WO2017221532A1 - Heterojunction fet transistor and method for manufacturing same - Google Patents

Heterojunction fet transistor and method for manufacturing same Download PDF

Info

Publication number
WO2017221532A1
WO2017221532A1 PCT/JP2017/015420 JP2017015420W WO2017221532A1 WO 2017221532 A1 WO2017221532 A1 WO 2017221532A1 JP 2017015420 W JP2017015420 W JP 2017015420W WO 2017221532 A1 WO2017221532 A1 WO 2017221532A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type impurity
nitride semiconductor
epitaxial growth
semiconductor substrate
Prior art date
Application number
PCT/JP2017/015420
Other languages
French (fr)
Japanese (ja)
Inventor
章文 今井
南條 拓真
吹田 宗義
喬 松田
健一郎 倉橋
柳生 栄治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018523541A priority Critical patent/JP6541879B2/en
Publication of WO2017221532A1 publication Critical patent/WO2017221532A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present invention relates to a heterojunction field effect transistor made of a semiconductor containing nitride (nitride semiconductor) and a method for manufacturing the same.
  • the nitride semiconductor basically exhibits an n-type characteristic due to the influence of impurity levels formed during epitaxial growth. Therefore, unless special measures are taken, drain leakage current (also called “buffer leakage current”) occurs through the bulk crystal. Therefore, for the purpose of suppressing the buffer leakage current, acceptor-type impurities that compensate donor-type impurities are generally intentionally introduced into the buffer layer (for example, Patent Documents 1 and 2 below). At that time, for example, Fe, C, Zn, Mg, or the like is used as an acceptor type impurity to be introduced.
  • a heterojunction field effect transistor made of a nitride semiconductor in order to suppress buffer leakage current, an acceptor type to be added when an acceptor type impurity is uniformly added (doping) into a buffer layer is adopted. It is necessary to increase the impurity concentration until the buffer leakage current disappears.
  • the donor-type impurity level formed during the epitaxial growth of the buffer layer is a high concentration at the interface between the buffer layer and the substrate or when the conditions are changed during epitaxial growth (called the “growth interruption interface”). Tend to segregate.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a heterojunction field effect transistor capable of effectively suppressing the occurrence of buffer leakage current and current collapse and a method for manufacturing the same.
  • a heterojunction field effect transistor according to the present invention is formed on a nitride semiconductor substrate (1), the nitride semiconductor substrate (1), and an uppermost electron supply layer (4) and the electron supply layer (4 )
  • Epitaxial growth layers (2, 3, 4) made of a nitride semiconductor including a channel layer (3) below, and a drain electrode (7) and a source electrode (8) formed on the electron supply layer (4) And formed on the electron supply layer (4) and spaced from the drain electrode (7) and the source electrode (8) in a region between the drain electrode (7) and the source electrode (8).
  • acceptor-type impurities having a sufficient concentration are introduced into the interface between the nitride semiconductor substrate and the epitaxial growth layer, it is possible to suppress the buffer leak current through the segregated portion of the donor-type impurities at the interface. Can do. Further, by introducing acceptor impurities locally at the interface between the nitride semiconductor substrate and the epitaxial growth layer, unnecessary acceptor impurities can be prevented from being introduced, and an increase in current collapse can be prevented. .
  • FIG. 1 is a diagram illustrating a structure of a heterojunction field effect transistor according to a first embodiment. It is a figure which shows an example of impurity concentration distribution with respect to the depth direction of an epitaxial growth layer in the conventional heterojunction field effect transistor. It is a figure which shows the relationship between the difference of C-Si peak density
  • 6 is a diagram showing an example of an impurity concentration distribution in a depth direction of an epitaxial growth layer in the heterojunction field effect transistor according to the first embodiment.
  • FIG. FIG. 6 is a diagram for explaining the method of manufacturing the heterojunction field effect transistor according to the first embodiment.
  • FIG. 6 is a diagram for explaining the method of manufacturing the heterojunction field effect transistor according to the first embodiment.
  • FIG. 6 is a diagram for explaining the method of manufacturing the heterojunction field effect transistor according to the first embodiment.
  • FIG. 6 is a diagram for explaining the method of manufacturing the heterojunction field effect transistor according to the first embodiment.
  • FIG. 6 is a diagram for explaining the method of manufacturing the heterojunction field effect transistor according to the first embodiment.
  • 6 is a diagram showing a modification of the heterojunction field effect transistor according to the first embodiment.
  • FIG. 6 is a diagram showing a modification of the heterojunction field effect transistor according to the first embodiment.
  • FIG. 6 is a diagram showing a modification of the heterojunction field effect transistor according to the first embodiment.
  • FIG. FIG. 6 is a diagram showing a structure of a heterojunction field effect transistor according to a second embodiment.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a heterojunction field effect transistor according to Embodiment 1 of the present invention.
  • This heterojunction field effect transistor is formed using a semi-insulating nitride semiconductor substrate 1 made of semi-insulating GaN (hereinafter simply referred to as “nitride semiconductor substrate”).
  • a buffer layer 2 made of GaN is formed on the nitride semiconductor substrate 1, and a channel layer 3 made of GaN is also formed on the buffer layer 2.
  • an electron supply layer 4 made of Al 0.17 Ga 0.83 N is formed with a thickness of 32 nm.
  • the mixed crystal ratio of Al in the electron supply layer 4 is 0.17, and the thickness of the electron supply layer 4 is 32 nm.
  • the composition and thickness of the electron supply layer 4 are not limited to this, and finally the transistor May be adjusted according to the required specifications.
  • a two-dimensional electron gas 11 of about 6.2 ⁇ 10 12 cm ⁇ 2 is induced near the interface between the electron supply layer 4 and the channel layer 3, but the sheet carrier concentration may be adjusted to be smaller.
  • the Al mixed crystal ratio of the electron supply layer 4 may be reduced, the thickness may be reduced, or both.
  • the Al mixed crystal ratio of the electron supply layer 4 may be increased, the thickness may be increased, or both.
  • the nitride semiconductor layer composed of the buffer layer 2, the channel layer 3, and the electron supply layer 4 is collectively referred to as an “epitaxial growth layer”. That is, the epitaxial growth layer includes an uppermost electron supply layer 4, a channel layer 3 below the electron supply layer 4, and a buffer layer 2 positioned between the nitride semiconductor substrate 1 and the channel layer 3. It is a laminated structure including.
  • the interface between the nitride semiconductor substrate 1 and the epitaxial growth layer indicates the interface between the nitride semiconductor substrate 1 and the buffer layer 2.
  • the buffer layer 2 may not be provided in the epitaxial growth layer.
  • the channel layer 3 is provided so as to be in contact with the nitride semiconductor substrate 1, the interface between the nitride semiconductor substrate 1 and the epitaxial growth layer becomes the interface between the nitride semiconductor substrate 1 and the channel layer 3.
  • a drain electrode 7 and a source electrode 8 made of a laminated film of Ti and Al (hereinafter referred to as “Ti / Al film”), and Ni and Au
  • a gate electrode 9 made of a laminated film (hereinafter referred to as “Ni / Au film”) is provided.
  • the drain electrode 7 and the source electrode 8 are provided apart from each other, and the gate electrode 9 is provided apart from the drain electrode 7 and the source electrode 8 in a region therebetween.
  • the drain electrode 7 and the source electrode 8 may be made of a material other than the Ti / Al film as long as ohmic contact with the epitaxial growth layer is obtained.
  • a material other than the Ti / Al film for example, Ti, Al, Nb, Hf, Zr, Sr, Ni , Ta, Au, Pt, Mo, W, or a metal, or a multilayer film composed of two or more thereof.
  • the material of the gate electrode 9 may be other than Ni / Au film, for example, metal such as Ti, Al, Cu, Cr, Mo, W, Pt, Au, Ni, Pd, IrSi, PtSi, NiSi 2. Or a nitride metal such as TiN or WN, or a multilayer film combining them.
  • n-type impurity implantation regions 5 and 6 to which an n-type impurity is added are formed at least in the electron supply layer 4 below the drain electrode 7 and the source electrode 8.
  • the upper part reaches the upper surface of the electron supply layer 4, the depth is larger than the thickness of the electron supply layer 4, and the bottom part reaches the channel layer 3.
  • Si is used as an n-type impurity added to the n-type impurity implantation regions 5 and 6.
  • the n-type impurity added to the n-type impurity implantation regions 5 and 6 is not limited to Si, and other materials that form n-type impurity levels in the nitride semiconductor (O, Ge, N vacancies, etc.) It may be.
  • the upper surface of the electron supply layer 4 is covered with a surface protective film 10 except for the portion where the drain electrode 7, the source electrode 8 and the gate electrode 9 are formed.
  • the surface protective film 10 is made of ECR (Electron Cyclotron Resonance) -SiN and has a thickness of 80 nm.
  • Interfacial impurities exist at the interface between nitride semiconductor substrate 1 and the epitaxial growth layer, that is, at the interface between nitride semiconductor substrate 1 and buffer layer 2.
  • FIG. 1 shows only acceptor impurities 12 (hereinafter referred to as “interface acceptor impurities”) among interface impurities.
  • the peak concentration of the interface acceptor impurity 12 is set to 1 ⁇ 10 19 cm ⁇ 3 .
  • FIG. 2 is a diagram schematically showing the results of measuring the impurity concentration distribution in a conventional heterojunction field effect transistor by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectrometry: SIMS).
  • FIG. 2 shows the concentration distribution of Si, which is a donor-type impurity, and C, which is an acceptor-type impurity.
  • the horizontal axis represents the depth from the upper surface of the epitaxial growth layer, and the vertical axis represents the concentration.
  • FIG. 2 it can be seen that Si and C are segregated and aggregated at the interface between the substrate and the epitaxial growth layer (the depth is about 1.4 ⁇ m).
  • the peak concentration of the donor-type impurity (Si) is about two orders of magnitude higher than the peak concentration of the acceptor-type impurity (C).
  • a buffer leak current at the interface is induced.
  • FIG. 3 shows the relationship between the difference between the peak concentrations of C and Si and the magnitude of the buffer leakage current. It can be seen that the buffer leakage current increases when the Si peak concentration is higher than the C peak concentration.
  • the aggregation of impurities is considered to be a result of incorporating impurities derived from atmospheric conveyance until the substrate is introduced into the epitaxial growth furnace and impurities derived from the atmosphere when growing the epitaxial growth layer. Therefore, the concentration distribution of each impurity changes by changing the conditions for cleaning the substrate and the conditions for epitaxial growth.
  • FIG. 4 is a diagram schematically showing the result of actually measuring the impurity concentration distribution in the heterojunction field effect transistor according to the first embodiment by SIMS. Also in FIG. 4, Si and C are segregated and aggregated at the interface between the nitride semiconductor substrate and the epitaxial growth layer (the depth is about 1.2 ⁇ m). The peak concentration of the impurity (C) is about an order of magnitude higher than the peak concentration of the donor-type impurity (Si).
  • the difference between the peak concentration of the acceptor-type impurity and the peak concentration of the donor-type impurity may be no more than one digit, and the acceptor-type impurity may be introduced more than the donor-type impurity. That is, assuming that the donor-type impurity concentration at the interface between the nitride semiconductor substrate 1 and the epitaxial growth layer (the interface between the nitride semiconductor substrate 1 and the buffer layer 2) is Nd1, and the acceptor-type impurity concentration Na1 at the interface is Na1 ⁇ Nd1 It is only necessary to satisfy the relationship (that is, the relationship of Na1-Nd1 ⁇ 0).
  • Na1 and Nd1 are preferably set so as to satisfy the relationship of 1.6 ⁇ 10 19 cm ⁇ 3 ⁇ Na1 ⁇ Nd1.
  • the concentrations of the donor-type impurity and the acceptor-type impurity at the interface are the epitaxial growth layer. More than an order of magnitude higher than their concentrations in That is, if the donor-type impurity concentration and the acceptor-type impurity concentration in the epitaxial growth layer are Nd2 and Na2, respectively, Nd1 / 10 ⁇ Nd2 and Na1 / 10 ⁇ Na2.
  • Whether or not the relationship of Na1 ⁇ Nd1 is satisfied also depends on the concentration of the donor-type impurity, so the absolute value of the concentration of the acceptor-type impurity is not significant, but for example, the peak concentration of the acceptor-type impurity is 2 ⁇
  • An acceptor-type impurity is preferably added so as to be 10 18 cm ⁇ 3 .
  • the relationship of impurity concentration is defined only by the bulk peak concentration, the amount of acceptor-type impurities and the amount of donor-type impurities in the vicinity of the interface will be reversed if there is a distribution in the film thickness direction. Is also possible. Therefore, it is desirable that the acceptor-type impurity is added in the same amount as the donor-type impurity or more than the donor-type impurity at the sheet concentration.
  • the concentration of the acceptor impurity (C) is higher than the concentration of the donor impurity (Si). Yes. Therefore, assuming that the donor-type impurity concentration at the interface between the buffer layer 2 and the channel layer 3 is Nd3 and the acceptor-type impurity concentration is Na3, the relationship is Na3 ⁇ Nd3.
  • the concentration of C is locally high from the depth of 0.8 ⁇ m to 1.2 ⁇ m, and the concentration of C has a terrace-like distribution in that region.
  • the buffer layer 2 is intentionally doped with C by 3 ⁇ 10 16 cm ⁇ 3 .
  • a GaN-based crystal has N vacancies introduced as crystal defects, and the N vacancies function as donor-type impurities, and therefore exhibit n-type characteristics unless intentional doping is performed. Therefore, C is intentionally introduced as a low-concentration acceptor impurity in order to compensate the donor impurity.
  • the interface in order to compensate for impurity aggregation at the interface between the substrate and the epitaxially grown layer, the interface is locally doped with acceptor-type impurities at a peak concentration exceeding the concentration of donor-type impurities.
  • FIG. 5 to 9 are views for explaining a method of manufacturing the heterojunction field effect transistor shown in FIG.
  • the same or corresponding elements as those shown in FIG. 1 are denoted by the same reference numerals.
  • the nitride semiconductor substrate 1 is placed in an epitaxial growth apparatus, and an epitaxial growth method such as a MOCVD (Metal Organic Chemical Vapor Deposition) method or MBE (Molecular Beam Epitaxy) method is used to form a nitride semiconductor substrate 1 on the nitride semiconductor substrate 1 from GaN.
  • a buffer layer 2 is formed.
  • the growth condition of the buffer layer 2 is such that the acceptor type impurity is larger than the donor type impurity at the interface between the nitride semiconductor substrate 1 and the buffer layer 2 (interface between the nitride semiconductor substrate 1 and the epitaxial growth layer). Adjust.
  • the channel layer 3 made of GaN is epitaxially grown on the buffer layer 2.
  • the growth conditions of the channel layer 3 are adjusted so that the acceptor type impurity is larger than the donor type impurity at the interface between the buffer layer 2 and the channel layer 3. Further, an electron supply layer 4 made of Al 0.17 Ga 0.83 N is epitaxially grown on the channel layer 3. As a result, an epitaxial growth layer including the buffer layer 2, the channel layer 3, and the electron supply layer 4 is formed as shown in FIG.
  • the nitride semiconductor substrate 1 on which the buffer layer 2, the channel layer 3, and the electron supply layer 4 are formed is taken out from the epitaxial growth apparatus. Then, a resist mask 14 having openings in the formation region of the drain electrode 7 and the source electrode 8 is formed on the electron supply layer 4 by using a photolithography technique. Then, by ion implantation using the resist mask 14 as a mask, an n-type impurity such as Si is applied to the epitaxial growth layer under conditions of an implantation dose of 1 ⁇ 10 13 to 1 ⁇ 10 17 cm ⁇ 2 and an implantation energy of 10 to 1000 keV. Introduce. Thereby, n-type impurity implantation regions 5 and 6 are formed as shown in FIG.
  • a metal such as Ti, Al, Nb, Hf, Zr, Sr, Ni, Ta, Au, Mo, W, or two or more thereof is used, for example, by vapor deposition or sputtering.
  • a multilayer film including the same is deposited on the electron supply layer 4, and further, the drain electrode 7 and the source electrode 8 are formed as shown in FIG. 7 by using a lift-off method or a photolithography method.
  • a vapor deposition or sputtering Ti, Al, Cu, Cr , Mo, W, Pt, Au, Ni, metals such as Pd, IrSi, PtSi, silicide such as NiSi 2 or TiN,
  • a nitride metal such as WN is deposited on the electron supply layer 4, and a gate electrode 9 is formed as shown in FIG. 8 using a lift-off method or a photolithography method.
  • the surface protective film 10 is formed on the surface of the electron supply layer 4 made of an oxide film or a nitride film of Si or Al by using a film forming method with high coverage such as an ALD (Atomic Layer Deposition) method. Then, the surface protective film 10 is patterned by dry etching or the like so that the drain electrode 7, the source electrode 8 and the gate electrode 9 are exposed from the surface protective film 10. Thereby, as shown in FIG. 9, a surface protective film 10 covering the surface of the electron supply layer 4 is formed.
  • the formation method of the surface protective film 10 is not limited to the ALD method, and other methods such as PECVD (Plasma Enhanced Chemical Vapor Deposition) method and sputtering method may be used, or a combination thereof may be used.
  • the configuration of the heterojunction field effect transistor shown in FIG. 1 is formed. Thereafter, a heterojunction field effect transistor as a semiconductor device is completed through a process of forming wirings, via holes, and the like.
  • the nitride semiconductor substrate 1, the buffer layer 2, and the channel layer 3 are not necessarily formed of GaN, and the electron supply layer 4 is not necessarily formed of Al 0.17 Ga 0.83 N. If the channel layer 3 and the electron supply layer 4 are composed of compounds composed of two or more elements including N of Al, Ga and N, the compositions of the elements constituting the channel layer 3 and the electron supply layer 4 are different from each other. Good.
  • the nitride semiconductor substrate 1, the buffer layer 2, and the channel layer 3 may also be formed of a material mainly composed of Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • the nitride semiconductor constituting the channel layer 3 is Al x Ga 1-x N
  • the nitride semiconductor constituting the electron supply layer 4 is Al y Ga 1-y N. Then, it is only necessary that the relations 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and x ⁇ y are satisfied.
  • the channel layer 3 and the electron supply layer 4 may be made of a nitride semiconductor obtained by adding In to two or more elements including N among Al, Ga, and N.
  • the channel layer 3 and the electron supply layer 4 made of various nitride semiconductors as described above are trimethylammonium, trimethylgallium, trimethylindium, ammonia or n-type dopants which are nitride semiconductor source gases.
  • the channel layer 3 and the electron supply layer 4 are formed by adjusting the pressure, flow rate, temperature, and introduction time of silane, which is a raw material gas, to have a desired composition, film thickness, and doping concentration. Can do.
  • the channel layer 3 and the electron supply layer 4 are composed of a compound composed of two or more elements including N of Al, Ga, and N, a large polarization effect is generated in the electron supply layer 4, so that the high concentration The two-dimensional electron gas 11 can be generated.
  • concentration of the two-dimensional electron gas 11 is high, it is advantageous for increasing the current of the transistor and for increasing the output.
  • the AlN binary crystal cannot be adopted only for the channel layer 3. This is because there is no material that can be used for the electron supply layer 4 because there is no material having a band gap exceeding that of AlN in the nitride semiconductor.
  • Al x Ga 1-x N has a higher Al composition, the band gap becomes larger and the breakdown electric field becomes higher. Therefore, Al x Ga 1-x N used for the channel layer 3 has a higher Al composition (x Is closer to 1).
  • Al y Ga 1-y N used for the electron supply layer 4 It is preferable that the Al composition is higher (y is close to 1).
  • the cross-sectional shape of the gate electrode 9 does not need to be a rectangle as shown in FIG.
  • a field plate electrode 13 that is electrically connected to the gate electrode 9 and extends on the surface protective film 10 may be provided.
  • FIG. 10 shows a configuration in which the field plate electrode 13 extends from the gate electrode 9 to the drain electrode 7 side, the field plate electrode 13 may be provided to extend to the source electrode 8 side. It may be provided so as to extend to both the 7 side and the source electrode 8 side.
  • the material of the field plate electrode 13 may be any material as long as it can be electrically connected to the gate electrode 9 and can be formed so as not to contact the epitaxial growth layer.
  • the field plate electrode 13 is formed by forming the surface protective film 10 and then forming a conductive film as a material of the field plate electrode 13 by vapor deposition or the like, and then using the lift-off method or the like to form the conductive film. This can be done by processing into a desired pattern.
  • the nitride semiconductor substrate 1 may be formed of AlN, InN, or a mixed crystal thereof. However, it is difficult to continuously grow crystals having different lattice constants, and it is necessary to consider the influence on the buffer leakage current by inserting a lattice strain relaxation layer into the epitaxial growth layer. Therefore, the lattice constant of nitride semiconductor substrate 1 and the lattice constant of buffer layer 2 and channel layer 3 are preferably aligned. From the viewpoint of relaxation of lattice strain, the channel layer 3 and the electron supply layer 4 can be formed without forming the buffer layer 2 on the nitride semiconductor substrate 1. That is, the buffer layer 2 is not necessarily formed on the nitride semiconductor substrate 1 and may not be formed.
  • Each of the channel layer 3 and the electron supply layer 4 does not necessarily have a single-layer structure having a single composition. If the condition of the band gap size (E 3 ⁇ E 4 ) is satisfied, the channel layer 3 and the electron supply layer
  • the In composition, Al composition, and Ga composition may vary spatially in the layer 4, and the channel layer 3 and the electron supply layer 4 may have a multilayer structure including a plurality of layers having different compositions. Further, the channel layer 3 and the electron supply layer 4 may contain an n-type or p-type impurity in the nitride semiconductor.
  • the interface acceptor type impurity 12 is shown only at the interface between the nitride semiconductor substrate 1 and the buffer layer 2, but the interface acceptor type impurity is introduced at the nitride semiconductor substrate 1 and the buffer layer 2. It is not limited to the interface.
  • a lattice strain relaxation layer may be inserted into the epitaxial growth layer. In that case, the process is interrupted during the epitaxial growth, and depending on the conditions, there is a possibility that impurities are aggregated even at the interface (growth interface). In such a case, it may be better to introduce an acceptor-type impurity also at the interface between the buffer layer 2 and the channel layer 3.
  • drain electrode 7 and the source electrode 8 form an ohmic contact with the two-dimensional electron gas 11 generated in the vicinity of the interface between the electron supply layer 4 and the channel layer 3, as shown in FIG.
  • the n-type impurity implantation regions 5 and 6 may not be provided under the source electrode 8.
  • the drain electrode 7 and the source electrode 8 may be provided so as to be in contact with the upper surface of the electron supply layer 4 as shown in FIG. 11, or the electron supply is performed in the recess formed in the electron supply layer 4 as shown in FIG. It may be provided in contact with the layer 4.
  • the resistance between the drain electrode 7 and the source electrode 8 and the two-dimensional electron gas 11 is reduced when the n-type impurity implantation regions 5 and 6 are formed under the drain electrode 7 and the source electrode 8. Therefore, it is advantageous for increasing the current and output of the transistor.
  • FIG. 11 can be formed by omitting the n-type impurity ion implantation shown in FIG. 12 can be formed by performing a process of selectively removing the electron supply layer 4 using, for example, a Cl 2 -based etching gas instead of the process shown in FIG.
  • FIG. 13 is a diagram illustrating the structure of the heterojunction field effect transistor according to the second embodiment.
  • the arrangement of interface acceptor impurity 12 present at the interface between nitride semiconductor substrate 1 and buffer layer 2 is different from that in the first embodiment. That is, in the first embodiment, the interface acceptor-type impurity 12 is added so as to uniformly compensate the donor-type impurity over the entire interface, but in the second embodiment, below the drain electrode 7 and the source electrode 8 (n The interface acceptor type impurity 12 is added only to the portion below the type impurity implantation regions 5 and 6.
  • the relationship between the donor-type impurity concentration and the acceptor-type impurity concentration described above that is, 1.6 ⁇ 10 19 cm ⁇ 3 ⁇ Na 1 ⁇ only in the region below the drain electrode 7 and the source electrode 8.
  • the relationship of Nd1 ⁇ 0, Nd1 / 10 ⁇ Nd2, and Na1 / 10 ⁇ Na2 is satisfied.
  • the buffer leak current from the n-type impurity implantation regions 5 and 6 through the donor-type impurity segregation portion at the interface between the nitride semiconductor substrate 1 and the buffer layer 2 is reduced to the interface acceptor. Reduced by mold impurities 12.
  • an access region from the source electrode 8 to the drain electrode 7 refers to a region between the drain electrode 7 and the gate electrode 9 and a region between the source electrode 8 and the gate electrode 9 in the channel layer 3) and a channel region.
  • the probability of electron capture can be reduced, thereby suppressing current collapse. Therefore, current collapse can be suppressed more than in the first embodiment.
  • the interface acceptor impurity 12 is shown only in the region below the drain electrode 7 and the source electrode 8, but the interface acceptor impurity 12 is at least below the drain electrode 7 and the source electrode 8. It only has to be covered. In particular, from the viewpoint of suppressing current collapse, since it is only necessary to reduce electron capture in a region to which a high electric field is applied, the interface acceptor impurity 12 is extended to a region between the source electrode 8 and the gate electrode 9. But there is no big impact. Further, the interface acceptor type impurity 12 should not exist at all other than the region below the drain electrode 7 and the source electrode 8, but in the region below the drain electrode 7 and the source electrode 8 and other regions. If there is a concentration difference in the interface acceptor type impurity 12, a certain effect can be expected.
  • the structure of FIG. 13 is realized by, for example, selectively injecting an acceptor-type impurity element into the formation region of the interface acceptor-type impurity 12 in the nitride semiconductor substrate 1 before the epitaxial growth layer forming step. Can do. Specifically, a method may be considered in which a resist mask having an opening for forming the interface acceptor impurity 12 is formed on the nitride semiconductor substrate 1 and an acceptor impurity element is implanted by ion implantation using the resist mask as a mask. .

Abstract

A heterojunction FET transistor comprises: a nitride semiconductor substrate (1); and epitaxial growth layers including a buffer layer (2) that is formed on the nitride semiconductor substrate (1), a channel layer (3) that is formed on the buffer layer (2), and an electron supply layer (4) that is formed on the channel layer (3). A drain electrode (7), a source electrode (8), and a gate electrode (9) disposed in the region therebetween are formed on the electron supply layer (4). A donor impurity concentration Nd1 and an acceptor impurity concentration Na1, which are at the interface between the nitride semiconductor substrate (1) and the epitaxial growth layers, i.e., the interface between the nitride semiconductor substrate (1) and the buffer layer (2), and a donor impurity concentration Nd2 and an acceptor impurity concentration Na2, which are in the epitaxial growth layers (2, 3, 4), satisfy the following relationships: 1.6×1019cm-3 ≥ Na1-Nd1 ≥ 0, Nd1/10 ≥ Nd2, and Na1/10 ≥ Na2.

Description

ヘテロ接合電界効果型トランジスタおよびその製造方法Heterojunction field effect transistor and method of manufacturing the same
 本発明は、窒化物を含む半導体(窒化物半導体)からなるヘテロ接合電界効果型トランジスタおよびその製造方法に関するものである。 The present invention relates to a heterojunction field effect transistor made of a semiconductor containing nitride (nitride semiconductor) and a method for manufacturing the same.
 窒化物半導体からなるヘテロ接合電界効果型トランジスタにおいて、窒化物半導体は、エピタキシャル成長時に形成される不純物準位の影響で基本的にn型寄りの特性を示す。そのため、特に対策を打たない限り、バルク結晶を介してのドレインリーク電流(「バッファリーク電流」とも呼ばれる)が発生してしまう。従って、バッファリーク電流を抑制する目的で、ドナー型不純物を補償するアクセプタ型不純物を意図的にバッファ層へ導入することが一般的に行われている(例えば、下記の特許文献1,2)。その際、導入するアクセプタ型不純物としては、例えばFe、C、Zn、Mg等が用いられている。 In a heterojunction field effect transistor made of a nitride semiconductor, the nitride semiconductor basically exhibits an n-type characteristic due to the influence of impurity levels formed during epitaxial growth. Therefore, unless special measures are taken, drain leakage current (also called “buffer leakage current”) occurs through the bulk crystal. Therefore, for the purpose of suppressing the buffer leakage current, acceptor-type impurities that compensate donor-type impurities are generally intentionally introduced into the buffer layer (for example, Patent Documents 1 and 2 below). At that time, for example, Fe, C, Zn, Mg, or the like is used as an acceptor type impurity to be introduced.
特開2013-197357号公報JP 2013-1973357 A 特開2007-251144号公報JP 2007-251144 A
 窒化物半導体からなるヘテロ接合電界効果型トランジスタにおいて、バッファリーク電流を抑制するために、アクセプタ型不純物をバッファ層中へ均一に添加(ドーピング)するという従来の手法をとった場合、添加するアクセプタ型不純物の濃度をバッファリーク電流が消失するまで増やす必要がある。しかし、バッファ層のエピタキシャル成長時に形成されるドナー型不純物準位は、バッファ層と基板との界面や、エピタキシャル成長中に条件を変化させたときにできる界面(「成長中断界面」という)で、高濃度に偏析する傾向がある。従って、バルク濃度としてはドナー型不純物を補償するのに十分な量のアクセプタ型不純物をドーピングしたとしても、界面で偏析したドナー型不純物を補償しきることができず、バッファリーク電流を十分に消失させることができない。 In a heterojunction field effect transistor made of a nitride semiconductor, in order to suppress buffer leakage current, an acceptor type to be added when an acceptor type impurity is uniformly added (doping) into a buffer layer is adopted. It is necessary to increase the impurity concentration until the buffer leakage current disappears. However, the donor-type impurity level formed during the epitaxial growth of the buffer layer is a high concentration at the interface between the buffer layer and the substrate or when the conditions are changed during epitaxial growth (called the “growth interruption interface”). Tend to segregate. Therefore, even if an acceptor-type impurity is added in a sufficient amount to compensate for the donor-type impurity as a bulk concentration, the donor-type impurity segregated at the interface cannot be completely compensated, and the buffer leakage current is sufficiently eliminated. I can't.
 また、不必要なアクセプタ型不純物は半導体中に準位を形成する。そのため、バッファリーク電流を消失させる目的でアクセプタ型不純物のドーピング濃度を無闇に増やすと、アクセプタ型不純物により形成された準位に電子がトラップされることで電流コラプスを誘発してしまい、高周波特性が劣化するという別の問題が生じる。 Further, unnecessary acceptor-type impurities form a level in the semiconductor. For this reason, if the doping concentration of the acceptor-type impurity is increased in an effort to eliminate the buffer leak current, electrons are trapped in the level formed by the acceptor-type impurity and current collapse is induced, resulting in high frequency characteristics. Another problem of deteriorating arises.
 本発明は以上のような課題を解決するためになされたものであり、バッファリーク電流および電流コラプスの発生を効果的に抑制可能なヘテロ接合電界効果型トランジスタおよびその製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a heterojunction field effect transistor capable of effectively suppressing the occurrence of buffer leakage current and current collapse and a method for manufacturing the same. And
 本発明に係るヘテロ接合電界効果型トランジスタは、窒化物半導体基板(1)と、前記窒化物半導体基板(1)上に形成され、最上層の電子供給層(4)および前記電子供給層(4)の下のチャネル層(3)を含む窒化物半導体からなるエピタキシャル成長層(2,3,4)と、前記電子供給層(4)上に形成されたドレイン電極(7)およびソース電極(8)と、前記電子供給層(4)上に形成され、前記ドレイン電極(7)と前記ソース電極(8)との間の領域に、前記ドレイン電極(7)および前記ソース電極(8)から離間して配設されたゲート電極(9)と、を備え、前記窒化物半導体基板(1)と前記エピタキシャル成長層(2,3,4)との界面におけるドナー型不純物濃度Nd1およびアクセプタ型不純物濃度Na1と、前記エピタキシャル成長層(2,3,4)におけるドナー型不純物濃度Nd2およびアクセプタ型不純物濃度Na2とが、少なくとも前記ドレイン電極(7)および前記ソース電極(8)の下方の領域において、1.6×1019cm-3≧Na1-Nd1≧0、Nd1/10≧Nd2、Na1/10≧Na2の関係を満たす。 A heterojunction field effect transistor according to the present invention is formed on a nitride semiconductor substrate (1), the nitride semiconductor substrate (1), and an uppermost electron supply layer (4) and the electron supply layer (4 ) Epitaxial growth layers (2, 3, 4) made of a nitride semiconductor including a channel layer (3) below, and a drain electrode (7) and a source electrode (8) formed on the electron supply layer (4) And formed on the electron supply layer (4) and spaced from the drain electrode (7) and the source electrode (8) in a region between the drain electrode (7) and the source electrode (8). A donor electrode impurity concentration Nd1 and an acceptor impurity concentration Na1 at the interface between the nitride semiconductor substrate (1) and the epitaxial growth layer (2, 3, 4), , Donor-type impurity concentration Nd2 and acceptor-type impurity in the epitaxial growth layer (2, 3, 4) It objects concentration Na2 and is, at least in the lower region of the drain electrode (7) and the source electrode (8), 1.6 × 10 19 cm -3 ≧ Na1-Nd1 ≧ 0, Nd1 / 10 ≧ Nd2, Na1 / The relationship of 10 ≧ Na2 is satisfied.
 本発明によれば、窒化物半導体基板とエピタキシャル成長層との界面に十分な濃度のアクセプタ型不純物が導入されているため、当該界面におけるドナー型不純物の偏析部を介したバッファリーク電流を抑制することができる。また、窒化物半導体基板とエピタキシャル成長層との界面に局所的にアクセプタ型不純物を導入することで、不必要なアクセプタ型不純物が導入されることを防止し、電流コラプスの増大を防止することができる。 According to the present invention, since acceptor-type impurities having a sufficient concentration are introduced into the interface between the nitride semiconductor substrate and the epitaxial growth layer, it is possible to suppress the buffer leak current through the segregated portion of the donor-type impurities at the interface. Can do. Further, by introducing acceptor impurities locally at the interface between the nitride semiconductor substrate and the epitaxial growth layer, unnecessary acceptor impurities can be prevented from being introduced, and an increase in current collapse can be prevented. .
実施の形態1に係るヘテロ接合電界効果型トランジスタの構造を示す図である。1 is a diagram illustrating a structure of a heterojunction field effect transistor according to a first embodiment. 従来のヘテロ接合電界効果型トランジスタにおける、エピタキシャル成長層の深さ方向に対する不純物濃度分布の一例を示す図である。It is a figure which shows an example of impurity concentration distribution with respect to the depth direction of an epitaxial growth layer in the conventional heterojunction field effect transistor. C-Siピーク濃度の差と、バッファリーク電流との関係を示す図である。It is a figure which shows the relationship between the difference of C-Si peak density | concentration, and a buffer leak current. 実施の形態1に係るヘテロ接合電界効果型トランジスタにおける、エピタキシャル成長層の深さ方向に対する不純物濃度分布の一例を示す図である。6 is a diagram showing an example of an impurity concentration distribution in a depth direction of an epitaxial growth layer in the heterojunction field effect transistor according to the first embodiment. FIG. 実施の形態1に係るヘテロ接合電界効果型トランジスタの製造方法を説明するための図である。FIG. 6 is a diagram for explaining the method of manufacturing the heterojunction field effect transistor according to the first embodiment. 実施の形態1に係るヘテロ接合電界効果型トランジスタの製造方法を説明するための図である。FIG. 6 is a diagram for explaining the method of manufacturing the heterojunction field effect transistor according to the first embodiment. 実施の形態1に係るヘテロ接合電界効果型トランジスタの製造方法を説明するための図である。FIG. 6 is a diagram for explaining the method of manufacturing the heterojunction field effect transistor according to the first embodiment. 実施の形態1に係るヘテロ接合電界効果型トランジスタの製造方法を説明するための図である。FIG. 6 is a diagram for explaining the method of manufacturing the heterojunction field effect transistor according to the first embodiment. 実施の形態1に係るヘテロ接合電界効果型トランジスタの製造方法を説明するための図である。FIG. 6 is a diagram for explaining the method of manufacturing the heterojunction field effect transistor according to the first embodiment. 実施の形態1に係るヘテロ接合電界効果型トランジスタの変形例を示す図である。6 is a diagram showing a modification of the heterojunction field effect transistor according to the first embodiment. FIG. 実施の形態1に係るヘテロ接合電界効果型トランジスタの変形例を示す図である。6 is a diagram showing a modification of the heterojunction field effect transistor according to the first embodiment. FIG. 実施の形態1に係るヘテロ接合電界効果型トランジスタの変形例を示す図である。6 is a diagram showing a modification of the heterojunction field effect transistor according to the first embodiment. FIG. 実施の形態2に係るヘテロ接合電界効果型トランジスタの構造を示す図である。FIG. 6 is a diagram showing a structure of a heterojunction field effect transistor according to a second embodiment.
 <実施の形態1>
 図1は、本発明の実施の形態1に係るヘテロ接合電界効果型トランジスタの構成の一例を示す断面図である。このヘテロ接合電界効果型トランジスタは、半絶縁性GaNからなる半絶縁性窒化物半導体基板1(以下、単に「窒化物半導体基板」と称す)を用いて形成されている。窒化物半導体基板1の上には、GaNからなるバッファ層2が形成され、バッファ層2の上に同じくGaNからなるチャネル層3が形成されている。チャネル層3の上には、Al0.17Ga0.83Nからなる電子供給層4が、厚さ32nmで形成されている。
<Embodiment 1>
FIG. 1 is a cross-sectional view showing an example of the configuration of a heterojunction field effect transistor according to Embodiment 1 of the present invention. This heterojunction field effect transistor is formed using a semi-insulating nitride semiconductor substrate 1 made of semi-insulating GaN (hereinafter simply referred to as “nitride semiconductor substrate”). A buffer layer 2 made of GaN is formed on the nitride semiconductor substrate 1, and a channel layer 3 made of GaN is also formed on the buffer layer 2. On the channel layer 3, an electron supply layer 4 made of Al 0.17 Ga 0.83 N is formed with a thickness of 32 nm.
 電子供給層4とチャネル層3の界面近傍(具体的には、チャネル層3における、電子供給層4との界面から一定深さの部分)には、自発分極とピエゾ分極とによって発生する分極電荷からなる2次元電子ガス11が誘起される。 In the vicinity of the interface between the electron supply layer 4 and the channel layer 3 (specifically, in the channel layer 3 at a certain depth from the interface with the electron supply layer 4), polarization charges generated by spontaneous polarization and piezoelectric polarization are generated. A two-dimensional electron gas 11 consisting of is induced.
 ここでは電子供給層4におけるAlの混晶比を0.17、電子供給層4の厚さを32nmとしたが、電子供給層4の組成および厚さはこれに限定されず、最終的にトランジスタとして要求されるスペックに応じて調整してもよい。例えば、上記の構成では電子供給層4とチャネル層3の界面近傍に6.2×1012cm-2程度の2次元電子ガス11が誘起されるが、そのシートキャリア濃度をより少なく調整したければ、電子供給層4のAl混晶比を下げるか、厚さを小さくするか、あるいはその両方を行えばよい。逆に、2次元電子ガス11のシートキャリア濃度をより高く調整したい場合は、電子供給層4のAl混晶比を上げるか、厚さを大きくするか、あるいはその両方を実施すればよい。 Here, the mixed crystal ratio of Al in the electron supply layer 4 is 0.17, and the thickness of the electron supply layer 4 is 32 nm. However, the composition and thickness of the electron supply layer 4 are not limited to this, and finally the transistor May be adjusted according to the required specifications. For example, in the above configuration, a two-dimensional electron gas 11 of about 6.2 × 10 12 cm −2 is induced near the interface between the electron supply layer 4 and the channel layer 3, but the sheet carrier concentration may be adjusted to be smaller. For example, the Al mixed crystal ratio of the electron supply layer 4 may be reduced, the thickness may be reduced, or both. Conversely, when it is desired to adjust the sheet carrier concentration of the two-dimensional electron gas 11 higher, the Al mixed crystal ratio of the electron supply layer 4 may be increased, the thickness may be increased, or both.
 以下、バッファ層2、チャネル層3および電子供給層4からなる窒化物半導体層を、「エピタキシャル成長層」と総称する。すなわち、エピタキシャル成長層は、最上層の電子供給層4と、電子供給層4の下のチャネル層3と、窒化物半導体基板1とチャネル層3との間に挟まれて位置するバッファ層2とを含む積層構造である。例えば、窒化物半導体基板1とエピタキシャル成長層との界面は、窒化物半導体基板1とバッファ層2との界面を指している。ただし、後述するように、バッファ層2はエピタキシャル成長層に設けられない場合もある。その場合、チャネル層3が窒化物半導体基板1に接するように設けられるため、窒化物半導体基板1とエピタキシャル成長層との界面は、窒化物半導体基板1とチャネル層3との界面となる。 Hereinafter, the nitride semiconductor layer composed of the buffer layer 2, the channel layer 3, and the electron supply layer 4 is collectively referred to as an “epitaxial growth layer”. That is, the epitaxial growth layer includes an uppermost electron supply layer 4, a channel layer 3 below the electron supply layer 4, and a buffer layer 2 positioned between the nitride semiconductor substrate 1 and the channel layer 3. It is a laminated structure including. For example, the interface between the nitride semiconductor substrate 1 and the epitaxial growth layer indicates the interface between the nitride semiconductor substrate 1 and the buffer layer 2. However, as will be described later, the buffer layer 2 may not be provided in the epitaxial growth layer. In that case, since the channel layer 3 is provided so as to be in contact with the nitride semiconductor substrate 1, the interface between the nitride semiconductor substrate 1 and the epitaxial growth layer becomes the interface between the nitride semiconductor substrate 1 and the channel layer 3.
 エピタキシャル成長層の最上層である電子供給層4の上面には、TiとAlとの積層膜(以下「Ti/Al膜」と称す)からなるドレイン電極7およびソース電極8と、NiとAuとの積層膜(以下「Ni/Au膜」と称す)からなるゲート電極9とが配設されている。ドレイン電極7とソース電極8とは互いに離間して設けられており、その間の領域に、ゲート電極9がドレイン電極7およびソース電極8から離間して設けられている。 On the upper surface of the electron supply layer 4 which is the uppermost layer of the epitaxial growth layer, a drain electrode 7 and a source electrode 8 made of a laminated film of Ti and Al (hereinafter referred to as “Ti / Al film”), and Ni and Au A gate electrode 9 made of a laminated film (hereinafter referred to as “Ni / Au film”) is provided. The drain electrode 7 and the source electrode 8 are provided apart from each other, and the gate electrode 9 is provided apart from the drain electrode 7 and the source electrode 8 in a region therebetween.
 なお、ドレイン電極7およびソース電極8は、エピタキシャル成長層とのオーミック接触が得られれば、その材料はTi/Al膜以外のものでもよく、例えば、Ti、Al、Nb、Hf、Zr、Sr、Ni、Ta、Au、Pt、Mo、W等の金属、もしくはそれらの2以上から構成される多層膜などでもよい。また、ゲート電極9の材料も、Ni/Au膜以外のものでもよく、例えば、Ti、Al、Cu、Cr、Mo、W、Pt、Au、Ni、Pd等の金属、IrSi、PtSi、NiSi等のシリサイド、或いはTiN、WN等の窒化物金属、またはそれらを組み合わせた多層膜などでもよい。 The drain electrode 7 and the source electrode 8 may be made of a material other than the Ti / Al film as long as ohmic contact with the epitaxial growth layer is obtained. For example, Ti, Al, Nb, Hf, Zr, Sr, Ni , Ta, Au, Pt, Mo, W, or a metal, or a multilayer film composed of two or more thereof. The material of the gate electrode 9 may be other than Ni / Au film, for example, metal such as Ti, Al, Cu, Cr, Mo, W, Pt, Au, Ni, Pd, IrSi, PtSi, NiSi 2. Or a nitride metal such as TiN or WN, or a multilayer film combining them.
 エピタキシャル成長層におけるドレイン電極7およびソース電極8それぞれの下の部分には、少なくとも電子供給層4に、n型不純物が添加されたn型不純物注入領域5,6が形成されている。n型不純物注入領域5,6は、上部が電子供給層4の上面に達しており、その深さは電子供給層4の厚さより大きく、底部がチャネル層3に達している。ここでは、n型不純物注入領域5,6に添加するn型不純物としてSiが用いられている。ただし、n型不純物注入領域5,6に添加するn型不純物は、Siに限られず、窒化物半導体中でn型の不純物準位を形成する他の材料(O、Ge、N空孔等)であってもよい。 In the epitaxial growth layer, n-type impurity implantation regions 5 and 6 to which an n-type impurity is added are formed at least in the electron supply layer 4 below the drain electrode 7 and the source electrode 8. In the n-type impurity implantation regions 5 and 6, the upper part reaches the upper surface of the electron supply layer 4, the depth is larger than the thickness of the electron supply layer 4, and the bottom part reaches the channel layer 3. Here, Si is used as an n-type impurity added to the n-type impurity implantation regions 5 and 6. However, the n-type impurity added to the n-type impurity implantation regions 5 and 6 is not limited to Si, and other materials that form n-type impurity levels in the nitride semiconductor (O, Ge, N vacancies, etc.) It may be.
 電子供給層4の上面は、ドレイン電極7、ソース電極8およびゲート電極9が形成された部分を除いて、表面保護膜10で覆われている。ここでは、表面保護膜10は、ECR(Electron Cyclotron Resonance)-SiNにより形成されており、その厚さは80nmとしている。 The upper surface of the electron supply layer 4 is covered with a surface protective film 10 except for the portion where the drain electrode 7, the source electrode 8 and the gate electrode 9 are formed. Here, the surface protective film 10 is made of ECR (Electron Cyclotron Resonance) -SiN and has a thickness of 80 nm.
 窒化物半導体基板1とエピタキシャル成長層との界面、すなわち窒化物半導体基板1とバッファ層2との界面には、界面不純物が存在する。図1には、界面不純物のうち、アクセプタ型の不純物12(以下「界面アクセプタ型不純物」と称す)のみを表記している。ここでは、界面アクセプタ型不純物12のピーク濃度を1×1019cm-3とした。 Interfacial impurities exist at the interface between nitride semiconductor substrate 1 and the epitaxial growth layer, that is, at the interface between nitride semiconductor substrate 1 and buffer layer 2. FIG. 1 shows only acceptor impurities 12 (hereinafter referred to as “interface acceptor impurities”) among interface impurities. Here, the peak concentration of the interface acceptor impurity 12 is set to 1 × 10 19 cm −3 .
 図2は、従来のヘテロ接合電界効果型トランジスタにおける不純物濃度の分布を、二次イオン質量分析法(Secondary Ion Mass Spectrometry:SIMS)により実測した結果を模式的に示す図である。図2には、ドナー型不純物であるSiと、アクセプタ型不純物であるCの濃度分布が示されている。横軸はエピタキシャル成長層の上面からの深さを表し、縦軸は濃度を表している。 FIG. 2 is a diagram schematically showing the results of measuring the impurity concentration distribution in a conventional heterojunction field effect transistor by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectrometry: SIMS). FIG. 2 shows the concentration distribution of Si, which is a donor-type impurity, and C, which is an acceptor-type impurity. The horizontal axis represents the depth from the upper surface of the epitaxial growth layer, and the vertical axis represents the concentration.
 図2において、基板とエピタキシャル成長層との界面(深さが約1.4μmの位置)で、SiおよびCが偏析を起こして凝集していることが分かる。図2に示した場合の当該界面では、ドナー型不純物(Si)のピーク濃度が、アクセプタ型不純物(C)のピーク濃度よりも、2桁程度大きくなっている。この場合、当該界面でのバッファリーク電流が誘引される。図3に、CとSiのピーク濃度の差と、バッファリーク電流の大きさとの関係を示す。Siのピーク濃度がCのピーク濃度よりも大きくなると、バッファリーク電流が増大することが分かる。 In FIG. 2, it can be seen that Si and C are segregated and aggregated at the interface between the substrate and the epitaxial growth layer (the depth is about 1.4 μm). At the interface shown in FIG. 2, the peak concentration of the donor-type impurity (Si) is about two orders of magnitude higher than the peak concentration of the acceptor-type impurity (C). In this case, a buffer leak current at the interface is induced. FIG. 3 shows the relationship between the difference between the peak concentrations of C and Si and the magnitude of the buffer leakage current. It can be seen that the buffer leakage current increases when the Si peak concentration is higher than the C peak concentration.
 なお、不純物の凝集は、基板をエピタキシャル成長炉に導入するまでの大気搬送に由来する不純物や、エピタキシャル成長層を成長させるときの雰囲気に由来する不純物が取り込まれた結果と考えられる。そのため、基板の洗浄の条件や、エピタキシャル成長時の条件を変えることによって、各不純物の濃度分布は変わる。 The aggregation of impurities is considered to be a result of incorporating impurities derived from atmospheric conveyance until the substrate is introduced into the epitaxial growth furnace and impurities derived from the atmosphere when growing the epitaxial growth layer. Therefore, the concentration distribution of each impurity changes by changing the conditions for cleaning the substrate and the conditions for epitaxial growth.
 図4は、実施の形態1に係るヘテロ接合電界効果型トランジスタにおける不純物濃度の分布を、SIMSにより実測した結果を模式的に示す図である。図4においても、窒化物半導体基板とエピタキシャル成長層との界面(深さが約1.2μmの位置)において、SiおよびCが偏析を起こして凝集しているが、図2とは異なり、アクセプタ型不純物(C)のピーク濃度が、ドナー型不純物(Si)のピーク濃度よりも1桁程度大きくなっている。 FIG. 4 is a diagram schematically showing the result of actually measuring the impurity concentration distribution in the heterojunction field effect transistor according to the first embodiment by SIMS. Also in FIG. 4, Si and C are segregated and aggregated at the interface between the nitride semiconductor substrate and the epitaxial growth layer (the depth is about 1.2 μm). The peak concentration of the impurity (C) is about an order of magnitude higher than the peak concentration of the donor-type impurity (Si).
 アクセプタ型不純物のピーク濃度とドナー型不純物のピーク濃度との差は1桁もなくてよく、アクセプタ型不純物がドナー型不純物以上に導入されていればよい。つまり、窒化物半導体基板1とエピタキシャル成長層との界面(窒化物半導体基板1とバッファ層2との界面)におけるドナー型不純物濃度をNd1、同界面におけるアクセプタ型不純物濃度Na1とすると、Na1≧Nd1の関係(すなわち、Na1-Nd1≧0の関係)を満たしていればよい。 The difference between the peak concentration of the acceptor-type impurity and the peak concentration of the donor-type impurity may be no more than one digit, and the acceptor-type impurity may be introduced more than the donor-type impurity. That is, assuming that the donor-type impurity concentration at the interface between the nitride semiconductor substrate 1 and the epitaxial growth layer (the interface between the nitride semiconductor substrate 1 and the buffer layer 2) is Nd1, and the acceptor-type impurity concentration Na1 at the interface is Na1 ≧ Nd1 It is only necessary to satisfy the relationship (that is, the relationship of Na1-Nd1 ≧ 0).
 また、図3に示すようにNa1を大きくしてNa1-Nd1の値が大きくなればリーク電流を抑制できるが、Na1が極端に大きくなると電流コラプスの増大は避けられない。本発明者らがNa1-Nd1と電流コラプスとの依存性について検討を繰り返した結果、Na1-Nd1>1.6×1019cm-3を満たすときには電流コラプスによる特性劣化が許容できない程度になることが分かった。つまり、電流コラプス抑制の観点から、Na1およびNd1は、1.6×1019cm-3≧Na1-Nd1の関係を満たすように設定されるとよい。 Further, as shown in FIG. 3, when Na1 is increased and the value of Na1-Nd1 is increased, the leakage current can be suppressed. However, when Na1 is extremely increased, an increase in current collapse is inevitable. As a result of repeated examinations by the present inventors on the dependency between Na1-Nd1 and current collapse, when Na1-Nd1> 1.6 × 10 19 cm −3 is satisfied, characteristic degradation due to current collapse becomes unacceptable. I understood. That is, from the viewpoint of suppressing current collapse, Na1 and Nd1 are preferably set so as to satisfy the relationship of 1.6 × 10 19 cm −3 ≧ Na1−Nd1.
 ここで、ドナー型不純物およびアクセプタ型不純物は、窒化物半導体基板1とエピタキシャル成長層との界面で偏析を起こして凝集しているため、当該界面でのドナー型不純物およびアクセプタ型不純物の濃度はエピタキシャル成長層におけるそれらの濃度より1桁以上高くなっている。すなわち、エピタキシャル成長層におけるドナー型不純物濃度およびアクセプタ型不純物濃度をそれぞれNd2およびNa2とすると、Nd1/10≧Nd2、Na1/10≧Na2となっている。 Here, since the donor-type impurity and the acceptor-type impurity are segregated and aggregated at the interface between the nitride semiconductor substrate 1 and the epitaxial growth layer, the concentrations of the donor-type impurity and the acceptor-type impurity at the interface are the epitaxial growth layer. More than an order of magnitude higher than their concentrations in That is, if the donor-type impurity concentration and the acceptor-type impurity concentration in the epitaxial growth layer are Nd2 and Na2, respectively, Nd1 / 10 ≧ Nd2 and Na1 / 10 ≧ Na2.
 Na1≧Nd1の関係が満たされるかどうかは、ドナー型不純物の濃度にも依存するため、アクセプタ型不純物の濃度の絶対値に大きな意味はないが、例えば、アクセプタ型不純物のピーク濃度が、2×1018cm-3となるように、アクセプタ型不純物を添加するとよい。ただし、不純物濃度の関係をバルクのピーク濃度だけで規定すると、膜厚方向に分布があった場合に、界面の近傍でのアクセプタ型不純物の量とドナー型不純物の量とが逆転してしまうことも考えられる。そのため、シート濃度で、アクセプタ型不純物がドナー型不純物と同量かそれよりも多く添加されることが望ましい。 Whether or not the relationship of Na1 ≧ Nd1 is satisfied also depends on the concentration of the donor-type impurity, so the absolute value of the concentration of the acceptor-type impurity is not significant, but for example, the peak concentration of the acceptor-type impurity is 2 × An acceptor-type impurity is preferably added so as to be 10 18 cm −3 . However, if the relationship of impurity concentration is defined only by the bulk peak concentration, the amount of acceptor-type impurities and the amount of donor-type impurities in the vicinity of the interface will be reversed if there is a distribution in the film thickness direction. Is also possible. Therefore, it is desirable that the acceptor-type impurity is added in the same amount as the donor-type impurity or more than the donor-type impurity at the sheet concentration.
 また、図4のように、窒化物半導体基板1とエピタキシャル成長層との界面よりも浅い領域においても、アクセプタ型不純物(C)の濃度は、ドナー型不純物(Si)の濃度よりも、大きくなっている。よって、バッファ層2とチャネル層3との界面におけるドナー型不純物濃度をNd3、アクセプタ型不純物濃度をNa3とすると、Na3≧Nd3の関係となっている。 Further, as shown in FIG. 4, even in a region shallower than the interface between the nitride semiconductor substrate 1 and the epitaxial growth layer, the concentration of the acceptor impurity (C) is higher than the concentration of the donor impurity (Si). Yes. Therefore, assuming that the donor-type impurity concentration at the interface between the buffer layer 2 and the channel layer 3 is Nd3 and the acceptor-type impurity concentration is Na3, the relationship is Na3 ≧ Nd3.
 図4では、深さ0.8μmから1.2μmの近傍にかけてCの濃度が局所的に高くなっており、その領域でCの濃度がテラス状の分布となっている。これは、バッファ層2へ意図的にCを3×1016cm-3だけドーピングしたことによるものである。GaN系の結晶には、結晶欠陥として導入されるN空孔が存在し、N空孔がドナー型不純物として機能するため、意図的なドーピングを行わなければn型寄りの特性を示す。そのため、ドナー型不純物を補償するために、低濃度のアクセプタ型不純物としてCを意図的に導入している。特に、本発明では、基板とエピタキシャル成長層との界面での不純物凝集を補償するために、ドナー型不純物の濃度を超えるピーク濃度で、当該界面にアクセプタ型不純物を局所的にドーピングしている点で、従来技術(例えば特許文献1,2)とは異なっている。 In FIG. 4, the concentration of C is locally high from the depth of 0.8 μm to 1.2 μm, and the concentration of C has a terrace-like distribution in that region. This is because the buffer layer 2 is intentionally doped with C by 3 × 10 16 cm −3 . A GaN-based crystal has N vacancies introduced as crystal defects, and the N vacancies function as donor-type impurities, and therefore exhibit n-type characteristics unless intentional doping is performed. Therefore, C is intentionally introduced as a low-concentration acceptor impurity in order to compensate the donor impurity. In particular, in the present invention, in order to compensate for impurity aggregation at the interface between the substrate and the epitaxially grown layer, the interface is locally doped with acceptor-type impurities at a peak concentration exceeding the concentration of donor-type impurities. This is different from the prior art (for example, Patent Documents 1 and 2).
 本実施の形態のヘテロ接合電界効果型トランジスタによれば、窒化物半導体基板1とエピタキシャル成長層との界面に高濃度に導入されたアクセプタ型不純物によって、当該界面に凝集したドナー型不純物に起因するバッファリーク電流を抑制することができる。さらに、アクセプタ型不純物を高濃度に導入する領域を、エピタキシャル成長層との界面近傍(図4における深さ0.8μm~1.2μmの領域)に制限されていることで、バッファ層2のバルク結晶中のアクセプタ型不純物濃度が必要以上に高くなることが防止され、電流コラプスの発生も抑制することができる。従って、窒化物半導体からなるヘテロ接合電界効果型トランジスタの電気的特性を改善することが可能となる。 According to the heterojunction field effect transistor of the present embodiment, the buffer caused by the donor-type impurity aggregated at the interface due to the acceptor-type impurity introduced at a high concentration at the interface between the nitride semiconductor substrate 1 and the epitaxial growth layer. Leakage current can be suppressed. Further, the region where the acceptor-type impurity is introduced at a high concentration is limited to the vicinity of the interface with the epitaxial growth layer (the region having a depth of 0.8 μm to 1.2 μm in FIG. 4). It is possible to prevent the acceptor impurity concentration in the inside from becoming higher than necessary, and to suppress the occurrence of current collapse. Accordingly, it is possible to improve the electrical characteristics of the heterojunction field effect transistor made of a nitride semiconductor.
 図5~図9は、図1に示したヘテロ接合電界効果型トランジスタの製造方法を説明するための図である。これらの図において、図1に示したものと同一または対応する要素には、同一の符号を付している。 5 to 9 are views for explaining a method of manufacturing the heterojunction field effect transistor shown in FIG. In these drawings, the same or corresponding elements as those shown in FIG. 1 are denoted by the same reference numerals.
 まず、窒化物半導体基板1をエピタキシャル成長装置内に設置し、MOCVD(Metal Organic Chemical Vapor Deposition)法、MBE(Molecular Beam Epitaxy)法などのエピタキシャル成長法を用いて、窒化物半導体基板1上に、GaNからなるバッファ層2を形成する。このとき、窒化物半導体基板1とバッファ層2との界面(窒化物半導体基板1とエピタキシャル成長層との界面)で、ドナー型不純物よりもアクセプタ型不純物が多くなるように、バッファ層2の成長条件を調整する。続いて、バッファ層2上に、GaNからなるチャネル層3をエピタキシャル成長させる。このとき、バッファ層2とチャネル層3の界面で、ドナー型不純物よりもアクセプタ型不純物が多くなるように、チャネル層3の成長条件を調整する。さらに、チャネル層3の上に、Al0.17Ga0.83Nからなる電子供給層4をエピタキシャル成長させる。その結果、図5のように、バッファ層2、チャネル層3および電子供給層4を含むエピタキシャル成長層が形成される。 First, the nitride semiconductor substrate 1 is placed in an epitaxial growth apparatus, and an epitaxial growth method such as a MOCVD (Metal Organic Chemical Vapor Deposition) method or MBE (Molecular Beam Epitaxy) method is used to form a nitride semiconductor substrate 1 on the nitride semiconductor substrate 1 from GaN. A buffer layer 2 is formed. At this time, the growth condition of the buffer layer 2 is such that the acceptor type impurity is larger than the donor type impurity at the interface between the nitride semiconductor substrate 1 and the buffer layer 2 (interface between the nitride semiconductor substrate 1 and the epitaxial growth layer). Adjust. Subsequently, the channel layer 3 made of GaN is epitaxially grown on the buffer layer 2. At this time, the growth conditions of the channel layer 3 are adjusted so that the acceptor type impurity is larger than the donor type impurity at the interface between the buffer layer 2 and the channel layer 3. Further, an electron supply layer 4 made of Al 0.17 Ga 0.83 N is epitaxially grown on the channel layer 3. As a result, an epitaxial growth layer including the buffer layer 2, the channel layer 3, and the electron supply layer 4 is formed as shown in FIG.
 バッファ層2、チャネル層3および電子供給層4が形成された窒化物半導体基板1を、エピタキシャル成長装置から取り出す。そして、フォトリソグラフィ技術を用いて、電子供給層4上に、ドレイン電極7およびソース電極8の形成領域に開口を有するレジストマスク14を形成する。そして、レジストマスク14をマスクにするイオン注入により、注入ドーズ量1×1013~1×1017cm-2、注入エネルギー10~1000keVの条件で、例えばSiなどのn型の不純物をエピタキシャル成長層に導入する。それにより、図6のようにn型不純物注入領域5,6が形成される。 The nitride semiconductor substrate 1 on which the buffer layer 2, the channel layer 3, and the electron supply layer 4 are formed is taken out from the epitaxial growth apparatus. Then, a resist mask 14 having openings in the formation region of the drain electrode 7 and the source electrode 8 is formed on the electron supply layer 4 by using a photolithography technique. Then, by ion implantation using the resist mask 14 as a mask, an n-type impurity such as Si is applied to the epitaxial growth layer under conditions of an implantation dose of 1 × 10 13 to 1 × 10 17 cm −2 and an implantation energy of 10 to 1000 keV. Introduce. Thereby, n-type impurity implantation regions 5 and 6 are formed as shown in FIG.
 レジストマスク14を除去した後、例えば蒸着法またはスパッタリング法などを用いて、Ti、Al、Nb、Hf、Zr、Sr、Ni、Ta、Au、Mo、W等の金属、もしくはそれらの2以上を含む多層膜を電子供給層4上に堆積し、さらに、リフトオフ法またはフォトリソグラフィ法などを用いて、図7のようにドレイン電極7およびソース電極8を形成する。 After removing the resist mask 14, a metal such as Ti, Al, Nb, Hf, Zr, Sr, Ni, Ta, Au, Mo, W, or two or more thereof is used, for example, by vapor deposition or sputtering. A multilayer film including the same is deposited on the electron supply layer 4, and further, the drain electrode 7 and the source electrode 8 are formed as shown in FIG. 7 by using a lift-off method or a photolithography method.
 次に、例えば蒸着法またはスパッタリング法などを用いて、Ti、Al、Cu、Cr、Mo、W、Pt、Au、Ni、Pd等の金属、IrSi、PtSi、NiSi等のシリサイド、あるいはTiN、WN等の窒化物金属を電子供給層4上に堆積し、さらに、リフトオフ法またはフォトリソグラフィ法などを用いて、図8のようにゲート電極9を形成する。 Then, for example, by using a vapor deposition or sputtering, Ti, Al, Cu, Cr , Mo, W, Pt, Au, Ni, metals such as Pd, IrSi, PtSi, silicide such as NiSi 2 or TiN,, A nitride metal such as WN is deposited on the electron supply layer 4, and a gate electrode 9 is formed as shown in FIG. 8 using a lift-off method or a photolithography method.
 その後、例えばALD(Atomic Layer Deposition)法など、被覆性が高い成膜手法を用いて、SiもしくはAlの酸化膜あるいは窒化膜からなる電子供給層4の表面に表面保護膜10を形成する。そして、ドレイン電極7、ソース電極8およびゲート電極9が表面保護膜10から露出するように、ドライエッチング等で表面保護膜10をパターニングする。それにより、図9のように、電子供給層4の表面を覆う表面保護膜10が形成される。表面保護膜10の形成手法は、ALD法に限られず、PECVD(Plasma Enhanced Chemical Vapor Deposition)法やスパッタリング法など他の手法を用いてもよいし、それらの組み合わせてもよい。 Thereafter, the surface protective film 10 is formed on the surface of the electron supply layer 4 made of an oxide film or a nitride film of Si or Al by using a film forming method with high coverage such as an ALD (Atomic Layer Deposition) method. Then, the surface protective film 10 is patterned by dry etching or the like so that the drain electrode 7, the source electrode 8 and the gate electrode 9 are exposed from the surface protective film 10. Thereby, as shown in FIG. 9, a surface protective film 10 covering the surface of the electron supply layer 4 is formed. The formation method of the surface protective film 10 is not limited to the ALD method, and other methods such as PECVD (Plasma Enhanced Chemical Vapor Deposition) method and sputtering method may be used, or a combination thereof may be used.
 以上の工程により、図1に示したヘテロ接合電界効果型トランジスタの構成が形成される。この後、配線やバイアホール等の形成工程を経て、半導体デバイスとしてのヘテロ接合電界効果型トランジスタが完成する。 Through the above steps, the configuration of the heterojunction field effect transistor shown in FIG. 1 is formed. Thereafter, a heterojunction field effect transistor as a semiconductor device is completed through a process of forming wirings, via holes, and the like.
 上の説明では、ヘテロ接合電界効果型トランジスタの代表的な構造を示したが、以下のような変形例が考えられる。 In the above description, a typical structure of a heterojunction field effect transistor has been shown, but the following modifications may be considered.
 チャネル層3のバンドギャップの大きさをE、電子供給層4のバンドギャップの大きさをEとすると、E<Eという関係を満たせば、ヘテロ接合電界効果型トランジスタを動作させるのに十分である。そのため、必ずしも窒化物半導体基板1、バッファ層2およびチャネル層3をGaNで形成し、電子供給層4をAl0.17Ga0.83Nで形成しなくてもよい。チャネル層3および電子供給層4は、それを構成する元素の組成が互いに異なっており、且つ、Al、Ga及びNのうちのNを含む2種類以上の元素からなる化合物で構成されていればよい。例えば、窒化物半導体基板1、バッファ層2およびチャネル層3も、AlGa1-xN(0≦x≦1)を主成分とする材料で形成してもよい。 Assuming that the band gap size of the channel layer 3 is E 3 and the band gap size of the electron supply layer 4 is E 4 , the heterojunction field effect transistor is operated as long as the relationship of E 3 <E 4 is satisfied. Enough. Therefore, the nitride semiconductor substrate 1, the buffer layer 2, and the channel layer 3 are not necessarily formed of GaN, and the electron supply layer 4 is not necessarily formed of Al 0.17 Ga 0.83 N. If the channel layer 3 and the electron supply layer 4 are composed of compounds composed of two or more elements including N of Al, Ga and N, the compositions of the elements constituting the channel layer 3 and the electron supply layer 4 are different from each other. Good. For example, the nitride semiconductor substrate 1, the buffer layer 2, and the channel layer 3 may also be formed of a material mainly composed of Al x Ga 1-x N (0 ≦ x ≦ 1).
 E<Eの関係を満たすためには、チャネル層3を構成する窒化物半導体をAlGa1-xN、電子供給層4を構成する窒化物半導体をAlGa1-yNとすると、0≦x<1、0<y<1、x<yという関係が満たされていればよい。さらに、チャネル層3および電子供給層4は、Al、Ga及びNのうちのNを含む2元素以上の元素にInを加えてなる窒化物半導体で構成されていてもよい。 In order to satisfy the relationship of E 3 <E 4 , the nitride semiconductor constituting the channel layer 3 is Al x Ga 1-x N, and the nitride semiconductor constituting the electron supply layer 4 is Al y Ga 1-y N. Then, it is only necessary that the relations 0 ≦ x <1, 0 <y <1, and x <y are satisfied. Furthermore, the channel layer 3 and the electron supply layer 4 may be made of a nitride semiconductor obtained by adding In to two or more elements including N among Al, Ga, and N.
 上記のような各種の窒化物半導体からなるチャネル層3および電子供給層4は、その成長工程において、窒化物半導体の原料ガスであるトリメチルアンモニウム、トリメチルガリウム、トリメチルインジウム、アンモニア、あるいは、n型ドーパントの原料ガスであるシラン等の圧力や流量、温度、導入時間を調整して、チャネル層3および電子供給層4が所望の組成、膜厚、ドーピング濃度となるようにすることで、形成することができる。 In the growth process, the channel layer 3 and the electron supply layer 4 made of various nitride semiconductors as described above are trimethylammonium, trimethylgallium, trimethylindium, ammonia or n-type dopants which are nitride semiconductor source gases. The channel layer 3 and the electron supply layer 4 are formed by adjusting the pressure, flow rate, temperature, and introduction time of silane, which is a raw material gas, to have a desired composition, film thickness, and doping concentration. Can do.
 チャネル層3および電子供給層4が、Al、Ga及びNのうちのNを含む2種類以上の元素からなる化合物で構成される場合、電子供給層4に大きな分極効果が発生するため、高濃度の2次元電子ガス11を発生させることができる。2次元電子ガス11の濃度が高いと、トランジスタの大電流化、さらには高出力化に有利である。ただし、チャネル層3に限っては、AlNの2元結晶を採用することはできない。これは、窒化物半導体においてAlNを超えるバンドギャップを持つ材料が無いため、電子供給層4に使用できる材料が存在しなくなるからである。 When the channel layer 3 and the electron supply layer 4 are composed of a compound composed of two or more elements including N of Al, Ga, and N, a large polarization effect is generated in the electron supply layer 4, so that the high concentration The two-dimensional electron gas 11 can be generated. When the concentration of the two-dimensional electron gas 11 is high, it is advantageous for increasing the current of the transistor and for increasing the output. However, the AlN binary crystal cannot be adopted only for the channel layer 3. This is because there is no material that can be used for the electron supply layer 4 because there is no material having a band gap exceeding that of AlN in the nitride semiconductor.
 チャネル層3の絶縁破壊電界が高いほど、ヘテロ接合電界効果型トランジスタの耐圧は高くなる。AlGa1-xNは、Al組成が高いほど、バンドギャップが大きくなり、絶縁破壊電界が高くなるため、チャネル層3に用いるAlGa1-xNは、Al組成がより高い(xが1に近い)方が好ましい。また、電子供給層4のバンドギャップが大きいほど、電子供給層4を介してゲート電極9からヘテロ界面へ流れるゲートリーク電流を抑制できるため、電子供給層4に用いるAlGa1-yNも、Al組成がより高い(yが1に近い)方が好ましい。 The higher the dielectric breakdown electric field of the channel layer 3, the higher the breakdown voltage of the heterojunction field effect transistor. Since Al x Ga 1-x N has a higher Al composition, the band gap becomes larger and the breakdown electric field becomes higher. Therefore, Al x Ga 1-x N used for the channel layer 3 has a higher Al composition (x Is closer to 1). In addition, since the gate leakage current flowing from the gate electrode 9 to the heterointerface via the electron supply layer 4 can be suppressed as the band gap of the electron supply layer 4 is larger, Al y Ga 1-y N used for the electron supply layer 4 It is preferable that the Al composition is higher (y is close to 1).
 ゲート電極9の断面形状は、図1に示したような矩形である必要はなく、例えば、T字型、Y字型、あるいはΓ型であってもよい。また、図10のように、ゲート電極9と電気的に接続し、表面保護膜10上に延在するフィールドプレート電極13を設けてもよい。図10では、フィールドプレート電極13がゲート電極9からドレイン電極7側へと伸びる構成を示しているが、フィールドプレート電極13は、ソース電極8側へ伸びるように設けられてもよいし、ドレイン電極7側とソース電極8側の両方へ伸びるように設けられてもよい。フィールドプレート電極13が設けられることで、ゲート電極9の端部における電界集中を抑えることができ、電流コラプスの低減に効果的である。フィールドプレート電極13の材料は、ゲート電極9と電気的に接続でき、エピタキシャル成長層と接触しないように形成できれば、どのような材料でもよい。 The cross-sectional shape of the gate electrode 9 does not need to be a rectangle as shown in FIG. Further, as shown in FIG. 10, a field plate electrode 13 that is electrically connected to the gate electrode 9 and extends on the surface protective film 10 may be provided. Although FIG. 10 shows a configuration in which the field plate electrode 13 extends from the gate electrode 9 to the drain electrode 7 side, the field plate electrode 13 may be provided to extend to the source electrode 8 side. It may be provided so as to extend to both the 7 side and the source electrode 8 side. By providing the field plate electrode 13, electric field concentration at the end of the gate electrode 9 can be suppressed, which is effective in reducing current collapse. The material of the field plate electrode 13 may be any material as long as it can be electrically connected to the gate electrode 9 and can be formed so as not to contact the epitaxial growth layer.
 なお、フィールドプレート電極13の形成は、表面保護膜10を形成した後、その上に蒸着法等でフィールドプレート電極13の材料となる導電膜を形成し、リフトオフ法などを用いて当該導電膜を所望のパターンに加工することよって行うことができる。 The field plate electrode 13 is formed by forming the surface protective film 10 and then forming a conductive film as a material of the field plate electrode 13 by vapor deposition or the like, and then using the lift-off method or the like to form the conductive film. This can be done by processing into a desired pattern.
 窒化物半導体基板1は、AlN、InNもしくはこれらの混晶等で形成されていてもよい。ただし、格子定数の異なる結晶を連続して成長することは難しく、エピタキシャル成長層内へ格子歪緩和層を挿入するなどして、バッファリーク電流に与える影響を考慮する必要がある。そのため、窒化物半導体基板1の格子定数とバッファ層2およびチャネル層3の格子定数は、揃えておくことが好ましい。また、格子歪緩和の観点からすれば、窒化物半導体基板1上にバッファ層2を形成せずに、チャネル層3および電子供給層4を形成することもできる。つまり、窒化物半導体基板1の上に必ずしもバッファ層2を形成する必要はなく、形成しなくてもよい。 The nitride semiconductor substrate 1 may be formed of AlN, InN, or a mixed crystal thereof. However, it is difficult to continuously grow crystals having different lattice constants, and it is necessary to consider the influence on the buffer leakage current by inserting a lattice strain relaxation layer into the epitaxial growth layer. Therefore, the lattice constant of nitride semiconductor substrate 1 and the lattice constant of buffer layer 2 and channel layer 3 are preferably aligned. From the viewpoint of relaxation of lattice strain, the channel layer 3 and the electron supply layer 4 can be formed without forming the buffer layer 2 on the nitride semiconductor substrate 1. That is, the buffer layer 2 is not necessarily formed on the nitride semiconductor substrate 1 and may not be formed.
 チャネル層3および電子供給層4のそれぞれは、必ずしも単一組成の単層構造である必要はなく、バンドギャップの大きさの条件(E<E)を満たせば、チャネル層3および電子供給層4内でIn組成、Al組成、Ga組成が空間的に変化していてもよいし、チャネル層3および電子供給層4が、組成の異なる複数の層からなる多層構造であってもよい。また、チャネル層3および電子供給層4には、窒化物半導体中でn型またはp型を示す不純物が含まれていてもよい。 Each of the channel layer 3 and the electron supply layer 4 does not necessarily have a single-layer structure having a single composition. If the condition of the band gap size (E 3 <E 4 ) is satisfied, the channel layer 3 and the electron supply layer The In composition, Al composition, and Ga composition may vary spatially in the layer 4, and the channel layer 3 and the electron supply layer 4 may have a multilayer structure including a plurality of layers having different compositions. Further, the channel layer 3 and the electron supply layer 4 may contain an n-type or p-type impurity in the nitride semiconductor.
 図1においては、界面アクセプタ型不純物12が、窒化物半導体基板1とバッファ層2との界面のみに示されているが、界面アクセプタ型不純物の導入箇所は窒化物半導体基板1とバッファ層2との界面だけに限られない。上記したように、窒化物半導体基板1とバッファ層2で格子定数の異なる材料を用いた場合、エピタキシャル成長層に格子歪緩和層を挿入することがある。その場合、エピタキシャル成長中にプロセスの中断が入ることになり、条件によっては、その中断で生じる界面(成長中断界面)でも不純物の凝集が発生する可能性がある。そのような場合には、バッファ層2とチャネル層3との界面にも、アクセプタ型不純物を導入した方がよい場合もある。 In FIG. 1, the interface acceptor type impurity 12 is shown only at the interface between the nitride semiconductor substrate 1 and the buffer layer 2, but the interface acceptor type impurity is introduced at the nitride semiconductor substrate 1 and the buffer layer 2. It is not limited to the interface. As described above, when materials having different lattice constants are used for the nitride semiconductor substrate 1 and the buffer layer 2, a lattice strain relaxation layer may be inserted into the epitaxial growth layer. In that case, the process is interrupted during the epitaxial growth, and depending on the conditions, there is a possibility that impurities are aggregated even at the interface (growth interface). In such a case, it may be better to introduce an acceptor-type impurity also at the interface between the buffer layer 2 and the channel layer 3.
 ドレイン電極7およびソース電極8が、電子供給層4とチャネル層3の界面近傍に発生する2次元電子ガス11とのオーミックコンタクトが形成されるのであれば、図11のように、ドレイン電極7およびソース電極8の下にn型不純物注入領域5,6を設けなくてもよい。ドレイン電極7およびソース電極8は、図11のように電子供給層4の上面と接触するように設けられてもよいし、図12のように電子供給層4に形成されたリセス内で電子供給層4と接触するように設けられてもよい。ただし、ドレイン電極7およびソース電極8の下にn型不純物注入領域5,6が形成されていた方が、ドレイン電極7およびソース電極8と2次元電子ガス11との間の抵抗を低減することができるため、トランジスタの大電流化および高出力化に有利である。 If the drain electrode 7 and the source electrode 8 form an ohmic contact with the two-dimensional electron gas 11 generated in the vicinity of the interface between the electron supply layer 4 and the channel layer 3, as shown in FIG. The n-type impurity implantation regions 5 and 6 may not be provided under the source electrode 8. The drain electrode 7 and the source electrode 8 may be provided so as to be in contact with the upper surface of the electron supply layer 4 as shown in FIG. 11, or the electron supply is performed in the recess formed in the electron supply layer 4 as shown in FIG. It may be provided in contact with the layer 4. However, the resistance between the drain electrode 7 and the source electrode 8 and the two-dimensional electron gas 11 is reduced when the n-type impurity implantation regions 5 and 6 are formed under the drain electrode 7 and the source electrode 8. Therefore, it is advantageous for increasing the current and output of the transistor.
 図11の構成は、図6に示したn型不純物のイオン注入を省略することによって形成できる。また、図12の構成は、図6に示した工程の代わりに、例えばCl系のエッチングガスを用いて電子供給層4を選択的に除去する工程を行うことで形成できる。 11 can be formed by omitting the n-type impurity ion implantation shown in FIG. 12 can be formed by performing a process of selectively removing the electron supply layer 4 using, for example, a Cl 2 -based etching gas instead of the process shown in FIG.
 なお、上述した各変形例は、互いに組み合わせて実施することもできる。 In addition, each modification mentioned above can also be implemented in combination with each other.
 <実施の形態2>
 図13は、実施の形態2に係るヘテロ接合電界効果型トランジスタの構造を示す図である。図13においては、窒化物半導体基板1とバッファ層2の界面に存在する界面アクセプタ型不純物12の配置が、実施の形態1とは異なっている。すなわち、実施の形態1では、当該界面の全体にわたって一律にドナー型不純物を補償するだけの界面アクセプタ型不純物12を添加したが、実施の形態2では、ドレイン電極7およびソース電極8の下方(n型不純物注入領域5,6の下方)の部分のみに界面アクセプタ型不純物12を添加している。よって、本実施の形態では、ドレイン電極7およびソース電極8の下方の領域でのみ、上記したドナー型不純物濃度とアクセプタ型不純物濃度との関係、すなわち1.6×1019cm-3≧Na1-Nd1≧0、Nd1/10≧Nd2、Na1/10≧Na2の関係が満たされている。
<Embodiment 2>
FIG. 13 is a diagram illustrating the structure of the heterojunction field effect transistor according to the second embodiment. In FIG. 13, the arrangement of interface acceptor impurity 12 present at the interface between nitride semiconductor substrate 1 and buffer layer 2 is different from that in the first embodiment. That is, in the first embodiment, the interface acceptor-type impurity 12 is added so as to uniformly compensate the donor-type impurity over the entire interface, but in the second embodiment, below the drain electrode 7 and the source electrode 8 (n The interface acceptor type impurity 12 is added only to the portion below the type impurity implantation regions 5 and 6. Therefore, in the present embodiment, the relationship between the donor-type impurity concentration and the acceptor-type impurity concentration described above, that is, 1.6 × 10 19 cm −3Na 1 only in the region below the drain electrode 7 and the source electrode 8. The relationship of Nd1 ≧ 0, Nd1 / 10 ≧ Nd2, and Na1 / 10 ≧ Na2 is satisfied.
 図13のヘテロ接合電界効果型トランジスタでは、n型不純物注入領域5,6から、窒化物半導体基板1とバッファ層2との界面におけるドナー型不純物の偏析部を介したバッファリーク電流が、界面アクセプタ型不純物12によって低減される。さらに、ソース電極8からドレイン電極7にかけてのアクセス領域(チャネル層3におけるドレイン電極7とゲート電極9との間、および、ソース電極8とゲート電極9の間の領域のことをいう)およびチャネル領域(ゲート電極9の下の領域のことをいう)の直下では、界面アクセプタ型不純物12が無いため、電子捕獲確率を低減することができ、これによって電流コラプスを抑制することができる。従って、実施の形態1よりも電流コラプスを抑制することができる。 In the heterojunction field effect transistor of FIG. 13, the buffer leak current from the n-type impurity implantation regions 5 and 6 through the donor-type impurity segregation portion at the interface between the nitride semiconductor substrate 1 and the buffer layer 2 is reduced to the interface acceptor. Reduced by mold impurities 12. Further, an access region from the source electrode 8 to the drain electrode 7 (refers to a region between the drain electrode 7 and the gate electrode 9 and a region between the source electrode 8 and the gate electrode 9 in the channel layer 3) and a channel region. Immediately below (referring to a region under the gate electrode 9), since there is no interface acceptor impurity 12, the probability of electron capture can be reduced, thereby suppressing current collapse. Therefore, current collapse can be suppressed more than in the first embodiment.
 また、図13においては、ドレイン電極7およびソース電極8の下方の領域のみに界面アクセプタ型不純物12が示されているが、界面アクセプタ型不純物12は、少なくともドレイン電極7およびソース電極8の下をカバーしていればよい。特に、電流コラプスの抑制という観点からは、高電界が印加される領域の電子捕獲を低減すればよいため、界面アクセプタ型不純物12がソース電極8とゲート電極9の間の領域にまで延伸されていても大きな影響はない。また、界面アクセプタ型不純物12は、ドレイン電極7およびソース電極8の下方の領域以外に全く存在してはならないのではなく、ドレイン電極7およびソース電極8の下方の領域とそれ以外の領域とで、界面アクセプタ型不純物12に濃度差があれば一定の効果が期待できる。 In FIG. 13, the interface acceptor impurity 12 is shown only in the region below the drain electrode 7 and the source electrode 8, but the interface acceptor impurity 12 is at least below the drain electrode 7 and the source electrode 8. It only has to be covered. In particular, from the viewpoint of suppressing current collapse, since it is only necessary to reduce electron capture in a region to which a high electric field is applied, the interface acceptor impurity 12 is extended to a region between the source electrode 8 and the gate electrode 9. But there is no big impact. Further, the interface acceptor type impurity 12 should not exist at all other than the region below the drain electrode 7 and the source electrode 8, but in the region below the drain electrode 7 and the source electrode 8 and other regions. If there is a concentration difference in the interface acceptor type impurity 12, a certain effect can be expected.
 図13の構造は、例えば、エピタキシャル成長層の形成工程の前に、窒化物半導体基板1における界面アクセプタ型不純物12の形成領域に、アクセプタ型不純物元素を選択的に注入しておくことによって実現することができる。具体的には、窒化物半導体基板1上に、界面アクセプタ型不純物12の形成領域を開口したレジストマスクを形成し、それをマスクとするイオン注入によって、アクセプタ型不純物元素を注入する方法が考えられる。 The structure of FIG. 13 is realized by, for example, selectively injecting an acceptor-type impurity element into the formation region of the interface acceptor-type impurity 12 in the nitride semiconductor substrate 1 before the epitaxial growth layer forming step. Can do. Specifically, a method may be considered in which a resist mask having an opening for forming the interface acceptor impurity 12 is formed on the nitride semiconductor substrate 1 and an acceptor impurity element is implanted by ion implantation using the resist mask as a mask. .
 実施の形態1で説明した各変形例は、実施の形態2のヘテロ接合電界効果型トランジスタに対しても適用可能である。 Each of the modifications described in the first embodiment can be applied to the heterojunction field effect transistor of the second embodiment.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
 1 窒化物半導体基板、2 バッファ層、3 チャネル層、4 電子供給層、5 n型不純物注入領域、6 n型不純物注入領域、7 ドレイン電極、8 ソース電極、9 ゲート電極、10 表面保護膜、11 2次元電子ガス、12 界面アクセプタ型不純物、13 フィールドプレート電極、14 レジストマスク。 1 nitride semiconductor substrate, 2 buffer layer, 3 channel layer, 4 electron supply layer, 5 n-type impurity implanted region, 6 n-type impurity implanted region, 7 drain electrode, 8 source electrode, 9 gate electrode, 10 surface protective film, 11 2D electron gas, 12 interface acceptor type impurities, 13 field plate electrode, 14 resist mask.

Claims (11)

  1.  窒化物半導体基板(1)と、
     前記窒化物半導体基板(1)上に形成され、最上層の電子供給層(4)および前記電子供給層(4)の下のチャネル層(3)を含む窒化物半導体からなるエピタキシャル成長層(2,3,4)と、
     前記電子供給層(4)上に形成されたドレイン電極(7)およびソース電極(8)と、
     前記電子供給層(4)上に形成され、前記ドレイン電極(7)と前記ソース電極(8)との間の領域に、前記ドレイン電極(7)および前記ソース電極(8)から離間して配設されたゲート電極(9)と、
    を備え、
     前記窒化物半導体基板(1)と前記エピタキシャル成長層(2,3,4)との界面におけるドナー型不純物濃度Nd1およびアクセプタ型不純物濃度Na1と、前記エピタキシャル成長層(2,3,4)におけるドナー型不純物濃度Nd2およびアクセプタ型不純物濃度Na2とが、少なくとも前記ドレイン電極(7)および前記ソース電極(8)の下方の領域において、1.6×1019cm-3≧Na1-Nd1≧0、Nd1/10≧Nd2、Na1/10≧Na2の関係を満たす、
    ヘテロ接合電界効果型トランジスタ。
    A nitride semiconductor substrate (1);
    An epitaxial growth layer (2, 2) formed on the nitride semiconductor substrate (1) and comprising a nitride semiconductor including an uppermost electron supply layer (4) and a channel layer (3) under the electron supply layer (4). 3,4) and
    A drain electrode (7) and a source electrode (8) formed on the electron supply layer (4);
    Formed on the electron supply layer (4) and arranged in a region between the drain electrode (7) and the source electrode (8), spaced apart from the drain electrode (7) and the source electrode (8). The provided gate electrode (9),
    With
    Donor-type impurity concentration Nd1 and acceptor-type impurity concentration Na1 at the interface between the nitride semiconductor substrate (1) and the epitaxially grown layer (2,3,4), and donor-type impurities in the epitaxially grown layer (2,3,4) The concentration Nd2 and the acceptor-type impurity concentration Na2 are 1.6 × 10 19 cm −3 ≧ Na1-Nd1 ≧ 0, Nd1 / 10 at least in the region below the drain electrode (7) and the source electrode (8). Satisfies the relationship of ≧ Nd2 and Na1 / 10 ≧ Na2.
    Heterojunction field effect transistor.
  2.  前記エピタキシャル成長層(2,3,4)におけるアクセプタ型不純物濃度は、少なくとも前記ドレイン電極(7)および前記ソース電極(8)の下方の領域において、窒化物半導体基板(1)と前記エピタキシャル成長層(2,3,4)との界面近傍で局所的に高くなっている
    請求項1に記載のヘテロ接合電界効果型トランジスタ。
    The acceptor-type impurity concentration in the epitaxial growth layer (2, 3, 4) is such that at least in the region below the drain electrode (7) and the source electrode (8), the nitride semiconductor substrate (1) and the epitaxial growth layer (2 The heterojunction field effect transistor according to claim 1, which is locally high in the vicinity of the interface with.
  3.  前記窒化物半導体基板(1)および前記チャネル層(3)は、AlGa1-xN(0≦x<1)を主成分としている
    請求項1または請求項2に記載のヘテロ接合電界効果型トランジスタ。
    The heterojunction field effect according to claim 1 or 2, wherein the nitride semiconductor substrate (1) and the channel layer (3) are mainly composed of Al x Ga 1-x N (0 ≦ x <1). Type transistor.
  4.  前記エピタキシャル成長層(2,3,4)は、さらに、前記窒化物半導体基板(1)と前記チャネル層(3)との間に挟まれて位置するバッファ層(2)を含み、
     前記バッファ層(2)と前記チャネル層(3)との界面におけるドナー型不純物濃度Nd3およびアクセプタ型不純物濃度Na3が、Na3≧Nd3の関係を満たす、
    請求項1または請求項2に記載のヘテロ接合電界効果型トランジスタ。
    The epitaxial growth layer (2, 3, 4) further includes a buffer layer (2) positioned between the nitride semiconductor substrate (1) and the channel layer (3),
    The donor-type impurity concentration Nd3 and the acceptor-type impurity concentration Na3 at the interface between the buffer layer (2) and the channel layer (3) satisfy the relationship of Na3 ≧ Nd3.
    The heterojunction field effect transistor according to claim 1.
  5.  前記窒化物半導体基板(1)、前記バッファ層(2)および前記チャネル層(3)は、AlGa1-xN(0≦x<1)を主成分としている
    請求項4に記載のヘテロ接合電界効果型トランジスタ。
    5. The heterostructure according to claim 4, wherein the nitride semiconductor substrate (1), the buffer layer (2), and the channel layer (3) are mainly composed of Al x Ga 1-x N (0 ≦ x <1). Junction field effect transistor.
  6.  電子供給層(4)における前記ドレイン電極(7)およびソース電極(8)の下の部分に、n型の不純物が注入されたn型不純物注入領域(5,6)が形成されている
    請求項1から請求項5のいずれか一項に記載のヘテロ接合電界効果型トランジスタ。
    An n-type impurity implantation region (5, 6) into which an n-type impurity is implanted is formed in a portion of the electron supply layer (4) below the drain electrode (7) and the source electrode (8). The heterojunction field effect transistor according to any one of claims 1 to 5.
  7.  前記ドレイン電極(7)および前記ソース電極(8)の下方の領域でのみ、前記1.6×1019cm-3≧Na1-Nd1≧0、Nd1/10≧Nd2、Na1/10≧Na2の関係が満たされる
    請求項1から請求項6のいずれか一項に記載のヘテロ接合電界効果型トランジスタ。
    The relationship of 1.6 × 10 19 cm −3 ≧ Na1-Nd1 ≧ 0, Nd1 / 10 ≧ Nd2, Na1 / 10 ≧ Na2 only in the region below the drain electrode (7) and the source electrode (8). The heterojunction field effect transistor according to any one of claims 1 to 6, wherein:
  8.  窒化物半導体基板(1)上に、最上層の電子供給層(4)および前記電子供給層(4)の下のチャネル層(3)を含む窒化物半導体からなるエピタキシャル成長層(2,3,4)を形成する工程と、
     前記電子供給層(4)上にドレイン電極(7)、ソース電極(8)およびゲート電極(9)を形成する工程と、を備え、
     前記エピタキシャル成長層(2,3,4)の形成工程では、前記窒化物半導体基板(1)と前記エピタキシャル成長層(2,3,4)との界面におけるドナー型不純物濃度Nd1およびアクセプタ型不純物濃度Na1と、前記エピタキシャル成長層(2,3,4)におけるドナー型不純物濃度Nd2およびアクセプタ型不純物濃度Na2とが、少なくとも前記ドレイン電極(7)および前記ソース電極(8)の形成領域の下方の領域において、1.6×1019cm-3≧Na1-Nd1≧0、Nd1/10≧Nd2、Na1/10≧Na2の関係を満たすように、前記エピタキシャル成長層(2,3,4)が形成される、
    ヘテロ接合電界効果型トランジスタの製造方法。
    On the nitride semiconductor substrate (1), an epitaxial growth layer (2, 3, 4) made of a nitride semiconductor including an uppermost electron supply layer (4) and a channel layer (3) under the electron supply layer (4). )
    Forming a drain electrode (7), a source electrode (8) and a gate electrode (9) on the electron supply layer (4), and
    In the step of forming the epitaxial growth layer (2, 3, 4), the donor-type impurity concentration Nd1 and the acceptor-type impurity concentration Na1 at the interface between the nitride semiconductor substrate (1) and the epitaxial growth layer (2, 3, 4) The donor-type impurity concentration Nd2 and the acceptor-type impurity concentration Na2 in the epitaxial growth layer (2, 3, 4) are at least in the region below the formation region of the drain electrode (7) and the source electrode (8). .6 × 10 19 cm −3 ≧ Na1-Nd1 ≧ 0, Nd1 / 10 ≧ Nd2, and Na1 / 10 ≧ Na2 are formed to form the epitaxial growth layer (2,3,4).
    A method of manufacturing a heterojunction field effect transistor.
  9.  前記エピタキシャル成長層(2,3,4)の形成工程では、前記エピタキシャル成長層(2,3,4)におけるアクセプタ型不純物濃度が、少なくとも前記ドレイン電極(7)および前記ソース電極(8)の下方の領域において、窒化物半導体基板(1)と前記エピタキシャル成長層(2,3,4)との界面近傍で局所的に高くなるように、前記エピタキシャル成長層(2,3,4)が形成される
    請求項8に記載のヘテロ接合電界効果型トランジスタの製造方法。
    In the step of forming the epitaxial growth layer (2, 3, 4), the acceptor-type impurity concentration in the epitaxial growth layer (2, 3, 4) is at least a region below the drain electrode (7) and the source electrode (8). In claim 8, the epitaxial growth layer (2, 3, 4) is formed so as to be locally high in the vicinity of the interface between the nitride semiconductor substrate (1) and the epitaxial growth layer (2, 3, 4). A method for producing a heterojunction field effect transistor according to 1.
  10.  前記エピタキシャル成長層(2,3,4)は、さらに、前記窒化物半導体基板(1)と前記チャネル層(3)との間に挟まれて位置するバッファ層(2)を含み、
     前記エピタキシャル成長層(2,3,4)の形成工程は、
     前記窒化物半導体基板(1)上にバッファ層(2)を形成する工程と、
     前記バッファ層(2)上に前記チャネル層(3)を形成する工程と、
     前記チャネル層(3)上に前記電子供給層(4)を形成する工程と、
    を含んでおり、
     前記チャネル層(3)の形成工程では、前記バッファ層(2)と前記チャネル層(3)との界面におけるドナー型不純物濃度Nd3およびアクセプタ型不純物濃度Na3が、Na3≧Nd3の関係を満たすように、前記チャネル層(3)が形成される
    請求項8または請求項9に記載のヘテロ接合電界効果型トランジスタの製造方法。
    The epitaxial growth layer (2, 3, 4) further includes a buffer layer (2) positioned between the nitride semiconductor substrate (1) and the channel layer (3),
    The step of forming the epitaxial growth layer (2, 3, 4)
    Forming a buffer layer (2) on the nitride semiconductor substrate (1);
    Forming the channel layer (3) on the buffer layer (2);
    Forming the electron supply layer (4) on the channel layer (3);
    Contains
    In the step of forming the channel layer (3), the donor-type impurity concentration Nd3 and the acceptor-type impurity concentration Na3 at the interface between the buffer layer (2) and the channel layer (3) satisfy the relationship of Na3 ≧ Nd3. The method of manufacturing a heterojunction field effect transistor according to claim 8 or 9, wherein the channel layer (3) is formed.
  11.  前記エピタキシャル成長層(2,3,4)の形成工程よりも前に、前記窒化物半導体基板(1)における前記ドレイン電極(7)および前記ソース電極(8)の形成領域の下方の部分に、選択的にアクセプタ型不純物を導入する工程をさらに備え、
     前記ドレイン電極(7)および前記ソース電極(8)の下方の領域でのみ、前記1.6×1019cm-3≧Na1-Nd1≧0、Nd1/10≧Nd2、Na1/10≧Na2の関係が満たされる
    請求項8から請求項10のいずれか一項に記載のヘテロ接合電界効果型トランジスタの製造方法。
    Prior to the step of forming the epitaxially grown layers (2, 3, 4), the nitride semiconductor substrate (1) is selected in a portion below the formation region of the drain electrode (7) and the source electrode (8). And further introducing an acceptor-type impurity,
    The relationship of 1.6 × 10 19 cm −3 ≧ Na1-Nd1 ≧ 0, Nd1 / 10 ≧ Nd2, Na1 / 10 ≧ Na2 only in the region below the drain electrode (7) and the source electrode (8). The method of manufacturing a heterojunction field effect transistor according to any one of claims 8 to 10, wherein:
PCT/JP2017/015420 2016-06-24 2017-04-17 Heterojunction fet transistor and method for manufacturing same WO2017221532A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018523541A JP6541879B2 (en) 2016-06-24 2017-04-17 Heterojunction field effect transistor and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016125415 2016-06-24
JP2016-125415 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017221532A1 true WO2017221532A1 (en) 2017-12-28

Family

ID=60784505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015420 WO2017221532A1 (en) 2016-06-24 2017-04-17 Heterojunction fet transistor and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6541879B2 (en)
WO (1) WO2017221532A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097127A (en) * 2019-12-17 2021-06-24 クアーズテック株式会社 Nitride semiconductor substrate and manufacturing method for the same
US11605716B2 (en) 2019-12-17 2023-03-14 Coorstek Kk Nitride semiconductor substrate and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149732A (en) * 2012-01-18 2013-08-01 Mitsubishi Electric Corp Hetero junction field effect transistor and manufacturing method of the same
JP2014072430A (en) * 2012-09-28 2014-04-21 Fujitsu Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149732A (en) * 2012-01-18 2013-08-01 Mitsubishi Electric Corp Hetero junction field effect transistor and manufacturing method of the same
JP2014072430A (en) * 2012-09-28 2014-04-21 Fujitsu Ltd Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097127A (en) * 2019-12-17 2021-06-24 クアーズテック株式会社 Nitride semiconductor substrate and manufacturing method for the same
JP7220647B2 (en) 2019-12-17 2023-02-10 クアーズテック株式会社 Nitride semiconductor substrate and manufacturing method thereof
US11605716B2 (en) 2019-12-17 2023-03-14 Coorstek Kk Nitride semiconductor substrate and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2017221532A1 (en) 2019-01-31
JP6541879B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
US9548376B2 (en) Method of manufacturing a semiconductor device including a barrier structure
JP4530171B2 (en) Semiconductor device
US8866192B1 (en) Semiconductor device, high electron mobility transistor (HEMT) and method of manufacturing
US8653561B2 (en) III-nitride semiconductor electronic device, and method of fabricating III-nitride semiconductor electronic device
EP3311414B1 (en) Doped barrier layers in epitaxial group iii nitrides
US9478632B2 (en) Method of manufacturing a semiconductor device
KR101365302B1 (en) Compound semiconductor device and method for fabricating the same
JP5495257B2 (en) Group III nitride field effect transistor and method of manufacturing the same
JP6444789B2 (en) Semiconductor device and manufacturing method thereof
TWI663635B (en) Semiconductor material growth of a high resistivity nitride buffer layer using ion implantation
US9312341B2 (en) Compound semiconductor device, power source device and high frequency amplifier and method for manufacturing the same
JP2007317794A (en) Semiconductor device, and its manufacturing method
CN111406306A (en) Method for manufacturing semiconductor device, and semiconductor device
JP7025853B2 (en) Nitride semiconductor devices and nitride semiconductor packages
JP2011187643A (en) Heterojunction field-effect transistor
JP2016100450A (en) Heterojunction field effect transistor and manufacturing method of the same
JP2006024927A (en) Semiconductor device and method for manufacturing the semiconductor device
JP2013149732A (en) Hetero junction field effect transistor and manufacturing method of the same
WO2017221532A1 (en) Heterojunction fet transistor and method for manufacturing same
US8283700B2 (en) Field effect transistor and manufacturing method thereof
JP2539268B2 (en) Semiconductor device
US20230104038A1 (en) Epitaxial structure for high-electron-mobility transistor and method for manufacturing the same
JP2015106627A (en) Semiconductor laminated substrate
JP2014099523A (en) Heterojunction field effect transistor and manufacturing thereof
JP2015008244A (en) Heterojunction field-effect transistor, and method of manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018523541

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815003

Country of ref document: EP

Kind code of ref document: A1