WO2017221581A1 - Lead frame - Google Patents

Lead frame Download PDF

Info

Publication number
WO2017221581A1
WO2017221581A1 PCT/JP2017/017960 JP2017017960W WO2017221581A1 WO 2017221581 A1 WO2017221581 A1 WO 2017221581A1 JP 2017017960 W JP2017017960 W JP 2017017960W WO 2017221581 A1 WO2017221581 A1 WO 2017221581A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead frame
connecting bar
lead
short direction
bars
Prior art date
Application number
PCT/JP2017/017960
Other languages
French (fr)
Japanese (ja)
Inventor
石橋 貴弘
Original Assignee
株式会社三井ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井ハイテック filed Critical 株式会社三井ハイテック
Priority to CN201780039299.3A priority Critical patent/CN109417063A/en
Publication of WO2017221581A1 publication Critical patent/WO2017221581A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the disclosed embodiment relates to a lead frame.
  • the above-described thin semiconductor device for example, collectively seals a lead frame on which a plurality of semiconductor elements and bonding wires are mounted, and integrally forms a plurality of semiconductor devices.
  • the technique which carries out the half etching process of the connecting bar previously is known (for example, refer patent document 1).
  • the connecting bar is half-etched like a conventional lead frame
  • the strength of the lead frame decreases with the increase in size of the lead frame, and the lead frame may be bent. Such bending may cause a semiconductor element or a bonding wire mounted on the lead frame to be broken or missing.
  • One aspect of the embodiment has been made in view of the above, and an object thereof is to provide a lead frame in which bending in a short direction is suppressed.
  • a lead frame is rectangular and includes a plurality of unit lead frames, a plurality of first connecting bars, and a plurality of second connecting bars.
  • the unit lead frame has a die pad and a plurality of leads.
  • the first connecting bar connects adjacent unit lead frames and extends in the longitudinal direction of the lead frame.
  • the second connecting bar connects adjacent unit lead frames and extends in a short direction of the lead frame.
  • at least one part of a plurality of said 2nd connecting bars has a part higher in rigidity than said 1st connecting bar.
  • a lead frame that suppresses bending can be provided.
  • FIG. 1 is a conceptual diagram of a lead frame according to the first embodiment.
  • FIG. 2 is an enlarged plan view of the lead frame according to the first embodiment.
  • 3A is a cross-sectional view taken along line AA shown in FIG. 3B is a cross-sectional view taken along line BB shown in FIG. 3C is a cross-sectional view taken along the line CC shown in FIG.
  • FIG. 4A is a schematic cross-sectional view showing one manufacturing process of the semiconductor device using the lead frame according to the first embodiment.
  • FIG. 4B is a schematic cross-sectional view showing the next manufacturing process of the semiconductor device using the lead frame according to the first embodiment.
  • FIG. 4C is a schematic cross-sectional view showing a further subsequent manufacturing process of the semiconductor device using the lead frame according to the first embodiment.
  • 5A is a cross-sectional view taken along line DD shown in FIG.
  • FIG. 5B is a cross-sectional view taken along the line DD in FIG. 2 according to a modification of the first embodiment.
  • FIG. 5C is a cross-sectional view taken along the line DD in FIG. 2 according to another modification of the first embodiment.
  • FIG. 6 is an enlarged plan view of a lead frame according to the second embodiment.
  • FIG. 7 is an enlarged plan view of a lead frame according to a modification of the second embodiment.
  • FIG. 8 is a schematic plan view of a lead frame according to the third embodiment.
  • FIG. 9 is a schematic plan view of a lead frame according to the fourth embodiment.
  • FIG. 10 is a schematic plan view of a lead frame according to a modification of the fourth embodiment.
  • FIG. 11 is a schematic plan view of a lead frame according to another modification of the fourth embodiment.
  • FIG. 12 is a schematic plan view of a lead frame according to still another modification of the fourth embodiment.
  • FIG. 13 is a schematic plan view of a lead frame obtained by combining the third embodiment and the fourth embodiment.
  • FIG. 14 is a schematic plan view of a lead frame according to the fifth embodiment.
  • FIG. 15 is a schematic plan view of a lead frame according to the sixth embodiment.
  • the lead frame 1 according to the first embodiment is rectangular in plan view, and includes a plurality of unit lead frames 10, a plurality of first connecting bars 11, and a plurality of second connecting bars. 12 and an outer frame 13.
  • the unit lead frames 10 are arranged in a matrix on the lead frame 1.
  • the first connecting bar 11 connects the unit lead frames 10 adjacent in the lateral direction and extends along the longitudinal direction L of the lead frame 1.
  • the second connecting bar 12 connects the unit lead frames 10 adjacent in the longitudinal direction and extends along the short direction S of the lead frame 1.
  • the outer frame 13 is provided so as to surround four sides of the unit lead frames 10 arranged in a matrix.
  • the outer frame 13 has a pair of first frame portions 13a extending in the short direction S and a pair of second frame portions 13b extending in the longitudinal direction L, and the pair of first frame portions 13a.
  • the first connecting bar 11 extends between them, and the second connecting bar 12 extends between the pair of second frame portions 13b.
  • the first connecting bar 11 extending in the longitudinal direction L is half-etched.
  • the lead frame is thin and long in the longitudinal direction. For this reason, the lead frame is easily bent in the longitudinal direction.
  • various ends are supported by supporting both end portions in the short direction of the lead frame, that is, the pair of second frame portions, so that the lead frame does not bend along the longitudinal direction which is more flexible than the short direction.
  • the manufacturing process is performed. For this reason, during the processing of the lead frame, the present inventor has realized that it is not a problem that it is difficult to bend in the longitudinal direction or that it is easily bent in the longitudinal direction. Rather, the inventor has noticed that the lead frame is easily bent in the short direction during processing. In particular, when the interval between the second frame portions 13b is increased with the enlargement of the lead frame or the like, the lead frame is easily bent in the short direction.
  • the rigidity of the second connecting bar 12 extending in the short direction S is made higher than the rigidity of the first connecting bar 11.
  • the second connecting bar 12 is not half-etched, and the second connecting bar 12 is thicker than at least a part of the first connecting bar 11.
  • a portion that has not been half-etched is referred to as a “full metal portion” and is indicated by rhombus hatching. Further, the half-etched portion is referred to as a “half-etched portion” and is indicated by hatching with hatching.
  • the lead frame 1 is a lead frame used for manufacturing a QFN type semiconductor device.
  • the lead frame 1 is made of copper, a copper alloy, an iron nickel alloy, or the like.
  • the lead frame 1 is formed by etching or the like on a rectangular metal plate in plan view.
  • the unit lead frame 10 is a portion surrounded by the first connecting bar 11 and the second connecting bar 12, and has a die pad 10a, a plurality of leads 10b, and a support bar 10c.
  • the rectangular die pad 10a in plan view is provided in the central portion of the unit lead frame 10, and the semiconductor element 20 can be mounted on the front surface side (see FIG. 4A).
  • the plurality of leads 10b are provided through spaces so as to face the four sides of the die pad 10a, and are supported by the first connecting bar 11 or the second connecting bar 12.
  • the lead 10b functions as an external terminal of the semiconductor device 2 by being electrically connected to the electrode of the semiconductor element 20 by the bonding wire 21 or the like (see FIGS. 4A and 4C).
  • the support bar 10c extends outward from each corner of the die pad 10a and is connected to the first connecting bar 11 and the second connecting bar 12 to support the die pad 10a.
  • the unit lead frame 10 corresponds to each semiconductor device 2 (see FIG. 4C).
  • a first connecting bar 11 and a second connecting bar 12 are arranged in a lattice pattern.
  • the first connecting bar 11 extends along the longitudinal direction L of the lead frame 1 and connects adjacent unit lead frames 10 along the short direction S. Moreover, the 1st connecting bar 11 is connected to the 1st frame part 13a (refer FIG. 1) of the outer frame 13 at both ends.
  • the second connecting bar 12 extends along the short direction S of the lead frame 1 and connects adjacent unit lead frames 10 along the longitudinal direction L. Moreover, the 2nd connecting bar 12 is connected to the 2nd frame part 13b (refer FIG. 1) of the outer frame 13 at both ends.
  • the first connecting bar 11 is formed so that the width W1 is uniform
  • the second connecting bar 12 is formed so that the width W2 is uniform.
  • the width W1 and the width W2 are equal.
  • the first connecting bar 11 and the second connecting bar 12 are orthogonal to each other at the intersection 14.
  • the widths W1 and W2 are not necessarily equal, and the first connecting bar 11 and the second connecting bar 12 do not have to be orthogonal.
  • FIGS. 3A to 3C the boundary lines of the constituent members are indicated by broken lines for easy understanding.
  • the die pad 10a and the lead 10b are not half-etched except for a part, and have the same thickness as the metal plate before the etching process.
  • An etched portion 15a that is half-etched on the back side is formed at the end of the die pad 10a, and an etched portion 15b that is half-etched on the back side is formed at the end of the lead 10b.
  • the first connecting bar 11 extending along the longitudinal direction L is half-etched on the back surface to form an etched portion 15c. That is, the first connecting bar 11 is thinner than the metal plate before the etching process and has a low rigidity.
  • the second connecting bar 12 extending along the short direction S is not half-etched, and has the same thickness as the metal plate before the etching. That is, the 2nd connecting bar 12 is thicker than the 1st connecting bar 11, and rigidity is high. Thereby, since the cross-sectional area of the 2nd connecting bar 12 is larger than the 1st connecting bar 11, the intensity
  • the half-etching process is not performed at the intersection 14 where the first connecting bar 11 (see FIG. 2) and the second connecting bar 12 cross each other, and the metal plate before the etching process It is the same thickness as the plate thickness. That is, the second connecting bar 12 extending along the short-side direction S includes a full metal portion from one end to the other end including the intersecting portion 14. Thereby, it is possible to suppress the lead frame 1 from being bent in the short direction S.
  • the second connecting bar 12 is composed of a full metal portion, similar to the main portion of the die pad 10a. Therefore, when the lead frame 1 is formed from a metal plate having a predetermined plate thickness, the thickness of the second connecting bar 12 can be maximized. Therefore, the strength of the lead frame 1 in the short direction S can be maximized.
  • FIGS. 4A to 4C are schematic cross-sectional views showing a cross section along the short direction S in the lead frame 1, and the boundary lines of the constituent members are indicated by broken lines.
  • the semiconductor element 20 is mounted on the die pad 10a of the lead frame 1, and a bonding wire 21 is used between each electrode of the semiconductor element 20 and the lead 10b corresponding to each electrode. Connect electrically.
  • the front surface side of the lead frame 1 is collectively sealed with a sealing resin 22.
  • the unit lead frames 10 are diced with a rotary blade along a dicing line DL along the first connecting bar 11 and the second connecting bar 12 (see FIG. 2).
  • the semiconductor device 2 is divided into individual semiconductor devices 2.
  • the first connecting bar 11 is provided with a recess by the etching portion 15 c, so that the metal at the time of dicing along the longitudinal direction L (see FIG. 2)
  • the cross-sectional area of the part can be reduced.
  • burrs are generated on the cut surface by the first connecting bar 11 during dicing. Can be suppressed. Therefore, an increase in time required for dicing can be suppressed as compared with the case where both connecting bars are all formed of a full metal portion.
  • the life of the rotary blade can be extended.
  • the second connecting bar 12 is composed of a full metal part (see FIG. 2). Therefore, it is possible to suppress the bending of the lead frame 1 in the short direction as compared with the case where both the connecting bars are all formed of the half-etched portion.
  • the sealing resin 22 is embedded in the etching portions 15a and 15b provided in the die pad 10a and the lead 10b, respectively. With this structure, in the semiconductor device 2, it is possible to prevent the die pad 10 a and the lead 10 b from being detached from the back surface side of the sealing resin 22.
  • FIGS. 5A to 5C a portion corresponding to the cross-sectional outline shown in FIG. 5A is indicated by a broken line for easy understanding.
  • the second connecting bar 12 has a rectangular shape in sectional view, in other words, is composed of a full metal part.
  • the configuration of the second connecting bar 12 is not limited to the configuration shown in FIG. 5A.
  • an etching portion 15d that is half-etched may be formed on the back side of the side portion.
  • an etching portion 15e that is etched so that the side surface has a shape spreading toward the top may be formed.
  • the etching parts 15d and 15e can be formed in the same etching process as the etching parts 15a to 15c (see FIG. 3A).
  • the cross section is an inverted trapezoidal shape, and the central portion is formed of a full metal portion, and the strength in the short direction S (see FIG. 2) can be secured by the full metal portion. Furthermore, since the side portions are etched in any of the modifications, the cross-sectional area of the metal portion when dicing along the short direction S can be reduced. Therefore, in the second connecting bars 12A and 12B, both the strength in the short direction S and the reduction of the time required for dicing along the short direction S can be achieved.
  • FIG. 6 is a diagram corresponding to FIG. 2 in the first embodiment.
  • the lead frame 1A according to the second embodiment is a lead frame used for manufacturing a SON type semiconductor device.
  • the other points are the same as those of the lead frame 1 according to the first embodiment.
  • the common components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the unit lead frame 10 includes a rectangular die pad 10a, a plurality of leads 10b, and a support bar 10c in plan view.
  • the lead 10 b is provided through a space so as to face two sides of the die pad 10 a along the longitudinal direction L, and is supported only by the first connecting bar 11.
  • the support bar 10c extends from each corner of the die pad 10a along the longitudinal direction L and is connected only to the second connecting bar 12 to support the die pad 10a.
  • the first connecting bar 11 extending along the longitudinal direction L is formed of a half-etched portion
  • the second connecting bar 12 extending along the lateral direction S includes the intersecting portion 14. All are made up of full metal parts.
  • the lead 10b is not connected to the second connecting bar 12 formed of the full metal part, and only the support bar 10c is connected.
  • the adjacent support bars 10c are already electrically connected by the die pad 10a. There is no problem even if it is short-circuited by burr.
  • the time required for dicing along the short direction S can be shortened. That is, in the lead frame 1A used for manufacturing the SON type semiconductor device, the time required for dicing can be significantly shortened.
  • the support bar 10c extends from the die pad 10a to the lead 10b and supports the die pad 10a via the lead 10b.
  • the lead 10b connected to the support bar 10c serves as a grounding terminal in the semiconductor device 2 (see FIG. 4C).
  • the lead frame 1B all the constituent members of the unit lead frame 10 are connected to the first connecting bar 11 extending along the longitudinal direction L, and are not connected to the second connecting bar 12. Accordingly, since there is no member of the unit lead frame 10 supported by the second connecting bar 12, no burr is generated on the cut surface in dicing along the short direction S. Therefore, it is possible to further shorten the dicing time along the shorter direction S than the lead frame 1A.
  • FIGS. 8 to 13 all correspond to the lower diagram of FIG. 1 in the first embodiment, and can be applied to manufacture of both QFN type and SON type semiconductor devices.
  • the second connecting bars 12 are all formed of a full metal portion from one end to the other end in the short direction S. Further, the remaining second connecting bar 12 is formed of a half-etched portion from one end to the other end in the short direction S. And the 2nd connecting bar 12 comprised from the full metal part from one end to the other end and the 2nd connecting bar 12 comprised from the half etching part from the one end to the other end are arrange
  • the strength in the short-side direction S can be ensured by a part of the second connecting bar 12 composed of a full metal part from one end to the other end. Furthermore, the remaining second connecting bar 12, which is composed of half-etched portions, can extend the life of the rotary blade. Therefore, in the lead frame 1C, it is possible to achieve both the strength in the short direction S and the life extension of the rotary blade.
  • the 2nd connecting bar 12 comprised all by the full metal part and the 2nd connecting bar 12 comprised all the half-etching parts are shown, the example arranged alternately one by one, It is not limited to this.
  • a plurality of parts made up of full metal parts and a part made up of all half-etched parts may be alternately arranged (for example, two full metal parts and two half-etched parts are arranged alternately).
  • one part may be arranged alternately after increasing the number of parts than the other part (for example, three full metal parts and two half-etched parts are alternately arranged).
  • first frame portion 13a (see FIG. 1) is away from the first frame portion 13a (see FIG. 1), many portions that are all composed of the full metal portion may be arranged in the central portion of the lead frame 1C having relatively low strength. Further, a large number of portions that are all formed of half-etched portions may be disposed on the peripheral portion of the lead frame 1C that is close to the first frame portion 13a and relatively high in strength. Furthermore, in the 2nd connecting bar 12 comprised by the full metal part, it does not need to be comprised by the full metal part from one end to the other end.
  • the second connecting bar 12 includes a portion composed of a full metal portion and a portion composed of a half-etched portion between one end and the other end in the short direction S.
  • a portion composed of a full metal portion and a portion composed of a half-etched portion between one end and the other end in the short direction S For example, as shown in FIG. 9, between one end and the other end, three full metal portions of the unit lead frame 10 and half-etched portions of one unit lead frame 10 are alternately arranged. It has been.
  • the life of the rotary blade can be extended.
  • the lead frame 1D is configured such that the full metal portion is disposed at all locations from one end to the other end in the short direction S when all the second connecting bars 12 are viewed as a whole.
  • the adjacent second connecting bars 12 are arranged so as to overlap each other so that there is no portion that is not a full metal portion in the entire short direction S.
  • the lead frame 1D can be prevented from bending in the short direction S. That is, in the lead frame 1D, both the strength in the short direction S and the extension of the life of the rotary blade can be achieved.
  • the lead frame 1E is arranged such that the full metal portion is concentrated inside the predetermined region 16a.
  • the band-like region 16a is inclined from both the longitudinal direction L and the short direction S in plan view, and a plurality of regions 16a are arranged in parallel.
  • the full metal portion corresponding to one width of the unit lead frame 10 is short in the width direction between the adjacent lead frames 1 ⁇ / b> E with two full metal portions corresponding to the width of the unit lead frame 10. S is shifted to S.
  • the length of the arranged full metal part and the width shifted in the short direction S are not limited to this.
  • the interval between adjacent regions 16a, the inclination angle of the region 16a, and the like are also arbitrary.
  • the lead frame 1F is an example in which a pair of band-shaped regions 16b that are inclined from both the longitudinal direction L and the short direction S in the second connecting bar 12 cross each other.
  • FIG. 11 shows an example in which a pair of regions 16b are crossed, a plurality of pairs of regions 16b may be crossed.
  • the lead frame 1G is an example in which the rhombic region 16c is uniformly distributed in the lead frame 1G in the second connecting bar 12.
  • FIG. 12 shows an example in which the rhombic regions 16c are uniformly distributed, it is not always necessary to distribute them uniformly.
  • the lead frame 1H in which the third embodiment and the fourth embodiment are combined will be described with reference to FIG.
  • the lead frame 1H as in the third embodiment, among the plurality of second connecting bars 12, some of the second connecting bars 12 are all made up of a full metal portion from one end to the other end in the short direction S.
  • the lead frame 1H has a region 16d in which the full metal portion is concentrated inside the remaining second connecting bar 12 as in the fourth embodiment.
  • FIG. 13 shows a case where a plurality of regions 16d are arranged in parallel, the configuration of the region 16d is not limited to this.
  • the lead frame 1 (1A to 1H) is a rectangular lead frame, and includes a plurality of unit lead frames 10 arranged in a matrix and adjacent unit lead frames 10 to each other.
  • a plurality of first connecting bars 11 extending in the longitudinal direction L of the lead frame 1 (1A to 1H) and the adjacent unit lead frames 10 are connected to each other, and the short direction S of the lead frame 1 (1A to 1H) is connected.
  • the thickest part of the second connecting bar 12 (12A, 12B) than the first connecting bar 11 is the thickest part of the lead frame 1 (1A to 1H). Is the same thickness. As a result, the strength of the lead frame 1 (1A to 1H) in the short direction S can be maximized.
  • the lead 10b is supported only by the first connecting bar 11 that is thinner than the second connecting bar 12 (12A, 12B). Thereby, the time required for dicing along the longitudinal direction L can be shortened.
  • the die pad 10a is supported only by the second connecting bar 12 that is thicker than the first connecting bar 11 using the support bar 10c. Thereby, the time required for dicing along the short direction S can be shortened.
  • the second connecting bar 12A (12B) has an inverted trapezoidal cross section, and the thickest part is the thickest part of the lead frame 1 (1A to 1H). Is the same thickness. Thereby, both the strength in the short direction S and the reduction of the time required for dicing along the short direction S can be achieved.
  • the intersecting portion 14 where the first connecting bar 11 and the second connecting bar 12 (12A, 12B) intersect is the second connecting bar 12 (12A, 12B).
  • the thickness is the same as the portion thicker than the first connecting bar 11 in FIG. Thereby, the bending along the short direction S of the lead frame 1 (1A, 1B) can be suppressed.
  • some of the second connecting bars 12 (12A, 12B) out of the plurality of second connecting bars 12 (12A, 12B) are from one end to the other end in the short direction S. All are thicker than the first connecting bar 11.
  • the remaining second connecting bars 12 (12A, 12B) all have the same thickness as the first connecting bar 11 from one end to the other end in the short direction S. Thereby, the intensity
  • the second connecting bar 12 (12A, 12B) is thicker than the first connecting bar 11 from one end to the other end in the short direction S.
  • a part and a part having the same thickness as the first connecting bar 11 are mixed and all the second connecting bars 12 (12A, 12B) are viewed as a whole, from one end to the other end in the short direction S
  • the thicker part than the 1st connecting bar 11 is arrange
  • At least a part of the second connecting bar 12 has a portion thicker than the first connecting bar 11, so that at least a part of the second connecting bar 12 is the first connecting bar. 11 is higher than rigidity.
  • the method of making the rigidity different is not limited to this, and it may be configured as in the fifth and sixth embodiments.
  • FIG. 14 is a plan view showing a lead frame 1I of the fifth embodiment.
  • the first connecting bar 11I and the second connecting bar 12I have the same thickness.
  • at least a part of the plurality of second connecting bars 12I has a portion wider than the first connecting bar 11I.
  • the width WL of all the second connecting bars 12I is wider than the width WS of the first connecting bars 11I.
  • the number of lead frames 1I smaller than the actual number of unit lead frames is shown.
  • the cross-sectional area of the second connecting bar 12I is larger than the cross-sectional area of the first connecting bar 11I, and the rigidity of the second connecting bar 12I is larger than the rigidity of the first connecting bar 11I. Even with such a configuration, it is possible to provide the lead frame 1I which is not easily bent in the short direction. Note that the narrow portion provided in the first connecting bar 11I may be provided in the region where the half-etched portion shown in FIGS. 8 to 13 is provided.
  • FIG. 15 is a plan view showing a lead frame 1J of the sixth embodiment.
  • the thickness and width of the second connecting bar 12J are equal to the thickness and width of the first connecting bar 11J, respectively.
  • the ratio A2 of the number of second connecting bars 12J to the longitudinal dimension LJ of the lead frame 1J is larger than the ratio A1 of the number of first connecting bars 11J to the transverse dimension SJ of the lead frame 1J. large.
  • the number of lead frames 1I smaller than the actual number of unit lead frames is shown.
  • the cross-sectional area of the second connecting bar 12J is equal to the cross-sectional area of the first connecting bar 11J, and the rigidity of the first connecting bar 11J and the second connecting bar 12J is equal.
  • the lead frame 1J is longer than the longitudinal direction. Hard to bend in the short direction.
  • the longitudinal dimension LJ of the lead frame 1J is twice the lateral dimension SJ of the lead frame 1J.
  • the number ratio A1 is 2 / SJ. That is, the lead frame 1J is less likely to bend 1.75 times (7/4 times) in the short direction than in the long direction. For this reason, the handleability of the lead frame 1J is high.

Abstract

Provided is a lead frame that suppresses bending. This lead frame is rectangular and comprises a plurality of unit lead frames, a plurality of first connecting bars, and a plurality of second connecting bars. The unit lead frames have die pads and a plurality of leads. The first connecting bars connect neighboring unit lead frames together and extend in the long direction of the lead frame. The second connecting bars connect neighboring unit lead frames together and extend in the short direction of the lead frame. At least some of the plurality of second connecting bars have portions that are more rigid than the first connecting bars.

Description

リードフレームLead frame
 開示の実施形態は、リードフレームに関する。  The disclosed embodiment relates to a lead frame.
 薄型の半導体装置として、例えばQFN(Quad Flat Non-leaded package)タイプの半導体装置や、SON(Small Outline Non-leaded package)タイプの半導体装置等が知られている。また、上述の薄型の半導体装置は、例えば、複数の半導体素子やボンディングワイヤが搭載されたリードフレームを一括で樹脂封止して、複数の半導体装置を一体的に形成した後に、半導体装置毎に切り離すダイシングを経て製造される。そして、かかるダイシングにおいて、コネクティングバーにより切断面にバリが発生することを抑制するため、あらかじめコネクティングバーをハーフエッチング加工する技術が知られている(例えば、特許文献1参照)。  As thin semiconductor devices, for example, QFN (Quad Flat Non-leaded package) type semiconductor devices, SON (Small Outline Non-leaded package) type semiconductor devices, and the like are known. In addition, the above-described thin semiconductor device, for example, collectively seals a lead frame on which a plurality of semiconductor elements and bonding wires are mounted, and integrally forms a plurality of semiconductor devices. Manufactured through dicing. And in this dicing, in order to suppress that a burr | flash generate | occur | produces in a cut surface with a connecting bar, the technique which carries out the half etching process of the connecting bar previously is known (for example, refer patent document 1).
日本国特開2001-320007号公報Japanese Unexamined Patent Publication No. 2001-320007
 しかしながら、従来のリードフレームのようにコネクティングバーがハーフエッチング加工されている場合、リードフレームの大判化等に伴って強度が低下し、リードフレームが撓む恐れがある。そして、かかる撓みにより、リードフレーム上に搭載された半導体素子やボンディングワイヤが破断したり欠落したりする恐れがある。  However, when the connecting bar is half-etched like a conventional lead frame, the strength of the lead frame decreases with the increase in size of the lead frame, and the lead frame may be bent. Such bending may cause a semiconductor element or a bonding wire mounted on the lead frame to be broken or missing.
 実施形態の一態様は、上記に鑑みてなされたものであって、短手方向の撓みが抑制されたリードフレームを提供することを目的とする。  One aspect of the embodiment has been made in view of the above, and an object thereof is to provide a lead frame in which bending in a short direction is suppressed.
 実施形態の一態様に係るリードフレームは、矩形状であって、複数の単位リードフレームと、複数の第1コネクティングバーと、複数の第2コネクティングバーと、を備える。前記単位リードフレームは、ダイパッドと複数のリードとを有する。前記第1コネクティングバーは、隣接する前記単位リードフレーム同士を連結し、前記リードフレームの長手方向に延びる。前記第2コネクティングバーは、隣接する前記単位リードフレーム同士を連結し、前記リードフレームの短手方向に延びる。そして、複数の前記第2コネクティングバーの少なくとも一部が、前記第1コネクティングバーよりも剛性の高い部位を有する。 A lead frame according to an aspect of the embodiment is rectangular and includes a plurality of unit lead frames, a plurality of first connecting bars, and a plurality of second connecting bars. The unit lead frame has a die pad and a plurality of leads. The first connecting bar connects adjacent unit lead frames and extends in the longitudinal direction of the lead frame. The second connecting bar connects adjacent unit lead frames and extends in a short direction of the lead frame. And at least one part of a plurality of said 2nd connecting bars has a part higher in rigidity than said 1st connecting bar.
 実施形態の一態様によれば、撓みを抑制するリードフレームを提供することができる。  According to one aspect of the embodiment, a lead frame that suppresses bending can be provided.
図1は、第1の実施形態に係るリードフレームの概念図である。FIG. 1 is a conceptual diagram of a lead frame according to the first embodiment. 図2は、第1の実施形態に係るリードフレームの拡大平面図である。FIG. 2 is an enlarged plan view of the lead frame according to the first embodiment. 図3Aは、図2に示すA-A線の矢視断面図である。3A is a cross-sectional view taken along line AA shown in FIG. 図3Bは、図2に示すB-B線の矢視断面図である。3B is a cross-sectional view taken along line BB shown in FIG. 図3Cは、図2に示すC-C線の矢視断面図である。3C is a cross-sectional view taken along the line CC shown in FIG. 図4Aは、第1の実施形態に係るリードフレームを用いた半導体装置の一製造工程を示した概略断面図である。FIG. 4A is a schematic cross-sectional view showing one manufacturing process of the semiconductor device using the lead frame according to the first embodiment. 図4Bは、第1の実施形態に係るリードフレームを用いた半導体装置の次の製造工程を示した概略断面図である。FIG. 4B is a schematic cross-sectional view showing the next manufacturing process of the semiconductor device using the lead frame according to the first embodiment. 図4Cは、第1の実施形態に係るリードフレームを用いた半導体装置のさらに次の製造工程を示した概略断面図である。FIG. 4C is a schematic cross-sectional view showing a further subsequent manufacturing process of the semiconductor device using the lead frame according to the first embodiment. 図5Aは、図2に示すD-D線の矢視断面図である。5A is a cross-sectional view taken along line DD shown in FIG. 図5Bは、第1の実施形態の変形例に係る図2のD-D線に相当する矢視断面図である。FIG. 5B is a cross-sectional view taken along the line DD in FIG. 2 according to a modification of the first embodiment. 図5Cは、第1の実施形態の別の変形例に係る図2のD-D線に相当する矢視断面図である。FIG. 5C is a cross-sectional view taken along the line DD in FIG. 2 according to another modification of the first embodiment. 図6は、第2の実施形態に係るリードフレームの拡大平面図である。FIG. 6 is an enlarged plan view of a lead frame according to the second embodiment. 図7は、第2の実施形態の変形例に係るリードフレームの拡大平面図である。FIG. 7 is an enlarged plan view of a lead frame according to a modification of the second embodiment. 図8は、第3の実施形態に係るリードフレームの概略平面図である。FIG. 8 is a schematic plan view of a lead frame according to the third embodiment. 図9は、第4の実施形態に係るリードフレームの概略平面図である。FIG. 9 is a schematic plan view of a lead frame according to the fourth embodiment. 図10は、第4の実施形態の変形例に係るリードフレームの概略平面図である。FIG. 10 is a schematic plan view of a lead frame according to a modification of the fourth embodiment. 図11は、第4の実施形態の別の変形例に係るリードフレームの概略平面図である。FIG. 11 is a schematic plan view of a lead frame according to another modification of the fourth embodiment. 図12は、第4の実施形態のさらに別の変形例に係るリードフレームの概略平面図である。FIG. 12 is a schematic plan view of a lead frame according to still another modification of the fourth embodiment. 図13は、第3の実施形態と第4の実施形態とを組み合わせたリードフレームの概略平面図である。FIG. 13 is a schematic plan view of a lead frame obtained by combining the third embodiment and the fourth embodiment. 図14は、第5の実施形態に係るリードフレームの概略平面図である。FIG. 14 is a schematic plan view of a lead frame according to the fifth embodiment. 図15は、第6の実施形態に係るリードフレームの概略平面図である。FIG. 15 is a schematic plan view of a lead frame according to the sixth embodiment.
 以下、添付図面を参照して、本願の開示するリードフレームの実施形態について説明する。なお、以下に示す各実施形態によりこの発明が限定されるものではない。  Hereinafter, embodiments of a lead frame disclosed in the present application will be described with reference to the accompanying drawings. In addition, this invention is not limited by each embodiment shown below.
<第1の実施形態>
 まず、図1を参照して第1の実施形態に係るリードフレームの概略を説明する。図1に示すように、第1の実施形態に係るリードフレーム1は、平面視で矩形状であり、複数の単位リードフレーム10と、複数の第1コネクティングバー11と、複数の第2コネクティングバー12と、外枠13とを備える。単位リードフレーム10は、リードフレーム1にマトリックス状に並べられている。 
<First Embodiment>
First, the outline of the lead frame according to the first embodiment will be described with reference to FIG. As shown in FIG. 1, the lead frame 1 according to the first embodiment is rectangular in plan view, and includes a plurality of unit lead frames 10, a plurality of first connecting bars 11, and a plurality of second connecting bars. 12 and an outer frame 13. The unit lead frames 10 are arranged in a matrix on the lead frame 1.
 第1コネクティングバー11は、短手方向に隣接する単位リードフレーム10同士を連結し、リードフレーム1の長手方向Lに沿って延びている。第2コネクティングバー12は、長手方向に隣接する単位リードフレーム10同士を連結し、リードフレーム1の短手方向Sに沿って延びている。外枠13は、マトリックス状に並べられた単位リードフレーム10の四方を囲むように設けられる。  The first connecting bar 11 connects the unit lead frames 10 adjacent in the lateral direction and extends along the longitudinal direction L of the lead frame 1. The second connecting bar 12 connects the unit lead frames 10 adjacent in the longitudinal direction and extends along the short direction S of the lead frame 1. The outer frame 13 is provided so as to surround four sides of the unit lead frames 10 arranged in a matrix.
 具体的には、外枠13は、短手方向Sに延びる一対の第1枠部13aと、長手方向Lに延びる一対の第2枠部13bとを有し、一対の第1枠部13aの間に第1コネクティングバー11が延び、一対の第2枠部13bの間に第2コネクティングバー12が延びている。そして、リードフレーム1において、長手方向Lに延びる第1コネクティングバー11にはハーフエッチング加工がなされている。  Specifically, the outer frame 13 has a pair of first frame portions 13a extending in the short direction S and a pair of second frame portions 13b extending in the longitudinal direction L, and the pair of first frame portions 13a. The first connecting bar 11 extends between them, and the second connecting bar 12 extends between the pair of second frame portions 13b. In the lead frame 1, the first connecting bar 11 extending in the longitudinal direction L is half-etched.
 リードフレームは薄く、長手方向に長い部材である。このため、リードフレームは長手方向に撓みやすい。従来のリードフレームにおいては、短手方向よりも撓みやすい長手方向に沿ってリードフレームが撓まないように、リードフレームの短手方向における両端部、すなわち一対の第2枠部を支持して各種製造工程が行われている。このため、リードフレームの加工中は、長手方向に撓みにくい、または、長手方向に撓みやすいことは問題にならないことに本発明者は気がついた。むしろ、リードフレームの加工中は短手方向に撓みやすい状況となっていることに本発明者は気がついた。特に、リードフレームの大判化等に伴って第2枠部13b同士の間隔が大きくなると短手方向に撓みやすい。  The lead frame is thin and long in the longitudinal direction. For this reason, the lead frame is easily bent in the longitudinal direction. In the conventional lead frame, various ends are supported by supporting both end portions in the short direction of the lead frame, that is, the pair of second frame portions, so that the lead frame does not bend along the longitudinal direction which is more flexible than the short direction. The manufacturing process is performed. For this reason, during the processing of the lead frame, the present inventor has realized that it is not a problem that it is difficult to bend in the longitudinal direction or that it is easily bent in the longitudinal direction. Rather, the inventor has noticed that the lead frame is easily bent in the short direction during processing. In particular, when the interval between the second frame portions 13b is increased with the enlargement of the lead frame or the like, the lead frame is easily bent in the short direction.
 そこで、第1の実施形態に係るリードフレーム1においては、短手方向Sに延びる第2コネクティングバー12の剛性を第1コネクティングバー11の剛性よりも高くした。具体的には、第2コネクティングバー12にはハーフエッチング加工を行わず、第2コネクティングバー12を第1コネクティングバー11の少なくとも一部よりも厚くしている。これにより、リードフレーム1の短手方向Sに沿った撓みを抑制することができる。  Therefore, in the lead frame 1 according to the first embodiment, the rigidity of the second connecting bar 12 extending in the short direction S is made higher than the rigidity of the first connecting bar 11. Specifically, the second connecting bar 12 is not half-etched, and the second connecting bar 12 is thicker than at least a part of the first connecting bar 11. Thereby, the bending along the short direction S of the lead frame 1 can be suppressed.
 なお、本願明細書の平面図においては、理解を容易にするため、ハーフエッチング加工されていない部位を「フルメタル部」と称し、菱形模様のハッチングで示す。また、ハーフエッチング加工された部位を「ハーフエッチング部」と称し、斜線からなるハッチングで示す。  In the plan view of the present specification, for easy understanding, a portion that has not been half-etched is referred to as a “full metal portion” and is indicated by rhombus hatching. Further, the half-etched portion is referred to as a “half-etched portion” and is indicated by hatching with hatching.
 以下、第1の実施形態に係るリードフレーム1の詳細について図2等を用いて説明する。リードフレーム1は、QFNタイプの半導体装置の製造に用いられるリードフレームである。リードフレーム1は、銅や銅合金、鉄ニッケル合金等で構成される。リードフレーム1は、平面視で長方形状の金属板に、エッチング加工等が施されることにより形成される。  Hereinafter, details of the lead frame 1 according to the first embodiment will be described with reference to FIG. The lead frame 1 is a lead frame used for manufacturing a QFN type semiconductor device. The lead frame 1 is made of copper, a copper alloy, an iron nickel alloy, or the like. The lead frame 1 is formed by etching or the like on a rectangular metal plate in plan view.
 図2に示すように、単位リードフレーム10は、第1コネクティングバー11と第2コネクティングバー12とに囲まれた部位であり、ダイパッド10aと、複数のリード10bと、サポートバー10cとを有する。平面視で矩形状のダイパッド10aは、単位リードフレーム10の中央部分に設けられ、おもて面側に半導体素子20を搭載可能である(図4A参照)。  As shown in FIG. 2, the unit lead frame 10 is a portion surrounded by the first connecting bar 11 and the second connecting bar 12, and has a die pad 10a, a plurality of leads 10b, and a support bar 10c. The rectangular die pad 10a in plan view is provided in the central portion of the unit lead frame 10, and the semiconductor element 20 can be mounted on the front surface side (see FIG. 4A).
 複数のリード10bは、ダイパッド10aの四辺にそれぞれ向かい合うように空間を介して設けられ、第1コネクティングバー11または第2コネクティングバー12に支持される。そして、リード10bは、半導体素子20の電極とボンディングワイヤ21等で電気的に接続されることによって、半導体装置2の外部端子として機能する(図4A、図4C参照)。  The plurality of leads 10b are provided through spaces so as to face the four sides of the die pad 10a, and are supported by the first connecting bar 11 or the second connecting bar 12. The lead 10b functions as an external terminal of the semiconductor device 2 by being electrically connected to the electrode of the semiconductor element 20 by the bonding wire 21 or the like (see FIGS. 4A and 4C).
 サポートバー10cは、ダイパッド10aの各角部からそれぞれ外方に延び、第1コネクティングバー11および第2コネクティングバー12に接続されてダイパッド10aを支持する。このように、単位リードフレーム10は、個々の半導体装置2(図4C参照)に対応する。そして、単位リードフレーム10の周囲には、第1コネクティングバー11と第2コネクティングバー12とが格子状に配置されている。  The support bar 10c extends outward from each corner of the die pad 10a and is connected to the first connecting bar 11 and the second connecting bar 12 to support the die pad 10a. Thus, the unit lead frame 10 corresponds to each semiconductor device 2 (see FIG. 4C). Around the unit lead frame 10, a first connecting bar 11 and a second connecting bar 12 are arranged in a lattice pattern.
 第1コネクティングバー11は、リードフレーム1における長手方向Lに沿って延び、短手方向Sに沿って隣接する単位リードフレーム10同士を連結している。また、第1コネクティングバー11は、両端で外枠13の第1枠部13a(図1参照)に接続されている。  The first connecting bar 11 extends along the longitudinal direction L of the lead frame 1 and connects adjacent unit lead frames 10 along the short direction S. Moreover, the 1st connecting bar 11 is connected to the 1st frame part 13a (refer FIG. 1) of the outer frame 13 at both ends.
 第2コネクティングバー12は、リードフレーム1における短手方向Sに沿って延び、長手方向Lに沿って隣接する単位リードフレーム10同士を連結している。また、第2コネクティングバー12は、両端で外枠13の第2枠部13b(図1参照)に接続されている。  The second connecting bar 12 extends along the short direction S of the lead frame 1 and connects adjacent unit lead frames 10 along the longitudinal direction L. Moreover, the 2nd connecting bar 12 is connected to the 2nd frame part 13b (refer FIG. 1) of the outer frame 13 at both ends.
 また、図2に示すように、第1コネクティングバー11は幅W1が均等になるように形成され、第2コネクティングバー12は幅W2が均等になるように形成されている。ここで、例えば幅W1と幅W2とは等しい。そして、第1コネクティングバー11と第2コネクティングバー12とは、交差部14で互いに直交している。しかしながら、第1の実施形態においては、必ずしも幅W1とW2とが等しくなくてもよく、第1コネクティングバー11と第2コネクティングバー12とは直交していなくてもよい。  Further, as shown in FIG. 2, the first connecting bar 11 is formed so that the width W1 is uniform, and the second connecting bar 12 is formed so that the width W2 is uniform. Here, for example, the width W1 and the width W2 are equal. The first connecting bar 11 and the second connecting bar 12 are orthogonal to each other at the intersection 14. However, in the first embodiment, the widths W1 and W2 are not necessarily equal, and the first connecting bar 11 and the second connecting bar 12 do not have to be orthogonal.
 次に、図3A~図3Cを参照して、リードフレーム1における各部の断面形状について説明する。なお、図3A~図3Cにおいては、理解を容易にするため、各構成部材の境界線を破線で示している。  Next, the cross-sectional shape of each part in the lead frame 1 will be described with reference to FIGS. 3A to 3C. In FIGS. 3A to 3C, the boundary lines of the constituent members are indicated by broken lines for easy understanding.
 図3Aに示すように、ダイパッド10aおよびリード10bは、一部を除いてハーフエッチング加工が行われておらず、エッチング加工前の金属板の板厚と同じ厚さである。そして、ダイパッド10aの端部には、裏面側にハーフエッチング加工されたエッチング部15aが形成され、リード10bの端部には、裏面側にハーフエッチング加工されたエッチング部15bが形成されている。  As shown in FIG. 3A, the die pad 10a and the lead 10b are not half-etched except for a part, and have the same thickness as the metal plate before the etching process. An etched portion 15a that is half-etched on the back side is formed at the end of the die pad 10a, and an etched portion 15b that is half-etched on the back side is formed at the end of the lead 10b.
 そして、長手方向Lに沿って延びる第1コネクティングバー11には、裏面側にハーフエッチング加工がなされ、エッチング部15cが形成されている。すなわち、第1コネクティングバー11は、エッチング加工前の金属板よりも薄くなり、剛性が低くなっている。  The first connecting bar 11 extending along the longitudinal direction L is half-etched on the back surface to form an etched portion 15c. That is, the first connecting bar 11 is thinner than the metal plate before the etching process and has a low rigidity.
 一方で、図3Bに示すように、短手方向Sに沿って延びる第2コネクティングバー12にはハーフエッチング加工はなされておらず、エッチング加工前の金属板の板厚と同じ厚さである。すなわち、第2コネクティングバー12は、第1コネクティングバー11よりも厚く、剛性が高くなっている。これにより、第2コネクティングバー12の断面積が第1コネクティングバー11よりも大きいことから、リードフレーム1の短手方向Sの強度を向上させることができる。したがって、リードフレーム1が短手方向Sに撓むことを抑制することができる。  On the other hand, as shown in FIG. 3B, the second connecting bar 12 extending along the short direction S is not half-etched, and has the same thickness as the metal plate before the etching. That is, the 2nd connecting bar 12 is thicker than the 1st connecting bar 11, and rigidity is high. Thereby, since the cross-sectional area of the 2nd connecting bar 12 is larger than the 1st connecting bar 11, the intensity | strength of the transversal direction S of the lead frame 1 can be improved. Therefore, the lead frame 1 can be prevented from bending in the short direction S.
 また、図3Cに示すように、第1コネクティングバー11(図2参照)と第2コネクティングバー12とが互いに交差する交差部14にはハーフエッチング加工はなされておらず、エッチング加工前の金属板の板厚と同じ厚さである。すなわち、短手方向Sに沿って延びる第2コネクティングバー12は、交差部14を含めて、一端から他端まですべてフルメタル部で構成されている。これにより、リードフレーム1が短手方向Sに撓むことを抑制することができる。  Moreover, as shown in FIG. 3C, the half-etching process is not performed at the intersection 14 where the first connecting bar 11 (see FIG. 2) and the second connecting bar 12 cross each other, and the metal plate before the etching process It is the same thickness as the plate thickness. That is, the second connecting bar 12 extending along the short-side direction S includes a full metal portion from one end to the other end including the intersecting portion 14. Thereby, it is possible to suppress the lead frame 1 from being bent in the short direction S.
 さらに、リードフレーム1において、第2コネクティングバー12は、ダイパッド10aの主要部分と同じくフルメタル部で構成されている。これにより、所定の板厚を有する金属板からリードフレーム1を形成した場合において、第2コネクティングバー12の厚さを最大化することができる。したがって、リードフレーム1の短手方向Sの強度を最大化することができる。  Furthermore, in the lead frame 1, the second connecting bar 12 is composed of a full metal portion, similar to the main portion of the die pad 10a. Thereby, when the lead frame 1 is formed from a metal plate having a predetermined plate thickness, the thickness of the second connecting bar 12 can be maximized. Therefore, the strength of the lead frame 1 in the short direction S can be maximized.
 次に、図4A~図4Cを参照して、第1の実施形態に係るリードフレーム1を用いて半導体装置2を製造する方法について説明する。なお、図4A~図4Cは、リードフレーム1において短手方向Sに沿った断面を示した概略断面図であり、各構成部材の境界線を破線で示している。  Next, a method for manufacturing the semiconductor device 2 using the lead frame 1 according to the first embodiment will be described with reference to FIGS. 4A to 4C. 4A to 4C are schematic cross-sectional views showing a cross section along the short direction S in the lead frame 1, and the boundary lines of the constituent members are indicated by broken lines.
 まず、図4Aに示すように、リードフレーム1のダイパッド10a上に、半導体素子20を搭載し、半導体素子20の各電極と、各電極に対応するリード10bとの間を、それぞれボンディングワイヤ21により電気的に接続する。次に、図4Bに示すように、リードフレーム1のおもて面側を、封止樹脂22で一括に封止する。次に、各単位リードフレーム10(図2参照)の間を、第1コネクティングバー11および第2コネクティングバー12(図2参照)に沿ったダイシングラインDLに沿って回転刃物でダイシングする。これにより、図4Cに示すように、個別の半導体装置2毎に分割される。  First, as shown in FIG. 4A, the semiconductor element 20 is mounted on the die pad 10a of the lead frame 1, and a bonding wire 21 is used between each electrode of the semiconductor element 20 and the lead 10b corresponding to each electrode. Connect electrically. Next, as shown in FIG. 4B, the front surface side of the lead frame 1 is collectively sealed with a sealing resin 22. Next, the unit lead frames 10 (see FIG. 2) are diced with a rotary blade along a dicing line DL along the first connecting bar 11 and the second connecting bar 12 (see FIG. 2). Thereby, as shown in FIG. 4C, the semiconductor device 2 is divided into individual semiconductor devices 2.
 ここで、図4Bに示すように、リードフレーム1においては、第1コネクティングバー11にはエッチング部15cにより凹部が設けられることから、長手方向L(図2参照)に沿ったダイシングの際の金属部分の断面積を小さくすることができる。これにより、長手方向Lに沿った場合のダイシングの速度を短手方向S(図2参照)の場合に比べて速くしたとしても、ダイシングの際に第1コネクティングバー11により切断面にバリが発生することを抑制することができる。したがって、両方のコネクティングバーをすべてフルメタル部で構成する場合と比べて、ダイシングに要する時間の増加を抑制することができる。  Here, as shown in FIG. 4B, in the lead frame 1, the first connecting bar 11 is provided with a recess by the etching portion 15 c, so that the metal at the time of dicing along the longitudinal direction L (see FIG. 2) The cross-sectional area of the part can be reduced. Thus, even if the dicing speed along the longitudinal direction L is higher than that in the short direction S (see FIG. 2), burrs are generated on the cut surface by the first connecting bar 11 during dicing. Can be suppressed. Therefore, an increase in time required for dicing can be suppressed as compared with the case where both connecting bars are all formed of a full metal portion.
 さらに、リードフレーム1においては、ダイシングの際の金属部分の断面積が小さいため、ダイシングの際の回転刃物の摩耗を抑制することができる。したがって、回転刃物の寿命を長くすることができる。  Furthermore, in the lead frame 1, since the cross-sectional area of the metal part at the time of dicing is small, it is possible to suppress the wear of the rotary blade at the time of dicing. Therefore, the life of the rotary blade can be extended.
 一方で、リードフレーム1においては、第2コネクティングバー12がフルメタル部で構成されている(図2参照)。したがって、両方のコネクティングバーをすべてハーフエッチング部で構成する場合と比べて、リードフレーム1の短手方向の撓みを抑制することができる。  On the other hand, in the lead frame 1, the second connecting bar 12 is composed of a full metal part (see FIG. 2). Therefore, it is possible to suppress the bending of the lead frame 1 in the short direction as compared with the case where both the connecting bars are all formed of the half-etched portion.
 なお、半導体装置2においては、ダイパッド10aとリード10bとにそれぞれ設けられたエッチング部15a、15bに、封止樹脂22が埋まるように樹脂封止されている。かかる構造により、半導体装置2において、ダイパッド10aやリード10bが封止樹脂22の裏面側から脱離することを防止することができる。  In the semiconductor device 2, the sealing resin 22 is embedded in the etching portions 15a and 15b provided in the die pad 10a and the lead 10b, respectively. With this structure, in the semiconductor device 2, it is possible to prevent the die pad 10 a and the lead 10 b from being detached from the back surface side of the sealing resin 22.
 次に、図5A~図5Cを参照して、第1の実施形態にかかる第2コネクティングバー12およびその変形例について説明する。なお、図5Bおよび図5Cにおいては、理解を容易にするため、図5Aに示した断面の輪郭に対応する部分を破線で示す。  Next, the second connecting bar 12 according to the first embodiment and its modification will be described with reference to FIGS. 5A to 5C. In FIG. 5B and FIG. 5C, a portion corresponding to the cross-sectional outline shown in FIG. 5A is indicated by a broken line for easy understanding.
 図5Aに示すように、第2コネクティングバー12は、断面視で矩形状であり、換言するとすべてフルメタル部で構成される。かかる構造により、所定の板厚を有する金属板からリードフレーム1を形成し、幅W2を所定の値にした場合において、第2コネクティングバー12の断面積を最大化することができる。したがって、リードフレーム1の短手方向Sの強度を最大化することができる。  As shown in FIG. 5A, the second connecting bar 12 has a rectangular shape in sectional view, in other words, is composed of a full metal part. With this structure, when the lead frame 1 is formed from a metal plate having a predetermined plate thickness and the width W2 is set to a predetermined value, the cross-sectional area of the second connecting bar 12 can be maximized. Therefore, the strength of the lead frame 1 in the short direction S can be maximized.
 一方で、第2コネクティングバー12の構成は、図5Aに示す構成に限定されない。例えば、図5Bに示す第2コネクティングバー12Aのように、側部の裏面側にハーフエッチング加工されたエッチング部15dを形成してもよい。また、図5Cに示す第2コネクティングバー12Bのように、側面が上に向かって末広がり形状を有するようにエッチング加工されたエッチング部15eを形成してもよい。なお、エッチング部15d、15eは、上述のエッチング部15a~15c(図3A参照)と同一のエッチング工程で形成することができる。  On the other hand, the configuration of the second connecting bar 12 is not limited to the configuration shown in FIG. 5A. For example, like the second connecting bar 12A shown in FIG. 5B, an etching portion 15d that is half-etched may be formed on the back side of the side portion. Further, as in the second connecting bar 12B shown in FIG. 5C, an etching portion 15e that is etched so that the side surface has a shape spreading toward the top may be formed. The etching parts 15d and 15e can be formed in the same etching process as the etching parts 15a to 15c (see FIG. 3A).
 そして、いずれの変形例においても、断面が逆台形状であり、中央部分がフルメタル部で構成されており、かかるフルメタル部により短手方向S(図2参照)の強度を確保することができる。さらに、いずれの変形例においても側部がエッチングされていることから、短手方向Sに沿ったダイシングの際の金属部分の断面積を小さくすることができる。したがって、第2コネクティングバー12A、12Bにおいては、短手方向Sの強度と、短手方向Sに沿ったダイシングに要する時間の短縮とを両立することができる。  In any of the modified examples, the cross section is an inverted trapezoidal shape, and the central portion is formed of a full metal portion, and the strength in the short direction S (see FIG. 2) can be secured by the full metal portion. Furthermore, since the side portions are etched in any of the modifications, the cross-sectional area of the metal portion when dicing along the short direction S can be reduced. Therefore, in the second connecting bars 12A and 12B, both the strength in the short direction S and the reduction of the time required for dicing along the short direction S can be achieved.
<第2の実施形態> 
 次に、図6を参照して第2の実施形態に係るリードフレーム1Aについて説明する。なお、図6は、第1の実施形態における図2に対応する図である。 
<Second Embodiment>
Next, a lead frame 1A according to a second embodiment will be described with reference to FIG. FIG. 6 is a diagram corresponding to FIG. 2 in the first embodiment.
 第2の実施形態に係るリードフレーム1Aは、SONタイプの半導体装置の製造に用いられるリードフレームである。その他の点は、第1の実施形態に係るリードフレーム1と同様であり、共通の構成については同一の符号を付して、詳細な説明は省略する。  The lead frame 1A according to the second embodiment is a lead frame used for manufacturing a SON type semiconductor device. The other points are the same as those of the lead frame 1 according to the first embodiment. The common components are denoted by the same reference numerals, and detailed description thereof is omitted.
 リードフレーム1Aにおいて、単位リードフレーム10は、平面視で矩形状のダイパッド10aと、複数のリード10bと、サポートバー10cとを有する。リード10bは、長手方向Lに沿ったダイパッド10aの2辺に向かい合うように空間を介して設けられ、第1コネクティングバー11にのみ支持される。また、サポートバー10cは、ダイパッド10aの各角部からそれぞれ長手方向Lに沿って延び、第2コネクティングバー12にのみ接続されて、ダイパッド10aを支持している。  In the lead frame 1A, the unit lead frame 10 includes a rectangular die pad 10a, a plurality of leads 10b, and a support bar 10c in plan view. The lead 10 b is provided through a space so as to face two sides of the die pad 10 a along the longitudinal direction L, and is supported only by the first connecting bar 11. The support bar 10c extends from each corner of the die pad 10a along the longitudinal direction L and is connected only to the second connecting bar 12 to support the die pad 10a.
 そして、第1の実施形態と同様に、長手方向Lに沿って延びる第1コネクティングバー11はハーフエッチング部で構成され、短手方向Sに沿って延びる第2コネクティングバー12は交差部14を含めてすべてフルメタル部で構成されている。  As in the first embodiment, the first connecting bar 11 extending along the longitudinal direction L is formed of a half-etched portion, and the second connecting bar 12 extending along the lateral direction S includes the intersecting portion 14. All are made up of full metal parts.
 さらに、リードフレーム1Aにおいては、フルメタル部で構成された第2コネクティングバー12にはリード10bが接続されておらず、サポートバー10cのみが接続されている。これにより、短手方向Sに沿ったダイシングにおいて、第2コネクティングバー12により切断面にバリが発生したとしても、隣接するサポートバー10c同士はすでにダイパッド10aで電気的に接続されていることから、バリにより短絡しても支障はない。  Furthermore, in the lead frame 1A, the lead 10b is not connected to the second connecting bar 12 formed of the full metal part, and only the support bar 10c is connected. Thereby, in dicing along the short direction S, even if burrs occur on the cut surface by the second connecting bar 12, the adjacent support bars 10c are already electrically connected by the die pad 10a. There is no problem even if it is short-circuited by burr.
 したがって、バリの発生以外の問題が生じない程度にダイシングの速度を速くすることができることから、短手方向Sに沿ったダイシングに要する時間を短くすることができる。すなわち、SONタイプの半導体装置の製造に用いられるリードフレーム1Aにおいては、ダイシングに要する時間を大幅に短くすることができる。  Therefore, since the dicing speed can be increased to such an extent that problems other than the occurrence of burrs do not occur, the time required for dicing along the short direction S can be shortened. That is, in the lead frame 1A used for manufacturing the SON type semiconductor device, the time required for dicing can be significantly shortened.
 次に、図7を参照して、第2の実施形態の変形例にかかるリードフレーム1Bについて説明する。リードフレーム1Bにおいて、サポートバー10cは、ダイパッド10aからリード10bに延び、リード10bを介してダイパッド10aを支持している。ここで、サポートバー10cに接続されたリード10bは、半導体装置2(図4C参照)において接地用の端子となる。  Next, a lead frame 1B according to a modification of the second embodiment will be described with reference to FIG. In the lead frame 1B, the support bar 10c extends from the die pad 10a to the lead 10b and supports the die pad 10a via the lead 10b. Here, the lead 10b connected to the support bar 10c serves as a grounding terminal in the semiconductor device 2 (see FIG. 4C).
 すなわち、リードフレーム1Bにおいて、単位リードフレーム10の構成部材はすべて長手方向Lに沿って延びる第1コネクティングバー11に接続されており、第2コネクティングバー12には接続されていない。これにより、第2コネクティングバー12に支持される単位リードフレーム10の部材自体がないことから、短手方向Sに沿ったダイシングにおいて切断面でバリは発生しない。したがって、リードフレーム1Aよりも短手方向Sに沿ったダイシングの時間をさらに短くすることができる。  That is, in the lead frame 1B, all the constituent members of the unit lead frame 10 are connected to the first connecting bar 11 extending along the longitudinal direction L, and are not connected to the second connecting bar 12. Accordingly, since there is no member of the unit lead frame 10 supported by the second connecting bar 12, no burr is generated on the cut surface in dicing along the short direction S. Therefore, it is possible to further shorten the dicing time along the shorter direction S than the lead frame 1A.
<第3の実施形態> 
 次に、図8を参照して第3の実施形態に係るリードフレーム1Cについて説明する。なお、図8~図13は、すべて第1の実施形態における図1の下図に対応する図であり、QFNタイプ、SONタイプいずれの半導体装置の製造にも適用可能である。 
<Third Embodiment>
Next, a lead frame 1C according to a third embodiment will be described with reference to FIG. FIGS. 8 to 13 all correspond to the lower diagram of FIG. 1 in the first embodiment, and can be applied to manufacture of both QFN type and SON type semiconductor devices.
 リードフレーム1Cにおいて、複数の第2コネクティングバー12のうち、一部の第2コネクティングバー12は、短手方向Sにおける一端から他端まですべてフルメタル部で構成されている。また、残りの第2コネクティングバー12は、短手方向Sにおける一端から他端まですべてハーフエッチング部で構成されている。そして、一端から他端まですべてフルメタル部で構成された第2コネクティングバー12と、一端から他端まですべてハーフエッチング部で構成された第2コネクティングバー12とが、交互に並んで配置されている。  In the lead frame 1 </ b> C, among the plurality of second connecting bars 12, some of the second connecting bars 12 are all formed of a full metal portion from one end to the other end in the short direction S. Further, the remaining second connecting bar 12 is formed of a half-etched portion from one end to the other end in the short direction S. And the 2nd connecting bar 12 comprised from the full metal part from one end to the other end and the 2nd connecting bar 12 comprised from the half etching part from the one end to the other end are arrange | positioned alternately. .
 ここで、リードフレーム1Cにおいては、一端から他端まですべてフルメタル部で構成された一部の第2コネクティングバー12により、短手方向Sの強度を確保することができる。さらに、すべてハーフエッチング部で構成された残りの第2コネクティングバー12により、回転刃物の寿命を長くすることができる。したがって、リードフレーム1Cにおいては、短手方向Sの強度と回転刃物の長寿命化とを両立することができる。  Here, in the lead frame 1C, the strength in the short-side direction S can be ensured by a part of the second connecting bar 12 composed of a full metal part from one end to the other end. Furthermore, the remaining second connecting bar 12, which is composed of half-etched portions, can extend the life of the rotary blade. Therefore, in the lead frame 1C, it is possible to achieve both the strength in the short direction S and the life extension of the rotary blade.
 なお、図8においては、すべてフルメタル部で構成された第2コネクティングバー12と、すべてハーフエッチング部で構成された第2コネクティングバー12とを1本ずつ交互に並べた例を示しているが、これに限定されるものではない。例えば、すべてフルメタル部で構成された部位と、すべてハーフエッチング部で構成された部位とを複数本ずつ交互に並べてもよい(例:フルメタル部2本とハーフエッチング部2本とを交互に配列)。また、一方の部位を他方の部位よりも本数を多くした上で交互に並べてもよい(例:フルメタル部3本とハーフエッチング部2本とを交互に配列)。  In addition, in FIG. 8, although the 2nd connecting bar 12 comprised all by the full metal part and the 2nd connecting bar 12 comprised all the half-etching parts are shown, the example arranged alternately one by one, It is not limited to this. For example, a plurality of parts made up of full metal parts and a part made up of all half-etched parts may be alternately arranged (for example, two full metal parts and two half-etched parts are arranged alternately). . Further, one part may be arranged alternately after increasing the number of parts than the other part (for example, three full metal parts and two half-etched parts are alternately arranged).
 また、第1枠部13a(図1参照)から離れているため相対的に強度が低いリードフレーム1Cの中央部分に、すべてフルメタル部で構成された部位を多く配置してもよい。さらに、第1枠部13aに近く相対的に強度が高いリードフレーム1Cの周縁部分に、すべてハーフエッチング部で構成された部位を多く配置してもよい。さらに、フルメタル部で構成された第2コネクティングバー12において、一端から他端まですべてフルメタル部で構成されていなくてもよい。  Further, since the first frame portion 13a (see FIG. 1) is away from the first frame portion 13a (see FIG. 1), many portions that are all composed of the full metal portion may be arranged in the central portion of the lead frame 1C having relatively low strength. Further, a large number of portions that are all formed of half-etched portions may be disposed on the peripheral portion of the lead frame 1C that is close to the first frame portion 13a and relatively high in strength. Furthermore, in the 2nd connecting bar 12 comprised by the full metal part, it does not need to be comprised by the full metal part from one end to the other end.
<第4の実施形態> 
 次に、図9を参照して第4の実施形態に係るリードフレーム1Dについて説明する。 
<Fourth Embodiment>
Next, a lead frame 1D according to a fourth embodiment will be described with reference to FIG.
 リードフレーム1Dにおいて、第2コネクティングバー12は、短手方向Sの一端から他端までの間に、フルメタル部で構成された部位とハーフエッチング部で構成された部位とが混在している。例えば、図9に示すように、一端から他端までの間に、単位リードフレーム10の幅3個分のフルメタル部と、単位リードフレーム10の幅1個分のハーフエッチング部とが交互に並べられている。このように、第2コネクティングバー12の一部にハーフエッチング部を設けることにより、回転刃物の寿命を長くすることができる。  In the lead frame 1D, the second connecting bar 12 includes a portion composed of a full metal portion and a portion composed of a half-etched portion between one end and the other end in the short direction S. For example, as shown in FIG. 9, between one end and the other end, three full metal portions of the unit lead frame 10 and half-etched portions of one unit lead frame 10 are alternately arranged. It has been. Thus, by providing a half-etched part in a part of the second connecting bar 12, the life of the rotary blade can be extended.
 また、リードフレーム1Dにおいては、すべての第2コネクティングバー12を全体で見た場合に、短手方向Sの一端から他端までのすべての箇所にフルメタル部が配置されるように構成されている。例えば、図9に示すように、隣接する第2コネクティングバー12同士において、短手方向S全体でフルメタル部でない箇所がないように重ね合わせて配置している。  Further, the lead frame 1D is configured such that the full metal portion is disposed at all locations from one end to the other end in the short direction S when all the second connecting bars 12 are viewed as a whole. . For example, as shown in FIG. 9, the adjacent second connecting bars 12 are arranged so as to overlap each other so that there is no portion that is not a full metal portion in the entire short direction S.
 かかるフルメタル部の配置により、すべての第2コネクティングバー12を全体で見た場合に、撓みやすい薄い部位をリードフレーム1Dからなくすことができる。したがって、リードフレーム1Dが短手方向Sに撓むことを抑制することができる。すなわち、リードフレーム1Dにおいては、短手方向Sの強度と、回転刃物の長寿命化とを両立することができる。  With the arrangement of the full metal portion, it is possible to eliminate a thin portion that is easily bent from the lead frame 1D when all the second connecting bars 12 are viewed as a whole. Therefore, the lead frame 1D can be prevented from bending in the short direction S. That is, in the lead frame 1D, both the strength in the short direction S and the extension of the life of the rotary blade can be achieved.
 次に、図10を参照して第4の実施形態の変形例に係るリードフレーム1Eについて説明する。リードフレーム1Eは、各第2コネクティングバー12において、フルメタル部を所定の領域16aの内部に集中させて配置している。また、リードフレーム1Eにおいては、平面視で帯状の領域16aを長手方向Lおよび短手方向Sのいずれからも傾斜させるとともに、複数の領域16aを平行に配置している。  Next, a lead frame 1E according to a modification of the fourth embodiment will be described with reference to FIG. In each second connecting bar 12, the lead frame 1E is arranged such that the full metal portion is concentrated inside the predetermined region 16a. In the lead frame 1E, the band-like region 16a is inclined from both the longitudinal direction L and the short direction S in plan view, and a plurality of regions 16a are arranged in parallel.
 なお、図10に示した領域16aにおいては、それぞれ単位リードフレーム10の幅2個分のフルメタル部が隣接するリードフレーム1E間で、フルメタル部が単位リードフレーム10の幅1個分ずつ短手方向Sにずれて配置されている。しかしながら、配置されるフルメタル部の長さや短手方向Sにずれる幅はこれに限られない。また、隣接する領域16a同士の間隔や、領域16aの傾斜角度等も任意である。  In the region 16 a shown in FIG. 10, the full metal portion corresponding to one width of the unit lead frame 10 is short in the width direction between the adjacent lead frames 1 </ b> E with two full metal portions corresponding to the width of the unit lead frame 10. S is shifted to S. However, the length of the arranged full metal part and the width shifted in the short direction S are not limited to this. Further, the interval between adjacent regions 16a, the inclination angle of the region 16a, and the like are also arbitrary.
 次に、図11を参照して第4の実施形態の別の変形例に係るリードフレーム1Fについて説明する。リードフレーム1Fは、第2コネクティングバー12において、長手方向Lおよび短手方向Sのいずれからも傾斜させた一対の帯状の領域16bを、互いに交差させた例である。なお、図11には領域16bを一対交差させた例について示しているが、領域16bを複数対交差させてもよい。  Next, a lead frame 1F according to another modification of the fourth embodiment will be described with reference to FIG. The lead frame 1F is an example in which a pair of band-shaped regions 16b that are inclined from both the longitudinal direction L and the short direction S in the second connecting bar 12 cross each other. Although FIG. 11 shows an example in which a pair of regions 16b are crossed, a plurality of pairs of regions 16b may be crossed.
 次に、図12を参照して第4の実施形態のさらに別の変形例に係るリードフレーム1Gについて説明する。リードフレーム1Gは、第2コネクティングバー12において、菱形状の領域16cをリードフレーム1G内に一様に分布させた例である。なお、図12には菱形状の領域16cを一様に分布させた例について示しているが、必ずしも一様に分布させなくともよい。また、菱形状以外の形状の領域16cを分布させてもよい。例えば、三角形状や矩形形状等の領域16cを分布させてもよい。また、領域16cの大きさは任意である。  Next, a lead frame 1G according to still another modification of the fourth embodiment will be described with reference to FIG. The lead frame 1G is an example in which the rhombic region 16c is uniformly distributed in the lead frame 1G in the second connecting bar 12. Although FIG. 12 shows an example in which the rhombic regions 16c are uniformly distributed, it is not always necessary to distribute them uniformly. Moreover, you may distribute the area | region 16c of shapes other than a rhombus shape. For example, regions 16c having a triangular shape or a rectangular shape may be distributed. Further, the size of the region 16c is arbitrary.
 次に、図13を参照して第3の実施形態と第4の実施形態とを組み合わせたリードフレーム1Hについて説明する。リードフレーム1Hは、第3の実施形態と同様に、複数の第2コネクティングバー12のうち、一部の第2コネクティングバー12は、短手方向Sにおける一端から他端まですべてフルメタル部で構成される。さらに、リードフレーム1Hは、第4の実施形態と同様に、残りの第2コネクティングバー12において、内部にフルメタル部を集中させた領域16dを有する。図13では、複数の領域16dが平行に配置された場合について示しているが、領域16dの構成はこれに限られない。  Next, a lead frame 1H in which the third embodiment and the fourth embodiment are combined will be described with reference to FIG. In the lead frame 1H, as in the third embodiment, among the plurality of second connecting bars 12, some of the second connecting bars 12 are all made up of a full metal portion from one end to the other end in the short direction S. The Furthermore, the lead frame 1H has a region 16d in which the full metal portion is concentrated inside the remaining second connecting bar 12 as in the fourth embodiment. Although FIG. 13 shows a case where a plurality of regions 16d are arranged in parallel, the configuration of the region 16d is not limited to this.
 以上、本発明の各実施形態について説明したが、本発明は上述の各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、上述の各実施形態においては、QFNタイプやSONタイプの半導体装置の製造に用いるリードフレームについて説明したが、その他のタイプの半導体装置の製造に用いてもよい。  As mentioned above, although each embodiment of this invention was described, this invention is not limited to each above-mentioned embodiment, A various change is possible unless it deviates from the meaning. For example, in each of the above-described embodiments, the lead frame used for manufacturing a QFN type or SON type semiconductor device has been described. However, the lead frame may be used for manufacturing other types of semiconductor devices.
 以上のように、実施形態に係るリードフレーム1(1A~1H)は、矩形状のリードフレームであって、マトリックス状に並べられた複数の単位リードフレーム10と、隣接する単位リードフレーム10同士を連結し、リードフレーム1(1A~1H)の長手方向Lに延びる複数の第1コネクティングバー11と、隣接する単位リードフレーム10同士を連結し、リードフレーム1(1A~1H)の短手方向Sに延びる複数の第2コネクティングバー12(12A、12B)とを備える。そして、複数の第2コネクティングバー12(12A、12B)の少なくとも一部が、第1コネクティングバー11よりも厚い部位を有する。これにより、リードフレーム1(1A~1H)の短手方向Sに沿った撓みを抑制することができる。 As described above, the lead frame 1 (1A to 1H) according to the embodiment is a rectangular lead frame, and includes a plurality of unit lead frames 10 arranged in a matrix and adjacent unit lead frames 10 to each other. A plurality of first connecting bars 11 extending in the longitudinal direction L of the lead frame 1 (1A to 1H) and the adjacent unit lead frames 10 are connected to each other, and the short direction S of the lead frame 1 (1A to 1H) is connected. And a plurality of second connecting bars 12 (12A, 12B). Then, at least a part of the plurality of second connecting bars 12 (12 </ b> A, 12 </ b> B) has a portion thicker than the first connecting bar 11. Thereby, the bending along the short direction S of the lead frame 1 (1A to 1H) can be suppressed.
 また、実施形態に係るリードフレーム1(1A~1H)において、第2コネクティングバー12(12A、12B)における第1コネクティングバー11よりも厚い部位は、リードフレーム1(1A~1H)の最も厚い部位と同じ厚さである。これにより、リードフレーム1(1A~1H)の短手方向Sの強度を最大化することができる。  In the lead frame 1 (1A to 1H) according to the embodiment, the thickest part of the second connecting bar 12 (12A, 12B) than the first connecting bar 11 is the thickest part of the lead frame 1 (1A to 1H). Is the same thickness. As a result, the strength of the lead frame 1 (1A to 1H) in the short direction S can be maximized.
 また、実施形態に係るリードフレーム1A(1B)において、リード10bは、第2コネクティングバー12(12A、12B)よりも薄い第1コネクティングバー11にのみ支持されている。これにより、長手方向Lに沿ったダイシングに要する時間を短くすることができる。  In the lead frame 1A (1B) according to the embodiment, the lead 10b is supported only by the first connecting bar 11 that is thinner than the second connecting bar 12 (12A, 12B). Thereby, the time required for dicing along the longitudinal direction L can be shortened.
 また、実施形態に係るリードフレーム1Aにおいて、ダイパッド10aは、サポートバー10cを用いて第1コネクティングバー11よりも厚い第2コネクティングバー12にのみ支持されている。これにより、短手方向Sに沿ったダイシングに要する時間を短くすることができる。  In the lead frame 1A according to the embodiment, the die pad 10a is supported only by the second connecting bar 12 that is thicker than the first connecting bar 11 using the support bar 10c. Thereby, the time required for dicing along the short direction S can be shortened.
 また、実施形態に係るリードフレーム1(1A~1H)において、第2コネクティングバー12A(12B)は、断面が逆台形状であり、最も厚い部分がリードフレーム1(1A~1H)の最も厚い部位と同じ厚さである。これにより、短手方向Sの強度と、短手方向Sに沿ったダイシングに要する時間の短縮とを両立することができる。  In the lead frame 1 (1A to 1H) according to the embodiment, the second connecting bar 12A (12B) has an inverted trapezoidal cross section, and the thickest part is the thickest part of the lead frame 1 (1A to 1H). Is the same thickness. Thereby, both the strength in the short direction S and the reduction of the time required for dicing along the short direction S can be achieved.
 また、実施形態に係るリードフレーム1(1A、1B)において、第1コネクティングバー11と第2コネクティングバー12(12A、12B)とが交差する交差部14は、第2コネクティングバー12(12A、12B)における第1コネクティングバー11よりも厚い部位と同じ厚さである。これにより、リードフレーム1(1A、1B)の短手方向Sに沿った撓みを抑制することができる。  In the lead frame 1 (1A, 1B) according to the embodiment, the intersecting portion 14 where the first connecting bar 11 and the second connecting bar 12 (12A, 12B) intersect is the second connecting bar 12 (12A, 12B). The thickness is the same as the portion thicker than the first connecting bar 11 in FIG. Thereby, the bending along the short direction S of the lead frame 1 (1A, 1B) can be suppressed.
 また、実施形態に係るリードフレーム1Cにおいて、複数の第2コネクティングバー12(12A、12B)のうち一部の第2コネクティングバー12(12A、12B)は、短手方向Sの一端から他端まですべて第1コネクティングバー11よりも厚い。また、残りの第2コネクティングバー12(12A、12B)は、短手方向Sの一端から他端まですべて第1コネクティングバー11と同じ厚さである。これにより、短手方向Sの強度と、回転刃物の長寿命化とを両立することができる。  Further, in the lead frame 1C according to the embodiment, some of the second connecting bars 12 (12A, 12B) out of the plurality of second connecting bars 12 (12A, 12B) are from one end to the other end in the short direction S. All are thicker than the first connecting bar 11. The remaining second connecting bars 12 (12A, 12B) all have the same thickness as the first connecting bar 11 from one end to the other end in the short direction S. Thereby, the intensity | strength of the transversal direction S and the lifetime improvement of a rotary blade can be made compatible.
 また、実施形態に係るリードフレーム1D(1E~1H)において、第2コネクティングバー12(12A、12B)は、短手方向Sの一端から他端までの間に、第1コネクティングバー11よりも厚い部位と、第1コネクティングバー11と同じ厚さである部位とが混在し、すべての第2コネクティングバー12(12A、12B)を全体で見た場合に、短手方向Sの一端から他端までのすべての箇所に、第1コネクティングバー11よりも厚い部位が配置されている。これにより、短手方向Sの強度と、回転刃物の長寿命化とを両立することができる。  In the lead frame 1D (1E to 1H) according to the embodiment, the second connecting bar 12 (12A, 12B) is thicker than the first connecting bar 11 from one end to the other end in the short direction S. When a part and a part having the same thickness as the first connecting bar 11 are mixed and all the second connecting bars 12 (12A, 12B) are viewed as a whole, from one end to the other end in the short direction S The thicker part than the 1st connecting bar 11 is arrange | positioned in all the places. Thereby, the intensity | strength of the transversal direction S and the lifetime improvement of a rotary blade can be made compatible.
 上述した第1~第4実施形態においては、第2コネクティングバー12の少なくとも一部が第1コネクティングバー11よりも厚い部位を有することにより、第2コネクティングバー12の少なくとも一部が第1コネクティングバー11の剛性より高くされている。しかし、剛性を異ならせる手法はこれに限られず、第5実施形態および第6実施形態のように構成してもよい。 In the first to fourth embodiments described above, at least a part of the second connecting bar 12 has a portion thicker than the first connecting bar 11, so that at least a part of the second connecting bar 12 is the first connecting bar. 11 is higher than rigidity. However, the method of making the rigidity different is not limited to this, and it may be configured as in the fifth and sixth embodiments.
 図14は、第5実施形態のリードフレーム1Iを示す平面図である。図14に示すリードフレーム1Iにおいて、第1コネクティングバー11Iおよび第2コネクティングバー12Iは厚みが等しい。図14に示すように、複数の第2コネクティングバー12Iの少なくとも一部が、第1コネクティングバー11Iよりも幅広の部位を有している。図示の例では、全ての第2コネクティングバー12Iの幅WLが第1コネクティングバー11Iの幅WSより広い。なお、図14においては、説明をわかりやすくするために、実際の単位リードフレームの個数よりも少ないリードフレーム1Iを示している。 FIG. 14 is a plan view showing a lead frame 1I of the fifth embodiment. In the lead frame 1I shown in FIG. 14, the first connecting bar 11I and the second connecting bar 12I have the same thickness. As shown in FIG. 14, at least a part of the plurality of second connecting bars 12I has a portion wider than the first connecting bar 11I. In the illustrated example, the width WL of all the second connecting bars 12I is wider than the width WS of the first connecting bars 11I. In FIG. 14, for the sake of easy understanding, the number of lead frames 1I smaller than the actual number of unit lead frames is shown.
 第2コネクティングバー12Iの断面積が第1コネクティングバー11Iの断面積より大きく、第2コネクティングバー12Iの剛性が第1コネクティングバー11Iの剛性より大きい。このような構成によっても、短手方向に撓みにくいリードフレーム1Iを提供することができる。なお、第1コネクティングバー11Iに設ける幅狭の部位を、図8~図13で示したハーフエッチング部が設けられる領域に設けてもよい。 The cross-sectional area of the second connecting bar 12I is larger than the cross-sectional area of the first connecting bar 11I, and the rigidity of the second connecting bar 12I is larger than the rigidity of the first connecting bar 11I. Even with such a configuration, it is possible to provide the lead frame 1I which is not easily bent in the short direction. Note that the narrow portion provided in the first connecting bar 11I may be provided in the region where the half-etched portion shown in FIGS. 8 to 13 is provided.
 図15は、第6実施形態のリードフレーム1Jを示す平面図である。図15に示すリードフレーム1Jにおいて、第2コネクティングバー12Jの厚みおよび幅が第1コネクティングバー11Jの厚みおよび幅とそれぞれ等しい。図15に示すように、リードフレーム1Jの長手方向寸法LJに対する第2コネクティングバー12Jの個数の比A2が、リードフレーム1Jの短手方向寸法SJに対する第1コネクティングバー11Jの個数の比A1よりも大きい。なお、図15においては、説明をわかりやすくするために、実際の単位リードフレームの個数よりも少ないリードフレーム1Iを示している。 FIG. 15 is a plan view showing a lead frame 1J of the sixth embodiment. In the lead frame 1J shown in FIG. 15, the thickness and width of the second connecting bar 12J are equal to the thickness and width of the first connecting bar 11J, respectively. As shown in FIG. 15, the ratio A2 of the number of second connecting bars 12J to the longitudinal dimension LJ of the lead frame 1J is larger than the ratio A1 of the number of first connecting bars 11J to the transverse dimension SJ of the lead frame 1J. large. In FIG. 15, for the sake of easy understanding, the number of lead frames 1I smaller than the actual number of unit lead frames is shown.
 第2コネクティングバー12Jの断面積が第1コネクティングバー11Jの断面積と等しく、第1コネクティングバー11Jと第2コネクティングバー12Jの剛性は等しい。しかし、単位長さ当たりの第2コネクティングバー12Jの個数[個/m]が単位長さ当たりの第1コネクティングバー11Jの個数[個/m]よりも多いため、リードフレーム1Jは長手方向よりも短手方向に撓みにくい。
 図15においては、リードフレーム1Jの長手方向寸法LJがリードフレーム1Jの短手方向寸法SJの二倍である。第1コネクティングバー11Jが2個、第2コネクティングバー12Jが7個である。つまり、リードフレーム1Jの長手方向寸法LJに対する第2コネクティングバー12Jの個数の比A2は7/LJ=7/(2SJ)であり、リードフレーム1Jの短手方向寸法SJに対する第1コネクティングバー11Jの個数の比A1は2/SJである。つまり、リードフレーム1Jは、短手方向は長手方向よりも1.75倍(7/4倍)撓みにくくされている。このため、リードフレーム1Jの取扱性が高い。
The cross-sectional area of the second connecting bar 12J is equal to the cross-sectional area of the first connecting bar 11J, and the rigidity of the first connecting bar 11J and the second connecting bar 12J is equal. However, since the number [number / m] of the second connecting bars 12J per unit length is larger than the number [number / m] of the first connecting bars 11J per unit length, the lead frame 1J is longer than the longitudinal direction. Hard to bend in the short direction.
In FIG. 15, the longitudinal dimension LJ of the lead frame 1J is twice the lateral dimension SJ of the lead frame 1J. There are two first connecting bars 11J and seven second connecting bars 12J. In other words, the ratio A2 of the number of the second connecting bars 12J to the longitudinal dimension LJ of the lead frame 1J is 7 / LJ = 7 / (2SJ), and the first connecting bar 11J with respect to the transverse dimension SJ of the lead frame 1J. The number ratio A1 is 2 / SJ. That is, the lead frame 1J is less likely to bend 1.75 times (7/4 times) in the short direction than in the long direction. For this reason, the handleability of the lead frame 1J is high.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。  Further effects and modifications can be easily derived by those skilled in the art. Thus, the broader aspects of the present invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various modifications can be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
1、1A~1J リードフレーム 
2 半導体装置 
10 単位リードフレーム 
10a ダイパッド 
10b リード 
10c サポートバー 
11、11I、11J 第1コネクティングバー 
12、12A、12B、12I、12J 第2コネクティングバー 
13 外枠 
14 交差部 
L 長手方向 
S 短手方向 
1, 1A-1J Lead frame
2 Semiconductor devices
10 unit lead frame
10a Die pad
10b lead
10c Support bar
11, 11I, 11J 1st connecting bar
12, 12A, 12B, 12I, 12J Second connecting bar
13 Outer frame
14 Intersection
L Longitudinal direction
S Short direction

Claims (11)

  1.  矩形状のリードフレームであって、 
     ダイパッドと複数のリードとを有し、マトリックス状に並べられた複数の単位リードフレームと、
     隣接する前記単位リードフレーム同士を連結し、前記リードフレームの長手方向に延びる複数の第1コネクティングバーと、
     隣接する前記単位リードフレーム同士を連結し、前記リードフレームの短手方向に延びる複数の第2コネクティングバーと、
     を備え、
     複数の前記第2コネクティングバーの少なくとも一部が、前記第1コネクティングバーよりも剛性の高い部位を有することを特徴とするリードフレーム。
    A rectangular lead frame,
    A plurality of unit lead frames having a die pad and a plurality of leads and arranged in a matrix;
    A plurality of first connecting bars connecting adjacent unit lead frames and extending in the longitudinal direction of the lead frames;
    A plurality of second connecting bars that connect adjacent unit lead frames and extend in the short direction of the lead frames;
    With
    A lead frame, wherein at least a part of the plurality of second connecting bars has a portion having rigidity higher than that of the first connecting bar.
  2.  前記リードは、前記第1コネクティングバーにのみ支持されていること 
    を特徴とする請求項1に記載のリードフレーム。 
    The lead is supported only by the first connecting bar.
    The lead frame according to claim 1.
  3.  複数の前記第2コネクティングバーの少なくとも一部が、前記第1コネクティングバーよりも厚い部位を有することを特徴とする、請求項1または2に記載のリードフレーム。 3. The lead frame according to claim 1, wherein at least a part of the plurality of second connecting bars has a portion thicker than the first connecting bar. 4.
  4.  前記第2コネクティングバーにおける前記第1コネクティングバーよりも厚い部位は、前記リードフレームの最も厚い部位と同じ厚さであることを特徴とする請求項3に記載のリードフレーム。  4. The lead frame according to claim 3, wherein a portion thicker than the first connecting bar in the second connecting bar has the same thickness as the thickest portion of the lead frame.
  5.  前記ダイパッドは、前記第2コネクティングバーにのみ支持されていることを特徴とする請求項4に記載のリードフレーム。  The lead frame according to claim 4, wherein the die pad is supported only by the second connecting bar.
  6.  前記第2コネクティングバーは、断面が逆台形状であり、最も厚い部分が前記リードフレームの最も厚い部位と同じ厚さであることを特徴とする請求項3~5のいずれか一つに記載のリードフレーム。  6. The second connecting bar according to claim 3, wherein the cross section of the second connecting bar has an inverted trapezoidal shape, and the thickest portion has the same thickness as the thickest portion of the lead frame. Lead frame.
  7.  前記第1コネクティングバーと前記第2コネクティングバーとが交差する交差部は、前記第2コネクティングバーにおける前記第1コネクティングバーよりも厚い部位と同じ厚さであることを特徴とする請求項3~6のいずれか一つに記載のリードフレーム。  The crossing portion where the first connecting bar and the second connecting bar intersect has the same thickness as a portion of the second connecting bar that is thicker than the first connecting bar. The lead frame according to any one of the above.
  8.  複数の前記第2コネクティングバーのうち一部の前記第2コネクティングバーは、前記短手方向の一端から他端まですべて前記第1コネクティングバーよりも厚く、
     残りの前記第2コネクティングバーは、前記短手方向の一端から他端まですべて前記第1コネクティングバーと同じ厚さであることを特徴とする請求項3~7のいずれか一つに記載のリードフレーム。 
    Among the plurality of second connecting bars, some of the second connecting bars are all thicker than the first connecting bar from one end to the other end in the short direction,
    The lead according to any one of claims 3 to 7, wherein the remaining second connecting bar has the same thickness as the first connecting bar from one end to the other end in the short direction. flame.
  9.  前記第2コネクティングバーは、前記短手方向の一端から他端までの間に、前記第1コネクティングバーよりも厚い部位と、前記第1コネクティングバーと同じ厚さである部位とが混在し、
     すべての前記第2コネクティングバーを全体で見た場合に、前記短手方向の一端から他端までのすべての箇所に、前記第1コネクティングバーよりも厚い部位が配置されていることを特徴とする請求項3~8のいずれか一つに記載のリードフレーム。 
    The second connecting bar includes a portion thicker than the first connecting bar and a portion having the same thickness as the first connecting bar between one end and the other end in the short direction,
    When all of the second connecting bars are viewed as a whole, thicker portions than the first connecting bars are disposed at all locations from one end to the other end in the lateral direction. The lead frame according to any one of claims 3 to 8.
  10.  複数の前記第2コネクティングバーの少なくとも一部が、前記第1コネクティングバーよりも幅広の部位を有することを特徴とする、請求項1または2に記載のリードフレーム。  3. The lead frame according to claim 1, wherein at least a part of the plurality of second connecting bars has a portion wider than the first connecting bar. 4.
  11.  矩形状のリードフレームであって、 
     ダイパッドと複数のリードとを有し、マトリックス状に並べられた複数の単位リードフレームと、
     隣接する前記単位リードフレーム同士を連結し、前記リードフレームの長手方向に延びる複数の第1コネクティングバーと、
     隣接する前記単位リードフレーム同士を連結し、前記リードフレームの短手方向に延びる複数の第2コネクティングバーと、
     を備え、
     前記第2コネクティングバーの厚みおよび幅が前記第1コネクティングバーの厚みおよび幅とそれぞれ等しく、
     前記リードフレームの長手方向寸法に対する前記第2コネクティングバーの個数の比が、前記リードフレームの短手方向寸法に対する前記第1コネクティングバーの個数の比よりも大きいことを特徴とする、リードフレーム。 
    A rectangular lead frame,
    A plurality of unit lead frames having a die pad and a plurality of leads and arranged in a matrix;
    A plurality of first connecting bars connecting adjacent unit lead frames and extending in the longitudinal direction of the lead frames;
    A plurality of second connecting bars that connect adjacent unit lead frames and extend in the short direction of the lead frames;
    With
    The thickness and width of the second connecting bar are equal to the thickness and width of the first connecting bar, respectively.
    The lead frame according to claim 1, wherein the ratio of the number of the second connecting bars to the longitudinal dimension of the lead frame is larger than the ratio of the number of the first connecting bars to the lateral dimension of the lead frame.
PCT/JP2017/017960 2016-06-24 2017-05-11 Lead frame WO2017221581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780039299.3A CN109417063A (en) 2016-06-24 2017-05-11 Lead frame

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-125110 2016-06-24
JP2016125110A JP6727950B2 (en) 2016-06-24 2016-06-24 Lead frame

Publications (1)

Publication Number Publication Date
WO2017221581A1 true WO2017221581A1 (en) 2017-12-28

Family

ID=60784617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017960 WO2017221581A1 (en) 2016-06-24 2017-05-11 Lead frame

Country Status (4)

Country Link
JP (1) JP6727950B2 (en)
CN (1) CN109417063A (en)
TW (1) TWI664705B (en)
WO (1) WO2017221581A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679740B (en) * 2018-09-28 2019-12-11 大陸商光寶光電(常州)有限公司 Lead frame array for carrying chips and led package structure with multiple chips
JP7450575B2 (en) 2021-03-18 2024-03-15 株式会社東芝 Semiconductor device and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057264A (en) * 2000-08-11 2002-02-22 Nec Kansai Ltd Lead frame
JP2002343817A (en) * 2001-05-11 2002-11-29 Tomoegawa Paper Co Ltd Semiconductor device unit
JP2004071801A (en) * 2002-08-06 2004-03-04 Shinko Electric Ind Co Ltd Lead frame and its fabricating method
JP2006237289A (en) * 2005-02-25 2006-09-07 Toppan Printing Co Ltd Lead frame structure and its manufacturing method
JP2014135409A (en) * 2013-01-11 2014-07-24 Mitsui High Tec Inc Lead frame
JP2016105524A (en) * 2016-03-10 2016-06-09 大日本印刷株式会社 Lead frame and method of manufacturing lead frame

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260580A (en) * 1993-03-09 1994-09-16 Hitachi Ltd Lead frame and semiconductor device using the same
JPH06275764A (en) * 1993-03-19 1994-09-30 Fujitsu Miyagi Electron:Kk Lead frame and manufacture of semiconductor device using same
US6028350A (en) * 1998-02-09 2000-02-22 Advanced Micro Devices, Inc. Lead frame with strip-shaped die bonding pad
JP3794829B2 (en) * 1998-07-10 2006-07-12 株式会社三井ハイテック Separation device for multi-sided etching products
TW200418149A (en) * 2003-03-11 2004-09-16 Siliconware Precision Industries Co Ltd Surface-mount-enhanced lead frame and method for fabricating semiconductor package with the same
WO2008075654A1 (en) * 2006-12-18 2008-06-26 Shiima Electronics Inc. Lead frame, method for manufacturing the lead frame, and semiconductor device having the lead frame mounted thereon
TWI471995B (en) * 2008-11-07 2015-02-01 Toppan Printing Co Ltd Lead frame, method for manufacturing the same and light-emitting semiconductor device using the same
KR101486790B1 (en) * 2013-05-02 2015-01-28 앰코 테크놀로지 코리아 주식회사 Micro Lead Frame for semiconductor package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057264A (en) * 2000-08-11 2002-02-22 Nec Kansai Ltd Lead frame
JP2002343817A (en) * 2001-05-11 2002-11-29 Tomoegawa Paper Co Ltd Semiconductor device unit
JP2004071801A (en) * 2002-08-06 2004-03-04 Shinko Electric Ind Co Ltd Lead frame and its fabricating method
JP2006237289A (en) * 2005-02-25 2006-09-07 Toppan Printing Co Ltd Lead frame structure and its manufacturing method
JP2014135409A (en) * 2013-01-11 2014-07-24 Mitsui High Tec Inc Lead frame
JP2016105524A (en) * 2016-03-10 2016-06-09 大日本印刷株式会社 Lead frame and method of manufacturing lead frame

Also Published As

Publication number Publication date
JP2017228706A (en) 2017-12-28
CN109417063A (en) 2019-03-01
JP6727950B2 (en) 2020-07-22
TWI664705B (en) 2019-07-01
TW201810586A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
JP5807800B2 (en) Leadframe and leadframe manufacturing method
JP6143468B2 (en) Lead frame
JP5997971B2 (en) Lead frame
JP5899614B2 (en) Leadframe and leadframe manufacturing method
JP7044142B2 (en) Lead frame and its manufacturing method
JP6319644B2 (en) Lead frame, manufacturing method thereof, and manufacturing method of semiconductor device
WO2017221581A1 (en) Lead frame
JP6107995B2 (en) Leadframe and leadframe manufacturing method
JP2021170678A (en) Lead frame and semiconductor device
TWI703695B (en) Lead frame
JP6573157B2 (en) Lead frame and manufacturing method thereof, and semiconductor device and manufacturing method thereof
KR101513959B1 (en) Method of manufacturing a semiconductor device and semiconductor device
JP6798670B2 (en) Lead frame and its manufacturing method
US9911714B2 (en) Lead frame
JP5117691B2 (en) Lead frame and method of manufacturing semiconductor device using the same
JP5183572B2 (en) Lead frame and semiconductor device
JP6465394B2 (en) Lead frame and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP6631669B2 (en) Lead frame and method of manufacturing lead frame
JP2018113433A (en) Lead frame
JP7112663B2 (en) Manufacturing method of lead frame and semiconductor device
JP6399126B2 (en) Leadframe and leadframe manufacturing method
JP6705654B2 (en) Lead frame and manufacturing method thereof
JP5884506B2 (en) Lead frame for manufacturing semiconductor device and method for manufacturing semiconductor device
JP2023108665A (en) Lead frame and semiconductor device using the same
JP2021093411A (en) Method of designing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815051

Country of ref document: EP

Kind code of ref document: A1