WO2017219863A1 - 电子设备、用于电子设备的方法和信息处理设备 - Google Patents

电子设备、用于电子设备的方法和信息处理设备 Download PDF

Info

Publication number
WO2017219863A1
WO2017219863A1 PCT/CN2017/087416 CN2017087416W WO2017219863A1 WO 2017219863 A1 WO2017219863 A1 WO 2017219863A1 CN 2017087416 W CN2017087416 W CN 2017087416W WO 2017219863 A1 WO2017219863 A1 WO 2017219863A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
network
electronic device
node
condition
Prior art date
Application number
PCT/CN2017/087416
Other languages
English (en)
French (fr)
Inventor
韩迪
白铂
陈巍
郭欣
刘帅
Original Assignee
索尼公司
韩迪
白铂
陈巍
郭欣
刘帅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 韩迪, 白铂, 陈巍, 郭欣, 刘帅 filed Critical 索尼公司
Priority to CN201780018868.6A priority Critical patent/CN108781380A/zh
Priority to US16/309,941 priority patent/US10840988B2/en
Publication of WO2017219863A1 publication Critical patent/WO2017219863A1/zh
Priority to US17/037,721 priority patent/US11387886B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular to relay wireless communications, and more particularly to an electronic device for a network control terminal and a method for the same, an electronic for a network node A device and a method for the electronic device, and an information processing device.
  • the high-frequency millimeter wave band has an extremely rich spectrum of resources, which can effectively meet the above needs of users.
  • the protocols used in current LTE communication systems cannot support millimeter wave communication. Since the millimeter wave propagates in the atmosphere and is greatly attenuated by the absorption of oxygen, water vapor, and rainfall, the effective communication distance from point to point is very short. Although the difficulty of the signal being maliciously eavesdropped and interfered is increased to some extent, the security is improved, but the coverage of the base station device is greatly reduced. When the user equipment is far away from the base station, it cannot communicate directly with the base station, and a relay needs to be set.
  • the relay node In the traditional LTE technology, the relay node is usually an infrastructure that the operator deploys at a specific cell location, which is costly.
  • Proximity-based Service (ProSe) communication ProSe UE-to-Network Relay technology has emerged.
  • user equipment usually only supports one-to-one relay. .
  • wireless communication resources are becoming more and more tense. How to further rationalize resource reuse has become one of the focuses of the development of next-generation communication technologies.
  • an electronic device for a network control terminal comprising: a processing circuit configured to: set a first condition regarding a beamforming capability of a network node, to determine a network node of the relay node; and control signaling for generating the indication information including the first condition for indicating the network node served by the network control terminal.
  • an electronic device for a network node comprising: processing circuitry configured to: determine a first condition regarding beamforming capabilities of a network node based on control signaling from a network control end And determining whether the network node is to work as a relay node according to the first condition.
  • a method for an electronic device of a network control terminal comprising: setting a first condition regarding a beamforming capability of a network node to determine a network node capable of acting as a relay node; Generating control signaling including the indication information of the first condition for indicating the network node served by the network controller.
  • a method for an electronic device of a network node comprising: determining a first condition regarding a beamforming capability of a network node based on control signaling from a network control terminal; Determine if this network node is working as a relay node.
  • the electronic device and method according to an embodiment of the present application can expand the communication range, improve the communication quality, and improve the spectrum resource utilization efficiency by determining the relay node based on the beamforming capability of the network node.
  • FIG. 1 is a functional block diagram showing an electronic device for a network console according to an embodiment of the present application
  • FIG. 2 is a schematic diagram showing the structure of a prior art base station
  • FIG. 3 is a schematic diagram showing the structure of a prior art single antenna user equipment terminal
  • FIG. 4 is a schematic diagram showing the structure of a multi-antenna user equipment terminal of the prior art
  • FIG. 5 is a schematic diagram showing the hardware of the transceiver end of a network node equipped with multiple antennas
  • FIG. 6 is a block diagram showing the structure of a SystemInformationBlockType19 cell based on system information of an improved LTE protocol according to an embodiment of the present application;
  • FIG. 7 is a schematic diagram showing the structure of a commTxResourceInfoReqRelay cell based on an improved LTE protocol according to an embodiment of the present application.
  • FIG. 8 is a functional block diagram showing an information processing device according to an embodiment of the present application.
  • FIG. 9 is a functional block diagram showing an electronic device for a network node in accordance with one embodiment of the present application.
  • Figure 10 shows a schematic diagram of an actual scenario of a cluster of nodes
  • FIG. 11 shows an example of an interference map corresponding to the node cluster of FIG. 10
  • FIG. 12 is a functional block diagram showing an information processing device according to another embodiment of the present application.
  • FIG. 13 is a diagram showing an electronic device for a network control terminal according to an embodiment of the present application. Flow chart of the method of the device;
  • FIG. 14 is a flowchart illustrating a method for an electronic device of a network control terminal according to another embodiment of the present application.
  • FIG. 15 is a flowchart illustrating a method for an electronic device of a network control terminal according to another embodiment of the present application.
  • 16 is a flow chart showing a method for an electronic device of a network node in accordance with one embodiment of the present application
  • Figure 17 shows a first exemplary information flow between a network control end and a network node
  • Figure 18 shows a second exemplary information flow between the network control end and the network node
  • Figure 19 shows a third exemplary information flow between the network control end and the network node
  • Figure 20 illustrates a variation of the third exemplary information flow
  • Figure 21 shows a fourth exemplary information flow between the network control end and the network node
  • Figure 22 illustrates a variation of the fourth exemplary information flow
  • FIG. 23 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 24 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 25 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • 26 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • FIG. 27 is a block diagram of an exemplary structure of a general purpose personal computer in which a method and/or apparatus and/or system in accordance with an embodiment of the present invention may be implemented.
  • the electronic device 100 includes a setting unit 101 configured to set a first beamforming capability with respect to a network node. a condition for determining a network node capable of acting as a relay node; and a generating unit 102 configured to generate a control instruction including the indication information of the first condition for indicating the network node served by the network control terminal.
  • the setting unit 101 and the generating unit 102 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the network control terminal refers to an entity in the communication system for implementing functions such as setting, control, and communication resource allocation of communication activities, such as a base station in a cellular communication system, and a C-RAN (Cloud-RAN/Centralized-RAN) structure.
  • a baseband cloud device (which may not have a cell concept), such as any BBU in a BBU pool that is in high-speed communication with each other under the C-RAN architecture.
  • a network node refers to an entity in a communication system that uses communication resources to achieve its communication purposes, such as various user equipment (such as mobile terminals with cellular communication capabilities, smart vehicles, smart wearable devices, etc.) or network infrastructure such as small cell base stations. Wait.
  • the indirect communication between the edge network node and the network control end can be implemented by setting the relay node, that is, in the downlink, the network control end sends the information to the relay node, and then the relay node passes, for example, Decode forward or enlarge Forwarding the information to the edge network node (uplink uses a similar approach).
  • the network node can also be equipped with multiple antennas in a limited deployment space, so that the network node has beamforming capability.
  • Beamforming can include both digital beamforming and analog beamforming architectures.
  • digital beamforming can be realized by digital precoding, each antenna is connected to one radio frequency link, and the amplitude of the transmitted signal on each radio link is adjustable to reduce multi-channel data carried on the same transmission resource. Signal interference with each other.
  • Fig. 2 shows the structure of a prior art base station. As shown in the figure, in the digital precoding architecture, the base station is equipped with M antennas (M is an integer and M ⁇ 1), and each antenna is arranged with a corresponding radio frequency link.
  • the digital precoder obtains a K-way data stream (K is an integer and K ⁇ 1) under the control of the controller, and digitally pre-codes the K-channel data stream (for example, causing the K-way data to flow through a size of M ⁇ K Digital precoding matrix B).
  • the encoded data is transmitted to one or more users via a radio frequency link and an antenna.
  • the user equipment end can be configured with a single antenna or multiple antennas, as shown in Figure 3 and Figure 4, respectively. In the case of a single antenna, the user equipment can only receive one data stream in the K way data stream. In the case where the user equipment is configured with N antennas (N is an integer and N>1), each antenna transmits the received data to the digital precoder through a corresponding radio frequency link.
  • W digital precoding matrix
  • beamforming capabilities are also referred to as antenna orientation capabilities, ie, the ability to transmit beams in a particular direction.
  • antenna orientation capabilities ie, the ability to transmit beams in a particular direction.
  • an RF beam link is connected to a plurality of phase shifters and antennas to form a beam with directivity using as few as one RF link, thereby implementing an analog beamforming scheme.
  • a network node having beamforming capability operates as a relay node, one-to-many relay can be realized.
  • beamforming interference can be effectively alleviated or avoided, and the communication quality of the communication link can be improved.
  • the network node can also communicate with the network control end by using beamforming to enable the node and other relay nodes or common network nodes. Multiplexed spectrum resources and networks The control end communicates (equivalent to performing beamforming on the backhaul link of the ProSe communication), thereby improving spectrum utilization.
  • FIG. 5 is a schematic diagram showing the hardware of the transceiver end of a network node (such as a user equipment) equipped with multiple antennas, wherein the left side is a relay node, and the right side is a slave station that communicates with a network control end (such as a base station) through a relay node.
  • Network node such as a user equipment
  • the left side is a relay node
  • the right side is a slave station that communicates with a network control end (such as a base station) through a relay node.
  • Network node It can be seen that one RF link connects multiple antennas, each antenna has a phase shifter and forms a directional beam by adjusting the phase shifters of the respective antennas. Accordingly, the receiver adjusts the antenna to the corresponding direction by adjusting the phase shifter. To receive the signal.
  • the description of the multi-antenna here is exemplified by the millimeter wave band, but is not limited thereto, and can be applied to other bands such as a microwave band or a band shorter than a millimeter wave wavelength.
  • a network node having beamforming capability can be selected as a relay node to perform one-to-many relay, for example, ensuring each side Under the premise of the quality of the link (Sidelink), the space division multiplexing of the spectrum resources is realized, thereby improving the utilization efficiency of the spectrum resources and increasing the system capacity.
  • Sidelink Quality of the link
  • the first condition may include a threshold of the number of directional beams that can be formed and/or a threshold of an angular range of the directional beam.
  • the setting of the first condition is not limited thereto, and for example, it may be set only to have beam forming ability.
  • the first condition may include not only the specification of the beamforming capability of the network node capable of operating as a relay node, but also the specification of the beamforming capability of the network node capable of operating as a relay node from the network node
  • the slave network node is a network node that communicates with the network control terminal through the relay node.
  • the relay node is also referred to as a primary network node
  • the network node in which the access relay node performs indirect communication with the network control terminal is referred to as a secondary network node.
  • the network node that does not satisfy the requirements of the two aspects of the first condition will directly communicate with the network control terminal as a normal node.
  • the setting unit 101 may further set a second condition regarding the link quality of the network node for determining a network node capable of acting as a relay node, and accordingly, the generating unit 102 also generates control of the indication information including the second condition. instruction.
  • the setting of the second condition helps to ensure that the communication quality of the selected relay node meets certain requirements.
  • the second condition is a threshold of link quality, for example, a network node that can be set to only link quality better than a certain threshold can be determined as a relay node, so that it can be ensured Following the stability of the node work.
  • the link quality may be represented by Reference Signal Receiving Power (RSRP) or Reference Signal Receiving Quality (RSRQ).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the link quality can also be expressed in terms of the upper channel capacity under the unit bandwidth.
  • the setting unit 101 may set the second condition according to one or more of the following: a distribution density of the network node, a coverage of the network control end, and a target transmission rate of the network node.
  • a distribution density of the network node when the distribution density of the network node is high, it means that the number of network nodes that the relay node carries on average is large. Therefore, the link quality of the relay node itself is required to be good, and a higher link quality threshold needs to be set.
  • the coverage is large, the range of services to be relayed by the relay node is correspondingly large, so it is also necessary to set a higher link quality threshold.
  • the target transmission rate of the network node when the target transmission rate of the network node is high, it means the load of the relay node. Will increase, so you need to set a higher link quality threshold.
  • the second condition may include not only the specification of the link quality of the network node capable of operating as a relay node, but also the specification of the link quality capable of acting as a network node operating from the network node.
  • a network node that does not satisfy the requirements of the two aspects of the second condition will directly communicate with the network control terminal as a normal node.
  • the second condition is a threshold of link quality
  • a first threshold that can be satisfied as a relay node can be set and a second threshold that can be satisfied as a working from the network node can be set, for example, can be set
  • a network node whose link quality is higher than the first threshold can serve as a relay node, and a network node whose link quality is lower than the second threshold can function as a secondary network node.
  • the setting unit 101 may set respective weights for the first condition and the second condition, respectively, and the generating unit 102 generates control signaling including information of the weight.
  • the weight indicates the proportion of the decisive role played by the first condition or the second condition when determining the network node as the relay node.
  • the setting unit 101 can determine the weight according to the spectrum resource state of the system and/or the interference condition. For example, when the spectrum resources of the system are tight, the system prefers to make full use of the spectrum resources. At this time, the spatial multiplexing capability of the spectrum resources brought by the beamforming capability of the network node will be more attractive, so the setting unit 101 is The first condition sets a higher weight, that is, gives a higher weight to a network node having a beamforming capability or a beamforming capability. On the contrary, when the spectrum resources are relatively abundant, the setting unit 101 will set the first condition to be lower. Weight, that is, more consideration of the link quality of the network node. It should be understood that the network control terminal can easily know the current spectrum resource status of the system.
  • the network control end can determine whether the spectrum resources are sufficient according to the distribution density of the current network node. On the other hand, for example, when the interference in the system is severe, it is desirable to mitigate interference by spatial multiplexing of spectrum resources, so the setting unit 101 sets a higher weight for the first condition.
  • a network node with beamforming capability may or may not turn on beamforming.
  • a network node in millimeter wave communication, a network node has the ability to use a directional antenna and an omnidirectional antenna, and it is possible to determine whether or not to turn on the directional antenna function. Therefore, the setting unit 101 can also set an additional condition indicating that the first condition is applied. In other words, additional conditions need to be met when the network node applies the first conditionally related beamforming function.
  • the additional condition may relate to one or more of the following: the network node with beamforming capability agrees to turn on the beamforming function; the power of the network node with beamforming capability is above a predetermined threshold; the system spectrum resource is not Sufficient; turning on beamforming can reduce overall system interference.
  • the network control terminal can determine whether it is necessary to enable the beamforming function according to information such as network node density, communication rate requirement, system available spectrum resources, and system interference status. For example, when the system spectrum resource is insufficient, or when the beamforming function is enabled to reduce the overall system interference, it is determined that it is necessary to turn on the beamforming function.
  • the setting unit 101 may be further configured to allocate a resource pool to the relay node, and the generating unit 102 includes the indication information of the resource pool in the control signaling.
  • the setting unit 101 pre-allocates the spectrum resource to the network node that operates as the relay node while setting the selection condition of the relay node. After determining that the network node is to act as a relay node, it can directly use the spectrum resources in the resource pool for relay communication without further intervention by the network terminal.
  • control signaling described herein is implemented as a signaling in some examples, In other examples, multiple pieces of signaling may be included and sent by the network control end, for example, control signaling regarding the first condition, control signaling regarding the second condition, and control signaling regarding the resource pool may be separately transmitted. Of course, this is only an example, and the manner in which control signaling is sent is not limited.
  • the control signaling may be broadcast signaling. Specifically, the network control end sends the foregoing control signaling to all network nodes in its coverage through a broadcast channel.
  • the indication information of the control signaling may be included in the system information improved based on the LTE protocol, for example, may be implemented as a SystemInformationBlockType18 or a SystemInformationBlockType19 cell.
  • the SystemInformationBlockType19 cell contains an uplink quality condition as a relay user equipment (UE) and an uplink quality condition as a relayed remote UE.
  • UE relay user equipment
  • the discBeamsThreshLoRelayUE-r13+n is added, where r13+n indicates the version number, which can be appropriately modified to the version of the actual protocol used.
  • the discBeamsThreshLoRelayUE indicates the threshold of the number of directional beams that can be formed, which is 1 ⁇ n, as shown in Figure 6.
  • the control signaling may also be dedicated signaling.
  • the setting unit 101 does not pre-allocate a resource pool, but allocates a spectrum resource thereto based on configuration information from a primary network node, wherein the primary network node determines a network node as a relay node.
  • the configuration information includes packet information of the slave network node to be served by the primary network node, wherein interference of the same group of slave nodes using the same time-frequency resource for data transmission in the case of beamforming is lower than a predetermined degree.
  • the primary network node can use the same time-frequency resource to transmit data to the same group of slave nodes through space division multiplexing while keeping the interference within the desired range.
  • the network node autonomously determines whether it is to work as a relay node, and when it is determined to work as a relay node, it becomes the primary network.
  • the setting unit 101 is capable of allocating spectrum resources to the primary network node according to the status of the packet. It should be understood that the allocated spectrum resources may include both the spectrum resources to be used for relay communication between the primary network node and the secondary network node and the spectrum resources to be used for communication between the primary network node and the network control terminal. Alternatively, the same spectrum resource can be used for both aspects of communication.
  • the primary network node and all its secondary network nodes are also referred to hereinafter as a cluster of nodes.
  • the setting unit 101 can also try to be an adjacent node cluster when allocating spectrum resources for a plurality of node clusters. Different resource blocks are allocated to reduce interference between clusters.
  • the foregoing configuration information may be a Sidelink UEInformation message obtained based on the LTE protocol, and may specifically be a commTxResourceInfoReqRelay cell.
  • the present application adds a commTxResourceReqRelay, which is used to indicate the multicast destination identifier of the relay communication transmission for which the spectrum resource is to be allocated, that is, the slave network in the node cluster.
  • the identifier of the node, the value is SL-CommTxResourceReqMC, and the destination information ListMC is included in the SL-CommTxResourceReqMC, which is used to indicate the address of the multicast, and the value is SL-DestinationInfoListMC, as shown in FIG.
  • the configuration information may further include information about whether the primary network node turns on beamforming.
  • the information may be indicated by adding a BF-Type (valued on or off) to the commTxResourceInfoReqRelay cell, as shown in FIG.
  • the network control terminal determines whether the primary network node turns on the beamforming function based on the packet information or the like. For example, the network control end can analyze whether the main network node can significantly reduce the interference when the beamforming is started according to the system information and the grouping information. If the interference can be significantly reduced, the beamforming function is determined to be turned on. In this case, the network console can make decisions based on the spectrum resource usage and/or interference status of the entire system, which helps to improve overall performance.
  • the network node autonomously decides whether to become a relay node and does not require confirmation by the network console.
  • the setting unit 101 may also be configured to select a network node to be a relay node as a primary network node based on an application from a network node, and the generating unit 102 accordingly generates a notification for the primary network node.
  • the information of the beamforming capabilities of the respective network nodes can also be included in the application.
  • the corresponding primary network node may allow access from the network node as described above and perform grouping.
  • the notification may further include a spectrum resource allocated to the primary network node. If the notification includes the spectrum resource, the primary network node does not subsequently need to send configuration information to the network control terminal. Alternatively, after the primary network node sends configuration information (including packet information) to the network control end, the network control end allocates spectrum resources for the relay communication to be performed by the primary network node.
  • Whether the primary network node needs to enable the beamforming function may be determined by the network control terminal or by the primary network node itself.
  • the indication about whether the primary network node needs to enable the beamforming function may be included in the foregoing notification, or may be sent when the network control terminal allocates spectrum resources to the primary network node according to the configuration information.
  • it may be determined before the grouping is performed or after the grouping is performed, and the result of the determination is included in the configuration information as necessary to be provided to the network controller.
  • the communication between the network control end and the primary network node may utilize the microwave frequency band or the millimeter wave frequency band
  • the communication between the primary network node and the secondary network node may also utilize the microwave frequency band or the millimeter wave frequency band. It can be combined arbitrarily without limitation.
  • the electronic device 100 implements a first condition regarding beamforming capability, so that a network node having beamforming capability is used as a relay node to implement spatial division multiplexing of spectrum resources, thereby implementing, for example, one-to-many Relaying improves the utilization efficiency of spectrum resources and improves system capacity and communication quality.
  • the information processing device 200 including: a setting unit 101 configured to set a first condition regarding a beamforming capability of a network node, Determining a network node capable of acting as a relay node; generating unit 102 configured to generate control signaling including indication information of the first condition for indicating a network node served by the network control terminal; and transceiver unit 201, It is configured to send control signaling to the network node.
  • the setting unit 101 and the transceiving unit 201 have the same functions and structures as those of the setting unit 101 and the transceiving unit 201 described with reference to FIG. 1 in the first embodiment, and a related description thereof has been given in the first embodiment, The same applies in this embodiment, and details are not described herein again.
  • the transceiving unit 201 is further configured to receive configuration information from the primary network node such that the processing circuit allocates spectrum resources to the primary network node based on the configuration information, the configuration information including packets of the secondary network nodes to be served by the primary network node Information in which the same group of interferences from the network node using the same time-frequency resource for data transmission in the case of beamforming is below a predetermined level.
  • the configuration information may further include information on whether the primary network node turns on the beamforming function.
  • the transceiving unit 201 may also transmit a notification to the network node determined as the relay node to inform it that it is allowed as the relay node, wherein the determination of the relay node may be performed by the setting unit 101 based on the request from the network node.
  • the notification may also include spectrum resources allocated to the relay node.
  • the notification may further include indication information about whether the relay node turns on the beamforming function.
  • the transceiver unit 201 can operate in a millimeter wave band or a microwave band.
  • the setting unit 101 and the transceiver unit 201 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the transceiver unit 201 can be implemented, for example, as an antenna or an antenna array.
  • FIG. 9 shows a functional block diagram of an electronic device 300 for a network node, the electronic device 300 comprising: a first determining unit 301 configured to determine based on control signaling from a network control end, in accordance with another embodiment of the present application. A first condition regarding beamforming capabilities of the network node; and a second determining unit 302 configured to determine whether the network node is to operate as a relay node based on the first condition.
  • the first condition may include a threshold of the number of directional beams that can be formed and/or a threshold of an angular range of the directional beam, or the first condition may include only whether or not there is a beamforming function.
  • the first determining unit 301 may be further configured to determine a second condition regarding link quality of the network node based on the control signaling, and the second determining unit 302 determines the local network node according to both the first condition and the second condition. Whether to work as a relay node.
  • the link quality is expressed, for example, by RSRP, RSRQ, or the upper limit of the channel capacity per unit bandwidth.
  • the first determining unit 301 is further configured to determine respective weights of the first condition and the second condition based on the control signaling.
  • the second determining unit 302 weights the two conditions separately using the weight when making the determination, and comprehensively considers the weighted result to determine whether to operate as a relay node.
  • the first determining unit 301 is further configured to determine an additional condition to apply the first condition based on the control signaling.
  • additional conditions involve one or more of the following: The network node with beamforming capability agrees to turn on the beamforming function; the power of the network node with beamforming capability is higher than the predetermined threshold; the spectrum resource of the system is insufficient; the beamforming function can reduce the overall interference of the system.
  • the second determining unit 302 determines, according to the relevant conditions in the control signaling, whether the network node is to work as a relay node (primary network node) or whether to communicate with the network control terminal through the relay node, that is, as a slave network.
  • the node works. In the case where the network node is neither a primary network node nor a secondary network node, it communicates directly with the network control terminal as a normal network node.
  • the relay node In the case of whether or not the relay node does not require further confirmation by the network control end, after the network node determines to operate as a relay node, it can operate as a relay node. Subsequently, for example, the present network node broadcasts a pilot signal to all other network nodes, and when a slave node receives a pilot signal from a number of primary network nodes, for example by comparing the received pilot signals, selects access to the channel state and When the network node with the best link quality sends the access request to the local network node, the network node then sends a link response feedback to the slave network node to establish a connection with the slave network node. In this way, a cluster of nodes including the primary network node and its secondary network node is formed, and within the coverage of the network control end, there may be multiple clusters of nodes.
  • the electronic device 300 may further include a grouping unit 303 configured to group the slave network nodes accessing the network node, wherein the slave nodes in the same group are In the case of beamforming, when the same time-frequency resource is used for data transmission, the interference is lower than a predetermined level.
  • the grouping unit 303 groups the slave network nodes based on the interference map, which represents the interference condition between the respective slave network nodes when the same time-frequency resource communication is used in the case of beamforming. For example, a corresponding interference graph is established for each node cluster, and then a disjoint independent set (ie, a packet) in the interference graph is found by a corresponding algorithm such as a dyeing algorithm, etc., wherein the slave nodes in each independent set are In the case of beamforming, when the same time-frequency resource is used for data transmission, the interference is lower than a predetermined level. In this way, the primary network node can allocate the same time slot and resource blocks for each of the secondary network nodes in a separate set.
  • the interference map which represents the interference condition between the respective slave network nodes when the same time-frequency resource communication is used in the case of beamforming. For example, a corresponding interference graph is established for each node cluster, and then a disjoint independent set (ie, a packet) in the interference graph is
  • Figure 10 shows a schematic diagram of the actual scene of a cluster of nodes, where the double circles represent the primary network nodes, the four circles represent the slave network nodes, and the number next to each circle represents the number of the corresponding slave network node.
  • FIG. 11 shows an interference diagram corresponding to the node cluster of FIG.
  • each of the slave network nodes is considered as a vertex in the interference graph, and the degree of interference between any two slave network nodes is analyzed, and the degree of interference is used by the master network node to use the same time slot and frequency band to the two slave networks.
  • the degree of interference when a node sends a signal. If the interference between the two slave network nodes is small, such as below a predetermined level, meaning that the master network node can communicate with the two slave nodes using the same time-frequency resource, then the two slave nodes are in the interference graph. There is no edge between the corresponding vertices, otherwise, one edge is added between the two corresponding vertices. After analyzing all pairs of slave network nodes, the construction of the interference graph is completed.
  • V and E represent the set of points and the set of edges in the interference graph, respectively.
  • the subset S of the point set V satisfies any two of the points in the interference graph without an edge connecting the two points
  • the subset S is an independent set.
  • the independent collection containing the most points in the independent collection is the largest independent collection.
  • the master network node can apply the same time-frequency resource block to each slave network node in a separate set and through beamforming-based functions. Space division multiplexing to avoid interference.
  • the determination can be made based on the relative position of the slave network node and the master network node. For example, when the angle between the connection of the network node and the position of the main network node is large, the degree of interference is considered to be small, and if the angle between the lines is smaller or even smaller than the main lobe width of the directional beam. It is considered that the degree of interference will be large.
  • the threshold of the angle can be set according to experience or calculation.
  • the degree of interference is considered to be below a predetermined level.
  • the primary network node can calculate the degree of interference between the slave nodes through a theoretical channel model and an antenna model.
  • the same time-frequency resource block may be used to send test signals to the two slave network nodes, and the signal-to-noise ratio of the received signals from the network node is used to determine. .
  • This way can also be seen as shaping the beam An adjustment.
  • the node cluster can start relay communication.
  • the location, distribution density, link status, etc. of the network node change, for example, when the existing network node leaves the coverage of the network control end and the new network node enters the coverage of the network control end, it may need to be re-established.
  • the selection of the primary network node is performed, and the clustering or re-grouping of the secondary network nodes in the node cluster is performed again.
  • the foregoing grouping unit 303 may be disposed in the network control terminal, according to In a similar manner, the network control end groups multiple primary network nodes to determine which primary network nodes can be allocated the same time-frequency resources, and details are not described herein again.
  • the first determining unit 301 is further configured to determine, based on the control signaling, a resource pool that the network node can use when operating as a relay node.
  • the network node can directly utilize the resources in the resource pool for relay transmission. For example, in the case of turning on the beamforming function, each of the slave network nodes in the same group is allocated the same time-frequency resource.
  • the network node does not enable the beamforming function, but uses an omnidirectional antenna to communicate with the slave network node by using different time-frequency resources.
  • control signaling does not include information of a resource pool allocated by the primary network node, and the network control end allocates spectrum resources to the primary network node by using other signaling.
  • the electronic device 300 may further include: a generating unit 304 configured to generate information about the packet to be provided to the network control end, and the local network node uses the network control terminal according to the group information The allocated spectrum resources perform communication with the slave network node.
  • whether the beamforming function can be turned on may be determined by the second determining unit 302, for example, according to the condition of the network node itself and the state of the communication system, such as interference conditions and spectrum resource usage conditions, etc., the determination may occur before the grouping Can also happen in points After the group, if it occurs after the grouping, the grouping situation is also taken into account when determining.
  • the primary network node analyzes the interference size and the situation according to the received signal, and obtains interference status between the primary network node and the neighboring primary network node by communicating with the neighboring primary network node, according to which the analysis is compared.
  • the use of a directional antenna i.e., turning on the beamforming function helps to significantly reduce the interference, and if so, determines that the beamforming function is turned on.
  • the generating unit 304 may also generate indication information of whether to enable the beamforming function to be provided to the network control end, and the network node uses the network control terminal to execute and the slave network node according to the spectrum resource allocated by the indication information and the packet information. Communication.
  • the network control terminal may decide whether to enable the beamforming function and notify the local network node according to the group information or the like. Similarly, in the case where it is determined that the beamforming function is turned on, the same time-frequency resource is allocated to each of the slave network nodes in the same group.
  • the generating unit 304 is configured to generate, upon determining that the network node is to operate as a relay node, requesting application information to the network controller to become a relay node.
  • the network control end sends a corresponding notification to the network node after agreeing to the application.
  • the second determining unit 302 determines that the local network node is selected as the relay node based on the notification. Subsequently, the present network node can perform access from the network node as above and perform grouping.
  • whether or not to enable the beamforming function may be determined by the primary network node itself, for example, by the second determining unit 302, such as according to the condition of the local network node itself and the state of the communication system, such as interference conditions and spectrum resource usage conditions.
  • whether the beamforming function is enabled is determined by the network control end, and the corresponding indication information may be included in the foregoing notification, for example, or when the network control terminal allocates spectrum resources according to the provided group information or the like.
  • the foregoing notification may further include an indication of the spectrum resource allocated by the network control end.
  • the electronic device 300 can use the beamforming function to perform space division multiplexing of spectrum resources when the network node is used as a relay node, thereby improving spectrum utilization efficiency and improving system capacity and Communication quality and extended communication range.
  • the communication between the network control terminal and the primary network node can also utilize the beamforming function to implement space division multiplexing on the same time-frequency resource, so that each primary network node can be divided. With more spectrum resources.
  • the first determining unit 301, the second determining unit 302, the grouping unit 303 and the generating unit 304 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the information processing device 400 includes: a transceiver unit 401 configured to receive control signaling from a network control terminal; a first determining unit 301. Configure a first condition for determining a beamforming capability of the network node based on the control signaling; and the second determining unit 302 is configured to determine, according to the first condition, whether the network node is to operate as a relay node.
  • the first determining unit 301 and the second determining unit 302 have the same functions and structures as the first determining unit 301 and the second determining unit 302 described in the third embodiment, and further, although not shown in the drawings,
  • the information processing device 400 may further include the grouping unit 303 and the generating unit 304 described in the third embodiment. The details of these units have been given in the third embodiment, and the same applies to the present embodiment, and will not be repeated here.
  • the transceiving unit 401 is further configured to transmit pilot signals to other network nodes, receive connection requests from other network nodes, and accept them as their slave network.
  • the node's network node sends a connection response to establish a connection.
  • the transceiver unit 401 is further configured to send one or more of the following information to the network control end: applying for the application information of the relay node to the network control terminal; grouping information of the slave network node; whether to enable the beamforming function Instructions.
  • the transceiver unit 401 is further configured to receive one or more of the following information from the network control end: the spectrum resource allocated by the network control terminal; whether the indication information of the beamforming function is enabled; being selected as the relay node Notification information.
  • the transceiver unit 401 can communicate with the network control terminal in a millimeter wave band or a microwave band; the transceiver unit 401 can communicate with the slave network node in a millimeter wave band or a microwave band.
  • the first determining unit 301, the second determining unit 302, the grouping unit 303 and the generating unit 304 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the transceiver unit 401 can be implemented, for example, as a plurality of antennas (antenna arrays). For example, each antenna is connected to a phase shifter, and the directional beam is formed by adjusting the phase of the phase shifter to serve the slave network node.
  • FIG. 13 shows a flowchart of a method for an electronic device of a network control terminal according to an embodiment of the present application, the method comprising: setting a first condition (S11) regarding a beamforming capability of a network node, to determine a network node capable of acting as a relay node; and generating control signaling including indication information of the first condition for indicating a network node served by the network control terminal (S14).
  • the first condition includes a threshold of the number of directional beams that can be formed and/or a threshold of the angular range of the directional beam.
  • the above method may further include: setting a second condition regarding link quality of the network node for determining a network node capable of acting as a relay node (S12), and generating in step S14 Control signaling that also includes indication information for the second condition.
  • control signaling further includes information of respective weights of the first condition and the second condition when determining a network node capable of acting as a relay node.
  • the weights can be determined, for example, based on the state of the spectrum resources of the system and/or the interference conditions.
  • the second condition is further set in step S12 according to one or more of the following: distribution density of the network node, coverage of the network control end, target transmission of the network node rate.
  • additional conditions indicating that the first condition is applied may also be included in the control signaling.
  • the additional condition relates, for example, to one or more of the following: a network node having beamforming capability agrees to turn on beamforming; a power of a network node having beamforming capability is above a predetermined threshold; insufficient spectral resources of the system; Shape shaping can reduce overall system interference.
  • the above method may further include step S13: allocating a resource pool to the relay node, and also including the indication information of the resource pool in the control signaling in step S14.
  • the control signaling may be broadcast signaling, such as SystemInformationBlockType18 or SystemInformationBlockType19 cells based on system messages of the improved LTE protocol.
  • the control signaling can be dedicated signaling.
  • the method does not include step S13, but the network control terminal receives configuration information from the primary network node after transmitting the control signaling, and the primary network node determines the network node as the relay node.
  • the method includes the step S15: allocating a spectrum resource to the primary network node based on the configuration information, where the configuration information includes group information of the slave network node to be served by the primary network node, where the same group of slave network nodes are in the case of beamforming The interference when using the same time-frequency resource for data transmission is lower than a predetermined level.
  • the configuration information also includes information on whether the primary network node turns on the beamforming function.
  • the network control terminal may be configured to determine whether to enable the beamforming function and notify the primary network node.
  • the method includes step S16: selecting a network node to be a relay node as a primary network node based on an application from a network node, and generating a notification for the primary network node accordingly. In other words, whether the network node can work as a relay node requires confirmation from the network console.
  • the notification may also include spectrum resources allocated to the primary network node. And/or the notification may also include indication information of whether to enable the beamforming function. Alternatively, the primary network node may decide whether to enable the beamforming function, and after the packet is completed and the packet information is provided to the network control terminal, the network control terminal allocates spectrum resources to it.
  • the network control end in the above method may be, for example, a base station, and the network node may be, for example, a user equipment or a network infrastructure.
  • the communication between the network control terminal and the primary network node and the communication between the master and slave network nodes can utilize the microwave band or the millimeter wave band.
  • FIG. 16 shows a flowchart of a method for an electronic device of a network node, the method comprising: determining a beamforming capability for a network node based on control signaling from a network control end, in accordance with another embodiment of the present application.
  • the first condition includes a threshold of the number of directional beams that can be formed and/or a threshold of the angular range of the directional beam.
  • a second condition regarding the link quality of the network node may also be determined based on the control signaling in step S21, and in step S22, it is determined whether the own network node is to act as a relay node according to the first condition and the second condition jobs.
  • the respective weights of the first condition and the second condition may also be determined based on the control signaling in step S21.
  • an additional condition to which the first condition is applied may also be determined based on the control signaling in step S21.
  • the additional condition may relate to one or more of the following: the network node with beamforming capability agrees to turn on the beamforming function; the power of the network node with beamforming capability is above a predetermined threshold; the spectrum resources of the system are insufficient; Shape shaping can reduce overall system interference.
  • step S21 It is also possible in step S21 to determine, based on the control signaling, a resource pool that can be used when the network node operates as a relay node.
  • the method further includes the following step S23: after the network node operates as a relay node, grouping the slave network nodes accessing the network node, wherein the slave nodes in the same group are In the case of beamforming, when the same time-frequency resource is used for data transmission, the interference is lower than a predetermined level.
  • the above method further includes the step S24 of determining whether to turn on the beamforming function, and in the case of determining to turn on, assigning the same time-frequency resource to each of the slave network nodes in the same group. Note that it is also possible to first determine whether to turn on the beamforming function, and to perform grouping after determining to turn on.
  • information about the packet may also be generated in step S23 to be provided to the network control end, and the primary network node then performs communication with the secondary network node based on the allocated spectral resources of the packet information using the network control terminal.
  • the indication information of whether to enable the beamforming function may be generated in step S24 to be provided to the network control end, and the primary network node subsequently uses the network control terminal to execute and perform the spectrum resource according to the indication information and the grouping information. Communication of network nodes.
  • step S23 application information for requesting the network control terminal to become a relay node may be generated when it is determined that the network node is to operate as a relay node.
  • the network control terminal determines whether to select it as a relay node according to the status of the network node, the system spectrum resource utilization status, and the like, and sends a notification.
  • the network node performs access and grouping from the network node only after receiving the confirmation notification from the network control terminal.
  • the notification further includes one or more of the following: a spectrum resource allocated by the network control terminal; and whether the local network node turns on the indication information of the beamforming function.
  • step S23 the slave network nodes are grouped based on the interference map, which represents the interference condition between the respective slave network nodes when the same time-frequency resource communication is used in the case of beamforming.
  • the network control terminal may include any one of the electronic device 100 or the information processing device 200 described above or can implement at least a part of functions thereof, and the network node may include any one of the electronic device 300 or the information processing device 400 described above. Or be able to implement at least some of its functions. Also, at least a portion of the network nodes have beamforming capabilities, such as having multiple antennas. It should be understood that these information flows are for illustrative purposes only and are not limiting.
  • the network control end is, for example, a base station such as an eNB, showing an example of a primary network node and a secondary network node as network nodes, for example, a User Equipment (UE) or a network infrastructure.
  • UE User Equipment
  • the number of network nodes is not limiting, but is for illustrative purposes only.
  • Figure 17 shows a first exemplary information flow between the network console and the network node.
  • the network control terminal sets conditions that the network node capable of acting as a relay node needs to satisfy, and these conditions may include the first condition described above, and may also optionally include a second condition, an additional condition to which the first condition is applied, and the like.
  • the network control terminal allocates a resource pool for the relay communication to be performed by the relay node in advance, that is, the relay node can directly use the time-frequency resource reserved in the resource pool to provide a relay service for the slave network node.
  • the network controller broadcasts the set conditions and the information of the allocated resource pool.
  • the network node in its coverage determines whether it satisfies the condition, such as whether it has beamforming capability, etc. And autonomously determine whether to act as a relay node, ie, a primary network node. If it is determined to be the primary network node, the pilot signal is broadcast to other network nodes. At this time, it is judged that the network node working as a slave network node will receive the pilot signal of the master network node, and the channel state and link quality between itself and the master network node are calculated by the channel estimation algorithm.
  • the network node selects the primary network node with the best channel state and link quality for accessing the channel between them, and of course any other strategy can be adopted, and Does not affect the implementation of this application.
  • a connection request is sent from the network node to the primary network node to be accessed, and the primary network node sends a connection response to it to establish a connection with the secondary network node if it agrees to its access.
  • the secondary network node may also be notified, or after the secondary network node waits for a timeout, for example, select the channel between the remaining primary network nodes again.
  • the channel state and link quality are the best primary network nodes and send connection requests.
  • all network nodes are divided into a number of master-slave network node clusters (referred to as node clusters), and each node cluster includes one master network node and one or more slave network nodes.
  • the primary network node determines whether to turn on the beamforming function based on, for example, network node density, communication requirements, interference conditions, spectrum resource status, its own status, and the like. Alternatively, the primary network node turns on beamforming by default.
  • the primary network node In order to realize the space division multiplexing of spectrum resources by using the beamforming function, the primary network node also groups the slave network nodes accessing the same to obtain mutual interference below a predetermined degree when data transmission is performed by using the same time-frequency resource.
  • An independent collection of network nodes This grouping can for example be based on an interference graph.
  • the primary network node After obtaining a number of disjoint independent sets, for each independent set, the primary network node allocates the same time-frequency resources in the resource pool from the network nodes.
  • coordinated operations between the clusters of nodes are required to reduce mutual interference between the clusters of nodes.
  • Figure 18 shows a second exemplary information flow between the network console and the network node. This example differs from the first exemplary information flow described with reference to Figure 17 in that the network control end allocates spectrum resources to it after the primary network node completes the packet.
  • the primary network node to be the relay node determines whether to turn on the beamforming function according to information such as its own condition, interference condition, system spectrum utilization status, and the like. Subsequently, the primary network node broadcasts a pilot signal, receives a connection request from the slave network node, and sends a connection. Respond to establish a connection. Subsequently, in the case of determining to enable the beamforming function, the primary network node groups the accessed secondary network nodes, for example based on the interference graph, and sends the information of the packet and the indication information of whether to enable the beamforming function to the network control. end. The network control terminal allocates resources to the primary network node based on the information.
  • the allocated spectrum resources may include both the spectrum resources to be used for relay communication between the primary network node and the secondary network node and the spectrum resources to be used for communication between the primary network node and the network control terminal.
  • the same spectrum resource can be used for both aspects of communication. Then, the primary network node allocates resources allocated by the network control terminal to its secondary network node for relay communication.
  • Figure 19 shows a third exemplary information flow between the network console and the network node.
  • the difference between this example and the second exemplary information flow described with reference to Figure 18 is when it is determined whether the beamforming function is turned on differently.
  • the primary network node determines whether to enable the beamforming function. In this case, the grouping information can also be taken into account when making the determination. Subsequently, the primary network node sends the information of the packet and the indication information of whether to enable the beamforming function to the network control end.
  • the network control terminal allocates resources to the primary network node based on the information. Then, the primary network node allocates resources allocated by the network control terminal to its secondary network node for relay communication.
  • FIG. 20 shows a variation of the third exemplary information flow.
  • the primary network node after completing the access and grouping from the network node, the primary network node does not perform the determination of whether to enable the beamforming function, but provides the packet information to the network control terminal.
  • the network control terminal determines whether to enable the beamforming function according to the packet information and other system information, such as interference and spectrum resource utilization status, and sends corresponding indication information to the primary network node.
  • the network control end also allocates resources to the primary network node accordingly. Then, the primary network node allocates resources allocated by the network control terminal to its secondary network node for relay communication.
  • Figure 21 shows a fourth exemplary information flow between the network console and the network node.
  • the difference between the information flow and the first to third exemplary information flows described above is that the network node needs to be further confirmed by the network control terminal to become a relay node.
  • the network control terminal determines whether the network node can act as a relay node according to the application information, and sends a notification to it.
  • the network node In the network node is allowed as In the case of a node, it can determine whether the beamforming function is turned on similarly to FIG. 18, and performs access and grouping from the network node, and uses the spectrum resources allocated by the network controller to perform relay communication. It is also possible to make a determination as to whether or not to turn on the beamforming function after grouping similarly to FIG. 19 (this case is not shown in FIG. 21). Since the detailed flow is basically the same as that of FIGS. 18 and 19, it will not be repeated here.
  • the network control end may also allocate spectrum resources to the network node when it can send a notification that can work as a relay node. At this time, it is not necessary to send configuration information to the network control end after performing the grouping and The operation of the network control terminal to allocate spectrum resources.
  • Figure 22 shows a variation of the fourth exemplary information flow.
  • the network control terminal also gives an indication of whether to enable the beamforming function when transmitting a notification to the network node that can operate as a relay node.
  • the network control terminal determines whether to turn on the beamforming function based on the relevant system information.
  • the network control end notifies the main network node whether the indication information of the beamforming function and the allocated spectrum resource are turned on.
  • the electronic device, the information processing device and the method according to the present application can realize one-to-many relay by using the beamforming function of the network node, realize spatial multiplexing of spectrum resources, and improve system capacity and communication quality.
  • the technology of the present disclosure can be applied to various products.
  • the above mentioned base stations can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • various types of user equipments to be described below can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • FIG. 23 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in cells of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 23 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiving unit 201 described with reference to FIG. 8 can be implemented by the wireless communication interface 825. At least a portion of the functionality can also be implemented by controller 821.
  • the controller 821 can perform the setting of the condition that the relay node needs to satisfy and the generation of the corresponding control signaling by executing the functions of the setting unit 101 and the generating unit 102.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 24 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 24 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 24 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • RF circuit 864 can include, for example, a mix The frequency converter, the filter and the amplifier, and transmit and receive wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 24 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiving unit 201 described with reference to FIG. 8 can be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 851.
  • the controller 851 can perform the setting of the condition that the relay node needs to satisfy and the generation of the corresponding control signaling by executing the functions of the setting unit 101 and the generating unit 102.
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode An OLED (display), and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • FIG. 25 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • the RF link may be connected to the plurality of antenna elements by a plurality of phase shifters, respectively.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 25 shows an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 will be the processor 901, the memory 902, the storage device 903, and the external connection interface. 904.
  • the imaging device 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 are connected to each other.
  • Battery 918 provides power to various blocks of smart phone 900 shown in FIG. 25 via a feeder, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • the transceiving unit 401 described with reference to FIG. 12 can be implemented by the wireless communication interface 912. At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can determine whether the own network node is to operate as a relay node by performing functions of the first determining unit 301, the second determining unit 302, the grouping unit 303, and the generating unit 304.
  • FIG. 26 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content. Speaker 931 loses The sound of the navigation function or the content reproduced.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 26 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 26 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in FIG. 26 via feeders, which are shown partially as dashed lines in the figures. Battery 938 accumulates power supplied from the vehicle.
  • the transceiving unit 401 described with reference to FIG. 12 can be implemented by the wireless communication interface 933. At least a portion of the functionality can also be handled by the processor 921 implementation. For example, the processor 921 can determine whether the own network node is to operate as a relay node by performing functions of the first determining unit 301, the second determining unit 302, the grouping unit 303, and the generating unit 304.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 2700 shown in FIG. 27), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 2701 executes various processes in accordance with a program stored in a read only memory (ROM) 2702 or a program loaded from a storage portion 2708 to a random access memory (RAM) 2703.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2701 performs various processes and the like is also stored as needed.
  • the CPU 2701, the ROM 2702, and the RAM 2703 are connected to each other via a bus 2704.
  • Input/output interface 2705 is also coupled to bus 2704.
  • the following components are connected to the input/output interface 2705: an input portion 2706 (including a keyboard, a mouse, etc.), an output portion 2707 (including a display such as a cathode ray tube (CRT), A liquid crystal display (LCD) or the like, and a speaker, etc.), a storage portion 2708 (including a hard disk or the like), a communication portion 2709 (including a network interface card such as a LAN card, a modem, etc.). The communication section 2709 performs communication processing via a network such as the Internet.
  • the driver 2710 can also be connected to the input/output interface 2705 as needed.
  • a removable medium 2711 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 2710 as needed, so that the computer program read therefrom is installed into the storage portion 2708 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 2711.
  • such a storage medium is not limited to the removable medium 2711 shown in FIG. 27 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 2711 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 2702, a hard disk included in the storage portion 2708, and the like, in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了用于网络控制端和网络节点的电子设备和用于电子设备的方法,用于网络控制端的电子设备,包括:处理电路,该处理电路被配置为:设置关于网络节点的波束赋形能力的第一条件,用以确定能够作为中继节点的网络节点;以及生成包含第一条件的指示信息的控制信令,以用于指示该网络控制端所服务的网络节点。

Description

电子设备、用于电子设备的方法和信息处理设备
本申请要求于2016年6月21日提交中国专利局、申请号为201610453398.3、发明名称为“电子设备、用于电子设备的方法和信息处理设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及中继无线通信,更具体地涉及一种用于网络控制端的电子设备和用于该电子设备的方法、一种用于网络节点的电子设备和用于该电子设备的方法、以及信息处理设备。
背景技术
随着无线通信和电子行业的迅猛发展,无线通信的频谱资源越来越紧张,并且用户对通信系统的容量和可靠性的要求越来越高。高频毫米波频段有着极为丰富的频谱资源,可以有效满足用户的上述需求。
但是,当前的LTE通信系统所使用的协议不能支持毫米波通信。由于毫米波在大气中传播受到氧气、水蒸气和降雨的吸收衰减非常大,因此点对点的有效通信距离非常短。虽然一定程度上增大了信号被恶意窃听和干扰的难度,提升了安全性,但大大降低了基站端设备的覆盖范围。当用户设备与基站相距较远时,无法与基站直接通信,需要设置中继。
在传统的LTE技术中,中继节点通常为运营商在特定小区位置上部署的基础设施,成本高昂。随着基于近距服务(Proximity-based Service,ProSe)通信的发展,出现了ProSe用户设备到网络中继(ProSe UE-to-Network Relay)技术,然而用户设备通常仅能支持一对一中继。在一些应用比如机器类型通信或物联网中,需要大量连接,传统的一对一的中继方式的工作效率较低,难以满足用户需求。另一方面,无线通信资源也愈发紧张,如何进一步进行合理的资源复用,成为下一代通信技术发展的重点之一。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于网络控制端的电子设备,包括:处理电路,该处理电路被配置为:设置关于网络节点的波束赋形能力的第一条件,用以确定能够作为中继节点的网络节点;以及生成包含第一条件的指示信息的控制信令,以用于指示该网络控制端所服务的网络节点。
根据本申请的另一个方面,提供了一种用于网络节点的电子设备,包括:处理电路,被配置为:基于来自网络控制端的控制信令确定关于网络节点的波束赋形能力的第一条件;以及根据第一条件确定本网络节点是否要作为中继节点工作。
根据本申请的一个方面,提供了一种用于网络控制端的电子设备的方法,包括:设置关于网络节点的波束赋形能力的第一条件,用以确定能够作为中继节点的网络节点;以及生成包含第一条件的指示信息的控制信令,以用于指示该网络控制端所服务的网络节点。
根据本申请的另一个方面,提供了一种用于网络节点的电子设备的方法,包括:基于来自网络控制端的控制信令确定关于网络节点的波束赋形能力的第一条件;根据第一条件确定本网络节点是否要作为中继节点工作。
依据本发明的其它方面,还提供了用于电子设备的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现这些方法的计算机程序代码的计算机可读存储介质。
根据本申请的实施例的电子设备和方法通过基于网络节点的波束赋形能力来确定中继节点,能够扩大通信范围、提高通信质量和频谱资源利用效率。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的上述以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1是示出了根据本申请的一个实施例的用于网络控制端的电子设备的功能模块框图;
图2示出了一种现有技术的基站的结构的示意图;
图3示出了一种现有技术的单天线用户设备端的结构的示意图;
图4示出了一种现有技术的多天线用户设备端的结构的示意图;
图5示出了配备有多天线的网络节点的收发端硬件示意图;
图6示出了根据本申请的实施例的基于改进的LTE协议的系统信息的SystemInformationBlockType19信元的构成示意图;
图7示出了根据本申请的实施例的基于改进的LTE协议的commTxResourceInfoReqRelay信元的构成示意图;
图8是示出了根据本申请的一个实施例的信息处理设备的功能模块框图;
图9是示出了根据本申请的一个实施例的用于网络节点的电子设备的功能模块框图;
图10示出了一个节点簇的实际场景的示意图;
图11示出了图10的节点簇对应的干扰图的示例;
图12是示出了根据本申请的另一个实施例的信息处理设备的功能模块框图;
图13是示出了根据本申请的一个实施例的用于网络控制端的电子 设备的方法的流程图;
图14是示出了根据本申请的另一个实施例的用于网络控制端的电子设备的方法的流程图;
图15是示出了根据本申请的另一个实施例的用于网络控制端的电子设备的方法的流程图;
图16是示出了根据本申请的一个实施例的用于网络节点的电子设备的方法的流程图;
图17示出了网络控制端和网络节点间的第一示例性信息流程;
图18示出了网络控制端和网络节点间的第二示例性信息流程;
图19示出了网络控制端和网络节点间的第三示例性信息流程;
图20示出了第三示例性信息流程的一个变型;
图21示出了网络控制端和网络节点间的第四示例性信息流程;
图22示出了第四示例性信息流程的一个变型;
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图24是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图25是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图26是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图27是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应 该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的用于网络控制端的电子设备100的功能模块框图,电子设备100包括:设置单元101,被配置为设置关于网络节点的波束赋形能力的第一条件,用以确定能够作为中继节点的网络节点;以及生成单元102,被配置为生成包含第一条件的指示信息的控制指令,以用于指示该网络控制端所服务的网络节点。
其中,设置单元101和生成单元102例如可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
网络控制端指的是通信系统中用于实现通信活动的相关设置、控制、通信资源分配等功能的实体,比如蜂窝通信系统中的基站,C-RAN(Cloud-RAN/Centralized-RAN)结构下(可能不存在小区概念)的基带云设备,例如C-RAN架构下的彼此高速连通的BBU池中的任一BBU等。网络节点指的是通信系统中使用通信资源以实现其通信目的的实体,比如各种用户设备(诸如具有蜂窝通信能力的移动终端、智能车辆、智能穿戴设备等)或者网络基础设施比如小小区基站等。
例如,在毫米波通信中,由于毫米波的路径损耗较大,因此有效通信距离较短,所以处于网络控制端覆盖区域边缘的网络节点可能无法与网络控制端直接进行通信。在这种情况下,可以通过设置中继节点来实现边缘网络节点与网络控制端的间接通信,即,在下行链路中,网络控制端将信息发送给中继节点,然后由中继节点例如通过解码转发或放大 转发等方式将该信息转发至边缘网络节点(上行链路使用类似的方式)。
由于毫米波的波长很短,因此在有限的部署空间中也可以为网络节点配备多天线,使得网络节点具有波束赋形能力。
波束赋形可包括数字波束赋形、模拟波束赋形两种架构。其中,数字波束赋形可通过数字预编码实现,每根天线连接一个射频链路,在各个射频链路上发送信号的幅值均可调,以降低在相同的传输资源上承载的多路数据信号彼此间的干扰。图2示出了一种现有技术的基站的结构。如图所示,在数字预编码架构下,基站端配备有M根天线(M为整数且M≥1),每根天线布置有对应的射频链路。数字预编码器在控制器的控制下获取K路数据流(K为整数且K≥1),对这K路数据流进行数字预编码(例如,使K路数据流经大小为M×K的数字预编码矩阵B)。编码后的数据经由射频链路和天线被发送给一个或多个用户。用户设备端可以配置有单根天线或多根天线,分别如图3和图4所示。在单根天线的情况下,用户设备仅能接收K路数据流中的一路数据流。在用户设备配置有N根天线(N为整数且N>1)的情况下,每根天线通过对应的射频链路把接收到的数据传输给数字预编码器。数字预编码器在控制器的控制下,使用例如大小为Ku×N的数字预编码矩阵W(Ku为整数且Ku≧1)对接收到的数据进行数字预编码,从而得到单路(Ku=1时)或多路数据(Ku>1时)。
在模拟波束赋形架构中,波束赋形能力也称为天线定向能力,即,向特定方向传输波束的能力。例如,将射频链路连接多个移相器及天线而利用少至一条射频链路形成具有指向性的波束,从而实现模拟波束赋形方案。
因此,当具有波束赋形能力的网络节点作为中继节点工作时,可以实现一对多的中继。另一方面,通过进行波束赋形,可以有效地减轻或避免干扰,提高通信链路的通信质量。例如,在模拟波束赋形架构中,通过生成具有指向性的波束,可以将同一频谱资源同时分配给处于不同方向的两个或多个网络节点使用,实现频谱资源的空间复用同时能够保证干扰小于特定门限。另一方面,当具有波束赋形能力的网络节点作为中继节点工作时,该网络节点亦可以和网络控制端利用波束赋形进行通信,以使能该节点和其他中继节点或普通网络节点复用频谱资源与网络 控制端进行通信(相当于在ProSe通信的回程链路上执行波束赋形),从而提高频谱利用率。
图5示出了配备有多天线的网络节点(比如用户设备)的收发端硬件示意图,其中左侧为中继节点,右侧为通过中继节点与网络控制端(比如基站)进行通信的从网络节点。可以看出,一个射频链路连接多个天线,每个天线具有移相器并且通过调节各个天线的移相器而形成定向波束,相应地,接收方通过调节移相器将天线调节到对应方向来接收信号。
应该理解,这里对于多天线的描述虽然以毫米波波段为例,但是并不限于此,也可以应用于其他波段比如微波波段或者比毫米波波长更短的波段。
在本实施例中,通过设置关于波束赋形能力的第一条件来确定中继节点,可以选择具有波束赋形能力的网络节点作为中继节点,进行一对多中继,在例如保证各侧链路(Sidelink)质量的前提下实现频谱资源的空分复用,从而提高频谱资源的利用效率,提高系统容量。
在一个示例中,第一条件可以包括能够形成的定向波束的数量的阈值以及/或者定向波束的角度范围的阈值。但是,第一条件的设置并不限于此,例如还可以仅设置为是否具有波束赋形能力。
应该理解,第一条件不仅可以包括能够作为中继节点工作的网络节点的波束赋形能力的规定,还可以包括能够作为中继节点的从网络节点工作的网络节点的波束赋形能力的规定,其中,从网络节点为通过中继节点与网络控制端进行通信的网络节点。在下文中,也将中继节点称为主网络节点,接入中继节点与网络控制端进行间接通信的网络节点称为从网络节点。此外,不满足第一条件的这两方面的规定的网络节点将作为正常节点与网络控制端直接进行通信。
另一方面,设置单元101还可以设置关于网络节点的链路质量的第二条件用于确定能够作为中继节点的网络节点,相应地,生成单元102还生成包含第二条件的指示信息的控制指令。
第二条件的设置有助于保证所选择的中继节点的通信质量满足一定要求。例如,第二条件为链路质量的阈值,比如,可以设置为仅链路质量好于某一阈值的网络节点才能够被确定为中继节点,这样可以确保中 继节点工作的稳定性。
示例性地,链路质量可以用参考信号接收功率(Reference Signal Receiving Power,RSRP)或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)表示。此外,链路质量还可以用单位带宽下的信道容量上限表示。
设置单元101可以根据如下中的一个或多个来设置第二条件:网络节点的分布密度,网络控制端的覆盖范围,网络节点的目标传输速率。例如,当网络节点的分布密度较高时,意味着中继节点平均承载的网络节点数量会较多,因此要求中继节点自身的链路质量较好,需要设置较高的链路质量阈值;当覆盖范围大时,中继节点要服务的范围相应地也会较大,因此也需要设置较高的链路质量阈值;当网络节点的目标传输速率较高时,意味着中继节点的负荷会提高,因此需要设置较高的链路质量阈值。
此外,类似地,第二条件不仅可以包括能够作为中继节点工作的网络节点的链路质量的规定,还可以包括能够作为从网络节点工作的网络节点的链路质量的规定。换言之,不满足第二条件的这两方面的规定的网络节点将作为正常节点与网络控制端直接进行通信。例如,在第二条件为链路质量的阈值的示例中,可以设置能够作为中继节点工作所需要满足的第一阈值以及能够作为从网络节点工作所需要满足的第二阈值,比如,可以设置为链路质量高于第一阈值的网络节点能够作为中继节点,链路质量低于第二阈值的网络节点能够作为从网络节点。
在设置单元101设置第一条件和第二条件两者的情况下,设置单元101可以分别为第一条件和第二条件设置各自的权重,并且生成单元102生成包含该权重的信息的控制信令。其中,该权重表示了在确定作为中继节点的网络节点时,第一条件或第二条件所起的决定性作用的比重。
例如,设置单元101可以根据系统的频谱资源状态以及/或者干扰情况来确定权重。例如,当系统的频谱资源紧张时,系统更希望对频谱资源进行充分利用,此时网络节点的波束赋形能力带来的频谱资源的空间复用能力将更有吸引力,因此设置单元101为第一条件设置更高的权重,即给予具有波束赋形能力或波束赋形能力强的网络节点更高的权重。反之,当频谱资源相对充裕时,设置单元101将为第一条件设置低一些的 权重,即更多地考虑网络节点的链路质量。应该理解,网络控制端可以容易地获知系统当前的频谱资源状态。作为一个简单示例,网络控制端可以根据当前网络节点的分布密度来确定频谱资源是否充裕。另一方面,例如,当系统中干扰严重时,希望通过频谱资源的空间复用来减轻干扰,因此设置单元101为第一条件设置更高的权重。
一般地,具有波束赋形能力的网络节点可以开启波束赋形功能,也可以不开启。例如,在毫米波通信中,网络节点具备使用定向天线和全向天线的能力,并且可以自行决定是否开启定向天线功能。因此,设置单元101还可以设置指示适用第一条件的附加条件。换言之,使得网络节点应用第一条件相关的波束赋形功能时需要满足附加条件。
示例性地,附加条件可以涉及以下中的一个或多个:具有波束赋形能力的网络节点同意开启波束赋形功能;具有波束赋形能力的网络节点的电量高于预定阈值;系统频谱资源不充足;开启波束赋形功能能够降低系统整体干扰。
可以理解,是否开启波束赋形功能需要相应网络节点的许可。另一方面,由于网络节点在开启波束赋形功能时,需要使用天线阵上的大量天线进行波束成形,因此相比使用全向天线时更加耗能。只有网络节点的电量充足时,才能够支持波束赋形功能。对于附加条件的判断可以由网络节点进行,也可以由网络控制端进行,这并不是限制性的。
例如,网络控制端可以根据网络节点密度、通信速率的要求、系统可用频谱资源和系统的干扰状况等信息,来判断是否有必要开启波束赋形功能。例如,在系统频谱资源不足时,或者在开启波束赋形功能能够降低系统整体干扰时,才判断为有必要开启波束赋形功能。
作为一个示例,设置单元101还可以被配置为为中继节点分配资源池,并且生成单元102将该资源池的指示信息包括在控制信令中。换言之,设置单元101在设置中继节点的选择条件的同时为之后将作为中继节点工作的网络节点预先分配频谱资源。网络节点在确定要作为中继节点之后可以直接使用资源池中的频谱资源进行中继通信而无需网络终端的进一步干预。
应该理解,本文所述的控制信令在一些示例中实现为一条信令,在 另一些示例中可以包括多条信令并由网络控制端分别发出,比如可以分别发送关于第一条件的控制信令、关于第二条件的控制信令和关于资源池的控制信令。当然,这仅是示例,控制信令的发送方式是非限制性的。
其中,控制信令可以为广播信令。具体地,网络控制端通过广播信道向其覆盖范围内的所有网络节点发送上述控制信令。示例性地,该控制信令的指示信息可以包含在基于LTE协议改进得到的系统信息中,比如,可以实现为SystemInformationBlockType18或SystemInformationBlockType19信元。在传统的LTE协议中,SystemInformationBlockType19信元中包含作为中继用户设备(UE)的上行链路质量条件和作为被中继的远端UE的上行链路质量条件。在此基础上,添加了discBeamsThreshLoRelayUE-r13+n,其中,r13+n表示版本号,可以适当地修改为实际所用协议的版本,discBeamsThreshLoRelayUE表示能够形成的定向波束的数量的阈值,取值为1~n,如图6所示。可替代地,控制信令也可以是专用信令。
在另一个示例中,设置单元101并不预先分配资源池,而是基于来自主网络节点的配置信息为其分配频谱资源,其中,主网络节点为确定作为中继节点的网络节点。该配置信息包括主网络节点要服务的从网络节点的分组信息,其中,同一组从网络节点在波束赋形的情况下使用同一时频资源进行数据传输时的干扰低于预定程度。换言之,主网络节点可以通过空分复用使用同一时频资源向同一组从网络节点发送数据,而将干扰保持在期望范围内。
在该示例中,网络节点接收到网络控制端的至少包含第一条件的指示信息的控制信令之后,自主地确定是否要作为中继节点工作,当确定作为中继节点工作后,其成为主网络节点,允许一个或多个从网络节点接入,并进行按照上述规则的分组,随后基于分组情况生成配置信息。设置单元101能够根据分组的状况为该主网络节点分配频谱资源。应该理解,所分配的频谱资源可以包括主网络节点与从网络节点之间的中继通信要使用的频谱资源以及主网络节点与网络控制端之间的通信要使用的频谱资源两方面。或者,这两方面的通信也可以使用相同的频谱资源。
在下文中还将主网络节点和其所有从网络节点称为一个节点簇。设置单元101在为多个节点簇分配频谱资源时还可以尽量为相邻的节点簇 分配不同的资源块,以减小簇间的干扰。
示例性地,上述配置信息可以为基于LTE协议改进得到的SidelinkUEInformation消息,具体地可以是commTxResourceInfoReqRelay信元。与传统的LTE协议中的commTxResourceInfoReqRelay信元相比,本申请新增了commTxResourceReqRelay,用于表示要为其分配频谱资源的中继通信传输的多点传送目的地标识符,即节点簇中的从网络节点的标识符,取值为SL-CommTxResourceReqMC,SL-CommTxResourceReqMC中包括destinationInfoListMC,用于表示多点传送的地址,取值为SL-DestinationInfoListMC,如图7所示。
此外,配置信息中还可以包括主网络节点是否开启波束赋形的信息。在配置消息为改进的SidelinkUEInformation消息的情况下,可以通过在commTxResourceInfoReqRelay信元中加入BF-Type(取值为开或关)来指示该信息,如图7所示。
可替选地,由网络控制端根据分组信息等来确定主网络节点是否开启波束赋形功能。例如,网络控制端可以根据系统信息以及分组信息,来分析主网络节点开启波束赋形时能否显著减小干扰,如果能够显著减小干扰,则确定开启波束赋形功能。在这种情况下,网络控制端可以综合考虑整个系统的频谱资源使用状况和/或干扰状况来作出决策,有助于提高整体性能。
在上述示例中,网络节点自主地决定是否成为中继节点并且不需要网络控制端的确认。然而,还可以将设置单元101配置为基于来自网络节点的申请选择要作为中继节点的网络节点作为主网络节点,并且生成单元102相应地生成针对该主网络节点的通知。该申请中例如还可以包括相应网络节点的波束赋形能力的信息。相应的主网络节点在接收到上述通知后可以如上所述允许从网络节点接入,并且进行分组。
在这种情况下,通知中还可以包括分配给该主网络节点的频谱资源,如果通知中包括频谱资源,则主网络节点随后不必向网络控制端发送配置信息。或者,也可以在主网络节点向网络控制端发送了配置信息(包括分组信息)之后,网络控制端再为该主网络节点要进行的中继通信分配频谱资源。
而关于主网络节点是否要开启波束赋形功能,可以由网络控制端决定,也可以由主网络节点自己决定。在前者的情况下,关于主网络节点是否要开启波束赋形功能的指示可以包括在上述通知中,也可以在网络控制端根据配置信息向主网络节点分配频谱资源时发送。在后者的情况下,可以在进行分组前确定或者在进行分组后确定,并且在必要时将确定的结果包含在配置信息中以提供给网络控制端。
应该理解,在本实施例中,网络控制端与主网络节点之间的通信可以利用微波频段或毫米波频段,主网络节点和从网络节点之间的通信也可以利用微波频段或毫米波频段,可以任意组合而不受限制。
根据本实施例的电子设备100通过设置关于波束赋形能力的第一条件,使得具有波束赋形能力的网络节点作为中继节点,实现频谱资源的空分复用,从而实现例如一对多的中继,提高了频谱资源的利用效率,提高了系统容量和通信质量。
<第二实施例>
图8示出了根据本申请的一个实施例的信息处理设备200的功能模块框图,该信息处理设备200包括:设置单元101,被配置为设置关于网络节点的波束赋形能力的第一条件,以确定能够作为中继节点的网络节点;生成单元102,被配置为生成包含第一条件的指示信息的控制信令,以用于指示该网络控制端所服务的网络节点;以及收发单元201,被配置为向网络节点发送控制信令。
其中,设置单元101和收发单元201与第一实施例中参照图1所描述的设置单元101和收发单元201具有相同的功能和结构,其相关的描述在第一实施例中已给出,在本实施例中同样适用,在此不再赘述。
在一个示例中,收发单元201还被配置为接收来自主网络节点的配置信息以使得处理电路基于该配置信息为主网络节点分配频谱资源,配置信息包括主网络节点要服务的从网络节点的分组信息,其中,同一组从网络节点在波束赋形的情况下使用同一时频资源进行数据传输的干扰低于预定程度。与第一实施例中类似,该配置信息还可以包括主网络节点是否开启波束赋形功能的信息。
此外,收发单元201还可以向被确定作为中继节点的网络节点发送通知以告知其被允许作为中继节点,其中可以由设置单元101基于来自网络节点的申请进行中继节点的确定。该通知中还可以包括分配给该中继节点的频谱资源。此外,该通知中还可以包括该中继节点是否开启波束赋形功能的指示信息。
收发单元201可以工作在毫米波波段或微波波段。
设置单元101和收发单元201例如可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。收发单元201例如可以实现为天线或天线阵列。
<第三实施例>
图9示出了根据本申请的另一个实施例的用于网络节点的电子设备300的功能模块框图,电子设备300包括:第一确定单元301,被配置为基于来自网络控制端的控制信令确定关于网络节点的波束赋形能力的第一条件;以及第二确定单元302,被配置为根据第一条件确定本网络节点是否要作为中继节点工作。
与第一实施例中类似,第一条件可以包括能够形成的定向波束的数量的阈值以及/或者定向波束的角度范围的阈值,或者第一条件可以仅包括是否具有波束赋形功能。
此外,第一确定单元301还可以被配置为基于控制信令确定关于网络节点的链路质量的第二条件,并且第二确定单元302根据第一条件和第二条件两者来确定本网络节点是否要作为中继节点工作。链路质量例如用RSRP、RSRQ或者单位带宽的信道容量上限表示。
在一个示例中,第一确定单元301还被配置为基于控制信令确定第一条件和第二条件各自的权重。第二确定单元302在进行确定时使用该权重对两个条件分别进行加权,并且综合考虑加权后的结果来确定是否要作为中继节点工作。
在另一个示例中,第一确定单元301还被配置为基于控制信令确定适用第一条件的附加条件。例如,附加条件涉及以下中的一个或多个: 具有波束赋形能力的网络节点同意开启波束赋形功能;具有波束赋形能力的网络节点的电量高于预定阈值;系统频谱资源不充足;开启波束赋形功能能够降低系统整体干扰。
有关第一条件、第二条件和附加条件的描述在第一实施例中已详细给出,在本实施例中同样适用,在此不再重复。
如前所述,第二确定单元302根据控制信令中的相关条件确定本网络节点是否要作为中继节点(主网络节点)工作或者是否通过中继节点与网络控制端通信、即作为从网络节点工作。在网络节点既不作为主网络节点也不作为从网络节点的情况下,其作为正常的网络节点与网络控制端直接进行通信。
在是否成为中继节点不需要网络控制端的进一步确认的情况下,在本网络节点确定要作为中继节点工作之后,其可以工作为中继节点。随后,例如,本网络节点向所有其他网络节点广播导频信号,当一个从网络节点例如通过比较所接收到的来自若干个主网络节点的导频信号而选择接入对其而言信道状态和链路质量最好的本网络节点时,该从网络节点向本网络节点发送接入请求,本网络节点随后向该从网络节点发送链接响应反馈,从而与该从网络节点建立连接。这样,形成包括该主网络节点和其从网络节点的节点簇,在网络控制端的覆盖范围内,可能存在多个节点簇。
再次参照图9,如其中的一个虚线框所示,电子设备300还可以包括分组单元303,被配置为对接入本网络节点的从网络节点进行分组,其中,同一组中的从网络节点在波束赋形的情况下使用同一时频资源进行数据传输时干扰低于预定程度。
在一个示例中,分组单元303基于干扰图对从网络节点进行分组,干扰图代表在波束赋形的情况下使用同一时频资源通信时各个从网络节点之间的干扰状况。例如,针对每个节点簇建立相应的干扰图,然后通过相应算法比如染色算法等找出干扰图中的不相交的独立集合(即,分组),其中,每一个独立集合中的从网络节点在波束赋形的情况下使用同一时频资源进行数据传输时干扰低于预定程度。这样,主网络节点可以为一个独立集合中的各个从网络节点分配相同的时隙和资源块。
图10示出了一个节点簇的实际场景的示意图,其中,双圆圈代表主网络节点,4个圆圈分别代表从网络节点,每一个圆圈旁的数字代表相应从网络节点的编号。
图11示出了图10的节点簇对应的干扰图。例如,将每一个从网络节点视为干扰图中的一个顶点,分析任意两个从网络节点之间的干扰程度,该干扰程度为主网络节点使用相同的时隙和频段向这两个从网络节点发送信号时的干扰程度。如果两个从网络节点之间的干扰很小比如低于预定程度,意味着主网络节点可以使用相同时频资源与这两个从网络节点通信,则这两个从网络节点在干扰图中的对应顶点之间不存在边,反之,则在两个对应顶点之间加上1条边。在对所有的从网络节点对进行分析之后,完成干扰图的构建。
上述干扰图用G=(V,E)表示,其中V和E分别代表干扰图中的点集合和边集合。当点集合V的子集合S满足其中的任意两个点在干扰图中均没有一条边连接这两个点时,该子集合S为独立集合。独立集合中包含最多点的独立集合为最大独立集合。如前所述,将所有从网络节点分为互不相交的独立集合之后,主网络节点可以将相同的时频资源块应用于一个独立集合中的各个从网络节点并且通过基于波束赋形功能的空分复用来避免干扰。
示例性地,在分析两个从网络节点之间的干扰程度时,可以根据从网络节点与主网络节点的相对位置来进行判断。例如,当从网络节点与主网络节点的位置连线之间的夹角较大时,认为干扰程度会较小,而如果连线之间的夹角较小甚至小于定向波束的主瓣宽度时,认为干扰程度会较大。具体地例如可以根据经验或计算来设置夹角的阈值。
此外,还可以通过测量两个从网络节点的接收信号信干噪比来进行判断。例如,当信干噪比大于某一阈值时,认为干扰程度低于预定程度。
或者,主网络节点可以通过理论上的信道模型和天线模型来计算从网络节点之间的干扰程度。
在主网络节点无法进行干扰程度的准确计算或估计时,还可以使用相同的时频资源块向两个从网络节点发送测试信号,并通过从网络节点的接收信号的信干噪比来进行判断。这种方式也可以看作是对波束赋形 的一种调整。
在如上所述进行了从网络节点的分组之后,节点簇可以开始进行中继通信。此外,应该理解,当网络节点的位置、分布密度、链路状况等变化时,例如,当已有网络节点离开网络控制端的覆盖范围、新的网络节点进入网络控制端的覆盖范围时,可能需要重新进行主网络节点的选择,重新进行分簇或者重新进行节点簇中的从网络节点分组。
可以理解,在网络控制端和多个主网络节点(或主网络节点与普通网络节点的组合)之间利用波束赋形进行通信的示例中,上述分组单元303可以设置于网络控制端中,按照类似的方式,网络控制端对多个主网络节点进行分组以确定可以为哪些主网络节点分配相同的时频资源,此处不再赘述。
在一个示例中,第一确定单元301还被配置为基于控制信令确定本网络节点作为中继节点工作时能够使用的资源池。在本网络节点作为中继节点工作比如完成了从网络节点的接入和分组之后,本网络节点可以直接利用资源池中的资源进行中继传输。例如,在开启波束赋形功能的情况下,为同一组中的各个从网络节点分配同一时频资源。此外,还可以仅为最大独立集合中的从网络节点分配频谱资源,而节点簇中其他从网络节点不被分配频谱资源,并且在下一次通信中选择接入其他主网络节点。
当然,也可以存在如下情形,例如由于资源充足或通信可靠要求性高,本网络节点并不开启波束赋形功能,而是使用全向天线利用不同时频资源与从网络节点进行通信。
在另一个示例中,控制信令中并不包括为主网络节点分配的资源池的信息,网络控制端通过其他信令为主网络节点分配频谱资源。如图9中的虚线框所示,电子设备300还可以包括:生成单元304,被配置为生成关于分组的信息,以提供给网络控制端,并且本网络节点使用网络控制端根据该分组信息所分配的频谱资源执行与从网络节点的通信。
在该示例中,例如可以由第二确定单元302比如根据本网络节点自身的状况以及通信系统的状态比如干扰状况和频谱资源使用状况等确定是否开启波束赋形功能,该确定可以发生在分组之前,也可以发生在分 组之后,如果发生在分组之后,则确定时还将分组情况考虑在内。示例性地,主网络节点根据接收到的信号分析干扰大小和情况,并通过与邻近主网络节点的通信得到该主网络节点与邻近主网络节点的干扰状况,根据这些干扰状况,分析相比于使用全向天线的情形,使用定向天线(即,开启波束赋形功能)是否有助于显著减小干扰,如果是,则确定开启波束赋形功能。
生成单元304还可以相应地生成是否开启波束赋形功能的指示信息,以提供给网络控制端,并且本网络节点使用网络控制端根据该指示信息和分组信息所分配的频谱资源执行与从网络节点的通信。
或者,也可以由网络控制端根据分组信息等来决定是否开启波束赋形功能并通知本网络节点。同样地,在确定开启波束赋形功能的情况下,为同一组中的各个从网络节点分配同一时频资源。
在又一个示例中,生成单元304被配置为在确定本网络节点要作为中继节点工作时生成向网络控制端申请成为中继节点的申请信息。网络控制端在同意该申请后向本网络节点发送相应的通知。第二确定单元302基于该通知来确定本网络节点被选择作为中继节点。随后,本网络节点可以如上进行从网络节点的接入,并且进行分组。
类似地,是否开启波束赋形功能可以由主网络节点自己确定,例如由第二确定单元302比如根据本网络节点自身的状况以及通信系统的状态比如干扰状况和频谱资源使用状况等来确定。或者,是否开启波束赋形功能由网络控制端确定,相应的指示信息例如可以包括在上述通知中,或者在网络控制端根据提供的分组信息等分配频谱资源时发送。此外,上述通知中还可以包括网络控制端分配的频谱资源的指示。
关于控制信令和分组信息的传递所使用的信令在第一实施例中进行了详细描述,同样适用于本实施例,在此不再重复。
综上所述,根据本实施例的电子设备300在本网络节点作为中继节点时,可以使用波束赋形功能来进行频谱资源的空分复用,提高了频谱利用效率,提高了系统容量和通信质量,并扩展了通信范围。
此外,网络控制端与主网络节点之间的通信也可以利用波束赋形功能来对同一时频资源实现空分复用,这样使得每个主网络节点能够被分 配更多的频谱资源。
第一确定单元301、第二确定单元302、分组单元303和生成单元304例如可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
<第四实施例>
图12示出了根据本申请的另一个实施例的信息处理设备400的功能模块框图,该信息处理设备400包括:收发单元401,被配置为接收来自网络控制端的控制信令;第一确定单元301,被配置为基于控制信令确定关于网络节点的波束赋形能力的第一条件;以及第二确定单元302,被配置为根据第一条件确定本网络节点是否要作为中继节点工作。
其中,第一确定单元301和第二确定单元302与第三实施例中所述的第一确定单元301和第二确定单元302具有相同的功能和结构,此外,虽然图中未示出,但是信息处理设备400还可以包括第三实施例中所述的分组单元303和生成单元304。关于这些单元的细节在第三实施例中已经给出了详细描述,同样适用于本实施例,在此不再重复。
示例性地,在本网络节点作为中继节点工作的情况下,收发单元401还被配置为向其他网络节点发送导频信号,接收来自其他网络节点的连接请求,并向被接受作为其从网络节点的网络节点发送连接响应以建立连接。
此外,收发单元401还被配置为向网络控制端发送如下信息中的一种或多种:向网络控制端申请成为中继节点的申请信息;从网络节点的分组信息;是否开启波束赋形功能的指示信息。
另一方面,收发单元401还被配置为从网络控制端接收如下信息中的一种或多种:网络控制端分配的频谱资源;是否开启波束赋形功能的指示信息;被选择作为中继节点的通知信息。
示例性地,收发单元401可以在毫米波波段或微波波段上与网络控制端进行通信;收发单元401可以在毫米波波段或微波波段上与从网络节点进行通信。
第一确定单元301、第二确定单元302、分组单元303和生成单元304例如可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。收发单元401例如可以实现为多根天线(天线阵列)。例如,每根天线连接至一个移相器,通过调节移相器的相位来形成定向波束,以服务从网络节点。
<第五实施例>
在上文的实施方式中描述电子设备和信息处理设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于电子设备和信息处理设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,电子设备和信息处理设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用电子设备和信息处理设备的硬件和/或固件。
图13示出了根据本申请的一个实施例的用于网络控制端的电子设备的方法的流程图,该方法包括:设置关于网络节点的波束赋形能力的第一条件(S11),用以确定能够作为中继节点的网络节点;以及生成包含第一条件的指示信息的控制信令,以用于指示该网络控制端所服务的网络节点(S14)。
例如,第一条件包括能够形成的定向波束的数量的阈值以及/或者定向波束的角度范围的阈值。
此外,如图中的虚线框所示,上述方法还可以包括:设置关于网络节点的链路质量的第二条件用于确定能够作为中继节点的网络节点(S12),并且在步骤S14中生成还包含第二条件的指示信息的控制信令。
在一个示例中,控制信令中还包含在确定能够作为中继节点的网络节点时所述第一条件和所述第二条件各自的权重的信息。权重例如可以根据系统的频谱资源状态以及/或者干扰情况来确定。
在步骤S12中还根据如下中的一个或多个来设置所述第二条件:网络节点的分布密度,所述网络控制端的覆盖范围,网络节点的目标传输 速率。
示例性地,控制信令中还可以包括指示适用第一条件的附加条件。附加条件例如涉及以下中的一个或多个:具有波束赋形能力的网络节点同意开启波束赋形功能;具有波束赋形能力的网络节点的电量高于预定阈值;系统频谱资源不充足;开启波束赋形功能能够降低系统整体干扰。
在一个示例中,上述方法还可以包括步骤S13:为中继节点分配资源池,并且在步骤S14中还将资源池的指示信息包括在控制信令中。
控制信令可以为广播信令,比如基于改进的LTE协议的系统消息的SystemInformationBlockType18或SystemInformationBlockType19信元。或者,控制信令可以为专用信令。
在另一个示例中,如图14所示,方法不包括步骤S13,而是网络控制端在发送控制信令之后接收来自主网络节点的配置信息,主网络节点为确定作为中继节点的网络节点,方法包括步骤S15:基于该配置信息为主网络节点分配频谱资源,其中,配置信息包括主网络节点要服务的从网络节点的分组信息,其中,同一组从网络节点在波束赋形的情况下使用同一时频资源进行数据传输时的干扰低于预定程度。
此外,配置信息中还包括主网络节点是否开启波束赋形功能的信息。或者,也可以设置为网络控制端决定是否开启波束赋形功能,并通知给主网络节点。
在又一个示例中,如图15所示,方法包括步骤S16:基于来自网络节点的申请选择要作为中继节点的网络节点作为主网络节点,并相应地生成针对该主网络节点的通知。换言之,网络节点是否能够作为中继节点工作需要获得网络控制端的确认。
通知中还可以包括分配给主网络节点的频谱资源。以及/或者,通知中还可以包括是否开启波束赋形功能的指示信息。或者,也可以由主网络节点自己决定是否开启波束赋形功能,并且在完成分组并将分组信息提供给网络控制端后,网络控制端再为其分配频谱资源。
上述方法中的网络控制端例如可以为基站,网络节点例如可以为用户设备或网络基础设施。网络控制端和主网络节点之间的通信以及主从网络节点之间的通信均可以利用微波波段或毫米波波段。
图16示出了根据本申请的另一个实施例的用于网络节点的电子设备的方法的流程图,该方法包括:基于来自网络控制端的控制信令确定关于网络节点的波束赋形能力的第一条件(S21);根据第一条件确定本网络节点是否要作为中继节点工作(S22)。例如,第一条件包括能够形成的定向波束的数量的阈值以及/或者定向波束的角度范围的阈值。
此外,在步骤S21中还可以基于控制信令确定关于网络节点的链路质量的第二条件,并且在步骤S22中,根据第一条件和第二条件来确定本网络节点是否要作为中继节点工作。在步骤S21中还可以基于控制信令确述第一条件和第二条件各自的权重。
在一个示例中,在步骤S21中还可以基于控制信令确定适用第一条件的附加条件。附加条件可以涉及以下中的一个或多个:具有波束赋形能力的网络节点同意开启波束赋形功能;具有波束赋形能力的网络节点的电量高于预定阈值;系统频谱资源不充足;开启波束赋形功能能够降低系统整体干扰。
在步骤S21中还可以基于控制信令确定本网络节点作为中继节点工作时能够使用的资源池。
如图16中的虚线框所示,还包括如下步骤S23:在本网络节点作为中继节点工作后,对接入本网络节点的从网络节点进行分组,其中,同一组中的从网络节点在波束赋形的情况下使用同一时频资源进行数据传输时干扰低于预定程度。
上述方法还包括步骤S24:确定是否开启波束赋形功能,并且在确定开启的情况下,为同一组中的各个从网络节点分配同一时频资源。注意,也可以先进行是否开启波束赋形功能的确定,并且在确定开启之后进行分组。
在一个示例中,还可以在步骤S23中生成关于分组的信息,以提供给网络控制端,并且主网络节点随后使用网络控制端根据该分组信息所分配的频谱资源执行与从网络节点的通信。
此外,在步骤S24中还可以生成是否开启波束赋形功能的指示信息,以提供给网络控制端,并且主网络节点随后使用网络控制端根据该指示信息和分组信息所分配的频谱资源执行与从网络节点的通信。
在另一个示例中,在步骤S23中还可以在确定本网络节点要作为中继节点工作时生成向网络控制端申请成为中继节点的申请信息。网络控制端根据该网络节点的状况、系统频谱资源利用状况等确定是否选择其作为中继节点,并发送通知。本网络节点在接收到网路控制端的确认通知后才进行从网络节点的接入和分组。示例性地,该通知还包括以下中的一个或多个:网络控制端分配的频谱资源;本网络节点是否开启波束赋形功能的指示信息。
在一个示例中,在步骤S23中,基于干扰图对从网络节点进行分组,干扰图代表在波束赋形的情况下使用同一时频资源通信时各个从网络节点之间的干扰状况。
注意,上述各个方法可以结合或单独使用,其细节在第一至第四实施例中已经进行了详细描述,在此不再重复。
为了便于理解,以下将参照图17-22描述网络控制端和网络节点间的几种示例性信息流程。其中网络控制端可以包括前文所述的电子设备100或信息处理设备200中的任意一个或者能够实现其至少一部分功能,网络节点可以包括前文所述的电子设备300或信息处理设备400中的任意一个或者能够实现其至少一部分功能。并且,至少一部分网络节点具有波束赋形能力,例如具有多天线。应该理解,这些信息流程仅是为了说明的用途,而不是限制性的。
网络控制端例如为基站比如eNB,分别示出了主网络节点和从网络节点作为网络节点的示例,网络节点例如为用户设备(UE)或网络基础设施。应该理解,网络节点的数目并不是限制性的,只是为了说明的需要。
图17示出了网络控制端和网络节点间的第一示例性信息流程。首先网络控制端设置能够作为中继节点的网络节点需要满足的条件,这些条件可以包括前文所述的第一条件,并且还可以可选地包括第二条件、适用第一条件的附加条件等。并且在该示例中,网络控制端预先为中继节点将要执行的中继通信分配资源池,即中继节点可以直接利用资源池中预留的时频资源为其从网络节点提供中继服务。接着,网络控制端广播所设置的条件和分配的资源池的信息。其覆盖范围内的网络节点在收到所广播的条件后,判断自己是否满足条件比如是否具有波束赋形能力等, 并且自主地确定是否要作为中继节点、即主网络节点。如果确定要作为主网络节点,则向其他网络节点广播导频信号。此时,判断自己要作为从网络节点工作的网络节点将接收主网络节点的导频信号,通过信道估计算法计算出自己与主网络节点之间的信道状态和链路质量。在存在来自多个主网络节点的导频信号的情况下,从网络节点选择接入与其之间的信道的信道状态和链路质量最好的主网络节点,当然也可以采取任何其他策略,并不影响本申请的实施。
接下来,从网络节点向要接入的主网络节点发送连接请求,主网络节点在同意其接入的情况下向其发送连接响应从而与该从网络节点建立连接。另一方面,当主网络节点不同意该从网络节点接入时,也可以通知该从网络节点,或者,从网络节点在等待超时后,例如再次从其余的主网络节点中选择与其之间的信道的信道状态和链路质量最好的主网络节点,并发送连接请求。这样,所有网络节点被分为若干个主从网络节点簇(简称节点簇),每一个节点簇包括一个主网络节点和一个或多个从网络节点。
主网络节点根据例如网络节点密度、通信要求、干扰状况、频谱资源状态、自身状况等确定是否要开启波束赋形功能。或者,主网络节点默认开启波束赋形功能。
为了利用波束赋形功能实现频谱资源的空分复用,主网络节点还对接入其的从网络节点进行分组,以获得在利用同一时频资源进行数据传输时相互干扰低于预定程度的从网络节点的独立集合。该分组例如可以基于干扰图进行。在获得若干个不相交的独立集合后,针对每一个独立集合,主网络节点为其中的从网络节点分配资源池中的相同的时频资源。此外,由于可能存在多个节点簇同时使用资源池中的频谱资源,因此需要各个节点簇之间的协同操作,以减少节点簇之间的相互干扰。
图18示出了网络控制端和网络节点间的第二示例性信息流程。该示例与参照图17描述的第一示例性信息流程的区别在于,在主网络节点完成分组之后,网络控制端才向其分配频谱资源。
在图18中,确定要作为中继节点的主网络节点根据自身条件、干扰状况、系统频谱利用状况等信息,确定是否开启波束赋形功能。随后,主网络节点广播导频信号,接收来自从网络节点的连接请求并发送连接 响应以建立连接。随后,在确定开启波束赋形功能的情况下,主网络节点例如基于干扰图对所接入的从网络节点进行分组,并且将分组的信息和是否开启波束赋形功能的指示信息发送给网络控制端。网络控制端根据这些信息向该主网络节点分配资源。如前所述,所分配的频谱资源可以包括主网络节点与从网络节点之间的中继通信要使用的频谱资源以及主网络节点与网络控制端之间的通信要使用的频谱资源两方面。或者,这两方面的通信也可以使用相同的频谱资源。接着,该主网络节点将网络控制端分配的资源分配给其从网络节点以进行中继通信。
图19示出了网络控制端和网络节点间的第三示例性信息流程。该示例与参照图18描述的第二示例性信息流程的区别在于何时确定是否开启波束赋形功能不同。
在图19中,主网络节点在完成了从网络节点的接入和分组之后,确定是否开启波束赋形功能。在这种情况下,在进行确定时还可以将分组信息考虑在内。随后,主网络节点将分组的信息和是否开启波束赋形功能的指示信息发送给网络控制端。网络控制端根据这些信息向该主网络节点分配资源。接着,该主网络节点将网络控制端分配的资源分配给其从网络节点以进行中继通信。
此外,图20示出了第三示例性信息流程的一种变型。在该变型中,主网络节点在完成了从网络节点的接入和分组之后,不进行是否开启波束赋形功能的确定,而是将分组信息提供给网络控制端。网络控制端根据该分组信息以及其他系统信息比如干扰和频谱资源利用状况等,来确定是否开启波束赋形功能,并将相应的指示信息发送给主网络节点。此外,网络控制端还相应地向该主网络节点分配资源。接着,该主网络节点将网络控制端分配的资源分配给其从网络节点以进行中继通信。
图21示出了网络控制端和网络节点间的第四示例性信息流程。该信息流程与上述第一至第三示例性信息流程的区别在于,网络节点要成为中继节点需要网络控制端的进一步确认。
在图21中,确定要作为中继节点的网络节点需要向网络控制端发送申请成为中继节点的申请信息,该申请信息中例如还可以包括该网络节点的波束赋形能力的信息。网络控制端根据申请信息决定该网络节点是否能够作为中继节点,并且向其发送通知。在该网络节点被准许作为中 继节点的情况下,其可以与图18类似地确定是否开启波束赋形功能,并进行从网络节点的接入和分组,以及使用网络控制端分配的频谱资源进行中继通信。也可以与图19类似地在分组之后在进行是否开启波束赋形功能的确定(图21中未示出该情形)。由于详细流程与图18和图19基本相同,在此不再重复。
此外,在图21中,网络控制端还可以在向网络节点发送能够作为中继节点工作的通知时为其分配频谱资源,此时,则不需要执行分组之后的向网络控制端发送配置信息以及网络控制端分配频谱资源的操作。
图22示出了第四示例性信息流程的一个变型。在该变型中,网络控制端在向网络节点发送能够作为中继节点工作的通知时,还给出了是否开启波束赋形功能的指示信息。换言之,由网络控制端根据相关的系统信息来确定是否开启波束赋形功能。
此外,替代地,如图22中的虚线框所示,还可以类似于图20的情形,在进行了从网络节点的接入和分组,并且向网络控制端报告分组信息之后,由网络控制端确定是否开启波束赋形功能。随后,网络控制端将是否开启波束赋形功能的指示信息和分配的频谱资源通知给主网络节点。
综上所述,根据本申请的电子设备、信息处理设备和方法能够利用网络节点的波束赋形功能实现一对多中继,实现频谱资源的空间复用,提高了系统容量和通信质量。
此外,以上虽然针对中继通信的场景描述了本技术,但是本领域的技术人员应该理解,这仅是示例性实施例。本申请的技术并不限于此,而是可以应用于其他多种通信场景,例如ProSe通信中主节点和多个从节点之间进行中继以外的通信的场景,比如一般的D2D通信、V2X通信场景等,在这些场景中,可以按照上述中继通信示例中所述的类似的方式优选具有波束赋形能力的节点作为主节点以高效地与各个从节点进行例如资源调度、干扰消除等控制消息的通信。并且,本领域的技术人员可以根据本申请公开的技术内容进行合理的变型和修改,这些变型和修改均在本申请的范围内。
<应用示例>
本公开内容的技术能够应用于各种产品。以上提到的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
[关于基站的应用示例]
(第一应用示例)
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图23所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图23示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图23所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图23所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图23示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图23所示的eNB 800中,参照图8所描述的收发单元201可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行设置单元101、生成单元102的功能来执行中继节点需要满足的条件的设置和相应控制信令的生成。
(第二应用示例)
图24是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图24所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图24示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图24描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图24描述的BB处理器826相同。如图24所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图24示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混 频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图24所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图24示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图24所示的eNB 830中,参照图8所描述的收发单元201可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以控制器851实现。例如,控制器851可以通过执行设置单元101、生成单元102的功能来执行中继节点需要满足的条件的设置和相应控制信令的生成。
[关于用户设备的应用示例]
(第一应用示例)
图25是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极 管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图25所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图25示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。虽然图中未示出,但是在天线916包括多个天线元件的情况下,RF链路可以通过多个移相器分别与多个天线元件连接。如图25所示,智能电话900可以包括多个天线916。虽然图25示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口 904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图25所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图25所示的智能电话900中,参照图12所描述的收发单元401可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行第一确定单元301、第二确定单元302、分组单元303、生成单元304的功能来确定本网络节点是否要作为中继节点工作。
(第二应用示例)
图26是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输 出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图26所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图26示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图26所示,汽车导航设备920可以包括多个天线937。虽然图26示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图26所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图26示出的汽车导航设备920中,参照图12所描述的收发单元401可以由无线通信接口933实现。功能的至少一部分也可以由处理器 921实现。例如,处理器921可以通过通过执行第一确定单元301、第二确定单元302、分组单元303、生成单元304的功能来确定本网络节点是否要作为中继节点工作。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图27所示的通用计算机2700)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图27中,中央处理单元(CPU)2701根据只读存储器(ROM)2702中存储的程序或从存储部分2708加载到随机存取存储器(RAM)2703的程序执行各种处理。在RAM 2703中,也根据需要存储当CPU 2701执行各种处理等等时所需的数据。CPU 2701、ROM 2702和RAM 2703经由总线2704彼此连接。输入/输出接口2705也连接到总线2704。
下述部件连接到输入/输出接口2705:输入部分2706(包括键盘、鼠标等等)、输出部分2707(包括显示器,比如阴极射线管(CRT)、 液晶显示器(LCD)等,和扬声器等)、存储部分2708(包括硬盘等)、通信部分2709(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2709经由网络比如因特网执行通信处理。根据需要,驱动器2710也可连接到输入/输出接口2705。可移除介质2711比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2710上,使得从中读出的计算机程序根据需要被安装到存储部分2708中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2711安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图27所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质2711。可移除介质2711的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2702、存储部分2708中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利 要求及其等效含义来限定。

Claims (32)

  1. 一种用于网络控制端的电子设备,包括:
    处理电路,该处理电路被配置为:
    设置关于网络节点的波束赋形能力的第一条件,用以确定能够作为中继节点的网络节点;以及
    生成包含所述第一条件的指示信息的控制信令,以用于指示该网络控制端所服务的网络节点。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为设置关于网络节点的链路质量的第二条件用于确定所述能够作为中继节点的网络节点,并且生成还包含所述第二条件的指示信息的所述控制信令。
  3. 根据权利要求2所述的电子设备,其中,所述控制信令中还包含在确定所述能够作为中继节点的网络节点时所述第一条件和所述第二条件各自的权重的信息。
  4. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为根据系统的频谱资源状态以及/或者干扰情况来确定所述权重。
  5. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为根据如下中的一个或多个来设置所述第二条件:网络节点的分布密度,所述网络控制端的覆盖范围,网络节点的目标传输速率。
  6. 根据权利要求1所述的电子设备,其中,所述控制信令中还包括指示适用所述第一条件的附加条件。
  7. 根据权利要求6所述的电子设备,其中,所述附加条件涉及以下中的一个或多个:具有波束赋形能力的网络节点同意开启波束赋形功能;具有波束赋形能力的网络节点的电量高于预定阈值;系统频谱资源不充足;开启波束赋形功能能够降低系统整体干扰。
  8. 根据权利要求1所述的电子设备,其中,所述第一条件包括能够形成的定向波束的数量的阈值以及/或者所述定向波束的角度范围的阈值。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为为中继节点分配资源池,并且将所述资源池的指示信息包括在所述控制信令中。
  10. 根据权利要求1所述的电子设备,其中,所述控制信令为广播信令。
  11. 根据权利要求1所述的电子设备,所述处理电路还被配置为基于来自主网络节点的配置信息为其分配频谱资源,所述主网络节点为确定作为中继节点的网络节点,所述配置信息包括所述主网络节点要服务的从网络节点的分组信息,其中,同一组从网络节点在波束赋形的情况下使用同一时频资源进行数据传输时的干扰低于预定程度。
  12. 根据权利要求11所述的电子设备,其中,所述配置信息还包括所述主网络节点是否开启波束赋形功能的信息。
  13. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为基于来自网络节点的申请选择要作为中继节点的网络节点作为主网络节点,并相应地生成针对该主网络节点的通知。
  14. 根据权利要求13所述的电子设备,其中,所述通知中还包括分配给所述主网络节点的频谱资源。
  15. 根据权利要求1所述的电子设备,其中,所述网络节点为用户设备。
  16. 一种用于网络节点的电子设备,包括:
    处理电路,被配置为:
    基于来自网络控制端的控制信令确定关于网络节点的波束赋形能力的第一条件;以及
    根据所述第一条件确定本网络节点是否要作为中继节点工作。
  17. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为基于所述控制信令确定关于网络节点的链路质量的第二条件,并且根据所述第一条件和所述第二条件来确定本网络节点是否要作为中继节点工作。
  18. 根据权利要求17所述的电子设备,其中,所述处理电路还被配 置为基于所述控制信令确定所述第一条件和所述第二条件各自的权重。
  19. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为基于所述控制信令确定适用所述第一条件的附加条件。
  20. 根据权利要求19所述的电子设备,其中,所述附加条件涉及以下中的一个或多个:具有波束赋形能力的网络节点同意开启波束赋形功能;具有波束赋形能力的网络节点的电量高于预定阈值;系统频谱资源不充足;开启波束赋形功能能够降低系统整体干扰。
  21. 根据权利要求16所述的电子设备,其中,所述第一条件包括能够形成的定向波束的数量的阈值以及/或者所述定向波束的角度范围的阈值。
  22. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为基于所述控制信令确定本网络节点作为中继节点工作时能够使用的资源池。
  23. 根据权利要求16所述的电子设备,其中,所述处理电路在本网络节点作为中继节点工作后,对接入本网络节点的从网络节点进行分组,其中,同一组中的从网络节点在波束赋形的情况下使用同一时频资源进行数据传输时干扰低于预定程度。
  24. 根据权利要求23所述的电子设备,其中,所述处理电路被配置为确定是否开启波束赋形功能,并且在确定开启的情况下,为同一组中的各个从网络节点分配同一时频资源。
  25. 根据权利要求23所述的电子设备,其中,所述处理电路还被配置为生成关于所述分组的信息,以提供给所述网络控制端,并且使用所述网络控制端根据该分组信息所分配的频谱资源执行与从网络节点的通信。
  26. 根据权利要求25所述的电子设备,其中,所述处理电路还被配置为生成是否开启波束赋形功能的指示信息,以提供给所述网络控制端,并且使用所述网络控制端根据该指示信息和所述分组信息所分配的频谱资源执行与从网络节点的通信。
  27. 根据权利要求16所述的电子设备,其中,所述处理电路还被配 置为在确定本网络节点要作为中继节点工作时生成向所述网络控制端申请成为中继节点的申请信息。
  28. 根据权利要求27所述的电子设备,其中,所述处理电路还被配置为基于来自所述网络控制端的通知来确定本网络节点被选择作为中继节点。
  29. 根据权利要求28所述的电子设备,其中,所述通知还包括以下中的一个或多个:所述网络控制端分配的频谱资源;本网络节点是否开启波束赋形功能的指示信息。
  30. 根据权利要求23所述的电子设备,其中,所述处理电路被配置为基于干扰图对所述从网络节点进行分组,所述干扰图代表在波束赋形的情况下使用同一时频资源通信时各个从网络节点之间的干扰状况。
  31. 一种用于网络控制端的电子设备的方法,包括:
    设置关于网络节点的波束赋形能力的第一条件,用以确定能够作为中继节点的网络节点;以及
    生成包含所述第一条件的指示信息的控制信令,以用于指示该网络控制端所服务的网络节点。
  32. 一种用于网络节点的电子设备的方法,包括:
    基于来自网络控制端的控制信令确定关于网络节点的波束赋形能力的第一条件;以及
    根据所述第一条件确定本网络节点是否要作为中继节点工作。
PCT/CN2017/087416 2016-06-21 2017-06-07 电子设备、用于电子设备的方法和信息处理设备 WO2017219863A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780018868.6A CN108781380A (zh) 2016-06-21 2017-06-07 电子设备、用于电子设备的方法和信息处理设备
US16/309,941 US10840988B2 (en) 2016-06-21 2017-06-07 Electronic device, method for same and information processing device
US17/037,721 US11387886B2 (en) 2016-06-21 2020-09-30 Electronic device, method for same and information processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610453398.3 2016-06-21
CN201610453398.3A CN107529193A (zh) 2016-06-21 2016-06-21 电子设备、用于电子设备的方法和信息处理设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/309,941 A-371-Of-International US10840988B2 (en) 2016-06-21 2017-06-07 Electronic device, method for same and information processing device
US17/037,721 Continuation US11387886B2 (en) 2016-06-21 2020-09-30 Electronic device, method for same and information processing device

Publications (1)

Publication Number Publication Date
WO2017219863A1 true WO2017219863A1 (zh) 2017-12-28

Family

ID=60735239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087416 WO2017219863A1 (zh) 2016-06-21 2017-06-07 电子设备、用于电子设备的方法和信息处理设备

Country Status (3)

Country Link
US (2) US10840988B2 (zh)
CN (2) CN107529193A (zh)
WO (1) WO2017219863A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107529193A (zh) * 2016-06-21 2017-12-29 索尼公司 电子设备、用于电子设备的方法和信息处理设备
CN110392430B (zh) * 2018-04-18 2022-06-17 成都鼎桥通信技术有限公司 一种Un接口资源分配方法
US10595363B2 (en) * 2018-05-11 2020-03-17 At&T Intellectual Property I, L.P. Autonomous topology management for wireless radio user equipment
WO2019241436A1 (en) 2018-06-14 2019-12-19 Cohere Technologies, Inc. Co-existence of orthogonal time frequency space and long term evolution systems
CN110896550A (zh) * 2018-09-12 2020-03-20 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
US11611472B2 (en) * 2021-02-26 2023-03-21 Qualcomm Incorporated Techniques for activating and deactivating user equipment relays

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070165581A1 (en) * 2006-01-17 2007-07-19 Mehta Neelesh B Method and system for communicating in cooperative relay networks
CN102123480A (zh) * 2010-01-11 2011-07-13 中兴通讯股份有限公司 中继节点接入能力的通知及传输方法
CN104394572A (zh) * 2014-11-13 2015-03-04 北京邮电大学 一种基于最优中继选择的波束赋形和干扰对齐中继传输装置
CN104684042A (zh) * 2015-03-13 2015-06-03 深圳酷派技术有限公司 物联网中的数据传输方法、系统、物联网设备、终端
CN105007608A (zh) * 2015-06-29 2015-10-28 电子科技大学 用于解码转发中继网络的中继选择方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2421662A (en) * 2004-12-23 2006-06-28 Samsung Electronics Co Ltd Adaptive relay management
RU2007136114A (ru) * 2005-03-29 2009-04-10 Мацусита Электрик Индастриал Ко., Лтд. (Jp) Система связи, устройство ретрансляции и способ ретрансляции
KR101497929B1 (ko) * 2008-11-03 2015-03-03 삼성전자주식회사 멀티-중계기 기반의 다중 입출력 통신 시스템
CN103392375B (zh) * 2011-02-16 2017-03-15 瑞典爱立信有限公司 无线网络节点及其中的方法
US9088332B2 (en) * 2012-10-05 2015-07-21 Telefonaktiebolaget L M Ericsson (Publ) Mitigation of interference from a mobile relay node to heterogeneous networks
KR101756234B1 (ko) * 2012-11-26 2017-07-10 삼성전자주식회사 복수의 릴레이 단말들을 이용하여 데이터를 중계하는 중계 방법 및 중계 시스템
US10312984B2 (en) * 2014-04-16 2019-06-04 Massachusetts Institute Of Technology Distributed airborne beamforming system
WO2016051343A1 (en) * 2014-09-29 2016-04-07 Telefonaktiebolaget L M Ericsson (Publ) Interference and/or power reduction for multiple relay nodes using cooperative beamforming
JP6985152B2 (ja) * 2015-04-08 2021-12-22 インターデイジタル パテント ホールディングス インコーポレイテッド デバイスツーデバイス(d2d)通信のモバイル中継器の実現
CN104981004B (zh) * 2015-05-25 2018-05-08 北京理工大学 基于多用户双向中继系统的收发器能效优化方法及装置
CN105553535B (zh) * 2015-12-15 2018-11-16 西安电子科技大学 基于天线选择的正交空时双向中继传输方法
CN105656537B (zh) * 2016-02-03 2019-01-08 南京邮电大学 一种基于认知混合双向中继的波束成形方法
US9948368B2 (en) * 2016-04-29 2018-04-17 Sony Corporation Proactive MIMO relaying in wireless communications
CN107529193A (zh) * 2016-06-21 2017-12-29 索尼公司 电子设备、用于电子设备的方法和信息处理设备
EP3603165B1 (en) * 2017-03-31 2024-01-17 Apple Inc. System and method for beam management procedure configuration
EP4085727A1 (en) * 2020-01-03 2022-11-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Relay device for a wireless communication system
US20220046618A1 (en) * 2020-08-04 2022-02-10 Qualcomm Incorporated Techniques for time and/or frequency domain reconfiguration of a forwarded signal using a repeater node

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070165581A1 (en) * 2006-01-17 2007-07-19 Mehta Neelesh B Method and system for communicating in cooperative relay networks
CN102123480A (zh) * 2010-01-11 2011-07-13 中兴通讯股份有限公司 中继节点接入能力的通知及传输方法
CN104394572A (zh) * 2014-11-13 2015-03-04 北京邮电大学 一种基于最优中继选择的波束赋形和干扰对齐中继传输装置
CN104684042A (zh) * 2015-03-13 2015-06-03 深圳酷派技术有限公司 物联网中的数据传输方法、系统、物联网设备、终端
CN105007608A (zh) * 2015-06-29 2015-10-28 电子科技大学 用于解码转发中继网络的中继选择方法

Also Published As

Publication number Publication date
CN108781380A (zh) 2018-11-09
US20190165848A1 (en) 2019-05-30
US20210013944A1 (en) 2021-01-14
US10840988B2 (en) 2020-11-17
CN107529193A (zh) 2017-12-29
US11387886B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
US11706593B2 (en) Terminal device, method, and recording medium
WO2017219863A1 (zh) 电子设备、用于电子设备的方法和信息处理设备
US10536197B2 (en) Device and method for managing spectrum resources, and wireless communication device and method
US10944449B2 (en) Apparatus and method in wireless communication system, and computer readable storage medium
JP7147790B2 (ja) 電子機器、無線通信装置、及び無線通信方法
WO2017028664A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
CN110089045B (zh) 基站、终端设备、方法和记录介质
WO2018166368A1 (zh) 用于无线通信的电子设备和方法
RU2739588C2 (ru) Оконечное устройство, базовая станция, способ и носитель информации
JP7314945B2 (ja) 通信装置、通信方法及び記録媒体
TW202127850A (zh) 網路組件、系統及方法
CN113115445A (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2020031645A1 (ja) 通信装置、通信方法及び記録媒体
WO2017124900A1 (zh) 电子设备和通信方法
CN110603823B (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2021068817A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
KR20240022493A (ko) 사이드링크 포지셔닝 자원 구성의 사용자 장비 개시 선택
KR102438410B1 (ko) 네트워크 제어 단말 및 네트워크 노드를 위한 전자 디바이스 및 방법
JP2022543310A (ja) 無線通信システムにおける電子機器及び方法
KR101934097B1 (ko) 네트워크 미모 무선랜에서의 상향 링크 전송 제어 장치 및 방법
WO2022083662A1 (zh) 无线通信系统中的电子设备和方法
CN116746193A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023030702A1 (en) Beam management in cellular system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814601

Country of ref document: EP

Kind code of ref document: A1