WO2017219970A1 - 一种煤岩同采工作面的煤岩分选与利用方法 - Google Patents

一种煤岩同采工作面的煤岩分选与利用方法 Download PDF

Info

Publication number
WO2017219970A1
WO2017219970A1 PCT/CN2017/089286 CN2017089286W WO2017219970A1 WO 2017219970 A1 WO2017219970 A1 WO 2017219970A1 CN 2017089286 W CN2017089286 W CN 2017089286W WO 2017219970 A1 WO2017219970 A1 WO 2017219970A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
rock
underground
mining
transported
Prior art date
Application number
PCT/CN2017/089286
Other languages
English (en)
French (fr)
Inventor
林柏泉
刘统
杨威
刘厅
李贺
黄展博
王瑞
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2017219970A1 publication Critical patent/WO2017219970A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/005General arrangement of separating plant, e.g. flow sheets specially adapted for coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/005Methods or devices for placing filling-up materials in underground workings characterised by the kind or composition of the backfilling material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2230/00Specific aspects relating to the whole B07B subclass
    • B07B2230/01Wet separation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells

Definitions

  • the invention relates to a method for separating and utilizing coal and rock in the coal mining face with the same mining face, and is particularly suitable for the sorting and utilization of coal rock collected from the coal mining face with the coal mining face when the ultra-thin coal seam is jointly exploited as the protective layer.
  • the gas extraction method is the preferred mining protective layer, which is also the preferred method of coal seam pressure relief gas extraction in the "Control of Coal and Gas Outburst Regulations".
  • the preferred mining protective layer which is also the preferred method of coal seam pressure relief gas extraction in the "Control of Coal and Gas Outburst Regulations".
  • the coal seam is relatively thin, the coal rock produces a large amount of vermiculite at the same time, and a large number of meteorites such as the rising well are discharged, which increases the cost of the increase, and faces the problem of occupying a large area of land and environmental pollution.
  • the coal quality is poor. If it is not effectively cleaned and used, it is difficult to obtain better economic benefits.
  • the problem of surface subsidence is becoming more and more serious.
  • the existing sub-sorting and washing process steps are mostly completed on the well, and the filling materials are mostly transported to the well for filling in the well, and the upgrade of the meteorite and the filling of the filling material greatly increase the lifting cost.
  • Patented a downhole vermiculite sorting filling system and method proposes a downhole vermiculite sorting filling system and method, which only relates to the introduction of a downhole vermiculite sorting equipment system, and does not propose a set of scientific and efficient points. Selection criteria and methods; patent tank selection process Coal mine drainage system (ZL201310444002.5) only proposes a downhole tank selection process system, which does not propose innovations for vermiculite sorting standards and green utilization methods; patent a high sulfur power raw coal The sorting process (ZL201110430489.2) sorts the characteristics of high-sulfur coal. The sorting standards and procedures are only applicable to high-sulfur raw coal with less strontium.
  • the object of the present invention is to provide a simple and low-cost method, which can effectively solve the problem of coal and rock mining with the problems of meteorite lifting and ground accumulation, coal quality reduction and surface subsidence caused by multi-coal joint mining and ultra-thin protective layer mining.
  • Surface coal separation and utilization methods through the establishment of sub-column and washing system in the underground, the scientific separation of coal and rock is realized, and the green and efficient utilization of coal and rock is realized respectively through the corresponding transportation system of the mine.
  • the coal rock mining and mining face of the present invention has the following steps:
  • the thin protective layer When the thin protective layer is mined, the protected layer is waiting to be mined as the coal seam to be mined, and the thin coal seam with the coal seam and the mining face is transported to the sub-division and washing chamber;
  • the large particles of 100 mm are sieves, the small particles with a particle diameter of 13 mm or less are undersize, and the medium particles with a particle diameter of more than 13 mm and less than 100 mm are sieves;
  • the sieved material mixed with coal and rock is transported to the downhole washing system by a belt conveyor.
  • the underground washing system selects the rock with higher density and the coal with lower density.
  • the smaller density coal is directly transported by the belt conveyor.
  • Transported to the underground coal bunker, the larger density of rock is sent to the underground crushing system for centralized crushing;
  • the meteorite in the underground shale warehouse is transported to the covered goaf through the filling transport lane and the drainage roadway to carry out the meteorite backfilling to realize the filling and mining of the underground protected layer;
  • the mine transports the transportation system and the transporter to the meteorite power plant on the ground to realize high-efficiency power generation of the meteorite power plant.
  • the boundary value of the washing density of the mixture of coal and rock is set by the power requirement of the power plant, and the ash content of the washing density is not more than 60%.
  • the boundary value of the boundary value of the washing density is determined to be 1.9g/cm. 3 .
  • the present invention is directed to the problem of sorting and utilizing coal and rock in the same thin coal seam coal mining face in the multi-coal mining background. After a large amount of coal gangue is produced in the coal rock working face, the coal gangue is transported to the underground well. The high-efficiency separation of coal gangue is carried out by washing the chamber, and a set of scientific and systematic coal and rock sorting standards are proposed according to the characteristics and particle size distribution range of a large amount of coal-rock mixture collected from the thin protective layer coal rock and mining face.
  • the selected rock is crushed and used to fill the corresponding protected layer goaf, and the sorted vermiculite is crushed and directly filled into the corresponding protected layer goaf, in the meteorite
  • the well is filled and protected by the protective layer, which effectively prevents the surface settlement caused by the joint mining of multiple coal seams.
  • the selected coal is transported to the surface meteorite power plant by the main transportation system for power generation, and the coal after the separation and washing is The purity has been greatly improved, and the high-efficiency power generation of the power plant has been realized, which has improved the economic benefits of the coal mine.
  • the failure of the meteorite does not raise the problem of the accumulation of the surface meteorite mountain, and reduces the cost of mine lifting; the filling of the goaf by the protective layer reduces the mining damage and effectively prevents the surface settlement; the high-purity coal after the separation and washing is used for high-efficiency power generation.
  • the efficient use of coal realizes the high-efficiency utilization of coal and rock respectively while realizing the high-efficiency separation of coal gangue, and can produce significant economic and social benefits, and has excellent promotion value.
  • Figure 1 is a schematic flow diagram of the process of the present invention.
  • the coal rock mining and mining face coal rock sorting and utilization method of the invention comprises the following steps:
  • the thin protective layer When the thin protective layer is mined, the protected layer is waiting to be mined as the coal seam to be mined, and the thin coal seam with the coal seam and the mining face is transported to the sub-division and washing chamber;
  • Multi-stage sorting of meteorites in a multi-stage gingival roller screen set in a separate and washing chamber After sorting, large particles with a particle size of 100 mm or more are sieved, and the particle size is less than or equal to 13 mm. The small particles are sieves, and the medium particles having a particle diameter of more than 13 mm and less than 100 mm are sieve materials;
  • the sieved material mixed with coal and rock is transported to the downhole washing system by a belt conveyor.
  • the underground washing system selects the rock with higher density and the coal with lower density.
  • the smaller density coal is directly transported by the belt conveyor.
  • Transported to the underground coal bunker the larger density of rock is sent to the underground crushing system for centralized crushing; the boundary value of the washing density of the mixed mesh of the coal and rock is set by the power requirement of the power plant, and is selected by washing.
  • the coal ash is not more than 60%, and the boundary value of the washing density boundary value is determined to be 1.9 g/cm 3 .
  • the meteorite in the underground shale warehouse is transported to the covered goaf through the filling transport lane and the drainage roadway to carry out the meteorite backfilling to realize the filling and mining of the underground protected layer;
  • the mine transports the transportation system and the transporter to the meteorite power plant on the ground to realize high-efficiency power generation of the meteorite power plant.
  • Coal rock mining and mining face mining and utilization method First, for a coal seam group, there is a thin coal seam in the upper part of the main mining seam, and the thin coal seam is used as the protective layer of the main coal seam for mining, because the average thickness of the thin coal seam is only It is 0.5m and the planned mining height is 1.8m. Therefore, the problem caused by the exploitation of the protective layer is that a large amount of meteorites are produced. It is estimated that the amount of meteorites collected from the mining face accounts for 72.2% of the total coal gangue. It is necessary to "two sides" (two protective layers and a working face), and the calculated daily discharge volume can reach 1600m3 (including coal). The production of a large number of meteorites causes the coal quality of the mine to decline.
  • the >50mm grain size accounts for 36.17%.
  • the protective layer working surface >50mm grain size accounts for more than 40%.
  • the commercial coal ash will increase by 14 percentage points to 39%.
  • the price difference is calculated at 10-15 yuan/ton, plus an ultra-grey fine.
  • the price per ton is reduced by 139 to 250 yuan, and the annual output is calculated at 1.3 million tons, which will cost 1800 to 32.5 million yuan per year. Therefore, a scientific method of coal and rock sorting and utilization is needed to carry out high-efficiency sorting and green utilization of coal rock. While the mine is safely green mining, the economic benefits of the coal mine have also been improved.
  • a meteorite transport, storage and filling system has to be established underground, and the meteorites are processed and utilized scientifically and efficiently.
  • the meteorites collected from the coal mining face and the mining face are transported to the sub-division and washing chambers through special transport lanes; the meteorites are divided and washed in the chamber.
  • the multi-stage gingival roller screen is subjected to multi-stage sorting. According to the coal gangue particle size distribution of Table 1, the upper and lower scales of the sorting are set to 100 mm and 13 mm, respectively, to achieve efficient separation and full utilization of coal gangue.
  • the particle size is greater than or equal to 100mm for the sieve, the particle size is less than or equal to 13mm for the sieve, the particle size is greater than 13mm and less than 100mm for the sieve;
  • the sieve (the main component is coal and small particle meteorite) It is transported to the coal bunker by tape; the sieve material (mainly large-scale rock) is transported to the crushing system for centralized crushing; the sieve medium (coal and rock mixture) is transported to the washing system, and the washing system adopts heavy medium.
  • the separation density is determined to be 1.9g/cm3, and the high density rock and small density coal are selected.
  • the powder is directly transported by tape to the coal bunker, and the rock enters the crushing system for centralized crushing; after the selected rock of the sieved rock and the sieved material enters the crushing system, the crushing is performed into a particle size of 25 mm or less.
  • the small-grained rock is transported to the gangue silo by tape.
  • the target particle size range is determined to be less than or equal to 25mm as the filling. It is reserved for storage; while the thin protective layer is mined, it is effectively relieved by the protective layer.
  • the gas content of the protected layer is reduced, the risk is reduced, and the protected layer is safely mined.
  • the meteorites in the stone warehouse are transported to the covered goaf through the filling transport lanes and the drainage roads to carry out the backfilling of the meteorites, so as to realize the filling and mining of the protected layer, so that the thin protective layer is created for the protected layer after mining.
  • the safety recovery conditions at the same time, the produced coal slag is directly filled into the mined area of the protected layer after being separated, washed and crushed, which realizes that the meteorite does not raise the well, saves the cost of the commission, and solves the large-scale land and environmental pollution occupied by the waste rock mountain.
  • the problem has reduced mining damage and achieved coordinated green and safe mining of multiple coal seams.
  • the sorted coal under the sieve and the coal selected from the sieve enter the coal bunker, it is transported to the meteorite power plant on the ground through the main transportation system of the mine to realize high-efficiency power generation of the waste rock power plant.
  • the thin protective layer of coal after sieving the particle size of less than 20mm, the yield of 58.89%, the ash content of 62.96%, the calorific value of 2000 ⁇ 2500kcal / kg, and then incorporated into the partially washed coal will meet
  • the calorific power of the Lanshi Power Plant (2700-3000kcal/kg of Lanshi Power Plant and particle size less than 20mm) is required for coal use.
  • the waste rock If the waste rock is directly used as a raw material by the three-level protective layer, the waste rock will save a lot of coal purchase cost every year.
  • the wastestone power plant consumes a large amount of medium coal every year, which will slow down the coal quality pressure and reduce the average ash content of commercial coal by 3 to 4 percentage points.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Processing Of Solid Wastes (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

公开了一种煤岩同采工作面的煤岩分选与利用方法,尤其适用于多煤层联合开采,极薄煤层作为保护层时,煤岩同采工作面所采出煤岩的分选和利用。直接在井下建立井下矸石转运、储存与充填系统,将煤岩工作面采出大量煤矸运送至井下分、洗选硐室进行煤矸的高效分离,将分选出的矸石进行破碎后充填至被保护层采空区,在矸石不升井的同时实现被保护层绿色充填开采,有效防止了多煤层联合开采引发的地表沉降;分选出的中煤经主运输系统运输至地面矸石电厂进行发电,在电厂创造效益的同时减缓了矿井煤质压力,使商品煤平均灰分下降,售价上升。在实现煤矸高效分离的同时,实现了煤和岩石的高效利用。

Description

一种煤岩同采工作面的煤岩分选与利用方法 技术领域
本发明涉及一种煤岩同采工作面煤岩分选与利用方法,尤其适用于多煤层联合开采极薄煤层作为保护层时煤岩同采工作面所采出煤岩的分选与利用。
背景技术
对于煤层群而言,最有效的卸压增透,抽采瓦斯方法首选开采保护层,这也是《防治煤与瓦斯突出规定》中优先采用的煤层卸压抽采瓦斯方法。但是对于很多煤层群而言,由于煤层间隔距离大或煤层薄厚分布不均、极化严重而不具备良好的保护层开采条件,因此不得不把一些厚度小于1.3m极薄煤层作为保护层进行开采,以实现待采被保护层的充分卸压。薄保护层开采时由于煤层较薄,煤岩同采时产生大量矸石,大量的矸石如升井排放堆积,其提升费用增长,同时将面临占用大面积土地和环境污染的问题;同时采出煤岩煤质较差,如不进行有效的洗选利用难以获得较好的经济效益,加之由于多煤层联合开采,引发地表沉陷问题日趋严重。现有的分、洗选工艺步骤多在井上完成,且充填材料则多为井上配置运送到井下进行充填,矸石提升和充填材料的下送大大增加了提升费用。专利一种井下矸石分选充填系统及方法(ZL201010506018.0)提出一种井下矸石分选充填系统及方法,该方法只涉及井下矸石分选设备系统的介绍,并未提出一套科学高效的分选标准和方法;专利槽选工艺煤矿井下排矸系统(ZL201310444002.5)仅提出一种井下槽选工艺系统,并未对矸石分选标准、绿色利用方法提出创新;专利一种高硫动力原煤分选工艺(ZL201110430489.2)针对高硫煤的特点进行分选,其分选标准和流程仅适用于含矸量较少的高硫原煤,对于薄煤层开采煤岩同采工作面采出的大量煤岩混合物的分选并不适用。因此如何实现多煤层联合开采条件下煤岩同采工作面煤岩的科学高效的分、洗选,并使分选出的煤和岩石绿色高效利用,在保证实施保护层安全开采的同时,实现矸石不升井、煤炭高效利用和采动低损害成为迫切需要解决的问题。
发明内容
本发明的目的是提供一种方法简单、成本低、能有效解决多煤层联合开采及极薄保护层开采带来的矸石提升及地面堆积、煤质降低和地表沉陷等问题的煤岩同采工作面煤岩分选和利用方法;通过在井下建立分、洗选系统,实现煤岩的科学分离,并经过矿井相应的运输系统,分别实现煤和岩石的绿色高效利用。
为实现上述目的,本发明的煤岩同采工作面煤岩分选和利用方法,包括如下步骤:
a.薄保护层开采时,被保护层作为待采煤层等待被开采,薄保护层煤岩同采工作面采出的矸石经运矸巷运送至分、洗选硐室;
b.将矸石经设在分、洗选硐室内的多级齿锟式滚轴筛进行多级分选,分选后粒径大于等 于100mm的大颗粒为筛上物,粒径小于等于13mm的小颗粒为筛下物,粒径大于13mm小于100mm的中等颗粒为筛中物;
c.将主要成分为煤及小颗粒矸石的筛下物用胶带运输机运送至井下中煤仓储存;
d.将主要成分为大块度岩石的筛上物用胶带运输机运送至设在井下的破碎系统进行集中破碎;
e.将煤和岩石混合的筛中物用胶带运输机运送至井下洗选系统,井下洗选系统选出密度较大的岩石和密度较小的煤块,较小密度的煤块直接经胶带运输机运送至井下中煤仓,较大密度的岩石送入井下破碎系统进行集中破碎;
f.经分选出的筛上物岩石和筛中物洗选出的岩石进入破碎系统后,集中破碎至粒度小于等于25mm的小颗粒岩石,经胶带运输机全部运输至井下矸石仓备用;
g.当被保护层进行回采时,将井下矸石仓内的矸石经充填运输巷及排矸巷运送至被保护层采空区进行矸石回填,实现井下被保护层的充填开采;
h.经分选出的筛下物煤和筛中物洗选出的煤进入井下中煤仓后,经矿井提升运输系统与运输机运送至地面的矸石发电厂,实现矸石电厂高效发电。
煤和岩石混合的筛中物洗选密度分界值由电厂要求煤质需要设定,按洗选出煤块灰分不超过60%计算,确定洗选密度分界值大小的分界值为1.9g/cm3
有益效果:本发明针对多煤层开采背景下极薄煤层煤岩同采工作面采出煤岩分选和利用难题,在煤岩工作面采出大量煤矸后,将煤矸运送至井下分、洗选硐室进行煤矸的高效分离,根据薄保护层煤岩同采工作面采出大量煤岩混合物的特点和粒径分布范围,提出一套科学、系统的煤岩分选标准,结合多煤层联合开采的特点,分选出的岩石经破碎后用于对相应被保护层采空区的充填,将分选出的矸石进行破碎后直接充填至相应被保护层采空区,在矸石不升井的同时实现被保护层充填开采,有效防止了多煤层联合开采引发的地表沉降,同时分选出的煤经主运输系统运输至地面矸石电厂进行发电,经分、洗选后的煤,其纯度有了较大的提高,实现了电厂的高效发电,提高了煤矿的经济效益。矸石不升井解决了地面矸石山堆积问题,降低了矿井提升成本;被保护层采空区充填降低了采动损害,有效防止了地表沉降;分、洗选后高纯度的煤进行高效发电,实现了煤的高效利用。本发明在实现煤矸高效分离的同时,分别实现了煤和岩石的绿色高效利用,可产生显著的经济效益和社会效益,具有极好的推广价值。
附图说明
图1是本发明的方法流程示意图。
具体实施方式
下面结合附图中的实施例对本发明作进一步的描述:
本发明的煤岩同采工作面煤岩分选和利用方法,包括如下步骤:
a.薄保护层开采时,被保护层作为待采煤层等待被开采,薄保护层煤岩同采工作面采出的矸石经运矸巷运送至分、洗选硐室;
b.将矸石经设在分、洗选硐室内的多级齿锟式滚轴筛进行多级分选,分选后粒径大于等于100mm的大颗粒为筛上物,粒径小于等于13mm的小颗粒为筛下物,粒径大于13mm小于100mm的中等颗粒为筛中物;
c.将主要成分为煤及小颗粒矸石的筛下物用胶带运输机运送至井下中煤仓储存;
d.将主要成分为大块度岩石的筛上物用胶带运输机运送至设在井下的破碎系统进行集中破碎;
e.将煤和岩石混合的筛中物用胶带运输机运送至井下洗选系统,井下洗选系统选出密度较大的岩石和密度较小的煤块,较小密度的煤块直接经胶带运输机运送至井下中煤仓,较大密度的岩石送入井下破碎系统进行集中破碎;所述煤和岩石混合的筛中物的洗选密度分界值由电厂要求煤质需要设定,按洗选出煤块灰分不超过60%计算,确定洗选密度分界值大小的分界值为1.9g/cm3
f.经分选出的筛上物岩石和筛中物洗选出的岩石进入破碎系统后,集中破碎至粒度小于等于25mm的小颗粒岩石,经胶带运输机全部运输至井下矸石仓备用;
g.当被保护层进行回采时,将井下矸石仓内的矸石经充填运输巷及排矸巷运送至被保护层采空区进行矸石回填,实现井下被保护层的充填开采;
h.经分选出的筛下物煤和筛中物洗选出的煤进入井下中煤仓后,经矿井提升运输系统与运输机运送至地面的矸石发电厂,实现矸石电厂高效发电。
实施例一、
煤岩同采工作面煤岩分选和利用方法:首先针对一煤层群,主采煤层上部有一薄煤层,将该薄煤层作为主采煤层的保护层进行开采,由于薄煤层平均厚度仅为0.5m,计划采高1.8m,因此,保护层开采带来的问题是产生大量的矸石,据估算采面采出矸石量占煤矸总量的72.2%,按保护层回采工作面正常生产,需“两头一面”(两个保护层掘进工作面和一个回采工作面),经计算日排矸量可达1600m3(含煤量),大量矸石的产生使得矿井煤质下降。对采出矸石可选性和煤质进行调研分析,从表1中可以看出>50mm粒级占36.17%,考虑掘进机切割的因素,预计保护层工作面>50mm粒级占40%以上,具有可选性。通过计算保护层采掘面开采后,商品煤灰分将升高14个百分点,达到39%。售价级差按10~15元/吨计算,再加上超灰罚款。每吨售价减少139~250元,每年产量按130万吨计算,每年将损失1800~3250万元。因此需要一种科学的煤岩分选和利用方法,进行煤岩的高效分选和绿色利用,在实现 矿井安全绿色开采的同时,使得煤矿的经济效益也获得提高。
表1
Figure PCTCN2017089286-appb-000001
因此需在井下建立了矸石转运、储存与充填系统,对采出矸石进行科学高效的处理和利用。薄保护层开采时,采出煤的同时也会采出大量岩石,煤岩同采工作面采出的矸石经专用运输巷运送至分、洗选硐室;矸石经过分、洗选硐室内的多级齿锟式滚轴筛进行多级分选,根据表1的煤矸粒度分布,将分选的上下尺度分别定为100mm和13mm,以实现煤矸的高效分选和全部利用。分选后粒径大于等于100mm的为筛上物,粒径小于等于13mm的为筛下物,粒径大于13mm小于100mm的为筛中物;筛下物(主要成分为煤及小颗粒矸石)经胶带运至中煤仓储存;筛上物(主要为大块度岩石)随即运至破碎系统进行集中破碎;筛中物(煤和岩石混合物)输送至洗选系统,洗选系统采用重介浅槽洗选工艺,为了满足电厂煤质要求,按洗选出煤块灰分不超过60%计算,确定分选分界密度为1.9g/cm3,选出大密度的岩石和小密度的煤,煤粉直接经胶带运输至中煤仓,岩石进入破碎系统进行集中破碎;经分选出的筛上物岩石和筛中物洗选出的岩石进入破碎系统后,进行集中破碎成粒度小于等于25mm的小颗粒岩石,经胶带全部运输至矸石仓,根据研究可知,在实际充填时越小粒径能更快达到沉降的稳定值,根据试验研究,确定了小于等于25mm作为目标粒径范围作为充填材料加以储备;薄保护层开采的同时被保护层得到了有效卸压,通过预抽被保护层瓦斯使得被保护层瓦斯含量降低,危险性减小,被保护层得以安全开采,当被保护层具备回采条件时,矸石仓内的矸石经充填运输巷及排矸巷运送至被保护层采空区进行矸石回填,实现被保护层的充填开采,这样薄保护层开采后为被保护层创造了安全回采条件,同时采出的煤矸经分运、洗选破碎后直接充填至被保护层采空区,实现了矸石不升井,节约了提成成本,解决了矸石山占用大面积土地和环境污染的问题,降低了采动损害,实现了多煤层协同绿色安全开采。经分选出的筛下物煤和筛中物洗选出的煤进入中煤仓后,经矿井主要运输系统运输至地面的矸石发电厂,实现矸石电厂高效发电。通过实验,薄保护层毛煤经过筛分后,粒度小于20mm产率占58.89%,灰分62.96%,发热量2000~2500kcal/kg,再掺入部分洗选后的中煤将满足 矸石电厂发热量(矸石电厂2700~3000kcal/kg,粒度小于20mm)的用煤要求。矸石电厂如果直接用三水平保护层筛分后的中煤作为原料,每年节约大量购煤成本。矸石电厂每年消耗大量中煤,将减缓煤质压力,能使商品煤平均灰分下降3~4个百分点。售价将上升30~40元/吨,全年增效45元×130万=5850万元,薄保护层中煤供应电厂后,创造了巨大的经济价值。

Claims (2)

  1. 一种煤岩同采工作面的煤岩分选与利用方法,其特征在于包括如下步骤:
    a.薄保护层开采时,被保护层作为待采煤层等待被开采,薄保护层煤岩同采工作面采出的矸石经运矸巷运送至分、洗选硐室;
    b.将矸石经设在分、洗选硐室内的多级齿锟式滚轴筛进行多级分选,分选后粒径大于等于100mm的大颗粒为筛上物,粒径小于等于13mm的小颗粒为筛下物,粒径大于13mm小于100mm的中等颗粒为筛中物;
    c.将主要成分为煤及小颗粒矸石的筛下物用胶带运输机运送至井下中煤仓储存;
    d.将主要成分为大块度岩石的筛上物用胶带运输机运送至设在井下的破碎系统进行集中破碎;
    e.将煤和岩石混合的筛中物用胶带运输机运送至井下洗选系统,井下洗选系统选出密度较大的岩石和密度较小的煤块,较小密度的煤块直接经胶带运输机运送至井下中煤仓,较大密度的岩石送入井下破碎系统进行集中破碎;
    f.经分选出的筛上物岩石和筛中物洗选出的岩石进入破碎系统后,集中破碎至粒度小于等于25mm的小颗粒岩石,经胶带运输机全部运输至井下矸石仓备用;
    g.当被保护层进行回采时,将井下矸石仓内的矸石经充填运输巷及排矸巷运送至被保护层采空区进行矸石回填,实现井下被保护层的充填开采;
    h.经分选出的筛下物煤和筛中物洗选出的煤进入井下中煤仓后,经矿井提升运输系统与运输机运送至地面的矸石发电厂,实现矸石电厂高效发电。
  2. 根据权利要求1所述的一种煤岩同采工作面的煤岩分选与利用方法,其特征在于:所述煤和岩石混合的筛中物的洗选密度分界值由电厂要求煤质需要设定,按洗选出煤块灰分不超过60%计算,确定洗选密度分界值大小的分界值为1.9g/cm3
PCT/CN2017/089286 2016-06-24 2017-06-21 一种煤岩同采工作面的煤岩分选与利用方法 WO2017219970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610474111.5 2016-06-24
CN201610474111.5A CN106401586B (zh) 2016-06-24 2016-06-24 一种煤岩同采工作面的煤岩分选与利用方法

Publications (1)

Publication Number Publication Date
WO2017219970A1 true WO2017219970A1 (zh) 2017-12-28

Family

ID=58005872

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/110046 WO2017219624A1 (zh) 2016-06-24 2016-12-15 一种煤岩同采工作面的煤岩分选与利用方法
PCT/CN2017/089286 WO2017219970A1 (zh) 2016-06-24 2017-06-21 一种煤岩同采工作面的煤岩分选与利用方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110046 WO2017219624A1 (zh) 2016-06-24 2016-12-15 一种煤岩同采工作面的煤岩分选与利用方法

Country Status (5)

Country Link
US (1) US10413911B2 (zh)
CN (1) CN106401586B (zh)
AU (1) AU2016401396B2 (zh)
RU (1) RU2684790C1 (zh)
WO (2) WO2017219624A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410141A (zh) * 2019-08-30 2019-11-05 陕西开拓建筑科技有限公司 一种煤矿采空区远距离浆料充填扰动系统及方法
CN113500015A (zh) * 2021-07-08 2021-10-15 湖州霍里思特智能科技有限公司 一种基于分级阵列式智能分选进行矿石预选的方法及系统
CN115259758A (zh) * 2022-07-25 2022-11-01 中国矿业大学 一种毫米级矸石料浆配比优化及制备方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106401586B (zh) * 2016-06-24 2019-02-22 中国矿业大学 一种煤岩同采工作面的煤岩分选与利用方法
CN106761754A (zh) * 2017-03-31 2017-05-31 中国矿业大学 一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法
CN108798630B (zh) * 2018-04-28 2021-09-28 中国矿业大学 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统
CN109046755B (zh) * 2018-09-10 2023-12-26 四川绿矿环保科技有限公司 一种弃矸全量处理利用的生产加工系统及其工艺
CN110954671B (zh) * 2018-09-27 2024-01-26 中国矿业大学(北京) 一种基于应力发光材料的综放开采模拟实验装置及方法
CN109057797A (zh) * 2018-09-30 2018-12-21 中国矿业大学 一种矿山采选充抽开采设计方法
CN109209380B (zh) * 2018-09-30 2020-10-30 中国矿业大学 一种矿山采选充控开采设计方法
CN109488301A (zh) * 2018-09-30 2019-03-19 中国矿业大学 一种矿山采选充处开采方法
CN109209381A (zh) * 2018-09-30 2019-01-15 中国矿业大学 一种矿山采选充留开采方法
CN109209379B (zh) * 2018-09-30 2020-04-24 中国矿业大学 一种矿山采选充+x开采方法
CN109403974A (zh) * 2018-09-30 2019-03-01 中国矿业大学 一种矿山采选卸抽充绿色开采设计方法
CN109372512B (zh) * 2018-11-20 2019-09-24 中国矿业大学 一种煤矸与瓦斯资源化分布式高效利用方法
CN109736809B (zh) * 2019-01-18 2020-07-31 中国矿业大学 一种露天边帮煤采空区气力充填系统及工艺
CN110067535A (zh) * 2019-03-22 2019-07-30 中国石油大学(华东) 一种煤层气井无动力井底碎化煤粉助排装置
CN109931095B (zh) * 2019-04-16 2020-04-24 中国矿业大学 一种煤矸井下分选与就地充填工程设计方法
AU2019449030B2 (en) * 2019-06-05 2022-02-03 China University Of Mining And Technology, Beijing Mining machine applicable to fluidized mining of ore bodies and mining method
CN111515017B (zh) * 2020-04-30 2021-09-14 舒新前 一种煤矸石的分级分质方法
CN111594263A (zh) * 2020-05-14 2020-08-28 山东康格能源科技有限公司 一种干湿结合的矸石充填方法
CN111767642B (zh) * 2020-06-02 2021-02-02 中煤科工开采研究院有限公司 薄松散层采煤沉陷区地基稳定性评价方法及装置
CN111779535A (zh) * 2020-07-15 2020-10-16 中煤天津设计工程有限责任公司 一种井下定向钻孔注浆充填老空区矸石处理技术
CN111861001B (zh) * 2020-07-22 2022-07-01 国家能源集团宁夏煤业有限责任公司 一种确定煤炭分选粒度的技术经济分析方法
CN112145225A (zh) * 2020-09-22 2020-12-29 中煤能源研究院有限责任公司 一种煤矿掘进矸石井下就地制浆回填系统及方法
CN112871401A (zh) * 2021-01-11 2021-06-01 河北工程大学 一种煤矿伴生矿产重力分离筛选系统及方法
CN113217012B (zh) * 2021-05-26 2022-04-12 中国矿业大学 一种井下分选硐室断面优化设计方法
CN113339057A (zh) * 2021-06-24 2021-09-03 中国矿业大学 一种流态化矸石穿层嗣后充填采煤系统及方法
CN113565509B (zh) * 2021-07-05 2023-08-04 太原理工大学 一种基于井下矸石条带的特厚煤层综放充填开采方法
CN114372374B (zh) * 2022-01-13 2023-02-21 西安科技大学 矿区含水层下特厚煤层充填开采及工作面参数确定方法
CN115288638B (zh) * 2022-06-30 2023-05-30 河南理工大学 一种非均匀下沉保护层开采错层工作面调斜瓦斯抽采方法
CN116241326B (zh) * 2022-11-09 2024-04-26 华能煤炭技术研究有限公司 保护层充填开采关键参数设计方法
CN116213261B (zh) * 2023-03-21 2024-03-29 伯特利(山东)工业技术有限公司 一种煤矸石干选充填方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905189A (zh) * 2010-08-19 2010-12-08 刘峰 一种实现原煤井下分选的方法
CN103567056A (zh) * 2012-08-06 2014-02-12 冀中能源股份有限公司 井下跳汰排矸的方法
CN103934080A (zh) * 2014-04-29 2014-07-23 神华集团有限责任公司 直接液化用煤及其制备方法
AU2012255582B2 (en) * 2011-05-17 2015-08-13 Shandong Xinmei Machinery Equipment Co., Ltd Technology and equipment for separating coal and gangue and refilling gangue.
CN105507903A (zh) * 2015-12-15 2016-04-20 中国矿业大学 一种煤岩同采保护层与被保护层协同开采方法
CN106401586A (zh) * 2016-06-24 2017-02-15 中国矿业大学 一种煤岩同采工作面的煤岩分选与利用方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2654477A (en) * 1948-12-31 1953-10-06 Int Minerals & Chem Corp Classification of phosphate ore
US3870627A (en) * 1972-11-27 1975-03-11 John W Herkes Mechanical screening device for machine-harvested sugar cane
HU179378B (en) * 1980-04-15 1982-10-28 Tatabanyai Szenbanyak Method for falling high coal bed
US4592516A (en) * 1983-08-03 1986-06-03 Quadracast, Inc. Coal breaker and sorter
US4891099A (en) * 1988-01-25 1990-01-02 Beloit Corporation Apparatus for secondary fibre processing
SU1603019A1 (ru) * 1988-10-25 1990-10-30 Воркутинское производственное объединение по добыче угля "Воркутауголь" Механизированный комплекс дл селективной выемки угл и породы
RU2011824C1 (ru) * 1991-11-21 1994-04-30 Виктор Леонидович Кшуманев Способ разработки мощных крутых угольных пластов под пожарами на верхнем горизонте
US5975441A (en) * 1997-12-29 1999-11-02 Burkholder; Melvin M. Apparatus for separating rocks from soil
CA2324498A1 (fr) * 2000-10-27 2002-04-27 Frederic Gauvin Tamiseur combine
CA2558059C (en) * 2004-01-30 2010-06-08 Mmd Design & Consultancy Limited Rotating mineral breaker
AU2007216488A1 (en) * 2006-02-16 2007-08-23 Aughey Research And Designs Limited A material screening apparatus
CN101482005B (zh) * 2009-02-02 2011-09-28 河南理工大学 井下毛煤排矸及矿井水处理联合工艺
RU2429347C1 (ru) * 2010-01-29 2011-09-20 Учреждение Российской академии наук Институт угля и углехимии Сибирского отделения РАН (ИУУ СО РАН) Способ селективной выемки угольного пласта
CN101967993B (zh) * 2010-09-30 2012-09-05 江苏中机矿山设备有限公司 一种井下矸石分选充填系统及方法
CN102489391B (zh) 2011-12-20 2013-04-03 重庆南桐矿业有限责任公司南桐选煤厂 一种高硫动力原煤的分选工艺
CN102962122A (zh) * 2012-12-03 2013-03-13 中国矿业大学 一种煤炭直接液化用煤的深度制备工艺
CN103133031B (zh) * 2013-02-28 2015-05-20 中国矿业大学 一种井下煤矸分离输送充填方法及设备
CN103394422A (zh) * 2013-07-31 2013-11-20 神华集团有限责任公司 从原煤中分离煤岩组分的方法
CN103480482B (zh) 2013-09-26 2015-06-17 沈阳科迪通达工程技术有限公司 槽选工艺煤矿井下排矸系统
CN104033153A (zh) * 2014-06-25 2014-09-10 中国矿业大学 一种煤矿井下采选充一体化方法
CN104437879B (zh) * 2014-09-30 2017-06-30 西安科技大学 一种用于煤岩组分分选的改性预处理方法
CN104653182B (zh) * 2014-11-07 2018-08-10 山东科技大学 一种含厚夹矸煤层煤矸分采的采煤方法
CN104373126A (zh) * 2014-12-04 2015-02-25 中国矿业大学 一种钻采法矸石充填方法及设备
CN104492585A (zh) * 2014-12-22 2015-04-08 西安科技大学 一种煤岩组分重液旋流分离的方法
CN104963687B (zh) * 2015-07-09 2017-02-22 太原理工大学 特厚煤层综放开采回收上部残煤并回填采空区的方法
CN105507902B (zh) 2015-12-07 2018-04-03 平顶山天安煤业股份有限公司 煤岩同采工作面分级开采方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905189A (zh) * 2010-08-19 2010-12-08 刘峰 一种实现原煤井下分选的方法
AU2012255582B2 (en) * 2011-05-17 2015-08-13 Shandong Xinmei Machinery Equipment Co., Ltd Technology and equipment for separating coal and gangue and refilling gangue.
CN103567056A (zh) * 2012-08-06 2014-02-12 冀中能源股份有限公司 井下跳汰排矸的方法
CN103934080A (zh) * 2014-04-29 2014-07-23 神华集团有限责任公司 直接液化用煤及其制备方法
CN105507903A (zh) * 2015-12-15 2016-04-20 中国矿业大学 一种煤岩同采保护层与被保护层协同开采方法
CN106401586A (zh) * 2016-06-24 2017-02-15 中国矿业大学 一种煤岩同采工作面的煤岩分选与利用方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410141A (zh) * 2019-08-30 2019-11-05 陕西开拓建筑科技有限公司 一种煤矿采空区远距离浆料充填扰动系统及方法
CN113500015A (zh) * 2021-07-08 2021-10-15 湖州霍里思特智能科技有限公司 一种基于分级阵列式智能分选进行矿石预选的方法及系统
CN115259758A (zh) * 2022-07-25 2022-11-01 中国矿业大学 一种毫米级矸石料浆配比优化及制备方法
CN115259758B (zh) * 2022-07-25 2023-06-23 中国矿业大学 一种毫米级矸石料浆配比优化及制备方法

Also Published As

Publication number Publication date
RU2684790C1 (ru) 2019-04-15
US20180229245A1 (en) 2018-08-16
AU2016401396B2 (en) 2019-08-15
AU2016401396A1 (en) 2018-01-18
WO2017219624A1 (zh) 2017-12-28
CN106401586B (zh) 2019-02-22
CN106401586A (zh) 2017-02-15
US10413911B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2017219970A1 (zh) 一种煤岩同采工作面的煤岩分选与利用方法
CN108246490B (zh) 一种高硅酸铁贫磁铁矿石的提铁降硅选矿方法
CN101482005B (zh) 井下毛煤排矸及矿井水处理联合工艺
CN101513625B (zh) 铁矿尾矿整体利用和处置工艺
CN104033153A (zh) 一种煤矿井下采选充一体化方法
CN103480482B (zh) 槽选工艺煤矿井下排矸系统
CN111111892A (zh) 一种磁铁矿破碎及其废石制备砂石骨料的混合加工工艺
CN105921261B (zh) 一种超低品位钒钛磁铁矿综合利用系统及其利用方法
WO2020062821A1 (zh) 一种矿山采选充+x开采模式
CN105507947B (zh) 一种网络化矸石充填方法
CN111530597A (zh) 一种废弃石灰石环保再利用干法制砂方法
CN109736808B (zh) 一种可不建尾矿库的地下矿山开采工艺
CN105233975A (zh) 一种贫磁铁矿石选矿过程尾矿处理工艺
CN109403974A (zh) 一种矿山采选卸抽充绿色开采设计方法
WO2014023180A1 (zh) 井下跳汰排矸的方法
CN101670310A (zh) 重介浅槽分选井下排矸系统
CN111013698B (zh) 低品位钒钛磁铁矿预处理工艺
CN201500577U (zh) 重介浅槽分选井下排矸系统
CN204746555U (zh) 一种煤矿井下双洗选系统
CN111841846A (zh) 一种高效节水型井下分选预排矸的煤炭资源提质工艺
CN109432878B (zh) 细粒尾矿沉降分级反滤脱水干堆方法
CN112403647B (zh) 一种井下转载点智能干选系统布置方法
CN111878163A (zh) 一种基于井下风力选矸的采、选、充一体化矸石充填系统
CN115445741A (zh) 一种利用岩石废料高收率制备机制砂的方法
CN207430514U (zh) 一种分级式煤矿井下洗选系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814708

Country of ref document: EP

Kind code of ref document: A1