WO2015119188A1 - Epoxy resin, curable resin composition, and cured product thereof - Google Patents
Epoxy resin, curable resin composition, and cured product thereof Download PDFInfo
- Publication number
- WO2015119188A1 WO2015119188A1 PCT/JP2015/053214 JP2015053214W WO2015119188A1 WO 2015119188 A1 WO2015119188 A1 WO 2015119188A1 JP 2015053214 W JP2015053214 W JP 2015053214W WO 2015119188 A1 WO2015119188 A1 WO 2015119188A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- resin composition
- curable resin
- epoxy
- area
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
- C08G59/06—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/12—Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
- C07D303/18—Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
- C07D303/20—Ethers with hydroxy compounds containing no oxirane rings
- C07D303/24—Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
- C07D303/27—Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having all hydroxyl radicals etherified with oxirane containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
- C08G59/06—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
- C08G59/063—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
- C08G59/06—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
- C08G59/08—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
- C08G59/3218—Carbocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/44—Amides
- C08G59/46—Amides together with other curing agents
- C08G59/48—Amides together with other curing agents with polycarboxylic acids, or with anhydrides, halides or low-molecular-weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
Definitions
- the present invention relates to an epoxy resin, a curable resin composition, and a cured product thereof, which gives a cured product suitable for use in electrical and electronic materials, particularly heat resistance and thermal decomposition.
- Curable resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It is used.
- Non-Patent Document 1 Required characteristics such as heat resistance and high fluidity are required.
- Non-patent Document 2 a resin having a high Tg and a low linear expansion coefficient is required.
- heat resistance is one of the characteristics that is particularly important.
- heat resistance has been regarded as important, but if heat resistance is generally cited, other characteristics will deteriorate, so even if heat resistance does not meet the market requirements, other characteristics will be prioritized and balanced.
- applications that require heat resistance are expanding due to an increase in the amount of current accompanying an increase in the amount of information handled by electronic materials and the severe environment used.
- the power device is required to have heat resistance of peripheral materials in applications where high temperature driving such as SiC is possible.
- One of the characteristics that have a trade-off relationship with heat resistance is the characteristic of thermal stability (herein, heat resistance generally refers to the glass transition point (Tg)).
- the heat resistance of the epoxy resin a technique of increasing the crosslinking density by increasing the concentration of the epoxy group (decreasing the epoxy equivalent) is employed.
- the cured product using this highly heat-resistant epoxy resin has a large number of epoxy groups in the molecule, so that it is an aliphatic chain that is easily decomposed when exposed to high temperatures. Since the derived structure tends to be larger than usual, the thermal stability tends to decrease in spite of the improvement in characteristics in heat resistance.
- An object of the present invention is to provide a highly heat-resistant epoxy resin, a curable resin composition and a cured product thereof having high heat resistance and excellent thermal stability.
- high color resistance is required because of the requirement to use the power more effectively by transmitting or reflecting the light. ing.
- the emission intensity is high
- the heat on the chip becomes very high, and thus a resin having heat resistance that can withstand the heat is required.
- the cause of coloring is decomposition / deterioration due to heat or the like, and high heat resistance and thermal stability are also demanded in optical applications as in the above.
- the present invention relates to the following [1] to [8].
- [1] An epoxy resin represented by the following formula (1) Of the total area of the chart measured by gel permeation chromatography, triglycidyl ether forms 40 to 75 area%, tetraglycidyl ether forms 12 to 40 area%, and triglycidyl ether and tetraglycidyl ether forms. Is a total of 52 to 90 area%, An epoxy resin in which the tetraglycidyl ether has a structure represented by the following formula (2).
- G represents a glycidyl group
- m and n represent an average number of repetitions, and represent a number of 0 to 5) .
- the softening point is 45 to 65 ° C., and the epoxy equivalent is 165 to 180 g / eq.
- [4] [2] or [3] obtained by reacting the compound of the formula (3) with epihalohydrin and then treating with toluene or an aqueous metal hydroxide solution as a solution of a ketone compound having 4 to 7 carbon atoms.
- Epoxy resin. [5] [1] A curable resin composition comprising the epoxy resin according to any one of [4] and a curing agent. [6] The curable resin composition according to [5], wherein the curing agent is a resin having a phenol resin structure.
- the curable resin composition of the present invention containing the epoxy resin of the present invention can provide a cured product excellent in heat resistance, thermal stability and coloration resistance. Further, due to the characteristics, the cured product of the present invention can be applied to optical members that require high optical characteristics.
- the epoxy resin of the present invention has a structure represented by the following formula (1).
- G represents a glycidyl group
- m and n represent an average number of repetitions, and represent a number of 0 to 5) .
- the epoxy resin of the present invention is an epoxy resin based on a trisphenol skeleton having a relatively wide molecular weight distribution, and has a structure (1, 3) based on a low molecule having a trisphenol skeleton and an epihalohydrin based on the trisphenol skeleton.
- the triglycidyl ether form accounts for 40 to 75 area%
- the tetraglycidyl ether form accounts for 12 to 40 area%
- the tetraglycidyl ether can be represented by the formula (2).
- the higher molecular weight body is one in which one of the glycidyl ether moieties is ring-opened and linked by the structure of the formula (4), as in the formula (2). Due to such bonding, the epoxy resin of the present invention has a wide molecular weight distribution.
- each amount in the epoxy resin is 40 to 75 area%, more preferably 45 to 75 area%, still more preferably 50 to 70 area% for the triglycidyl ether body, while 12 to 40 area for the tetraglycidyl ether body. %, More preferably 15 to 35 area%, still more preferably 15 to 30 area%.
- the higher molecular weight is preferably 2 to 20 area%, more preferably 5 to 20 area%.
- the total of the triglycidyl ether and tetraglycidyl ether is 52 to 90 area%, preferably 60 to 87 area%, particularly preferably 65 to 82 area%.
- a suitable ratio of the area% of the tetraglycidyl ether body to the triglycidyl body is 1.1 to 3.7, more preferably 1.1 to 3.7, with respect to the tetraglycidyl ether body 1. 3.5, particularly preferably 1.5 to 3.2.
- the epoxy equivalent of such an epoxy resin is preferably 165 to 190 g / eq. More preferably, 165 to 185 g / eq. More preferably, 165 g / eq. ⁇ 180 g / eq. It is. Epoxy equivalent was 165 g / eq. If it is less than 1, the heat resistance may be insufficient, and if it exceeds 190 g / eq, there may be a problem in workability.
- the softening point is preferably 45 to 70 ° C, more preferably 45 to 65 ° C, particularly preferably 45 to 60 ° C.
- the epoxy equivalent and the softening point are preferable because they tend to be effective for the heat resistance of the epoxy resin and the handling characteristics when the composition is used.
- the sum of m and n is preferably 0.01 to 1.0.
- total chlorine is important because of its electrical characteristics.
- the total amount of chlorine is preferably 1500 ppm or less, more preferably 1000 ppm or less, and particularly preferably 900 ppm or less. Further, from the halogen-free judgment value in the JPCA standard, it is preferable that all raw materials to be used have a halogen amount of 900 ppm or less, and in the present invention, 900 ppm or less is particularly preferable.
- the epoxy resin of the present invention is obtained by reacting a trisphenol compound represented by the following formula (3) with epihalohydrin.
- the trisphenol compound represented by the formula (3) is in the form of white crystals and does not undergo much discoloration due to oxidation, but may be slightly colored by long-term storage.
- the purity of the trisphenol compound to be used is preferably 96% or more, more preferably 98% or more, and particularly preferably 99% or more.
- a specific example of the method for producing an epoxy resin of the present invention is obtained by a condensation reaction of parahydroxyacetophenone and phenol. By-products generated during the reaction are preferably removed and purified by recrystallization or the like.
- the epihalohydrin is preferably epichlorohydrin which is easily available industrially.
- the amount of epihalohydrin used is usually 1.5 to 4.0 mol, preferably 2.0 to 3.5 mol, more preferably 2.0 to 2.9 mol, per mol of hydroxyl group in the starting phenol mixture.
- the amount is less than 1.5 mol, there is a risk of gelation during the reaction, which may make the production difficult.
- operativity of the epoxy resin obtained becomes high, it is unpreferable.
- it exceeds 4.0 moles the molecular weight distribution may not fall within the desired range, and the intended characteristics may not be obtained.
- alkyl glycidyl ether is preferably an alkyl glycidyl ether having 1 to 5 carbon atoms such as methyl glycidyl ether, ethyl glycidyl ether, or propyl glycidyl ether.
- alkali metal hydroxide examples include sodium hydroxide, potassium hydroxide and the like, and a solid substance may be used, or an aqueous solution thereof may be used. From the viewpoint of solubility and handling, it is preferable to use a solid material molded into a flake shape.
- the amount of the alkali metal hydroxide used is usually 0.90 to 1.5 mol, preferably 0.95 to 1.25 mol, more preferably 0.99 to 1 mol per mol of hydroxyl group in the raw material phenol mixture. .15 moles.
- quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide or trimethylbenzylammonium chloride may be added as a catalyst.
- the amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, per 1 mol of hydroxyl group in the raw material phenol mixture.
- a nonpolar proton solvent such as dimethyl sulfoxide, dioxane, dimethylimidazolidinone
- an alcohol having 1 to 5 carbon atoms examples include alcohols such as methanol, ethanol and isopropyl alcohol.
- the use of alcohols having 1 to 5 carbon atoms is particularly preferred from the viewpoint of color, and alcohols having a smaller carbon number are preferred from the viewpoint of solubility of alkali metal hydroxides, and methanol is particularly preferred.
- the amount of the nonpolar protic solvent or alcohol having 1 to 5 carbon atoms is usually 2 to 50% by weight, preferably 4 to 25% by weight, based on the amount of epihalohydrin used.
- epoxidation may be performed while controlling the moisture in the system by a technique such as azeotropic dehydration.
- the reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C. In particular, in the present invention, 60 ° C. or higher is preferable for higher-purity epoxidation, and reaction under conditions close to reflux conditions is particularly preferable.
- the reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours, particularly preferably 1 to 3 hours. If the reaction time is short, the reaction may not proceed, and on the other hand, if the reaction time is long, a by-product may be formed.
- the recovered epoxy resin may be toluene or a ketone compound having 4 to 7 carbon atoms (for example, methyl isobutyl ketone, methyl ethyl ketone, cyclopentanone, cyclohexanone, etc.).
- an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to carry out the reaction to ensure ring closure.
- the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, relative to 1 mol of the hydroxyl group of the starting phenol mixture used for epoxidation.
- the reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
- an inert gas such as nitrogen into the air or liquid. If no inert gas is blown, the resulting resin may be colored.
- the reaction is preferably carried out at an oxygen concentration of 6% or less, particularly preferably 5% or less, and the amount of inert gas blown in varies depending on the volume of the kettle.
- the produced salt is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin of the present invention.
- the epoxy resin obtained in this way is a resin that is extremely excellent in heat resistance, transparency, and heat resistance colorability.
- the obtained epoxy resin usually has a softening point of 45 to 65 ° C. and satisfies the above-mentioned characteristics.
- the obtained epoxy resin can be used as various resin raw materials.
- epoxy acrylate and its derivatives, oxazolidone compounds, cyclic carbonate compounds and the like can be mentioned.
- the curable resin composition of the present invention contains the epoxy resin of the present invention as an essential component.
- two methods of heat curing with a curing agent (curable resin composition A) and cationic curing with an acid as a curing catalyst (curable resin composition B) can be applied.
- the epoxy resin of the present invention can be used alone or in combination with other epoxy resins.
- the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 30% by weight or more, particularly preferably 40% by weight or more.
- the epoxy resin of the present invention is used as a modifier of the curable resin composition, it is added in a proportion of 1 to 30% by weight.
- bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetate Enone, o-hydroxyace
- each curable resin composition will be referred to. 1.
- Thermal curing with a curing agent (curable resin composition A)
- the curing agent contained in the curable resin composition A of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds.
- the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, Bicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, cyclohex
- the amount of the curing agent used is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy group of the epoxy resin.
- curing may be incomplete and good cured properties may not be obtained.
- a curing accelerator (curing catalyst) may be used in combination with the curing agent.
- curing accelerators include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza- And tertiary amines such as bicyclo [5.4.0] undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate.
- a curing accelerator 0.1 to 5.0 parts by weight is used as necessary with respect to 100 parts by weight of the epoxy resin.
- imidazoles and amine compounds they can also be used as a curing agent for anionic polymerization.
- the total amount of the curing agent is 0.1 to 100 parts by weight with respect to 100 parts by weight of the epoxy resin. It can be cured using 5.0 parts by weight.
- the curable resin composition A of the present invention may contain a phosphorus-containing compound as a flame retardant imparting component.
- the phosphorus-containing compound may be a reactive type or an additive type.
- Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa
- Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
- the curable resin composition A of the present invention can be blended with a binder resin as necessary.
- the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins.
- the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 0.05 to 20 parts per 100 parts by weight of the resin component. Part by weight is used as needed.
- An inorganic filler can be added to the curable resin composition A of the present invention as necessary.
- inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
- the present invention is not limited to these. These may be used alone or in combination of two or more.
- the content of these inorganic fillers is used in an amount of 0 to 95% by weight in the curable resin composition of the present invention.
- a silane coupling agent a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, various compounding agents such as pigments, and various thermosetting resins are added to the curable resin composition of the present invention. can do.
- the curable resin composition of the present invention can be obtained by uniformly mixing each component.
- the curable resin composition A of the present invention can be easily made into a cured product by a method similar to a conventionally known method.
- the epoxy resin of the present invention, a curing agent and, if necessary, a curing catalyst, a phosphorus-containing compound, a binder resin, an inorganic filler and a compounding agent are uniformly used using an extruder, a kneader, a roll or the like as necessary.
- Mix thoroughly until it is obtained to obtain a curable resin composition melt the curable resin composition, mold using a casting or transfer molding machine, and then heat at 80 to 200 ° C. for 2 to 10 hours.
- the cured product of the present invention can be obtained.
- the curable resin composition A of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the curable resin composition varnish is obtained.
- a cured product of the curable resin composition of the present invention by hot press molding a prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating. It can be.
- the solvent is used in an amount usually accounting for 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent.
- cured material which contains a carbon fiber by a RTM system with a liquid composition can also be obtained.
- the curable resin composition A of the present invention can also be used as a film type composition modifier. Specifically, it can be used to improve the flexibility of the B-stage.
- the curable resin composition of the present invention is applied to the release film by applying the varnish, removing the solvent under heating, and performing a B-stage adhesion. Get the agent.
- This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
- thermosetting resin such as an epoxy resin
- adhesives for example, adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (printed boards,
- a cyanate resin composition for the substrate for example, a cyanate resin composition for the substrate, and an additive to other resins such as an acrylate-based resin as the curing agent for the resist may be used.
- adhesives examples include civil engineering, architectural, automotive, general office, and medical adhesives, as well as electronic material adhesives.
- adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
- sealing agents potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip
- underfill for sealing, etc., and sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
- curable resin composition B When the curable resin composition of the present invention is cured with an acidic curing catalyst, it contains a photopolymerization initiator or a thermal polymerization initiator. Furthermore, you may contain various well-known compounds, materials, such as a diluent, a polymerizable monomer, a polymerizable oligomer, a polymerization start adjuvant, a photosensitizer. Moreover, you may contain various well-known additives, such as an inorganic filler, a color pigment, a ultraviolet absorber, antioxidant, a stabilizer, as needed.
- cationic polymerization is preferable, and photocationic polymerization is particularly preferable.
- cationic catalysts include onium salts such as iodonium salts, sulfonium salts, and diazonium salts, and these can be used alone or in combination of two or more.
- the amount of the cationic polymerization initiator used is preferably 0.01 to 50 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin.
- polymerization initiators include, for example, benzoin, benzyl, benzoin methyl ether, benzoin isopropyl ether, acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinolpropan-1-one, N, N-dimethylaminoacetophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1- Chloroanthraquinone, 2-amylanthraquinone, 2-isopropylthioxatone, 2,4-dimethylthioxanthone,
- the photosensitizer include anthracene, 2-isopropylthioxatone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, acridine orange, acridine yellow, phosphine R, benzo
- examples include flavin, cetoflavin T, perylene, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, triethanolamine, and triethylamine.
- the amount of the photosensitizer used is usually 0.01 to 30 parts by weight, preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin component.
- various compounding agents such as inorganic fillers, silane coupling materials, mold release agents, pigments, and various thermosetting resins can be added to the curable resin composition B of the present invention as necessary. . Specific examples are as described above.
- the curable resin composition B of the present invention can be obtained by uniformly mixing each component. It is also possible to dissolve in an organic solvent such as polyethylene glycol monoethyl ether, cyclohexanone, or ⁇ -butyrolactone and make it uniform, and then use it after removing the solvent by drying. In this case, the solvent is used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight, in the mixture of the curable resin composition B of the present invention and the solvent.
- the curable resin composition B of the present invention can be cured by thermal curing and / or ultraviolet irradiation (for example, Reference: Review Epoxy Resin Vol. 1, Fundamental Edition I, p82-84).
- the amount of heat and / or the amount of irradiation for curing the curable resin composition may be sufficient as long as the curing conditions satisfying the purpose are satisfactory.
- the heating after the light irradiation may be performed in the normal curing temperature range of the curable resin composition B.
- the temperature is preferably from room temperature to 150 ° C. for 30 minutes to 7 days.
- the higher the temperature range the more effective the curing is after light irradiation, and the short heat treatment is effective.
- the lower the temperature the longer the heat treatment.
- the shape of the cured product obtained by curing these curable resin compositions B can be variously selected depending on the application, it is not particularly limited. For example, it may be a film shape, a sheet shape, a bulk shape, or the like. .
- the molding method varies depending on each part and member. For example, a casting method, a casting method, a screen printing method, a spin coating method, a spray method, a transfer method, a dispenser method, etc. can be applied. It is not limited.
- polishing glass, hard stainless steel polishing plate, polycarbonate plate, polyethylene terephthalate plate, polymethyl methacrylate plate, or the like can be applied.
- a polyethylene terephthalate film, a polycarbonate film, a polyvinyl chloride film, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a polyimide film, or the like can be applied.
- the photocation curable resin composition B of the present invention dissolved in an organic solvent such as polyethylene glycol monoethyl ether, cyclohexanone, and ⁇ -butyrolactone is used as a copper-clad laminate or a ceramic substrate.
- the composition of the present invention was applied to a substrate such as a glass substrate with a film thickness of 5 to 160 ⁇ m by a method such as screen printing or spin coating, and the coating film was pre-dried at 60 to 110 ° C.
- Ultraviolet light for example, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a laser beam, etc.
- a negative film having a desired pattern followed by post-exposure baking at 70 to 120 ° C.
- the unexposed portion is dissolved and removed (developed) with a solvent such as polyethylene glycol monoethyl ether, and if necessary, sufficient by irradiation with ultraviolet rays and / or heating (for example, at 100 to 200 ° C. for 0.5 to 3 hours). Curing is performed to obtain a cured product. In this way, it is also possible to obtain a printed wiring board.
- the cured product obtained in the present invention can be used for various applications including optical component materials.
- the optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to LED sealing materials such as lamp type and SMD type, the following may be mentioned.
- it is a liquid crystal display peripheral material such as a substrate material, a light guide plate, a prism sheet, a deflector plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field.
- color PDP plasma display
- antireflection films antireflection films
- optical correction films housing materials
- front glass protective films front glass replacement materials
- adhesives and LED displays that are expected as next-generation flat panel displays
- LED molding materials LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate
- PLC plasma addressed liquid crystal
- VD video disc
- CD / CD-ROM CD-R / RW
- DVD-R / DVD-RAM MO / MD
- PD phase change disc
- disc substrate materials for optical cards Pickup lenses, protective films, sealing materials, adhesives and the like.
- optical equipment In the field of optical equipment, they are steel camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor parts. It is also a photographic lens and viewfinder for video cameras. Projection lenses for projection televisions, protective films, sealing materials, adhesives, and the like. These include lens materials, sealing materials, adhesives, and films for optical sensing devices.
- optical components In the field of optical components, they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems. Optical fiber materials, ferrules, sealing materials, adhesives, etc. around the optical connector. For optical passive components and optical circuit components, there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like.
- OEIC optoelectronic integrated circuit
- automotive lamp reflectors In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, automobile protection Rusted steel plates, interior panels, interior materials, protective / bundling wireness, fuel hoses, automobile lamps, glass replacements.
- it is a multilayer glass for railway vehicles.
- they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wireness, and corrosion-resistant coatings.
- it In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film.
- Next generation optical / electronic functional organic materials include peripheral materials for organic EL elements, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical computing elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
- sealing agents potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip
- underfill for sealing, sealing (reinforcing underfill) when mounting IC packages such as BGA, CSP, and the like.
- optical material examples include general uses in which the curable resin composition A is used.
- adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), In addition to insulating materials (including printed circuit boards and wire coatings), sealants, additives to other resins and the like can be mentioned.
- the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives.
- adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
- GPC gel permeation chromatography
- Example 1 A flask equipped with a stirrer, a reflux condenser, and a stirrer was once evacuated, purged with nitrogen, and then purged with nitrogen, then the phenol compound (TPA1) represented by the above formula (3) (BisP-AP manufactured by Honshu Chemical Industry Co., Ltd.) ) 102 parts, 185 parts epichlorohydrin, and 100 parts methanol were added, and the temperature of the water bath was raised to 75 ° C. When the internal temperature exceeded 65 ° C., 42 parts of flaky sodium hydroxide was added in portions over 90 minutes, and the reaction was further carried out at 70 ° C. for 1 hour.
- the epoxy equivalent of the obtained epoxy resin was 229 g / eq.
- the softening point was 51 ° C. and the hue was 0.2 or less (Gardner 40% MEK solution).
- the triglycidyl ether structure was 57 area%, the tetraglycidyl ether body was 23 area%, and the total was 80 area%. Moreover, the higher molecular weight body was 13 area% (GPC).
- Example 2 A flask equipped with a stirrer, a reflux condenser, and a stirrer was once evacuated and purged with nitrogen. Then, while purging with nitrogen, 102 parts of a phenol compound (TPA1) (BisP-AP manufactured by Honshu Chemical Industry), epichlorohydrin 185 And 150 parts of dimethyl sulfoxide were added, and the temperature of the water bath was raised to 45 ° C. When the internal temperature exceeded 45 ° C., 42 parts of flaky sodium hydroxide was added in portions over 90 minutes, and the reaction was further carried out at 45 ° C. for 2 hours and at 70 ° C. for 1 hour.
- TPA1 phenol compound manufactured by Honshu Chemical Industry
- the epoxy equivalent of the obtained epoxy resin is 165 g / eq.
- the softening point was 53 ° C. and the hue was 0.2 or less (Gardner 40% MEK solution).
- the triglycidyl ether structure was 58 area%, the tetraglycidyl ether body was 25 area%, and the total was 83 area%. Moreover, the higher molecular weight body was 15 area% (GPC).
- the triglycidyl ether structure was 87 area%, the tetraglycidyl ether body was 10 area%, and the total was 97 area%. Moreover, the higher molecular weight body was less than 1 area% (GPC).
- the epoxy resin of the present invention has improved heat resistance. It became clear that it was excellent.
- Phenol novolac as the curing agent is equivalent to the epoxy resin, and 1% by weight of tritoluylphosphine (TPTP) as the curing accelerator is mixed with the epoxy resin, and mixed and kneaded uniformly using a mixing roll.
- a curable resin composition for sealing was obtained.
- the curable resin composition was pulverized with a mixer and further tableted with a tablet machine. This tableted curable resin composition is transfer molded (175 ° C. ⁇ 40 seconds), further demolded and cured under the conditions of 160 ° C. ⁇ 2 hours + 180 ° C. ⁇ 6 hours, and each epoxy resin evaluation test I got a piece.
- cured material was measured in the following ways. The results are shown in Table 3 below.
- ⁇ TMA measurement conditions Thermomechanical measuring device TM-7000, manufactured by Vacuum Riko Co., Ltd.
- the obtained cured product was pulverized and powdered, passed through a 100-mesh wire mesh, and a sample with the same particle size remaining in a 200-mesh wire mesh was used to measure the thermal decomposition temperature by TG-DTA.
- Sample usage amount about 10 mg, temperature increase rate: 10 ° C./min. Measurement was performed in a state where the air flowed at 200 mL / hr, and the temperature at which the weight loss was 5% was evaluated.
- the epoxy resin of the present invention and the composition thereof give a cured product excellent in not only heat resistance but also heat decomposition resistance. This indicates that the stability of the resin skeleton is good, and it is understood that the properties such as heat-resistant coloration are also excellent.
- the resin composition containing the epoxy resin of the present invention is widely used in the fields of electric / electronic parts, structural materials, adhesives, paints and the like. be able to. Also in optical applications where high color resistance is required, it has heat resistance that can withstand the heat of peripheral members with high light emission intensity, so it can be useful to avoid decomposition and deterioration due to heat that causes coloration. It is.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Epoxy Resins (AREA)
- Epoxy Compounds (AREA)
Abstract
The objective of the present invention is to provide: a highly heat-resistant epoxy resin having superior thermal stability and high heat resistance; a curable resin composition; and a cured product thereof. The epoxy resin is represented by formula (1), in the entire surface area of a chart measured by means of gel permeation chromatography, triglycidyl ether bodies account for 40-75 area% and tetraglycidyl ether bodies account for 12-40 area%, the total of the triglycidyl ether bodies and tetraglycidyl ether bodies is 52-90 area%, and the tetraglycidyl ether bodies have the structure represented by formula (2). (In formula 1, the plurality of A and B present are as indicated above, and are bonded by *. Also, G indicates a glycidyl group, and m and n indicate the average number of repeats and represent a number from 0 to 5. In formula 2, G represents a glycidyl group.)
Description
本発明は電気電子材料用途、特に耐熱劣化性・耐熱分解に対して好適な硬化物を与えるエポキシ樹脂、硬化性樹脂組成物、およびその硬化物に関する。
The present invention relates to an epoxy resin, a curable resin composition, and a cured product thereof, which gives a cured product suitable for use in electrical and electronic materials, particularly heat resistance and thermal decomposition.
硬化性樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。
Curable resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It is used.
しかし近年、電気・電子分野においてはその発展に伴い、樹脂組成物の高純度化をはじめ耐湿性、密着性、誘電特性、フィラー(無機または有機充填剤)を高充填させるための低粘度化、成型サイクルを短くするための反応性のアップ等の諸特性の一層の向上が求められている。又、構造材としては航空宇宙材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料が求められている。特に半導体封止分野、基板(基板自体、もしくはその周辺材料)においては、その半導体の変遷に従い、薄層化、スタック化、システム化、三次元化と複雑になっていき、非常に高いレベルの耐熱性や高流動性といった要求特性が求められる(非特許文献1)。なお、特にプラスチックパッケージの車載用途への拡大に伴い、耐熱性の向上要求がいっそう厳しくなっており、高Tgで低線膨張率の樹脂が求められている(非特許文献2)。
However, in recent years, with the development in the electric / electronic field, moisture resistance, adhesion, dielectric properties, low viscosity for high filling of filler (inorganic or organic filler) as well as high purity of resin composition, There is a need for further improvements in various properties such as increased reactivity to shorten the molding cycle. Further, as a structural material, there is a demand for a material that is lightweight and has excellent mechanical properties in applications such as aerospace materials and leisure / sports equipment. Especially in the field of semiconductor encapsulation and substrates (substrate itself or its peripheral materials), as the semiconductor transitions, it becomes increasingly complex with thinning, stacking, systematization, and three-dimensionalization. Required characteristics such as heat resistance and high fluidity are required (Non-Patent Document 1). In particular, with the expansion of plastic packages to in-vehicle applications, the demand for improvement in heat resistance has become more severe, and a resin having a high Tg and a low linear expansion coefficient is required (Non-patent Document 2).
耐熱性は近年、特に重要視される特性のひとつである。従来より、耐熱性は重要視されていたものの、一般に耐熱性を挙げるとその他の特性が低下することから、耐熱性が市場要求に多少満たないものであっても、他の特性を優先しバランスをとっていた経緯がある。しかしながら、現在、電子材料の取り扱う情報量の増加に伴う電流量の増加や、使用される環境の厳しさから、耐熱性がどうしても必要な用途が広がっている。また省エネの問題からパワーデバイスにはSiCといった高温での駆動が可能な用途では、周辺材料の耐熱性が求められる。
耐熱性とトレードオフの関係にある特性のひとつに熱安定性という特性がある(ここでいう耐熱性とは一般にガラス転移点(Tg)のことを指す)。通常エポキシ樹脂の耐熱性を向上させる手段としてはエポキシ基の濃度を上げる(エポキシ当量を下げる)ことにより、架橋密度を上げるという手法がとられる。
この高耐熱のエポキシ樹脂を用いた硬化物においては(例えばトリスフェノールメタン型エポキシ樹脂等)分子中に多数のエポキシ基を有することから、高温にさらした場合、分解しやすい脂肪族鎖であるエポキシ由来の構造が通常よりも多くなる傾向にあるため耐熱性においては特性が向上するにも関わらず、熱安定性においては特性が低下する傾向にある。逆にエポキシ鎖の少ない例えば、フェノールアラルキル型のエポキシ樹脂の場合、熱分解が進行しづらく、熱安定性が高くなる傾向にある反面、耐熱性は低下する。
本発明の目的は耐熱性が高く、かつ熱安定性に優れた高耐熱のエポキシ樹脂、硬化性樹脂組成物およびその硬化物を提供することにある。
また光学用途においても、特にLED等の強度の強い明かりの周辺部材においては、その光を透過、もしくは反射することでその電力をより有効に活用したいという要求から、高い耐着色性が必要となっている。また、特に発光強度が高いものにおいては、チップ上の熱が非常に高くなってしまうことから、その熱にも耐えられるような耐熱性を有する樹脂が必要となる。着色原因としては熱等による分解・劣化が起因であり、先と同様、光学用途においても高い耐熱性と熱安定性が求められている。 In recent years, heat resistance is one of the characteristics that is particularly important. Conventionally, heat resistance has been regarded as important, but if heat resistance is generally cited, other characteristics will deteriorate, so even if heat resistance does not meet the market requirements, other characteristics will be prioritized and balanced. There was a history of taking. However, at present, applications that require heat resistance are expanding due to an increase in the amount of current accompanying an increase in the amount of information handled by electronic materials and the severe environment used. In addition, due to the problem of energy saving, the power device is required to have heat resistance of peripheral materials in applications where high temperature driving such as SiC is possible.
One of the characteristics that have a trade-off relationship with heat resistance is the characteristic of thermal stability (herein, heat resistance generally refers to the glass transition point (Tg)). Usually, as a means for improving the heat resistance of the epoxy resin, a technique of increasing the crosslinking density by increasing the concentration of the epoxy group (decreasing the epoxy equivalent) is employed.
The cured product using this highly heat-resistant epoxy resin (for example, trisphenolmethane type epoxy resin) has a large number of epoxy groups in the molecule, so that it is an aliphatic chain that is easily decomposed when exposed to high temperatures. Since the derived structure tends to be larger than usual, the thermal stability tends to decrease in spite of the improvement in characteristics in heat resistance. Conversely, for example, in the case of a phenol aralkyl type epoxy resin having a small number of epoxy chains, thermal decomposition does not proceed easily and thermal stability tends to increase, but heat resistance decreases.
An object of the present invention is to provide a highly heat-resistant epoxy resin, a curable resin composition and a cured product thereof having high heat resistance and excellent thermal stability.
Also in optical applications, particularly in the peripheral members with strong light such as LEDs, high color resistance is required because of the requirement to use the power more effectively by transmitting or reflecting the light. ing. In particular, in the case where the emission intensity is high, the heat on the chip becomes very high, and thus a resin having heat resistance that can withstand the heat is required. The cause of coloring is decomposition / deterioration due to heat or the like, and high heat resistance and thermal stability are also demanded in optical applications as in the above.
耐熱性とトレードオフの関係にある特性のひとつに熱安定性という特性がある(ここでいう耐熱性とは一般にガラス転移点(Tg)のことを指す)。通常エポキシ樹脂の耐熱性を向上させる手段としてはエポキシ基の濃度を上げる(エポキシ当量を下げる)ことにより、架橋密度を上げるという手法がとられる。
この高耐熱のエポキシ樹脂を用いた硬化物においては(例えばトリスフェノールメタン型エポキシ樹脂等)分子中に多数のエポキシ基を有することから、高温にさらした場合、分解しやすい脂肪族鎖であるエポキシ由来の構造が通常よりも多くなる傾向にあるため耐熱性においては特性が向上するにも関わらず、熱安定性においては特性が低下する傾向にある。逆にエポキシ鎖の少ない例えば、フェノールアラルキル型のエポキシ樹脂の場合、熱分解が進行しづらく、熱安定性が高くなる傾向にある反面、耐熱性は低下する。
本発明の目的は耐熱性が高く、かつ熱安定性に優れた高耐熱のエポキシ樹脂、硬化性樹脂組成物およびその硬化物を提供することにある。
また光学用途においても、特にLED等の強度の強い明かりの周辺部材においては、その光を透過、もしくは反射することでその電力をより有効に活用したいという要求から、高い耐着色性が必要となっている。また、特に発光強度が高いものにおいては、チップ上の熱が非常に高くなってしまうことから、その熱にも耐えられるような耐熱性を有する樹脂が必要となる。着色原因としては熱等による分解・劣化が起因であり、先と同様、光学用途においても高い耐熱性と熱安定性が求められている。 In recent years, heat resistance is one of the characteristics that is particularly important. Conventionally, heat resistance has been regarded as important, but if heat resistance is generally cited, other characteristics will deteriorate, so even if heat resistance does not meet the market requirements, other characteristics will be prioritized and balanced. There was a history of taking. However, at present, applications that require heat resistance are expanding due to an increase in the amount of current accompanying an increase in the amount of information handled by electronic materials and the severe environment used. In addition, due to the problem of energy saving, the power device is required to have heat resistance of peripheral materials in applications where high temperature driving such as SiC is possible.
One of the characteristics that have a trade-off relationship with heat resistance is the characteristic of thermal stability (herein, heat resistance generally refers to the glass transition point (Tg)). Usually, as a means for improving the heat resistance of the epoxy resin, a technique of increasing the crosslinking density by increasing the concentration of the epoxy group (decreasing the epoxy equivalent) is employed.
The cured product using this highly heat-resistant epoxy resin (for example, trisphenolmethane type epoxy resin) has a large number of epoxy groups in the molecule, so that it is an aliphatic chain that is easily decomposed when exposed to high temperatures. Since the derived structure tends to be larger than usual, the thermal stability tends to decrease in spite of the improvement in characteristics in heat resistance. Conversely, for example, in the case of a phenol aralkyl type epoxy resin having a small number of epoxy chains, thermal decomposition does not proceed easily and thermal stability tends to increase, but heat resistance decreases.
An object of the present invention is to provide a highly heat-resistant epoxy resin, a curable resin composition and a cured product thereof having high heat resistance and excellent thermal stability.
Also in optical applications, particularly in the peripheral members with strong light such as LEDs, high color resistance is required because of the requirement to use the power more effectively by transmitting or reflecting the light. ing. In particular, in the case where the emission intensity is high, the heat on the chip becomes very high, and thus a resin having heat resistance that can withstand the heat is required. The cause of coloring is decomposition / deterioration due to heat or the like, and high heat resistance and thermal stability are also demanded in optical applications as in the above.
本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
すなわち本発明は、下記[1]~[8]に関する。
[1]
下記式(1)で表されるエポキシ樹脂であって、
ゲルパーミエーションクロマトグラフィーで測定したチャートの全面積中、トリグリシジルエーテル体が40~75面積%を、テトラグリシジルエーテル体が12~40面積%を占め、かつ、トリグリシジルエーテル体とテトラグリシジルエーテル体の合計が52~90面積%であり、
該テトラグリシジルエーテル体が、下記式(2)で表される構造を有するエポキシ樹脂。 As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention.
That is, the present invention relates to the following [1] to [8].
[1]
An epoxy resin represented by the following formula (1),
Of the total area of the chart measured by gel permeation chromatography, triglycidyl ether forms 40 to 75 area%, tetraglycidyl ether forms 12 to 40 area%, and triglycidyl ether and tetraglycidyl ether forms. Is a total of 52 to 90 area%,
An epoxy resin in which the tetraglycidyl ether has a structure represented by the following formula (2).
すなわち本発明は、下記[1]~[8]に関する。
[1]
下記式(1)で表されるエポキシ樹脂であって、
ゲルパーミエーションクロマトグラフィーで測定したチャートの全面積中、トリグリシジルエーテル体が40~75面積%を、テトラグリシジルエーテル体が12~40面積%を占め、かつ、トリグリシジルエーテル体とテトラグリシジルエーテル体の合計が52~90面積%であり、
該テトラグリシジルエーテル体が、下記式(2)で表される構造を有するエポキシ樹脂。 As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention.
That is, the present invention relates to the following [1] to [8].
[1]
An epoxy resin represented by the following formula (1),
Of the total area of the chart measured by gel permeation chromatography, triglycidyl ether forms 40 to 75 area%, tetraglycidyl ether forms 12 to 40 area%, and triglycidyl ether and tetraglycidyl ether forms. Is a total of 52 to 90 area%,
An epoxy resin in which the tetraglycidyl ether has a structure represented by the following formula (2).
(式中、複数存在するA,Bは上記に示す通りであり、*で結合する。また、Gはグリシジル基を、m、nは繰り返し数の平均値を示し、0~5の数を表す。)
(In the formula, a plurality of A and B are as described above, and bonded with *. G represents a glycidyl group, m and n represent an average number of repetitions, and represent a number of 0 to 5) .)
(式中、Gはグリシジル基を表す。)
[2]
下記式(3)で表される化合物とエピハロヒドリンとの反応によって得られる[1]に記載のエポキシ樹脂。 (In the formula, G represents a glycidyl group.)
[2]
The epoxy resin as described in [1] obtained by reaction of a compound represented by the following formula (3) and epihalohydrin.
[2]
下記式(3)で表される化合物とエピハロヒドリンとの反応によって得られる[1]に記載のエポキシ樹脂。 (In the formula, G represents a glycidyl group.)
[2]
The epoxy resin as described in [1] obtained by reaction of a compound represented by the following formula (3) and epihalohydrin.
[3]
軟化点が45~65℃であり、かつ、エポキシ当量が165~180g/eq.である[1]または[2]に記載のエポキシ樹脂。
[4]
式(3)の化合物をエピハロヒドリンと反応させた後、トルエンまたは炭素数4~7のケトン化合物の溶液とし、金属水酸化物水溶液で後処理することにより得られる[2]または[3]に記載のエポキシ樹脂。
[5]
[1]~[4]のいずれか一項に記載のエポキシ樹脂と硬化剤とを含有する硬化性樹脂組成物。
[6]
硬化剤がフェノール樹脂構造を有する樹脂である[5]に記載の硬化性樹脂組成物。
[7]
硬化剤として酸無水物、多価カルボン酸の少なくとも1つを含有する[5]または[6]に記載の硬化性樹脂組成物。
[8]
[5]~[7]のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。 [3]
The softening point is 45 to 65 ° C., and the epoxy equivalent is 165 to 180 g / eq. The epoxy resin according to [1] or [2].
[4]
[2] or [3] obtained by reacting the compound of the formula (3) with epihalohydrin and then treating with toluene or an aqueous metal hydroxide solution as a solution of a ketone compound having 4 to 7 carbon atoms. Epoxy resin.
[5]
[1] A curable resin composition comprising the epoxy resin according to any one of [4] and a curing agent.
[6]
The curable resin composition according to [5], wherein the curing agent is a resin having a phenol resin structure.
[7]
The curable resin composition according to [5] or [6], which contains at least one of an acid anhydride and a polyvalent carboxylic acid as a curing agent.
[8]
[5] A cured product obtained by curing the curable resin composition according to any one of [7].
軟化点が45~65℃であり、かつ、エポキシ当量が165~180g/eq.である[1]または[2]に記載のエポキシ樹脂。
[4]
式(3)の化合物をエピハロヒドリンと反応させた後、トルエンまたは炭素数4~7のケトン化合物の溶液とし、金属水酸化物水溶液で後処理することにより得られる[2]または[3]に記載のエポキシ樹脂。
[5]
[1]~[4]のいずれか一項に記載のエポキシ樹脂と硬化剤とを含有する硬化性樹脂組成物。
[6]
硬化剤がフェノール樹脂構造を有する樹脂である[5]に記載の硬化性樹脂組成物。
[7]
硬化剤として酸無水物、多価カルボン酸の少なくとも1つを含有する[5]または[6]に記載の硬化性樹脂組成物。
[8]
[5]~[7]のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。 [3]
The softening point is 45 to 65 ° C., and the epoxy equivalent is 165 to 180 g / eq. The epoxy resin according to [1] or [2].
[4]
[2] or [3] obtained by reacting the compound of the formula (3) with epihalohydrin and then treating with toluene or an aqueous metal hydroxide solution as a solution of a ketone compound having 4 to 7 carbon atoms. Epoxy resin.
[5]
[1] A curable resin composition comprising the epoxy resin according to any one of [4] and a curing agent.
[6]
The curable resin composition according to [5], wherein the curing agent is a resin having a phenol resin structure.
[7]
The curable resin composition according to [5] or [6], which contains at least one of an acid anhydride and a polyvalent carboxylic acid as a curing agent.
[8]
[5] A cured product obtained by curing the curable resin composition according to any one of [7].
本発明のエポキシ樹脂を含有する本発明の硬化性樹脂組成物は、耐熱性、熱安定性、耐着色性に優れる硬化物を提供することができる。また当該特性により、本発明の硬化物は、高度な光学特性が求められる光学部材への適用が可能である。
The curable resin composition of the present invention containing the epoxy resin of the present invention can provide a cured product excellent in heat resistance, thermal stability and coloration resistance. Further, due to the characteristics, the cured product of the present invention can be applied to optical members that require high optical characteristics.
本発明のエポキシ樹脂は、下記式(1)で表される構造を有する。
The epoxy resin of the present invention has a structure represented by the following formula (1).
(式中、複数存在するA,Bは上記に示す通りであり、*で結合する。また、Gはグリシジル基を、m、nは繰り返し数の平均値を示し、0~5の数を表す。)
(In the formula, a plurality of A and B are as described above, and bonded with *. G represents a glycidyl group, m and n represent an average number of repetitions, and represent a number of 0 to 5) .)
すなわち本発明のエポキシ樹脂は、比較的広い分子量分布を有するトリスフェノール骨格を基礎とするエポキシ樹脂であり、トリスフェノール骨格を有する低分子と、トリスフェノール骨格がエピハロヒドリンを基とする構造(1,3-ジオキシプロパン-2-オール構造、下記式(4))を介して結合している分子とを含むエポキシ樹脂である。
That is, the epoxy resin of the present invention is an epoxy resin based on a trisphenol skeleton having a relatively wide molecular weight distribution, and has a structure (1, 3) based on a low molecule having a trisphenol skeleton and an epihalohydrin based on the trisphenol skeleton. An epoxy resin containing a dioxypropan-2-ol structure and a molecule bonded via the following formula (4)).
具体的には、ゲルパーミエーションクロマトグラフィー(GPC)により測定したチャートの全面積中、トリグリシジルエーテル体が40~75面積%を占め、テトラグリシジルエーテル体が12~40面積%を占め、トリグリシジルエーテル体とテトラグリシジルエーテル体の合計が52~90面積%であることを特徴とするエポキシ樹脂である。
例えば、具体的に、テトラグリシジルエーテル体としては前記式(2)で表すことができる。さらにそれ以上の高分子量体としては、前記式(2)と同様に、グリシジルエーテル部位のひとつが開環し、前記式(4)の構造で連結されたものである。このような結合により本発明のエポキシ樹脂は幅広い分子量分布を有することになる。ここで、好適な分子量分布としては、Mw/Mn=1.2~2.0である。 Specifically, in the total area of the chart measured by gel permeation chromatography (GPC), the triglycidyl ether form accounts for 40 to 75 area%, the tetraglycidyl ether form accounts for 12 to 40 area%, and triglycidyl An epoxy resin characterized in that the total of the ether body and the tetraglycidyl ether body is 52 to 90 area%.
For example, specifically, the tetraglycidyl ether can be represented by the formula (2). Further, the higher molecular weight body is one in which one of the glycidyl ether moieties is ring-opened and linked by the structure of the formula (4), as in the formula (2). Due to such bonding, the epoxy resin of the present invention has a wide molecular weight distribution. Here, a preferable molecular weight distribution is Mw / Mn = 1.2 to 2.0.
例えば、具体的に、テトラグリシジルエーテル体としては前記式(2)で表すことができる。さらにそれ以上の高分子量体としては、前記式(2)と同様に、グリシジルエーテル部位のひとつが開環し、前記式(4)の構造で連結されたものである。このような結合により本発明のエポキシ樹脂は幅広い分子量分布を有することになる。ここで、好適な分子量分布としては、Mw/Mn=1.2~2.0である。 Specifically, in the total area of the chart measured by gel permeation chromatography (GPC), the triglycidyl ether form accounts for 40 to 75 area%, the tetraglycidyl ether form accounts for 12 to 40 area%, and triglycidyl An epoxy resin characterized in that the total of the ether body and the tetraglycidyl ether body is 52 to 90 area%.
For example, specifically, the tetraglycidyl ether can be represented by the formula (2). Further, the higher molecular weight body is one in which one of the glycidyl ether moieties is ring-opened and linked by the structure of the formula (4), as in the formula (2). Due to such bonding, the epoxy resin of the present invention has a wide molecular weight distribution. Here, a preferable molecular weight distribution is Mw / Mn = 1.2 to 2.0.
本発明においては、ゲルパーミエーションクロマトグラフィー(GPC)で測定した場合において、トリグリシジルエーテル体が75面積%を超え、テトラグリシジルエーテル体が12面積%未満であると、耐熱性が出にくい、という問題が生じる。さらには、トリグリシジルエーテル体が40面積%より少ない、またテトラグリシジルエーテル体が40面積%を超えている場合、粘度が高く取り扱えないばかりか、溶剤への溶解性も悪くなる。高分子量体(テトラグリシジルエーテル体を超えて前記式(2)の構造で連結した高分子量体)が35面積%を超える場合も同様の恐れがあり、粘度、溶解性を考えた場合、取り扱いが困難となる場合がある。また場合によってはゲル化してしまうこともある。
エポキシ樹脂中のそれぞれの量としては、トリグリシジルエーテル体が40~75面積%、より好ましくは45~75面積%、さらに好ましくは50~70面積%、一方、テトラグリシジルエーテル体は12~40面積%、より好ましくは15~35面積%、さらに好ましくは15~30面積%である。また、同時にそれ以上の高分子量体に関しては2~20面積%であることが好ましく、より好ましくは5~20面積%である。またトリグリシジルエーテル体とテトラグリシジルエーテル体の合計は52~90面積%であり、60~87面積%が好ましく、特に65~82面積%が好ましい。テトラグリシジルエーテル体とトリグリシジル体の面積%の比率として好適なものは、テトラグリシジルエーテル体1に対して、トリグリジリルエーテル体が1.1~3.7であり、より好ましくは1.1~3.5であり、特に好ましくは1.5~3.2である。 In the present invention, when measured by gel permeation chromatography (GPC), when the triglycidyl ether body is more than 75 area% and the tetraglycidyl ether body is less than 12 area%, heat resistance is hardly obtained. Problems arise. Furthermore, when the triglycidyl ether form is less than 40 area% and the tetraglycidyl ether form exceeds 40 area%, not only the viscosity is high, but also the solubility in the solvent is deteriorated. When the high molecular weight body (high molecular weight body connected with the structure of the above formula (2) exceeding the tetraglycidyl ether body) exceeds 35 area%, the same problem may occur. It can be difficult. In some cases, it may gel.
Each amount in the epoxy resin is 40 to 75 area%, more preferably 45 to 75 area%, still more preferably 50 to 70 area% for the triglycidyl ether body, while 12 to 40 area for the tetraglycidyl ether body. %, More preferably 15 to 35 area%, still more preferably 15 to 30 area%. At the same time, the higher molecular weight is preferably 2 to 20 area%, more preferably 5 to 20 area%. The total of the triglycidyl ether and tetraglycidyl ether is 52 to 90 area%, preferably 60 to 87 area%, particularly preferably 65 to 82 area%. A suitable ratio of the area% of the tetraglycidyl ether body to the triglycidyl body is 1.1 to 3.7, more preferably 1.1 to 3.7, with respect to the tetraglycidyl ether body 1. 3.5, particularly preferably 1.5 to 3.2.
エポキシ樹脂中のそれぞれの量としては、トリグリシジルエーテル体が40~75面積%、より好ましくは45~75面積%、さらに好ましくは50~70面積%、一方、テトラグリシジルエーテル体は12~40面積%、より好ましくは15~35面積%、さらに好ましくは15~30面積%である。また、同時にそれ以上の高分子量体に関しては2~20面積%であることが好ましく、より好ましくは5~20面積%である。またトリグリシジルエーテル体とテトラグリシジルエーテル体の合計は52~90面積%であり、60~87面積%が好ましく、特に65~82面積%が好ましい。テトラグリシジルエーテル体とトリグリシジル体の面積%の比率として好適なものは、テトラグリシジルエーテル体1に対して、トリグリジリルエーテル体が1.1~3.7であり、より好ましくは1.1~3.5であり、特に好ましくは1.5~3.2である。 In the present invention, when measured by gel permeation chromatography (GPC), when the triglycidyl ether body is more than 75 area% and the tetraglycidyl ether body is less than 12 area%, heat resistance is hardly obtained. Problems arise. Furthermore, when the triglycidyl ether form is less than 40 area% and the tetraglycidyl ether form exceeds 40 area%, not only the viscosity is high, but also the solubility in the solvent is deteriorated. When the high molecular weight body (high molecular weight body connected with the structure of the above formula (2) exceeding the tetraglycidyl ether body) exceeds 35 area%, the same problem may occur. It can be difficult. In some cases, it may gel.
Each amount in the epoxy resin is 40 to 75 area%, more preferably 45 to 75 area%, still more preferably 50 to 70 area% for the triglycidyl ether body, while 12 to 40 area for the tetraglycidyl ether body. %, More preferably 15 to 35 area%, still more preferably 15 to 30 area%. At the same time, the higher molecular weight is preferably 2 to 20 area%, more preferably 5 to 20 area%. The total of the triglycidyl ether and tetraglycidyl ether is 52 to 90 area%, preferably 60 to 87 area%, particularly preferably 65 to 82 area%. A suitable ratio of the area% of the tetraglycidyl ether body to the triglycidyl body is 1.1 to 3.7, more preferably 1.1 to 3.7, with respect to the tetraglycidyl ether body 1. 3.5, particularly preferably 1.5 to 3.2.
このようなエポキシ樹脂のエポキシ当量は、好ましくは165~190g/eq.より好ましくは165~185g/eq.さらに好ましくは165g/eq.~180g/eq.である。エポキシ当量が165g/eq.未満であると耐熱性が足りない場合があり、190g/eqを超えると、作業性に問題が生じる場合がある。
軟化点は好ましくは45~70℃、より好ましくは45~65℃、特に好ましくは45~60℃である。前記エポキシ当量と、この軟化点が、エポキシ樹脂の耐熱性とその組成物とした際のハンドリング特性に有効となる傾向にあり好ましい。
上記式(1)においてm、nの値としては、mとnの和が0.01~1.0が好ましい。 The epoxy equivalent of such an epoxy resin is preferably 165 to 190 g / eq. More preferably, 165 to 185 g / eq. More preferably, 165 g / eq. ~ 180 g / eq. It is. Epoxy equivalent was 165 g / eq. If it is less than 1, the heat resistance may be insufficient, and if it exceeds 190 g / eq, there may be a problem in workability.
The softening point is preferably 45 to 70 ° C, more preferably 45 to 65 ° C, particularly preferably 45 to 60 ° C. The epoxy equivalent and the softening point are preferable because they tend to be effective for the heat resistance of the epoxy resin and the handling characteristics when the composition is used.
In the above formula (1), as the values of m and n, the sum of m and n is preferably 0.01 to 1.0.
軟化点は好ましくは45~70℃、より好ましくは45~65℃、特に好ましくは45~60℃である。前記エポキシ当量と、この軟化点が、エポキシ樹脂の耐熱性とその組成物とした際のハンドリング特性に有効となる傾向にあり好ましい。
上記式(1)においてm、nの値としては、mとnの和が0.01~1.0が好ましい。 The epoxy equivalent of such an epoxy resin is preferably 165 to 190 g / eq. More preferably, 165 to 185 g / eq. More preferably, 165 g / eq. ~ 180 g / eq. It is. Epoxy equivalent was 165 g / eq. If it is less than 1, the heat resistance may be insufficient, and if it exceeds 190 g / eq, there may be a problem in workability.
The softening point is preferably 45 to 70 ° C, more preferably 45 to 65 ° C, particularly preferably 45 to 60 ° C. The epoxy equivalent and the softening point are preferable because they tend to be effective for the heat resistance of the epoxy resin and the handling characteristics when the composition is used.
In the above formula (1), as the values of m and n, the sum of m and n is preferably 0.01 to 1.0.
なお、電子材料用途への展開を考えた場合、その電気特性のため、全塩素が重要となる。好ましい全塩素量としては1500ppm以下、さらに好ましくは1000ppm以下、特に好ましくは900ppm以下である。また、JPCAの規格におけるハロゲンフリーの判断値から、使用する原料はすべて900ppm以下のハロゲン量であることが好ましく、本発明においても特に900ppm以下が好ましい。
In addition, when considering the development of electronic materials, total chlorine is important because of its electrical characteristics. The total amount of chlorine is preferably 1500 ppm or less, more preferably 1000 ppm or less, and particularly preferably 900 ppm or less. Further, from the halogen-free judgment value in the JPCA standard, it is preferable that all raw materials to be used have a halogen amount of 900 ppm or less, and in the present invention, 900 ppm or less is particularly preferable.
以下、本発明のエポキシ樹脂の製造法について述べる。
本発明のエポキシ樹脂は下記式(3)で表されるトリスフェノール化合物をエピハロヒドリンと反応させることによって得られる。 Hereafter, the manufacturing method of the epoxy resin of this invention is described.
The epoxy resin of the present invention is obtained by reacting a trisphenol compound represented by the following formula (3) with epihalohydrin.
本発明のエポキシ樹脂は下記式(3)で表されるトリスフェノール化合物をエピハロヒドリンと反応させることによって得られる。 Hereafter, the manufacturing method of the epoxy resin of this invention is described.
The epoxy resin of the present invention is obtained by reacting a trisphenol compound represented by the following formula (3) with epihalohydrin.
本発明のエポキシ樹脂の具体的な製造方法例を以下に示す。
An example of a specific method for producing the epoxy resin of the present invention is shown below.
前記式(3)で表されるトリスフェノール化合物は白色結晶状であり、酸化による変色をあまり受けないが、長期保管により少し着色を生じることがある。使用するトリスフェノール化合物はその純度が96%以上が好ましく、より好ましくは98%以上、特に好ましくは99%以上である。
具体的な本発明のエポキシ樹脂の製造方法の一例としては、パラヒドロキシアセトフェノンとフェノールとの縮合反応によって得られる。反応時に生成する副生成物は再結晶等で除去、精製することが好ましい。 The trisphenol compound represented by the formula (3) is in the form of white crystals and does not undergo much discoloration due to oxidation, but may be slightly colored by long-term storage. The purity of the trisphenol compound to be used is preferably 96% or more, more preferably 98% or more, and particularly preferably 99% or more.
A specific example of the method for producing an epoxy resin of the present invention is obtained by a condensation reaction of parahydroxyacetophenone and phenol. By-products generated during the reaction are preferably removed and purified by recrystallization or the like.
具体的な本発明のエポキシ樹脂の製造方法の一例としては、パラヒドロキシアセトフェノンとフェノールとの縮合反応によって得られる。反応時に生成する副生成物は再結晶等で除去、精製することが好ましい。 The trisphenol compound represented by the formula (3) is in the form of white crystals and does not undergo much discoloration due to oxidation, but may be slightly colored by long-term storage. The purity of the trisphenol compound to be used is preferably 96% or more, more preferably 98% or more, and particularly preferably 99% or more.
A specific example of the method for producing an epoxy resin of the present invention is obtained by a condensation reaction of parahydroxyacetophenone and phenol. By-products generated during the reaction are preferably removed and purified by recrystallization or the like.
本発明のエポキシ樹脂を得る反応において、エピハロヒドリンとしては工業的に入手が容易なエピクロルヒドリンが好ましい。エピハロヒドリンの使用量は原料フェノール混合物の水酸基1モルに対し通常1.5~4.0モル、好ましくは2.0~3.5モル、より好ましくは2.0~2.9モルである。ここで、1.5モルを下回ると反応時のゲル化の恐れがあり、製造が困難となる場合がある。また、得られるエポキシ樹脂の作業性が悪くなる可能性が高いため好ましくない。一方、4.0モルを超えると分子量分布が所望の範囲に収まらない場合があり、目的とする特性が得られない恐れがある。
なお、このエピハロヒドリンに対し、0.5~10重量%のアルコキシグルシジルエーテルを添加すると、得られるエポキシ樹脂の強靭性の向上が見られることから好ましい。ここで、アルキルグリシジルエーテルとしてはメチルグリシジルエーテル、エチルグリシジルエーテル、プロピルグリシジルエーテルなど炭素数1~5のアルキルグリシジルエーテルが好ましい。 In the reaction for obtaining the epoxy resin of the present invention, the epihalohydrin is preferably epichlorohydrin which is easily available industrially. The amount of epihalohydrin used is usually 1.5 to 4.0 mol, preferably 2.0 to 3.5 mol, more preferably 2.0 to 2.9 mol, per mol of hydroxyl group in the starting phenol mixture. Here, when the amount is less than 1.5 mol, there is a risk of gelation during the reaction, which may make the production difficult. Moreover, since the workability | operativity of the epoxy resin obtained becomes high, it is unpreferable. On the other hand, if it exceeds 4.0 moles, the molecular weight distribution may not fall within the desired range, and the intended characteristics may not be obtained.
In addition, it is preferable to add 0.5 to 10% by weight of alkoxy glycidyl ether to the epihalohydrin since the toughness of the resulting epoxy resin is improved. Here, the alkyl glycidyl ether is preferably an alkyl glycidyl ether having 1 to 5 carbon atoms such as methyl glycidyl ether, ethyl glycidyl ether, or propyl glycidyl ether.
なお、このエピハロヒドリンに対し、0.5~10重量%のアルコキシグルシジルエーテルを添加すると、得られるエポキシ樹脂の強靭性の向上が見られることから好ましい。ここで、アルキルグリシジルエーテルとしてはメチルグリシジルエーテル、エチルグリシジルエーテル、プロピルグリシジルエーテルなど炭素数1~5のアルキルグリシジルエーテルが好ましい。 In the reaction for obtaining the epoxy resin of the present invention, the epihalohydrin is preferably epichlorohydrin which is easily available industrially. The amount of epihalohydrin used is usually 1.5 to 4.0 mol, preferably 2.0 to 3.5 mol, more preferably 2.0 to 2.9 mol, per mol of hydroxyl group in the starting phenol mixture. Here, when the amount is less than 1.5 mol, there is a risk of gelation during the reaction, which may make the production difficult. Moreover, since the workability | operativity of the epoxy resin obtained becomes high, it is unpreferable. On the other hand, if it exceeds 4.0 moles, the molecular weight distribution may not fall within the desired range, and the intended characteristics may not be obtained.
In addition, it is preferable to add 0.5 to 10% by weight of alkoxy glycidyl ether to the epihalohydrin since the toughness of the resulting epoxy resin is improved. Here, the alkyl glycidyl ether is preferably an alkyl glycidyl ether having 1 to 5 carbon atoms such as methyl glycidyl ether, ethyl glycidyl ether, or propyl glycidyl ether.
上記反応において使用しうるアルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム等が挙げられ、固形物を利用してもよく、その水溶液を使用してもよいが、本発明においては特に、溶解性、ハンドリングの面からフレーク状に成型された固形物の使用が好ましい。
アルカリ金属水酸化物の使用量は原料フェノール混合物の水酸基1モルに対して通常0.90~1.5モルであり、好ましくは0.95~1.25モル、より好ましくは0.99~1.15モルである。 Examples of the alkali metal hydroxide that can be used in the above reaction include sodium hydroxide, potassium hydroxide and the like, and a solid substance may be used, or an aqueous solution thereof may be used. From the viewpoint of solubility and handling, it is preferable to use a solid material molded into a flake shape.
The amount of the alkali metal hydroxide used is usually 0.90 to 1.5 mol, preferably 0.95 to 1.25 mol, more preferably 0.99 to 1 mol per mol of hydroxyl group in the raw material phenol mixture. .15 moles.
アルカリ金属水酸化物の使用量は原料フェノール混合物の水酸基1モルに対して通常0.90~1.5モルであり、好ましくは0.95~1.25モル、より好ましくは0.99~1.15モルである。 Examples of the alkali metal hydroxide that can be used in the above reaction include sodium hydroxide, potassium hydroxide and the like, and a solid substance may be used, or an aqueous solution thereof may be used. From the viewpoint of solubility and handling, it is preferable to use a solid material molded into a flake shape.
The amount of the alkali metal hydroxide used is usually 0.90 to 1.5 mol, preferably 0.95 to 1.25 mol, more preferably 0.99 to 1 mol per mol of hydroxyl group in the raw material phenol mixture. .15 moles.
反応を促進するためにテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加してもかまわない。4級アンモニウム塩の使用量としては原料フェノール混合物の水酸基1モルに対し通常0.1~15gであり、好ましくは0.2~10gである。
In order to accelerate the reaction, a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide or trimethylbenzylammonium chloride may be added as a catalyst. The amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, per 1 mol of hydroxyl group in the raw material phenol mixture.
本反応においては上記エピハロヒドリンに加え、非極性プロトン溶媒(ジメチルスルホキシド、ジオキサン、ジメチルイミダゾリジノン等)や、炭素数1~5のアルコールを併用することが好ましい。炭素数1~5のアルコールとしてはメタノール、エタノール、イソプロピルアルコールなどのアルコール類である。
本発明においては特に色味の問題から炭素数1~5のアルコールの使用が好ましく、さらにはアルカリ金属水酸化物の溶解性の問題から炭素数のより小さいアルコールが好ましく、特にメタノールが好ましい。
非極性プロトン溶媒もしくは炭素数1~5のアルコールの使用量は、エピハロヒドリンの使用量に対し通常2~50重量%、好ましくは4~25重量%である。また、共沸脱水等の手法により、系内の水分をコントロールしながらエポキシ化を行ってもかまわない。 In this reaction, in addition to the above epihalohydrin, it is preferable to use a nonpolar proton solvent (such as dimethyl sulfoxide, dioxane, dimethylimidazolidinone) or an alcohol having 1 to 5 carbon atoms. Examples of the alcohol having 1 to 5 carbon atoms include alcohols such as methanol, ethanol and isopropyl alcohol.
In the present invention, the use of alcohols having 1 to 5 carbon atoms is particularly preferred from the viewpoint of color, and alcohols having a smaller carbon number are preferred from the viewpoint of solubility of alkali metal hydroxides, and methanol is particularly preferred.
The amount of the nonpolar protic solvent or alcohol having 1 to 5 carbon atoms is usually 2 to 50% by weight, preferably 4 to 25% by weight, based on the amount of epihalohydrin used. Moreover, epoxidation may be performed while controlling the moisture in the system by a technique such as azeotropic dehydration.
本発明においては特に色味の問題から炭素数1~5のアルコールの使用が好ましく、さらにはアルカリ金属水酸化物の溶解性の問題から炭素数のより小さいアルコールが好ましく、特にメタノールが好ましい。
非極性プロトン溶媒もしくは炭素数1~5のアルコールの使用量は、エピハロヒドリンの使用量に対し通常2~50重量%、好ましくは4~25重量%である。また、共沸脱水等の手法により、系内の水分をコントロールしながらエポキシ化を行ってもかまわない。 In this reaction, in addition to the above epihalohydrin, it is preferable to use a nonpolar proton solvent (such as dimethyl sulfoxide, dioxane, dimethylimidazolidinone) or an alcohol having 1 to 5 carbon atoms. Examples of the alcohol having 1 to 5 carbon atoms include alcohols such as methanol, ethanol and isopropyl alcohol.
In the present invention, the use of alcohols having 1 to 5 carbon atoms is particularly preferred from the viewpoint of color, and alcohols having a smaller carbon number are preferred from the viewpoint of solubility of alkali metal hydroxides, and methanol is particularly preferred.
The amount of the nonpolar protic solvent or alcohol having 1 to 5 carbon atoms is usually 2 to 50% by weight, preferably 4 to 25% by weight, based on the amount of epihalohydrin used. Moreover, epoxidation may be performed while controlling the moisture in the system by a technique such as azeotropic dehydration.
反応温度は通常30~90℃であり、好ましくは35~80℃である。特に本発明においては、より高純度なエポキシ化のために60℃以上が好ましく、還流条件に近い条件での反応が特に好ましい。反応時間は通常0.5~10時間であり、好ましくは1~8時間、特に好ましくは1~3時間である。反応時間が短いと反応が進みきらない恐れがあり、他方で反応時間が長くなると副生成物ができる恐れがあることから好ましく無い。
The reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C. In particular, in the present invention, 60 ° C. or higher is preferable for higher-purity epoxidation, and reaction under conditions close to reflux conditions is particularly preferable. The reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours, particularly preferably 1 to 3 hours. If the reaction time is short, the reaction may not proceed, and on the other hand, if the reaction time is long, a by-product may be formed.
これらのエポキシ化反応の反応物を水洗後、または水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去する。また更に、加水分解性ハロゲンの少ないエポキシ樹脂とするために、回収したエポキシ樹脂をトルエンまたは炭素数4~7のケトン化合物(たとえば、メチルイソブチルケトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等が挙げられる。)を溶剤として溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて反応を行い、閉環を確実なものにすることも出来る。この場合アルカリ金属水酸化物の使用量はエポキシ化に使用した原料フェノール混合物の水酸基1モルに対して通常0.01~0.3モル、好ましくは0.05~0.2モルである。反応温度は通常50~120℃、反応時間は通常0.5~2時間である。
また、エピハロヒドリンとの反応においては窒素等不活性ガスを、気中もしくは液中に吹き込むことが好ましい。不活性ガスの吹き込みが無い場合、得られる樹脂に着色が生じる場合がある。好ましくは酸素濃度が6%以下、特に好ましくは5%以下での反応が好ましく、不活性ガスの吹き込み量はその釜の容積によっても異なるが、たとえば1L~5Lスケールの場合、0.5~10時間でその釜の容積が置換できる量の不活性ガスの吹き込みが好ましい。また釜容量が大きくなった場合は、0.5~20時間で置換できる量にすることが好ましい。また、減圧により釜内のガスを不活性ガスに置換後、5~20時間で置換できる量にするという手法も用いることができる。 After the reaction product of these epoxidation reactions is washed with water or without washing with water, the epihalohydrin, the solvent and the like are removed under heating and reduced pressure. Furthermore, in order to obtain an epoxy resin with less hydrolyzable halogen, the recovered epoxy resin may be toluene or a ketone compound having 4 to 7 carbon atoms (for example, methyl isobutyl ketone, methyl ethyl ketone, cyclopentanone, cyclohexanone, etc.). ) As a solvent, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to carry out the reaction to ensure ring closure. In this case, the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, relative to 1 mol of the hydroxyl group of the starting phenol mixture used for epoxidation. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
In the reaction with epihalohydrin, it is preferable to blow an inert gas such as nitrogen into the air or liquid. If no inert gas is blown, the resulting resin may be colored. The reaction is preferably carried out at an oxygen concentration of 6% or less, particularly preferably 5% or less, and the amount of inert gas blown in varies depending on the volume of the kettle. For example, in the case of 1 L to 5 L scale, 0.5 to 10 Preference is given to blowing an inert gas in an amount that can replace the volume of the kettle over time. Further, when the capacity of the pot becomes large, it is preferable that the amount can be replaced in 0.5 to 20 hours. Further, a method of reducing the gas in the kettle to an inert gas by reducing the pressure so that the gas can be replaced in 5 to 20 hours can be used.
また、エピハロヒドリンとの反応においては窒素等不活性ガスを、気中もしくは液中に吹き込むことが好ましい。不活性ガスの吹き込みが無い場合、得られる樹脂に着色が生じる場合がある。好ましくは酸素濃度が6%以下、特に好ましくは5%以下での反応が好ましく、不活性ガスの吹き込み量はその釜の容積によっても異なるが、たとえば1L~5Lスケールの場合、0.5~10時間でその釜の容積が置換できる量の不活性ガスの吹き込みが好ましい。また釜容量が大きくなった場合は、0.5~20時間で置換できる量にすることが好ましい。また、減圧により釜内のガスを不活性ガスに置換後、5~20時間で置換できる量にするという手法も用いることができる。 After the reaction product of these epoxidation reactions is washed with water or without washing with water, the epihalohydrin, the solvent and the like are removed under heating and reduced pressure. Furthermore, in order to obtain an epoxy resin with less hydrolyzable halogen, the recovered epoxy resin may be toluene or a ketone compound having 4 to 7 carbon atoms (for example, methyl isobutyl ketone, methyl ethyl ketone, cyclopentanone, cyclohexanone, etc.). ) As a solvent, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to carry out the reaction to ensure ring closure. In this case, the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, relative to 1 mol of the hydroxyl group of the starting phenol mixture used for epoxidation. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
In the reaction with epihalohydrin, it is preferable to blow an inert gas such as nitrogen into the air or liquid. If no inert gas is blown, the resulting resin may be colored. The reaction is preferably carried out at an oxygen concentration of 6% or less, particularly preferably 5% or less, and the amount of inert gas blown in varies depending on the volume of the kettle. For example, in the case of 1 L to 5 L scale, 0.5 to 10 Preference is given to blowing an inert gas in an amount that can replace the volume of the kettle over time. Further, when the capacity of the pot becomes large, it is preferable that the amount can be replaced in 0.5 to 20 hours. Further, a method of reducing the gas in the kettle to an inert gas by reducing the pressure so that the gas can be replaced in 5 to 20 hours can be used.
反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下溶剤を留去することにより本発明のエポキシ樹脂が得られる。
After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin of the present invention.
このようにして得られたエポキシ樹脂は、耐熱性・透明性・耐熱着色性に非常に優れる樹脂となる。得られたエポキシ樹脂は軟化点が通常45~65℃となり、前述の特性を満たす。
The epoxy resin obtained in this way is a resin that is extremely excellent in heat resistance, transparency, and heat resistance colorability. The obtained epoxy resin usually has a softening point of 45 to 65 ° C. and satisfies the above-mentioned characteristics.
得られたエポキシ樹脂は各種樹脂原料として使用できる。例えばエポキシアクリレートおよびその誘導体、オキサゾリドン系化合物、環状カーボネート化合物等が挙げられる。
The obtained epoxy resin can be used as various resin raw materials. For example, epoxy acrylate and its derivatives, oxazolidone compounds, cyclic carbonate compounds and the like can be mentioned.
以下、本発明のエポキシ樹脂を含む本発明の硬化性樹脂組成物について記載する。
本発明の硬化性樹脂組成物は本発明のエポキシ樹脂を必須成分として含有する。本発明の硬化性樹脂組成物においては、硬化剤による熱硬化(硬化性樹脂組成物A)と酸を硬化触媒とするカチオン硬化(硬化性樹脂組成物B)の二種の方法が適応できる。 Hereinafter, it describes about the curable resin composition of this invention containing the epoxy resin of this invention.
The curable resin composition of the present invention contains the epoxy resin of the present invention as an essential component. In the curable resin composition of the present invention, two methods of heat curing with a curing agent (curable resin composition A) and cationic curing with an acid as a curing catalyst (curable resin composition B) can be applied.
本発明の硬化性樹脂組成物は本発明のエポキシ樹脂を必須成分として含有する。本発明の硬化性樹脂組成物においては、硬化剤による熱硬化(硬化性樹脂組成物A)と酸を硬化触媒とするカチオン硬化(硬化性樹脂組成物B)の二種の方法が適応できる。 Hereinafter, it describes about the curable resin composition of this invention containing the epoxy resin of this invention.
The curable resin composition of the present invention contains the epoxy resin of the present invention as an essential component. In the curable resin composition of the present invention, two methods of heat curing with a curing agent (curable resin composition A) and cationic curing with an acid as a curing catalyst (curable resin composition B) can be applied.
硬化性樹脂組成物Aと硬化性組樹脂成物Bにおいて本発明のエポキシ樹脂は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、本発明のエポキシ樹脂の全エポキシ樹脂中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。ただし、本発明のエポキシ樹脂を硬化性樹脂組成物の改質剤として使用する場合は、1~30重量%の割合で添加する。
In the curable resin composition A and the curable resin composition B, the epoxy resin of the present invention can be used alone or in combination with other epoxy resins. When used in combination, the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 30% by weight or more, particularly preferably 40% by weight or more. However, when the epoxy resin of the present invention is used as a modifier of the curable resin composition, it is added in a proportion of 1 to 30% by weight.
本発明のエポキシ樹脂と併用し得る他のエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
Other epoxy resins that can be used in combination with the epoxy resin of the present invention include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, phenol aralkyl type epoxy resins and the like. Specifically, bisphenol A, bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetate Enone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1, Glycidyl ethers derived from polycondensates with 4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene and the like, modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, and alcohols Solid or liquid epoxy resins such as chemical compounds, alicyclic epoxy resins, glycidyl amine epoxy resins, glycidyl ester epoxy resins and the like are not limited thereto. These may be used alone or in combination of two or more.
以下それぞれの硬化性樹脂組成物について言及する。
1.硬化剤による熱硬化(硬化性樹脂組成物A)
本発明の硬化性樹脂組成物Aが含有する硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。 Hereinafter, each curable resin composition will be referred to.
1. Thermal curing with a curing agent (curable resin composition A)
Examples of the curing agent contained in the curable resin composition A of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, Bicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid- 3, 4 Anhydride, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [1,1 '-Biphenyl] -4,4'-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols (phenol Alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, -Hydroxyacetophenone, dicyclopentadiene, furfural, 4,4'-bis (chloromethyl) -1,1'-biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4 ' -Condensation products with bis (chloromethyl) benzene, 1,4'-bis (methoxymethyl) benzene and their modified products, halogenated bisphenols such as tetrabromobisphenol A, imidazole, trifluoroborane-amine complexes , Guanidine derivatives, condensates of terpenes and phenols, and the like, but are not limited thereto. These may be used alone or in combination of two or more.
1.硬化剤による熱硬化(硬化性樹脂組成物A)
本発明の硬化性樹脂組成物Aが含有する硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。 Hereinafter, each curable resin composition will be referred to.
1. Thermal curing with a curing agent (curable resin composition A)
Examples of the curing agent contained in the curable resin composition A of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, Bicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid- 3, 4 Anhydride, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [1,1 '-Biphenyl] -4,4'-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols (phenol Alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, -Hydroxyacetophenone, dicyclopentadiene, furfural, 4,4'-bis (chloromethyl) -1,1'-biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4 ' -Condensation products with bis (chloromethyl) benzene, 1,4'-bis (methoxymethyl) benzene and their modified products, halogenated bisphenols such as tetrabromobisphenol A, imidazole, trifluoroborane-amine complexes , Guanidine derivatives, condensates of terpenes and phenols, and the like, but are not limited thereto. These may be used alone or in combination of two or more.
本発明の硬化性樹脂組成物(A)において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.7~1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
In the curable resin composition (A) of the present invention, the amount of the curing agent used is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy group of the epoxy resin. When less than 0.7 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
本発明の硬化性樹脂組成物においては、硬化剤とともに硬化促進剤(硬化触媒)を併用しても差し支えない。用い得る硬化促進剤の具体例としては2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾ-ル類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤を用いる場合は、エポキシ樹脂100重量部に対して0.1~5.0重量部が必要に応じ用いられる。
なお、イミダゾール類やアミン化合物の場合はアニオン重合の硬化剤として使用することもでき、これら硬化剤が含有される場合、その硬化剤の総量としてはエポキシ樹脂100重量部に対して0.1~5.0重量部を用いて硬化させることができる。 In the curable resin composition of the present invention, a curing accelerator (curing catalyst) may be used in combination with the curing agent. Specific examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza- And tertiary amines such as bicyclo [5.4.0] undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate. When a curing accelerator is used, 0.1 to 5.0 parts by weight is used as necessary with respect to 100 parts by weight of the epoxy resin.
In the case of imidazoles and amine compounds, they can also be used as a curing agent for anionic polymerization. When these curing agents are contained, the total amount of the curing agent is 0.1 to 100 parts by weight with respect to 100 parts by weight of the epoxy resin. It can be cured using 5.0 parts by weight.
なお、イミダゾール類やアミン化合物の場合はアニオン重合の硬化剤として使用することもでき、これら硬化剤が含有される場合、その硬化剤の総量としてはエポキシ樹脂100重量部に対して0.1~5.0重量部を用いて硬化させることができる。 In the curable resin composition of the present invention, a curing accelerator (curing catalyst) may be used in combination with the curing agent. Specific examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza- And tertiary amines such as bicyclo [5.4.0] undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate. When a curing accelerator is used, 0.1 to 5.0 parts by weight is used as necessary with respect to 100 parts by weight of the epoxy resin.
In the case of imidazoles and amine compounds, they can also be used as a curing agent for anionic polymerization. When these curing agents are contained, the total amount of the curing agent is 0.1 to 100 parts by weight with respect to 100 parts by weight of the epoxy resin. It can be cured using 5.0 parts by weight.
本発明の硬化性樹脂組成物Aには、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/エポキシ樹脂=0.1~0.6(重量比)が好ましい。0.1以下では難燃性が不十分となる恐れがあり、0.6以上では硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
The curable resin composition A of the present invention may contain a phosphorus-containing compound as a flame retardant imparting component. The phosphorus-containing compound may be a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; epoxy resin and active hydrogen of the phosphanes Contains phosphorus obtained by reacting with Poxy compounds, red phosphorus and the like can be mentioned. Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred. The phosphorus-containing compound content is preferably phosphorus-containing compound / epoxy resin = 0.1 to 0.6 (weight ratio). If it is 0.1 or less, the flame retardancy may be insufficient, and if it is 0.6 or more, there is a concern that it may adversely affect the hygroscopicity and dielectric properties of the cured product.
さらに本発明の硬化性樹脂組成物Aには、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100重量部に対して通常0.05~50重量部、好ましくは0.05~20重量部が必要に応じて用いられる。
Furthermore, the curable resin composition A of the present invention can be blended with a binder resin as necessary. Examples of the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these. The blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 0.05 to 20 parts per 100 parts by weight of the resin component. Part by weight is used as needed.
本発明の硬化性樹脂組成物Aには、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中において0~95重量%を占める量が用いられる。更に本発明の硬化性樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。
An inorganic filler can be added to the curable resin composition A of the present invention as necessary. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. However, the present invention is not limited to these. These may be used alone or in combination of two or more. The content of these inorganic fillers is used in an amount of 0 to 95% by weight in the curable resin composition of the present invention. Furthermore, a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, various compounding agents such as pigments, and various thermosetting resins are added to the curable resin composition of the present invention. can do.
本発明の硬化性樹脂組成物は、各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物Aは従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば本発明のエポキシ樹脂と硬化剤並びに必要により硬化触媒、リン含有化合物、バインダー樹脂、無機充填材及び配合剤とを必要に応じて押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に混合して硬化性樹脂組成物を得、その硬化性樹脂組成物を溶融後注型あるいはトランスファー成型機などを用いて成型し、さらに80~200℃で2~10時間加熱することにより本発明の硬化物を得ることができる。
The curable resin composition of the present invention can be obtained by uniformly mixing each component. The curable resin composition A of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, the epoxy resin of the present invention, a curing agent and, if necessary, a curing catalyst, a phosphorus-containing compound, a binder resin, an inorganic filler and a compounding agent are uniformly used using an extruder, a kneader, a roll or the like as necessary. Mix thoroughly until it is obtained to obtain a curable resin composition, melt the curable resin composition, mold using a casting or transfer molding machine, and then heat at 80 to 200 ° C. for 2 to 10 hours. Thus, the cured product of the present invention can be obtained.
また本発明の硬化性樹脂組成物Aをトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物のままRTM方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。
Further, the curable resin composition A of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the curable resin composition varnish is obtained. A cured product of the curable resin composition of the present invention by hot press molding a prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating. It can be. In this case, the solvent is used in an amount usually accounting for 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent. Moreover, the epoxy resin hardened | cured material which contains a carbon fiber by a RTM system with a liquid composition can also be obtained.
また本発明の硬化性樹脂組成物Aをフィルム型組成物の改質剤としても使用できる。具体的にはB-ステージにおけるフレキ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物を得る場合は、本発明の硬化性樹脂組成物を剥離フィルム上に前記ワニスを塗布し加熱下で溶剤を除去、Bステージ化を行うことによりシート状の接着剤を得る。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。
The curable resin composition A of the present invention can also be used as a film type composition modifier. Specifically, it can be used to improve the flexibility of the B-stage. When obtaining such a film-type resin composition, the curable resin composition of the present invention is applied to the release film by applying the varnish, removing the solvent under heating, and performing a B-stage adhesion. Get the agent. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
更に、エポキシ樹脂等の熱硬化性樹脂が使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、封止材、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。
Furthermore, general applications in which a thermosetting resin such as an epoxy resin is used are mentioned, for example, adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (printed boards, In addition to the encapsulating material, the encapsulating material, a cyanate resin composition for the substrate, and an additive to other resins such as an acrylate-based resin as the curing agent for the resist may be used.
接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
Examples of adhesives include civil engineering, architectural, automotive, general office, and medical adhesives, as well as electronic material adhesives. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなど用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。
As sealing agents, potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip For example, underfill for sealing, etc., and sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
2.酸性硬化触媒とするカチオン硬化(硬化性樹脂組成物B)
酸性硬化触媒で本発明の硬化性樹脂組成物を硬化させる場合は、光重合開始剤あるいは熱重合開始剤を含有する。さらに、希釈剤、重合性モノマー、重合性オリゴマー、重合開始補助剤、光増感剤等の各種公知の化合物、材料等を含有していてもよい。また、所望に応じて無機充填材、着色顔料、紫外線吸収剤、酸化防止剤、安定剤等、各種公知の添加剤を含有してもよい。 2. Cationic curing as an acidic curing catalyst (curable resin composition B)
When the curable resin composition of the present invention is cured with an acidic curing catalyst, it contains a photopolymerization initiator or a thermal polymerization initiator. Furthermore, you may contain various well-known compounds, materials, such as a diluent, a polymerizable monomer, a polymerizable oligomer, a polymerization start adjuvant, a photosensitizer. Moreover, you may contain various well-known additives, such as an inorganic filler, a color pigment, a ultraviolet absorber, antioxidant, a stabilizer, as needed.
酸性硬化触媒で本発明の硬化性樹脂組成物を硬化させる場合は、光重合開始剤あるいは熱重合開始剤を含有する。さらに、希釈剤、重合性モノマー、重合性オリゴマー、重合開始補助剤、光増感剤等の各種公知の化合物、材料等を含有していてもよい。また、所望に応じて無機充填材、着色顔料、紫外線吸収剤、酸化防止剤、安定剤等、各種公知の添加剤を含有してもよい。 2. Cationic curing as an acidic curing catalyst (curable resin composition B)
When the curable resin composition of the present invention is cured with an acidic curing catalyst, it contains a photopolymerization initiator or a thermal polymerization initiator. Furthermore, you may contain various well-known compounds, materials, such as a diluent, a polymerizable monomer, a polymerizable oligomer, a polymerization start adjuvant, a photosensitizer. Moreover, you may contain various well-known additives, such as an inorganic filler, a color pigment, a ultraviolet absorber, antioxidant, a stabilizer, as needed.
硬化性樹脂組成物Bでは、カチオン重合が好ましく、光カチオン重合が特に好ましい。カチオンの触媒(以下、カチオン重合開始剤)としてはヨードニウム塩、スルホニウム塩、ジアゾニウム塩等のオニウム塩が挙げられ、これらは単独または2種以上で使用することができる。該カチオン重合開始剤の使用量は、エポキシ樹脂100重量部に対して、好ましくは、0.01~50重量部であり、より好ましくは、0.1~10重量部である。
In the curable resin composition B, cationic polymerization is preferable, and photocationic polymerization is particularly preferable. Examples of cationic catalysts (hereinafter referred to as cationic polymerization initiators) include onium salts such as iodonium salts, sulfonium salts, and diazonium salts, and these can be used alone or in combination of two or more. The amount of the cationic polymerization initiator used is preferably 0.01 to 50 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin.
さらに、これらのカチオン重合開始剤と公知の重合開始補助剤(および必要に応じて光増感剤)の1種または2種以上を同時に使用することが可能である。重合開始補助剤の例としては、例えば、ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノールプロパン-1-オン、N,N-ジメチルアミノアセトフェノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-イソプロピルチオキサトン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、アセトフェノンジメチルケタール、ベンゾフェノン、4-メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、ミヒラーズケトン等の重合開始剤が挙げられる。重合開始剤等の重合開始補助剤の使用量は、樹脂成分100重量部に対して、通常0.01~30重量部であり、好ましくは0.1~10重量部である。
Furthermore, it is possible to simultaneously use one or more of these cationic polymerization initiators and known polymerization initiation assistants (and photosensitizers as necessary). Examples of polymerization initiators include, for example, benzoin, benzyl, benzoin methyl ether, benzoin isopropyl ether, acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinolpropan-1-one, N, N-dimethylaminoacetophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1- Chloroanthraquinone, 2-amylanthraquinone, 2-isopropylthioxatone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, acetophenone di Chiruketaru, benzophenone, 4-methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bis-diethylamino benzophenone, and a polymerization initiator such as Michler's ketone. The amount of the polymerization initiation assistant such as a polymerization initiator used is usually 0.01 to 30 parts by weight, preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the resin component.
光増感剤の具体例としては、アントラセン、2-イソプロピルチオキサトン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、アクリジン オレンジ、アクリジン イエロー、ホスフィンR、ベンゾフラビン、セトフラビンT、ペリレン、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、トリエタノールアミン、トリエチルアミン等を挙げることができる。光増感剤の使用量は、エポキシ樹脂成分100重量部に対して、通常0.01~30重量部であり、好ましくは0.1~10重量部である。
Specific examples of the photosensitizer include anthracene, 2-isopropylthioxatone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, acridine orange, acridine yellow, phosphine R, benzo Examples include flavin, cetoflavin T, perylene, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, triethanolamine, and triethylamine. The amount of the photosensitizer used is usually 0.01 to 30 parts by weight, preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin component.
更に、本発明の硬化性樹脂組成物Bには、必要に応じて無機充填剤やシランカップリング材、離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。具体的な例としては前述の通りである。
Furthermore, various compounding agents such as inorganic fillers, silane coupling materials, mold release agents, pigments, and various thermosetting resins can be added to the curable resin composition B of the present invention as necessary. . Specific examples are as described above.
本発明の硬化性樹脂組成物Bは、各成分を均一に混合することにより得られる。またポリエチレングリコールモノエチルエーテルやシクロヘキサノン、γブチロラクトン等の有機溶剤に溶解させ、均一とした後、乾燥により溶剤を除去して使用することも可能である。この際の溶剤は、本発明の硬化性樹脂組成物Bと該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。本発明の硬化性樹脂組成物Bは熱硬化、および/または紫外線照射することにより硬化できる(例えば、参考文献:総説エポキシ樹脂 第1巻 基礎編I p82-84)が、その熱量、紫外線照射量については、硬化性樹脂組成物により変化するため、それぞれの硬化条件によって、決定される。硬化性樹脂組成物が硬化する熱量、および/または照射量であれば良く、目的に合わせた硬化物の強度が良好である硬化条件を満たしていれば良い。しかし、特に光硬化の場合、これらエポキシ樹脂系の光硬化では光照射のみでは完全に硬化することが難しく、耐熱性が求められる用途においては光照射後に加熱により完全に反応を終了させることが好ましい。この硬化の際、光が細部まで透過することが必要であることから本発明のエポキシ化合物、および硬化性樹脂組成物Bにおいては透明性の高いものが望まれる。
The curable resin composition B of the present invention can be obtained by uniformly mixing each component. It is also possible to dissolve in an organic solvent such as polyethylene glycol monoethyl ether, cyclohexanone, or γ-butyrolactone and make it uniform, and then use it after removing the solvent by drying. In this case, the solvent is used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight, in the mixture of the curable resin composition B of the present invention and the solvent. The curable resin composition B of the present invention can be cured by thermal curing and / or ultraviolet irradiation (for example, Reference: Review Epoxy Resin Vol. 1, Fundamental Edition I, p82-84). Since it varies depending on the curable resin composition, it is determined by the respective curing conditions. The amount of heat and / or the amount of irradiation for curing the curable resin composition may be sufficient as long as the curing conditions satisfying the purpose are satisfactory. However, especially in the case of photocuring, it is difficult to completely cure by light irradiation alone in these epoxy resin-based photocuring, and in applications where heat resistance is required, it is preferable to complete the reaction by heating after light irradiation. . Since it is necessary for light to be transmitted through the details during the curing, the epoxy compound of the present invention and the curable resin composition B are desired to be highly transparent.
前記、光照射後の加熱は通常の硬化性樹脂組成物Bの硬化温度域で良い。例えば常温~150℃で30分~7日間の範囲が好適である。硬化性樹脂組成物Bの配合により変化するが、特に高い温度域であればあるほど光照射後の硬化促進に効果があり、短時間の熱処理で効果がある。また、低温であればあるほど長時間の熱処理を要する。このような熱アフターキュアすることで、水分や被着有機物をエージング処理になるという効果も出る。
The heating after the light irradiation may be performed in the normal curing temperature range of the curable resin composition B. For example, the temperature is preferably from room temperature to 150 ° C. for 30 minutes to 7 days. Although it changes depending on the blending of the curable resin composition B, the higher the temperature range, the more effective the curing is after light irradiation, and the short heat treatment is effective. Further, the lower the temperature, the longer the heat treatment. By such heat after-curing, the effect of aging the moisture and the organic matter to be deposited is also obtained.
また、これら硬化性樹脂組成物Bを硬化させて得られる硬化物の形状も用途に応じて種々とりうるので特に限定されないが、例えばフィルム状、シート状、バルク状などの形状とすることもできる。成形する方法は各部位、部材によって異なり、例えば、キャスト法、注型法、スクリーン印刷法、スピンコート法、スプレー法、転写法、ディスペンサー方式などの成形方法を適用することができるが、これらに限定されるものではない。成形型は研磨ガラス、硬質ステンレス研磨板、ポリカーボネート板、ポリエチレンテレフタレート板、ポリメチルメタクリレート板等を適用することができる。また、成形型との離型性を向上させるために、ポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、ポリ塩化ビニルフィルム、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、ポリイミドフィルム等を適用することができる。
Moreover, since the shape of the cured product obtained by curing these curable resin compositions B can be variously selected depending on the application, it is not particularly limited. For example, it may be a film shape, a sheet shape, a bulk shape, or the like. . The molding method varies depending on each part and member. For example, a casting method, a casting method, a screen printing method, a spin coating method, a spray method, a transfer method, a dispenser method, etc. can be applied. It is not limited. As the mold, polishing glass, hard stainless steel polishing plate, polycarbonate plate, polyethylene terephthalate plate, polymethyl methacrylate plate, or the like can be applied. Moreover, in order to improve mold release properties, a polyethylene terephthalate film, a polycarbonate film, a polyvinyl chloride film, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a polyimide film, or the like can be applied.
例えばカチオン硬化性のレジストに使用する際においては、ポリエチレングリコールモノエチルエーテルやシクロヘキサノン、γブチロラクトン等の有機溶剤に溶解させた本発明の光カチオン硬化性樹脂組成物Bを銅張積層板やセラミック基板、ガラス基板等の基板上に、スクリーン印刷、スピンコート法などの手法によって、5~160μmの膜厚で本発明の組成物を塗布し、塗膜を60~110℃で予備乾燥させた後、所望のパターンの描かれたネガフィルムを通して紫外線(例えば低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、レーザー光等)を照射し、ついで、70~120℃で露光後ベーク処理を行う。その後ポリエチレングリコールモノエチルエーテル等の溶剤で未露光部分を溶解除去(現像)した後、さらに必要があれば紫外線の照射及び/または加熱(例えば100~200℃で0.5~3時間)によって十分な硬化を行い、硬化物を得る。このようにしてプリント配線板を得ることも可能である。
For example, when used for a cation curable resist, the photocation curable resin composition B of the present invention dissolved in an organic solvent such as polyethylene glycol monoethyl ether, cyclohexanone, and γ-butyrolactone is used as a copper-clad laminate or a ceramic substrate. The composition of the present invention was applied to a substrate such as a glass substrate with a film thickness of 5 to 160 μm by a method such as screen printing or spin coating, and the coating film was pre-dried at 60 to 110 ° C. Ultraviolet light (for example, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a laser beam, etc.) is irradiated through a negative film having a desired pattern, followed by post-exposure baking at 70 to 120 ° C. Thereafter, the unexposed portion is dissolved and removed (developed) with a solvent such as polyethylene glycol monoethyl ether, and if necessary, sufficient by irradiation with ultraviolet rays and / or heating (for example, at 100 to 200 ° C. for 0.5 to 3 hours). Curing is performed to obtain a cured product. In this way, it is also possible to obtain a printed wiring board.
本発明で得られる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。例えば、液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD-ROM、CD-R/RW、DVD-R/DVD-RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。
The cured product obtained in the present invention can be used for various applications including optical component materials. The optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to LED sealing materials such as lamp type and SMD type, the following may be mentioned. For example, it is a liquid crystal display peripheral material such as a substrate material, a light guide plate, a prism sheet, a deflector plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field. In addition, color PDP (plasma display) sealing materials, antireflection films, optical correction films, housing materials, front glass protective films, front glass replacement materials, adhesives, and LED displays that are expected as next-generation flat panel displays LED molding materials, LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate Front glass protective films, front glass substitute material, an adhesive. In the field of optical recording, VD (video disc), CD / CD-ROM, CD-R / RW, DVD-R / DVD-RAM, MO / MD, PD (phase change disc), disc substrate materials for optical cards, Pickup lenses, protective films, sealing materials, adhesives and the like.
光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光-光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。
In the field of optical equipment, they are steel camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor parts. It is also a photographic lens and viewfinder for video cameras. Projection lenses for projection televisions, protective films, sealing materials, adhesives, and the like. These include lens materials, sealing materials, adhesives, and films for optical sensing devices. In the field of optical components, they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems. Optical fiber materials, ferrules, sealing materials, adhesives, etc. around the optical connector. For optical passive components and optical circuit components, there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like. These are substrate materials, fiber materials, device sealing materials, adhesives, etc. around an optoelectronic integrated circuit (OEIC). In the field of optical fiber, it is an optical fiber for lighting, light guides for decorative displays, sensors for industrial use, displays / signs, etc., and for communication infrastructure and home digital equipment connection. As the semiconductor integrated circuit peripheral material, it is a resist material for microlithography for LSI and VLSI material. In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, automobile protection Rusted steel plates, interior panels, interior materials, protective / bundling wireness, fuel hoses, automobile lamps, glass replacements. In addition, it is a multilayer glass for railway vehicles. Further, they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wireness, and corrosion-resistant coatings. In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film. Next generation optical / electronic functional organic materials include peripheral materials for organic EL elements, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical computing elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなど用のアンダーフィル、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィル)などを挙げることができる。
As sealing agents, potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip Such as underfill for sealing, sealing (reinforcing underfill) when mounting IC packages such as BGA, CSP, and the like.
光学用材料の他の用途としては、硬化性樹脂組成物Aが使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
Other uses of the optical material include general uses in which the curable resin composition A is used. For example, adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), In addition to insulating materials (including printed circuit boards and wire coatings), sealants, additives to other resins and the like can be mentioned. Examples of the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。
また実施例において、エポキシ当量はJIS K-7236に準じて測定し、粘度は25℃においてE型粘度計を使用して測定を行った。またガスクロマトグラフィー(以下、GC)における分析条件は分離カラムにHP5-MS(0.25mm I.D.x15m,膜厚0.25μm)を用いて、カラムオーブン温度を初期温度100℃に設定し、毎分15℃の速度で昇温させ300℃で25分間保持した。またヘリウムをキャリヤーガスとした。さらにゲルパーミエーションクロマトグラフィー(以下、GPC)の測定においては以下の通りである。カラムは、Shodex SYSTEM-21カラム(KF-803L、KF-802.5(×2本)、KF-802)、連結溶離液はテトラヒドロフラン、流速は1ml/min.カラム温度は40℃、また検出はUV(254nm)で行い、検量線はShodex製標準ポリスチレンを使用した。 EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified. The present invention is not limited to these examples.
In the examples, the epoxy equivalent was measured according to JIS K-7236, and the viscosity was measured at 25 ° C. using an E-type viscometer. The analytical conditions in gas chromatography (hereinafter referred to as GC) were HP5-MS (0.25 mm ID × 15 m, film thickness 0.25 μm) for the separation column, and the column oven temperature was set to an initial temperature of 100 ° C. The temperature was raised at a rate of 15 ° C. per minute and held at 300 ° C. for 25 minutes. Helium was used as a carrier gas. Furthermore, in the measurement of gel permeation chromatography (hereinafter referred to as GPC), it is as follows. The column is a Shodex SYSTEM-21 column (KF-803L, KF-802.5 (× 2), KF-802), the coupled eluent is tetrahydrofuran, and the flow rate is 1 ml / min. The column temperature was 40 ° C., detection was performed at UV (254 nm), and a standard polystyrene manufactured by Shodex was used for the calibration curve.
また実施例において、エポキシ当量はJIS K-7236に準じて測定し、粘度は25℃においてE型粘度計を使用して測定を行った。またガスクロマトグラフィー(以下、GC)における分析条件は分離カラムにHP5-MS(0.25mm I.D.x15m,膜厚0.25μm)を用いて、カラムオーブン温度を初期温度100℃に設定し、毎分15℃の速度で昇温させ300℃で25分間保持した。またヘリウムをキャリヤーガスとした。さらにゲルパーミエーションクロマトグラフィー(以下、GPC)の測定においては以下の通りである。カラムは、Shodex SYSTEM-21カラム(KF-803L、KF-802.5(×2本)、KF-802)、連結溶離液はテトラヒドロフラン、流速は1ml/min.カラム温度は40℃、また検出はUV(254nm)で行い、検量線はShodex製標準ポリスチレンを使用した。 EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified. The present invention is not limited to these examples.
In the examples, the epoxy equivalent was measured according to JIS K-7236, and the viscosity was measured at 25 ° C. using an E-type viscometer. The analytical conditions in gas chromatography (hereinafter referred to as GC) were HP5-MS (0.25 mm ID × 15 m, film thickness 0.25 μm) for the separation column, and the column oven temperature was set to an initial temperature of 100 ° C. The temperature was raised at a rate of 15 ° C. per minute and held at 300 ° C. for 25 minutes. Helium was used as a carrier gas. Furthermore, in the measurement of gel permeation chromatography (hereinafter referred to as GPC), it is as follows. The column is a Shodex SYSTEM-21 column (KF-803L, KF-802.5 (× 2), KF-802), the coupled eluent is tetrahydrofuran, and the flow rate is 1 ml / min. The column temperature was 40 ° C., detection was performed at UV (254 nm), and a standard polystyrene manufactured by Shodex was used for the calibration curve.
[実施例1]
撹拌機、還流冷却管、撹拌装置を備えたフラスコをいったん真空にし、窒素置換した後、窒素パージを施しながら上記式(3)で表されるフェノール化合物(TPA1)(BisP-AP 本州化学工業製)102部、エピクロロヒドリン185部、メタノール100部を加え、水浴を75℃にまで昇温した。内温が65℃を越えたところでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に70℃で1時間後反応を行った。反応終了後水洗を行い、油層からロータリーエバポレータを用いて140℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチルケトン400部を加え溶解し、70℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液8部を加え、1時間反応を行った後、洗浄水が中性になるまで水洗を行い、得られた溶液を、ロータリーエバポレータを用いて180℃で減圧下にメチルイソブチルケトン等を留去することでエポキシ樹脂(EP1)を175部得た。得られたエポキシ樹脂のエポキシ当量は229g/eq.、軟化点が51℃、色相0.2以下(ガードナー 40%MEK溶液)であった。またトリグリシジルエーテル構造が57面積%、テトラグリシジルエーテル体が23面積%であり合計が80面積%であった。また、それ以上の高分子量体が13面積%(GPC)であった。 [Example 1]
A flask equipped with a stirrer, a reflux condenser, and a stirrer was once evacuated, purged with nitrogen, and then purged with nitrogen, then the phenol compound (TPA1) represented by the above formula (3) (BisP-AP manufactured by Honshu Chemical Industry Co., Ltd.) ) 102 parts, 185 parts epichlorohydrin, and 100 parts methanol were added, and the temperature of the water bath was raised to 75 ° C. When the internal temperature exceeded 65 ° C., 42 parts of flaky sodium hydroxide was added in portions over 90 minutes, and the reaction was further carried out at 70 ° C. for 1 hour. After completion of the reaction, washing was performed, and excess solvent such as epichlorohydrin was distilled off from the oil layer under reduced pressure at 140 ° C. using a rotary evaporator. To the residue, 400 parts of methyl isobutyl ketone was added and dissolved, and the temperature was raised to 70 ° C. Under stirring, 8 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was carried out for 1 hour, followed by washing with water until the washing water became neutral, and the resulting solution was obtained at 180 ° C. using a rotary evaporator. 175 parts of epoxy resin (EP1) was obtained by distilling off methyl isobutyl ketone and the like under reduced pressure. The epoxy equivalent of the obtained epoxy resin was 229 g / eq. The softening point was 51 ° C. and the hue was 0.2 or less (Gardner 40% MEK solution). The triglycidyl ether structure was 57 area%, the tetraglycidyl ether body was 23 area%, and the total was 80 area%. Moreover, the higher molecular weight body was 13 area% (GPC).
撹拌機、還流冷却管、撹拌装置を備えたフラスコをいったん真空にし、窒素置換した後、窒素パージを施しながら上記式(3)で表されるフェノール化合物(TPA1)(BisP-AP 本州化学工業製)102部、エピクロロヒドリン185部、メタノール100部を加え、水浴を75℃にまで昇温した。内温が65℃を越えたところでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に70℃で1時間後反応を行った。反応終了後水洗を行い、油層からロータリーエバポレータを用いて140℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチルケトン400部を加え溶解し、70℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液8部を加え、1時間反応を行った後、洗浄水が中性になるまで水洗を行い、得られた溶液を、ロータリーエバポレータを用いて180℃で減圧下にメチルイソブチルケトン等を留去することでエポキシ樹脂(EP1)を175部得た。得られたエポキシ樹脂のエポキシ当量は229g/eq.、軟化点が51℃、色相0.2以下(ガードナー 40%MEK溶液)であった。またトリグリシジルエーテル構造が57面積%、テトラグリシジルエーテル体が23面積%であり合計が80面積%であった。また、それ以上の高分子量体が13面積%(GPC)であった。 [Example 1]
A flask equipped with a stirrer, a reflux condenser, and a stirrer was once evacuated, purged with nitrogen, and then purged with nitrogen, then the phenol compound (TPA1) represented by the above formula (3) (BisP-AP manufactured by Honshu Chemical Industry Co., Ltd.) ) 102 parts, 185 parts epichlorohydrin, and 100 parts methanol were added, and the temperature of the water bath was raised to 75 ° C. When the internal temperature exceeded 65 ° C., 42 parts of flaky sodium hydroxide was added in portions over 90 minutes, and the reaction was further carried out at 70 ° C. for 1 hour. After completion of the reaction, washing was performed, and excess solvent such as epichlorohydrin was distilled off from the oil layer under reduced pressure at 140 ° C. using a rotary evaporator. To the residue, 400 parts of methyl isobutyl ketone was added and dissolved, and the temperature was raised to 70 ° C. Under stirring, 8 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was carried out for 1 hour, followed by washing with water until the washing water became neutral, and the resulting solution was obtained at 180 ° C. using a rotary evaporator. 175 parts of epoxy resin (EP1) was obtained by distilling off methyl isobutyl ketone and the like under reduced pressure. The epoxy equivalent of the obtained epoxy resin was 229 g / eq. The softening point was 51 ° C. and the hue was 0.2 or less (Gardner 40% MEK solution). The triglycidyl ether structure was 57 area%, the tetraglycidyl ether body was 23 area%, and the total was 80 area%. Moreover, the higher molecular weight body was 13 area% (GPC).
[実施例2]
撹拌機、還流冷却管、撹拌装置を備えたフラスコをいったん真空にし、窒素置換した後、窒素パージを施しながらフェノール化合物(TPA1)(BisP-AP 本州化学工業製)102部、エピクロロヒドリン185部、ジメチルスルホキシド150部を加え、水浴を45℃にまで昇温した。内温が45℃を越えたところでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に45℃で2時間、70℃で1時間後反応を行った。油層からロータリーエバポレータを用いて140℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチルケトン400部を加え溶解し、反応終了後水洗を行い、得られた有機層を70℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液8部を加え、1時間反応を行った後、洗浄水が中性になるまで水洗を行い、得られた溶液を、ロータリーエバポレータを用いて180℃で減圧下にメチルイソブチルケトン等を留去することでエポキシ樹脂(EP2)を171部得た。得られたエポキシ樹脂のエポキシ当量は165g/eq.、軟化点が53℃、色相0.2以下(ガードナー 40%MEK溶液)であった。またトリグリシジルエーテル構造が58面積%、テトラグリシジルエーテル体が25面積%であり合計が83面積%であった。また、それ以上の高分子量体が15面積%(GPC)であった。 [Example 2]
A flask equipped with a stirrer, a reflux condenser, and a stirrer was once evacuated and purged with nitrogen. Then, while purging with nitrogen, 102 parts of a phenol compound (TPA1) (BisP-AP manufactured by Honshu Chemical Industry), epichlorohydrin 185 And 150 parts of dimethyl sulfoxide were added, and the temperature of the water bath was raised to 45 ° C. When the internal temperature exceeded 45 ° C., 42 parts of flaky sodium hydroxide was added in portions over 90 minutes, and the reaction was further carried out at 45 ° C. for 2 hours and at 70 ° C. for 1 hour. Excess solvent such as epichlorohydrin was distilled off from the oil layer under reduced pressure at 140 ° C. using a rotary evaporator. 400 parts of methyl isobutyl ketone was added to the residue to dissolve it, washed with water after completion of the reaction, and the resulting organic layer was heated to 70 ° C. Under stirring, 8 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was carried out for 1 hour, followed by washing with water until the washing water became neutral, and the resulting solution was obtained at 180 ° C. using a rotary evaporator. 171 parts of epoxy resin (EP2) was obtained by distilling off methyl isobutyl ketone and the like under reduced pressure. The epoxy equivalent of the obtained epoxy resin is 165 g / eq. The softening point was 53 ° C. and the hue was 0.2 or less (Gardner 40% MEK solution). The triglycidyl ether structure was 58 area%, the tetraglycidyl ether body was 25 area%, and the total was 83 area%. Moreover, the higher molecular weight body was 15 area% (GPC).
撹拌機、還流冷却管、撹拌装置を備えたフラスコをいったん真空にし、窒素置換した後、窒素パージを施しながらフェノール化合物(TPA1)(BisP-AP 本州化学工業製)102部、エピクロロヒドリン185部、ジメチルスルホキシド150部を加え、水浴を45℃にまで昇温した。内温が45℃を越えたところでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に45℃で2時間、70℃で1時間後反応を行った。油層からロータリーエバポレータを用いて140℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチルケトン400部を加え溶解し、反応終了後水洗を行い、得られた有機層を70℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液8部を加え、1時間反応を行った後、洗浄水が中性になるまで水洗を行い、得られた溶液を、ロータリーエバポレータを用いて180℃で減圧下にメチルイソブチルケトン等を留去することでエポキシ樹脂(EP2)を171部得た。得られたエポキシ樹脂のエポキシ当量は165g/eq.、軟化点が53℃、色相0.2以下(ガードナー 40%MEK溶液)であった。またトリグリシジルエーテル構造が58面積%、テトラグリシジルエーテル体が25面積%であり合計が83面積%であった。また、それ以上の高分子量体が15面積%(GPC)であった。 [Example 2]
A flask equipped with a stirrer, a reflux condenser, and a stirrer was once evacuated and purged with nitrogen. Then, while purging with nitrogen, 102 parts of a phenol compound (TPA1) (BisP-AP manufactured by Honshu Chemical Industry), epichlorohydrin 185 And 150 parts of dimethyl sulfoxide were added, and the temperature of the water bath was raised to 45 ° C. When the internal temperature exceeded 45 ° C., 42 parts of flaky sodium hydroxide was added in portions over 90 minutes, and the reaction was further carried out at 45 ° C. for 2 hours and at 70 ° C. for 1 hour. Excess solvent such as epichlorohydrin was distilled off from the oil layer under reduced pressure at 140 ° C. using a rotary evaporator. 400 parts of methyl isobutyl ketone was added to the residue to dissolve it, washed with water after completion of the reaction, and the resulting organic layer was heated to 70 ° C. Under stirring, 8 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was carried out for 1 hour, followed by washing with water until the washing water became neutral, and the resulting solution was obtained at 180 ° C. using a rotary evaporator. 171 parts of epoxy resin (EP2) was obtained by distilling off methyl isobutyl ketone and the like under reduced pressure. The epoxy equivalent of the obtained epoxy resin is 165 g / eq. The softening point was 53 ° C. and the hue was 0.2 or less (Gardner 40% MEK solution). The triglycidyl ether structure was 58 area%, the tetraglycidyl ether body was 25 area%, and the total was 83 area%. Moreover, the higher molecular weight body was 15 area% (GPC).
[合成例1]
撹拌機、還流冷却管、撹拌装置を備えたフラスコを窒素置換した後、窒素パージを施しながらフェノール化合物(TPA1)(BisP-AP 本州化学工業製)102部、エピクロロヒドリン370部、メタノール37部を加え、水浴を75℃にまで昇温した。内温が65℃を越えたところでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に70℃で1時間後反応を行った。反応終了後水洗を行い、油層からロータリーエバポレータを用いて140℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチルケトン400部を加え溶解し、70℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液8部を加え、1時間反応を行った後、洗浄水が中性になるまで水洗を行い、得られた溶液を、ロータリーエバポレータを用いて180℃で減圧下にメチルイソブチルケトン等を留去することで比較用のエポキシ樹脂(EP3)を178部得た。得られたエポキシ樹脂のエポキシ当量は164g/eq.、軟化点が半固形(<45℃以下)、ICI溶融粘度0.04Pa・s(150℃)、色相0.2以下(ガードナー 40%MEK溶液)であった。またトリグリシジルエーテル構造が87面積%、テトラグリシジルエーテル体が10面積%であり合計が97面積%であった。また、それ以上の高分子量体が1面積%未満(GPC)であった。 [Synthesis Example 1]
A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen, and then purged with nitrogen, and 102 parts of phenol compound (TPA1) (BisP-AP manufactured by Honshu Chemical Industry), 370 parts of epichlorohydrin, methanol 37 And the water bath was heated to 75 ° C. When the internal temperature exceeded 65 ° C., 42 parts of flaky sodium hydroxide was added in portions over 90 minutes, and the reaction was further carried out at 70 ° C. for 1 hour. After completion of the reaction, washing was performed, and excess solvent such as epichlorohydrin was distilled off from the oil layer under reduced pressure at 140 ° C. using a rotary evaporator. To the residue, 400 parts of methyl isobutyl ketone was added and dissolved, and the temperature was raised to 70 ° C. Under stirring, 8 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was carried out for 1 hour, followed by washing with water until the washing water became neutral, and the resulting solution was obtained at 180 ° C. using a rotary evaporator. By distilling off methyl isobutyl ketone and the like under reduced pressure, 178 parts of a comparative epoxy resin (EP3) was obtained. The epoxy equivalent of the obtained epoxy resin is 164 g / eq. The softening point was semi-solid (<45 ° C. or lower), ICI melt viscosity 0.04 Pa · s (150 ° C.), and hue 0.2 or lower (Gardner 40% MEK solution). The triglycidyl ether structure was 87 area%, the tetraglycidyl ether body was 10 area%, and the total was 97 area%. Moreover, the higher molecular weight body was less than 1 area% (GPC).
撹拌機、還流冷却管、撹拌装置を備えたフラスコを窒素置換した後、窒素パージを施しながらフェノール化合物(TPA1)(BisP-AP 本州化学工業製)102部、エピクロロヒドリン370部、メタノール37部を加え、水浴を75℃にまで昇温した。内温が65℃を越えたところでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に70℃で1時間後反応を行った。反応終了後水洗を行い、油層からロータリーエバポレータを用いて140℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチルケトン400部を加え溶解し、70℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液8部を加え、1時間反応を行った後、洗浄水が中性になるまで水洗を行い、得られた溶液を、ロータリーエバポレータを用いて180℃で減圧下にメチルイソブチルケトン等を留去することで比較用のエポキシ樹脂(EP3)を178部得た。得られたエポキシ樹脂のエポキシ当量は164g/eq.、軟化点が半固形(<45℃以下)、ICI溶融粘度0.04Pa・s(150℃)、色相0.2以下(ガードナー 40%MEK溶液)であった。またトリグリシジルエーテル構造が87面積%、テトラグリシジルエーテル体が10面積%であり合計が97面積%であった。また、それ以上の高分子量体が1面積%未満(GPC)であった。 [Synthesis Example 1]
A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen, and then purged with nitrogen, and 102 parts of phenol compound (TPA1) (BisP-AP manufactured by Honshu Chemical Industry), 370 parts of epichlorohydrin, methanol 37 And the water bath was heated to 75 ° C. When the internal temperature exceeded 65 ° C., 42 parts of flaky sodium hydroxide was added in portions over 90 minutes, and the reaction was further carried out at 70 ° C. for 1 hour. After completion of the reaction, washing was performed, and excess solvent such as epichlorohydrin was distilled off from the oil layer under reduced pressure at 140 ° C. using a rotary evaporator. To the residue, 400 parts of methyl isobutyl ketone was added and dissolved, and the temperature was raised to 70 ° C. Under stirring, 8 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was carried out for 1 hour, followed by washing with water until the washing water became neutral, and the resulting solution was obtained at 180 ° C. using a rotary evaporator. By distilling off methyl isobutyl ketone and the like under reduced pressure, 178 parts of a comparative epoxy resin (EP3) was obtained. The epoxy equivalent of the obtained epoxy resin is 164 g / eq. The softening point was semi-solid (<45 ° C. or lower), ICI melt viscosity 0.04 Pa · s (150 ° C.), and hue 0.2 or lower (Gardner 40% MEK solution). The triglycidyl ether structure was 87 area%, the tetraglycidyl ether body was 10 area%, and the total was 97 area%. Moreover, the higher molecular weight body was less than 1 area% (GPC).
[実施例3、4、5および比較例1、2]
前記で得られたエポキシ樹脂(EP1、EP2)と比較用のエポキシ樹脂(EP3)について、硬化剤としてフェノールノボラック、フェノールアラルキル樹脂を、硬化促進剤としてトリフェニルフォスフィン(TPP)を配合し、ミキシングロールを用いて均一に混合・混練し、それぞれのエポキシ樹脂を含む封止用硬化性樹脂組成物を得た。
この硬化性樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。このタブレット化された硬化性樹脂組成物をトランスファー成型(175℃×60秒)し、更に脱型後160℃×2時間+180℃×6時間の条件で硬化し、それぞれのエポキシ樹脂の評価用試験片を得た。
なお、硬化物の物性は以下の要領で測定した。結果を以下の表1に示す。
<TMA測定条件>
熱機械測定装置 真空理工(株)製 TM-7000 昇温速度:2℃/分 [Examples 3, 4, and 5 and Comparative Examples 1 and 2]
About the epoxy resin (EP1, EP2) obtained above and the epoxy resin for comparison (EP3), phenol novolak and phenol aralkyl resin are blended as a curing agent, and triphenylphosphine (TPP) is blended as a curing accelerator. Using a roll, the mixture was uniformly mixed and kneaded to obtain a curable resin composition for sealing containing each epoxy resin.
The curable resin composition was pulverized with a mixer and further tableted with a tablet machine. This tableted curable resin composition was transfer molded (175 ° C. × 60 seconds), and after demolding, cured under the conditions of 160 ° C. × 2 hours + 180 ° C. × 6 hours. I got a piece.
In addition, the physical property of hardened | cured material was measured in the following ways. The results are shown in Table 1 below.
<TMA measurement conditions>
Thermo-mechanical measuring device TM-7000, manufactured by Vacuum Riko Co., Ltd.
前記で得られたエポキシ樹脂(EP1、EP2)と比較用のエポキシ樹脂(EP3)について、硬化剤としてフェノールノボラック、フェノールアラルキル樹脂を、硬化促進剤としてトリフェニルフォスフィン(TPP)を配合し、ミキシングロールを用いて均一に混合・混練し、それぞれのエポキシ樹脂を含む封止用硬化性樹脂組成物を得た。
この硬化性樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。このタブレット化された硬化性樹脂組成物をトランスファー成型(175℃×60秒)し、更に脱型後160℃×2時間+180℃×6時間の条件で硬化し、それぞれのエポキシ樹脂の評価用試験片を得た。
なお、硬化物の物性は以下の要領で測定した。結果を以下の表1に示す。
<TMA測定条件>
熱機械測定装置 真空理工(株)製 TM-7000 昇温速度:2℃/分 [Examples 3, 4, and 5 and Comparative Examples 1 and 2]
About the epoxy resin (EP1, EP2) obtained above and the epoxy resin for comparison (EP3), phenol novolak and phenol aralkyl resin are blended as a curing agent, and triphenylphosphine (TPP) is blended as a curing accelerator. Using a roll, the mixture was uniformly mixed and kneaded to obtain a curable resin composition for sealing containing each epoxy resin.
The curable resin composition was pulverized with a mixer and further tableted with a tablet machine. This tableted curable resin composition was transfer molded (175 ° C. × 60 seconds), and after demolding, cured under the conditions of 160 ° C. × 2 hours + 180 ° C. × 6 hours. I got a piece.
In addition, the physical property of hardened | cured material was measured in the following ways. The results are shown in Table 1 below.
<TMA measurement conditions>
Thermo-mechanical measuring device TM-7000, manufactured by Vacuum Riko Co., Ltd.
同一の硬化剤を使用した実施例と比較例(実施例3、4と比較例1、および、実施例5と比較例2)の結果を比較することにより、本発明のエポキシ樹脂は耐熱性に優れることが明らかとなった。
By comparing the results of Examples and Comparative Examples (Examples 3 and 4 and Comparative Example 1 and Examples 5 and 2) using the same curing agent, the epoxy resin of the present invention has improved heat resistance. It became clear that it was excellent.
[実施例6、7および比較例3~13]
前記で得られたエポキシ樹脂(EP1、2)と比較用のエポキシ樹脂(EP3~EP13)を用いた。なお、EP4~EP13のエポキシ樹脂(すべて日本化薬(株)製品)それぞれの詳細は以下の表2に示した通りである。 [Examples 6 and 7 and Comparative Examples 3 to 13]
The epoxy resins (EP1 and EP2) obtained above and comparative epoxy resins (EP3 to EP13) were used. Details of each of the epoxy resins EP4 to EP13 (all products of Nippon Kayaku Co., Ltd.) are as shown in Table 2 below.
前記で得られたエポキシ樹脂(EP1、2)と比較用のエポキシ樹脂(EP3~EP13)を用いた。なお、EP4~EP13のエポキシ樹脂(すべて日本化薬(株)製品)それぞれの詳細は以下の表2に示した通りである。 [Examples 6 and 7 and Comparative Examples 3 to 13]
The epoxy resins (EP1 and EP2) obtained above and comparative epoxy resins (EP3 to EP13) were used. Details of each of the epoxy resins EP4 to EP13 (all products of Nippon Kayaku Co., Ltd.) are as shown in Table 2 below.
硬化剤としてフェノールノボラックをエポキシ樹脂と等当量、硬化促進剤としてトリトルイルフォスフィン(TPTP)をエポキシ樹脂に対し1重量%配合し、ミキシングロールを用いて均一に混合・混練し、それぞれのエポキシ樹脂を含む封止用硬化性樹脂組成物を得た。この硬化性樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。このタブレット化された硬化性樹脂組成物をトランスファー成型(175℃×40秒)し、更に脱型後160℃×2時間+180℃×6時間の条件で硬化し、それぞれのエポキシ樹脂の評価用試験片を得た。
なお、硬化物の物性は以下の要領で測定した。結果を以下の表3に示す。 Phenol novolac as the curing agent is equivalent to the epoxy resin, and 1% by weight of tritoluylphosphine (TPTP) as the curing accelerator is mixed with the epoxy resin, and mixed and kneaded uniformly using a mixing roll. A curable resin composition for sealing was obtained. The curable resin composition was pulverized with a mixer and further tableted with a tablet machine. This tableted curable resin composition is transfer molded (175 ° C. × 40 seconds), further demolded and cured under the conditions of 160 ° C. × 2 hours + 180 ° C. × 6 hours, and each epoxy resin evaluation test I got a piece.
In addition, the physical property of hardened | cured material was measured in the following ways. The results are shown in Table 3 below.
なお、硬化物の物性は以下の要領で測定した。結果を以下の表3に示す。 Phenol novolac as the curing agent is equivalent to the epoxy resin, and 1% by weight of tritoluylphosphine (TPTP) as the curing accelerator is mixed with the epoxy resin, and mixed and kneaded uniformly using a mixing roll. A curable resin composition for sealing was obtained. The curable resin composition was pulverized with a mixer and further tableted with a tablet machine. This tableted curable resin composition is transfer molded (175 ° C. × 40 seconds), further demolded and cured under the conditions of 160 ° C. × 2 hours + 180 ° C. × 6 hours, and each epoxy resin evaluation test I got a piece.
In addition, the physical property of hardened | cured material was measured in the following ways. The results are shown in Table 3 below.
<TMA測定条件>
熱機械測定装置 真空理工(株)製 TM-7000 昇温速度:2℃/分
<Td5:5%熱重量減少温度>
得られた硬化物を粉砕し粉状にしたものを100メッシュの金網を通過し、200メッシュの金網状に残る粒径をそろえたサンプルを用い、TG-DTAにより、熱分解温度を測定した。サンプル使用量約10mg、昇温速度:10℃/min. 空気200mL/hrでフローした状態で測定を行い、5%の重量減少があった温度を評価した。 <TMA measurement conditions>
Thermomechanical measuring device TM-7000, manufactured by Vacuum Riko Co., Ltd.
The obtained cured product was pulverized and powdered, passed through a 100-mesh wire mesh, and a sample with the same particle size remaining in a 200-mesh wire mesh was used to measure the thermal decomposition temperature by TG-DTA. Sample usage amount of about 10 mg, temperature increase rate: 10 ° C./min. Measurement was performed in a state where the air flowed at 200 mL / hr, and the temperature at which the weight loss was 5% was evaluated.
熱機械測定装置 真空理工(株)製 TM-7000 昇温速度:2℃/分
<Td5:5%熱重量減少温度>
得られた硬化物を粉砕し粉状にしたものを100メッシュの金網を通過し、200メッシュの金網状に残る粒径をそろえたサンプルを用い、TG-DTAにより、熱分解温度を測定した。サンプル使用量約10mg、昇温速度:10℃/min. 空気200mL/hrでフローした状態で測定を行い、5%の重量減少があった温度を評価した。 <TMA measurement conditions>
Thermomechanical measuring device TM-7000, manufactured by Vacuum Riko Co., Ltd.
The obtained cured product was pulverized and powdered, passed through a 100-mesh wire mesh, and a sample with the same particle size remaining in a 200-mesh wire mesh was used to measure the thermal decomposition temperature by TG-DTA. Sample usage amount of about 10 mg, temperature increase rate: 10 ° C./min. Measurement was performed in a state where the air flowed at 200 mL / hr, and the temperature at which the weight loss was 5% was evaluated.
また上記結果をグラフ化し、グラフに示した(図参照)。
Also, the above results were graphed and shown in the graph (see figure).
以上の結果から本発明のエポキシ樹脂、およびその組成物は耐熱性だけでなく、耐熱分解性に優れた硬化物を与えることが明らかとなった。
このことは樹脂骨格の安定性が良好であることを示し、耐熱着色性等の特性においても優れることがわかる。 From the above results, it has been clarified that the epoxy resin of the present invention and the composition thereof give a cured product excellent in not only heat resistance but also heat decomposition resistance.
This indicates that the stability of the resin skeleton is good, and it is understood that the properties such as heat-resistant coloration are also excellent.
このことは樹脂骨格の安定性が良好であることを示し、耐熱着色性等の特性においても優れることがわかる。 From the above results, it has been clarified that the epoxy resin of the present invention and the composition thereof give a cured product excellent in not only heat resistance but also heat decomposition resistance.
This indicates that the stability of the resin skeleton is good, and it is understood that the properties such as heat-resistant coloration are also excellent.
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本出願は、2014年2月6日付で出願された日本国特許出願(特願2014-020897)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on February 6, 2014 (Japanese Patent Application No. 2014-020897), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
なお、本出願は、2014年2月6日付で出願された日本国特許出願(特願2014-020897)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on February 6, 2014 (Japanese Patent Application No. 2014-020897), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
本発明のエポキシ樹脂は耐熱性が高くかつ熱安定性に優れるので、本発明のエポキシ樹脂を含む樹脂組成物は、電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く使用することができる。また高い耐着色性が必要とする光学用途においても、発光強度が高い明かりの周辺部材における熱に耐えられる耐熱性を有するので、着色原因となる熱等による分解・劣化を回避することができ有用である。
Since the epoxy resin of the present invention has high heat resistance and excellent thermal stability, the resin composition containing the epoxy resin of the present invention is widely used in the fields of electric / electronic parts, structural materials, adhesives, paints and the like. be able to. Also in optical applications where high color resistance is required, it has heat resistance that can withstand the heat of peripheral members with high light emission intensity, so it can be useful to avoid decomposition and deterioration due to heat that causes coloration. It is.
Claims (8)
- 下記式(1)で表されるエポキシ樹脂であって、
ゲルパーミエーションクロマトグラフィーで測定したチャートの全面積中、トリグリシジルエーテル体が40~75面積%を、テトラグリシジルエーテル体が12~40面積%を占め、かつ、トリグリシジルエーテル体とテトラグリシジルエーテル体の合計が52~90面積%であり、
該テトラグリシジルエーテル体が、下記式(2)で表される構造を有するエポキシ樹脂。
Of the total area of the chart measured by gel permeation chromatography, triglycidyl ether forms 40 to 75 area%, tetraglycidyl ether forms 12 to 40 area%, and triglycidyl ether and tetraglycidyl ether forms. Is a total of 52 to 90 area%,
An epoxy resin in which the tetraglycidyl ether has a structure represented by the following formula (2).
- 軟化点が45~65℃であり、かつ、エポキシ当量が165~180g/eq.である請求項1または2に記載のエポキシ樹脂。 Softening point is 45 to 65 ° C. and epoxy equivalent is 165 to 180 g / eq. The epoxy resin according to claim 1 or 2.
- 式(3)の化合物をエピハロヒドリンと反応させた後、トルエンまたは炭素数4~7のケトン化合物の溶液とし、金属水酸化物水溶液で後処理することにより得られる請求項2または3に記載のエポキシ樹脂。 The epoxy according to claim 2 or 3, obtained by reacting a compound of formula (3) with epihalohydrin, followed by post-treatment with toluene or an aqueous metal hydroxide solution as a solution of a ketone compound having 4 to 7 carbon atoms. resin.
- 請求項1~4のいずれか一項に記載のエポキシ樹脂と硬化剤とを含有する硬化性樹脂組成物。 A curable resin composition comprising the epoxy resin according to any one of claims 1 to 4 and a curing agent.
- 硬化剤がフェノール樹脂構造を有する樹脂である請求項5に記載の硬化性樹脂組成物。 The curable resin composition according to claim 5, wherein the curing agent is a resin having a phenol resin structure.
- 硬化剤として酸無水物、多価カルボン酸の少なくとも1つを含有する請求項5または6に記載の硬化性樹脂組成物。 The curable resin composition according to claim 5 or 6, comprising at least one of an acid anhydride and a polyvalent carboxylic acid as a curing agent.
- 請求項5~7のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 5 to 7.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580005740.7A CN105980440A (en) | 2014-02-06 | 2015-02-05 | Epoxy resin, curable resin composition, and cured product thereof |
KR1020167011126A KR102226437B1 (en) | 2014-02-06 | 2015-02-05 | Epoxy resin, curable resin composition, and cured product thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014020897A JP6366052B2 (en) | 2014-02-06 | 2014-02-06 | Modified epoxy resin and curable resin composition |
JP2014-020897 | 2014-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015119188A1 true WO2015119188A1 (en) | 2015-08-13 |
Family
ID=53777989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053214 WO2015119188A1 (en) | 2014-02-06 | 2015-02-05 | Epoxy resin, curable resin composition, and cured product thereof |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6366052B2 (en) |
KR (1) | KR102226437B1 (en) |
CN (1) | CN105980440A (en) |
TW (1) | TWI659974B (en) |
WO (1) | WO2015119188A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7132385B1 (en) | 2021-03-30 | 2022-09-06 | 日本化薬株式会社 | Epoxy resin, curable resin composition, and cured product thereof |
WO2023008231A1 (en) * | 2021-07-30 | 2023-02-02 | 日本化薬株式会社 | Epoxy resin, curable resin composition, and cured products thereof |
JP7251006B1 (en) | 2021-10-22 | 2023-04-03 | 日本化薬株式会社 | Phenolic resins, epoxy resins, curable resin compositions, and cured products thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4830799A (en) * | 1971-08-19 | 1973-04-23 | ||
JPH01268714A (en) * | 1988-04-21 | 1989-10-26 | Dainippon Ink & Chem Inc | Novel epoxy resin composition |
JP2001247650A (en) * | 2000-03-02 | 2001-09-11 | Sumitomo Bakelite Co Ltd | Epoxy resin composition for encapsulation of optical semiconductor, and optical semiconductor device |
JP2001278946A (en) * | 2000-03-31 | 2001-10-10 | Nippon Kayaku Co Ltd | Epoxy resin, epoxy resin composition and its cured product |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4394496A (en) * | 1971-08-19 | 1983-07-19 | The Dow Chemical Company | Epoxidation products of 1,1,1-tri-(hydroxyphenyl) alkanes |
-
2014
- 2014-02-06 JP JP2014020897A patent/JP6366052B2/en active Active
-
2015
- 2015-02-05 KR KR1020167011126A patent/KR102226437B1/en active IP Right Grant
- 2015-02-05 CN CN201580005740.7A patent/CN105980440A/en active Pending
- 2015-02-05 WO PCT/JP2015/053214 patent/WO2015119188A1/en active Application Filing
- 2015-02-06 TW TW104104023A patent/TWI659974B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4830799A (en) * | 1971-08-19 | 1973-04-23 | ||
JPH01268714A (en) * | 1988-04-21 | 1989-10-26 | Dainippon Ink & Chem Inc | Novel epoxy resin composition |
JP2001247650A (en) * | 2000-03-02 | 2001-09-11 | Sumitomo Bakelite Co Ltd | Epoxy resin composition for encapsulation of optical semiconductor, and optical semiconductor device |
JP2001278946A (en) * | 2000-03-31 | 2001-10-10 | Nippon Kayaku Co Ltd | Epoxy resin, epoxy resin composition and its cured product |
Also Published As
Publication number | Publication date |
---|---|
TWI659974B (en) | 2019-05-21 |
JP2015147854A (en) | 2015-08-20 |
TW201536830A (en) | 2015-10-01 |
JP6366052B2 (en) | 2018-08-01 |
CN105980440A (en) | 2016-09-28 |
KR102226437B1 (en) | 2021-03-11 |
KR20160118208A (en) | 2016-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6240069B2 (en) | Epoxy resin composition, cured product thereof, and curable resin composition | |
JP5517237B2 (en) | Method for producing epoxy compound, epoxy compound, curable resin composition and cured product thereof | |
JP6090765B2 (en) | Phenol resin, epoxy resin, and curable resin composition | |
JP5294771B2 (en) | Method for producing epoxy compound | |
WO2015119188A1 (en) | Epoxy resin, curable resin composition, and cured product thereof | |
JP5430337B2 (en) | Diolefin compound, epoxy resin, curable resin composition and cured product thereof | |
JP5388493B2 (en) | Method for producing epoxy compound | |
JP5780627B2 (en) | Method for producing epoxy compound | |
JP6016647B2 (en) | Epoxy resin and curable resin composition | |
JP5294772B2 (en) | Method for producing epoxy compound | |
JP5505960B2 (en) | Diolefin compound, epoxy resin, curable resin composition and cured product thereof | |
JP5088952B2 (en) | Epoxy resin, production method thereof and use thereof | |
JP6284732B2 (en) | Epoxy resin mixture and curable resin composition | |
JP5748191B2 (en) | Method for producing epoxy compound | |
JP2007204604A (en) | Liquid epoxy resin, epoxy resin composition and cured product | |
JP5878865B2 (en) | Diolefin compound, epoxy resin, curable resin composition and cured product thereof | |
JP2010083836A (en) | Method for producing epoxy compound, and catalyst | |
JP5004147B2 (en) | Liquid epoxy resin, epoxy resin composition and cured product thereof | |
JP5196663B2 (en) | Diolefin compound, epoxy resin, curable resin composition and cured product thereof | |
JP5388531B2 (en) | Method for producing epoxy compound | |
JP2010254628A (en) | Diolefin compound, epoxy compound, curable resin composition and cured product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15746236 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167011126 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15746236 Country of ref document: EP Kind code of ref document: A1 |