記の方法でポリアミドイミド樹脂(A1)を生成した後、続いて、アルコール化合物(a3)を反応させて得られる。ポリアミドイミド樹脂(A1)とアルコール化合物(a3)との反応は、本発明の効果を損ねない範囲であれば特に限定されないが、例えば、以下のエステル化反応で行うことができる。 The alcohol-modified polyamideimide resin (A2) of the present invention is obtained by producing the polyamideimide resin (A1) by the above method and subsequently reacting with the alcohol compound (a3). The reaction between the polyamideimide resin (A1) and the alcohol compound (a3) is not particularly limited as long as the effects of the present invention are not impaired. For example, the reaction can be performed by the following esterification reaction.
 原料として用いるポリアミドイミド樹脂(A1)は、上記方法で製造したものを用いることができるが、アルコール化合物(a3)との反応の際に、ウレタン化の副反応を抑制できるため、イソシアネート基が完全に消失しているものを用いることが好ましい。イソシアネート基の消失は、例えば赤外スペクトルにおいてイソシアネート基の特性吸収である2270cm-1が消失していることで確認することができる。 As the polyamideimide resin (A1) used as a raw material, the one produced by the above method can be used. However, since the side reaction of urethanization can be suppressed during the reaction with the alcohol compound (a3), the isocyanate group is completely It is preferable to use those that have disappeared. The disappearance of the isocyanate group can be confirmed by the disappearance of 2270 cm −1, which is the characteristic absorption of the isocyanate group in the infrared spectrum, for example.
 ポリアミドイミド樹脂(A1)とアルコール化合物(a3)との反応は、ポリアミドイミド樹脂(A1)中の酸無水物基モル数(M3)と、アルコール化合物(a3)の水酸基のモル数(L)との比、L/M=1~5の範囲であることが、得られるポリアミドイミド樹脂の保存安定性が高くなるため好ましく、さらに、L/M3=1~2の範囲であることが余剰アルコールの低減の観点からより好ましい。 The reaction between the polyamideimide resin (A1) and the alcohol compound (a3) is carried out by the number of moles of acid anhydride groups (M3) in the polyamideimide resin (A1) and the number of moles of hydroxyl groups (L) of the alcohol compound (a3). The ratio of L / M = 1 to 5 is preferable because the storage stability of the resulting polyamideimide resin is increased, and the range of L / M3 = 1 to 2 is preferable. More preferable from the viewpoint of reduction.
 なお、ポリアミドイミド樹脂(A1)中の酸無水物基のモル数(M3)は、前記トリカルボン酸無水物(a1)が、前記ポリイソシアネート(a2)との反応で消費されるため、以下の方法で求めることができる。
(1)ポリアミドイミド樹脂(A1)を、溶剤等で希釈し、KOH水溶液の滴定により酸価(a)を求める。
(2)ポリアミドイミド樹脂(A1)を溶剤等で希釈し、酸無水物基に過剰量のn-ブタノールを反応させた後、KOH水溶液の滴定により酸価(b)を求める。なお、(2)において、酸無水物基とn-ブタノールの反応は、117℃にて行うものとする。酸無水物の消失は赤外スペクトルにて、酸無水物基の特性吸収である1860cm-1が完全に消滅したことで確認する。
(3)上記酸価(a)と酸価(b)の差より、本発明のポリアミドイミド樹脂(A1)中の酸無水物基の濃度を算出し、モル数(M3)に換算する。
The number of moles of acid anhydride groups (M3) in the polyamideimide resin (A1) is determined by the following method because the tricarboxylic acid anhydride (a1) is consumed by the reaction with the polyisocyanate (a2). Can be obtained.
(1) The polyamideimide resin (A1) is diluted with a solvent or the like, and the acid value (a) is determined by titration with an aqueous KOH solution.
(2) The polyamide-imide resin (A1) is diluted with a solvent or the like, an excess amount of n-butanol is reacted with the acid anhydride group, and then the acid value (b) is obtained by titration with an aqueous KOH solution. In (2), the reaction between the acid anhydride group and n-butanol is carried out at 117 ° C. The disappearance of the acid anhydride is confirmed by the complete disappearance of 1860 cm −1, which is the characteristic absorption of the acid anhydride group, in the infrared spectrum.
(3) From the difference between the acid value (a) and the acid value (b), the concentration of the acid anhydride group in the polyamideimide resin (A1) of the present invention is calculated and converted to the number of moles (M3).
 該アルコール化合物(a3)としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール、エチレングリコール、プロピレングリコール、トリメチロールプロパン、ベンジルアルコール等の炭素原子数が10以下のアルコール;2-メトキシエチルアルコール、2-エトキシエチルアルコール、1-メトキシ-2-プロピルアルコール、1-エトキシ-2-プロピルアルコール、3-メトキシ-1-ブチルアルコール、2-イソプロポキシエチルアルコール等のエーテル結合を含む炭素原子数が10以下のアルコール;3-ヒドロキシ-2-ブタノン等のケトン基を含む炭素原子数が10以下のアルコール;ヒドロキシイソ酪酸メチル等のようなエステル基を含む炭素原子数が10以下のアルコールが例示される。本発明において、炭素原子数10以下の一価アルコールを用いることが、得られる熱硬化性樹脂の物性から好ましい。さらに、炭素原子数5以下の一価アルコールが好ましい。 Examples of the alcohol compound (a3) include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, ethylene glycol, propylene glycol, trimethylolpropane and benzyl alcohol. Alcohols having 10 or less carbon atoms; 2-methoxyethyl alcohol, 2-ethoxyethyl alcohol, 1-methoxy-2-propyl alcohol, 1-ethoxy-2-propyl alcohol, 3-methoxy-1-butyl alcohol, 2- An alcohol having 10 or less carbon atoms containing an ether bond such as isopropoxyethyl alcohol; an alcohol having 10 or less carbon atoms containing a ketone group such as 3-hydroxy-2-butanone; Number of carbon atoms including ester groups such as methyl acid 10 ppm alcohol are exemplified. In the present invention, it is preferable to use a monohydric alcohol having 10 or less carbon atoms from the physical properties of the resulting thermosetting resin. Furthermore, monohydric alcohols having 5 or less carbon atoms are preferred.
 脱水エステル化反応は、溶剤中あるいは無溶剤中で、ポリアミドイミド樹脂(A1)と、アルコール化合物(a3)の1種以上とを混合し、撹拌を行いながら昇温して行うことが好ましい。反応温度は、好ましくは50℃~150℃の範囲、特に好ましくは70℃~130℃の範囲である。このような反応温度にすることにより、反応速度が早くなり、且つ、副反応や分解等が起こりにくい効果を奏する。反応は、脱水反応を伴いながらエステル結合を形成する。反応の進行は、赤外スベクトルや、酸価、エステル結合の定量等の分析手段により追跡することができる。赤外スペクトルでは、酸無水物基の特性吸収である1860cm-1と850cm-1が反応とともに減少する。反応は、目的とする酸価、粘度、分子量等を確認しながら、温度を下げて終了させても良い。しかしながら、経時の安定性等の面から酸無水物基が消失するまで反応を続行させることがより好ましい。 The dehydration esterification reaction is preferably carried out by mixing the polyamideimide resin (A1) and one or more alcohol compounds (a3) in a solvent or without a solvent and raising the temperature while stirring. The reaction temperature is preferably in the range of 50 ° C. to 150 ° C., particularly preferably in the range of 70 ° C. to 130 ° C. By setting such a reaction temperature, the reaction rate is increased, and the side reaction and decomposition are less likely to occur. The reaction forms an ester bond with a dehydration reaction. The progress of the reaction can be traced by an analytical means such as an infrared vector, acid value, or ester bond quantification. The infrared spectrum, 1860 cm -1 and 850 cm -1 which is the characteristic absorption of an acid anhydride group decreases with the reaction. The reaction may be terminated by lowering the temperature while confirming the target acid value, viscosity, molecular weight and the like. However, it is more preferable to continue the reaction until the acid anhydride group disappears from the viewpoint of stability over time.
 また、脱水エステル化反応に使用する溶剤は、(アミド)イミド化反応に用いた溶剤と同じものを使用することができる。また、反応中や反応後は、合成される樹脂の物性を損なわない範囲で、触媒、酸化防止剤、界面活性剤、その他溶剤等を添加してもよい。 Also, the solvent used for the dehydration esterification reaction can be the same as the solvent used for the (amide) imidization reaction. In addition, during the reaction or after the reaction, a catalyst, an antioxidant, a surfactant, other solvents, and the like may be added as long as the physical properties of the synthesized resin are not impaired.
 上記の製造方法により得られたアルコール変性ポリアミドイミド樹脂(A2)は、少なくとも、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)とトリカルボン酸無水物(a1)とがアミドまたはイミドを形成して結合しているポリアミドイミド樹脂(A1)のカルボキシ基または酸無水物基に、アルコール化合物(a3)がエステル結合を形成して結合しているアルコール変性ポリアミドイミド樹脂を含むものである。 The alcohol-modified polyamide-imide resin (A2) obtained by the above production method includes at least an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure and a tricarboxylic acid anhydride (a1). This includes an alcohol-modified polyamideimide resin in which the alcohol compound (a3) forms an ester bond and is bonded to the carboxy group or acid anhydride group of the polyamideimide resin (A1) bonded by forming an imide.
 また、本発明の製造方法により得られたアルコール変性ポリアミドイミド樹脂(A2)は、分子量分布が2.0以下の範囲であり、さらに1.5~2.0の範囲であることが好ましく、さらに1.7~1.9の範囲であることが特に好ましい。 The alcohol-modified polyamideimide resin (A2) obtained by the production method of the present invention has a molecular weight distribution of 2.0 or less, preferably 1.5 to 2.0, A range of 1.7 to 1.9 is particularly preferable.
 このため、本発明のアルコール変性ポリアミドイミド樹脂は、汎用溶剤に可溶で、かつ溶剤希釈性に優れるだけでなく、後述する硬化性樹脂と配合しても保存安定性や可使時間の長い硬化性樹脂組成物、および、現像性に優れた硬化物(硬化塗膜)が得られる。 For this reason, the alcohol-modified polyamideimide resin of the present invention is not only soluble in a general-purpose solvent and excellent in solvent dilutability, but also has long storage stability and a long working life even when blended with a curable resin described later. Resin composition and cured product (cured coating film) excellent in developability are obtained.
 数平均分子量は、溶剤への溶解性が良好であるという事と機械強度に優れる硬化物が得られるという点で、800~20000が好ましく、850~8000がより好ましく、900~2500の範囲が特に好ましい。一方、質量平均分子量は、上記の数平均分子量に対して上記の分子量分布の範囲を満たすものであれば特に限定されないが、溶剤への溶解性が良好であるという点で、1600~40000が好ましく、1650~10000がより好ましく、さらに1700~5000の範囲が特に好ましい。 The number average molecular weight is preferably 800 to 20000, more preferably 850 to 8000, and particularly preferably in the range of 900 to 2500 in terms of good solubility in a solvent and a cured product having excellent mechanical strength. preferable. On the other hand, the mass average molecular weight is not particularly limited as long as it satisfies the above range of molecular weight distribution with respect to the above number average molecular weight, but is preferably 1600 to 40000 in view of good solubility in a solvent. 1650 to 10000 is more preferable, and a range of 1700 to 5000 is particularly preferable.
 なお、分子量は、ゲルパーミネーションクロマトグラフィー(GPC)や末端の官能基量の定量分析で測定することができる。 The molecular weight can be measured by gel permeation chromatography (GPC) or quantitative analysis of the terminal functional group amount.
 本発明で、数平均分子量、質量平均分子量の測定は、GPCを用いて、以下の条件により求めた。
測定装置:東ソー株式会社製 HLC-8120GPC、UV8020
カラム :東ソー株式会社製 TFKguardcolumnhxl-L、TFKgel(G1000HXL、G2000HXL、G3000HXL、G4000HXL)
検出器 :RI(示差屈折計)及びUV(254nm)
測定条件:カラム温度 40℃
     溶媒    THF
     流束    1.0ml/min
標準  :ポリスチレン標準試料にて検量線作成
試料  :樹脂固形分換算で0.1質量%のTHF溶液をマイクロフィルターでろ過したもの(注入量:200μl)
In the present invention, the number average molecular weight and the mass average molecular weight were measured using GPC under the following conditions.
Measuring device: Tosoh Corporation HLC-8120GPC, UV8020
Column: TFKguardcolumnhxl-L, TFKgel (G1000HXL, G2000HXL, G3000HXL, G4000HXL) manufactured by Tosoh Corporation
Detector: RI (differential refractometer) and UV (254 nm)
Measurement conditions: Column temperature 40 ° C
Solvent THF
Flux 1.0ml / min
Standard: Calibration curve prepared with polystyrene standard sample Sample: 0.1% by mass THF solution in terms of resin solids filtered through microfilter (injection amount: 200 μl)
 本発明のアルコール変性ポリアミドイミド樹脂(A2)の酸価は、70~210KOHmg/gであることが好ましく、90~190KOHmg/gであることが特に好ましい。70~210KOHmg/gであれば、硬化物性として優れた性能を発揮する。 The acid value of the alcohol-modified polyamideimide resin (A2) of the present invention is preferably 70 to 210 KOHmg / g, and particularly preferably 90 to 190 KOHmg / g. When it is 70 to 210 KOHmg / g, it exhibits excellent performance as a cured material.
 また、本発明のアルコール変性ポリアミドイミド樹脂(A2)の中でも、前記した窒素原子及び硫黄原子のいずれも含まない極性溶剤に溶解するポリアミドイミド樹脂が好ましい。このようなポリアミドイミド樹脂の例示としては、分岐型構造を有し、樹脂の酸価が60KOHmg/g以上である分岐型ポリアミドイミド樹脂が挙げられる。 Of the alcohol-modified polyamideimide resins (A2) of the present invention, polyamideimide resins that are soluble in polar solvents that do not contain any of the nitrogen and sulfur atoms are preferred. Examples of such polyamideimide resins include branched polyamideimide resins having a branched structure and an acid value of the resin of 60 KOHmg / g or more.
 本発明で用いるアルコール変性ポリアミドイミド樹脂(A2)に含まれる成分としては、例えば以下の(式7)で表されるイミド樹脂等が挙げられる。 Examples of components contained in the alcohol-modified polyamideimide resin (A2) used in the present invention include imide resins represented by the following (formula 7).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (nは、繰り返し単位で0~30である。Raは、例えば、2価の脂肪族ジイソシアネート類の残基を示す。また、Rbは、例えば、上記の構造式(式3)または(式4)で示される構造単位である。Rdは、例えば、上記の(式6)で表される3価の有機基であり、Rc’は、例えば、以下の構造式(式8)で示される構造単位である。 (N is a repeating unit of 0 to 30. Ra represents, for example, a residue of a divalent aliphatic diisocyanate. Rb represents, for example, the above structural formula (Formula 3) or (Formula 4). Rd is, for example, a trivalent organic group represented by the above (formula 6), and Rc ′ is, for example, a structure represented by the following structural formula (formula 8) Unit.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (式中、Rは、例えば、前記と同一である。Rは、アルコール化合物から水酸基を除いた残基を表す。) (In the formula, R 2 is, for example, the same as described above. R 3 represents a residue obtained by removing a hydroxyl group from an alcohol compound.)
 本発明の硬化性樹脂組成物は、本発明のアルコール変性ポリアミドイミド樹脂(A2)と、硬化性樹脂(B)及び/又は有機溶剤(C)とを含む。 The curable resin composition of the present invention contains the alcohol-modified polyamideimide resin (A2) of the present invention, the curable resin (B) and / or the organic solvent (C).
 該硬化性樹脂(B)としては、例えば、分子中に2個以上のエポキシ基を有するエポキシ化合物(B1)、分子中に2個以上のマレイミド基を有する化合物、ベンゾオキサジン樹脂、シアネートエステル樹脂などが挙げられる。該(B1)成分としては、公知慣用のエポキシ樹脂を使用することが可能であり、2種以上を混合して用いてもよい。また、他の例としては、メラミン樹脂、イソシアネート化合物、シリケート及びアルコキシシラン化合物、(メタ)アクリル系樹脂などが挙げられるが、耐熱性、寸法安定性及び機械物性(強靭性、柔軟性)に優れる硬化塗膜等の硬化物が得る点でエポキシ樹脂が好ましい。 Examples of the curable resin (B) include an epoxy compound (B1) having two or more epoxy groups in the molecule, a compound having two or more maleimide groups in the molecule, a benzoxazine resin, and a cyanate ester resin. Is mentioned. As the component (B1), known and commonly used epoxy resins can be used, and two or more kinds may be mixed and used. Other examples include melamine resins, isocyanate compounds, silicates and alkoxysilane compounds, (meth) acrylic resins, etc., which are excellent in heat resistance, dimensional stability and mechanical properties (toughness, flexibility). An epoxy resin is preferable in that a cured product such as a cured coating film is obtained.
 なお、本発明に記載される上記及び後述の硬化物性の意味は、本発明のポリアミドイミド樹脂とこれと反応する成分との硬化物以外に本発明のポリアミドイミド樹脂単独あるいは本発明のポリアミドイミド樹脂と反応しないその他の樹脂、添加剤、無機材料成分などをも含む単純に溶剤乾燥した塗膜や成形体をも含めた意味を含むものとする。またさらに本発明のポリアミドイミド樹脂と加熱や光により反応する硬化剤と混合して及び/又は本発明のポリアミドイミド樹脂と反応しないが添加成分それ自体、熱や光などで硬化せしめた硬化物およびその硬化物性としたものも、その意味の中に含まれるものとする。 In addition, the meaning of the hardened | cured material property mentioned above and below-mentioned described in this invention is the polyamideimide resin of this invention alone or the polyamideimide resin of this invention other than the hardened | cured material of the polyamideimide resin of this invention and the component which reacts with this. It also includes meanings including simply solvent-dried coatings and molded bodies that also contain other resins, additives, inorganic material components, etc. that do not react with the resin. Furthermore, the cured product obtained by mixing the polyamideimide resin of the present invention with a curing agent that reacts by heating or light and / or does not react with the polyamideimide resin of the present invention, but is cured by heat, light, etc. Those having cured properties are also included in the meaning.
 かかるエポキシ樹脂(B1)としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンと各種フェノール類とを反応させて得られる各種ジシクロペンタジエン変性フェノール樹脂のエポキシ化物、2,2’,6,6’-テトラメチルビフェノールのエポキシ化物、4,4’-メチレンビス(2,6-ジメチルフェノール)のエポキシ化物、ナフトールやビナフトールあるいはナフトールやビナフトールのノボラック変性等ナフタレン骨格から誘導されたエポキシ、フルオレン骨格のフェノール樹脂をエポキシ化して得られるエポキシ樹脂等の芳香族エポキシ樹脂等が挙げられる。 Examples of the epoxy resin (B1) include reaction of bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene and various phenols. Epoxidized products of various dicyclopentadiene-modified phenolic resins, 2,2 ′, 6,6′-tetramethylbiphenol epoxidized product, 4,4′-methylenebis (2,6-dimethylphenol) epoxidized product, Epoxy derived from naphthalene skeleton, such as naphthol, binaphthol or novolak modification of naphthol or binaphthol, aromatic epoxy resin such as epoxy resin obtained by epoxidizing phenol resin of fluorene skeleton, etc. It is.
 またネオペンチルグリコールジグリシジルエーテル、1、6-へキサンジオールジグリシジルエーテルのごとき脂肪族エポキシ樹脂や、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、ビス-(3,4-エポキシビシクロヘキシル)アジペート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物等の環式脂肪族系エポキシ樹脂、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルのごとき主鎖にポリアルキレングリコール鎖を含有するエポキシ樹脂、トリグリシジルイソシアヌレートのごときヘテロ環含有のエポキシ樹脂も使用可能である。 Also, aliphatic epoxy resins such as neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, 3,4-epoxycyclohexylmethyl- 3,4-epoxycyclohexanecarboxylate, bis- (3,4-epoxybicyclohexyl) adipate, 1,2-epoxy-4- (2-oxiranyl) cyclohexane of 2,2-bis (hydroxymethyl) -1-butanol A cycloaliphatic epoxy resin such as an adduct, an epoxy resin containing a polyalkylene glycol chain in the main chain, such as polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and triglycidyl isocyanurate Heterocycle-containing epoxy resins can be used.
 また、(メタ)アクリロイル基やビニル基等重合性不飽和二重結合を有するエポキシ化合物の不飽和基を重合させて得られるエポキシ基含有重合系樹脂及びその他の重合性不飽和結合を有するモノマー類との共重合体も使用可能である。 In addition, an epoxy group-containing polymerization resin obtained by polymerizing an unsaturated group of an epoxy compound having a polymerizable unsaturated double bond such as a (meth) acryloyl group or a vinyl group, and other monomers having a polymerizable unsaturated bond Copolymers with can also be used.
 かかる(メタ)アクリロイル基とエポキシ基を併せ持つ化合物として、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートグリシジルエーテル、ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、4-ヒドロキジブチル(メタ)アクリレートグリシジルエーテル、6-ヒドロキシヘキシル(メタ)アクリレートグリシジルエーテル、5-ヒドロキシ-3-メチルペンチル(メタ)アクリレートグリシジルエーテル、(メタ)アクリル酸-3,4-エポキシシクロヘキシル、ラクトン変成(メタ)アクリル酸-3,4-エポキシシクロヘキシル、ビニルシクロヘキセンオキシドなどが挙げられる。 Examples of the compound having both (meth) acryloyl group and epoxy group include glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate glycidyl ether, hydroxypropyl (meth) acrylate glycidyl ether, 4-hydroxydibutyl (meth) acrylate glycidyl ether. , 6-hydroxyhexyl (meth) acrylate glycidyl ether, 5-hydroxy-3-methylpentyl (meth) acrylate glycidyl ether, (meth) acrylic acid-3,4-epoxycyclohexyl, lactone modified (meth) acrylic acid-3, 4-epoxycyclohexyl, vinylcyclohexene oxide and the like.
 本発明における分子中に2個以上のエポキシ基を有するエポキシ樹脂(B1)成分は、環式脂肪族系エポキシ樹脂であることが特に好ましい。環式脂肪族系エポキシ樹脂であれば、Tgが高く熱的物性に優れる硬化塗膜が得られ、且つ、紫外線領域(300nm付近)の光透過性が高い硬化物を得る事が可能となる。環式脂肪族系エポキシ樹脂の中でも水添ビスフェノールA型エポキシ樹脂、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物等が好ましい。 In the present invention, the epoxy resin (B1) component having two or more epoxy groups in the molecule is particularly preferably a cycloaliphatic epoxy resin. If it is a cycloaliphatic epoxy resin, a cured coating film having a high Tg and excellent thermal properties can be obtained, and a cured product having a high light transmittance in the ultraviolet region (around 300 nm) can be obtained. Among cycloaliphatic epoxy resins, hydrogenated bisphenol A type epoxy resin, 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol and the like are preferable. .
 かかる環式脂肪族系エポキシ樹脂は市場でも入手する事が可能で、例えばデナコールEX-252(ナガセケムテックス株式会社製)やEHPE3150、EHPE3150CE(ダイセル化学工業株式会社製)等が挙げられる。 Such cycloaliphatic epoxy resins can be obtained on the market, and examples thereof include Denacol EX-252 (manufactured by Nagase ChemteX Corporation), EHPE3150, EHPE3150CE (manufactured by Daicel Chemical Industries, Ltd.), and the like.
 前記アルコール変性ポリアミドイミド樹脂(A2)と分子中に2個以上のエポキシ基を有するエポキシ樹脂(B1)は、各種目的とする物性に対応して自由に配合することが可能であるが、Tg等の熱的物性、機械物性等と硬化塗膜の透明性とのバランスの面でアルコール変性ポリアミドイミド樹脂(A2)のカルボキシ基のモル数n(COOH)と分子中に2個以上のエポキシ基を有するエポキシ樹脂(B1)のエポキシ基のモル数n(EPOXY)との比〔n(EPOXY)/n(COOH)〕が0.3~4のとなるような範囲、好ましくは0.8~1.2となるような範囲でアルコール変性ポリアミドイミド樹脂(A2)とエポキシ樹脂(B1)とを配合することが硬化物の特性としてTgを得やすく、機械物性等に優れる硬化物が得られ、更に硬化物の透明性が良好になることから好ましい。 The alcohol-modified polyamideimide resin (A2) and the epoxy resin (B1) having two or more epoxy groups in the molecule can be freely blended according to various desired physical properties, such as Tg. In terms of the balance between the thermal properties, mechanical properties, etc. of the film and the transparency of the cured coating film, the number of moles of carboxy groups (COOH) of the alcohol-modified polyamideimide resin (A2) and two or more epoxy groups in the molecule The epoxy resin (B1) having a ratio [n (EPOXY) / n (COOH)] to the number of moles of epoxy groups n (EPOXY) of the epoxy resin (B1) is 0.3 to 4, preferably 0.8 to 1. The blend of the alcohol-modified polyamideimide resin (A2) and the epoxy resin (B1) within the range of .2 makes it easy to obtain Tg as a property of the cured product, and a cured product having excellent mechanical properties and the like. Is preferred because the transparency of the further cured product is improved.
 本発明の硬化性樹脂組成物にはエポキシ-カルボン酸系の硬化触媒等を混合させても良い。かかるエポキシ-カルボン酸系硬化触媒としては、反応促進のための第1級から第3級までのアミンや第4級アンモニュウム塩、ジシアンジアミド、イミダゾール化合物類等の窒素系化合物類、TPP(トリフェニルホスフィン)、アルキル置換されたトリアルキルフォニルホスフィン等のフォスフィン系化合物やその誘導体、これらのフォスホニュウム塩、あるいはジアルキル尿素類、カルボン酸類、フェノール類、またはメチロール基含有化合物類などの公知のエポキシ硬化促進剤等が挙げられ、これらを少量併用する事が可能である。 The curable resin composition of the present invention may be mixed with an epoxy-carboxylic acid-based curing catalyst or the like. Such epoxy-carboxylic acid-based curing catalysts include primary to tertiary amines for promoting the reaction, quaternary ammonium salts, nitrogen compounds such as dicyandiamide and imidazole compounds, TPP (triphenylphosphine). ), Known epoxy curing accelerators such as phosphine compounds such as alkyl-substituted trialkyl phonylphosphine and derivatives thereof, phosphophonium salts thereof, dialkylureas, carboxylic acids, phenols, or methylol group-containing compounds. Etc., and a small amount of these can be used in combination.
 かかる、1分子中に2個以上のマレイミド基を有する化合物(B2)(以下、マレイミド化合物(B2)という)としては、例えば、N-シクロヘキシルマレイミド、N-メチルマレイミド、N-n-ブチルマレイミド、N-ヘキシルマレイミド、N-tert-ブチルマレイミド等のN-脂肪族マレイミド;N-フェニルマレイミド、N-(P-メチルフェニル)マレイミド、N-ベンジルマレイミド等のN-芳香族マレイミド;4,4’-ジフェニルメタンビスマレイミド、4,4’-ジフェニルスルホンビスマレイミド、m-フェニレンビスマレイミド、ビス(3-メチル-4-マレイミドフェニル)メタン、ビス(3-エチル-4-マレイミドフェニル)メタン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン等のビスマレイミド類が挙げられる。これらの中でも特に硬化物の耐熱性が良好なものとなる点からビスマレイミドが好ましく、特に4,4’-ジフェニルメタンビスマレイミド、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタンが好ましいものとして挙げられる。本発明の硬化性樹脂組成物にマレイミド化合物(B2)を用いる場合には、必要に応じて、硬化促進剤を用いることができる。ここで使用できる硬化促進剤としては、アミン化合物、フェノール化合物、酸無水物、イミダゾール類、有機金属塩などが挙げられる。 Examples of the compound (B2) having two or more maleimide groups in one molecule (hereinafter referred to as maleimide compound (B2)) include, for example, N-cyclohexylmaleimide, N-methylmaleimide, Nn-butylmaleimide, N-aliphatic maleimides such as N-hexylmaleimide and N-tert-butylmaleimide; N-aromatic maleimides such as N-phenylmaleimide, N- (P-methylphenyl) maleimide and N-benzylmaleimide; 4,4 ′ -Diphenylmethane bismaleimide, 4,4'-diphenylsulfone bismaleimide, m-phenylene bismaleimide, bis (3-methyl-4-maleimidophenyl) methane, bis (3-ethyl-4-maleimidophenyl) methane, bis (3 , 5-Dimethyl-4-maleimidophenyl) methane, bis 3-ethyl-5-methyl-4-maleimide phenyl) methane, bis (3,5-diethyl-4-maleimide phenyl) bismaleimide such as methane and the like. Among these, bismaleimide is particularly preferable because the cured product has good heat resistance, and 4,4′-diphenylmethane bismaleimide, bis (3,5-dimethyl-4-maleimidophenyl) methane, bis (3 Preferred examples include -ethyl-5-methyl-4-maleimidophenyl) methane and bis (3,5-diethyl-4-maleimidophenyl) methane. When the maleimide compound (B2) is used in the curable resin composition of the present invention, a curing accelerator can be used as necessary. Examples of the curing accelerator that can be used here include amine compounds, phenol compounds, acid anhydrides, imidazoles, and organic metal salts.
 本発明の硬化性樹脂組成物には、さらに必要に応じて有機溶剤(C)を含有させることもできる。本発明の硬化性樹脂組成物に有機溶剤(C)を含有させる場合、前記アルコール変性ポリアミドイミド樹脂(A2)を調製したものと同じ有機溶剤を用いることができる。 The curable resin composition of the present invention may further contain an organic solvent (C) as necessary. When the organic solvent (C) is contained in the curable resin composition of the present invention, the same organic solvent as that used to prepare the alcohol-modified polyamideimide resin (A2) can be used.
 本発明の硬化性樹脂組成物は、さらに硬化に際し、エネルギー線、特に紫外線を照射して硬化させる場合には、光重合開始剤(D)とさらに必要に応じて反応性希釈剤(E)を使用することができる。かかる光重合開始剤(D)としては、特に制限はなく、公知慣用の重合性光開始剤を用いることができるが、代表例を挙げれば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルのごときベンゾインとベンゾインアルキルエーテル類、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノンのごときアセトフェノン類、2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリブチルアントラキンノン、1-クロロアントラキノン、2-アルミアントラキノンのごときアントラキノン類、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントンのごときチオキサントン類、ビス(2,6ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドのごときトリメチルベンゾイルアルキルフォスフィンオキサイド類、アセトフェノンジメチルケタール、ベンジルジメチルケタールのごときケタール類、ベンゾフェノンのごときベンゾフェノン類またはキサントン類等がある。これらは単独であるいは2種以上を組み合わせて用いる事ができる。 The curable resin composition of the present invention further comprises a photopolymerization initiator (D) and, if necessary, a reactive diluent (E) when curing by irradiating with energy rays, particularly ultraviolet rays. Can be used. The photopolymerization initiator (D) is not particularly limited, and a known and commonly used polymerizable photoinitiator can be used. Typical examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether. Benzoin and benzoin alkyl ethers such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, acetophenones such as 1,1-dichloroacetophenone, 2-methylanthraquinone, 2 -Anthraquinones such as ethylanthraquinone, 2-tertiarybutylanthraquinone, 1-chloroanthraquinone, 2-aluminumanthraquinone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chloro Thioxanthones such as thioxanthone, 2,4-diisopropylthioxanthone, trimethylbenzoyl such as bis (2,6dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide Examples include alkyl phosphine oxides, ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal, benzophenones such as benzophenone, and xanthones. These can be used alone or in combination of two or more.
 光重合開始剤(D)の使用量は、本発明の効果を損ねない範囲であれば特に限定されないが、通常、アルコール変性ポリアミドイミド樹脂(A2)100質量部に対して0.1~30質量部の範囲であることが好ましく、さらに0.5~10質量部の範囲がより好ましい。かかる光重合開始剤は公知慣用の光重合促進剤の一種あるいは二種以上と組み合わせて用いることもできる。 The amount of the photopolymerization initiator (D) used is not particularly limited as long as it does not impair the effects of the present invention, but usually 0.1 to 30 masses per 100 mass parts of the alcohol-modified polyamideimide resin (A2). Part range, more preferably 0.5 to 10 parts by mass. Such photopolymerization initiators can also be used in combination with one or more known and commonly used photopolymerization accelerators.
 本発明で用いる反応性希釈剤(E)としては、公知慣用の光重合性ビニルモノマーを用いることができるが、代表的な例としては、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アクリロイルモルホリン、ビニルピロリドン、スチレンもしくは、トリス(2-アクリロイルオキシエチル)イソシアヌレート、また、メチルメタクリレート、エチルアクリレートのごときアルキル(メタ)アクリレート、または、上記アクリレートに対する各メタクリレート類、多塩基酸とヒドロキシアルキル(メタ)アクリレートとのモノ-、ジ-、トリ-またはそれ以上のポリエステル、あるいはビスフェノールA型エポキシアクリレート、ノボラック型エポキシアクリレートまたはウレタンアクリレートのごとき、エチレン性不飽和二重結合を有するモノマー類、オリゴマー類を挙げることができる。これらの1種、または2種以上を使用することができる。 As the reactive diluent (E) used in the present invention, known and commonly used photopolymerizable vinyl monomers can be used. Typical examples include dimethylaminoethyl acrylate, diethylaminoethyl acrylate, ethylene glycol diacrylate, Diethylene glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, propylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, trimethylolpropane diacrylate, trimethylolpropane triacrylate, penta Erythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol Polyhexaacrylate, acryloylmorpholine, vinylpyrrolidone, styrene, tris (2-acryloyloxyethyl) isocyanurate, alkyl (meth) acrylates such as methyl methacrylate, ethyl acrylate, or the respective methacrylates for the above acrylates, polybasic Mono-, di-, tri- or higher polyesters of acids and hydroxyalkyl (meth) acrylates, or ethylenically unsaturated double bonds such as bisphenol A type epoxy acrylate, novolac type epoxy acrylate or urethane acrylate Monomers and oligomers can be mentioned. These 1 type (s) or 2 or more types can be used.
 前記アルコール変性ポリアミドイミド樹脂(A2)と反応性希釈剤(E)は、各種目的とする物性に対応して自由に配合することが可能であるが、Tg等の熱的物性、機械物性等と硬化塗膜の透明性とのバランスの面でアルコール変性ポリアミドイミド樹脂(A2)と、反応性希釈剤(E)の光重合性基との比〔A2/E〕が質量基準で0.2~5.0となるような範囲でアルコール変性ポリアミドイミド樹脂(A2)と反応性希釈剤(E)とを配合することが硬化物の特性としてTgを得やすく、機械物性等に優れる硬化物が得られ、更に硬化物の透明性が良好になることから好ましい。 The alcohol-modified polyamideimide resin (A2) and the reactive diluent (E) can be freely blended in accordance with various desired physical properties, such as thermal properties such as Tg, mechanical properties, etc. In terms of balance with the transparency of the cured coating film, the ratio [A2 / E] of the alcohol-modified polyamideimide resin (A2) to the photopolymerizable group of the reactive diluent (E) is 0.2 to Mixing the alcohol-modified polyamideimide resin (A2) and the reactive diluent (E) within a range of 5.0 makes it easy to obtain Tg as a property of the cured product, and a cured product having excellent mechanical properties and the like is obtained. Further, it is preferable because the transparency of the cured product is improved.
 本発明の硬化性樹脂組成物の硬化は、基本的にアルコール変性ポリアミドイミド樹脂(A2)、硬化性樹脂(B)、その他成分の種類や配合割合、硬化条件等を適宜選択し調整しながら行うことができる。 Curing of the curable resin composition of the present invention is basically performed while appropriately selecting and adjusting the type and blending ratio of the alcohol-modified polyamideimide resin (A2), curable resin (B), other components, and curing conditions. be able to.
 本発明の硬化性樹脂組成物の硬化方法としては、活性エネルギー線硬化、熱による硬化、さらに両者を併用、すなわち、活性エネルギー線硬化で半硬化させた後に熱による硬化、熱による硬化で半硬化させた後に活性エネルギー線硬化、両者を同時に行うことも可能である。 As the curing method of the curable resin composition of the present invention, active energy ray curing, curing by heat, and both are used in combination, that is, semi-curing by active energy ray curing, then curing by heat, semi-curing by curing by heat It is also possible to carry out active energy ray curing and both at the same time.
 活性エネルギー線で硬化させる場合は、紫外線や電子線が使用可能である。紫外線としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、ブラックライトランプ、メタルハライドランプ等が使用できる。紫外線波長としては、1900~3800オングストロームの波長が主に使用される。また、電子線による硬化を行う場合は、各種電子線加速器等の照射源を備えた装置を用いることができ、100~1000KeVのエネルギーを持つ電子を照射する。 ∙ When curing with active energy rays, ultraviolet rays and electron beams can be used. As the ultraviolet ray, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a black light lamp, a metal halide lamp, or the like can be used. As the ultraviolet wavelength, a wavelength of 1900 to 3800 angstroms is mainly used. When curing with an electron beam, an apparatus having an irradiation source such as various electron beam accelerators can be used, and electrons having an energy of 100 to 1000 KeV are irradiated.
 また、熱で硬化させる場合は、熱重合を開始させる触媒や、添加剤の存在下で、硬化温度80℃~300℃の範囲、好ましくは120℃~250℃の範囲で行う。たとえば被塗装物に塗装、キャスティング等施した後に、加熱により硬化させることができる。また、各種温度でのステップ硬化を行っても良い。また、50℃~170℃程度の温度で半硬化させたシート状あるいは塗膜状の組成物を貯蔵して、必要な時に上述の硬化温度にて処理を施してもよい。
 もちろん、活性エネルギー線と熱とを併用して硬化させることについてもその使用にあたっては、何ら限定がない。
In the case of curing with heat, the curing is carried out in the range of a curing temperature of 80 ° C. to 300 ° C., preferably in the range of 120 ° C. to 250 ° C. in the presence of a catalyst for starting thermal polymerization and additives. For example, the material to be coated can be cured by heating after being painted or cast. Further, step curing at various temperatures may be performed. Alternatively, a sheet-like or film-like composition semi-cured at a temperature of about 50 ° C. to 170 ° C. may be stored and treated at the above-described curing temperature when necessary.
Of course, there is no limitation in using the active energy ray and heat in combination.
 本発明の硬化性樹脂組成物には、必要に応じて、上記以外の他の溶剤、各種レベリング剤、消泡剤、酸化防止剤、老化防止剤、紫外線吸収剤、沈降防止剤、レオロジーコントロール剤等の各種添加剤や、硫酸バリウム、酸化ケイ素、タルク、クレー、炭酸カルシウム、シリカ、コロイダルシリカ、ガラスなどの公知慣用の充填剤、各種金属粉末、ガラス繊維やカーボンファイバー、ケブラー繊維等の繊維状充填剤など、あるいはフタロシアニンブルー、フタロシアニングリーン、酸化チタン、カーボンブラック、シリカなどの公知慣用の着色用顔料、その他密着性付与剤類等を配合してもよい。また必要に応じてアクリル樹脂、セルロース系樹脂、ポリビニル樹脂、ポリフェニレンエーテル、ポリエーテルスルフォン等ポリマーを配合することも可能である。 In the curable resin composition of the present invention, if necessary, other solvents than the above, various leveling agents, antifoaming agents, antioxidants, anti-aging agents, ultraviolet absorbers, anti-settling agents, rheology control agents Various known additives such as barium sulfate, silicon oxide, talc, clay, calcium carbonate, silica, colloidal silica, glass and the like, various metal powders, glass fibers, carbon fibers, fiber shapes such as Kevlar fibers, etc. You may mix | blend well-known and usual pigments, such as a filler, or phthalocyanine blue, phthalocyanine green, titanium oxide, carbon black, a silica, other adhesive imparting agents, etc. Moreover, it is also possible to mix | blend polymers, such as an acrylic resin, a cellulose resin, a polyvinyl resin, polyphenylene ether, and polyether sulfone, as needed.
 本発明の硬化性樹脂組成物には、硬化物に難燃性を発揮させるため、本発明の効果を損ねない範囲であれば、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。    In the curable resin composition of the present invention, a non-halogen flame retardant containing substantially no halogen atom is blended so long as the effect of the present invention is not impaired so that the cured product exhibits flame retardancy. May be. Examples of the non-halogen flame retardants include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants. The flame retardants may be used alone or in combination, and a plurality of flame retardants of the same system may be used, or different types of flame retardants may be used in combination.
 前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサー10-ホスファフェナントレン=10-オキシド、10-(2,5―ジヒドロオキシフェニル)―10H-9-オキサ-10-ホスファフェナントレン=10-オキシド、10―(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。それらの配合量としては、リン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、ポリアミドイミド樹脂(A2)、硬化性樹脂(B)及び/又は有機溶剤(C)、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1~2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1~10.0質量部の範囲で配合することが好ましく、特に0.5~6.0質量部の範囲で配合することが好ましい。また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。 As the phosphorus flame retardant, either inorganic or organic can be used. Examples of the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. . The red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like. Examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide For example, a method of double coating with a resin may be used. Examples of the organic phosphorus compound include, for example, general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phospholane compounds, organic nitrogen-containing phosphorus compounds, and 9,10- Dihydro-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,7- Examples thereof include cyclic organophosphorus compounds such as dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins. The blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. For example, the polyamide-imide resin (A2), In 100 parts by mass of the curable resin composition containing all of the curable resin (B) and / or the organic solvent (C), the curing agent, the non-halogen flame retardant, and other fillers and additives, red phosphorus is not contained. When used as a halogen-based flame retardant, it is preferably blended in the range of 0.1 to 2.0 parts by mass. When an organophosphorus compound is used, it is similarly blended in the range of 0.1 to 10.0 parts by mass. It is preferable to blend in the range of 0.5 to 6.0 parts by mass. In addition, when using the phosphorous flame retardant, the phosphorous flame retardant may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.
 前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、ポリアミドイミド樹脂(A2)、硬化性樹脂(B)及び/又は有機溶剤(C)、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05~10質量部の範囲で配合することが好ましく、特に0.1~5質量部の範囲で配合することが好ましい。また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。 Examples of the nitrogen-based flame retardant include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazines, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable. Examples of the triazine compound include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, (i) guanylmelamine sulfate, melem sulfate, sulfate (Iii) co-condensates of phenols such as phenol, cresol, xylenol, butylphenol and nonylphenol with melamines such as melamine, benzoguanamine, acetoguanamine and formguanamine and formaldehyde, (iii) (Ii) a mixture of a co-condensate of (ii) and a phenolic resin such as a phenol formaldehyde condensate, (iv) those obtained by further modifying (ii) and (iii) with paulownia oil, isomerized linseed oil, etc. It is. Specific examples of the cyanuric acid compound include cyanuric acid and cyanuric acid melamine. The amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardant. In 100 parts by mass of curable resin composition (A2), curable resin (B) and / or organic solvent (C), curing agent, non-halogen flame retardant and other fillers and additives, etc. It is preferably blended in the range of 0.05 to 10 parts by mass, and particularly preferably in the range of 0.1 to 5 parts by mass. Moreover, when using the said nitrogen-type flame retardant, you may use together a metal hydroxide, a molybdenum compound, etc.
 前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、ポリアミドイミド樹脂(A2)、硬化性樹脂(B)及び/又は有機溶剤(C)、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05~20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。 The silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin. The amount of the silicone flame retardant is appropriately selected depending on the type of the silicone flame retardant, the other components of the curable resin composition, and the desired degree of flame retardant. In 100 parts by mass of curable resin composition (A2), curable resin (B) and / or organic solvent (C), curing agent, non-halogen flame retardant and other fillers and additives, etc. It is preferable to blend in the range of 0.05 to 20 parts by mass. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.
 前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO-MgO-HO、PbO-B系、ZnO-P-MgO系、P-B-PbO-MgO系、P-Sn-O-F系、PbO-V-TeO系、Al-HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。前記無機系難燃剤の配合量としては、無機系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、ポリアミドイミド樹脂(A2)、硬化性樹脂(B)及び/又は有機溶剤(C)、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05~20質量部の範囲で配合することが好ましく、特に0.5~15質量部の範囲で配合することが好ましい。前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、ポリアミドイミド樹脂(A2)、硬化性樹脂(B)及び/又は有機溶剤(C)、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.005~10質量部の範囲で配合することが好ましい。   Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass. Specific examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like. Specific examples of the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide. Bismuth oxide, chromium oxide, nickel oxide, copper oxide, tungsten oxide and the like. Specific examples of the metal carbonate compound include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate. Specific examples of the metal powder include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin. Specific examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax. Specific examples of the low-melting-point glass include, for example, Shipley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO system, P—Sn—O—F system, PbO—V 2 O 5 —TeO 2 system, Al 2 O 3 —H 2 O system, lead borosilicate system, etc. The glassy compound can be mentioned. The blending amount of the inorganic flame retardant is appropriately selected depending on the kind of the inorganic flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. In 100 parts by mass of curable resin composition (A2), curable resin (B) and / or organic solvent (C), curing agent, non-halogen flame retardant and other fillers and additives, etc. It is preferably blended in the range of 0.05 to 20 parts by mass, and particularly preferably in the range of 0.5 to 15 parts by mass. Examples of the organic metal salt flame retardant include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound. The amount of the organic metal salt flame retardant is appropriately selected depending on the type of the organic metal salt flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. , A polyamideimide resin (A2), a curable resin (B) and / or an organic solvent (C), a curing agent, a non-halogen flame retardant, and other fillers and additives, etc. It is preferable to blend in the range of 0.005 to 10 parts by mass in parts by mass.
 本発明の硬化性樹脂組成物は、汎用溶剤に可溶であり、且つ、耐熱性と光透過性に優れる硬化塗膜が得られる。このため、特に、硬化物の透明性が要求される分野、例えば、光学材料用分野、プリント配線基板のソルダーレジスト材料、冷蔵庫や炊飯器など家庭用電化製品の保護材料および絶縁材料、液晶ディスプレーや液晶表示素子、有機及び無機エレクトロルミネッセンスディスプレーや有機及び無機エレクトロルミネッセンス素子、LEDディスプレー、発光ダイオード、電子ペーパー、太陽電池、貫通シリコン電極(Through Silicon Via:TSV)、光ファイバーや光導波路等に用いる保護材料、絶縁材料、接着剤や、反射材料等の分野や、液晶配向膜、カラーフィルター用保護膜等の表示装置分野等に好適に用いることができる。 The curable resin composition of the present invention provides a cured coating film that is soluble in a general-purpose solvent and is excellent in heat resistance and light transmittance. For this reason, in particular, in the field where the transparency of the cured product is required, for example, the field for optical materials, solder resist materials for printed wiring boards, protective materials and insulating materials for household appliances such as refrigerators and rice cookers, liquid crystal displays, Protective materials used for liquid crystal display elements, organic and inorganic electroluminescence displays, organic and inorganic electroluminescence elements, LED displays, light emitting diodes, electronic paper, solar cells, through silicon electrodes (Through Silicon Via: TSV), optical fibers, optical waveguides, etc. It can be suitably used in fields such as insulating materials, adhesives and reflective materials, and display device fields such as liquid crystal alignment films and color filter protective films.
 当然ながら、硬化物の透明性が要求されていない分野、例えば、各種耐熱性コーティング材料、耐熱性接着剤;電気・電子部品封止材料、絶縁ワニス、積層板、絶縁粉体塗料、半導体のパッシベーション膜、ゲート絶縁膜等の電気絶縁材;導電膜、導電性接着材などの導電性材料;プリント配線基板用積層板、プリブレグおよびハニカムパネルの如き構造材料用等の接着剤;ガラス繊維、炭素繊維、アラミド繊維等の各種強化繊維を用いた繊維強化プラスチックおよびそのプリプレグ;レジストインキなどのパターンニング材料;リチウムイオン二次電池等の非水電解質系二次電池のガスケット等の用途にも利用することができる。 Naturally, the field where the transparency of the cured product is not required, for example, various heat-resistant coating materials, heat-resistant adhesives; sealing materials for electric and electronic parts, insulating varnishes, laminates, insulating powder coatings, semiconductor passivation Electrical insulating materials such as films and gate insulating films; Conductive materials such as conductive films and conductive adhesives; Adhesives for structural materials such as laminates for printed wiring boards, prepregs and honeycomb panels; glass fibers and carbon fibers , Fiber reinforced plastics using various reinforcing fibers such as aramid fibers and prepregs thereof; patterning materials such as resist inks; gaskets for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries Can do.
 本発明の硬化性樹脂組成物は、汎用溶剤に可溶であり、且つ、耐熱性と光透過性に優れる硬化塗膜が得られるため、白色プリプレグ、白色積層板、当該白色積層板を備えたチップLEDに好適に用いることができる。以下、詳述する。
 本発明の白色プリプレグは、本発明の硬化性樹脂組成物と白色顔料を含む混合物を、シート状ガラス繊維基材に含浸または塗布させた後、乾燥させてなることを特徴とする。具体的には、本発明の硬化性樹脂組成物と白色顔料を含む混合物を、シート状ガラス繊維基材に含浸または塗布させた後、100~200℃の範囲の乾燥機中で1~60分間の範囲にて半硬化させることを特徴とする。以下に白色プリプレグ、その製造方法を具体的に説明する。
The curable resin composition of the present invention includes a white prepreg, a white laminate, and the white laminate because a cured coating film that is soluble in a general-purpose solvent and has excellent heat resistance and light transmittance is obtained. It can be suitably used for a chip LED. Details will be described below.
The white prepreg of the present invention is characterized in that a mixture containing the curable resin composition of the present invention and a white pigment is impregnated or applied to a sheet-like glass fiber substrate and then dried. Specifically, the mixture containing the curable resin composition of the present invention and a white pigment is impregnated or applied to a sheet-like glass fiber base material, and then in a dryer in the range of 100 to 200 ° C. for 1 to 60 minutes. It is characterized by being semi-cured within the range. The white prepreg and the production method thereof will be specifically described below.
 前記白色顔料としては、酸化亜鉛、炭酸カルシウム、二酸化チタン、アルミナ、合成スメクタイトなどが例示でき、白色の無機粉末であれば特に限定されるものではないが、可視光反射率や白色度、或いは電気特性といった観点から二酸化チタンを用いるのが最も好ましい。 Examples of the white pigment include zinc oxide, calcium carbonate, titanium dioxide, alumina, and synthetic smectite. The white pigment is not particularly limited as long as it is a white inorganic powder, but is not limited to visible light reflectance, whiteness, or electricity. It is most preferable to use titanium dioxide from the viewpoint of characteristics.
 二酸化チタンの結晶構造はアナターゼ型とルチル型がある。両者の特徴を挙げると、アナターゼ型は可視光短波長領域の反射率が良好であり、ルチル型は長期の耐久性や耐変色性に優れる。本発明の硬化性樹脂組成物に添加する白色顔料としてはどちらでも良く、特に限定されるものではない。両者を混合して使用することも勿論可能である。 The crystal structure of titanium dioxide includes anatase type and rutile type. When both characteristics are mentioned, the anatase type has good reflectance in the visible light short wavelength region, and the rutile type has excellent long-term durability and discoloration resistance. Either may be sufficient as a white pigment added to the curable resin composition of this invention, and it does not specifically limit. It is of course possible to use a mixture of both.
 前記混合物に含まれる白色顔料の含有量は、配合物中10~75質量%の範囲が良い。10質量%以上であれば十分な白色度、反射率を得ることができ、75質量%以下であればシート状ガラス繊維基材への含浸性が低下したり金属箔との接着強度が低下したりといった不具合が発生することはない。 The content of the white pigment contained in the mixture is preferably in the range of 10 to 75% by mass in the formulation. If it is 10% by mass or more, sufficient whiteness and reflectance can be obtained, and if it is 75% by mass or less, the impregnation property to the sheet-like glass fiber substrate is lowered or the adhesive strength to the metal foil is lowered. There will be no problems.
 白色顔料として二酸化チタンを使用する場合、二酸化チタンには表面処理としてアルミナ、シリカ処理等を行っても良い。又、シラン系カップリング剤やチタネート系カップリング剤処理も可能である。 When titanium dioxide is used as the white pigment, the titanium dioxide may be subjected to alumina or silica treatment as a surface treatment. Moreover, a silane coupling agent or titanate coupling agent treatment is also possible.
 シート状ガラス繊維基材に含浸させる混合物には、上記白色顔料以外に、必要に応じてシリカなどの無機充填材を含有することができる。含有することのできる無機充填材としては、シリカ、水酸化アルミニウム、水酸化マグネシウム、Eガラス粉末、酸化マグネシウム、チタン酸カリウム、ケイ酸カルシウム、クレー、タルク等が挙げられ、単体で使用しても良く、又、2種類以上を併用しても良い。これらの無機充填材を含有することにより、基板の剛性率が向上する。配合量は特に限定しないが、混合物に対して50質量%以下であることが好ましい。50質量%以下であればシート状ガラス繊維基材への含浸性が低下したり金属箔との接着強度が低下したりといった不具合が発生する可能性はほとんど生じない。 In addition to the white pigment, the mixture impregnated into the sheet-like glass fiber base material may contain an inorganic filler such as silica, if necessary. Examples of the inorganic filler that can be contained include silica, aluminum hydroxide, magnesium hydroxide, E glass powder, magnesium oxide, potassium titanate, calcium silicate, clay, and talc. Two or more types may be used in combination. By containing these inorganic fillers, the rigidity of the substrate is improved. The blending amount is not particularly limited, but is preferably 50% by mass or less with respect to the mixture. If it is 50 mass% or less, there is almost no possibility that the impregnation property to a sheet-like glass fiber base material will fall or the adhesive strength with metal foil will generate | occur | produce.
 シート状ガラス繊維基材に含浸させる混合物には、上記白色顔料や無機充填材以外に、必要に応じて蛍光剤を配合することができる。蛍光剤を配合することにより、可視光短波長領域での見かけの反射率を高くすることができる。ここで、蛍光剤とは、光、放射線、紫外線等の光エネルギーを吸収し、他の波長の光に変えて放射する特性を持つ化合物であり、例えば有機物では、ジアミノスチルベン誘導体、アントラセン、サリチル酸ナトリウム、ジアミノスチルベンジスルホン酸誘導体、イミダゾール誘導体、クマリン誘導体、ピラゾリン誘導体、デカリルアミン誘導体等がある。また無機物では、ZnCdS:Ag、ZnS:Pb、ZnS:Cu等がある。蛍光剤は、反射率の低下が著しい可視光短波長領域(380~470nm)に放射波長が存在することが好ましく、上記の蛍光剤のうち、一般的には蛍光増白剤と呼ばれているジアミノスチルベンジスルホン酸誘導体、イミダゾール誘導体、クマリン誘導体、ピラゾリン誘導体等が好適である。その添加量については、限定するものではないが、ピラゾリン誘導体の場合、混合物に対して0.1質量%程度の添加から効果を発揮し、添加量が多いほど効果が大きくなる。また、添加する蛍光増白剤は、溶剤に可溶であることが望ましい。 Fluorescent agent can be blended in the mixture impregnated into the sheet-like glass fiber substrate, if necessary, in addition to the white pigment and the inorganic filler. By blending the fluorescent agent, the apparent reflectance in the visible light short wavelength region can be increased. Here, the fluorescent agent is a compound that has the property of absorbing light energy such as light, radiation, and ultraviolet light and emitting it by changing to light of other wavelengths. For example, in the case of organic substances, diaminostilbene derivatives, anthracene, sodium salicylate , Diaminostilbene disulfonic acid derivatives, imidazole derivatives, coumarin derivatives, pyrazoline derivatives, decalylamine derivatives, and the like. Examples of inorganic substances include ZnCdS: Ag, ZnS: Pb, and ZnS: Cu. The fluorescent agent preferably has a radiation wavelength in the visible light short wavelength region (380 to 470 nm) in which the reflectance is remarkably lowered. Among the above fluorescent agents, the fluorescent agent is generally called a fluorescent whitening agent. Diaminostilbene disulfonic acid derivatives, imidazole derivatives, coumarin derivatives, pyrazoline derivatives and the like are suitable. The addition amount is not limited, but in the case of a pyrazoline derivative, the effect is exhibited from the addition of about 0.1% by mass with respect to the mixture, and the effect is increased as the addition amount is increased. Further, it is desirable that the optical brightener to be added is soluble in a solvent.
 本発明の白色プリプレグに使用するシート状ガラス繊維基材としては、ガラスクロス、不織布のいずれでもよく、ガラスクロスと不織布とを併用してもよい。ガラスクロスの場合、平織り構造を基本とするが、ななこ織り、繻子織り、綾織り等の織物構造でもよく、特に限定するものではない。外観や加工性を損なわないために経糸と緯糸の交差部の隙間が小さい織り構造を使用することが好ましい。ガラスクロスの厚みについては、特に制限はないが0.02~0.3mmの範囲のものが取り扱いやすく好ましい。 The sheet-like glass fiber substrate used for the white prepreg of the present invention may be either a glass cloth or a nonwoven fabric, and a glass cloth and a nonwoven fabric may be used in combination. In the case of a glass cloth, a plain weave structure is basically used, but a woven structure such as Nanako weave, satin weave or twill weave may be used, and is not particularly limited. In order not to impair the appearance and workability, it is preferable to use a woven structure in which the gap between the intersections of the warp and the weft is small. The thickness of the glass cloth is not particularly limited, but is preferably in the range of 0.02 to 0.3 mm because it is easy to handle.
 また、シート状ガラス繊維基材に、シランカップリング剤等による表面処理を行ってもよい。さらに、シート状ガラス繊維基材自身が白色に着色されたものでもよい。 Further, the sheet-like glass fiber base material may be subjected to a surface treatment with a silane coupling agent or the like. Furthermore, the sheet-like glass fiber base material itself may be colored white.
 以上説明した混合物に必要応じてメチルエチルケトン等の溶剤を加え、樹脂ワニスを調製し、ガラスクロス等からなるシート状ガラス繊維基材に含浸させ、乾燥して白色プリプレグを製造する。樹脂ワニスをシート状ガラス繊維基材に含浸・乾燥させる方法としては特に限定するものではなく、例えば樹脂ワニス中に、シート状ガラス繊維基材を浸漬するなどして含浸させた後、100℃~200℃程度の温度で1~60分間加熱して溶剤の除去および硬化性樹脂を半硬化させる方法等が採用できる。シート状ガラス繊維基材に含浸・乾燥して製造する白色プリプレグの硬化性樹脂組成物の含浸量は特に限定しないが30~60質量%の範囲とするのが好ましい。前記プリプレグの乾燥条件の選定としては、例えば、予め樹脂ワニスのゲルタイムをゲルタイムテスター(安田精機製作所製)により測定しておくことが好ましい。ここで、ゲルタイムの測定条件としては、前記装置により160℃におけるゲルタイム(硬化時間:ローターのトルクが約3.3Kg・cmに達するまでに要する時間)を測定し、ワニス樹脂のゲルタイムが5分以上~15分未満の範囲が好ましく、前記ゲルタイムが5分以上~10分未満がより好ましい。樹脂ワニスのゲルタイムが短いと半硬化の状態を維持できず、均一なプリプレグ作製が困難となる。また、半硬化を維持できず硬化まで至ると後述する金属箔との張り合わせが困難になる。そのため、ワニスゲルタイム測定により、プロセスにあった条件で半硬化させることが好ましい。 If necessary, a solvent such as methyl ethyl ketone is added to the mixture described above to prepare a resin varnish, impregnated into a sheet-like glass fiber substrate made of glass cloth or the like, and dried to produce a white prepreg. The method for impregnating and drying the resin varnish on the sheet glass fiber substrate is not particularly limited. For example, after impregnating the resin varnish by immersing the sheet glass fiber substrate in the resin varnish, 100 ° C. to A method of removing the solvent and semi-curing the curable resin by heating at a temperature of about 200 ° C. for 1 to 60 minutes can be employed. The impregnation amount of the curable resin composition of the white prepreg produced by impregnating and drying the sheet-like glass fiber substrate is not particularly limited, but is preferably in the range of 30 to 60% by mass. As selection of drying conditions for the prepreg, for example, it is preferable to previously measure the gel time of the resin varnish with a gel time tester (manufactured by Yasuda Seiki Seisakusho). Here, as the gel time measurement conditions, the gel time at 160 ° C. (curing time: the time required for the rotor torque to reach about 3.3 kg · cm) is measured by the above-mentioned apparatus, and the gel time of the varnish resin is 5 minutes or more. The range of ˜15 minutes is preferable, and the gel time is more preferably 5 minutes to less than 10 minutes. If the gel time of the resin varnish is short, the semi-cured state cannot be maintained, and it becomes difficult to produce a uniform prepreg. Further, when the half-curing cannot be maintained and the curing is reached, it becomes difficult to bond with a metal foil described later. Therefore, it is preferable to semi-cure under conditions suitable for the process by varnish gel time measurement.
 得られた白色プリプレグと銅箔、またはアルミ箔とを組み合わせを加熱加圧成形して白色積層板を製造する。又、重ね合わせる白色プリプレグの枚数は特に制限はないが、単層基板としては白色プリプレグ1枚、又は2~10枚を重ね、金属箔張り白色積層板の場合はその上に、又は上下に金属箔を積層配置するのが一般的である。多層基板は、上記単層基板を複数枚積層して製造されるが、重ね合わせる枚数については特に制限はない。金属箔としては、銅箔、アルミニウム箔等が用いられる。又、金属箔の厚みは1μm~105μmが一般的であり、特に1.5μm~35μmの範囲とするのが好ましい。また、前記白色プリプレグを積層する表面層のみに使用し、中間層には従来技術によるプリプレグを使用することも可能である。このようにして得られた白色積層板、金属箔張り白色積層板は、可視光領域の反射率が高く、しかも加熱や紫外線による変色が著しく少なく、高い耐熱性を持った板厚精度に優れるプリント配線基板用白色積層板、及び金属箔張り白色積層板となる。金属箔張り積層板の積層成形条件としては、通常のプリント配線板用積層板の手法が適用でき、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機などを使用し、温度:100~300℃の範囲、圧力:2~100kgf/cm 、加熱時間:0.1~5時間の範囲が一般的であるが、絶縁層厚みの均一化、気泡の除去等の点から、積層成形は70mmHg以下の真空下で行うことが好ましい。 A combination of the obtained white prepreg and copper foil or aluminum foil is heated and pressed to produce a white laminate. The number of white prepregs to be overlaid is not particularly limited, but as a single-layer substrate, one or two to ten white prepregs are stacked. In general, the foils are laminated. The multilayer substrate is manufactured by laminating a plurality of the single-layer substrates, but there is no particular limitation on the number of the stacked substrates. As the metal foil, copper foil, aluminum foil or the like is used. Further, the thickness of the metal foil is generally 1 μm to 105 μm, and particularly preferably in the range of 1.5 μm to 35 μm. It is also possible to use only the surface layer on which the white prepreg is laminated, and use a prepreg of the prior art for the intermediate layer. The white laminates and metal foil-clad white laminates obtained in this way have high reflectivity in the visible light region, remarkably little discoloration due to heating and ultraviolet rays, and high heat resistance and excellent thickness accuracy. It becomes the white laminated board for wiring boards, and a metal foil clad white laminated board. As the lamination molding conditions for the metal foil-clad laminate, the usual method for laminates for printed wiring boards can be applied. For example, a multistage press, a multistage vacuum press, a continuous molding, an autoclave molding machine, etc. are used, and a temperature: 100- A range of 300 ° C., pressure: 2 to 100 kgf / cm 2 , heating time: range of 0.1 to 5 hours is general, but in terms of uniform insulation layer thickness, removal of bubbles, etc., lamination molding is It is preferable to carry out under a vacuum of 70 mmHg or less.
 得られた白色積層板に、アディティブ法にて導体パターンを形成し、プリント配線基板とする。又、得られた金属箔張り白色積層板の金属箔上に回路パターンを印刷し、エッチングを施してプリント配線基板とする。チップLEDを該プリント配線基板に実装するには、先ずプリント配線基板上に半田を塗布し、その上にチップLEDを載置したのち、これをリフロー等に通して半田を溶融することでチップLEDをプリント基板に固定する。チップLEDを高密度集積させることで面光源としての利用も可能になり、このような面光源は特に薄型であることが要求される液晶ディスプレー用バックライトに好適に利用される。その他、面発光型の照明装置として誘導表示照明灯、避難口照明灯、広告灯等へ応用される。 A conductive pattern is formed on the obtained white laminate by an additive method to obtain a printed wiring board. Moreover, a circuit pattern is printed on the metal foil of the obtained metal foil-clad white laminate and etched to obtain a printed wiring board. In order to mount the chip LED on the printed wiring board, first, solder is applied on the printed wiring board, and the chip LED is placed on the printed wiring board, and then the chip LED is melted by passing it through reflow or the like. Is fixed to the printed circuit board. By integrating chip LEDs with high density, it can be used as a surface light source, and such a surface light source is suitably used for a backlight for a liquid crystal display that is particularly required to be thin. In addition, it is applied to induction display illumination lamps, evacuation exit illumination lamps, advertisement lights, etc. as surface emitting illumination devices.
 チップLED実装用基板の板厚精度は、基板上に実装した素子をトランスファー成形で封止する際にきわめて重要である。ここでトランスファー成形とは、型締めした金型内に樹脂を圧入する手法のことをいう。チップLEDに用いられる基板の厚みは、0.06mmから1.0mmが一般的であるが、板厚の精度が悪ければ、トランスファー成形の際、型締め時に基板と金型との間に隙間が発生し、圧入した樹脂がその隙間から漏れて成形不良が発生する。このようなトランスファー成形における基板の板厚の要求精度は、例えば厚みが1.0mmの基板であれば許容差±0.05mm以下(範囲は0.1mm)、好ましくは許容差±0.03mm以下(範囲は0.06mm)である。従って、板厚精度の高い基板があればチップLEDの製造工程において不良率を大幅に低減でき、産業上極めて有意となる。 The thickness accuracy of the chip LED mounting substrate is extremely important when the elements mounted on the substrate are sealed by transfer molding. Here, transfer molding refers to a method of press-fitting a resin into a clamped mold. The thickness of the substrate used for the chip LED is generally 0.06 mm to 1.0 mm. However, if the accuracy of the plate thickness is poor, there is a gap between the substrate and the mold at the time of clamping during transfer molding. And the press-fitted resin leaks from the gap, resulting in molding defects. The required accuracy of the substrate thickness in such transfer molding is, for example, a tolerance of ± 0.05 mm or less (range is 0.1 mm), preferably a tolerance of ± 0.03 mm or less for a substrate having a thickness of 1.0 mm. (The range is 0.06 mm). Therefore, if there is a substrate with high thickness accuracy, the defect rate can be greatly reduced in the manufacturing process of the chip LED, which is extremely significant in the industry.
 本発明の硬化性樹脂組成物をパターンニング材料に使用する場合には、例えば、本発明の硬化性樹脂組成物を基材上に塗布し、溶剤を乾燥させた後、パターンを有するマスクを通してエネルギー線を照射し、アルカリ水溶液又は溶剤にて現像することにより、パターンを形成することができる。さらに80℃以上で熱処理させることによりさらに強靭なパターンを形成することができる。以下、詳述する。 When the curable resin composition of the present invention is used as a patterning material, for example, the curable resin composition of the present invention is applied onto a substrate, the solvent is dried, and then energy is passed through a mask having a pattern. A pattern can be formed by irradiating a line and developing with an alkaline aqueous solution or a solvent. Furthermore, a stronger pattern can be formed by heat treatment at 80 ° C. or higher. Details will be described below.
 まず、支持体と、該支持体上に形成された本発明の硬化性樹脂組成物からなる感光性樹脂組成物層とを備えた感光性フィルムを製造する。感光性樹脂組成物層上には、該感光性樹脂組成物層を被覆する保護フィルムを更に備えていてもよい。 First, a photosensitive film comprising a support and a photosensitive resin composition layer made of the curable resin composition of the present invention formed on the support is produced. On the photosensitive resin composition layer, you may further provide the protective film which coat | covers this photosensitive resin composition layer.
 感光性樹脂組成物層は、本発明の硬化性樹脂組成物を溶剤又は混合溶剤に溶解して固形分30~70質量%程度の溶液とした後に、かかる溶液を支持体上に塗布して形成することが好ましい。感光性樹脂組成物層の厚みは、用途により異なるが、加熱及び/又は熱風吹き付けにより溶剤を除去した乾燥後の厚みで、10~100μmであることが好ましく、20~60μmであることがより好ましい。この厚みが10μm未満では工業的に塗工困難な傾向があり、100μmを超えると本発明により奏される上述の効果が小さくなりやすく、特に、物理特性及び解像度が低下する傾向がある。 The photosensitive resin composition layer is formed by dissolving the curable resin composition of the present invention in a solvent or mixed solvent to obtain a solution having a solid content of about 30 to 70% by mass, and then applying the solution onto a support. It is preferable to do. The thickness of the photosensitive resin composition layer varies depending on the use, but it is preferably 10 to 100 μm, more preferably 20 to 60 μm, after drying after removing the solvent by heating and / or hot air blowing. . If the thickness is less than 10 μm, there is a tendency that it is difficult to apply industrially, and if it exceeds 100 μm, the above-described effects produced by the present invention tend to be reduced, and in particular, physical properties and resolution tend to be reduced.
 感光性フィルムが備える支持体としては、例えば、ポリエチレンテレフタレート等のポリエステル、ポリプロピレン、ポリエチレン等の耐熱性及び耐溶剤性を有する重合体フィルムなどが挙げられる。支持体の厚みは、5~100μmであることが好ましく、10~30μmであることがより好ましい。この厚みが5μm未満では現像前に支持体を剥離する際に当該支持体が破れやすくなる傾向があり、また、100μmを超えると解像度及び可撓性が低下する傾向がある。上述したような支持体と感光性樹脂組成物層との2層からなる感光性フィルム又は支持体と感光性樹脂組成物層と保護フィルムとの3層からなる感光性フィルムは、例えば、そのまま貯蔵してもよく、又は保護フィルムを介在させた上で巻芯にロール状に巻き取って保管することができる。 Examples of the support provided in the photosensitive film include polyesters such as polyethylene terephthalate, polymer films having heat resistance and solvent resistance such as polypropylene and polyethylene. The thickness of the support is preferably 5 to 100 μm, and more preferably 10 to 30 μm. If the thickness is less than 5 μm, the support tends to be broken when the support is peeled off before development, and if it exceeds 100 μm, the resolution and flexibility tend to decrease. The photosensitive film consisting of two layers of the support and the photosensitive resin composition layer as described above or the photosensitive film consisting of three layers of the support, the photosensitive resin composition layer, and the protective film, for example, is stored as it is. Alternatively, the protective film may be interposed and wound around the core in a roll shape and stored.
 本発明の硬化性樹脂組成物を感光性樹脂組成物又は感光性フィルムとして用いた場合のレジストパターンの形成方法は、初めに、其々、公知のスクリーン印刷、ロールコータにより塗布する工程、又は保護フィルムを除去してラミネート等により貼り付ける工程により、レジストを形成する基板上に積層する。次いで、必要に応じて上述した感光性フィルムから支持体フィルムを除去する除去工程を行い、または支持体フィルムを除去せずに活性光線を、マスクパターンを通して、感光性樹脂組成物層の所定部分に照射して、照射部の感光性樹脂組成物層を光硬化させる露光工程を行う。照射部以外の感光性樹脂組成物層は、支持体フィルムがある場合、それを除去して次の現像工程により除去される。なお、レジストを形成する基板とは、プリント配線板、半導体パッケージ用基板、フレキシブル配線板を指す。 The method for forming a resist pattern when the curable resin composition of the present invention is used as a photosensitive resin composition or a photosensitive film is firstly applied to a known screen printing or roll coater, or protection, respectively. In the process of removing the film and attaching it by lamination or the like, the film is laminated on the substrate on which the resist is formed. Then, if necessary, a removal step of removing the support film from the photosensitive film described above is performed, or actinic rays are passed through the mask pattern without removing the support film to a predetermined portion of the photosensitive resin composition layer. Irradiation is performed to perform an exposure process for photocuring the photosensitive resin composition layer of the irradiated portion. If there is a support film, the photosensitive resin composition layer other than the irradiated part is removed by the next development step after removing the support film. In addition, the board | substrate which forms a resist points out a printed wiring board, a board | substrate for semiconductor packages, and a flexible wiring board.
 活性光線の光源としては、公知の光源、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射するものが用いられる。また、写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものも用いられる。更に直接描画方式のダイレクトレーザ露光を用いても良い。其々のレーザ光源、露光方式に対応する光重合開始剤(D)を用いることにより優れたパターンを形成することが可能となる。 As the active light source, a known light source such as a carbon arc lamp, a mercury vapor arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, or a xenon lamp is used. Moreover, what emits visible light effectively, such as a photographic flood light bulb and a solar lamp, is also used. Further, direct drawing direct laser exposure may be used. An excellent pattern can be formed by using a photopolymerization initiator (D) corresponding to each laser light source and exposure method.
 現像工程では、現像液として、例えば、20~50℃の炭酸ナトリウムの希薄溶液(1~5質量%水溶液)等のアルカリ現像液が用いられ、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法により現像する。 In the development step, an alkaline developer such as a dilute solution of sodium carbonate (1 to 5% by mass aqueous solution) at 20 to 50 ° C. is used as the developer, and known spraying, rocking immersion, brushing, scraping, etc. Develop by the method of.
 上記現像工程終了後、はんだ耐熱性、耐薬品性等を向上させる目的で、高圧水銀ランプによる紫外線照射や加熱を行うことが好ましい。紫外線を照射させる場合は必要に応じてその照射量を調整することができ、例えば0.2~10J/cm程度の照射量で照射を行うこともできる。また、レジストパターンを加熱する場合は、100~170℃程度の範囲で15~90分程行われることが好ましい。さらに紫外線照射と加熱とを同時に行うこともでき、いずれか一方を実施した後、他方を実施することもできる。紫外線の照射と加熱とを同時に行う場合、はんだ耐熱性、耐薬品性等を効果的に付与する観点から、60~150℃に加熱することがより好ましい。 After the development step, it is preferable to perform ultraviolet irradiation or heating with a high-pressure mercury lamp for the purpose of improving solder heat resistance, chemical resistance, and the like. In the case of irradiating with ultraviolet rays, the irradiation amount can be adjusted as necessary. For example, irradiation can be performed at an irradiation amount of about 0.2 to 10 J / cm 2 . In addition, when the resist pattern is heated, it is preferably performed in the range of about 100 to 170 ° C. for about 15 to 90 minutes. Furthermore, ultraviolet irradiation and heating can be performed at the same time, and after either one is performed, the other can be performed. When ultraviolet irradiation and heating are performed simultaneously, heating to 60 to 150 ° C. is more preferable from the viewpoint of effectively imparting solder heat resistance, chemical resistance, and the like.
 この感光性樹脂組成物層は、基板にはんだ付けを施した後の配線の保護膜を兼ね、優れた耐クラック性、HAST耐性、金めっき性を有するので、プリント配線板用、半導体パッケージ基板用、フレキシブル配線板用のソルダーレジストとして有用である。 This photosensitive resin composition layer also serves as a protective film for wiring after soldering to the substrate, and has excellent crack resistance, HAST resistance, and gold plating properties, so for printed wiring boards and semiconductor package substrates It is useful as a solder resist for flexible wiring boards.
 このようにしてレジストパターンを備えた基板は、その後、半導体素子などの実装(例えば、ワイヤーボンディング、はんだ接続)がなされ、そして、パソコン等の電子機器へ装着される。 The substrate provided with the resist pattern in this manner is then mounted with a semiconductor element or the like (for example, wire bonding, solder connection), and then mounted on an electronic device such as a personal computer.
 次に実施例を示して本発明をさらに詳細に説明する。例中特に断りの無い限り「部」、「%」は質量基準である。 Next, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “part” and “%” are based on mass in the examples.
実施例1
〔ポリアミドイミド樹脂(A1-1)の調製〕
 撹拌装置、温度計、コンデンサーを付けたフラスコにPGMAc(プロピレングリコールモノメチルエーテルアセテート)1102.8g、IPDI3N(イソホロンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート:NCO%=17.2)197.6g(0.27mol)及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物506.9g(2.56mol)を加え、140℃まで2時間掛けて昇温した。反応は、発泡とともに進行した。この温度で2時間反応させた。系内は淡黄色の液体となり、赤外スペクトルにて特性吸収を測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅したことが確認された。更に、IPDI3Nを197.6g(0.27mol)加え、反応を継続させた。赤外スペクトルにて特性吸収を測定し、イソシアネート基の特性吸収である2270cm-1が完全に消滅したことを確認した後、更にIPDI3Nを197.6g(0.27mol)加え、反応を継続させた。赤外スペクトルにて特性吸収を測定し、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、1780cm-1、1720cm-1にイミド基の吸収が確認された。酸価は、固形分換算で190KOHmg/gであった。この樹脂の溶液をイミド樹脂(A1-1)の溶液と略記する。
Example 1
[Preparation of polyamideimide resin (A1-1)]
In a flask equipped with a stirrer, a thermometer and a condenser, 1102.8 g of PGMAc (propylene glycol monomethyl ether acetate), IPDI3N (isocyanurate type triisocyanate synthesized from isophorone diisocyanate: NCO% = 17.2) 197.6 g (0 .27 mol) and 506.9 g (2.56 mol) of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride were added and heated to 140 ° C. over 2 hours. The reaction proceeded with foaming. The reaction was carried out at this temperature for 2 hours. The inside of the system became a pale yellow liquid, and the characteristic absorption was measured by infrared spectrum. As a result, it was confirmed that 2270 cm −1, which is the characteristic absorption of the isocyanate group, completely disappeared. Further, 197.6 g (0.27 mol) of IPDI3N was added and the reaction was continued. After measuring the characteristic absorption in the infrared spectrum and confirming that the characteristic absorption of the isocyanate group, 2270 cm −1 , completely disappeared, 197.6 g (0.27 mol) of IPDI3N was further added, and the reaction was continued. . The characteristic absorption was measured in the infrared spectrum, and the characteristic absorption of the isocyanate group, 2270 cm −1 , completely disappeared, and the absorption of the imide group was confirmed at 1780 cm −1 and 1720 cm −1 . The acid value was 190 KOHmg / g in terms of solid content. This resin solution is abbreviated as an imide resin (A1-1) solution.
〔アルコール変性ポリアミドイミド樹脂(A1-2)の製造〕
 続いて、得られたイミド樹脂(A1-1)の溶液にn-ブタノール99.8g(1.35mol)を加え、120℃にて2時間反応させた。赤外スペクトルにて特性吸収を測定した結果、酸無水物基の特性吸収である1860cm-1の吸収が完全に消失した。酸価は、固形分換算で、162KOHmg/gで、分子量はポリスチレン換算で数平均分子量1180、質量平均分子量2054、分散度は1.74であった。この樹脂の溶液をアルコール変性ポリアミドイミド樹脂(A1-2)と略記する。
[Production of alcohol-modified polyamideimide resin (A1-2)]
Subsequently, 99.8 g (1.35 mol) of n-butanol was added to the resulting solution of the imide resin (A1-1) and reacted at 120 ° C. for 2 hours. As a result of measuring the characteristic absorption in the infrared spectrum, the absorption at 1860 cm −1 , which is the characteristic absorption of the acid anhydride group, disappeared completely. The acid value was 162 KOH mg / g in terms of solid content, the molecular weight was number average molecular weight 1180, mass average molecular weight 2054 in terms of polystyrene, and the degree of dispersion was 1.74. This resin solution is abbreviated as alcohol-modified polyamideimide resin (A1-2).
実施例2
〔ポリアミドイミド樹脂(A2-1)の調製〕
 撹拌装置、温度計、コンデンサーを付けたフラスコにPGMAc(プロピレングリコールモノメチルエーテルアセテート)331.9g、IPDI3N(イソホロンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート:NCO%=17.2)35.1g(0.05mol)及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物150.3g(0.76mol)を加え、140℃まで2時間掛けて昇温した。反応は、発泡とともに進行した。この温度で2時間反応させた。系内は淡黄色の液体となり、赤外スペクトルにて特性吸収を測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅したことが確認された。更に、IPDI3Nを35.1g(0.05mol)加え、反応を継続させた。赤外スペクトルにて特性吸収を測定し、イソシアネート基の特性吸収である2270cm-1が完全に消滅したことを確認した後、更にIPDI3Nを35.1g(0.05mol)加え、反応を継続させた。赤外スペクトルにて特性吸収を測定し、イソシアネート基の特性吸収である2270cm-1が完全に消滅したことを確認した後、更にIPDI3Nを35.1g(0.05mol)加え、反応を継続させた。赤外スペクトルにて特性吸収を測定し、イソシアネート基の特性吸収である2270cm-1が完全に消滅したことを確認した後、更にIPDI3Nを35.1g(0.05mol)加え、反応を継続させた。赤外スペクトルで特性吸収を測定し、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、1780cm-1、1720cm-1にイミド基の吸収が確認された。酸価は、固形分換算で196KOHmg/gであった。この樹脂の溶液をイミド樹脂(A2-1)の溶液と略記する。
Example 2
[Preparation of polyamideimide resin (A2-1)]
In a flask equipped with a stirrer, a thermometer and a condenser, 331.9 g of PGMAc (propylene glycol monomethyl ether acetate) and 35.1 g of IPDI3N (isocyanurate type triisocyanate synthesized from isophorone diisocyanate: NCO% = 17.2) (0 0.05 mol) and 150.3 g (0.76 mol) of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride were added, and the temperature was raised to 140 ° C. over 2 hours. The reaction proceeded with foaming. The reaction was carried out at this temperature for 2 hours. The inside of the system became a pale yellow liquid, and the characteristic absorption was measured by infrared spectrum. As a result, it was confirmed that 2270 cm −1, which is the characteristic absorption of the isocyanate group, completely disappeared. Furthermore, 35.1 g (0.05 mol) of IPDI3N was added, and the reaction was continued. Characteristic absorption was measured in the infrared spectrum, and after confirming that 2270 cm −1, which is the characteristic absorption of the isocyanate group, was completely extinguished, 35.1 g (0.05 mol) of IPDI3N was further added to continue the reaction. . Characteristic absorption was measured in the infrared spectrum, and after confirming that 2270 cm −1, which is the characteristic absorption of the isocyanate group, was completely extinguished, 35.1 g (0.05 mol) of IPDI3N was further added to continue the reaction. . Characteristic absorption was measured in the infrared spectrum, and after confirming that 2270 cm −1, which is the characteristic absorption of the isocyanate group, was completely extinguished, 35.1 g (0.05 mol) of IPDI3N was further added to continue the reaction. . The characteristic absorption was measured by infrared spectrum, and the characteristic absorption of the isocyanate group, 2270 cm −1 , disappeared completely, and the absorption of the imide group was confirmed at 1780 cm −1 and 1720 cm −1 . The acid value was 196 KOH mg / g in terms of solid content. This resin solution is abbreviated as an imide resin (A2-1) solution.
〔アルコール変性ポリアミドイミド樹脂(A2-2)の製造〕
 続いて、得られたイミド樹脂(A2-1)の溶液にn-ブタノール29.4g(0.40mol)を加え、120℃にて2時間反応させた。赤外スペクトルにて特性吸収を測定した結果、酸無水物基の特性吸収である1860cm-1の吸収が完全に消失した。酸価は、固形分換算で、161KOHmg/gで、分子量はポリスチレン換算で数平均分子量990、質量平均分子量1822、分散度は1.84であった。この樹脂の溶液をアルコール変性ポリアミドイミド樹脂(A1-2)と略記する。
[Production of alcohol-modified polyamideimide resin (A2-2)]
Subsequently, 29.4 g (0.40 mol) of n-butanol was added to the resulting solution of the imide resin (A2-1) and reacted at 120 ° C. for 2 hours. As a result of measuring the characteristic absorption in the infrared spectrum, the absorption at 1860 cm −1 , which is the characteristic absorption of the acid anhydride group, disappeared completely. The acid value was 161 KOHmg / g in terms of solid content, the molecular weight was number average molecular weight 990, mass average molecular weight 1822 in terms of polystyrene, and the degree of dispersion was 1.84. This resin solution is abbreviated as alcohol-modified polyamideimide resin (A1-2).
実施例3
〔ポリアミドイミド樹脂(A3-1)の調製〕
 撹拌装置、温度計、コンデンサーを付けたフラスコにPGMAc(プロピレングリコールモノメチルエーテルアセテート)331.9g、IPDI3N(イソホロンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート:NCO%=17.2)87.8g(0.12mol)及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物150.3g(0.76mol)を加え、140℃まで2時間掛けて昇温した。反応は、発泡とともに進行した。この温度で2時間反応させた。系内は淡黄色の液体となり、赤外スペクトルにて特性吸収を測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅したことが確認された。更に、IPDI3Nを58.6g(0.08mol)加え、反応を継続させた。赤外スペクトルにて特性吸収を測定し、イソシアネート基の特性吸収である2270cm-1が完全に消滅したことを確認した後、更にIPDI3Nを29.3g(0.04mol)加え、反応を継続させた。赤外スペクトルにて特性吸収を測定し、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、1780cm-1、1720cm-1にイミド基の吸収が確認された。酸価は、固形分換算で185KOHmg/gであった。この樹脂の溶液をイミド樹脂(A3-1)の溶液と略記する。
Example 3
[Preparation of polyamideimide resin (A3-1)]
In a flask equipped with a stirrer, a thermometer, and a condenser, 331.9 g of PGMAc (propylene glycol monomethyl ether acetate), IPDI3N (isocyanurate type triisocyanate synthesized from isophorone diisocyanate: NCO% = 17.2) 87.8 g (0 .12 mol) and 150.3 g (0.76 mol) of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride were added, and the temperature was raised to 140 ° C. over 2 hours. The reaction proceeded with foaming. The reaction was carried out at this temperature for 2 hours. The inside of the system became a pale yellow liquid, and the characteristic absorption was measured by infrared spectrum. As a result, it was confirmed that 2270 cm −1, which is the characteristic absorption of the isocyanate group, completely disappeared. Further, 58.6 g (0.08 mol) of IPDI3N was added and the reaction was continued. After measuring the characteristic absorption in the infrared spectrum and confirming that the characteristic absorption of the isocyanate group, 2270 cm −1 , completely disappeared, 29.3 g (0.04 mol) of IPDI3N was further added to continue the reaction. . The characteristic absorption was measured in the infrared spectrum, and the characteristic absorption of the isocyanate group, 2270 cm −1 , completely disappeared, and the absorption of the imide group was confirmed at 1780 cm −1 and 1720 cm −1 . The acid value was 185 KOH mg / g in terms of solid content. This resin solution is abbreviated as an imide resin (A3-1) solution.
〔アルコール変性ポリアミドイミド樹脂(A3-2)の製造〕
 続いて、得られたイミド樹脂(A3-1)の溶液にn-ブタノール29.4g(0.40mol)を加え、120℃にて2時間反応させた。赤外スペクトルにて特性吸収を測定した結果、酸無水物基の特性吸収である1860cm-1の吸収が完全に消失した。酸価は、固形分換算で、157KOHmg/gで、分子量はポリスチレン換算で数平均分子量1007、質量平均分子量1762、分散度は1.75であった。この樹脂の溶液をアルコール変性ポリアミドイミド樹脂(A3-2)と略記する。
[Production of alcohol-modified polyamideimide resin (A3-2)]
Subsequently, 29.4 g (0.40 mol) of n-butanol was added to the resulting solution of the imide resin (A3-1) and reacted at 120 ° C. for 2 hours. As a result of measuring the characteristic absorption in the infrared spectrum, the absorption at 1860 cm −1 , which is the characteristic absorption of the acid anhydride group, disappeared completely. The acid value in terms of solid content was 157 KOH mg / g, the molecular weight in terms of polystyrene was a number average molecular weight of 1007, a mass average molecular weight of 1762, and the degree of dispersion was 1.75. This resin solution is abbreviated as alcohol-modified polyamideimide resin (A3-2).
実施例4
〔ポリアミドイミド樹脂(A4-1)の調製〕
 撹拌装置、温度計、コンデンサーを付けたフラスコにPGMAc(プロピレングリコールモノメチルエーテルアセテート)331.9g、IPDI3N(イソホロンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート:NCO%=17.2)29.3g(0.04mol)及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物150.3g(0.76mol)を加え、140℃まで2時間掛けて昇温した。反応は、発泡とともに進行した。この温度で2時間反応させた。系内は淡黄色の液体となり、赤外スペクトルにて特性吸収を測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅したことが確認された。更に、IPDI3Nを58.6g(0.08mol)加え、反応を継続させた。赤外スペクトルにて特性吸収を測定し、イソシアネート基の特性吸収である2270cm-1が完全に消滅したことを確認した後、更にIPDI3Nを87.8g(0.12mol)加え、反応を継続させた。赤外スペクトルにて特性吸収を測定し、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、1780cm-1、1720cm-1にイミド基の吸収が確認された。酸価は、固形分換算で190KOHmg/gであった。この樹脂の溶液をイミド樹脂(A4-1)の溶液と略記する。
Example 4
[Preparation of polyamideimide resin (A4-1)]
331.9 g of PGMAc (propylene glycol monomethyl ether acetate) and IPDI3N (isocyanurate type triisocyanate synthesized from isophorone diisocyanate: NCO% = 17.2) 29.3 g (0 0.04 mol) and 150.3 g (0.76 mol) of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride were added, and the temperature was raised to 140 ° C. over 2 hours. The reaction proceeded with foaming. The reaction was carried out at this temperature for 2 hours. The inside of the system became a pale yellow liquid, and the characteristic absorption was measured by infrared spectrum. As a result, it was confirmed that 2270 cm −1, which is the characteristic absorption of the isocyanate group, completely disappeared. Further, 58.6 g (0.08 mol) of IPDI3N was added and the reaction was continued. Measuring the characteristic absorption at the infrared spectrum, after 2270 cm -1 which is the characteristic absorption of an isocyanate group was confirmed that completely disappeared, was further IPDI3N the 87.8 g (0.12 mol) was added, and the reaction continued . The characteristic absorption was measured in the infrared spectrum, and the characteristic absorption of the isocyanate group, 2270 cm −1 , completely disappeared, and the absorption of the imide group was confirmed at 1780 cm −1 and 1720 cm −1 . The acid value was 190 KOHmg / g in terms of solid content. This resin solution is abbreviated as an imide resin (A4-1) solution.
〔アルコール変性ポリアミドイミド樹脂(A4-2)の製造〕
 続いて、得られたイミド樹脂(A4-1)の溶液にn-ブタノール29.4g(0.40mol)を加え、120℃にて2時間反応させた。赤外スペクトルにて特性吸収を測定した結果、酸無水物基の特性吸収である1860cm-1の吸収が完全に消失した。酸価は、固形分換算で、161KOHmg/gで、分子量はポリスチレン換算で数平均分子量1022、質量平均分子量1931、分散度は1.89であった。この樹脂の溶液をアルコール変性ポリアミドイミド樹脂(A4-2)と略記する。
[Production of alcohol-modified polyamideimide resin (A4-2)]
Subsequently, 29.4 g (0.40 mol) of n-butanol was added to the resulting solution of the imide resin (A4-1) and reacted at 120 ° C. for 2 hours. As a result of measuring the characteristic absorption in the infrared spectrum, the absorption at 1860 cm −1 , which is the characteristic absorption of the acid anhydride group, disappeared completely. The acid value in terms of solid content was 161 KOH mg / g, the molecular weight in terms of polystyrene was a number average molecular weight 1022, a mass average molecular weight 1931, and the degree of dispersion was 1.89. This resin solution is abbreviated as alcohol-modified polyamideimide resin (A4-2).
 比較例1〔ポリアミドイミド樹脂(A5-1)の調製〕
 撹拌装置、温度計、コンデンサーを付けたフラスコにPGMAc(プロピレングリコールモノメチルエーテルアセテート)276.4g、IPDI3N(イソホロンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート:NCO%=17.2)146.4g(0.20mol)及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物125.1g(0.63mol)を加え、140℃まで2時間掛けて昇温した。反応は、発泡とともに進行した。この温度で4時間反応させた。系内は淡黄色の液体となり、赤外スペクトルにて特性吸収を測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、1780cm-1、1720cm-1にイミド基の吸収が確認された。酸価は、固形分換算で212KOHmg/gであった。この樹脂の溶液をイミド樹脂(A5-1)の溶液と略記する。
Comparative Example 1 [Preparation of polyamideimide resin (A5-1)]
In a flask equipped with a stirrer, a thermometer and a condenser, 276.4 g of PGMAc (propylene glycol monomethyl ether acetate), IPDI3N (isocyanurate type triisocyanate synthesized from isophorone diisocyanate: NCO% = 17.2) 146.4 g (0 .20 mol) and 125.1 g (0.63 mol) of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride were added, and the temperature was raised to 140 ° C. over 2 hours. The reaction proceeded with foaming. The reaction was carried out at this temperature for 4 hours. As a result of measuring the characteristic absorption in the infrared spectrum, 2270 cm −1, which is the characteristic absorption of the isocyanate group, disappeared completely, and imide group absorption was observed at 1780 cm −1 and 1720 cm −1. confirmed. The acid value was 212 KOHmg / g in terms of solid content. This resin solution is abbreviated as an imide resin (A5-1) solution.
〔アルコール変性ポリアミドイミド樹脂(A5-2)の製造〕
 続いて、得られたイミド樹脂(A5-1)の溶液にn-ブタノール24.5g(0.33mol)を加え、120℃にて2時間反応させた。赤外スペクトルにて特性吸収を測定した結果、酸無水物基の特性吸収である1860cm-1の吸収が完全に消失した。酸価は、固形分換算で、162KOHmg/gで、分子量はポリスチレン換算で数平均分子量1289、質量平均分子量3152、分散度は2.45であった。この樹脂の溶液をアルコール変性ポリアミドイミド樹脂(A5-2)と略記する。
[Production of alcohol-modified polyamideimide resin (A5-2)]
Subsequently, 24.5 g (0.33 mol) of n-butanol was added to the resulting solution of the imide resin (A5-1) and reacted at 120 ° C. for 2 hours. As a result of measuring the characteristic absorption in the infrared spectrum, the absorption at 1860 cm −1 which is the characteristic absorption of the acid anhydride group completely disappeared. The acid value in terms of solid content was 162 KOH mg / g, the molecular weight in terms of polystyrene was a number average molecular weight 1289, a mass average molecular weight 3152, and the degree of dispersion was 2.45. This resin solution is abbreviated as alcohol-modified polyamideimide resin (A5-2).
 比較例2〔ポリアミドイミド樹脂(A6-1)の調製〕
 撹拌装置、温度計、コンデンサーを付けたフラスコにPGMAc(プロピレングリコールモノメチルエーテルアセテート)276.4g、IPDI3N(イソホロンジイソシアネートから合成されたイソシアヌレート型トリイソシアネート:NCO%=17.2)146.4g(0.20mol)及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物125.1g(0.63mol)を加え、140℃まで4時間掛けて昇温した。反応は、発泡とともに進行した。この温度で4時間反応させた。系内は淡黄色の液体となり、赤外スペクトルにて特性吸収を測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、1780cm-1 、1720cm-1にイミド基の吸収が確認された。酸価は、固形分換算で184KOHmg/gであった。この樹脂の溶液をイミド樹脂(A6-1)の溶液と略記する。
Comparative Example 2 [Preparation of polyamideimide resin (A6-1)]
In a flask equipped with a stirrer, a thermometer and a condenser, 276.4 g of PGMAc (propylene glycol monomethyl ether acetate), IPDI3N (isocyanurate type triisocyanate synthesized from isophorone diisocyanate: NCO% = 17.2) 146.4 g (0 .20 mol) and 125.1 g (0.63 mol) of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride were added, and the temperature was raised to 140 ° C. over 4 hours. The reaction proceeded with foaming. The reaction was carried out at this temperature for 4 hours. As a result of measuring the characteristic absorption in the infrared spectrum, 2270 cm −1, which is the characteristic absorption of the isocyanate group, disappeared completely, and imide group absorption was observed at 1780 cm −1 and 1720 cm −1. confirmed. The acid value was 184 KOH mg / g in terms of solid content. This resin solution is abbreviated as an imide resin (A6-1) solution.
〔アルコール変性ポリアミドイミド樹脂(A6-2)の製造〕
 続いて、得られたイミド樹脂(A6-1)の溶液にn-ブタノール24.5g(0.33mol)を加え、120℃にて2時間反応させた。赤外スペクトルにて特性吸収を測定した結果、酸無水物基の特性吸収である1860cm-1の吸収が完全に消失した。酸価は、固形分換算で、163KOHmg/gで、分子量はポリスチレン換算で数平均分子量1216、質量平均分子量2528、分散度は2.08であった。この樹脂の溶液をアルコール変性ポリアミドイミド樹脂(A6-2)と略記する。
[Production of alcohol-modified polyamideimide resin (A6-2)]
Subsequently, 24.5 g (0.33 mol) of n-butanol was added to the resulting solution of the imide resin (A6-1) and reacted at 120 ° C. for 2 hours. As a result of measuring the characteristic absorption in the infrared spectrum, the absorption at 1860 cm −1 which is the characteristic absorption of the acid anhydride group completely disappeared. The acid value was 163 KOH mg / g in terms of solid content, the molecular weight was number average molecular weight 1216, mass average molecular weight 2528, and dispersity was 2.08 in terms of polystyrene. This resin solution is abbreviated as alcohol-modified polyamideimide resin (A6-2).
(実施例1~4、比較例1~2)
 上記で得られたアルコール変性ポリアミドイミド樹脂を用いて、表1に記載した配合条件で、硬化性樹脂組成物1~6を製造した。
(Examples 1 to 4, Comparative Examples 1 and 2)
Using the alcohol-modified polyamideimide resin obtained above, curable resin compositions 1 to 6 were produced under the blending conditions shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
 第1表の脚注
EHPE3150:ダイセル化学工業株式会社製の環式脂肪族系エポキシ樹脂(2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物)。エポキシ当量は177。樹脂分の濃度は100質量%。
Figure JPOXMLDOC01-appb-T000009
Footnote EHPE3150 in Table 1: Cycloaliphatic epoxy resin manufactured by Daicel Chemical Industries, Ltd. (1,2-epoxy-4- (2-oxiranyl) cyclohexane of 2,2-bis (hydroxymethyl) -1-butanol Adduct). Epoxy equivalent is 177. The resin content is 100% by mass.
<貯蔵安定性の測定>
 160℃に加熱したホットプレート上で加熱し、当該硬化性樹脂組成物1~6の糸引きがなくなるまでの時間をそれぞれ測定した。得られた結果を表2に「160℃ゲルタイム」として示した。
<Measurement of storage stability>
Heating was performed on a hot plate heated to 160 ° C., and the time until stringing of the curable resin compositions 1 to 6 disappeared was measured. The obtained results are shown in Table 2 as “160 ° C. gel time”.
・現像性評価
 樹脂をガラス基板上に乾燥後に膜厚17μmになるように塗装を行った。塗装板を90℃の乾燥機で15分乾燥させて、塗膜を得た。次いで、塗装板を25℃の1%NaCO水溶液に浸漬し、塗膜が消失するまでの時間を測定した。表3に示した。
-Evaluation of developability The resin was coated on a glass substrate so as to have a film thickness of 17 μm after drying. The coated plate was dried with a dryer at 90 ° C. for 15 minutes to obtain a coating film. Next, the coated plate was immersed in a 1% Na 2 CO 3 aqueous solution at 25 ° C., and the time until the coating film disappeared was measured. It is shown in Table 3.
・PGMAcトレランス評価
 フラスコに樹脂を10g加えた後、25℃のPGMAcを加えていき、濁りが確認されたところを希釈限界とした。表3に示した。
-PGMac tolerance evaluation After adding 10g of resin to a flask, 25 degreeC PGMac was added and the place where turbidity was confirmed was made into the dilution limit. It is shown in Table 3.
・分散度(分子量分布)
 ポリスチレン換算の数平均分子量と質量平均分子量の比から算出した。表3に示した。
・ Dispersity (molecular weight distribution)
It was calculated from the ratio of the number average molecular weight and the mass average molecular weight in terms of polystyrene. It is shown in Table 3.
Figure JPOXMLDOC01-appb-T000010
表中、「’」は分を、「”」は秒を表す。
Figure JPOXMLDOC01-appb-T000010
In the table, “'” represents minutes and “” ”represents seconds.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Claims (12)

  1.  トリカルボン酸無水物(a1)と、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)とを反応させることによりポリアミドイミド樹脂(A1)を生成する工程(1)、
     工程(1)で得られたポリアミドイミド樹脂(A1)に、さらにアルコール化合物(a3)を反応させることによりアルコール変性ポリアミドイミド樹脂(A2)を生成する工程(2)、を有するアルコール変性ポリアミドイミド樹脂の製造方法であって、
     前記工程(1)は、トリカルボン酸無水物(a1)に対して、前記イソシアヌレート型ポリイソシアネート(a2)を少なくとも2回に分けて加えることにより、前記イソシアヌレート型ポリイソシアネート(a2)とトリカルボン酸無水物(a1)とを反応させた後、得られた反応物に、さらに前記イソシアヌレート型ポリイソシアネート(a2)を反応させる工程(1a)を含むことを特徴とするアルコール変性ポリアミドイミド樹脂の製造方法。
    A step (1) of producing a polyamideimide resin (A1) by reacting a tricarboxylic acid anhydride (a1) with an isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure;
    Alcohol-modified polyamideimide resin comprising the step (2) of further producing an alcohol-modified polyamideimide resin (A2) by reacting the polyamideimide resin (A1) obtained in the step (1) with an alcohol compound (a3). A manufacturing method of
    In the step (1), the isocyanurate type polyisocyanate (a2) and the tricarboxylic acid are added to the tricarboxylic acid anhydride (a1) by adding the isocyanurate type polyisocyanate (a2) at least twice. Production of an alcohol-modified polyamideimide resin characterized by comprising a step (1a) of reacting the isocyanurate type polyisocyanate (a2) with the obtained reactant after reacting with the anhydride (a1) Method.
  2.  前記工程(1a)は、前記イソシアヌレート型ポリイソシアネート(a2)のイソシアネート基のモル数に対して、トリカルボン酸無水物(a1)のカルボキシ基のモル数及び酸無水物基モル数の合計が過剰量となる割合で、トリカルボン酸無水物(a1)と、前記イソシアヌレート型ポリイソシアネート(a2)とを反応させた後、得られた反応物に、さらに前記イソシアヌレート型ポリイソシアネート(a2)を反応させる工程である、請求項1記載のアルコール変性ポリアミドイミド樹脂の製造方法。 In the step (1a), the sum of the number of moles of carboxy groups and the number of moles of acid anhydride groups of the tricarboxylic acid anhydride (a1) is excessive with respect to the number of moles of isocyanate groups of the isocyanurate type polyisocyanate (a2). After reacting the tricarboxylic acid anhydride (a1) with the isocyanurate type polyisocyanate (a2) in a proportion to be an amount, the reaction product obtained is further reacted with the isocyanurate type polyisocyanate (a2). The method for producing an alcohol-modified polyamideimide resin according to claim 1, wherein the method is a step of causing the reaction to occur.
  3.  前記工程(1a)は、トリカルボン酸無水物(a1)と前記イソシアヌレート型ポリイソシアネート(a2)とを反応させ、赤外吸収スペクトル測定においてイソシアネート基の特性吸収である2270cm-1が消滅するまで反応を進行させた後に、得られた反応物に、さらに前記イソシアヌレート型ポリイソシアネート(a2)を反応させる工程である請求項1又は2記載のアルコール変性ポリアミドイミド樹脂の製造方法。 In the step (1a), the tricarboxylic acid anhydride (a1) and the isocyanurate type polyisocyanate (a2) are reacted, and the reaction is continued until 2270 cm −1, which is the characteristic absorption of the isocyanate group in the infrared absorption spectrum measurement, disappears. The method for producing an alcohol-modified polyamideimide resin according to claim 1, wherein the isocyanurate-type polyisocyanate (a2) is further reacted with the obtained reaction product after proceeding.
  4.  前記イソシアヌレート型ポリイソシアネート(a2)のイソシアネート基の合計のモル数(N)に対する、トリカルボン酸無水物(a1)のカルボキシ基のモル数(M1)及び酸無水物基モル数(M2)の合計のモル数の比〔(M1)+(M2))/(N)〕が1.1~3である請求項1~3の何れか一項記載のアルコール変性ポリアミドイミド樹脂の製造方法。 Sum of the number of moles of carboxy groups (M1) and the number of moles of acid anhydride groups (M2) of the tricarboxylic acid anhydride (a1) with respect to the total number of moles (N) of isocyanate groups of the isocyanurate type polyisocyanate (a2). The method for producing an alcohol-modified polyamideimide resin according to any one of claims 1 to 3, wherein the molar ratio [(M1) + (M2)) / (N)] is 1.1 to 3.
  5.  前記工程(2)において、赤外吸収スペクトル測定においてイソシアネート基の特性吸収である2270cm-1が消滅したポリアミドイミド樹脂(A1)に対して、アルコール化合物(a3)を反応させる、請求項1~4の何れか一項記載のアルコール変性ポリアミドイミド樹脂の製造方法。 In the step (2), the alcohol compound (a3) is reacted with the polyamideimide resin (A1) from which 2270 cm −1, which is the characteristic absorption of the isocyanate group in infrared absorption spectrum measurement, has disappeared. A method for producing an alcohol-modified polyamideimide resin according to any one of the above.
  6.  前記工程(2)において、前記ポリアミドイミド樹脂(A1)とアルコール化合物(a3)との反応は、該ポリアミドイミド樹脂(A1)中の酸無水物基モル数(M3)と、アルコール化合物(a3)の水酸基のモル数(L)との比が、M3/L=1~5の範囲である請求項1~5の何れか一項記載のアルコール変性ポリアミドイミド樹脂の製造方法。 In the step (2), the reaction between the polyamideimide resin (A1) and the alcohol compound (a3) is performed by reacting the number of moles of acid anhydride groups (M3) in the polyamideimide resin (A1) with the alcohol compound (a3). The method for producing an alcohol-modified polyamideimide resin according to any one of claims 1 to 5, wherein the ratio of the number of moles to the number of moles (L) of hydroxyl groups is in the range of M3 / L = 1 to 5.
  7.  トリカルボン酸無水物(a1)と、脂肪族構造を有するイソシアネートから合成されたイソシアヌレート型ポリイソシアネート(a2)とがアミドまたはイミドを形成して結合しているポリアミドイミド樹脂(A1)の酸無水物基に、アルコール化合物(a3)がエステル結合を形成して結合しているアルコール変性ポリアミドイミドを含み、分子量分布が2.0以下の範囲であることを特徴とするアルコール変性ポリアミドイミド樹脂。 Acid anhydride of polyamideimide resin (A1) in which tricarboxylic acid anhydride (a1) and isocyanurate type polyisocyanate (a2) synthesized from an isocyanate having an aliphatic structure are bonded together by forming an amide or imide An alcohol-modified polyamideimide resin comprising an alcohol-modified polyamideimide in which an alcohol compound (a3) forms an ester bond, and has a molecular weight distribution of 2.0 or less.
  8.  数平均分子量が800~20000の範囲であり、質量平均分子量が1600~40000の範囲である請求項7記載のアルコール変性ポリアミドイミド樹脂。 The alcohol-modified polyamideimide resin according to claim 7, wherein the number average molecular weight is in the range of 800 to 20,000 and the mass average molecular weight is in the range of 1600 to 40,000.
  9.  酸価が70~210KOHmg/gである請求項8記載のアルコール変性ポリアミドイミド樹脂。 The alcohol-modified polyamideimide resin according to claim 8, which has an acid value of 70 to 210 KOHmg / g.
  10.  請求項7~9のいずれか1項記載のアルコール変性ポリアミドイミド樹脂(A2)と、硬化性樹脂(B)及び/又は有機溶剤(C)とを含有することを特徴とする硬化性樹脂組成物。 A curable resin composition comprising the alcohol-modified polyamideimide resin (A2) according to any one of claims 7 to 9, and a curable resin (B) and / or an organic solvent (C). .
  11.  さらに、光重合開始剤(D)を含有する請求項10項記載の硬化性樹脂組成物。 Furthermore, the curable resin composition of Claim 10 containing a photoinitiator (D).
  12.  請求項10または11記載の硬化性樹脂組成物を硬化させてなることを特徴とする硬化物。 A cured product obtained by curing the curable resin composition according to claim 10 or 11.
PCT/JP2017/022653 2016-06-21 2017-06-20 Alcohol-modified polyamide-imide resin and process for producing same WO2017221922A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018521670A JP6432814B2 (en) 2016-06-21 2017-06-20 Alcohol-modified polyamideimide resin and method for producing the same
KR1020187035118A KR102351942B1 (en) 2016-06-21 2017-06-20 Alcohol-modified polyamideimide resin and manufacturing method thereof
CN201780039072.9A CN109312045B (en) 2016-06-21 2017-06-20 Alcohol-modified polyamideimide resin and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016122621 2016-06-21
JP2016-122621 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017221922A1 true WO2017221922A1 (en) 2017-12-28

Family

ID=60783338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022653 WO2017221922A1 (en) 2016-06-21 2017-06-20 Alcohol-modified polyamide-imide resin and process for producing same

Country Status (5)

Country Link
JP (2) JP6432814B2 (en)
KR (1) KR102351942B1 (en)
CN (1) CN109312045B (en)
TW (1) TWI745383B (en)
WO (1) WO2017221922A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189757A (en) * 2018-04-25 2019-10-31 Dic株式会社 Alcohol modified polyamideimide resin, curable resin composition, and cured article thereof
WO2021045085A1 (en) * 2019-09-06 2021-03-11 太陽インキ製造株式会社 Curable resin composition, dry film and cured product of same, and electronic component containing said cured product
WO2021044984A1 (en) * 2019-09-06 2021-03-11 太陽インキ製造株式会社 Curable resin composition, dry film and cured article comprising same, and electronic component equipped with said cured article
JP7443000B2 (en) 2019-09-06 2024-03-05 太陽ホールディングス株式会社 Curable resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7310253B2 (en) 2019-04-19 2023-07-19 Dic株式会社 Amideimide resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123617A (en) * 1979-03-14 1980-09-24 Hitachi Chem Co Ltd Polyamide-imide resin composition soluble in cresol-type solvent
JPS55123649A (en) * 1979-03-14 1980-09-24 Hitachi Chem Co Ltd Polyamide-imide resin composition
JPS5964633A (en) * 1982-10-05 1984-04-12 Hitachi Chem Co Ltd Production of heat-resistant resin
JPS6036521A (en) * 1983-08-10 1985-02-25 Hitachi Chem Co Ltd Manufacture of granular polymer
JPH08193181A (en) * 1994-09-09 1996-07-30 Re Hart Labs Inc Water-based solvent-free or low volatile organic compound content two-pack poly-urethane coating material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124428A (en) * 1991-05-31 1992-06-23 Amoco Corporation Amide-imide resin for production of heat-resistant fiber
JPH05140309A (en) * 1991-11-25 1993-06-08 Mitsui Toatsu Chem Inc Polyamideimide resin and its production
JP4061531B2 (en) * 2001-06-28 2008-03-19 大日本インキ化学工業株式会社 Active energy ray-curable polyimide resin composition
JPWO2010107045A1 (en) 2009-03-18 2012-09-20 Dic株式会社 Polyimide resin, curable resin composition and cured product thereof
JP2011236384A (en) * 2010-05-13 2011-11-24 Hitachi Chem Co Ltd Heat-resistant resin composition, coating material, and enameled wire using the same
CN105408394B (en) * 2013-07-18 2017-09-22 Dic株式会社 Polyamide-imide resin, hardening resin composition and its solidfied material
CN103450832B (en) * 2013-08-14 2015-08-05 广西南宁绿园北林木业有限公司 Modified urea-formaldehyde resin glue sticks agent and production method thereof
RU2673084C2 (en) 2013-11-08 2018-11-22 Киссеи Фармасьютикал Ко., Лтд. Carboxymethyl piperidine derivative
JP2015155500A (en) * 2014-02-20 2015-08-27 Dic株式会社 Curable amide-imide resin and method for producing amide-imide resin
CN105295047B (en) * 2015-11-30 2017-12-22 苏州太湖电工新材料股份有限公司 A kind of preparation method of polyimides high polymer
JP6922162B2 (en) * 2016-06-21 2021-08-18 Dic株式会社 Polyamide-imide resin and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123617A (en) * 1979-03-14 1980-09-24 Hitachi Chem Co Ltd Polyamide-imide resin composition soluble in cresol-type solvent
JPS55123649A (en) * 1979-03-14 1980-09-24 Hitachi Chem Co Ltd Polyamide-imide resin composition
JPS5964633A (en) * 1982-10-05 1984-04-12 Hitachi Chem Co Ltd Production of heat-resistant resin
JPS6036521A (en) * 1983-08-10 1985-02-25 Hitachi Chem Co Ltd Manufacture of granular polymer
JPH08193181A (en) * 1994-09-09 1996-07-30 Re Hart Labs Inc Water-based solvent-free or low volatile organic compound content two-pack poly-urethane coating material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189757A (en) * 2018-04-25 2019-10-31 Dic株式会社 Alcohol modified polyamideimide resin, curable resin composition, and cured article thereof
WO2021045085A1 (en) * 2019-09-06 2021-03-11 太陽インキ製造株式会社 Curable resin composition, dry film and cured product of same, and electronic component containing said cured product
WO2021044984A1 (en) * 2019-09-06 2021-03-11 太陽インキ製造株式会社 Curable resin composition, dry film and cured article comprising same, and electronic component equipped with said cured article
JP7443000B2 (en) 2019-09-06 2024-03-05 太陽ホールディングス株式会社 Curable resin composition

Also Published As

Publication number Publication date
JPWO2017221922A1 (en) 2018-07-26
JP6432814B2 (en) 2018-12-05
CN109312045A (en) 2019-02-05
TW201811872A (en) 2018-04-01
KR20190020295A (en) 2019-02-28
TWI745383B (en) 2021-11-11
JP2018197359A (en) 2018-12-13
JP6886596B2 (en) 2021-06-16
CN109312045B (en) 2021-08-24
KR102351942B1 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
JP5839149B2 (en) Polyamideimide resin, curable resin composition and cured product thereof
JP6432814B2 (en) Alcohol-modified polyamideimide resin and method for producing the same
JP6922162B2 (en) Polyamide-imide resin and its manufacturing method
KR101252731B1 (en) Epoxy Resin and Epoxy Resin Composition
JP6240069B2 (en) Epoxy resin composition, cured product thereof, and curable resin composition
WO2008053985A1 (en) Photosensitive resin composition, cured product thereof, and method for producing photosensitive resin
TWI734251B (en) Manufactuaring method of film and printed wiring board
WO2011083554A1 (en) Polyamide or polyimide resin compositions that contain phosphine oxide, and cured products thereof
JP2019189757A (en) Alcohol modified polyamideimide resin, curable resin composition, and cured article thereof
JP2002148799A (en) Resist composition with excellent flame resistance
JP7277126B2 (en) A phenoxy resin, a resin composition thereof, a cured product thereof, and a method for producing the same.
JP5087638B2 (en) Flame-retardant photosensitive resin composition and circuit board using the same
WO2015119188A1 (en) Epoxy resin, curable resin composition, and cured product thereof
KR20140115988A (en) Epoxy acrylate resins, acid anhydride adduct of epoxy acrylate resins, curable resin composition, alkali-developable photosensitive resin composition and cured object each containing
JP2007204604A (en) Liquid epoxy resin, epoxy resin composition and cured product
US20220325047A1 (en) Curable resin composition, dry film and cured product of same, and electronic component containing said cured product
KR20220144318A (en) Novel reactive epoxy carboxylate compound, derivative thereof, photosensitive resin composition containing them, and cured product thereof
TW202104334A (en) Resin composition, semiconductor sealing material, prepreg, circuit board, build-up film, solder resist, dry film, and printed wiring board
JP2020052362A (en) Production method of cured product, photosensitive resin composition used for the same, dry film, cured product and electronic component
KR20160044937A (en) Multifunctional compound, photo-curable and thermo-curable resin composition and dry film solder resist

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018521670

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035118

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815390

Country of ref document: EP

Kind code of ref document: A1