WO2017217584A1 - Fdr 모드로 동작하는 환경에서의 harq 프로시저를 수행하는 방법 및 이를 위한 장치 - Google Patents

Fdr 모드로 동작하는 환경에서의 harq 프로시저를 수행하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017217584A1
WO2017217584A1 PCT/KR2016/008329 KR2016008329W WO2017217584A1 WO 2017217584 A1 WO2017217584 A1 WO 2017217584A1 KR 2016008329 W KR2016008329 W KR 2016008329W WO 2017217584 A1 WO2017217584 A1 WO 2017217584A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
signal
self
base station
interference
Prior art date
Application number
PCT/KR2016/008329
Other languages
English (en)
French (fr)
Inventor
김동규
노광석
이상림
이호재
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/309,415 priority Critical patent/US10993239B2/en
Publication of WO2017217584A1 publication Critical patent/WO2017217584A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for performing HARQ procedure in an environment operating in FDR mode.
  • the 3GPP LTE 3rd Generation Partnership Project Long Term Evolution (LTE) system is designed as a frame structure with a 1ms transmission time interval (TTI), and the data request delay time is 10ms for video applications.
  • TTI transmission time interval
  • future 5G technologies will require lower latency data transmissions with the emergence of new applications such as real-time control and tactile internet, and 5G data demand latency will be lowered to 1ms. It is expected.
  • the 5G communication system supports the operation of the full duplex radio (FDR) mode, but due to the self-interference caused by the operation of the FDR mode to deteriorate the communication performance, there is a need for a solution.
  • FDR full duplex radio
  • An object of the present invention is to provide a method for performing a HARQ procedure by a terminal operating in an FDR mode in a wireless communication system.
  • Another object of the present invention is to provide a method for a base station to perform a HARQ procedure in a wireless communication system.
  • Another object of the present invention is to provide a terminal operating in an FDR mode performing a HARQ procedure in a wireless communication system.
  • Another object of the present invention is to provide a base station for performing a HARQ procedure in a wireless communication system supporting the FDR mode.
  • a method of performing a hybrid automatic repeat request (HARQ) procedure by a terminal operating in a full duplex radio (FDR) mode in a wireless communication system comprising: receiving a downlink signal from a base station; And transmitting feedback information including a NACK signal for the downlink signal to the base station, wherein the feedback information indicates that the reason for transmitting the NACK signal is that the terminal has failed to remove the self-interference signal. It may further include.
  • HARQ hybrid automatic repeat request
  • FDR full duplex radio
  • the feedback information may further include information indicating a subband, a physical resource block (PRB), or a resource block group (RBG) in which the terminal fails to remove the self-interference signal.
  • PRB physical resource block
  • RBG resource block group
  • the feedback information may further include information indicating a resource block group (RBG) in which the terminal has recently succeeded in removing the self-interference signal.
  • RBG resource block group
  • the feedback information may further include information on a Modulation and Coding Scheme (MCS) level preferred by the terminal.
  • MCS Modulation and Coding Scheme
  • the MCS level may be determined based on the strength of the residual self-interference signal after removing the self-interference signal.
  • a method for performing a HARQ procedure by a base station in a wireless communication system includes: transmitting a downlink signal to a terminal operating in a full duplex radio (FDR) mode; And receiving feedback information including the NACK signal for the downlink signal from the terminal, wherein the feedback information indicates that the reason for transmitting the NACK signal is that the terminal failed to remove the self-interference signal. It may further include.
  • FDR full duplex radio
  • the method may further include retransmitting the downlink signal to the terminal based on the feedback information, and a chase combining method may be applied to the retransmitted downlink signal.
  • the method may further include retransmitting the downlink signal to the terminal based on the feedback information, wherein a redundancy version (RV) value applied to the retransmitted downlink signal is applied to a previously transmitted downlink signal. It may be equal to the RV value.
  • RV redundancy version
  • the method may further include transmitting downlink control information including an RV value applied to the retransmitted downlink signal to the terminal.
  • the method may further include transmitting downlink control information including information for instructing the terminal to operate in a half duplex mode based on the feedback information to the terminal.
  • the method includes transmitting downlink control information to the terminal instructing the terminal to discard the downlink signal and receive new data based on the feedback information; And transmitting the new data to the terminal based on the downlink control information.
  • a terminal operating in an FDR mode performing a HARQ procedure in a wireless communication system the receiver; transmitter; And a processor, wherein the processor controls the receiver to receive a downlink signal from a base station, and controls the transmitter to transmit feedback information including a NACK signal for the downlink signal to the base station,
  • the feedback information may further include an indicator indicating that the reason for transmitting the NACK signal is that the terminal has failed to remove the self-interference signal.
  • a base station for performing a HARQ procedure in a wireless communication system supporting the FDR mode, the transmitter; receiving set; And a processor, wherein the processor controls the transmitter to transmit a downlink signal to a terminal operating in a full duplex radio (FDR) mode, and the receiver receives feedback information including a NACK signal for the downlink signal.
  • the terminal may control the reception from the terminal, and the feedback information may further include an indicator indicating that the reason for transmitting the NACK signal is that the terminal has failed to remove the self-interference signal.
  • the success rate of retransmission may be increased by transmitting to the base station whether the self-interference removal success / failure of the FDR support terminal is transmitted.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2 is a diagram illustrating a structure of a radio frame of a 3GPP LTE / LTE-A system.
  • FIG 3 illustrates a resource grid of a downlink slot of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • FIG. 4 illustrates a structure of a downlink subframe of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • FIG. 5 illustrates a structure of an uplink subframe used in a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • FIG. 6 shows a conceptual diagram of a terminal and a base station supporting FDR.
  • FIG. 7 illustrates a conceptual diagram of a transmit / receive link and self-interference (SI) in an FDR communication situation.
  • SI self-interference
  • FIG. 8 is a diagram illustrating a position at which three interference techniques are applied at an RF transceiver (or RF front end) of a device.
  • FIG. 9 is a block diagram of a device for self-interference cancellation (Self-IC) in the communication device proposed in the communication system environment using OFDM based on FIG.
  • 10 is a diagram illustrating a basic procedure of downlink HARQ.
  • FIG. 11 illustrates a turbo encoder having a rate matching module in an LTE / LTE-A system
  • FIG. 12 illustrates a structure of a circular buffer for a rate matching module in an LTE / LTE-A system.
  • FIG. 13 is a diagram illustrating a procedure of a self-interference cancellation operation technique in the operation of the FDR mode.
  • FIG. 14 is a diagram for explaining a part changed due to HARQ retransmission of an existing system and an FDR system.
  • FIG. 15 is a diagram illustrating HARQ procedures for retransmission in an FDR system according to Embodiment 1 of the present invention.
  • FIG. 16 is a diagram illustrating HARQ procedures for retransmission in an FDR system according to Embodiment 2 of the present invention.
  • FIG. 17 is a diagram illustrating HARQ procedures for retransmission in an FDR system according to Embodiment 3 of the present invention.
  • 18 is a diagram illustrating a PRB size capable of decoding a retransmission packet.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • the transmission from the base station to the terminal is referred to as downlink transmission and the transmission from the terminal to the base station are collectively referred to as uplink transmission.
  • a method of dividing the radio resources between the downlink transmission and the uplink transmission is defined as a duplex, and when a frequency band is divided into a downlink transmission band and an uplink transmission band and bi-directionally transmitted and received, a frequency division duplex (Frequency Division Duplex) FDD).
  • FDD Frequency Division Duplex
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • the transmitter and the receiver in the terminal and the base station may be configured as one radio frequency (RF) unit.
  • RF radio frequency
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as data processing is performed rather than a function of receiving or transmitting a signal.
  • FIG. 2 is a diagram illustrating a structure of a radio frame of a 3GPP LTE / LTE-A system.
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CPs include extended CPs and normal CPs.
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • FIG 3 illustrates a resource grid of a downlink slot of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • One downlink slot may include 7 (or 6) OFDM symbols and the resource block may include 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12x7 (6) REs.
  • the number of RBs included in the downlink slot NRB depends on the downlink transmission band.
  • the structure of an uplink slot is the same as that of a downlink slot, but an OFDM symbol is replaced with an SC-FDMA symbol.
  • FIG. 4 illustrates a structure of a downlink subframe of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • up to three (4) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared CHance (PDSCH) is allocated.
  • Examples of a downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
  • DCI downlink control information
  • the DCI format is defined as format 0 for uplink, formats 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A, and so on for downlink.
  • the DCI format includes a hopping flag, RB assignment, modulation coding scheme (MCS), redundancy version (RV), new data indicator (NDI), transmit power control (TPC), and cyclic shift DM RS, depending on the application.
  • MCS modulation coding scheme
  • RV redundancy version
  • NDI new data indicator
  • TPC transmit power control
  • Information including a reference signal (CQI), a channel quality information (CQI) request, a HARQ process number, a transmitted precoding matrix indicator (TPMI), and a precoding matrix indicator (PMI) confirmation are optionally included.
  • CQI reference signal
  • CQI channel quality information
  • TPMI transmitted precoding matrix indicator
  • PMI pre
  • the PDCCH includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel, Resource allocation information of upper-layer control messages such as paging information on PCH), system information on DL-SCH, random access response transmitted on PDSCH, Tx power control command set for individual terminals in terminal group, Tx power control command , The activation instruction information of the Voice over IP (VoIP).
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier (eg, a radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH.
  • RNTI radio network temporary identifier
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 5 illustrates a structure of an uplink subframe used in a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • an uplink subframe includes a plurality of slots (eg, two).
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH (Physical Uplink Shared CHannel) and is used to transmit a data signal such as voice.
  • the control region includes a PUCCH (Physical Uplink Control CHannel) and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • PUCCH may be used to transmit the following control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of ACK / NACK is transmitted in response to a single downlink codeword (CodeWord, CW), and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CQI Channel Quality Indicator
  • MIMO Multiple input multiple output
  • RI rank indicator
  • PMI precoding matrix indicator
  • PTI precoding type indicator
  • the amount of control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports seven formats according to the transmitted information.
  • FIG. 6 shows a conceptual diagram of a terminal and a base station supporting FDR.
  • Frequency Duplex Radio (FDR) using a single frequency transmission band may be defined as a transmission resource configuration method that simultaneously transmits / receives through a single frequency transmission band from an arbitrary wireless device viewpoint.
  • FDR Frequency Duplex Radio
  • a transmission resource configuration method that simultaneously transmits / receives through a single frequency transmission band from an arbitrary wireless device viewpoint.
  • D2D communication device-to-device direct communication
  • Intra-device self-interference Because the device transmits / receives at the same time and frequency resources, not only a desired signal but also a signal transmitted by itself is simultaneously received. At this time, since the signal transmitted by the self is received by its reception antenna with little attenuation, it means that the signal is received with a much larger power than the desired signal to act as interference.
  • UE to UE inter-link interference means that an uplink signal transmitted by a UE is received by an adjacent UE and acts as an interference.
  • BS to BS inter-link interference means that signals transmitted between heterogeneous base stations (Picocell, femtocell, relay node) between base stations or HetNet are received by receiving antennas of other base stations and act as interference.
  • heterogeneous base stations Picocell, femtocell, relay node
  • Intra-device self-interference is an interference that occurs only in the FDR system, which greatly degrades the performance of the FDR system and is the first problem to be solved in order to operate the FDR system. to be.
  • FIG. 7 illustrates a conceptual diagram of a transmit / receive link and self-interference (SI) in an FDR communication situation.
  • SI self-interference
  • the magnetic interference may be classified into direct interference from a signal transmitted from a transmitting antenna directly into its receiving antenna without path attenuation and reflected interference by surrounding terrain.
  • the size may be extremely larger than the desired signal due to the physical distance difference. This extremely high level of interference requires effective cancellation of self-interference to drive the FDR system.
  • the UE needs 119 dBm of self-interference (Self-IC) performance in order to effectively drive the FDR system in a bandwidth (BW) of 20MHz.
  • the thermal noise value depends on the bandwidth of the mobile communication system. It can be changed as shown in the equation. Table 1 assumes a bandwidth of 20MHz.
  • the Receiver Noise Figure (NF) considered the worst case with reference to the 3GPP specification requirements.
  • the receiver thermal noise level is determined by the sum of the thermal noise at the specific BW and the receiver NF.
  • FIG. 8 is a diagram illustrating a position at which three interference techniques are applied at an RF transceiver (or RF front end) of a device. 8 shows the application location of the three Self-IC techniques. The following three self-IC techniques are briefly described.
  • the self-interference cancellation scheme that should be executed first is the antenna self-interference cancellation scheme.
  • SI cancellation is performed at the antenna stage.
  • the simplest is to physically block the transmission of the SI signal by installing an object that can block the signal between the transmitting and receiving antennas, artificially adjusting the distance between the antennas using multiple antennas, or reversing the phase for a particular transmitting signal. Can be used to remove some of the SI signal.
  • a part of the SI signal may be removed using a multi-polarized antenna or a directional antenna.
  • Analog Self-IC A method of removing interference from the analog stage before the received signal passes through the ADC (Analog-to-Digital Convertor). This method removes the SI signal using the duplicated analog signal. This may be performed in the RF domain or the IF domain. A method of removing the SI signal is described in detail as follows. First, the delayed analog signal is time-delayed, and then the magnitude and phase are adjusted to make a duplicate signal of the SI signal actually received and subtracted from the signal received by the receiving antenna. However, since the analog signal is processed, additional distortion may occur due to implementation complexity and circuit characteristics, and thus, interference cancellation performance may be greatly changed.
  • Digital Self-IC Removes interference after the received signal passes through the ADC. It includes all interference cancellation techniques in the baseband region. In the simplest case, it can be realized by making a copy signal of SI and subtracting it from the received digital signal by using the transmitted digital signal. Alternatively, techniques for preventing a transmission signal to a terminal or a base station from being received by a reception antenna by performing precoding / postcoding on a baseband using multiple antennas may also be classified as digital self-ICs. However, since digital self-IC can be quantized to recover information about a desired signal, a digitally modulated signal can be interfered using one or more of the above techniques to perform digital self-IC. After elimination, we need a precondition that the difference in signal power between the remaining interfering signal and the desired signal must fall within the ADC range.
  • FIG. 9 is a block diagram of a device for self-interference cancellation (Self-IC) in the communication device proposed in the communication system environment using OFDM based on FIG.
  • FIG. 9 is a conceptual diagram of removing a magnetic interference signal by separating a transmitting antenna and a receiving antenna, a method of configuring an antenna different from FIG. 5 may be used when an antenna interference cancellation technique using one antenna is used.
  • a function block suitable for the purpose may be added or deleted.
  • the nonlinear components in the RF are greatly affected.
  • the transmission signal is distorted by the nonlinear characteristics of active elements such as the power amplifier (PA) of the transmitting RF chain and the low noise amplifier (LNA) of the receiving RF chain, and the distortion can be modified by the mixer in the transmitting / receiving RF chain.
  • the transmission signal due to such distortion may be modeled as a component corresponding to a high-order term.
  • even-order terms can be effectively removed using existing AC coupling or filtering techniques because they affect the high-frequency region of DC and several times the center frequency.
  • the received signal after the ADC in the FDR system is expressed using Equation 1 below using the Parallel Hammerstein (PH) Model.
  • x SI [n] is data transmitted by the RF transmitter of the device
  • h SI [n] is a self-interference channel (Self) experienced by data transmitted by the RF transmitter.
  • x D [n] is the data to be received at the RF receiver of the device
  • h D [n] is the desired channel of the desired channel experienced by the data to be received at the RF receiver.
  • Estimated Gain of Desired Channel By decoding the received signal using can be expressed as shown in Equation 3 below.
  • the UE After receiving the downlink signal, the UE goes through a decoding procedure. If the decoding of the data fails, the UE retransmits it based on a HARQ (Hybrid automatic repeat reQuest) procedure that transmits a NACK (signal) to the base station through PUCCH or PUSCH. You will be asked.
  • the basic procedure is as follows:
  • 10 is a diagram illustrating a basic procedure of downlink HARQ.
  • a UE receives a PDSCH including user data from a network NW (eg, a base station).
  • this PDSCH may be scheduled by DCI (format) 1 (DCI (format) 1) of the PDCCH.
  • the subframe transmitted ACK / NACK may vary depending on whether DCI (format) 0 is included in the PDCCH. For example, if the DCI (format) 0 is not included in the PDCCH, the UE performs ACK / NACK and PUCCH in the fourth subframe (subframe n + 4) from the subframe (n) that receives the PDSCH. If not, it may be transmitted through the PUSCH.
  • the base station determines whether the signal received from the terminal is ACK or NACK, and if the NACK, the base station may retransmit the PDSCH in the fourth subframe from the subframe receiving the NACK.
  • the UE Unlike the uplink HARQ, the UE has no information on the downlink HARQ procedure. However, the UE obtains information on the DL HARQ procedure through information (Process ID, Redundancy Version (RV) value) included in the downlink control format (DCI) (format) in the PDCCH transmitted by the base station. Therefore, decoding is performed based on the data of the retransmitted PDSCH.
  • Information Provides ID, Redundancy Version (RV) value
  • DCI downlink control format
  • FIG. 11 illustrates a turbo encoder having a rate matching module in an LTE / LTE-A system
  • FIG. 12 illustrates a structure of a circular buffer for a rate matching module in an LTE / LTE-A system.
  • decoding of a downlink signal may fail due to channel quality of a downlink channel or other cell / terminal interference.
  • decoding of received data may fail when proper self-interference cancellation is not performed. have.
  • the procedure for removing the existing self-interference in the FDR system is shown in FIG.
  • FIG. 13 is a diagram illustrating a procedure of a self-interference cancellation operation technique in the operation of the FDR mode.
  • a signal as shown in Equation 1 is generated.
  • a self-interference signal is produced by generating a digital self-interference signal from the equation 1 signal, and digital self-interference cancellation is performed based on the produced signal to obtain a signal as shown in equation (2).
  • the signal is decoded in the desired signal detection block as shown in Equation 3, all processes are completed.
  • the detection performance of the received signal is estimated by the estimated self-interference channel ( ) And the desired channel ( ) Is greatly affected by the accuracy. Therefore, the success / failure of the self-interference cancellation can be determined based on the result of the detection success / failure of the final received signal.
  • Table 2 below shows the correlation between the success / failure of detection of a received signal and the success / failure of self-interference cancellation.
  • Case 1 the reception of the desired signal is successful after the digital self-interference cancellation is performed.
  • case 2 the estimation of the desired channel is incorrect or the link quality ( This is a case where the detection of the received signal fails due to poor link quality or other cell / terminal interference.
  • Case 3 is a case where the detection of the received signal fails due to the failure of self-interference cancellation. When the self-interference cancellation failed, it was determined that the successful detection of the received signal would not occur because the signal of the self-interference was too strong for the received signal.
  • the basis for determining whether the self-interference cancellation has failed may be as follows.
  • the IR-HARQ procedure for the downlink determines that the base station determines only the information of the NACK of the terminal to perform retransmission.
  • the base station does not know why the NACK occurs for some reason.
  • the possibility of recovery upon reception of the retransmission signal varies depending on whether the interference is successful or failed.
  • FIG. 14 is a diagram for explaining a part changed due to HARQ retransmission of an existing system and an FDR system.
  • an existing system that is, a system operating in HDR mode
  • the UE may transmit an indicator (eg, an SIC Success Flag) indicating success or failure of self-interference to a base station through a PUCCH or a PUSCH. If the reason for transmitting this NACK fails to self-interference, a procedure different from the IR-HARQ procedure for the existing downlink is required.
  • an indicator eg, an SIC Success Flag
  • FIG. 15 is a diagram illustrating HARQ procedures for retransmission in an FDR system according to Embodiment 1 of the present invention.
  • the description of the HARQ procedures for retransmission in the FDR system shown in FIG. 15 is almost similar to the HARQ procedures for retransmission in the HDR system shown in FIG. .
  • an indicator indicating whether a self-interference removal is successful in a PUCCH or a PUSCH when a UE in an FDR mode transmits a NACK signal for PDSCH reception (eg, self SIC Success Flag) may be further included and transmitted.
  • the ACK / NACK transmission of the terminal and the retransmission of the base station are respectively 4th subframe after the PDSCH received subframe and 4 after the subframe receiving the ACK / NACK.
  • SIC Success Frag 0 ⁇ 2n-1 (True): Whether to remove the self-interference from the terminal when decoding the corresponding packet by sub-band, whether to remove the interference by the terminal when decoding the corresponding packet by PRB, or Indicates success of removing self-interference at the terminal when decoding the corresponding packet for each RBG (Resource Block Group).
  • the base station may perform a proper procedure for the terminal so that the retransmission packet is robust due to the failure of the self-interference removal of the terminal when retransmission in the FDR mode.
  • the information on the resource index that the terminal has successfully removed the self-interference to the base station so that the self-interference cancellation is successful when retransmission (for example, RBG index, PRB Index, subband index) can be transmitted.
  • FIG. 16 is a diagram illustrating HARQ procedures for retransmission in an FDR system according to Embodiment 2 of the present invention.
  • the UE transmits information on a preferred resource (eg, RBG index, PRB index, subband index) to the base station through PUCCH or PUSCH in consideration of self-interference cancellation when operating in FDR mode. can do.
  • a preferred resource eg, RBG index, PRB index, subband index
  • the information about the resource in the second embodiment may be included in the PUCCH or the PUSCH together with the SIC Success Frag bit in the first embodiment, or may be included in the PUCCH or the PUSCH alone.
  • the base station for the terminal By using the information on the resource (for example, RBG index, PRB index, subband index) the base station for the terminal so that the retransmission packet is robust due to the failure of the self-interference cancellation of the terminal when retransmission in FDR mode Appropriate resources can be allocated.
  • the information about the resource may be an RBG index, PRB index, subband index of the existing HDR system, modified RBG index, PRB index for the FDR system It may be a subband index.
  • the terminal transmits a preferred Modulation and Coding Scheme (MCS) index to the base station in consideration of the residual self-interference signal (Residual SI) so that the self-interference can be successfully removed. It may be.
  • MCS Modulation and Coding Scheme
  • FIG. 17 is a diagram illustrating HARQ procedures for retransmission in an FDR system according to Embodiment 3 of the present invention.
  • the UE may transmit a preferred modified MCS level to the base station through PUCCH or PUSCH in consideration of the residual self-interference signal (or strength of the residual self-interference signal) in addition to the ACK / NACK transmission.
  • the BS performs resource allocation or scheduling based on the selected MCS level in consideration of the residual self-interference signal received from the UE. Can be done.
  • the UE may transmit additional information to the base station through PUCCH or PUSCH in combination with the first, second and third embodiments.
  • the BS may operate differently from the existing HARQ procedure so that the retransmission packet is robust due to the failure of the self-interference cancellation of the UE.
  • the base station uses the SIC Success Frag information transmitted by the terminal to perform self-interference cancellation well so that the retransmission packet is robust due to the failure of the interference removal.
  • HARQ procedure can be changed as in the following embodiments 4-1 to 4-6.
  • the base station may transmit by a chase combining (CC) scheme instead of an IR scheme in which the RV value is changed during retransmission.
  • CC chase combining
  • the base station may retransmit the RV value from 2 to 0 through DCI and retransmit it to the terminal.
  • the base station may allocate a PRB for retransmission at the same time as the RV value changed to a packet size that can be decoded using only the retransmission packet and transmit the DC to the terminal through DCI.
  • the terminal may receive retransmission data based on the RV value and the PRB information according to the DCI.
  • 18 is a diagram illustrating a PRB size capable of decoding a retransmission packet.
  • the base station may perform retransmission by allocating a PRB to decode only the retransmission packet so that the retransmission packet is robust due to the self-interference cancellation failure.
  • the UE may be operated in the half duplex mode so that self-interference does not occur when the terminal receives retransmission so that the retransmission packet is robust due to the failure of the self-interference removal.
  • the base station may inform the UE of the duplex mode (for example, half duplex) to operate through the PDCCH.
  • the base station may allocate only the DL grant without allocating the UL grant to the PDCCH so that the terminal may operate in the half duplex mode.
  • a new data indicator may be toggled to be transmitted as new data to the terminal.
  • the retransmission packet may be robust due to the failure of the self-interference cancellation of the terminal.
  • the New Data Indicator can be toggled via DCI to discard previously failed packets and receive new data.
  • the base station When the base station receives the resource index (for example, RBG index, PRB index, subband index) that the successful interference removal of the terminal, the base station is a conventional HARQ pro so that the retransmission packet is robust due to the failure of the interference cancellation of the terminal It can behave differently from Caesar.
  • the base station utilizes the information of the preferred resource index (eg, RBG index, PRB index, subband index) transmitted by the terminal so that the retransmission packet is robust due to the failure of the self-interference removal of the terminal.
  • the HARQ procedure can be changed as in the following Embodiments 5-1 to 5-6 so that the packet transmitted by the UE can operate self-interference cancellation well.
  • the base station may retransmit in the chase combining method in consideration of the information of the resource index (eg, RBG index, PRB index, subband index) preferred by the terminal.
  • the base station may retransmit by performing resource allocation in consideration of information on the resource index.
  • the RV value may be transmitted using a chase combining (CC) method instead of an IR method.
  • the base station may retransmit by performing resource allocation in consideration of resource index (eg, RBG index, PRB index, subband index) information preferred by the terminal.
  • the base station may perform a retransmission to the terminal by forcibly converting the RV value from 2 to 0 through the DCI when retransmission.
  • Resource allocation eg, RBG index, PRB index, subband index
  • resource indexes e.g., RBG index, PRB index, subband index
  • retransmission can be performed by adjusting MCS level.
  • the base station simultaneously considers the resource index (eg, RBG index, PRB index, subband index) information that the UE prefers, and simultaneously with the RV value changed to a packet size that can be decoded with only a retransmission packet.
  • a PRB for retransmission can be allocated and transmitted to the UE through DCI.
  • the resource allocation may be retransmitted by considering the resource index (eg, RBG index, PRB index, subband index) information so that the retransmission packet is robust due to the failure of self-interference cancellation.
  • the base station may perform retransmission by allocating a PRB so that decoding can be performed using only retransmission packets.
  • the base station may allow the terminal to operate in the half duplex mode in consideration of the resource index (eg, RBG index, PRB index, subband index) information preferred by the terminal.
  • the resource allocation may be retransmitted by considering the resource index (eg, RBG index, PRB index, subband index) information so that the retransmission packet is robust due to the failure of self-interference cancellation.
  • the terminal may be operated in the half duplex mode so that self-interference does not occur when the terminal retransmits.
  • the base station may transmit a duplex mode indicator for instructing the terminal to operate in the half duplex mode through the PDCCH.
  • the base station may allocate only the DL grant without allocating the UL grant to the PDCCH so that the terminal may operate in the half duplex mode.
  • the base station toggles a new data indicator so that the terminal transmits the new data in consideration of the resource index (eg, RBG index, PRB index, subband index) information that the terminal prefers.
  • the new data indicator can be toggled through DCI to allow the UE to discard the previously failed packet and receive new data to ensure that the retransmission packet is robust due to the failure of the self-interference cancellation of the terminal. .
  • the base station may operate differently from the existing HARQ procedures so that the retransmission packet is robust due to the failure of the self-interference cancellation of the terminal.
  • the base station can perform the self-interference cancellation of the packet transmitted to the terminal based on the preferred MCS index information transmitted by the terminal.
  • the HARQ procedure can be changed as in the following embodiments 6-1 to 6-6.
  • the base station may perform retransmission by applying a chase combining method when receiving the preferred MCS level from the terminal.
  • the base station retransmits to the MCS index preferred by the terminal so that the retransmission packet is robust due to the failure of the self-interference removal of the terminal, and the retransmission by the chase combining (CC) method rather than the IR method of changing the RV value when retransmitting. Can be.
  • CC chase combining
  • RV a previously transmitted value
  • the base station performs the retransmission based on the MCS index preferred by the terminal so that the retransmission packet is robust due to the failure of the self-interference removal of the terminal.
  • the base station forcibly converts the RV value from 2 to 0 through DCI and transmits the packet to the terminal.
  • the base station may allocate a PRB for retransmission simultaneously with the changed RV value to a packet size decodable only by the retransmission packet and transmit the same to the terminal through DCI.
  • the base station performs retransmission based on the MCS index preferred by the terminal so that the retransmission packet is robust due to the failure of the self-interference cancellation of the terminal, and the base station may perform retransmission by allocating the PRB so that decoding can be performed using only the retransmission packet. have.
  • the base station may allow the terminal to operate in the half duplex mode.
  • the base station performs packet retransmission based on the MCS index preferred by the terminal so that the retransmission packet is robust due to the failure of the self-interference removal of the terminal, and the terminal operates in half duplex mode so that self-interference does not occur when the terminal receives the retransmission. You can do that.
  • the base station may inform the UE of the duplex mode through the PDCCH. That is, the base station may transmit the duplex mode to the terminal by setting the duplex mode to the half duplex mode. Alternatively, the base station may allocate only the DL grant without allocating the UL grant to the PDCCH so that the terminal may operate in the half duplex mode.
  • the base station When the base station receives a preferred MCS level from the terminal, the base station can toggle the new data indicator (New Data Indicator) to transmit the new data (New data) to the terminal. Retransmission is performed based on the MCS index preferred by the terminal so that the retransmission packet is robust due to the failure of the self-interference removal of the terminal.For retransmission, the base station toggles the New Data Indicator through the DCI to allow the terminal to fail. Can be discarded and new data received.
  • New Data Indicator new data indicator
  • Retransmission is performed based on the MCS index preferred by the terminal so that the retransmission packet is robust due to the failure of the self-interference removal of the terminal.
  • the base station toggles the New Data Indicator through the DCI to allow the terminal to fail. Can be discarded and new data received.
  • the base station may perform retransmission by changing the HARQ procedure so that the retransmission of the terminal is successful.
  • the success rate of retransmission may be increased by transmitting to the base station whether or not the self-interference removal success / failure of the FDR support terminal is transmitted.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • the method and apparatus for performing the HARQ procedure in the environment operating in the FDR mode can be applied industrially in various wireless communication systems, such as 3GPP LTE / LTE-A, 5G system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선통신 시스템에서 FDR 모드로 동작하는 단말이 HARQ(Hybrid Automatic Repeat reQuest) 프로시저를 수행하는 방법은, 기지국으로부터의 하향링크 신호를 수신하는 단계; 및 상기 하향링크 신호에 대한 NACK 신호를 포함하는 피드백 정보를 상기 기지국으로 전송하는 단계를 포함하되, 상기 피드백 정보는 상기 NACK 신호를 전송하는 이유가 상기 단말이 자기간섭 신호를 제거하는데 실패한 것임을 가리키는 지시자를 더 포함할 수 있다.

Description

FDR 모드로 동작하는 환경에서의 HARQ 프로시저를 수행하는 방법 및 이를 위한 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는, FDR 모드로 동작하는 환경에서의 HARQ 프로시저를 수행하는 방법 및 이를 위한 장치에 관한 것이다.
3GPP LTE (3rd Generation Partnership Project Long Term Evolution) 시스템은 1ms TTI (transmission time interval)를 가지는 프레임 구조로 디자인 되었으며, 비디오(video) 어플리케이션을 위해 데이터 요구 지연 시간은 10ms이었다. 그러나, 미래의 5G 기술은 실시간 제어(real-time control) 및 촉감 인터넷(tactile internet)과 같은 새로운 어플리케이션의 등장으로 더욱 낮은 지연의 데이터 전송을 요구하고 있으며, 5G 데이터 요구 지연은 1ms까지 낮춰질 것으로 예상된다.
또한, 5G 통신 시스템에서는 FDR (Full Duplex Radio) 모드의 동작을 지원하지만, 이러한 FDR 모드의 동작에 따른 자기간섭이 발생하여 통신 성능을 열화시키는데, 이를 위한 해결책이 필요하다.
본 발명에서 이루고자 하는 기술적 과제는 무선통신 시스템에서 FDR 모드로 동작하는 단말이 HARQ 프로시저를 수행하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 무선통신 시스템에서 기지국이 HARQ 프로시저를 수행하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 또 다른 기술적 과제는 무선통신 시스템에서 HARQ 프로시저를 수행하는 FDR 모드로 동작하는 단말을 제공하는 데 있다.
본 발명에서 이루고자 하는 또 다른 기술적 과제는 FDR 모드를 지원하는 무선통신 시스템에서 HARQ 프로시저를 수행하는 기지국을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 무선통신 시스템에서 FDR(Full Duplex Radio) 모드로 동작하는 단말이 HARQ(Hybrid Automatic Repeat reQuest) 프로시저를 수행하는 방법은, 기지국으로부터 하향링크 신호를 수신하는 단계; 및 상기 하향링크 신호에 대한 NACK 신호를 포함하는 피드백 정보를 상기 기지국으로 전송하는 단계를 포함하되, 상기 피드백 정보는 상기 NACK 신호를 전송하는 이유가 상기 단말이 자기간섭 신호를 제거하는데 실패한 것임을 가리키는 지시자를 더 포함할 수 있다.
선택적으로, 상기 피드백 정보는 상기 단말이 자기간섭 신호를 제거하는 데 실패한 서브밴드(subband), PRB(Physical Resource Block) 또는 RBG(Resource Block Group)를 가리키는 정보를 더 포함할 수 있다.
선택적으로, 상기 피드백 정보는 상기 단말이 최근에 자기간섭 신호를 제거하는 데 성공한 RBG(Resource Block Group)를 가리키는 정보를 더 포함할 수 있다.
선택적으로, 상기 피드백 정보는 상기 단말이 선호하는 MCS(Modulation and Coding Scheme) 레벨에 대한 정보를 더 포함할 수 있다. 이때, 상기 MCS 레벨은 상기 자기간섭 신호를 제거한 후의 잔여 자기간섭 신호의 세기에 기초하여 결정될 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 무선통신 시스템에서 기지국이 HARQ 프로시저를 수행하는 방법은, FDR (Full Duplex Radio) 모드로 동작하는 단말에게 하향링크 신호를 전송하는 단계; 및 상기 하향링크 신호에 대한 NACK 신호를 포함하는 피드백 정보를 상기 단말로부터 수신하는 단계를 포함하되, 상기 피드백 정보는 상기 NACK 신호를 전송하는 이유가 상기 단말이 자기간섭 신호를 제거하는데 실패한 것임을 가리키는 지시자를 더 포함할 수 있다.
상기 방법은, 상기 피드백 정보에 기초하여 상기 단말로 상기 하향링크 신호를 재전송하는 단계를 더 포함하되, 상기 재전송되는 하향링크 신호는 체이스 컴바이닝(Chase combining) 방식이 적용될 수 있다.
상기 방법은, 상기 피드백 정보에 기초하여 상기 단말로 상기 하향링크 신호를 재전송하는 단계를 더 포함하되, 상기 재전송되는 하향링크 신호에 적용된 RV(Redundancy Version) 값은 이전에 전송한 하향링크 신호에 적용된 RV 값과 동일할 수 있다.
상기 방법은, 상기 재전송되는 하향링크 신호에 적용된 RV 값을 포함하는 하향링크 제어 정보를 상기 단말로 전송하는 단계를 더 포함할 수 있다.
상기 방법은, 상기 피드백 정보에 기초하여 상기 단말이 Half duplex 모드로 동작하도록 지시하는 정보를 포함하는 하향링크 제어 정보를 상기 단말로 전송하는 단계를 더 포함할 수 있다.
상기 방법은, 상기 피드백 정보에 기초하여 상기 단말이 상기 하향링크 신호를 폐기하고 새로운 데이터를 수신하도록 지시하는 하향링크 제어 정보를 상기 단말로 전송하는 단계; 및 상기 하향링크 제어 정보에 기초하여 상기 새로운 데이터를 상기 단말로 전송하는 단계를 더 포함할 수 있다.
상기의 또 다른 기술적 과제를 달성하기 위한, 무선통신 시스템에서 HARQ 프로시저를 수행하는 FDR 모드로 동작하는 단말은, 수신기; 송신기; 및 프로세서를 포함하되, 상기 프로세서는, 상기 수신기가 기지국으로부터의 하향링크 신호를 수신하도록 제어하고, 상기 송신기가 상기 하향링크 신호에 대한 NACK 신호를 포함하는 피드백 정보를 상기 기지국으로 전송하도록 제어하며, 상기 피드백 정보는 상기 NACK 신호를 전송하는 이유가 상기 단말이 자기간섭 신호를 제거하는데 실패한 것임을 가리키는 지시자를 더 포함할 수 있다.
상기의 또 다른 기술적 과제를 달성하기 위한, FDR 모드를 지원하는 무선통신 시스템에서 HARQ 프로시저를 수행하는 기지국은, 송신기; 수신기; 및 프로세서를 포함하되, 상기 프로세서는 상기 송신기가 FDR (Full Duplex Radio) 모드로 동작하는 단말에게 하향링크 신호를 전송하도록 제어하고, 상기 수신기가 상기 하향링크 신호에 대한 NACK 신호를 포함하는 피드백 정보를 상기 단말로부터 수신하도록 제어하며, 상기 피드백 정보는 상기 NACK 신호를 전송하는 이유가 상기 단말이 자기간섭 신호를 제거하는데 실패한 것임을 가리키는 지시자를 더 포함할 수 있다.
본 발명의 일 실시예에 따라, FDR 시스템에서 재전송 요청 시 FDR 지원 단말의 자기간섭 제거 성공/실패 여부를 기지국에게 전송하여 재전송 시 성공률을 높일 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 2는 3GPP LTE/LTE-A 시스템의 무선 프레임의 구조를 예시한 도면이다.
도 3은 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 슬롯의 자원 그리드를 예시한 도면이다.
도 4는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 서브프레임의 구조를 예시한다.
도 5는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 6은 FDR 을 지원하는 단말과 기지국의 개념도를 나타낸다.
도 7은 FDR 통신 상황에서 송신/수신 링크와 자기간섭 (SI)의 개념도를 예시하고 있다.
도 8은 장치의 RF 송수신단(혹은 RF front end)에서의 세 가지 간섭 기법을 적용하는 위치를 도시한 도면이다.
도 9는 도 8을 바탕으로 하여 OFDM을 이용한 통신 시스템 환경에서 제안하는 통신 장치에서 자기간섭 제거(Self-IC)를 위한 장치의 블럭도를 도식화 한 도면이다.
도 10은 하향링크 HARQ의 기본 프로시저를 예시한 도면이다.
도 11은 LTE/LTE-A 시스템에서의 레이트 매칭 모듈을 가지는 터보 인코더를 예시한 도면이고, 도 12는 LTE/LTE-A 시스템에서의 레이트 매칭 모듈을 위한 원형 버퍼(circular buffer)의 구조를 예시한 도면이다.
도 13은 FDR 모드의 동작에서의 자기간섭 제거 운용 기법의 프로시저를 예시한 도면이다.
도 14는 기존 시스템과 FDR 시스템의 HARQ 재전송으로 인해 달라지는 부분을 설명하기 위한 도면이다.
도 15는 본 발명의 실시예 1에 따른 FDR 시스템에서의 재전송을 위한 HARQ 프로시저들을 도시한 도면이다.
도 16은 본 발명의 실시예 2에 따른 FDR 시스템에서의 재전송을 위한 HARQ 프로시저들을 도시한 도면이다.
도 17은 본 발명의 실시예 3에 따른 FDR 시스템에서의 재전송을 위한 HARQ 프로시저들을 도시한 도면이다.
도 18은 재전송 패킷의 디코딩이 가능한 PRB 크기를 도식화한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용가능하다.
이동 통신 시스템에서 단말(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
기지국과 단말 간의 무선 전송에 대하여 기지국에서 단말로의 전송을 하향 링크 전송, 단말로부터 기지국으로의 전송을 상향링크 전송으로 통칭하여 표현한다. 이러한 하향링크 전송과 상향링크 전송 간의 무선 자원을 구분하는 방식을 듀플렉스(duplex)라고 정의하며 주파수 밴드를 하향링크 전송 밴드와 상향링크 전송 밴드로 구분하여 양방향 송수신하는 경우 주파수 분할 듀플렉스(Frequency Division Duplex, FDD)라고 표현한다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)(D2D 단말을 포함)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다. 단말 및 기지국에서의 송신기 및 수신기는 하나의 RF(Radio Frequency) 유닛으로 구성될 수도 있다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
도 2는 3GPP LTE/LTE-A 시스템의 무선 프레임의 구조를 예시한 도면이다.
하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 표준 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 표준 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 표준 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
표준 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 3은 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 슬롯의 자원 그리드를 예시한 도면이다.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함한다. 하나의 하향링크 슬롯은 7(혹은 6)개의 OFDM 심볼을 포함하고 자원 블록은 주파수 도메인에서 12개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소(element)는 자원 요소(Resource Element, RE)로 지칭된다. 하나의 RB는 12×7(6)개의 RE를 포함한다. 하향링크 슬롯에 포함되는 RB의 개수 NRB는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일하되, OFDM 심볼이 SC-FDMA 심볼로 대체된다.
도 4는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4)개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대응한다. 남은 OFDM 심볼은 PDSCH(Physical Downlink Shared CHancel)가 할당되는 데이터 영역에 해당한다. LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답으로 HARQ ACK/NACK(Hybrid Automatic Repeat request acknowledgment/negative-acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 한다. DCI 포맷은 상향링크용으로 포맷 0, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A 등의 포맷이 정의되어 있다. DCI 포맷은 용도에 따라 호핑 플래그(hopping flag), RB 할당, MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), 사이클릭 쉬프트 DM RS(demodulation reference signal), CQI (channel quality information) 요청, HARQ 프로세스 번호, TPMI(transmitted precoding matrix indicator), PMI(precoding matrix indicator) 확인(confirmation) 등의 정보를 선택적으로 포함한다.
PDCCH는 하향링크 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 나른다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집합(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH가 특정 단말을 위한 것일 경우, 해당 단말의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system information block, SIC))를 위한 것일 경우, SI-RNTI(system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다.
도 5는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 5를 참조하면, 상향링크 서브프레임은 복수(예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH(Physical Uplink Shared CHannel)를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH(Physical Uplink Control CHannel)를 포함하고 상향링크 제어 정보(Uplink Control Information, UCI)를 전송하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍(RB pair)을 포함하며 슬롯을 경계로 호핑한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ ACK/NACK: PDSCH 상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드(CodeWord, CW)에 대한 응답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.
- CQI(Channel Quality Indicator): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator), PMI(Precoding Matrix Indicator), PTI(Precoding Type Indicator) 등을 포함한다. 서브프레임 당 20비트가 사용된다.
단말이 서브프레임에서 전송할 수 있는 제어 정보(UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다. PUCCH는 전송되는 정보에 따라 7개의 포맷을 지원한다.
도 6은 FDR 을 지원하는 단말과 기지국의 개념도를 나타낸다.
단일 주파수 전송 밴드를 사용한 FDR (Frequency Duplex Radio)은 임의의 무선 디바이스 관점에서는 단일 주파수 전송 밴드를 통해 송신/수신을 동시에 수행하는 전송 자원 설정 방식으로 정의할 수 있다. 이의 특별한 일 예로서 일반적인 기지국(또는 중계기, 릴레이 노드, remote radio head(RRH) 등)과 무선 단말 간의 무선 통신에 대해서 단일한 주파수 전송 밴드를 통해 기지국의 하향링크 전송과 상향링크 수신, 무선 단말의 하향링크 수신과 상향링크 전송을 동시적으로 수행하는 전송 자원 설정 방식으로 표현할 수 있다. 다른 일 예로서 무선 단말 들 간의 디바이스 간 직접 통신(device-to-device direct communication, D2D communication)의 상황에서 무선 단말들 간의 전송과 수신이 동일한 주파수 전송 밴드에서 동시에 수행되는 전송 자원 설정 방식으로 표현할 수 있다.
이하의 본 발명에서 일반적 기지국과 무선 단말 간 무선 송수신의 경우를 예시하며 FDR 관련 제안 기술들을 기술하고 있으나 일반적인 기지국 이외의 단말과 무선 송수신을 수행하는 네트워크 무선 디바이스의 경우도 포괄함을 명시하며 단말들 간의 직접 통신의 경우도 포괄함을 명시한다.
도 6과 같은 FDR 상황에서는 다음과 같은 총 3종류의 간섭이 존재하게 된다.
Intra-device self-interference: 동일한 시간 및 주파수 자원으로 송/수신을 수행하기 때문에, desired signal 뿐만 아니라 자신이 송신한 신호가 동시에 수신된다. 이때, 자신이 송신한 신호는 감쇄가 거의 없이 자신의 수신 안테나로 수신 되므로 desired signal 보다 매우 큰 파워로 수신되어 간섭으로 작용하는 것을 의미한다.
UE to UE inter-link interference: 단말이 송신한 상향링크 신호가 인접하게 위치한 단말에게 수신되어 간섭으로 작용하는 것을 의미한다.
BS to BS inter-link interference: 기지국간 혹은 HetNet 상황에서의 이종 기지국간(Picocell, femtocell, relay node) 송신하는 신호가 다른 기지국의 수신 안테나로 수신되어 간섭으로 작용하는 것을 의미한다.
이와 같은 3가지 간섭 중 Intra-device self-interference (이하 Self-interference (SI))는 FDR 시스템에서만 발생 하는 간섭으로 FDR 시스템의 성능을 크게 열화 시키며, FDR 시스템을 운용하기 위해서 가장 먼저 해결해야 할 문제이다.
도 7은 FDR 통신 상황에서 송신/수신 링크와 자기간섭 (SI)의 개념도를 예시하고 있다.
도 7에서처럼 자기간섭(SI)는 송신 안테나로부터 송신된 신호가 경로 감쇄 없이 자신의 수신 안테나로 바로 들어오는 다이렉트 간섭(direct interference)과 주변의 지형에 의해 반사된 간섭(reflected interference)로 구분될 수 있으며, 그 크기는 물리적인 거리 차이에 의해 원하는 신호(desired signal) 보다 극단적으로 클 수 밖에 없다. 이렇게 극단적으로 큰 간섭의 세기 때문에 FDR 시스템의 구동을 위해서는 자기간섭의 효과적인 제거가 필요하다.
효과적으로 FDR 시스템이 구동되기 위해서는 장치의 최대 송신 파워에 따른 자기간섭 제거(Self-IC)의 요구 사항을 다음 표 1(이동통신 시스템에서의 FDR 적용 시 Self-IC 요구사항 (BW=20MHz))과 같이 결정할 수 있다
표 1
Node Type Max. Tx Power (P A ) Thermal Noise. (BW=20MHz) Receiver NF Receiver Thermal Noise Level Self-IC Target (PA- TN-NF)
Macro eNB 46dBm -101dBm 5dB (for eNB) -96dBm 142 dB
Pico eNB 30dBm 126 dB
Femto eNB,WLAN AP 23dBm 119 dB
UE 23dBm 9dB(for UE) -92dBm 115 dB
상기 표 1을 참조하면, 단말(UE)이 20MHz 의 대역폭(BW)에서 효과적으로 FDR 시스템을 구동시키기 위해서는 119dBm 의 자기간섭 제거(Self-IC) 성능이 필요함을 알 수 있다. 이동통신 시스템의 대역폭에 따라서 Thermal noise 값이
Figure PCTKR2016008329-appb-I000001
식과 같이 바뀔 수 있으며, 표 1은 20MHz 의 대역폭을 가정하고 구하였다. 표 1과 관련하여 Receiver Noise Figure (NF) 는 3GPP 표준 요구사항(specification requirement)를 참조하여 worst case를 고려하였다. Receiver thermal noise level 은 특정 BW 에서의 thermal noise 와 receiver NF의 합으로 결정된다.
자기간섭 제거(Self-IC) 기법의 종류 및 적용 방법
도 8은 장치의 RF 송수신단(혹은 RF front end)에서의 세 가지 간섭 기법을 적용하는 위치를 도시한 도면이다. 도 8에서는 3가지 Self-IC 기법의 적용 위치를 도시하고 있다. 이하 3가지 Self-IC 기법에 대해 간략히 설명한다.
Antenna Self-IC: 모든 Self-IC 기법 중 가장 우선적으로 실행되어야 할 자기간섭 제거 기법이 안테나 자기간섭 제거 기법이다. 안테나 단에서 SI 제거가 수행된다. 가장 간단하게는 송신 안테나 및 수신 안테나 사이에 신호를 차단할 수 있는 물체를 설치하여 SI 신호의 전달을 물리적으로 차단하거나, 다중 안테나를 활용하여 안테나 간의 거리를 인위적으로 조절하거나, 특정 송신 신호에 위상 반전을 주어 SI 신호를 일부 제거할 수 있다. 또한, 다중 편파 안테나 또는 지향성 안테나를 활용하여 SI 신호의 일부를 제거할 수 있다.
Analog Self-IC: 수신 신호가 ADC (Analog-to-Digital Convertor) 를 통과하기 이전에 Analog 단에서 간섭을 제거하는 기법으로 복제된 Analog 신호를 이용하여 SI 신호를 제거하는 기법이다. 이는 RF 영역 혹은 IF 영역에서 수행될 수 있다. SI 신호를 제거하는 방법은 구체적으로 기술하면 다음과 같다. 우선 송신되는 Analog 신호를 시간지연 시킨 후 크기와 위상을 조절하여 실제로 수신되는 SI 신호의 복제 신호를 만들어 수신 안테나로 수신되는 신호에서 차감하는 방식으로 이루어진다. 그러나, Analog 신호를 이용하여 처리하기 때문에 구현 복잡도와 회로특성으로 인하여 추가적인 왜곡이 발생할 수도 있으며 이로 인하여 간섭제거 성능이 크게 달라질 수 있다는 단점이 있다.
Digital Self-IC: 수신 신호가 ADC를 통과한 이후에 간섭을 제거하는 기법으로 Baseband 영역에서 이루어지는 모든 간섭제거 기법들을 포함한다. 가장 간단하게는 송신되는 Digital 신호를 활용하여 SI 의 복제 신호를 만들어 수신된 Digital 신호에서 차감하는 방법으로 구현 가능하다. 혹은 다중 안테나를 이용하여 Baseband에서의 Precoding/Postcoding을 수행 함으로써 단말 혹은 기지국에의 송신 신호가 수신안테나로 수신되지 않게끔 하기 위한 기법들 또한 Digital Self-IC로 분류 할 수 있다. 그러나 Digital Self-IC는 Digital로 변조된 신호가 원하는 신호에 대한 정보를 복원 할 수 있을 정도로 양자화가 이루어져가 가능하기 때문에 Digital Self-IC를 수행하기 위해서는 상기의 기법들 중 하나 이상의 기법을 활용하여 간섭을 제거하고 난 이후의 남아있는 간섭 신호와 원하는 신호간의 신호 파워의 크기 차가 ADC range안에 들어와야 하는 전제조건이 필요하다.
도 9는 도 8을 바탕으로 하여 OFDM을 이용한 통신 시스템 환경에서 제안하는 통신 장치에서 자기간섭 제거(Self-IC)를 위한 장치의 블럭도를 도식화 한 도면이다.
디지털 자기간섭 블록(Digital Self-IC block)의 위치는 도 9에서는 DAC 전과 ADC 통과후의 디지털 자기간섭 신호(digital SI) 정보를 바로 이용하여 수행하는 것으로 도시하고 있으나, IFFT 통과 후 및 FFT 통과 전의 디지털 자기간섭 신호를 이용하여 수행될 수도 있다. 또한 도 9는 송신 안테나와 수신 안테나를 분리하여 자기 간섭 신호를 제거하는 개념도이지만, 하나의 안테나를 이용한 안테나 간섭 제거 기법 사용시에는 도 5와는 다른 안테나의 구성법이 될 수 있다. 도 9에 도시된 RF 송신단 및 수신단에서 목적에 맞는 기능 block이 추가되거나 삭제될 수도 있다.
FDR 시스템의 신호 모델링
FDR 시스템은 송신 신호와 수신 신호 간 동일 주파수를 사용하고 있기 때문에 RF 에서의 비선형 성분들이 크게 영향을 끼치게 된다. 특히 송신 RF Chain 의 Power Amplifier (PA) 와 수신 RF Chain의 Low noise Amplifier (LNA)와 같은 능동 소자의 비선형 특성에 의해 송신 신호가 왜곡되며, 송/수신 RF Chain 에서의 Mixer에 의해서도 왜곡이 변형될 수 있으며, 이러한 왜곡으로 인한 송신 신호는 고차항(high-order)에 해당하는 성분이 발생되는 것으로 모델링 할 수 있다. 그 중에서 짝수 차수(even-order)항의 성분은 DC 주변 및 중심 주파수의 몇 배에 해당되는 고주파 영역에 영향을 끼치기 때문에 기존의 AC coupling 또는 Filtering 기법을 사용하여 효과적으로 제거 가능하다. 그러나, 홀수 차수항의 성분은 기존 중심 주파수 주변에 인접하여 발생하기 때문에 짝수 차수항과는 다르게 쉽게 제거가 불가능하며, 수신 시 큰 영향을 끼치게 된다. 이러한 홀수 차수항의 비선형 특성을 고려하여 FDR 시스템에서의 ADC 이후의 수신 신호를 Parallel Hammerstein (PH) Model 을 이용하여 표현하면 다음 수학식 1과 같다.
수학식 1
Figure PCTKR2016008329-appb-M000001
여기서, k값은 홀수 값(odd number), xSI[n]는 장치의 RF 송신단에서 자신이 송신한 데이터이고, hSI[n]는 RF 송신단 자신이 송신한 데이터가 겪는 자기간섭 채널(Self-channel)의 이득(gain) 이며, xD[n]는 상기 장치의 RF 수신단에서 수신하고자 하는 데이터이고, hD[n]는 RF 수신단에서 수신하고자 하는 데이터가 겪는 원하는 채널(Desired channel) 의 이득이며, z[n]는 Additive White Gaussian Noise (AWGN) 이다. k=1이면 선형 성분이고 k가 3 이상인 홀수 값은 비선형 성분이다.
앞서 설명한 아날로그 자기간섭 제거 또는 디지털 자기간섭 제거를 위해서는 자기간섭 채널을 추정하는 것이 필요하며, 이때 추정된 아날로그 자기간섭 채널 또는 디지털 자기간섭 채널의 게인(gain)인
Figure PCTKR2016008329-appb-I000002
을 이용하여 자기간섭 제거를 수행 한 이후의 수신 신호는 다음 수학식 2와 같이 표현될 수 있다.
수학식 2
Figure PCTKR2016008329-appb-M000002
추정된 원하는 채널(Desired channel)의 게인인
Figure PCTKR2016008329-appb-I000003
을 이용하여 수신 신호를 복호화 하면 다음 수학식 3과 같이 표현할 수 있다.
수학식 3
Figure PCTKR2016008329-appb-M000003
여기서,
Figure PCTKR2016008329-appb-I000004
이며,
Figure PCTKR2016008329-appb-I000005
이다.
이하, Full Duplex Radio (FDR) 시스템에서 재전송 요청 시 FDR 지원 단말의 자기간섭 제거(SIC)의 성공/실패 여부를 기지국에게 전송하여 재전송 시 성공률을 높이기 위한 기법을 제안한다.
단말로부터의 NACK 시그널링에 기초한 하향링크를 위한 IR- HARQ의 기본 프로 시저(Basic procedure of IR-HARQ for downlink based on NACK signaling from UE)
단말이 하향링크 신호를 수신한 이후 디코딩 절차를 거치게 되며, 이때 데이터의 디코딩이 실패한 경우에는 기지국에게 PUCCH 또는 PUSCH 를 통해 NACK (신호)를 전송하는 HARQ(Hybrid automatic repeat reQuest) 절차를 기반으로 한 재전송 요청을 하게 된다. 그 기본적인 프로시저는 다음과 같다.
도 10은 하향링크 HARQ의 기본 프로시저를 예시한 도면이다.
도 10을 참조하면, 단말(UE)은 네트워크(NW)(예를 들어, 기지국)로부터 사용자 데이터를 포함하는 PDSCH를 수신한다. 이때 이 PDSCH는 PDCCH의 DCI (포맷) 1(DCI (format) 1)에 의해 스케줄링된 것일 수 있다. 이때, 상기 PDCCH에서 DCI (포맷) 0을 포함하고 있는지 여부에 따라 ACK/NACK 전송되는 서브프레임이 달라질 수 있다. 예를 들어, 상기 PDCCH에서 DCI (포맷) 0을 포함하고 있지 않으면, 단말은 상기 PDSCH를 수신한 서브프레임(subframe n)으로부터 이후 4번째 서브프레임(subframe n+4)에서 ACK/NACK을 PUCCH를 통해 전송하고, 그렇지 않은 경우에는, PUSCH를 통해 전송할 수 있다. 기지국은 단말로부터 수신한 신호가 ACK 인지 NACK인지 여부를 판단하고, NACK인 경우 상기 NACK을 수신한 서브프레임으로부터 이후 4 번째 서브프레임에서 상기 PDSCH를 재전송할 수 있다.
상향링크의 HARQ와는 다르게, 단말은 하향링크 HARQ 절차에 대해서는 아무런 정보가 없다. 다만, 단말은 기지국이 전송하는 PDCCH 에서의 DCI(Downlink control format, DCI) (포맷)에 포함되어 있는 정보 (Process ID, RV(Redundancy Version) value)를 통해서 DL HARQ 프로시저에 대한 정보를 얻게 되며, 그에 따라 재전송된 PDSCH의 데이터를 기반으로 디코딩을 수행하게 된다.
도 11은 LTE/LTE-A 시스템에서의 레이트 매칭 모듈을 가지는 터보 인코더를 예시한 도면이고, 도 12는 LTE/LTE-A 시스템에서의 레이트 매칭 모듈을 위한 원형 버퍼(circular buffer)의 구조를 예시한 도면이다.
현재 LTE 기반 시스템에서 재전송 시에는 도 11과 같은 터보 인코더(turbo encoder)와 레이트 매칭(rate matching)을 통해 인코딩된 된 신호의 RV 값을 0,2,1,3의 순서로 변경하여 전송하게 되어 있다(참고 TS36.321 "5.4.2.2 HARQ process"). 또한, 도 12에 도시한 바와 같이 원형 버퍼(circular buffer)를 사용하여 재전송 시 추가적인 인코딩된 신호를 만들지 않고 기존 인코딩된 신호의 일부를 재사용하여 재전송 할 수 있다.
FDR 단말의 디코딩 실패 사유
기존 단말의 경우 하향링크 채널의 채널 품질 또는 다른 셀/단말 간섭에 의해 하향링크 신호의 디코딩이 실패할 수 있지만 FDR 단말의 경우 적절한 자기간섭 제거를 수행하지 못하는 경우 수신된 데이터의 디코딩을 실패할 수 있다. FDR 시스템에서 기존 자기간섭 제거 운용을 위한 프로시저는 다음 도 13과 같다.
도 13은 FDR 모드의 동작에서의 자기간섭 제거 운용 기법의 프로시저를 예시한 도면이다.
먼저, 통신 장치(기지국/단말)이 FDR 모드로 동작하는 경우, 수신한 신호에 대해 안테나 자기간섭 제거 및 아날로그 자기간섭 제거를 수행하게 되면 상기 수학식 1과 같은 신호가 나오게 된다. 이제 상기 수학식 1 신호로부터 디지털 자기간섭 신호 생성을 통해 자기간섭 신호를 제작하고, 이 제작된 신호를 바탕으로 디지털 자기간섭 제거를 수행하여 상기 수학식 2와 같은 신호를 얻게 된다. 그 다음으로는 원하는 신호 검출(Desired signal detection) 블록에서 상기 수학식 3과 같이 신호를 복호화한 후 모든 과정이 끝나게 된다.
한편, 상기 설명한 바와 같이 수신 신호의 검출 성능은 추정된 자기간섭 채널(
Figure PCTKR2016008329-appb-I000006
)및 원하는 채널(
Figure PCTKR2016008329-appb-I000007
)의 정확도에 크게 영향을 받는다. 그러므로 최종 수신 신호의 검출 성공/실패의 결과를 바탕으로 자기간섭 제거의 성공/실패 여부가 결정될 수 있다. 다음 표 2는 수신 신호의 검출 성공/실패와 자기간섭 제거의 성공/실패 여부의 상관 관계를 바탕으로 나타낸 표이며, 상세한 설명은 아래와 같다.
표 2
자기간섭 제거 성공 자기간섭 제거 실패
수신 신호 검출 성공 Case 1 None (해당 경우 발생 안함)
수신 신호 검출 실패 Case 2 Case 3
Case 1 에서는 디지털 자기간섭 제거가 이루어진 이후에 원하는 신호(Desired signal)의 수신이 성공한 경우이며, Case 2에서는 디지털 자기간섭 제거 의 성공에도 불구하고 원하는 채널(Desired channel)의 추정이 잘못되었거나 링크 품질(Link quality)이 좋지 않거나 다른 셀/단말 간섭으로 인해 수신 신호의 검출에 실패한 경우이다. 마지막으로 Case 3은 자기간섭 제거의 실패로 인해 수신 신호의 검출이 실패한 경우이다. 자기간섭 제거가 실패한 경우에는 수신 신호에 비해 자기간섭의 신호가 감당할 수 없을 정도로 세기 때문에 수신 신호의 검출이 성공한 경우는 발생하지 않을 것으로 판단하였다.
상기 자기간섭 제거의 실패 여부를 판단할 수 있는 근거는 다음과 같을 수 있다.
1. 아날로그-디지털 컨버터(ADC) 통과 후, 몇 개의 연속된 샘플(sample)들 간의 차이가 ‘0’이하일 때
2. 복조 단계에서 EVM이 constellation point에서 벗어난 정도가 클 때
3. 오류정정부호 디코딩을 수행하여 알려진 신호인 자기간섭 신호와 비교하여 유사성이 클 때
상기 판단 근거(1 내지 3) 이외에도 적절하게 자기간섭 제거가 실패 여부를 판단할 수 있는 근거이면 사용 가능하다.
FDR 단말의 자기간섭 제거 실패로 인해 디코딩 실패 시 기존 IR- HARQ 프로시저의 문제점
상기 명시한 바와 같이 하향링크에 대한 IR-HARQ 프로시저는 단말의 NACK의 정보만으로 기지국이 판단하여 재전송을 수행하게 된다. 그러나, 기지국은 단말이 어떤 이유 때문에 NACK 이 발생했는지는 알 수가 없다. 특히 FDR 모드를 지원하는 단말의 경우 FDR 모드로 동작 시 NACK 발생하게 되면 상술한 바와 같이 자기간섭 제거 성공/실패 여부에 따라 재전송 신호의 수신 시 복구 가능성이 달라지게 된다.
도 14는 기존 시스템과 FDR 시스템의 HARQ 재전송으로 인해 달라지는 부분을 설명하기 위한 도면이다.
도 14를 참조하면, 기존 시스템(즉, HDR 모드로 동작하는 시스템)에서는 초기 전송한 패킷(RV=0)이 실패 했을 때 기존 하향링크에 대한 IR-HARQ 프로시저로 인해 RV 값을 변경 (RV=0 -> RV=2)하여 재전송을 수행한다. 기존 시스템은 처음 전송한 패킷(RV=0를 갖는 패킷)과 재전송한 패킷(RV=2 갖는 재전송 패킷)을 가지고 조인트(joint) 디코딩을 수행한다. 그러나, FDR 시스템에서는 앞서 설명한 바와 같이 NACK 이유 중 자기간섭을 실패한 경우에는 재전송으로 인해 받은 패킷(RV=2) 역시 자기간섭을 실패할 확률이 높다. 이 때에는 기존 하향링크에 대한 IR-HARQ 프로시저에 따른 재전송 시 높은 신뢰도를 보장할 수 없다. 따라서, FDR 시스템에서 NACK 이유가 자기간섭 제거를 실패한 경우에는 기존 하향링크에 대한 IR-HARQ 프로시저와는 다른 절차가 필요하다.
실시예 1
단말의 자기간섭 제거 실패로 인한 하향링크 신호에 대한 NACK 전송 시, 자기간섭 제거 실패 여부를 기지국이 알 수 있도록 할 필요가 있다. 이를 위해, 단말이 자기간섭 제거 성공 여부를 지시하는 지시자(예를 들어, 자기간섭 제거 성공 플래그(SIC Success Flag))를 PUCCH 또는 PUSCH를 통해 기지국으로 전송할 수 있다.상술한 바와 같이 FDR 시스템에서 단말이 NACK을 전송해야 하는 이유가 자기간섭 실패한 경우에는 기존 하향링크에 대한 IR-HARQ 프로시저와는 다른 절차가 필요하다.
도 15는 본 발명의 실시예 1에 따른 FDR 시스템에서의 재전송을 위한 HARQ 프로시저들을 도시한 도면이다.
도 15에 도시한 FDR 시스템에서의 재전송을 위한 HARQ 프로시저들에 대한 설명은 도 10에 도시한 HDR 시스템에서의 재전송을 위한 HARQ 프로시저들과 거의 유사하므로 유사한 사항을 제외하고 차이점을 위주로 설명한다.
도 15를 참조하면, FDR 시스템에서의 재전송을 위한 HARQ 프로시저에서는 FDR 모드의 단말이 PDSCH 수신에 대한 NACK 신호 전송 시에 PUCCH 또는 PUSCH에 자기간섭 제거 성공 여부를 지시하는 지시자(예를 들어, 자기간섭 제거 성공 플래그(SIC Success Flag))를 더 포함하여 전송할 수 있다. 또한, 도 10에서의 HDR 시스템에서의 재전송을 위한 HARQ 프로시저에서 단말의 ACK/NACK 전송과 기지국의 재전송은 각각 PDSCH 수신한 서브프레임 이후 4번째 서브프레임, ACK/NACK을 수신한 서브프레임 이후 4 번째 서브프레임에서 수신하는 것으로 설명하고 있으나, 도 15에서의 FDR 시스템에서의 재전송을 위한 HARQ 프로시저에서는 단말의 ACK/NACK 전송과 기지국의 재전송은 각각 PDSCH 수신한 서브프레임 이후 n번째 서브프레임, ACK/NACK을 수신한 서브프레임 이후 n번째 서브프레임일 수 있으며, n=4로 제한되지 않는다.
상기 SIC Success Frag 를 1 비트로 할당했을 때의 정보는 다음과 같다.
SIC Success Frag = 1 (True): 해당 패킷 디코딩시 단말에서의 자기간섭 제거 성공일 때
SIC Success Frag = 0 (False): 해당 패킷 디코딩시 단말에서의 자기간섭 제거 실패일 때
SIC Success Frag 를 n bit로 할당했을 때의 정보는 다음과 같다.
SIC Success Frag = 0~2n-1 (True): 서브밴드(sub-band) 별 해당 패킷 디코딩시 단말에서의 자기간섭 제거 성공 여부, PRB 별 해당 패킷 디코딩시 단말에서의 자기간섭 제거 성공 여부, 또는 RBG (Resource Block Group)별 해당 패킷 디코딩시 단말에서의 자기간섭 제거 성공 여부를 지시함.
실시예 2
상기 SIC Success Frag 정보를 사용하여 FDR 모드에서의 재전송 시 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 기지국은 단말을 위해 적절한 절차를 수행할 수 있다.
단말의 자기간섭 제거 실패로 인한 하향링크에 대한 NACK 전송 시, 재전송 시 자기간섭 제거가 성공할 수 있도록 단말이 기지국에게 최근 자기간섭 제거를 성공했었던 자원 인덱스에 대한 정보(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스)를 전송할 수 있다.
상술한 바와 같이 FDR 시스템에서 NACK 이유 중 자기간섭 제거가 실패한 경우에는 기존 하향 링크에 대한 IR-HARQ 프로시저들과는 다른 절차가 필요하며, 이러한 다른 절차들에 대해 다음 도 16을 참조하여 설명한다.
도 16은 본 발명의 실시예 2에 따른 FDR 시스템에서의 재전송을 위한 HARQ 프로시저들을 도시한 도면이다.
단말은 ACK/NACK 전송과 더불어 FDR 모드로 동작 시 자기간섭 제거를 고려하여 선호하는 자원에 대한 정보(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스)를 PUCCH 또는 PUSCH 를 통해 기지국으로 전송을 할 수 있다. 상기 실시예 2에서의 자원에 대한 정보는 상기 실시예 1에서의 SIC Success Frag 비트와 함께 PUCCH 또는 PUSCH에 포함되거나 혹은 단독으로 PUCCH 또는 PUSCH에 포함될 수 있다.
상기 자원에 대한 정보(예를 들어, RBG index, PRB 인덱스, 서브밴드 인덱스)를 사용하여 FDR 모드에서 재 전송 시 단말의 자기간섭 제거의 실패로 인해 재전송 패킷이 강건할 수 있도록 기지국이 단말을 위해 적절한 자원을 할당할 수 있다. 여기서 상기 자원에 대한 정보(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스)는 기존 HDR 시스템의 RBG 인덱스, PRB 인덱스, 서브밴드 인덱스일 수도 있으며, FDR 시스템을 위해 수정된 RBG 인덱스, PRB 인덱스, 서브밴드 인덱스 일 수도 있다.
실시예 3
단말의 자기간섭 실패로 인한 하향링크에 대한 NACK 전송 시, 재전송 시 자기간섭 제거가 성공할 수 있도록 단말이 기지국에게 잔여 자기간섭 신호(residual SI)를 고려하여 선호하는 MCS(Modulation and Coding Scheme) 인덱스 전송할 수도 있다. 상술한 바와 같이 FDR 시스템에서 NACK 이유 중 자기간섭 제거가 실패한 경우에는 기존 하향링크에 대한 IR-HARQ 프로시저와는 다른 절차가 필요하며 이에 대해 다음 도 17을 참조하여 설명한다.
도 17은 본 발명의 실시예 3에 따른 FDR 시스템에서의 재전송을 위한 HARQ 프로시저들을 도시한 도면이다.
도 17을 참조하면, 단말은 ACK/NACK 전송과 더불어 단말의 잔여 자기간섭 신호(혹은 잔여 자기간섭 신호의 세기)를 고려하여 선호하는 수정된 MCS 레벨을 PUCCH 또는 PUSCH 를 통해 기지국에게 전송할 수 있다. FDR 모드에서의 재 전송 시 단말의 자기간섭 제거의 실패로 인해 재전송 패킷이 강건할 수 있도록 하기 위해, 기지국은 단말로부터 수신한 잔여 자기간섭 신호를 고려하여 선택된 MCS 레벨에 기초하여 자원 할당 혹은 스케줄링을 수행할 수 있다.
또한, ACK/NACK 신호와 더불어 상기 실시예 1, 실시예 2, 실시예 3 의 조합으로 단말이 기지국에게 PUCCH 또는 PUSCH를 통해 추가 정보를 전송할 수 있다.
실시예 4
SIC Success Frag = 0일 때, 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 기지국은 기존 HARQ 프로시저와는 다르게 동작할 수 있다. 상술한 바와 같이 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 실시예 1과 같이 기지국은 단말이 전송한 SIC Success Frag 정보를 활용하여 단말로 전송한 패킷이 자기간섭 제거가 잘 동작할 수 있도록 HARQ 프로시저를 다음 실시예 4-1 내지 실시예 4-6과 같이 변경할 수 있다.
실시예 4-1
SIC Success Frag = 0 일 때, 체이스 컴바이닝(Chase combining)으로 전송할 수 있다.
기지국은 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 하기 위하여 재전송 시 RV 값이 변경되는 IR 방식이 아닌 체이스 컴바이닝(Chase combining, CC) 방식으로 전송할 수 있다.
실시예 4-2
SIC Success Frag = 0 일 때, RV 값을 강제적으로 이전 전송된 값 (RV=0)으로 설정하여 DCI 를 통해 전송할 수 있다.
기지국은 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 하기 위하여 재전송 시 DCI 를 통해 RV 값을 2에서 0으로 강제 변환하여 단말에게 재전송할 수 있다. 단말은 초기 수신한 패킷(RV=0)과 재전송된 패킷(RV=0)을 컴바이닝한 이후 디코딩을 수행하고, 만약 디코딩이 실패한 경우 이전에 실패한 패킷을 폐기하고 재전송한 패킷(RV=0) 만으로 디코딩을 수행할 수 있다.
실시예 4-3
SIC Success Frag = 0 일 때, MCS 레벨 조절 및 RV 값을 강제적으로 이전 전송된 값 (RV=0)으로 DCI를 통해 전송할 수 있다. 기지국은 단말이 상기 실시예 4-2에서 재전송한 패킷(RV=0) 만으로 디코딩 수행을 용이하도록 하기 위하여 MCS 레벨을 조절하여 재전송을 수행할 수 있다.
실시예 4-4
SIC Success Frag = 0 일 때, 기지국은 재전송 패킷만으로도 디코딩이 가능한 패킷 크기로 변경된 RV 값과 동시에 재전송 용 PRB를 할당하여 DCI 를 통해 단말에게 전송할 수 있다. 단말은 상기 DCI에 따른 RV 값과 PRB 정보에 기초하여 재전송 데이터를 수신할 수 있다.
도 18은 재전송 패킷의 디코딩이 가능한 PRB 크기를 도식화한 도면이다.
기지국은 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있게 재전송 패킷만으로 디코딩이 가능하도록 PRB를 할당하여 재전송을 수행할 수 있다. 이때, 단말은 초기 수신한 패킷(RV=0)과 재전송한 패킷(RV=2)을 조인트 디코딩을 수행하고, 만약 디코딩이 실패한 경우 이전에 실패한 패킷을 폐기하고 재전송한 패킷(RV=2) 만으로 디코딩을 수행할 수 있다.
실시예 4-5
SIC Success Frag = 0 일 때, 단말이 HDR(Half duplex Radio) 모드로 동작하도록 할 수 있다. 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 단말의 재전송 수신 시 자기간섭이 발생하지 않도록 단말이 Half duplex 모드로 동작하게 할 수 있다. 이를 위해, 기지국은 단말에게 동작할 듀플렉스 모드(예를 들어, Half duplex)를 PDCCH 를 통해 알려줄 수 있다. 또는, 기지국은 PDCCH에 UL grant 를 할당하지 않고 DL grant 만 할당하여 단말이 Half duplex 모드로 동작하게 할 수 있다.
실시예 4-6
SIC Success Frag = 0 일 때, 단말에 새로운 데이터(New data)로 전송하도록 새로운 데이터 지시자(New Data Indicator)를 토글(toggle) 시켜 전송할 수 있다.단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 재전송 시 DCI 를 통해 New Data Indicator를 토글링하여 이전에 실패한 패킷을 폐기하고 새로운 데이터를 수신하도록 할 수 있다.
실시예 5
기지국이 단말의 자기간섭 제거를 성공했었던 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스) 수신 시, 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 기지국은 기존 HARQ 프로시저와는 다르게 동작할 수 있다. 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 실시예 2와 같이 기지국은 단말이 전송한 선호하는 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스) 정보를 활용하여 단말로 전송한 패킷이 자기간섭 제거가 잘 동작할 수 있도록 HARQ 프로시저를 다음 실시예 5-1 내지 실시예 5-6과 같이 변경할 수 있다.
실시예 5-1
단말이 선호하는 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스) 정보를 고려하여 기지국은 체이스 컴바이닝 방식으로 재전송할 수 있다. 자기간섭 실패로 인해 재전송 패킷이 강건할 수 있도록 기지국은 자원 인덱스에 대한 정보를 고려하여 자원할당을 수행하여 재전송할 수 있다. 재전송 시 RV 값이 변경되는 IR 방식이 아닌 체이스 컴바이닝(Chase combining, CC) 방식으로 전송할 수 있다.
실시예 5-2
기지국은 단말이 선호하는 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스) 정보를 고려하여 RV 값을 강제적으로 이전 전송된 값 (RV=0)으로 설정하여 DCI 를 통해 전송할 수 있다. 자기간섭 실패로 인해 재전송 패킷이 강건할 수 있도록 기지국은 단말이 선호하는 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스) 정보를 고려하여 자원할당을 수행하여 재전송할 수 있다. 기지국은 재전송 시 DCI 를 통해 RV 값을 2에서 0으로 강제 변환하여 단말에게 재전송을 수행할 수 있다. 단말은 초기 수신한 패킷(RV=0)과 재전송한 패킷(RV=0)을 컴바이닝 한 이후 디코딩을 수행하고, 만약 디코딩이 실패한 경우 이전에 실패한 패킷을 폐기하고 재전송한 패킷(RV=0) 만으로 디코딩을 수행할 수 있다.
실시예 5-3
기지국은 단말이 선호하는 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스) 정보를 고려하여 조정된 MCS 레벨 및 강제적으로 이전 전송된 값으로 RV 값을 설정 (RV=0)으로 DCI 를 통해 단말로 전송할 수 있다. 상기 실시예 4-2에서 재전송한 패킷(RV=0) 만으로 디코딩 수행이 용이하도록 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스)를 고려하여 자원할당을 수행하여 재전송할 수 있다. 재전송 시 MCS 레벨을 조절하여 재전송을 수행할 수 있다.
실시예 5-4
상기 도 18에 도시한 바와 같이, 기지국은 단말이 선호하는 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스) 정보를 고려하여 재전송 패킷만으로도 디코딩이 가능한 패킷 크기로 변경된 RV 값과 동시에 재전송 용 PRB를 할당하여 DCI 를 통해 단말에게 전송할 수 있다. 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있게 상기 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스) 정보를 고려하여 자원할당을 수행하여 재전송할 수 있다. 재전송 패킷 만으로 디코딩이 가능하도록 기지국이 PRB를 할당하여 재전송을 수행할 수 있다. 이때, 단말은 초기 수신한 패킷(RV=0)과 재전송한 패킷(RV=2)을 조인트 디코딩을 수행하고, 만약 디코딩이 실패한 경우 이전에 실패한 패킷을 폐기하고 재전송한 패킷(RV=2) 만으로 디코딩을 수행할 수 있다.
실시예 5-5
기지국은 단말이 선호하는 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스) 정보를 고려하여 단말이 Half duplex 모드로 동작하도록 할 수 있다. 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있게 상기 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스) 정보를 고려하여 자원할당을 수행하여 재전송할 수 있다. 그리고, 단말의 재전송 수신 시 자기간섭이 발생하지 않도록 단말이 Half duplex 모드로 동작하게 할 수 있다. 이를 위해, 기지국은 단말에게 Half duplex 모드로 동작하도록 지시하는 듀플렉스 모드 지시자를PDCCH 를 통해 전송할 수 있다. 또는, 기지국은 PDCCH에 UL grant 를 할당하지 않고 DL grant 만 할당하여 단말이 Half duplex 모드로 동작하게 할 수도 있다.
실시예 5-6
기지국은 단말이 선호하는 자원 인덱스(예를 들어, RBG 인덱스, PRB 인덱스, 서브밴드 인덱스) 정보를 고려하여 단말이 새로운 데이터(New data)로 전송하도록 새로운 데이터 지시자(New Data Indicator)를 토글(toggle) 시켜 전송할 수 있다.단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 재전송 시 DCI 를 통해 New Data Indicator를 토글링하여 단말이 이전에 실패한 패킷을 폐기하고 새로운 데이터를 수신하도록 할 수 있다.
실시예 6
기지국은 단말로부터 선호하는 MCS 레벨 수신 시, 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 기존 HARQ procedures 와는 다르게 동작할 수 있다. 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 상기 실시예 3과 같이 기지국은 단말이 전송한 선호하는 MCS 인덱스 정보에 기초하여 단말로 전송한 패킷이 자기간섭 제거가 잘 동작할 수 있도록 HARQ 프로시저를 다음 실시예 6-1 내지 실시예 6-6과 같이 변경할 수 있다.
실시예 6-1
기지국은 단말로부터 선호하는 MCS 레벨 수신 시 체이스 컴바이닝(Chase combining) 방식을 적용하여 재전송을 수행할 수 있다. 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 기지국은 단말이 선호하는 MCS 인덱스로 재전송을 수행하며, 재전송 시 RV 값이 변경되는 IR 방식이 아닌 체이스 컴바이닝 (CC) 방식으로 재전송할 수 있다.
실시예 6-2
기지국은 단말로부터 선호하는 MCS 레벨 수신 시, RV 값을 강제적으로 이전 전송된 값 (RV=0)으로 설정하여 DCI 를 통해 전송할 수 있다. 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 기지국은 단말이 선호하는 MCS 인덱스에 기초하여 재전송을 수행하며, 재전송 시 DCI 를 통해 RV 값을 2에서 0으로 강제 변환하여 단말에게 패킷을 재전송할 수 있다. 단말은 초기 수신한 패킷 (RV=0)과 재전송한 패킷 (RV=0)을 컴바이닝 한 이후 디코딩을 수행하고, 만약 디코딩이 실패한 경우 이전에 실패한 패킷을 폐기하고 재전송한 패킷(RV=0) 만으로 디코딩을 수행할 수 있다.
실시예 6-3
기지국은 단말로부터 선호하는 MCS 레벨 수신 시, MCS 레벨을 조절하여 조정된 MCS 인덱스 값 및 RV 값을 강제적으로 이전 전송된 패킷의 RV 값 (RV=0)을 DCI 를 통해 단말에게 전송할 수 있다. 상기 실시예 4-2에서 재전송한 패킷(RV=0) 만으로 디코딩의 수행이 용이하도록 기지국은 단말이 선호하는 MCS 인덱스로 MCS 레빌을 조절하여 재전송을 수행할 수 있다.
실시예 6-4
도 18에 도시한 바와 같이, 기지국은 단말로부터 선호하는 MCS 레벨 수신 시, 재전송 패킷만으로도 디코딩이 가능한 패킷 크기로 변경된 RV 값과 동시에 재전송용 PRB를 할당하여 DCI 를 통해 단말에게 전송할 수 있다. 단말의 자기간섭 제거의 실패로 인해 재전송 패킷이 강건할 수 있게 단말이 선호하는 MCS 인덱스에 기초하여 기지국은 재전송을 수행하며, 재전송 패킷 만으로 디코딩이 가능하도록 기지국이 PRB를 할당하여 재전송을 수행할 수 있다. 이때, 단말은 초기 수신한 패킷(RV=0)과 재전송한 패킷(RV=2)을 조인트 디코딩하고, 만약 디코딩이 실패한 경우 이전에 실패한 패킷을 폐기하고 재전송한 패킷 (RV=2) 만으로 디코딩을 수행할 수 있다.
실시예 6-5
기지국은 단말로부터 선호하는 MCS 레벨 수신 시, 단말이 Half duplex 모드로 동작하도록 할 수 있다. 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 기지국은 단말이 선호하는 MCS 인덱스에 기초하여 패킷 재전송을 수행하며, 단말의 재전송 수신 시 자기간섭이 발생하지 않도록 단말이 Half duplex 모드로 동작하도록 할 수 있다. 이를 위해 기지국은 단말에게 듀플렉스 모드를 PDCCH 를 통해 알려줄 수 있다. 즉, 기지국은 PDCCH에 듀플렉스 모드를 Half duplex 모드로 설정하여 단말에게 전송해 줄 수 있다. 또는, 기지국은 PDCCH에 UL grant 를 할당하지 않고 DL grant 만 할당하여 단말이 Half duplex 모드로 동작하게 할 수도 있다.
실시예 6-6
기지국은 단말로부터 선호하는 MCS 레벨 수신 시, 단말이 새로운 데이터(New data)로 전송하도록 새로운 데이터 지시자(New Data Indicator)를 토글(toggle) 시켜 단말에게 전송할 수 있다. 단말의 자기간섭 제거 실패로 인해 재전송 패킷이 강건할 수 있도록 단말이 선호하는 MCS 인덱스에 기초하여 재전송을 수행하며, 재전송을 위해 기지국은 DCI 를 통해 New Data Indicator를 토글링하여 단말이 이전에 실패한 패킷을 폐기하고 새로운 데이터를 수신하도록 할 수 있다.
상기 실시예 4 내지 실시예 6의 실시예들의 조합으로 기지국이 단말의 재전송이 성공할 수 있도록 HARQ 프로시저를 변경하여 재전송을 수행할 수 있다.
이상에서 살펴본 바와 같이, 본 발명의 일 실시예에 따라 FDR 시스템에서 재전송 요청 시 FDR 지원 단말의 자기간섭 제거 성공/실패 여부를 기지국에게 전송하여 재전송 시 성공률을 높일 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
FDR 모드로 동작하는 환경에서의 HARQ 프로시저를 수행하는 방법 및 이를 위한 장치는 3GPP LTE/LTE-A, 5G 시스템 등 다양한 무선통신 시스템에서 산업상으로 적용이 가능하다.

Claims (13)

  1. 무선통신 시스템에서 FDR(Full Duplex Radio) 모드로 동작하는 단말이 HARQ(Hybrid Automatic Repeat reQuest) 프로시저를 수행하는 방법에 있어서,
    기지국으로부터 하향링크 신호를 수신하는 단계; 및
    상기 하향링크 신호에 대한 NACK 신호를 포함하는 피드백 정보를 상기 기지국으로 전송하는 단계를 포함하되,
    상기 피드백 정보는 상기 NACK 신호를 전송하는 이유가 상기 단말이 자기간섭 신호를 제거하는데 실패한 것임을 가리키는 지시자를 더 포함하는, HARQ 프로시저 수행 방법.
  2. 제 1항에 있어서,
    상기 피드백 정보는 상기 단말이 자기간섭 신호를 제거하는 데 실패한 서브밴드(subband), PRB(Physical Resource Block) 또는 RBG(Resource Block Group)를 가리키는 정보를 더 포함하는, HARQ 프로시저 수행 방법.
  3. 제 1항에 있어서,
    상기 피드백 정보는 상기 단말이 최근에 자기간섭 신호를 제거하는 데 성공한 RBG(Resource Block Group)를 가리키는 정보를 더 포함하는, HARQ 프로시저 수행 방법.
  4. 제 1항에 있어서,
    상기 피드백 정보는 상기 단말이 선호하는 MCS(Modulation and Coding Scheme) 레벨에 대한 정보를 더 포함하는, HARQ 프로시저 수행 방법.
  5. 제 4항에 있어서,
    상기 MCS 레벨은 상기 자기간섭 신호를 제거한 후의 잔여 자기간섭 신호의 세기에 기초하여 결정되는, HARQ 프로시저 수행 방법.
  6. 무선통신 시스템에서 기지국이 HARQ 프로시저를 수행하는 방법에 있어서,
    FDR (Full Duplex Radio) 모드로 동작하는 단말에게 하향링크 신호를 전송하는 단계; 및
    상기 하향링크 신호에 대한 NACK 신호를 포함하는 피드백 정보를 상기 단말로부터 수신하는 단계를 포함하되,
    상기 피드백 정보는 상기 NACK 신호를 전송하는 이유가 상기 단말이 자기간섭 신호를 제거하는데 실패한 것임을 가리키는 지시자를 더 포함하는, HARQ 프로시저 수행 방법.
  7. 제 6항에 있어서,
    상기 피드백 정보에 기초하여 상기 단말로 상기 하향링크 신호를 재전송하는 단계를 더 포함하되,
    상기 재전송되는 하향링크 신호는 체이스 컴바이닝(Chase combining) 방식이 적용되는, HARQ 프로시저 수행 방법.
  8. 제 6항에 있어서,
    상기 피드백 정보에 기초하여 상기 단말로 상기 하향링크 신호를 재전송하는 단계를 더 포함하되,
    상기 재전송되는 하향링크 신호에 적용된 RV(Redundancy Version) 값은 이전에 전송한 하향링크 신호에 적용된 RV 값과 동일한, HARQ 프로시저 수행 방법.
  9. 제 8항에 있어서,
    상기 재전송되는 하향링크 신호에 적용된 RV 값을 포함하는 하향링크 제어 정보를 상기 단말로 전송하는 단계를 더 포함하는, HARQ 프로시저 수행 방법.
  10. 제 6항에 있어서,
    상기 피드백 정보에 기초하여 상기 단말이 Half duplex 모드로 동작하도록 지시하는 정보를 포함하는 하향링크 제어 정보를 상기 단말로 전송하는 단계를 더 포함하는, HARQ 프로시저 수행 방법.
  11. 제 6항에 있어서,
    상기 피드백 정보에 기초하여 상기 단말이 상기 하향링크 신호를 폐기하고 새로운 데이터를 수신하도록 지시하는 하향링크 제어 정보를 상기 단말로 전송하는 단계; 및
    상기 하향링크 제어 정보에 기초하여 상기 새로운 데이터를 상기 단말로 전송하는 단계를 더 포함하는, HARQ 프로시저 수행 방법.
  12. 무선통신 시스템에서 HARQ(Hybrid Automatic Repeat reQuest) 프로시저를 수행하는 FDR(Full Duplex Radio) 모드로 동작하는 단말에 있어서,
    수신기;
    송신기; 및
    프로세서를 포함하되,
    상기 프로세서는, 상기 수신기가 기지국으로부터의 하향링크 신호를 수신하도록 제어하고, 상기 송신기가 상기 하향링크 신호에 대한 NACK 신호를 포함하는 피드백 정보를 상기 기지국으로 전송하도록 제어하며,
    상기 피드백 정보는 상기 NACK 신호를 전송하는 이유가 상기 단말이 자기간섭 신호를 제거하는데 실패한 것임을 가리키는 지시자를 더 포함하는, 단말.
  13. FDR(Frequency Duplex Radio) 모드를 지원하는 무선통신 시스템에서 HARQ 프로시저를 수행하는 기지국에 있어서,
    송신기;
    수신기; 및
    프로세서를 포함하되,
    상기 프로세서는 상기 송신기가 FDR (Full Duplex Radio) 모드로 동작하는 단말에게 하향링크 신호를 전송하도록 제어하고, 상기 수신기가 상기 하향링크 신호에 대한 NACK 신호를 포함하는 피드백 정보를 상기 단말로부터 수신하도록 제어하며,
    상기 피드백 정보는 상기 NACK 신호를 전송하는 이유가 상기 단말이 자기간섭 신호를 제거하는데 실패한 것임을 가리키는 지시자를 더 포함하는, 기지국.
PCT/KR2016/008329 2016-06-12 2016-07-29 Fdr 모드로 동작하는 환경에서의 harq 프로시저를 수행하는 방법 및 이를 위한 장치 WO2017217584A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/309,415 US10993239B2 (en) 2016-06-12 2016-07-29 Method for performing HARQ procedure in environment operating in FDR mode and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662348957P 2016-06-12 2016-06-12
US62/348,957 2016-06-12

Publications (1)

Publication Number Publication Date
WO2017217584A1 true WO2017217584A1 (ko) 2017-12-21

Family

ID=60663584

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2016/008329 WO2017217584A1 (ko) 2016-06-12 2016-07-29 Fdr 모드로 동작하는 환경에서의 harq 프로시저를 수행하는 방법 및 이를 위한 장치
PCT/KR2017/000732 WO2017217630A1 (en) 2016-06-12 2017-01-20 Method and apparatus for allocating resources to fdr-mode ue in a wireless communication system

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000732 WO2017217630A1 (en) 2016-06-12 2017-01-20 Method and apparatus for allocating resources to fdr-mode ue in a wireless communication system

Country Status (2)

Country Link
US (2) US10993239B2 (ko)
WO (2) WO2017217584A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040100A1 (ko) * 2019-08-30 2021-03-04 엘지전자 주식회사 Fdr 스킴을 이용하는 무선 통신 시스템에서 hdr 스킴을 이용하여 간섭을 제거하는 방법 및 장치
KR20210097289A (ko) * 2020-01-30 2021-08-09 주식회사 엘지유플러스 예측기반 풀 듀플렉스 harq 통신 방법 및 이를 활용한 무선 통신 시스템
WO2021225197A1 (ko) * 2020-05-08 2021-11-11 엘지전자 주식회사 전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2021241789A1 (ko) * 2020-05-29 2021-12-02 엘지전자 주식회사 전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217584A1 (ko) * 2016-06-12 2017-12-21 엘지전자 주식회사 Fdr 모드로 동작하는 환경에서의 harq 프로시저를 수행하는 방법 및 이를 위한 장치
WO2017222137A2 (en) * 2016-06-22 2017-12-28 Lg Electronics Inc. Method and apparatus for allocating resources to fdr-mode ue in a wireless communication system
CN116131893A (zh) 2016-08-11 2023-05-16 中兴通讯股份有限公司 分组指示信息的反馈方法、反馈信息的接收方法及设备
CN108282879B (zh) * 2017-01-06 2022-11-18 中兴通讯股份有限公司 数据传输方法及装置
KR20210071470A (ko) * 2019-12-06 2021-06-16 삼성전자주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
US11770473B2 (en) * 2020-05-01 2023-09-26 Qualcomm Incorporated Avoid and react to sudden possibility of damage to receiver in self-interference measurement
US11910217B2 (en) * 2020-05-07 2024-02-20 Qualcomm Incorporated Demodulation reference signal based self-interference measurement
US20220109553A1 (en) * 2020-10-05 2022-04-07 Qualcomm Incorporated Flow control feedback for full-duplex communications
US20230247659A1 (en) * 2022-02-02 2023-08-03 Qualcomm Incorporated Transmission coordination to mitigate interference

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273834A1 (en) * 2010-10-29 2013-10-17 Telefonaktiebolaget L M Ericsson (Publ) Self-interference suppression control for a relay node
WO2015105208A1 (ko) * 2014-01-09 2015-07-16 엘지전자 주식회사 Fdr 전송을 지원하는 무선접속시스템에서 프레임 구조를 구성하는 방법 및 장치
WO2015147571A1 (ko) * 2014-03-26 2015-10-01 엘지전자 주식회사 Fdr 전송을 지원하는 무선접속시스템에서 자원 할당 방법 및 장치
WO2015160333A1 (en) * 2014-04-15 2015-10-22 Empire Technology Development Llc Self interference cancellation
WO2015178640A1 (ko) * 2014-05-18 2015-11-26 엘지전자 주식회사 Fdr 전송을 지원하는 무선접속시스템에서 피드백 정보를 송수신하는 방법 및 장치

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493835B2 (en) 2008-03-26 2013-07-23 Qualcomm, Incorporated Method and apparatus for mapping virtual resources to physical resources in a wireless communication system
US8503364B2 (en) 2009-07-14 2013-08-06 Qualcomm Incorporated Broadcast signaling L1 overload indication
CN103518415B (zh) 2011-02-11 2017-05-24 交互数字专利控股公司 用于增强型控制信道的系统和方法
EP2690806B1 (en) 2011-03-24 2018-02-21 LG Electronics Inc. Method for transmitting/receiving signal and device therefor
KR101578012B1 (ko) 2011-07-28 2015-12-28 엘지전자 주식회사 무선 접속 시스템에서 하향링크 제어정보 송수신 방법 및 이를 위한 단말
US9025478B2 (en) * 2011-08-16 2015-05-05 Google Technology Holdings LLC Self-interference handling in a wireless communication terminal supporting carrier aggregation
US10039088B2 (en) * 2012-01-26 2018-07-31 Samsung Electronics Co., Ltd. Method and apparatus for scheduling communication for low capability devices
KR102032849B1 (ko) 2012-02-09 2019-10-16 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
KR20130106131A (ko) 2012-03-19 2013-09-27 주식회사 팬택 하이브리드 arq 정보 자원 할당 방법
US8948113B2 (en) * 2012-03-26 2015-02-03 Telefonaktiebolaget L M Ericsson (Publ) Dynamic bundling in LTE using explicit signalling
US9949265B2 (en) 2012-05-04 2018-04-17 Comcast Cable Communications, Llc Control channel in a wireless communication system
US9686056B2 (en) 2012-05-11 2017-06-20 Blackberry Limited PHICH transmission in time division duplex systems
US8995377B2 (en) 2012-05-11 2015-03-31 Blackberry Limited PHICH resource provisioning in time division duplex systems
WO2013180405A1 (ko) 2012-05-29 2013-12-05 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
CN103718630A (zh) 2012-08-02 2014-04-09 华为技术有限公司 增强型物理下行控制信道传输方法及设备
US10567147B2 (en) 2012-08-28 2020-02-18 Idac Holdings, Inc. Full duplex single channel communications
US9071983B2 (en) * 2012-08-28 2015-06-30 Samsung Electronics Co., Ltd. Communication system with repeat-response processing mechanism and method of operation thereof
CN104838610B (zh) * 2012-12-11 2018-11-16 Lg电子株式会社 在无线通信系统中收发信号的方法及其设备
GB2513904A (en) * 2013-05-10 2014-11-12 Nec Corp Communication system
WO2014203941A1 (ja) 2013-06-18 2014-12-24 シャープ株式会社 端末装置、無線通信方法および集積回路
EP3024155B1 (en) 2013-07-14 2018-10-03 LG Electronics Inc. Method for transmitting data symbol using antenna correlation in wireless access system which supports massive antenna
JP6442781B2 (ja) 2013-07-19 2018-12-26 シャープ株式会社 端末装置
EP3047594B1 (en) 2013-09-18 2020-01-01 Telefonaktiebolaget LM Ericsson (publ) Full duplex communication method and associated radio base station
US9264205B2 (en) 2013-10-22 2016-02-16 Qualcomm Incorporated Full duplex communication in the presence of mixed full and half duplex users
RU2644396C2 (ru) 2013-11-29 2018-02-12 Хуавэй Текнолоджиз Ко., Лтд. Устройство и способ для сокращения сигнала собственной помехи в системе связи
CN105594131B (zh) 2013-11-29 2018-02-06 华为技术有限公司 减少通信系统自干扰信号的方法和装置
US9236996B2 (en) 2013-11-30 2016-01-12 Amir Keyvan Khandani Wireless full-duplex system and method using sideband test signals
WO2015134907A1 (en) 2014-03-06 2015-09-11 Interdigital Patent Holdings, Inc. Full duplex operation in wireless systems
WO2015171064A1 (en) 2014-05-09 2015-11-12 Telefonaktiebolaget L M Ericsson (Publ) Enabling interference mitigation and cancellation receivers
US20160014727A1 (en) * 2014-07-14 2016-01-14 Google Technology Holdings LLC Methods for multi-subframe transmission and reception of control information
US9825752B2 (en) 2014-10-31 2017-11-21 Avago Technologies General Ip (Singapore) Pte. Ltd. In-band full-duplex operation
US20160127936A1 (en) 2014-11-05 2016-05-05 Debdeep CHATTERJEE User equipment and methods for csi measurements with reduced bandwidth support
CN105813200A (zh) 2014-12-30 2016-07-27 夏普株式会社 寻呼消息的接收/发送方法及相关网络节点和用户设备
CN105934893B (zh) * 2014-12-30 2019-10-01 华为技术有限公司 一种传输信号的方法和设备
KR102278297B1 (ko) * 2015-03-31 2021-07-16 삼성전자주식회사 무선 통신 시스템에서 업링크 제어 신호를 송신하는 방법 및 장치
CN106209301A (zh) 2015-04-30 2016-12-07 电信科学技术研究院 一种干扰信息指示方法、干扰删除方法及装置
KR102251970B1 (ko) 2015-05-07 2021-05-14 삼성전자 주식회사 풀 듀플렉스 방식을 지원하는 통신 시스템에서 자기 간섭 신호 제거 장치 및 방법
EP4131837A1 (en) 2015-06-17 2023-02-08 Apple Inc. Ack/nack signals for next generation lte devices and systems
US10383105B2 (en) 2015-07-12 2019-08-13 Lg Electronics Inc. Method and device for transmitting control information in wireless communication system
US9838193B2 (en) 2015-08-18 2017-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Channel state information feedback for full duplex cellular communications
EP3367595B1 (en) 2015-10-21 2021-03-10 LG Electronics Inc. Method for controlling self-interference duplication signal for removing self-interference in environment supporting full-duplex radio (fdr) communication, and apparatus therefor
CN106686745B (zh) * 2015-11-05 2021-11-23 索尼公司 无线通信系统中的电子设备、用户设备和无线通信方法
WO2017217584A1 (ko) 2016-06-12 2017-12-21 엘지전자 주식회사 Fdr 모드로 동작하는 환경에서의 harq 프로시저를 수행하는 방법 및 이를 위한 장치
WO2018030713A1 (ko) 2016-08-12 2018-02-15 엘지전자 주식회사 셀 별로 flexible duplex 모드로 동작하는 무선통신 시스템에서 셀 간 간섭을 제어하기 위한 자원 할당 방법 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273834A1 (en) * 2010-10-29 2013-10-17 Telefonaktiebolaget L M Ericsson (Publ) Self-interference suppression control for a relay node
WO2015105208A1 (ko) * 2014-01-09 2015-07-16 엘지전자 주식회사 Fdr 전송을 지원하는 무선접속시스템에서 프레임 구조를 구성하는 방법 및 장치
WO2015147571A1 (ko) * 2014-03-26 2015-10-01 엘지전자 주식회사 Fdr 전송을 지원하는 무선접속시스템에서 자원 할당 방법 및 장치
WO2015160333A1 (en) * 2014-04-15 2015-10-22 Empire Technology Development Llc Self interference cancellation
WO2015178640A1 (ko) * 2014-05-18 2015-11-26 엘지전자 주식회사 Fdr 전송을 지원하는 무선접속시스템에서 피드백 정보를 송수신하는 방법 및 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040100A1 (ko) * 2019-08-30 2021-03-04 엘지전자 주식회사 Fdr 스킴을 이용하는 무선 통신 시스템에서 hdr 스킴을 이용하여 간섭을 제거하는 방법 및 장치
KR20210097289A (ko) * 2020-01-30 2021-08-09 주식회사 엘지유플러스 예측기반 풀 듀플렉스 harq 통신 방법 및 이를 활용한 무선 통신 시스템
KR102340271B1 (ko) * 2020-01-30 2021-12-15 주식회사 엘지유플러스 예측기반 풀 듀플렉스 harq 통신 방법 및 이를 활용한 무선 통신 시스템
WO2021225197A1 (ko) * 2020-05-08 2021-11-11 엘지전자 주식회사 전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2021241789A1 (ko) * 2020-05-29 2021-12-02 엘지전자 주식회사 전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
US10993239B2 (en) 2021-04-27
US20190335471A1 (en) 2019-10-31
WO2017217630A1 (en) 2017-12-21
US20200163090A1 (en) 2020-05-21
US10966211B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2017217584A1 (ko) Fdr 모드로 동작하는 환경에서의 harq 프로시저를 수행하는 방법 및 이를 위한 장치
WO2018128428A1 (ko) 크로스-링크 간섭을 제어하는 방법 및 이를 위한 장치
WO2018062942A1 (en) Method for receiving control information for reference signal related to phase noise estimation and user equipment therefor
WO2016072687A1 (ko) Noma 방식의 데이터 수신 방법 및 사용자 장치
WO2017034125A1 (ko) 무선통신 시스템에서 flexible fdd 프레임을 이용하여 통신을 수행하는 방법 및 이를 위한 장치
WO2018164452A1 (ko) 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
WO2019098533A1 (ko) E-utra와 nr 간의 이중 연결을 지원하는 단말이 신호를 송수신하는 방법 및 방법을 수행하는 단말
WO2018084604A1 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2015076627A1 (ko) Harq ack/nack의 전송방법 및 장치
WO2019098395A1 (ko) 자기간섭을 측정하기 위한 정보를 수신하는 방법 및 이를 위한 단말
WO2013069994A1 (ko) 무선통신 시스템에서 상향링크 전송 전력을 설정하는 방법 및 이를 위한 장치
WO2015060564A1 (ko) Mtc 기기와의 상향링크/하향링크 데이터 송수신 방법
WO2015190842A1 (ko) 반송파 집성에서 이중 연결로 전환하는 방법 및 사용자 장치
WO2012108616A1 (en) Method for transmitting uplink control information and user equipment, and method for receiving uplink control information and base station
WO2013066044A1 (ko) 상향링크 제어 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2016171494A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2013066072A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2017196025A2 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018128200A1 (ko) Noma 기반 시스템에서 harq 동작을 수행하는 방법 및 이를 위한 장치
WO2017022960A1 (ko) 무선통신 시스템에서 단말-특정 tdd 프레임을 이용하여 harq ack/nack 피드백을 전송하는 방법 및 이를 위한 장치
WO2010039011A2 (ko) 서브프레임의 무선자원 할당 방법 및 장치
WO2012157987A2 (ko) 무선통신 시스템에서 제어 정보를 전송 및 수신하는 방법과 이를 위한 장치
WO2015064896A1 (ko) 복수의 셀에 동시 접속한 사용자 장치가 harq ack/nack을 전송하는 방법
WO2014017746A1 (ko) Harq 수행 방법 및 단말
WO2013073916A1 (ko) 무선통신 시스템에서 상기 단말이 상향링크 제어 채널 전송 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905568

Country of ref document: EP

Kind code of ref document: A1