WO2017217604A1 - 재료 시험 장치 및 이를 이용한 재료 시험방법 - Google Patents

재료 시험 장치 및 이를 이용한 재료 시험방법 Download PDF

Info

Publication number
WO2017217604A1
WO2017217604A1 PCT/KR2016/011763 KR2016011763W WO2017217604A1 WO 2017217604 A1 WO2017217604 A1 WO 2017217604A1 KR 2016011763 W KR2016011763 W KR 2016011763W WO 2017217604 A1 WO2017217604 A1 WO 2017217604A1
Authority
WO
WIPO (PCT)
Prior art keywords
specimen
jig
nanomaterial
alignment
test
Prior art date
Application number
PCT/KR2016/011763
Other languages
English (en)
French (fr)
Inventor
김주영
김영천
김시훈
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2017217604A1 publication Critical patent/WO2017217604A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • G01N2021/177Detector of the video camera type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0286Miniature specimen; Testing on microregions of a specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis

Definitions

  • the present invention relates to a material testing apparatus and a material testing method using the same, and more particularly, to a material testing apparatus for grasping the mechanical properties of nanoscale materials and a material testing method using the same.
  • a material tester as a device to determine the characteristics of the material
  • a material tester is used as a device for grasping various mechanical properties by tensioning or pressing the material specimen.
  • the tensile test through the material tester is a method of directly obtaining elastic modulus, fracture strength, and the like as a physical property, and in particular, a material such as micro or nanoscale metals and polymers cannot be tested with a general bulk scale material tester. Micro tensile tester or nano tester is applied.
  • the above tensile tests are performed by an ultra-small material tester (tensile tester) for measuring the mechanical properties of products and materials requiring very small loads. Since the mechanical properties of nanotechnology-developed materials and products can be precisely measured down to nano units, it is suitable for measuring the mechanical properties of nanotechnology-developed materials and products.
  • Patent No. 613726 discloses a grip table having an end portion disposed at a central position therebetween and a gripping means movable in a width direction of the grip.
  • the conventional nanomaterial tester is difficult to test because it is not easy to mount the specimen in the case of a small size of the specimen, and also because the specimen can be mounted only horizontally, only the tensile test is possible, compression, bending test including tension There was a problem that you can not do a variety of tests.
  • the present invention is not only easy to mount the nano-scale specimen, but also to the tensile test, compression test and bending test to provide a material testing apparatus that can measure a variety of physical properties of the nano specimen and a material test method using the same
  • the tensile test, compression test and bending test to provide a material testing apparatus that can measure a variety of physical properties of the nano specimen and a material test method using the same
  • the present invention is connected to the test unit, the test unit comprising a main frame, an actuator coupled to the upper portion of the main frame to generate a displacement of the nanomaterial specimen, and a load cell connected to the actuator And a jig portion including an upper jig clamping an upper side of the nanomaterial specimen, a lower jig positioned under the upper jig and clamping a lower side of the nanomaterial specimen, and connected to the lower jig to prevent the lower jig from being prevented. And a stage unit for moving the lower jig in the multi-axial direction to be spaced apart from the front surface of the nano material specimen to provide a front image of the nano material specimen, and to move the front surface of the nano material specimen.
  • the side alignment of the nano-material specimen can be confirmed through the side image of the nano-material specimen.
  • the present invention comprises the step of mounting the nano-material specimen to the specimen auxiliary fixing device, using the material test device, the operator moves the stage portion to the lower jig the specimen auxiliary fixing device And moving the nanomaterial specimen to the lower jig, and moving the stage to move the lower jig to a position below the upper jig, wherein the nano is disposed through the first alignment part and the second alignment part.
  • Checking the alignment of the material specimen to adjust the position of the nanomaterial specimen mounting the nanomaterial specimen to the upper jig with the load cell protection device connected to the upper jig; and mounting the load cell protection device to the upper jig.
  • move the actuator to test Provides said first material testing method comprising the step of measuring the change of the nano-material specimen by the information received from the second alignment with the load cell and the first alignment of the stages of progress and tested.
  • the material testing apparatus and the material testing method using the same provide the following effects.
  • nano-scale specimens can be easily installed, but also tensile tests, compression tests, and bending tests can be performed to measure various physical properties of the nano specimens.
  • the heating part and the chamber are mounted on the jig part, and the test can be progressed while selectively creating a high temperature and humidity environment.
  • FIG. 1 is a perspective view showing a material testing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a control flow of a controller of the material testing apparatus of FIG. 1.
  • FIG. 4 is a view showing a jig portion during a compression test in the material testing apparatus of FIG. 1.
  • FIG. 5 is a diagram illustrating a jig part during a bending test in the material testing apparatus of FIG. 1.
  • FIG. 6 is a diagram illustrating another embodiment of the jig part of FIG. 5.
  • FIG. 7 is a flowchart illustrating a material test method using the material test apparatus of FIG. 1.
  • a nano-scale nanomaterial specimen (10) in which the nanomaterial specimen 10 attached to the jig part 300 is configured to mm level or less ( 10) to inspect the mechanical properties of the main frame 100, the test unit 200, the jig unit 300, the stage unit 400, the first alignment unit 500, the second The alignment unit 600 and the control unit 700 are included.
  • the main frame 100 is erected in a vertical direction on the test bed, and serves to support the entire structure.
  • the test unit 200 is coupled to the upper side of the main frame 100, the actuator 210 for generating a displacement to measure the tensile properties of the nano-material specimen 10, and the actuator 210 and It includes a load cell 220 to be connected.
  • the actuator 210 and the load cell 220 are coupled to the upper portion of the main frame 100 in the vertical direction to measure various mechanical properties through experiments such as compression and bending in addition to the tensile properties in the vertical direction. have.
  • the actuator 210 may apply a conventional linear actuator 210, and may be of a piezo type for small displacement.
  • the load cell 220 is attached to the operating portion of the actuator 210, preferably located on the same line as the operating portion, but is not limited thereto.
  • the jig unit 300 is connected to the test unit 200 and serves to fix the nano-material specimen 10 in a vertical direction, and serves as an upper jig 310 and a lower jig 320. It includes.
  • the lower jig 320 clamps the lower side of the nanomaterial specimen 10 and replaces the tensile test, the compression test, and the bending test of the nanomaterial specimen 10 to the stage unit 400. It is designed to be detachably coupled.
  • the upper jig 310 and the lower jig 320 is made of a nut shape
  • the test unit 200 and the stage unit 400 is the upper jig 310 and the lower jig 320, respectively.
  • It is made of a bolt shape corresponding to and can be detachably coupled to each other, which of course can be applied to a variety of configurations if the preferred embodiment can achieve the above object.
  • the material test apparatus may include a heating unit and a heat insulating unit respectively coupled to the upper jig 310 or the lower jig 320 or the upper jig 310 and the lower jig 320.
  • the heating unit may heat the nanomaterial specimen 10 to a predetermined temperature through the temperature controller in response to a temperature detected by a temperature sensor capable of sensing the temperature of the nanomaterial specimen 10.
  • the thermal insulation unit blocks the heat conducted to the jig unit 300.
  • the material test apparatus includes a humidity chamber capable of controlling and maintaining the internal humidity by sealing the nanomaterial specimen 10 and the jig part 300 to maintain a constant humidity inside the humidity chamber. In order to be able to measure the deformation of the nanomaterial specimen (10).
  • the stage unit 400 is connected to the lower jig 320 to prevent the lower jig 320 and to move in the multi-axis direction to move the lower jig 320 in the multi-axis direction.
  • the stage unit 400 the first stage to move back and forth, left and right, and up and down, and to finely move the lower jig 320 in the XYZR axis direction and the tilt axis direction
  • a second stage may be applied to prevent the first stage from being upper and to move roughly in the XYZ axis direction including a lower rail stage.
  • this is a preferred embodiment of the stage 400 is a variety of configurations can be applied if it can achieve the above object, such as a known rail-type stage.
  • the first alignment unit 500 is spaced apart from the front surface of the nanomaterial specimen 10 to provide a front image of the nanomaterial specimen 10, and the front image of the nanomaterial specimen 10. Through the alignment of the front direction of the nano-material specimen (10) through.
  • the first alignment unit 500 is connected to the first camera 510 and the first camera 510 to measure the front image of the nano material specimen 10 in real time.
  • a first measuring unit providing a real-time front deformation image of 10) in real time, and connected to the first measuring unit to analyze the front image of the nanomaterial specimen 10 in real time, and the nanomaterial specimen 10
  • the first analysis unit for measuring the strain in the front direction of the.
  • the first alignment unit 500 may optimize the alignment in the front direction by providing an image in real time when the nano material specimen 10 attached to the lower jig 320 is mounted on the upper jig 310. In the tensile test, a real-time strain image can be measured to obtain an accurate strain rate.
  • the second alignment unit 600 is located at one side of the main frame 100 spaced apart from the side of the nano-material specimen 10, to provide a side image of the nano-material specimen 10, the nanomaterial The lateral alignment of the nanomaterial specimen 10 may be confirmed through the side image of the specimen 10.
  • the second alignment unit 600 is connected to the second camera 610 and the second camera 610 for measuring a side image of the nano material specimen 10 and the nano material specimen 10.
  • a second measurement unit providing a real-time lateral deformation image of ()) and a second measurement unit connected to the second measurement unit to analyze the side image of the nanomaterial specimen 10, and the strain in the side direction of the nanomaterial specimen 10. It includes a second analysis unit for measuring.
  • the second alignment unit 600 may provide an image in real time when the sample attached to the lower jig 320 is mounted on the upper jig 310, thereby optimizing the side alignment and, if necessary, the thickness direction of the sample. Make the change of measurable.
  • the first analysis unit and the second analysis unit may be installed independently of the first alignment unit 500 and the second alignment unit 600 or may be integrally installed in the control unit 700.
  • the first camera 510 and the second camera 610 may apply a charge-coupled device camera (CCD), respectively, and the first analyzer and the second analyzer analyze digital image correlation (DIC), respectively. Techniques are available.
  • CCD charge-coupled device camera
  • DIC digital image correlation
  • the controller 700 serves to perform overall device control and analysis for the test of the nanomaterial specimen 10, and processes the signal received from the load cell 220 and the actuator 210 to process the signal. As a result, the actuator 210 and the stage are driven and controlled. That is, the controller 700 calculates the mechanical properties of the nanomaterial specimen 10 based on the signal of the load cell 220 sensed according to the operation of the actuator 210. In addition, the control unit 700 receives the front and side images of the nanomaterial specimen 10 of the first alignment unit 500 and the second alignment unit 600 to image characteristics of the nanomaterial specimen 10. Figure out.
  • the material test apparatus includes a load cell protection device 810 for protecting the load cell 220 when the nano material specimen 10 is mounted.
  • the load cell protection device 810 is coupled to the main frame 100 and the other side is to be moved forward and backward to selectively connect with the upper jig 310.
  • the load cell protection device 810 is connected to the upper jig 310 by advancing the other side so that an overload is not applied to the load cell 220 while the nano material specimen 10 is clamped to the upper jig 310. The other side retreats during the test.
  • the material test apparatus is located on the other side of the main frame 100 facing the second alignment portion 600, the operator selectively clamps the other side of the nanomaterial specimen 10, the nanomaterial specimen And a specimen auxiliary fixing device 820 for fixing the nanomaterial specimen 10 before mounting 10 to the lower jig 320.
  • the specimen auxiliary fixing device 820 is used when the nano-material specimen 10 is mounted on the lower jig 320 to limit direct handling due to the small size of the nano-material specimen 10. Not shown) serves to temporarily fix the nanomaterial specimen 10 before mounting the nanomaterial specimen 10 to the lower jig 320.
  • FIG. 4 is a view illustrating a case where a compression test is performed, and contact surfaces of the upper jig 310a and the lower jig 320a, which contact the nanomaterial specimen 10, are flat.
  • the nano-material specimen 10 is inserted between the lower side of the upper jig 310a and the upper side of the lower jig 320a. In this state, the upper jig 310a is moved downward to move the nano material.
  • a compression test of the specimen (10) is made.
  • FIGS. 5 and 6 are diagrams illustrating a case in which a bending test is performed, wherein the upper jig 310b and the lower jig 320b have a three-point bending form (see FIG. 5) according to the shape of the tester. It can achieve various forms such as a four-point bending form (see FIG. 6), and the upper jig 310b is placed on the nanomaterial specimen 10 while the plate-shaped nanomaterial specimen is placed horizontally on the upper surface of the lower jig 320b. Press the upper surface of the () so that the nanomaterial specimen is bent.
  • the material test apparatus is not only easy to mount the nano-scale nano-material specimens 10 in a vertical shape, but also compression tests and bending tests as well as tensile tests to measure the various physical properties of the nano specimens It is possible to measure changes in the longitudinal and thickness directions of standard tensile test pieces in real time.
  • the nanomaterial specimen 10 is mounted on the specimen auxiliary fixing device 820 (S10).
  • an operator moves the stage unit 400 on which the lower jig 320 is mounted to move the lower jig 320 to the specimen auxiliary fixing device 820, and the specimen auxiliary fixing device 820.
  • an operator moves the stage unit 400 on which the lower jig 320 is mounted to move the lower jig 320 to the specimen auxiliary fixing device 820, and the specimen auxiliary fixing device 820.
  • the alignment of the nanomaterial specimen 10 is checked using the first alignment unit 500 and the second alignment unit 600 to adjust the position of the nanomaterial specimen 10 (S30). .
  • the nano-material specimen 10 is attached to the upper jig 310 while the load cell protection device 810 is connected to the upper jig 310.
  • Mount (S40) the load cell protection device 810 can be moved back and forth to selectively connect with the upper jig 310, so that the load cell 220 while clamping the nano-material specimen 10 to the upper jig 310 The other side is advanced so that the over jig is not connected to the upper jig 310.
  • the load cell protection device 810 is separated from the upper jig 310, and the tensile force test is performed by moving the actuator 210 to which the load cell 220 is attached (S50).
  • the strain is measured by observing a local change of the nanomaterial specimen 10 as an image through the information received from the first alignment, the second alignment, and the load cell 220 (S60).
  • the material tester can be used in the material tester to grasp the mechanical properties of the nano- or micro-scale material, tensile, compression, bending tester.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

본 발명은 메인프레임, 엑추에이터와, 엑추에이터와 연결되는 로드셀을 포함하는 시험부, 시험부와 연결되고 나노 재료시편의 상부 일측을 클램핑하는 상부지그와, 상부지그의 하부에 위치하고 나노 재료시편의 하부 일측을 클램핑하는 하부지그를 포함하는 지그부, 하부지그와 연결되어 하부지그를 상방지지하고, 다축방향으로 이동하여 하부지그를 다축방향으로 이동시키는 스테이지부, 나노 재료시편의 전면에 이격되게 위치하여 나노 재료시편의 전면방향 얼라인먼트를 확인할 수 있도록 하는 제1얼라인먼트부, 나노 재료시편의 측면에 이격되게 위치하여, 나노 재료시편의 측면 이미지를 통하여 나노 재료시편의 측면방향 얼라인먼트를 확인할 수 있도록 하는 제2얼라인먼트부 및 제어부를 포함하는 재료 시험 장치를 제공한다. 따라서 나노 스케일의 시편도 장착이 용이할 뿐만 아니라, 인장시험을 비롯하여 압축시험 및 벤딩시험도 가능하여 나노 시편의 다양한 물성을 측정할 수 있다.

Description

재료 시험 장치 및 이를 이용한 재료 시험방법
본 발명은 재료 시험 장치 및 이를 이용한 재료 시험방법에 관한 것으로서, 보다 상세하게는 나노 스케일 재료의 기계적 물성을 파악하는 재료 시험 장치 및 이를 이용한 재료 시험방법에 관한 것이다.
일반적으로 재료의 특성을 파악하기 위한 장치로 재료 시험기가 있으며, 이러한 재료 시험기는 재료 시편의 인장 또는 가압하여 각종 기계적 특성을 파악하는 장치로 사용되고 있다.
특히 상기 재료 시험기를 통한 인장시험은 탄성계수, 파괴강도 등을 직접적인 물성치로 구할 수 있는 방법으로, 특히 마이크로 또는 나노스케일의 금속 및 폴리머 같은 소재에 대해서는 일반적인 벌크 스케일 재료시험기로 실험을 할 수 없기 때문에 마이크로 인장시험기 또는 나노 시험기가 적용되고 있다.
즉, 상기와 같은 인장시험들은 매우 작은 하중을 요구하는 제품 및 재료의 기계적 물성을 측정하기 위한 초소형 재료 시험기(인장시험기)에 의해 행해지며, 특히 나노 인장시험은 제품의 기계적 특성을 나노 단위까지 정밀하게 측정할 수 있으므로 나노기술로 개발된 재료 및 제품의 기계적 특성을 나노 단위까지 정밀하게 측정할 수 있으므로 나노기술로 개발된 재료 및 제품의 기계적 특성을 측정하기에 적합하다.
한편, 나노 특성을 파악하기 위한 재료 시험기는 통상의 재료 시험기와 달리 아주 작은 시편을 장착하므로, 그 장착 방식이 다소 어려운 단점이 있다. 이에, 상기와 같은 어려움을 해소하기 위하여 구동기로부터 작동력에 의해 인장되는 시편의 양단을 무빙스테이지측과 클램프측에 고정시킬 수 있게 구성된 인장시험기용 시편장착장치에 있어서, 상기한 무빙스테이지측과 클램프측 사이 중앙의 위치에 그 단부가 배치되는 그립테이블 및 이 그립의 폭 방향으로 가동되는 그리핑수단을 구비하는 등록특허 제613726호가 개시된 바 있다.
그런데, 종래의 나노 재료 시험기는 작은 크기의 시편의 경우 시편장착이 용이하지 않아 시험에 어려움이 있으며, 또한 시편을 수평으로만 장착할 수 있기 때문에 인장시험만 가능하여, 인장을 비롯한 압축, 벤딩 시험 등 다양한 시험을 할 수 없는 문제점이 있었다.
본 발명은, 나노 스케일의 시편도 장착이 용이할 뿐만 아니라, 인장시험을 비롯하여 압축시험 및 벤딩시험도 가능하여 나노 시편의 다양한 물성을 측정할 수 있는 재료 시험 장치 및 이를 이용한 재료 시험방법을 제공하는 것을 목적으로 한다.
본 발명의 일 측면에 의하면, 본 발명은 메인프레임, 상기 메인프레임의 상부에 결합되어 나노 재료시편의 변위를 발생시키는 엑추에이터와, 상기 엑추에이터와 연결되는 로드셀을 포함하는 시험부, 상기 시험부와 연결되고 상기 나노 재료시편의 상부 일측을 클램핑하는 상부지그와, 상기 상부지그의 하부에 위치하고 상기 나노 재료시편의 하부 일측을 클램핑하는 하부지그를 포함하는 지그부, 상기 하부지그와 연결되어 상기 하부지그를 상방지지하고, 다축방향으로 이동하여 상기 하부지그를 상기 다축방향으로 이동시키는 스테이지부, 상기 나노 재료시편의 전면에 이격되게 위치하여 상기 나노 재료시편의 전면 이미지를 제공하고, 상기 나노 재료시편의 상기 전면 이미지를 통하여 상기 나노 재료시편의 전면방향 얼라인먼트를 확인할 수 있도록 하는 제1얼라인먼트부, 상기 나노 재료시편의 측면에 이격되게 위치하여, 상기 나노 재료시편의 측면 이미지를 제공하고, 상기 나노 재료시편의 상기 측면 이미지를 통하여 상기 나노 재료시편의 측면방향 얼라인먼트를 확인할 수 있도록 하는 제2얼라인먼트부 및 상기 로드셀로부터 수신되는 신호를 처리하고, 상기 엑추에이터와 상기 스테이지를 구동제어하는 제어부를 포함하는 재료 시험 장치를 제공한다.
본 발명의 다른 측면에 의하면, 본 발명은 상기 재료 시험 장치를 이용하여, 상기 시편 보조고정장치에 상기 나노 재료시편을 장착하는 단계, 상기 작업자가 상기 스테이지부를 이동시켜 상기 하부지그를 상기 시편 보조고정장치로 이동시킨 후 상기 나노 재료시편을 상기 하부지그에 옮겨 장착하고, 상기 스테이지부를 이동하여 상기 하부지그를 상기 상부지그의 아래의 위치로 이동시키는 단계, 상기 제1얼라인먼트부와 상기 제2얼라인먼트부를 통하여 상기 나노 재료시편의 얼라인먼트를 확인하여 상기 나노 재료시편의 위치를 조정하는 단계, 상기 로드셀 보호장치가 상기 상부지그에 연결된 상태에서 상기 나노 재료시편을 상기 상부지그에 장착하는 단계, 상기 로드셀 보호장치를 상기 상부지그에서 분리시킨 후 상기 엑추에이터를 이동하여 시험을 진행하는 단계 및 시험 중 상기 제1얼라인먼트와 상기 제2얼라인먼트와 상기 로드셀로부터 수신된 정보를 통하여 상기 나노 재료시편의 변화를 측정하는 단계를 포함하는 재료 시험방법을 제공한다.
본 발명에 따른 재료 시험 장치 및 이를 이용한 재료 시험방법은 다음과 같은 효과를 제공한다.
첫째, 나노 스케일의 시편도 장착이 용이할 뿐만 아니라, 인장시험을 비롯하여 압축시험 및 벤딩시험도 가능하여 나노 시편의 다양한 물성을 측정할 수 있다.
둘째, 제1얼라인먼트부와 제2얼라인먼트부를 통하여 나노 재료시편의 2개 방향에서 이미지를 측정하여 시험 전 나노 재료시편의 얼라인먼트를 정밀하고 용이하게 할 수 있다.
셋째, 제1얼라인먼트부와 제2얼라인먼트부를 통하여 시험 중 나노 재료시편의 길이, 두께 방향 변화를 실시간으로 측정 가능하며, 이와 더불어 나노 재료시편의 길이 및 두께변화와 시편 변형에 따른 표면 변화도 동시에 측정할 수 있다.
넷째, 시편 보조고정장치를 통하여 직접적인 핸들링이 어려운 나노 재료시편의 장착을 용이하게 할 수 있다.
다섯째, 지그부에 히팅부와 챔버를 장착하여 고온 및 습도환경을 선택적으로 조성하면서 시험진행이 가능하다.
여섯째, 로드셀 보호장치를 통하여 나노 재료시편 장착 시 로드셀에 과하중이 부여되지 않도록 하여 로드셀의 파손을 방지할 수 있다.
도 1은 본 발명의 실시 예에 따른 재료 시험 장치를 나타내는 사시도이다.
도 2는 도 1의 재료 시험 장치의 제어부의 제어흐름을 나타내는 블록도이다.
도 3은 도 1의 재료 시험 장치의 지그부를 나타내는 도면이다.
도 4는 도 1의 재료 시험 장치에서 압축시험 시의 지그부를 나타내는 도면이다.
도 5는 도 1의 재료 시험 장치에서 벤딩시험 시의 지그부를 나타내는 도면이다.
도 6은 도 5의 지그부의 다른 실시 예를 나타내는 도면이다.
도 7은 도 1의 재료 시험 장치를 이용한 재료 시험방법을 나타내는 절차도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다.
먼저, 도 1을 참조하면, 본 발명의 실시 예에 따른 재료 시험 장치는, 지그부(300)에 부착되는 나노 재료시편(10)이 mm레벨 또는 그 이하로 구성되는 나노 스케일의 나노 재료시편(10)의 기계적 특성을 검사하기 위한 것으로서, 메인프레임(100)과, 시험부(200)와, 지그부(300)와, 스테이지부(400)와, 제1얼라인먼트부(500)와, 제2얼라인먼트부(600)와, 제어부(700)를 포함한다.
상기 메인프레임(100)은, 실험베드 상에 수직한 방향으로 세워져 있으며, 전체 구조를 지지하는 역할을 한다.
상기 시험부(200)는, 상기 메인프레임(100)의 상부 일측에 결합되며, 나노 재료시편(10)의 인장 물성을 측정하기 위하여 변위를 발생시키는 엑추에이터(210)와, 상기 엑추에이터(210)와 연결되는 로드셀(220)을 포함한다. 상기 엑추에이터(210)와 상기 로드셀(220)은 상기 메인프레임(100)의 상부에 수직한 방향으로 결합하여 수직한 방향의 인장 물성 외에 압축, 벤딩과 같은 실험을 통한 다양한 기계적 물성 측정이 가능하도록 되어 있다.
상기 엑추에이터(210)는 통상의 선형 엑추에이터(210)를 적용할 수 있으며, 이 외 작은 변위를 위하여 피에조 타입으로 구성할 수 있다. 상기 로드셀(220)은 상기 엑추에이터(210)의 작동부에 부착되며, 상기 작동부와 동일선 상에 위치하는 것이 바람직하나 이에 한정하지는 않는다.
상기 지그부(300)는, 상기 시험부(200)와 연결되고 상기 나노 재료시편(10)을 수직한 방향으로 세워진 상태에서 고정시키는 역할을 하며, 상부지그(310)와, 하부지그(320)를 포함한다.
상기 상부지그(310)는, 상기 나노 재료시편(10)의 상부 일측을 클램핑하고, 상기 나노 재료시편(10)의 인장시험, 압축시험 및 벤딩시험 각각에 대하여 교체 가능하도록 상기 시험부(200)에 착탈 가능하게 결합하도록 되어 있다.
상기 하부지그(320)는 상기 나노 재료시편(10)의 하부 일측을 클램핑하고, 상기 나노 재료시편(10)의 인장시험, 압축시험 및 벤딩시험 각각에 대하여 교체 가능하도록 상기 스테이지부(400)에 착탈 가능하게 결합하도록 되어 있다.
여기서, 상기 상부지그(310)와 상기 하부지그(320)는 너트 형태로 이루어지고, 상기 시험부(200)와 상기 스테이지부(400)는 각각 상기 상부지그(310)와 상기 하부지그(320)와 대응되는 볼트형태로 이루어져, 서로가 착탈 가능하게 결합될 수 있으나, 이는 바람직한 실시 예로 상기한 목적을 달성할 수 있다면 다양한 구성이 적용될 수 있음은 물론이다.
여기서, 압축시험 및 벤딩시험에서 상기 상부지그(310)와 상기 하부지그(320) 세부구성에 대해서는 후술하기로 한다.
한편, 상기 재료 시험 장치는, 상기 상부지그(310) 또는 상기 하부지그(320) 또는 상기 상부지그(310)와 상기 하부지그(320)에 각각 결합하는 히팅부와 단열부를 포함할 수 있다. 상기 히팅부는 상기 나노 재료시편(10)의 온도를 감지할 수 있는 온도센서로부터 감지되는 온도에 대응하여, 상기 온도조절장치를 통하여 상기 나노 재료시편(10)을 설정된 온도로 가열할 수 있으며, 상기 단열부는 상기 지그부(300)로 전도되는 열을 차단하도록 한다.
나아가, 상기 재료 시험 장치는 상기 나노 재료시편(10)과 상기 지그부(300)를 밀폐하여 내부의 습도를 조절 및 유지할 수 있는 습도챔버 포함하여, 상기 습도챔버 내부의 습도를 일정하게 유지한 상태에서 상기 나노 재료시편(10)의 변형을 측정할 수 있도록 할 수 있다.
상기 스테이지부(400)는, 상기 하부지그(320)와 연결되어 상기 하부지그(320)를 상방지지하고, 다축방향으로 이동하여 상기 하부지그(320)를 상기 다축방향으로 이동시키는 역할을 한다.
여기서, 상기 스테이지부(400)는, 전후, 좌우 및 상하로 이동하며, 상기 하부지그(320)를 상방지지하고 XYZR축 방향 및 틸트(Tilt)축 방향으로 미세하게 이동할 수 있는 제1스테이지와, 상기 제1스테이지를 상방지지하고 하부의 레일 스테이지를 포함하여 러프(Rough)하게 XYZ축 방향으로 이동하는 제2스테이지를 적용할 수 있다. 하지만, 이는 바람직한 실시 예로 상기 스테이지부(400)는 공지의 레일형 스테이지 등 상기한 목적을 달성할 수 있다면 다양한 구성이 적용될 수 있음은 물론이다.
상기 제1얼라인먼트부(500)는, 상기 나노 재료시편(10)의 전면에 이격되게 위치하여 상기 나노 재료시편(10)의 전면 이미지를 제공하고, 상기 나노 재료시편(10)의 상기 전면 이미지를 통하여 상기 나노 재료시편(10)의 전면방향 얼라인먼트를 확인할 수 있도록 한다.
상세하게, 상기 제1얼라인먼트부(500)는 상기 나노 재료시편(10)의 전면 이미지를 실시간으로 측정하는 제1카메라(510)와, 상기 제1카메라(510)와 연결되어 상기 나노 재료시편(10)의 실시간 전면 변형 이미지를 실시간으로 제공하는 제1측정부와, 상기 제1측정부와 연결되어 상기 나노 재료시편(10)의 상기 전면 이미지를 실시간으로 분석하고, 상기 나노 재료시편(10)의 전면 방향의 변형률을 측정하는 제1분석부를 포함한다.
상기 제1얼라인먼트부(500)는, 상기 하부지그(320)에 부착된 상기 나노 재료시편(10)을 상기 상부지그(310)에 장착 시 실시간으로 이미지를 제공하여 전면방향으로의 얼라인먼트를 최적화 시킬 수 있으며, 인장 실험 시 실시간 변형 이미지를 측정하여 정확한 변형률을 획득할 수 있게 한다.
상기 제2얼라인먼트부(600)는 상기 메인프레임(100)의 일측에 상기 나노 재료시편(10)의 측면에 이격되게 위치하여, 상기 나노 재료시편(10)의 측면 이미지를 제공하고, 상기 나노 재료시편(10)의 상기 측면 이미지를 통하여 상기 나노 재료시편(10)의 측면방향 얼라인먼트를 확인할 수 있도록 한다.
상세하게, 상기 제2얼라인먼트부(600)는, 상기 나노 재료시편(10)의 측면 이미지를 측정하는 제2카메라(610)와, 상기 제2카메라(610)와 연결되어 상기 나노 재료시편(10)의 실시간 측면 변형 이미지를 제공하는 제2측정부와, 상기 제2측정부와 연결되어 상기 나노 재료시편(10)의 상기 측면 이미지를 분석하고, 상기 나노 재료시편(10)의 측면 방향의 변형률을 측정하는 제2분석부를 포함한다.
상기 제2얼라인먼트부(600)는 상기 하부지그(320)에 부착된 샘플을 상기 상부지그(310)에 장착시 실시간으로 이미지를 제공하여, 측면 얼라인먼트를 최적화 시킬 수 있으며 필요에 따라 샘플의 두께 방향의 변화를 측정 가능하도록 한다.
상기 제1분석부와 상기 제2분석부는 상기 제1얼라인먼트부(500)와 상기 제2얼라인먼트부(600)에 독립적으로 설치되거나, 또는 상기 제어부(700)에 통합설치될 수 있다.
상기 제1카메라(510)와 상기 제2카메라(610)는 각각 CCD카메라(Charge-coupled device camera)를 적용할 수 있으며, 상기 제1분석부와 제2분석부는 각각 DIC(Digital image correlation)분석 기법을 이용할 수 있다.
상기 제어부(700)는, 상기 나노 재료시편(10)의 시험을 위한 전반적인 장치제어 및 분석을 수행하는 역할을 하며, 상기 로드셀(220)과 상기 엑추에이터(210)로부터 수신되는 신호를 처리하여 상기 신호에 따라 상기 엑추에이터(210)와 상기 스테이지를 구동 및 제어한다. 즉, 상기 제어부(700)는 상기 엑추에이터(210)의 작동에 따라 감지되는 상기 로드셀(220)의 신호를 기초로 하여 상기 나노 재료시편(10)의 기계적 특성을 산정한다. 또한, 상기 제어부(700)는 상기 제1얼라인먼트부(500)와 상기 제2얼라인먼트부(600)의 나노 재료시편(10)의 전면 및 측면 이미지를 수신하여 상기 나노 재료시편(10)의 이미지 특성을 파악한다.
한편, 상기 재료 시험 장치는, 상기 나노 재료시편(10) 장착 시 상기 로드셀(220)을 보호하기 위한 로드셀 보호장치(810)를 포함한다. 상기 로드셀 보호장치(810)는 일측은 상기 메인프레임(100)에 결합하고 타측은 상기 상부지그(310)와 선택적으로 연결되도록 전후진이 가능하도록 되어 있다. 상기 로드셀 보호장치(810)는 상기 나노 재료시편(10)을 상기 상부지그(310)에 클램핑하는 동안에는 상기 로드셀(220)에 과하중이 부여되지 않도록 타측이 전진하여 상기 상부지그(310)와 연결되며, 시험 중에는 타측이 후퇴하도록 되어 있다.
또한, 상기 재료 시험 장치는, 상기 제2얼라인먼트부(600)와 마주보는 상기 메인프레임(100)의 타측에 위치하고 작업자가 선택적으로 상기 나노 재료시편(10)의 타측을 클램핑하여, 상기 나노 재료시편(10)을 상기 하부지그(320)에 장착하기 전 상기 나노 재료시편(10)을 고정하는 시편 보조고정장치(820)를 포함한다.
상기 시편 보조고정장치(820)는, 상기 나노 재료시편(10)의 크기가 작아 직접적인 핸들링이 제한되는 나노 재료시편(10)을 상기 하부지그(320)에 장착 시 사용하며, 집게형 고정장치(미도시)가 위치하여 상기 나노 재료시편(10)을 상기 하부지그(320)에 장착 전 일시적으로 상기 나노 재료시편(10)을 고정해주는 역할을 한다.
한편, 상기 상부지그(310)와 상기 하부지그(320)는 전술한 바와 같이 인장시험, 압축시험 및 벤딩시험 각각에 대응하도록 교체되어 상기한 각 시험을 실시할 수 있도록 되어 있다. 이에 대하여 도 4를 참조하면, 도 4는 압축시험을 실시한 경우를 나타낸 도면으로, 나노 재료시편(10)과 맞닿는 상부지그(310a)와 하부지그(320a) 각각의 접촉면은 평편한 형상으로 되어 있으며, 이에 상기 상부지그(310a)의 하측면과 상기 하부지그(320a)의 상측면 사이에 나노 재료시편(10)이 끼워지고 이 상태에서 상기 상부지그(310a)를 하방향으로 이동시켜 상기 나노 재료시편(10)의 압축시험을 실시한다.
다음으로, 도 5 및 도 6은 벤딩시험을 실시한 경우를 나타낸 도면으로, 시험범의 형태에 따라 상기 상부지그(310b)와 하부지그(320b)가 3포인트(Point)벤딩 형태(도 5참조) 및 4포인트 벤딩 형태(도 6참조) 등 다양한 형태를 이룰 수 있으며, 플레이트 형상의 나노 재료시편을 하부지그(320b)의 상면으로 수평하게 놓인 상태에서 상기 상부지그(310b)를 상기 나노 재료시편(10)의 상면으로 눌러주어 상기 나노 재료시편이 벤딩이 되도록 한다.
상기한 바에 따르면, 상기 재료 시험 장치는, 수직형으로 나노스케일의 나노 재료시편(10)의 장착이 용이할 뿐만 아니라, 인장시험뿐만 아니라 압축시험 및 벤딩시험도 가능하여 나노 시편의 다양한 물성을 측정할 수 있으며, 표준 인장 시험편의 길이방향 및 두께방향의 변화를 실시간으로 측정할 수 있다.
이하에서는, 도 7을 참조하여, 상기 재료 시험 장치를 이용한 재료 시험방법에 대하여 살펴보기로 한다.
먼저, 나노 재료시편(10)을 장착하기 위하여, 상기 시편 보조고정장치(820)에 상기 나노 재료시편(10)을 장착한다(S10).
그런 다음, 작업자가 상기 하부지그(320)가 장착된 상기 스테이지부(400)를 이동시켜 상기 하부지그(320)를 상기 시편 보조고정장치(820)로 이동시키고, 상기 시편 보조고정장치(820)에서 상기 나노 재료시편(10)을 상기 하부지그(320)로 옮겨 장착한 후 상기 스테이지부(400)를 이동하여 상기 하부지그(320)를 상기 상부지그(310)의 아래의 위치로 이동시킨다(S20).
그런 다음, 상기 제1얼라인먼트부(500)와 상기 제2얼라인먼트부(600)를 이용하여 상기 나노 재료시편(10)의 얼라인먼트를 확인하여 상기 나노 재료시편(10)의 위치를 조정한다(S30).
이렇게 상기 나노 재료시편(10)의 하부의 위치를 조정한 후에는 상기 로드셀 보호장치(810)가 상기 상부지그(310)에 연결된 상태에서 상기 나노 재료시편(10)을 상기 상부지그(310)에 장착한다(S40). 여기서, 상기 로드셀 보호장치(810)는 상기 상부지그(310)와 선택적으로 연결되도록 전후진이 가능하여, 상기 나노 재료시편(10)을 상기 상부지그(310)에 클램핑하는 동안 상기 로드셀(220)에 과하중이 부여되지 않도록 타측이 전진하여 상기 상부지그(310)와 연결되는 구조로 되어 있다.
이 후, 상기 로드셀 보호장치(810)를 상기 상부지그(310)에서 분리시킨 후 상기 로드셀(220)이 부착된 상기 엑추에이터(210)를 이동하여 인장시험을 진행한다(S50).
인장 시험 시 상기 제1얼라인먼트와 상기 제2얼라인먼트와 상기 로드셀(220)로부터 수신된 정보를 통하여 상기 나노 재료시편(10)의 국부적인 변화를 이미지로 관찰하여 변형률을 측정한다(S60).
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명에 따르면 나노 또는 마이크로스케일 재료의 기계적 물성을 파악하는 재료시험기와, 인장, 압축, 벤딩 시험기에 이용될 수 있다.

Claims (12)

  1. 메인프레임;
    상기 메인프레임의 상부에 결합되어 나노 재료시편의 변위를 발생시키는 엑추에이터와, 상기 엑추에이터와 연결되는 로드셀을 포함하는 시험부;
    상기 시험부와 연결되고 상기 나노 재료시편의 상부 일측을 클램핑하는 상부지그와, 상기 상부지그의 하부에 위치하고 상기 나노 재료시편의 하부 일측을 클램핑하는 하부지그를 포함하는 지그부;
    상기 하부지그와 연결되어 상기 하부지그를 상방지지하고, 다축방향으로 이동하여 상기 하부지그를 상기 다축방향으로 이동시키는 스테이지부;
    상기 나노 재료시편의 전면에 이격되게 위치하여 상기 나노 재료시편의 전면 이미지를 제공하고, 상기 나노 재료시편의 상기 전면 이미지를 통하여 상기 나노 재료시편의 전면방향 얼라인먼트를 확인할 수 있도록 하는 제1얼라인먼트부;
    상기 나노 재료시편의 측면에 이격되게 위치하여, 상기 나노 재료시편의 측면 이미지를 제공하고, 상기 나노 재료시편의 상기 측면 이미지를 통하여 상기 나노 재료시편의 측면방향 얼라인먼트를 확인할 수 있도록 하는 제2얼라인먼트부; 및
    상기 로드셀로부터 수신되는 신호를 처리하고, 상기 엑추에이터와 상기 스테이지를 구동제어하는 제어부를 포함하는 재료 시험 장치.
  2. 청구항 1에 있어서,
    상기 제1얼라인먼트부는,
    상기 나노 재료시편의 전면 이미지를 측정하는 제1카메라와, 상기 제1카메라와 연결되어 상기 나노 재료시편의 실시간 전면 변형 이미지를 제공하는 제1측정부를 포함하는 재료 시험 장치.
  3. 청구항 2에 있어서,
    상기 제1얼라인먼트부는,
    상기 제1측정부와 연결되어 상기 나노 재료시편의 상기 전면 이미지를 분석하고, 상기 나노 재료시편의 전면 방향의 변형률을 측정하는 제1분석부를 더 포함하는 재료 시험 장치.
  4. 청구항 1에 있어서,
    상기 제2얼라인먼트부는,
    상기 나노 재료시편의 측면 이미지를 측정하는 제2카메라와, 상기 제2카메라와 연결되어 상기 나노 재료시편의 실시간 측면 변형 이미지를 제공하는 제2측정부를 포함하는 재료 시험 장치.
  5. 청구항 4에 있어서,
    상기 제2얼라인먼트부는,
    상기 제2측정부와 연결되어 상기 나노 재료시편의 상기 측면 이미지를 분석하고, 상기 나노 재료시편의 측면 방향의 변형률을 측정하는 제2분석부를 더 포함하는 재료 시험 장치.
  6. 청구항 1에 있어서,
    일측은 상기 메인프레임에 결합하고 타측은 상기 상부지그와 선택적으로 연결되도록 전후진이 가능하여, 상기 나노 재료시편을 상기 상부지그에 클램핑하는 동안 상기 로드셀에 과하중이 부여되지 않도록 타측이 전진하여 상기 상부지그와 연결되는 로드셀 보호장치를 더 포함하는 재료 시험 장치.
  7. 청구항 1에 있어서,
    상기 스테이지부는,
    전후, 좌우 및 상하로 이동하며, 상기 하부지그를 상방지지하고 XYZR축 방향 및 틸트(Tilt)축 방향으로 미세하게 이동할 수 있는 제1스테이지와, 상기 제1스테이지를 상방지지하고 XYZ축 방향으로 이동하는 제2스테이지를 포함하는 재료 시험 장치.
  8. 청구항 1에 있어서,
    상기 메인프레임의 일측에 위치하고 작업자가 선택적으로 상기 나노 재료시편의 타측을 클램핑하여, 상기 나노 재료시편을 상기 하부지그에 장착하기 전 상기 나노 재료시편을 일시적으로 고정하는 시편 보조고정장치를 더 포함하는 재료 시험 장치.
  9. 청구항 1에 있어서,
    상기 상부지그는, 상기 나노 재료시편의 상부 일측을 클램핑하고, 상기 나노 재료시편의 인장시험, 압축시험 및 벤딩시험 각각에 대하여 교체 가능하도록 상기 시험부에 착탈 가능하게 결합하고,
    상기 하부지그는, 상기 나노 재료시편의 하부 일측을 클램핑하고, 상기 나노 재료시편의 인장시험, 압축시험 및 벤딩시험 각각에 대하여 교체 가능하도록 상기 스테이지부에 착탈 가능하게 결합하는 재료 시험 장치.
  10. 청구항 1에 있어서,
    상기 지그부는,
    상기 상부지그 또는 상기 하부지그 또는 상기 상부지그와 상기 하부지그에 각각 결합하는 히팅부와 단열부를 더 포함하는 재료 시험 장치.
  11. 청구항 1에 있어서,
    상기 나노 재료시편과, 상기 나노 재료시편을 클램핑하는 상기 지그부를 밀폐하기 위한 습도챔버를 더 포함하는 재료 시험 장치.
  12. 메인프레임의 상부에 결합되어 나노 재료시편의 변위를 발생시키는 엑추에이터와, 상기 엑추에이터와 연결되는 로드셀을 포함하는 시험부와, 상기 시험부와 연결되고 상기 나노 재료시편의 상부 일측을 클램핑하는 상부지그와, 상기 상부지그의 하부에 위치하고 상기 나노 재료시편의 하부 일측을 클램핑하는 하부지그를 포함하는 지그부와, 상기 하부지그를 다축방향으로 이동시키는 스테이지부와, 상기 나노 재료시편의 전면 이미지를 제공하고 상기 나노 재료시편의 전면방향 얼라인먼트를 확인할 수 있도록 하는 제1얼라인먼트부와, 상기 나노 재료시편의 측면 이미지를 제공하고 상기 나노 재료시편의 측면방향 얼라인먼트를 확인할 수 있도록 하는 제2얼라인먼트부와, 상기 나노 재료시편의 타측을 선택적으로 클램핑하는 시편 보조고정장치와, 전후진 이동을 하여 상기 상부지그와 선택적으로 연결되는 로드셀 보호장치를 포함하는 재료 시험 장치를 이용하여,
    작업자가 상기 시편 보조고정장치에 상기 나노 재료시편을 장착하는 단계;
    상기 작업자가 상기 스테이지부를 이동시켜 상기 하부지그를 상기 시편 보조고정장치로 이동시킨 후 상기 나노 재료시편을 상기 하부지그에 옮겨 장착하고, 상기 스테이지부를 이동하여 상기 하부지그를 상기 상부지그의 아래의 위치로 이동시키는 단계;
    상기 작업자가 상기 제1얼라인먼트부와 상기 제2얼라인먼트부를 통하여 상기 나노 재료시편의 얼라인먼트를 확인하여 상기 나노 재료시편의 위치를 조정하는 단계;
    상기 작업자가 상기 로드셀 보호장치가 상기 상부지그에 연결된 상태에서 상기 나노 재료시편을 상기 상부지그에 장착하는 단계;
    상기 작업자가 상기 로드셀 보호장치를 상기 상부지그에서 분리시킨 후 상기 엑추에이터를 이동하여 시험을 진행하는 단계; 및
    제어부가 시험 중 상기 제1얼라인먼트와 상기 제2얼라인먼트와 상기 로드셀로부터 수신된 정보를 통하여 상기 나노 재료시편의 변화를 측정하는 단계를 포함하는 재료 시험방법.
PCT/KR2016/011763 2016-06-15 2016-10-19 재료 시험 장치 및 이를 이용한 재료 시험방법 WO2017217604A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0074575 2016-06-15
KR1020160074575A KR101737817B1 (ko) 2016-06-15 2016-06-15 재료 시험 장치 및 이를 이용한 재료 시험방법

Publications (1)

Publication Number Publication Date
WO2017217604A1 true WO2017217604A1 (ko) 2017-12-21

Family

ID=59049640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011763 WO2017217604A1 (ko) 2016-06-15 2016-10-19 재료 시험 장치 및 이를 이용한 재료 시험방법

Country Status (3)

Country Link
US (1) US10281379B2 (ko)
KR (1) KR101737817B1 (ko)
WO (1) WO2017217604A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006763A (zh) * 2019-04-18 2019-07-12 哈尔滨工程大学 一种冰弯曲和压缩破坏试验装置
CN112082880A (zh) * 2020-09-11 2020-12-15 安徽佳通乘用子午线轮胎有限公司 一种纤维帘线高低温强伸性能的测试装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550280B1 (en) * 2017-09-07 2022-01-19 LG Energy Solution Ltd. Apparatus and method for evaluating electrode embrittlement
KR102275867B1 (ko) * 2017-09-07 2021-07-09 주식회사 엘지에너지솔루션 전극 취성 평가 장치 및 방법
KR20190059385A (ko) 2017-11-23 2019-05-31 한국과학기술연구원 다축 물성 측정장치 및 시스템
CN109357938A (zh) * 2018-11-09 2019-02-19 南京理工大学 一种材料介观尺度单向拉伸测量系统及方法
CN112432863B (zh) * 2020-11-19 2023-02-24 石家庄铁道大学 土工格室片材竖向抗弯折性能测试装置及测试方法
KR102347828B1 (ko) * 2021-11-19 2022-01-06 (주)엠테스 부유식 해상풍력 다이나믹케이블용 파워코어의 굽힘피로 시험시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193931A (ja) * 1995-01-12 1996-07-30 Toyo Seiki Seisakusho:Kk 引張試験機における試験片の位置修正装置及びこの位置修正装置を備えた引張試験機
JP2004069460A (ja) * 2002-08-06 2004-03-04 Shimadzu Corp 高速引張領域における真応力−歪みの測定方法および測定装置
JP2004205248A (ja) * 2002-12-24 2004-07-22 Toyota Motor Corp 引張り試験方法及び装置
JP3131611U (ja) * 2007-02-26 2007-05-17 株式会社島津製作所 小形材料試験機
US7681459B1 (en) * 2006-04-12 2010-03-23 Hysitron, Incorporated Multi-scale & three-axis sensing tensile testing apparatus

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426875A (en) * 1981-12-14 1984-01-24 Rca Corporation Strain measurement
US4690001A (en) * 1985-11-13 1987-09-01 Mts Systems Corporation Optical displacement transducer usable as an extensometer
DE3813340A1 (de) * 1987-04-27 1988-11-10 Yokohama Rubber Co Ltd Zugfestigkeits-pruefgeraet
JP3131611B2 (ja) * 1989-08-28 2001-02-05 オー・アンド・エス・マニュファクチャリング・カンパニー トルクロッド
CA2306275C (en) * 1999-04-23 2009-11-03 Bio Syntech Canada Inc. Universal mechanical testing device
IL131837A (en) * 1999-09-09 2002-12-01 Orbotech Schuh Gmbh & Co Ltd Automated optical inspection system with improved field of view
WO2003050598A2 (en) * 2001-12-12 2003-06-19 The Regents Of The University Of California Integrated crystal mounting and alignment system for high-throughput biological crystallography
US6721667B2 (en) * 2002-02-08 2004-04-13 Flexcell International Corporation Method and system for measuring properties of deformable material specimens
US20040153292A1 (en) * 2003-02-03 2004-08-05 Mts Systems Corporation Detecting a significant event in experimental data and use of such for detection of engagement during a mechanical test
US7258022B2 (en) * 2003-04-11 2007-08-21 Honeywell Federal Manufacturing & Technologies Micro-tensile testing system
KR100613726B1 (ko) 2004-05-28 2006-08-22 한국생산기술연구원 인장시험기용 시편장착장치
US20060186874A1 (en) * 2004-12-02 2006-08-24 The Board Of Trustees Of The University Of Illinois System and method for mechanical testing of freestanding microscale to nanoscale thin films
JP2007327894A (ja) 2006-06-09 2007-12-20 Ritsumeikan 微小材料試験装置
US8297130B2 (en) * 2008-11-12 2012-10-30 The United States Of America As Represented By The Secretary Of The Air Force Microtesting rig with variable compliance loading fibers for measuring mechanical properties of small specimens
US8863583B2 (en) * 2010-05-06 2014-10-21 Shimadzu Corporation Material testing system
US9239277B2 (en) * 2011-05-12 2016-01-19 Ut-Battelle, Llc Material mechanical characterization method for multiple strains and strain rates
JP6004738B2 (ja) * 2011-09-07 2016-10-12 キヤノン株式会社 インプリント装置、それを用いた物品の製造方法
US8984957B2 (en) * 2012-01-30 2015-03-24 The United States Of America, As Represented By The Secretary Of The Navy System and method for testing of micro-sized materials
FR3011929A1 (fr) * 2013-10-16 2015-04-17 Univ Lille 1 Sciences & Technologies Suivi de la striction d'un materiau quel que soit son aspect par deux cameras 3d.
CN205580873U (zh) * 2016-04-22 2016-09-14 广东广山新材料有限公司 一种用于环氧树脂的弯曲测试夹具装置
US10281378B2 (en) * 2016-05-05 2019-05-07 Honeywell Federal Manufacturing & Technologies, Llc System and method for testing true stress and true strain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193931A (ja) * 1995-01-12 1996-07-30 Toyo Seiki Seisakusho:Kk 引張試験機における試験片の位置修正装置及びこの位置修正装置を備えた引張試験機
JP2004069460A (ja) * 2002-08-06 2004-03-04 Shimadzu Corp 高速引張領域における真応力−歪みの測定方法および測定装置
JP2004205248A (ja) * 2002-12-24 2004-07-22 Toyota Motor Corp 引張り試験方法及び装置
US7681459B1 (en) * 2006-04-12 2010-03-23 Hysitron, Incorporated Multi-scale & three-axis sensing tensile testing apparatus
JP3131611U (ja) * 2007-02-26 2007-05-17 株式会社島津製作所 小形材料試験機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006763A (zh) * 2019-04-18 2019-07-12 哈尔滨工程大学 一种冰弯曲和压缩破坏试验装置
CN112082880A (zh) * 2020-09-11 2020-12-15 安徽佳通乘用子午线轮胎有限公司 一种纤维帘线高低温强伸性能的测试装置及方法

Also Published As

Publication number Publication date
US10281379B2 (en) 2019-05-07
US20170363523A1 (en) 2017-12-21
KR101737817B1 (ko) 2017-05-19

Similar Documents

Publication Publication Date Title
WO2017217604A1 (ko) 재료 시험 장치 및 이를 이용한 재료 시험방법
KR101832207B1 (ko) 클램프 인장 시험기
CN103487315A (zh) 一种材料力学性能测试装置
US6247370B1 (en) Two dimensional stress relaxation testing device
US9021889B2 (en) Sample holder for receiving a sample
CN111051848A (zh) 用于对膜进行抗拉测试的系统
CN117250095B (zh) 一种碳纤维制品疲劳强度检测装置
CN110823684A (zh) 一种钢材拉伸性能测量装置及系统
WO2020171503A1 (ko) 로드셀 변형량을 고려한 압입시험 수행방법
JP4219095B2 (ja) 圧縮・剪断試験方法及びその試験装置
IT201800004705A1 (it) Macchina assemblatrice e metodo di assemblaggio per accoppiare a due porta-campioni le estremita' di un provino di elastomero da sottoporre ad analisi termo-meccanica dinamica
JP2001033371A (ja) 2軸材料試験機
CN114371314B (zh) 一种电芯产品测试设备
CN214150179U (zh) 一种电动拉力机用夹具
CN215525351U (zh) 一种用于产品检验的拉力试验机
KR100421570B1 (ko) 대구경 인장시편 길이 변형율 측정장치
JP3858990B2 (ja) 高速引張試験領域における真応力−歪みの測定装置
JP3410242B2 (ja) 自動引張試験装置における試験片の供給回収方法および供給回収装置
CN1924548A (zh) 一种测试电流载荷下金属薄膜屈服强度的方法
KR101883241B1 (ko) 물성분석장치용 시료 로더
KR101248279B1 (ko) 파괴인성 시험장치
KR100665661B1 (ko) 다중형 케이블 연신율 측정장치
CN219038635U (zh) 应用于拉力测试中的试件装夹装置
JP2006145394A (ja) 引張強度測定方法及び引張強度測定装置
CN216621970U (zh) 一种布料应力应变检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905588

Country of ref document: EP

Kind code of ref document: A1