WO2017217018A1 - サーモアクチュエータのケーシング構造 - Google Patents

サーモアクチュエータのケーシング構造 Download PDF

Info

Publication number
WO2017217018A1
WO2017217018A1 PCT/JP2017/006508 JP2017006508W WO2017217018A1 WO 2017217018 A1 WO2017217018 A1 WO 2017217018A1 JP 2017006508 W JP2017006508 W JP 2017006508W WO 2017217018 A1 WO2017217018 A1 WO 2017217018A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
thermoactuator
flange
casing
thermo
Prior art date
Application number
PCT/JP2017/006508
Other languages
English (en)
French (fr)
Inventor
和仁 下村
洋治 佐藤
Original Assignee
日本サーモスタット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本サーモスタット株式会社 filed Critical 日本サーモスタット株式会社
Publication of WO2017217018A1 publication Critical patent/WO2017217018A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/10Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers
    • F01P7/12Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B21/00Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings
    • F16B21/10Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts
    • F16B21/16Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft
    • F16B21/18Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft with circlips or like resilient retaining devices, i.e. resilient in the plane of the ring or the like; Details

Definitions

  • the present invention relates to a casing structure of a thermoactuator, for example, to a casing structure of a thermoactuator that is attached to an engine and advances and retracts a driving shaft by expansion and contraction of wax accompanying a temperature change on the engine side.
  • thermoactuator in which the drive shaft advances and retreats when the wax contained in the element case expands and contracts due to a temperature change.
  • thermoactuator it has been proposed to use this thermoactuator as a drive source for a shutter (shielding plate) for a radiator of an automobile.
  • Patent Literature 1 discloses a thermoactuator proposed by the present applicant. This thermoactuator is shown in FIG. 20, and an example of a conventional thermoactuator will be described based on FIG.
  • the thermoactuator 100 includes an element case 102 in which wax 101 is stored, and a support portion 104 that supports the element case 102 on the rear end side and holds the retainer 103 on the front end side so as to be able to advance and retract.
  • the element case 102 and the support portion 104 are connected by caulking to constitute a thermo element 105, and a temperature change is converted into a lift amount (a movement amount of the retainer 103) in the thermo element 105.
  • the thermo element 105 (element case 102, support portion 104) is made of, for example, brass.
  • the retainer 103 surrounds a substantially cylindrical guide portion 106 formed integrally with the support portion 104, and a substantially columnar piston 107 is disposed in the front and rear direction (axial direction) in the guide portion 106. ) Is held movable.
  • the wax 101 expands and contracts due to a temperature change, so that the diaphragm 108 is deformed. Further, the retainer 103 is moved forward and backward by moving the piston 107 back and forth with respect to the guide portion 106 in accordance with the deformation of the diaphragm 108.
  • the thermoactuator 100 includes a shaft 111 that is provided coaxially with the retainer 103 and protrudes from the distal end side of the retainer 103.
  • the tip of the shaft 111 is connected to an opening / closing mechanism 120 having a plurality of shielding plates 121, and moves forward and backward in the axial direction in synchronization with the advance / retreat movement of the retainer 103. It is configured to rotate (open and close).
  • a cylindrical casing body 109 is provided around the retainer 103 and the support portion 104 so as to surround them, and a gap space between the retainer 103 and the casing body 109 is extendable in the axial direction.
  • a return spring 110 is arranged. The front end of the return spring 110 is seated on the inner front end of the casing body 109, and the rear end is fixed to a flange 103a protruding outward at the rear end of the retainer 103, whereby the return spring 110 is connected to the retainer 103 and The shaft 111 is urged in the backward direction.
  • the retainer 103 is always urged in the reverse direction by the return spring 110, but when the retainer 103 moves forward with respect to the thermo element 105, the return spring 110 is contracted.
  • An opening 109e on the front end side of the casing body 109 is provided with a ring-shaped packing 112, which seals the inside of the casing body 109 regardless of the advance / retreat operation of the retainer 103.
  • the casing main body 109 has the casing part 109a which covers the circumference
  • the flange 109b is provided with a through hole 109c used for screwing.
  • the front portion of the support portion 104 is press-fitted and connected to the casing portion 109a from the opening 109d on the rear end side, and the vicinity of the opening 109d protrudes outward from the peripheral surface of the support portion 104. It is made into the state contact
  • thermoactuator 100 In order to attach the thermoactuator 100 to the engine, first, the rear portion of the element case 102 and the support portion 104 that supports the element case 102 is inserted into a storage hole (not shown) formed in the engine. In addition, the casing body 109 is fixed to the engine using a screw (not shown) inserted into the through hole 109c in a state where the flange portion 104a of the support portion 104 is pressed against the engine side by the flange 109b of the casing body 109. .
  • thermoactuator 100 By attaching the thermoactuator 100 to the engine in this manner, the shaft can be advanced and retracted by the expansion and contraction of the wax accompanying the temperature change on the engine side, and for example, the opening / closing operation of the shielding plate for ventilation control can be realized.
  • stainless steel SUS
  • the casing body is so-called deep drawing processing, equipment for processing is required, which may increase the cost.
  • the said support part is being fixed by press-fitting the edge part of the said support part in the said casing main body. For this reason, depending on the initial press-fitted state, the press-fitting between the support portion and the casing main body may be loosened due to vibration or the like, and it is difficult to ensure the sealing performance inside the casing main body.
  • in order to press-fit the end portion of the support portion into the casing main body it is necessary to make the inner diameter dimension of the opening of the casing main body with high accuracy.
  • the casing body is deep drawn, there has been a technical problem that it is difficult to process with high accuracy with respect to the inner diameter of the opening of the casing body.
  • the present inventors first studied to manufacture the casing body by molding with a synthetic resin. As a result, it has been found that by molding the casing body with synthetic resin, it is not necessary to perform so-called deep drawing processing, no equipment for the processing is required, and the cost can be reduced. did.
  • the connecting part (joint part) of the casing body and the flange is formed.
  • the connecting part (joint part) of the casing body and the flange is formed.
  • the support portion of the thermo element is usually formed by cutting with brass, the cost increases as the diameter increases.
  • a flange portion that contacts the casing body must be formed on the support portion. Due to the formation of the flange, the diameter is larger and the cost is higher. Moreover, there are many parts to be cut, waste materials increase, and this is not preferable in terms of cost.
  • the present invention forms the casing body from a synthetic resin and fixes the casing body to the support portion of the thermo element by locking means including a stop ring or the like, thereby making the casing body a resin. It is an object of the present invention to provide a thermoactuator casing structure that can solve the above-mentioned problems and can easily and surely fix the casing body to the support portion of the thermoelement and reduce the product cost.
  • a casing structure of a thermoactuator is a casing structure of a thermoactuator that contains wax that expands or contracts due to a temperature change, and includes an element case that contains the wax, and the element A thermo element including at least a support portion that supports a case, a retainer that moves up and down relative to the support portion, a cylindrical casing body that is made of a synthetic resin that covers at least the retainer of the thermo element, and the thermo element that is the casing A first groove formed in the casing main body or an integrally molded product thereof, and a locking member mounted along a second groove formed in the thermo element in a state of being covered by the main body; The locking along the groove and the second groove By mounting the timber, said casing main body and the thermoelement, characterized in that it is coupled through the locking member.
  • a flange for fastening the thermoactuator to the mounted portion is integrally molded with a resin at the base end portion of the casing body, and the locking member can be inserted into the flange.
  • a groove-shaped window hole is formed, the window hole constitutes the first groove part, and the second groove part of the thermo element is located in the window hole.
  • a groove-like window hole into which the locking member can be inserted is formed at the base end portion of the casing body, and the window hole constitutes the first groove portion.
  • the second groove portion of the thermo-element is positioned in the window hole, and a flange for fastening the thermo-actuator to the mounted portion is formed as a separate member from the casing body, The configuration attached to is adopted.
  • the locking member mounted along the first groove portion and the second groove portion is constituted by a stop ring formed by bending a wire rod into a U-shape, and a bent central portion of the stop ring is located in the first groove portion.
  • the pair of bent legs that follow the bent central portion are inserted into the second groove portion, whereby the casing body and the thermo element are coupled via the stop ring.
  • the locking member mounted along the first groove portion and the second groove portion fastens the thermoactuator to the attachment portion.
  • a cut base in a U-shaped cut groove formed in the flange is inserted into the first groove, and an opposite cut side that follows the cut base is inserted into the second groove,
  • a flange is configured to couple the casing body and the thermo element.
  • an upright piece that is elastically deformed in a direction perpendicular to the surface is preferably formed on the opposite cut side of the U-shaped cut groove formed in the flange, and the upright piece is formed in the second groove portion. By abutting, it is configured to suppress the occurrence of rattling between the casing body, the thermo element, and the flange.
  • a support surface that surrounds the support portion of the thermoelement is formed on the inner diameter of the base end portion of the casing body, and a rib portion that protrudes toward the shaft core is intermittently formed on the support surface along the circumference. It is desirable to be formed. In addition, it is preferable that the support portion of the thermo-element in contact with the support surface has a tapered surface that increases the outer diameter toward the element case.
  • the casing body is formed of synthetic resin, it is not necessary to perform so-called deep drawing processing as in the case of a conventional metal casing.
  • the cost reduction can be realized including the equipment.
  • thermoelement side demonstrated with the above-mentioned conventional structure is used. Arrangement of the flange part larger than the casing inner diameter is not required, and the outer diameter of the thermo element can be reduced. Thereby, cost reduction and weight reduction can be realized further, and it can contribute to reducing the amount of waste materials.
  • FIG. 5 is an enlarged cross-sectional view taken in the direction of the arrow from the line AA in FIG. 4. It is the front view shown in the state which fractured
  • thermo actuator 7 is a top view of the thermo actuator shown in FIG. 6. It is the perspective view which showed the single-piece
  • thermoactuator It is the perspective view which showed the state which mounts
  • FIG. 17 is a perspective view of the state as viewed from slightly above the state shown in FIG. 16. It is the front view shown in the state which fractured
  • thermoactuator described below is attached to an automobile engine as a mounted portion, and as a preferred example, as shown in Patent Document 1, is used as a drive source for a shielding plate for opening and closing a ventilation passage of a radiator.
  • FIGS. 1 to 5 show a first embodiment.
  • a flange is formed of a synthetic resin integrally with a cylindrical casing body that covers a retainer of a thermo element.
  • a configuration is adopted in which the thermo element and the casing main body are coupled to each other by using a locking member by a stop ring.
  • the thermoactuator 1 includes a thermoelement 10 that contains wax that expands or contracts due to a temperature change, and a casing body 20 that is formed of a synthetic resin that covers a retainer 19 portion of the thermoelement 10. And a stop ring 40 as a locking member that couples the thermo element 10 and the casing body 20. And in this 1st Embodiment, the flange 30 for fastening the thermoactuator 1 to an engine in the base end part of the said casing main body 20 is resin-molded integrally with the casing main body 20. As shown in FIG.
  • thermo-element 10 has a support portion 11 formed in a columnar shape near the lower bottom, and this support portion 11 has the largest diameter in the thermo-element 10. Constitutes a large diameter part.
  • an element case 13 that accommodates the wax 12 that is a thermal expansion body is attached to the support portion 11 by caulking, further below the support portion 11. .
  • a diaphragm 15 is provided between the support portion 11 and the element case 13 to transmit the expansion and contraction of the wax 11 to the upper half fluid 14.
  • a rubber piston 16 and a backup plate 17 to which the reaction of the diaphragm 15 is transmitted through the semi-fluid 14 are accommodated in a shaft cylinder of the thermo element 10, and the backup plate 17 pivots on a metal piston 18. It is configured to reciprocate in the direction.
  • the tip of the piston 18 is connected to the retainer 19 described above, and the connecting actuator 19b is moved in the axial direction via a drive shaft 19a formed integrally with the upper portion of the retainer 19. It is configured.
  • the columnar support portion 11 of the thermo element 10 forms a large diameter portion having the largest diameter in the thermo element 10, and an annular groove is provided directly below the large diameter portion (support portion 11).
  • the first O-ring 3 is attached along the annular groove.
  • the first O-ring 3 functions as a packing that maintains airtightness with the engine.
  • An annular groove is also formed immediately above the large diameter portion (support portion 11), and the second O-ring 4 is attached along the annular groove.
  • the second O-ring 4 is in contact with the inner peripheral surface of the casing body 20 and fulfills a function as a packing.
  • An opening 20a through which the retainer 19 protrudes and protrudes is formed at the upper end portion of the casing body 20, and a packing 5 is disposed in the opening 20a so as to surround the retainer 19, and the packing 5 is a packing holder. 6 is held down.
  • the packing 5 secures a seal between the retainer 19 and the casing body 20.
  • a return spring (coil spring) 7 that is extendable in the axial direction is disposed.
  • the upper end portion of the return spring 7 is seated on the lower surface of the packing holder 6, and the lower end portion is seated on a flange portion 19 c formed on the peripheral surface of the end portion of the retainer 19.
  • the retainer 19 is urged in the direction toward the casing body 20. That is, when the wax 12 of the thermo-element 10 is thermally expanded, the retainer 19 contracts the return spring 7 and moves forward, causing the shaft 19 a and the actuator 19 b to protrude from the casing body 20. When the wax 12 contracts, the retainer 19 moves backward due to the action of the return spring 7.
  • a flange 30 extending in a direction orthogonal to the axis of the casing body 20 is resin-molded integrally with the casing body 20 at the base end portion of the casing body 20.
  • the flange 30 is formed with a fastening portion so as to be symmetrical with respect to the left and right.
  • Each fastening portion is provided with an opening 30a, and each opening 30a has a metal sleeve 31 formed in a ring shape. Is fitted and attached. That is, the central portion of the ring-shaped sleeve 31 is a sleeve opening 31a for screwing the flange 30 to the engine.
  • the sleeve 31 functions as a mechanical reinforcing member when the flange 30 formed of resin is screwed.
  • the support portion 11 of the thermo element 10 is bent and bent in the central portion of the flange 30 integrally molded with the base end portion of the casing body 20.
  • a support surface 30b to which the thermo element 10 is attached is formed.
  • rib portions 30c that slightly protrude toward the shaft center are intermittently formed on the support surface 30b along the circumference.
  • the support portion 11 of the thermo-element 10 that is in contact with the support surface 30 b has a tapered surface that increases the outer diameter toward the element case 13. That is, as shown in FIG. 4, the support portion 11 of the thermo element 10 is formed such that the diameter d1 on the retainer 19 side and the diameter d2 on the element case 13 side have a relationship of d1> d2.
  • a groove-like window hole 32 is formed in the flange 30 along the surface of the flange 30 so that a stop ring 40 as a locking member can be inserted into the groove-like window hole 32. It is configured. And in the support part 11 of the thermo element 10 located in the groove-shaped window hole 32, as shown in FIGS. 4 and 5, an annular groove 11a is formed along the circumferential direction.
  • the groove-shaped window hole 32 is used as a first groove portion, and the annular groove 11a formed in the support portion 11 is used as a second groove portion, and the stop ring 40 is mounted along the first groove portion and the second groove portion.
  • FIG. 5 shows the structure of the stop ring 40, which is formed by, for example, bending a metal wire (for example, a piano wire) into a substantially U shape. That is, the stop ring 40 is formed by bending a pair of bent leg portions 40b outward from each other following the U-shaped bent central portion 40a. Furthermore, the front-end
  • a metal wire for example, a piano wire
  • the stop ring 40 is inserted into a groove-like window hole 32 formed in the flange 30 described above.
  • the guide part 40c formed in a C-shape is used to be inserted across the columnar connecting part 20b formed in the casing body 20.
  • the pair of bent legs 40 b that are curved outward from each other in the stop ring 40 are inserted into the annular groove (second groove) 11 a formed in the support portion 11 of the thermo element 10.
  • the thermo element 10 and the casing main body 20 are couple
  • thermo actuator 1 In this coupled state, as shown in FIG. 5, the stop ring 40 is housed in a groove-like window hole 32 formed in the flange 30, so there is no need to change the size of the product itself. This does not affect the layout of peripheral parts. Further, in the state where the thermo element 10 and the casing main body 20 are coupled, the thermo actuator 1 is fastened to a predetermined position of the engine using the flange 30, so that the thermo actuator 1 is shown in Patent Document 1. In addition, it can be used as a drive source of a shielding plate for opening and closing the ventilation path of the radiator.
  • the flange 30 for fastening the thermoactuator 1 to the engine is resin-molded integrally with the casing body 20, it can contribute to suppressing the number of parts.
  • FIGS. 6 to 9 show the second embodiment.
  • the main parts corresponding to the respective parts in the first embodiment already described are denoted by the same reference numerals. Yes. Therefore, the description is omitted as appropriate.
  • a groove-like window hole 32 into which a stop ring 40 as a locking member can be inserted is formed at the base end portion of the casing body 20, and the thermoactuator 1 is attached to an attachment portion (engine A configuration in which the flange 30 to be fastened to E) is formed by a member different from the casing main body 20 and attached to the thermoelement 10 is adopted.
  • the flange 30 is formed of a separate metal material with respect to the casing body 20 formed of synthetic resin, and the metal material flange 30 is configured as a single unit in FIG. As shown, a fitting hole 34 for fitting the thermo element 10 is formed at the center.
  • the fitting hole 34 is formed with a small bent portion 34a in the axial direction along the fitting hole 34 so that the bent portion 34a faces downward as shown in FIGS.
  • the thermoelement 10 is attached directly below the support portion 11 using the fitting hole 34.
  • the flange 30 is formed with screw insertion openings 35 at axially symmetric positions. As shown in FIGS. 7 and 8, a fastening screw 45 inserted into the opening 35 is used.
  • the thermoactuator 1 is fastened to the engine E as a mounted portion.
  • thermo element 10 in this 2nd Embodiment is the same structure as what is used in 1st Embodiment.
  • the resin-molded flange 30 in the first embodiment is removed, and a groove-like window hole 32 similar to the example shown in FIG. 5 is formed at the base end portion of the casing body 20.
  • the thermo element 10 and the casing main body 20 are couple
  • the structure is the same as that of 1st Embodiment.
  • FIGS. 10 to 13 show a third embodiment.
  • the same reference numerals are given to the main parts corresponding to the parts in the first and second embodiments already described. It shows. Therefore, the description is omitted as appropriate.
  • the flange 30 that fastens the thermoactuator 1 to the engine E is used as a locking member that couples the casing body 20 and the thermoelement 10.
  • the flange 30 used in the third embodiment is made of a metal material, and a U-shaped cut groove 36 is formed as shown in FIG. Then, a cut base 36a in the U-shaped cut groove 36 formed in the flange 30 is inserted into a groove-like window hole (first groove) 32 formed in the casing body 20, and is opposed to the cut base 36a.
  • the cut side 36 b is inserted into the annular groove (second groove) 11 a of the support portion 11 in the thermo element 10.
  • the casing body 20 and the thermo element 10 are coupled by the flange 30.
  • the flange 30 is formed with screw insertion openings 35 at axially symmetric positions.
  • a thermo-actuator is used by using a fastening screw 45 inserted into the opening 35. 1 is fastened to an engine E as a mounted portion.
  • thermoelement 10 in this 3rd Embodiment is the same structure as what is used in 1st Embodiment.
  • the casing 30 and the thermoelement 10 are couple
  • the flange 30 is used as a locking member between the casing body 20 and the thermo element 10, the number of parts can be reduced, and the casing body 20 and the thermo element 10 can be reduced. The operability of the locking operation and the releasing operation can be improved.
  • FIG. 14 and FIG. 15 show a fourth embodiment.
  • This fourth embodiment is an improvement of the third embodiment shown in FIGS. 10 to 13 and is formed by opposing notches of U-shaped notch grooves 36 formed in a metal flange 30.
  • FIG. Standing pieces 36c that are elastically deformed in a direction perpendicular to the surface of the flange 30 are formed on the side 36b.
  • thermo-element 10 is in contact with the annular groove (second groove portion) 11a of the support portion 11 in the axial direction.
  • the structure of the thermoelement 10 in this 4th Embodiment is the same structure as what is used in 1st Embodiment.
  • FIG. 16 and FIG. 17 show a fifth embodiment.
  • the same reference numerals are given to the main parts corresponding to the respective parts in the already described embodiments. . Therefore, the description is omitted as appropriate.
  • the upper and lower surfaces of the flange 30 are reversed and attached to the thermo element 10 with respect to the second embodiment shown in FIGS.
  • the axially bent portion 34 a formed in the fitting hole 34 of the flange 30 has a groove-like window hole 32 in which the stop ring 40 is accommodated. Is attached to the support portion 11 of the thermo-element 10.
  • a disk-like flange 22 is formed immediately below the support 11 in the thermo element 10, and this flange 22 is in contact with the surface of the flange 30.
  • the axially bent portion 34a formed in the flange 30 closes the groove-like window hole 32 in which the stop ring 40 is accommodated, and the flange 30 is located on the thermo element 10 side. Since it is in contact with the disc-shaped flange 22, it is possible to effectively prevent the flange 30 from falling off the thermo element 10.
  • FIG. 18 and FIG. 19 show a sixth embodiment.
  • the same reference numerals are given to the main parts corresponding to the respective parts in the already described embodiments. . Therefore, the description is omitted as appropriate.
  • the axial bent portion 34a formed in the fitting hole 34 of the flange 30 is directed upward. It is attached to the thermo element 10.
  • the bent portion 34a of the flange 30 in the axial direction is sandwiched between the base end portion of the casing body 20 and the disk-shaped flange portion 22 on the thermo element 10 side. With this configuration, it is possible to prevent the flange 30 from falling off the thermo element 10.
  • the casing structure of the thermoactuator according to the present invention in addition to the common functions and effects described in the column of the effects of the above-described invention, the effect of this can be obtained.
  • the engine is described as an example of the thermoactuator attachment portion.
  • the attachment portion is not particularly limited, and may be any desired object that is desired to be temperature-sensitive. That is, the casing structure of the thermoactuator of the present invention is not limited to the attached portion, and can be applied to various conventional thermoactuators.
  • Thermoactuator 7 Return spring (spring) 10
  • Thermo element 11 Support part 11a Annular groove (second groove part) DESCRIPTION OF SYMBOLS 13 Element case 15
  • Diaphragm 18 Piston 19 Retainer 19a Shaft 19b
  • Actuator 19c Eave part 20
  • Eaves part 30 Flange 30a Flange opening 30b Support surface 30c Rib part 31 Sleeve 31a Sleeve opening 32
  • Groove opening 32 (First groove) 34 fitting hole 34a bent part 35 screw insertion opening 36 notch groove 36a notch base 36b notch side 36c upright piece 40 stop ring (locking member) 40a Bending center part 40b Bending leg part 40c Guide part 45
  • Fastening screw E Engine attacheded part

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Snaps, Bayonet Connections, Set Pins, And Snap Rings (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

【課題】サーモエレメントに対するケーシング本体の固定を容易かつ確実になし得ると共に、製品コストの低減もなし得るサーモアクチュエータのケーシング構造を提供する。 【解決手段】ワックスを収容したエレメントケース13、エレメントケースを支持する支持部11、支持部に対して上下動するリテーナ19を少なくとも備えるサーモエレメント10と、前記サーモエレメントのリテーナを覆う合成樹脂からなる筒状のケーシング本体20と、サーモエレメント10をケーシング本体20によって覆った状態において、ケーシング本体に形成された第1溝部32とサーモエレメントに形成された第2溝部11aに沿って装着される係止部材40とが備えられ、前記第1溝部32と第2溝部11aに沿って前記係止部材40を装着することで、前記ケーシング本体20と前記サーモエレメント10とが、前記係止部材40を介して結合されている。

Description

サーモアクチュエータのケーシング構造
 本発明は、サーモアクチュエータのケーシング構造に関し、例えば、エンジンに取り付けられ、エンジン側の温度変化に伴うワックスの膨張、収縮により駆動用のシャフトを進退させるサーモアクチュエータのケーシング構造に関する。
 エレメントケースに収容されたワックスが温度変化によって膨張、収縮することにより、駆動用シャフトが進退するサーモアクチュエータが知られている。また、従来からこのサーモアクチュエータを用い、自動車のラジエータ用シャッタ(遮蔽板)の駆動源とすることが提案されている。
 例えば、特許文献1には、本出願人が提案したサーモアクチュエータが開示されている。このサーモアクチュエータを図20に示すと共に、この図20に基づいて従来のサーモアクチュエータの一例について説明する。
 図20に示すように、サーモアクチュエータ100は、ワックス101が収納されたエレメントケース102と、このエレメントケース102を後端側に支持すると共に、前端側においてリテーナ103を進退自在に保持する支持部104とを備える。
 前記エレメントケース102と支持部104とはカシメ加工により連結されてサーモエレメント105を構成し、このサーモエレメント105において温度変化がリフト量(リテーナ103の移動量)に変換される。
 なお、前記サーモエレメント105(エレメントケース102、支持部104)は、例えば、真鍮により形成されている。
 前記リテーナ103は、前記支持部104に一体的に形成された略円筒状のガイド部106の周りを囲っており、前記ガイド部106内には、略円柱状のピストン107が前後方向(軸方向)に移動可能に保持されている。
 そして、前記ワックス101が温度変化によって膨張、収縮することにより、ダイヤフラム108が変形する。更に、前記ダイヤフラム108の変形に応じて前記ピストン107が前記ガイド部106に対して前後移動することにより、リテーナ103を進退させるように構成されている。
 また、サーモアクチュエータ100は、リテーナ103と同軸上に設けられ、リテーナ103の先端側から突出するシャフト111を備える。このシャフト111は、その先端が、複数の遮蔽板121を備えた開閉機構120に接続され、リテーナ103の進退移動に同期して軸方向に進退移動し、前記複数の遮蔽板121を連動して回動(開閉)させるように構成されている。
 また、リテーナ103及び支持部104の周囲には、それらを囲うようにして筒状のケーシング本体109が設けられ、リテーナ103とケーシング本体109との間の隙間空間には、軸方向に伸縮自在な戻しばね110が配置されている。
 前記戻しばね110の前端はケーシング本体109の内側前端に着座し、後端はリテーナ103の後端において外方に突出した鍔部103aに固定されており、それによって戻しばね110は、リテーナ103及びシャフト111を後退方向に付勢している。
 即ち、戻しばね110によりリテーナ103は、常に後進方向に付勢されるが、サーモエレメント105に対し、前記リテーナ103が前進する際には、戻しばね110を縮めるようになされている。
 なお、ケーシング本体109の前端側の開口109eには、リング状のパッキン112が設けられており、リテーナ103の進退動作に拘わらずケーシング本体109内をシールしている。
 また、ケーシング本体109は、前記したようにリテーナ103及びサーモエレメント105の周囲を覆うケーシング部109aと、ケーシング部109aの後端から外方に環状に拡がるフランジ109bとを有している。前記フランジ109bには、ねじ留めの際に利用する貫通孔109cが設けられている。
 また、前記ケーシング部109aには、その後端側の開口109dから、支持部104の前部が圧入されて連結されており、前記開口109dの近傍が、支持部104の周面から外方に突出する鍔部104aの一面側(前面)に当接した状態になされている。
 前記サーモアクチュエータ100をエンジンに取り付けるには、まず、エレメントケース102及びこれを支持する支持部104の後部をエンジンに形成された収納孔(図示せず)に挿入する。また、ケーシング本体109のフランジ109bによって、支持部104の鍔部104aをエンジン側に押さえ付けた状態で、貫通孔109cに挿通された図示せぬねじを利用してケーシング本体109をエンジンに固定する。
 このようにサーモアクチュエータ100をエンジンに取り付けることにより、エンジン側の温度変化に伴うワックスの膨張、収縮によりシャフトを進退させ、例えば、通風制御のための遮蔽板の開閉動作を実現することができる。
特開2015-105645号公報
 ところで、前記ケーシング本体には、一般的にはステンレス(SUS)が用いられる。
しかしながら、ケーシング本体はいわゆる深絞り加工となるため、加工のための設備が必要となり、コスト高になる虞れがあった。
 また、前記支持部の端部が前記ケーシング本体に圧入されることにより、前記支持部が固定されている。このため、初期の圧入状態次第で振動等によって支持部とケーシング本体との圧入が緩む可能性があり、前記ケーシング本体の内部のシール性の確保が困難であった。
 更に、前記支持部の端部を前記ケーシング本体に圧入するには、ケーシング本体の開口の内径寸法を高精度になす必要がある。しかしながら、ケーシング本体は深絞り加工のため、前記ケーシング本体の開口の内径寸法については高精度の加工が困難であるという技術的課題があった。
 上記技術的課題を解決するために、まず本発明者らは前記ケーシング本体を合成樹脂で成形により製作することを検討した。その結果、前記ケーシング本体を合成樹脂により成形することにより、いわゆる深絞り加工を行う必要がなく、その加工のための設備が必要なく、コストを安価にすることができる可能性があることが判明した。
 一方、合成樹脂製のケーシング本体を用いた場合、以下に示す技術的課題があることが判明した。
 この合成樹脂製のケーシング本体を用いた場合においても、ステンレス(SUS)製のケーシング本体を用いた場合と同様に、支持部の端部を前記ケーシング本体に圧入する場合には、振動等によって支持部とケーシング本体との圧入が緩み、前記ケーシング本体の内部のシール性の確保が困難となる虞がある。
 また、前記支持部の端部を前記ケーシング本体に圧入するには、ケーシング本体の開口の内径寸法を高精度になす必要がある。
 更に、前記支持部の端部を、合成樹脂製のケーシング本体に圧入する際、ケーシング本体の開口の内径が拡がり、ケーシング本体の開口近傍に割れが発生する虞がある。
 また、ケーシング本体に対して前記支持部の前部を正確な位置に配置(圧入)しないと、合成樹脂でケーシング本体とフランジを一体に成形したケーシングでは、ケーシング本体とフランジの連結部(結合部)に外力が作用し、前記連結部(結合部)から破損する虞がある。即ち、ケーシング本体に対して前記支持部の前部が傾いて配置されている場合には、リテーナの進退動作によって、ケーシング本体とフランジの連結部(結合部)に力が作用し、前記連結部(結合部)が破損する虞がある。
 加えて、サーモエレメントの支持部は、通常、真鍮で切削し形成される為、径が大きくなるほどコスト高となる。
 特に、特許文献1に示される従来技術のように、ケーシング本体に支持部を圧入固定する場合には、ケーシング本体が当接する鍔部を支持部に形成しなければならない。この鍔部の形成のため、径はより大きくなり、よりコスト高となっていた。しかも切削する部分が多く、廃材が増え、コスト的に好ましいものではなかった。
 そこで、本発明はケーシング本体を合成樹脂により成形すると共に、ストップリング等を含む係止手段により、ケーシング本体をサーモエレメントの支持部に固定することで、ケーシング本体を樹脂化することによる前記した技術的な問題を解消し、サーモエレメントの支持部に対するケーシング本体の固定を容易かつ確実になし得ると共に、製品コストの低減もなし得るサーモアクチュエータのケーシング構造を提供することを課題とするものである。
 前記した課題を解決するために、本発明に係るサーモアクチュエータのケーシング構造は、温度変化により膨張または収縮するワックスを収容したサーモアクチュエータのケーシング構造であって、前記ワックスを収容したエレメントケース、前記エレメントケースを支持する支持部、前記支持部に対して上下動するリテーナとを少なくとも備えるサーモエレメントと、前記サーモエレメントのリテーナを少なくとも覆う合成樹脂からなる筒状のケーシング本体と、前記サーモエレメントを前記ケーシング本体によって覆った状態において、前記ケーシング本体もしくはその一体成形物に形成された第1溝部と、サーモエレメントに形成された第2溝部に沿って装着される係止部材とが備えられ、前記第1溝部と第2溝部に沿って前記係止部材を装着することで、前記ケーシング本体と前記サーモエレメントとが、前記係止部材を介して結合されることを特徴とする。
 この場合、一つの好ましい形態においては、前記ケーシング本体の基端部には、前記サーモアクチュエータを被取付け部に締結するフランジが一体に樹脂成形されており、前記フランジに前記係止部材が挿入可能な溝状の窓孔が形成されると共に、前記窓孔が前記第1溝部を構成し、前記窓孔内にサーモエレメントの前記第2溝部が位置するように構成される。
 また、他の一つの好ましい形態においては、前記ケーシング本体の基端部には、前記係止部材が挿入可能な溝状の窓孔が形成されると共に、前記窓孔が前記第1溝部を構成し、前記窓孔内にサーモエレメントの前記第2溝部が位置するように構成され、かつ前記サーモアクチュエータを被取付け部に締結するフランジが、前記ケーシング本体とは別部材で形成されて、サーモエレメントに装着された構成が採用される。
 そして、前記第1溝部と第2溝部に沿って装着される係止部材は、線材をコ字状に折り曲げ形成したストップリングにより構成され、ストップリングの折り曲げ中央部が前記第1溝部に位置し、前記折り曲げ中央部に続く一対の折り曲げ脚部が前記第2溝部に挿入されることで、前記ケーシング本体と前記サーモエレメントとが、前記ストップリングを介して結合される。
 さらに、本発明に係るサーモアクチュエータのケーシング構造における他の一つの好ましい形態においては、前記第1溝部と第2溝部に沿って装着される前記係止部材は、前記サーモアクチュエータを被取付け部に締結するフランジであり、前記フランジに形成されたコ字状の切り込み溝における切り込み底辺が前記第1溝部に挿入され、前記切り込み底辺に続く対向する切り込み側辺が前記第2溝部に挿入されて、前記フランジが前記ケーシング本体と前記サーモエレメントとを結合するように構成される。
 この場合、好ましくは前記フランジに形成されたコ字状の切り込み溝における対向する切り込み側辺には、面に直交する方向に弾性変形する起立片が形成され、当該起立片が前記第2溝部に当接することで、前記ケーシング本体と前記サーモエレメントおよび前記フランジとの間におけるがたつきの発生を抑制するように構成される。
 一方、前記ケーシング本体の基端部の内径には、サーモエレメントの前記支持部を囲撓する支持面が形成され、当該支持面には軸芯に向かって突出するリブ部が周に沿って間欠的に形成されていることが望ましい。
 加えて、前記支持面に接するサーモエレメントの前記支持部は、前記エレメントケースに向かって外径を太くするテーパ面になされていることが望ましい。
 前記したこの発明に係るサーモアクチュエータのケーシング構造によると、ケーシング本体は合成樹脂により成形されるので、従来の金属製のケーシングのようないわゆる深絞り加工を行う必要がなく、その深絞り加工のための設備を含め、コストダウンを実現することができる。
 また、ケーシング本体側の第1溝部と、サーモエレメント側の第2溝部を利用して、係止部材によって両者を結合するように構成されるので、前記した従来の構成で説明したサーモエレメント側にケーシング内径よりも大きな鍔部の配置は不要となり、サーモエレメントの外径を小さくできる。これにより、さらにコストダウンおよび軽量化を実現することができ、廃材量を削減することにも寄与できる。
 また、前記第1溝部と第2溝部を利用して係止部材によってケーシング本体とサーモエレメントを結合する構成が採用されるので、例えば線材を折り曲げ加工したストップリングの着脱により、もしくはコ字状の切り込み溝を設けたフランジの着脱により、両者の結合および解除操作が実現され、その操作も容易になし得るものとなる。
サーモアクチュエータの第1実施形態について全体構成を示した斜視図である。 同じくケーシングの一部を破断した状態で示した斜視図である。 基端部側から見たケーシングの要部拡大図である。 サーモアクチュエータの全体構成を示した縦断面図である。 図4におけるA-A線より矢印方向に見た拡大断面図である。 サーモアクチュエータの第2実施形態についてケーシングの前面側を破断した状態で示した正面図である。 図6に示すサーモアクチュエータを被取付け部(エンジン)に装着した状態を示す一部断面図である。 図6に示すサーモアクチュエータの上面図である。 第2実施形態に用いられるフランジの単体構成を示した斜視図である。 サーモアクチュエータの第3実施形態についてケーシングの前面側を破断した状態で示した斜視図である。 図10に示すサーモアクチュエータにフランジを装着する状態を示した斜視図である。 フランジの装着位置において軸に直交する方向に切断した状態を示すサーモアクチュエータの断面図である。 第3実施形態に用いるフランジの単体構成を示した正面図である。 サーモアクチュエータの第4実施形態についてフランジを装着する状態を示した斜視図である。 図14に示すサーモアクチュエータについてフランジの装着状態の要部を拡大して示した斜視図である。 サーモアクチュエータの第5実施形態についてケーシングの前面側を破断した状態で示した正面図である。 図16に示す状態よりも若干斜め上から見た状態の斜視図である。 サーモアクチュエータの第6実施形態についてケーシングの前面側を破断した状態で示した正面図である。 図18に示すサーモアクチュエータを被取付け部に装着した状態を示す一部断面図である。 従来のサーモアクチュエータの例を示す断面図である。
 以下、本発明に係るサーモアクチュエータのケーシング構造について、図に示すそれぞれの実施の形態に基づいて順に説明する。
 なお、以下に示す各図においては、同一もしくは相当する部分を同一符号で示すが、一部の図面においては代表的な部分に符号を付け、その詳細な構成はその他の図面に付けた符号を引用して説明する場合もある。
 また、以下に説明するサーモアクチュエータは、被取付け部として自動車のエンジンに取り付けられ、好ましい一例として特許文献1に示したように、ラジエータの通風路を開閉するための遮蔽板の駆動源として利用される。
 先ず図1~図5は第1の実施形態を示したものであり、この第1の実施形態においては、サーモエレメントのリテーナを覆う筒状のケーシング本体と一体に、フランジが合成樹脂により成形され、サーモエレメントとケーシング本体とがストップリングによる係止部材を利用して結合される構成が採用されている。
 図1および図2に示すように、サーモアクチュエータ1は、温度変化により膨張または収縮するワックスを収容したサーモエレメント10と、前記サーモエレメント10のリテーナ19部分を覆う合成樹脂により形成されたケーシング本体20と、サーモエレメント10とケーシング本体20とを結合する係止部材としてのストップリング40とを備えている。そして、この第1の実施形態においては、前記ケーシング本体20の基端部において、サーモアクチュエータ1をエンジンに締結するためのフランジ30が、ケーシング本体20と一体に樹脂成形されている。
 図2および図4に示されているように、前記サーモエレメント10には、下底部付近に円柱状に形成された支持部11が形成されており、この支持部11がサーモエレメント10において最も径が大きな大径部を構成している。
 また図4に示されているように、この支持部11のさらに下部には、熱膨張体であるワックス12を収容するエレメントケース13が、前記支持部11に対してカシメ加工により取り付けられている。そして、前記支持部11とエレメントケース13との間には、前記ワックス11の膨張収縮を上層の半流動体14に伝達するダイヤフラム15を備えている。
 前記ダイヤフラム15の応動が半流動体14を介して伝達されるラバーピストン16とバックアッププレート17とが、サーモエレメント10の軸筒内に収容されており、バックアッププレート17が金属製のピストン18を軸方向に往復移動させるように構成されている。そして、ピストン18の先端部は、前記したリテーナ19に接続されており、このリテーナ19の上部に一体に形成された駆動シャフト19aを介して連結用の作動子19bを軸方向に移動させるように構成されている。
 前記サーモエレメント10における円柱状の支持部11は、前記したとおりサーモエレメント10において最も径が大きな大径部を形成しており、この大径部(支持部11)の直下には、環状の溝が形成されてこの環状の溝内に沿って第1のOリング3が取り付けられている。この第1のOリング3は、サーモアクチュエータ1をエンジンに装着した場合
において、エンジンとの間の気密を保つパッキンとしての機能を果たすものとなる。
 また、大径部(支持部11)の直上にも、環状の溝が形成されてこの環状の溝内に沿って第2のOリング4が取り付けられている。この第2のOリング4は、ケーシング本体20の内周面に接してパッキンとしての機能を果たすものとなる。
 また、前記ケーシング本体20の上端部には、前記リテーナ19が出没する開口20aが形成されており、この開口20aには前記リテーナ19を取り巻くようにパッキン5が配置され、このパッキン5はパッキンホルダ6によって押さえられている。なお、前記パッキン5は、リテーナ19とケーシング本体20との間のシールを確保するものである。
 そして、前記リテーナ19とケーシング本体20との間の隙間空間には、軸方向に伸縮自在な戻しばね(コイルスプリング)7が配置されている。
 前記戻しばね7の上端部はパッキンホルダ6の下面に着座し、下端部はリテーナ19の端部周側面に形成された鍔部19cに着座しており、この戻しばね7は、その反発力によりリテーナ19をケーシング本体20内に向かう方向に付勢している。
 すなわち、サーモエレメント10のワックス12が熱膨張した時には、リテーナ19は戻しばね7を収縮させて前進し、シャフト19aおよび作動子19bを、ケーシング本体20から突出させる。またワックス12が収縮した時には、前記戻しばね7の作用も受けて、リテーナ19は後退する。
 一方、ケーシング本体20の基端部には、ケーシング本体20の軸に直交する方向に伸びるフランジ30が、ケーシング本体20と一体に樹脂成形されている。
 このフランジ30は、左右に軸対称となるように締結部が形成され、それぞれの締結部には開口30aが施されると共に、各開口30aにはそれぞれリング状に形成された金属製のスリーブ31が嵌め込まれて取り付けられている。すなわちリング状スリーブ31の中央部がフランジ30をエンジンにねじ留めするスリーブ開口31aとなっている。このスリーブ31は、樹脂により成形されたフランジ30のねじ留め時の機械的な補強部材として機能する。
 そして、この実施の形態においては、図3に示すようにケーシング本体20の基端部に一体に樹脂成形された前記フランジ30の中央部内に、サーモエレメント10の前記支持部11を囲撓して、サーモエレメント10を取り付ける支持面30bが形成されている。
さらに、この支持面30bには軸芯に向かって僅かに突出するリブ部30cが周に沿って間欠的に形成されている。
 この場合、硬度の異なる金属によるサーモエレメント10の支持部11を、樹脂製の支持面30bに圧入する際、支持面30bの全周面を圧入面にすると、ケーシング本体20の内径が拡がり、樹脂割れが発生する虞があるが、前記リブ部30cを設けることで、樹脂割れを防止することができる。
 また、前記支持面30bに接するサーモエレメント10の前記支持部11は、前記エレメントケース13に向かって外径を太くするテーパ面になされている。
 すなわち、サーモエレメント10の支持部11は、図4に示したようにリテーナ19側の径d1と、エレメントケース13側の径d2は、d1>d2の関係となるように成形されている。
 この様に前記支持部11をテーパ面とすることで、支持部11を支持面30bに圧入した時、軸の芯出しが可能となり、軸ずれと傾きを最小限に押さえることができる。
 一方、前記したフランジ30には、フランジ30の面に沿って溝状の窓孔32が形成されており、この溝状の窓孔32内に係止部材としてのストップリング40が挿入できるように構成されている。
 そして、溝状の窓孔32内に位置するサーモエレメント10の支持部11には、図4および図5に示すように周方向に沿って、環状の溝11aが形成されている。前記溝状の窓孔32を第1溝部にすると共に、支持部11に形成された環状の溝11aを第2溝部として、第1溝部と第2溝部に沿って、前記ストップリング40が装着されることで、サーモエレメント10とケーシング本体20とが結合されている。
 図5にストップリング40の構成が示されており、これは例えは金属製の線材(例えばピアノ線)をほぼコ字状に折り曲げることで構成されている。すなわち、このストップリング40は、コ字状の折り曲げ中央部40aに続いて、一対の折り曲げ脚部40bが互いに外側に湾曲して形成されている。さらに各脚部40bの先端部はハ字状となるように両外側に向かって形成されて、ガイド部40cを構成している。
 図5に示すように、前記ストップリング40は、前記したフランジ30に形成された溝状の窓孔32に挿入される。この場合、ハ字状に形成されたガイド部40cを利用して、ケーシング本体20に形成された柱状の連結部20bを跨ぐようにして挿入される。
 これにより、ストップリング40における互いに外側に湾曲した一対の折り曲げ脚部40bが、サーモエレメント10の支持部11に形成された環状の溝(第2溝部)11aに挿入される。そして、ストップリング40の折り曲げ中央部40aと、先端のガイド部40cが、溝状の窓孔(第1溝部)32に位置することで、サーモエレメント10とケーシング本体20は結合される。
 この結合状態においては、図5に示すように前記ストップリング40は、フランジ30に形成された溝状の窓孔32内に格納されるので、製品自体の大きさを変更する必要がなく、実機における周辺部品へのレイアウトに影響を与えることはない。
 また、サーモエレメント10とケーシング本体20が結合された状態で、前記フランジ30を利用してサーモアクチュエータ1をエンジンの所定の位置に締結することで、サーモアクチュエータ1を、特許文献1に示したように、ラジエータの通風路を開閉するための遮蔽板の駆動源として利用することができる。
 前記した第1の実施形態によると、サーモアクチュエータ1をエンジンに締結するためのフランジ30が、ケーシング本体20と一体に樹脂成形されているので、部品点数を抑えることに寄与できる。
 図6~図9は第2の実施形態を示しており、この図6~図9においてはすでに説明した第1の実施形態における各部に相当する主要な部分には同一の符号を付けて示している。
したがってその説明は適宜省略する。
 第2の実施形態においては、ケーシング本体20の基端部には係止部材としてのストップリング40が挿入可能な溝状の窓孔32が形成されると共に、サーモアクチュエータ1を被取付け部(エンジンE)に締結するフランジ30が、前記ケーシング本体20とは別部材により形成されて、サーモエレメント10に装着された構成が採用されている。
 すなわち、この第2の実施形態においては、合成樹脂で成形されたケーシング本体20に対して、フランジ30は別部材の金属素材により形成されており、金属素材によるフランジ30は、図9に単体構成で示すように中央部にサーモエレメント10を嵌合する嵌合孔34が形成されている。
 この嵌合孔34には、この嵌合孔34に沿って軸方向に短小な折り曲げ部34aが形成されており、図6および図7に示すように、前記折り曲げ部34aが下向きとなるようにして、サーモエレメント10における支持部11の直下に、嵌合孔34を利用して取り付けられている。
 そして、前記フランジ30には軸対称の位置に、ねじ挿入用の開口35がそれぞれ形成されており、図7および図8に示すように、前記開口35に挿入される締結ねじ45を利用して、サーモアクチュエータ1は被取付け部としてのエンジンEに締結される。
 なお、この第2の実施形態におけるサーモエレメント10の構成は、第1の実施形態において用いているものと同一の構成である。また第1の実施形態における樹脂成形されたフランジ30は除かれて、ケーシング本体20の基端部に、図5に示した例と同様の溝状の窓孔32が形成されている。
 これにより、ストップリング40によってサーモエレメント10とケーシング本体20が結合されており、その構成は第1の実施形態と同様である。
 図10~図13は、第3の実施形態を示しており、図10~図13においてはすでに説明した第1および第2の実施形態における各部に相当する主要な部分には同一の符号を付けて示している。したがってその説明は適宜省略する。
 この第3の実施形態においては、サーモアクチュエータ1をエンジンEに締結するフランジ30を、ケーシング本体20とサーモエレメント10とを結合する係止部材として利用している。
 すなわち、第3の実施形態において用いられるフランジ30は、金属素材により構成され、図13に示すようにコ字状の切り込み溝36が形成されている。
 そして、フランジ30に形成されたコ字状の切り込み溝36における切り込み底辺36aがケーシング本体20に形成された溝状の窓孔(第1溝部)32に挿入され、前記切り込み底辺36aに続く対向する切り込み側辺36bが、サーモエレメント10における支持部11の環状の溝(第2溝部)11aに挿入される。
 これにより、前記フランジ30により、前記ケーシング本体20と前記サーモエレメント10とが結合される。
 そして、前記フランジ30には軸対称の位置に、ねじ挿入用の開口35がそれぞれ形成されており、図10に示すように、前記開口35に挿入される締結ねじ45を利用して、サーモアクチュエータ1は被取付け部としてのエンジンEに締結される。
 なお、この第3の実施形態におけるサーモエレメント10の構成は、第1の実施形態において用いているものと同一の構成である。
 そして、第3の実施形態においては、図11に示すようにフランジ30を矢印B方向にスライドさせることで、ケーシング本体20とサーモエレメント10とが結合され、フランジ30を矢印Bとは逆方向にスライドさせることで、ケーシング本体20とサーモエレメント10とを分離することができる。
 この第3の実施形態によると、ケーシング本体20とサーモエレメント10との係止部材として、フランジ30を利用しているので、部品点数を削減することができ、ケーシング本体20とサーモエレメント10との係止操作およびその解除操作の操作性を向上させることができる。
 図14および図15は、第4の実施形態を示しており、この第4の実施形態においては、すでに説明した実施形態における各部に相当する主要な部分には同一の符号を付けて示している。したがってその説明は適宜省略する。
 この第4の実施形態は、図10~図13に示した第3の実施形態に改良を加えたものであり、金属製のフランジ30に形成されたコ字状の切り込み溝36の対向する切り込み側辺36bに、フランジ30の面に直交する方向に弾性変形する起立片36cが形成されている。
 前記した構成のフランジ30によると、ケーシング本体20とサーモエレメント10に対して、図15に示したようにフランジ30をスライドさせて装置した際には、フランジ30に形成された起立片36cが、サーモエレメント10における支持部11の環状の溝(第2溝部)11aに軸方向に当接する。この結果、前記ケーシング本体20と前記サーモエレメント10および前記フランジ30との間におけるがたつきの発生を効果的に抑制することができる。
 なお、この第4の実施形態におけるサーモエレメント10の構成は、第1の実施形態において用いているものと同一の構成である。
 図16および図17は、第5の実施形態を示しており、この第5の実施形態においては、すでに説明した実施形態における各部に相当する主要な部分には同一の符号を付けて示している。したがってその説明は適宜省略する。
 この第5の実施形態は、図6~図9に示した第2の実施形態に対してフランジ30の上下の面を反転してサーモエレメント10に取り付けている。
 すなわちこの実施の形態においては、図16および図17に示すように、フランジ30の嵌合孔34に形成された軸方向の折り曲げ部34aが、ストップリング40が収容された溝状の窓孔32を塞ぐようにして、サーモエレメント10の支持部11に取り付けられている。
 そして、第5の実施形態においては、サーモエレメント10における支持部11の直下に円板状の鍔部22が形成されており、この鍔部22が、前記フランジ30の面に当接している。
 この第5の実施形態によると、フランジ30に形成された軸方向の折り曲げ部34aが、ストップリング40が収容された溝状の窓孔32を塞いでおり、しかもフランジ30はサーモエレメント10側の円板状の鍔部22に当接しているので、サーモエレメント10からフランジ30が脱落するのを効果的に阻止することができる。
 図18および図19は、第6の実施形態を示しており、この第6の実施形態においては、すでに説明した実施形態における各部に相当する主要な部分には同一の符号を付けて示している。したがってその説明は適宜省略する。
 この第6の実施形態は、図16および図17に示した第5の実施形態と同様に、フランジ30の嵌合孔34に形成された軸方向の折り曲げ部34aが、上向きとなるようにしてサーモエレメント10に取り付けられている。
 そして、この例においてはフランジ30の軸方向の折り曲げ部34aを、ケーシング本体20の基端部と、サーモエレメント10側の円板状の鍔部22との間で挟み込んだ構成にされている。この構成により、サーモエレメント10からフランジ30が脱落するのを阻止することができる。
 以上説明したように、この発明に係るサーモアクチュエータのケーシング構造によると、前記した発明の効果の欄に記載したような共通の作用効果に加えて、個々の実施の形態に対応して説明したそれぞれの作用効果を得ることができる。
 そして、前記した実施の形態においては、サーモアクチュエータの被取付け部として、エンジンを例に説明したが、被取付け部は特に限定されるものではなく、感温したい所望の対象であればよい。すなわち、この発明のサーモアクチュエータのケーシング構造は、被取付け部が限定されるものではないため、従来の様々なサーモアクチュエータに適用することができる。
 1   サーモアクチュエータ
 7   戻しばね(スプリング)
 10  サーモエレメント
 11  支持部
 11a 環状の溝(第2溝部)
 13  エレメントケース
 15  ダイヤフラム
 18  ピストン
 19  リテーナ
 19a シャフト
 19b 作動子
 19c 鍔部
 20  ケーシング本体
 20a 開口
 20b 連結部
 22  鍔部
 30  フランジ
 30a フランジ開口
 30b 支持面
 30c リブ部
 31  スリーブ
 31a スリーブ開口
 32  溝状の窓孔(第1溝部)
 34  嵌合孔
 34a 折り曲げ部
 35  ねじ挿入開口
 36  切り込み溝
 36a 切り込み底辺
 36b 切り込み側辺
 36c 起立片
 40  ストップリング(係止部材)
 40a 折り曲げ中央部
 40b 折り曲げ脚部
 40c ガイド部
 45  締結ねじ
 E   エンジン(被取付け部)

Claims (8)

  1.  温度変化により膨張または収縮するワックスを収容したサーモアクチュエータのケーシング構造であって、前記ワックスを収容したエレメントケース、前記エレメントケースを支持する支持部、前記支持部に対して上下動するリテーナとを少なくとも備えるサーモエレメントと、前記サーモエレメントのリテーナを少なくとも覆う合成樹脂からなる筒状のケーシング本体と、前記サーモエレメントを前記ケーシング本体によって覆った状態において、前記ケーシング本体もしくはその一体成形物に形成された第1溝部と、サーモエレメントに形成された第2溝部に沿って装着される係止部材と、が備えられ、前記第1溝部と第2溝部に沿って前記係止部材を装着することで、前記ケーシング本体と前記サーモエレメントとが、前記係止部材を介して結合されたことを特徴とするサーモアクチュエータのケーシング構造。
  2.  前記ケーシング本体の基端部には、前記サーモアクチュエータを被取付け部に締結するフランジが一体に樹脂成形されており、前記フランジに前記係止部材が挿入可能な溝状の窓孔が形成されると共に、前記窓孔が前記第1溝部を構成し、前記窓孔内にサーモエレメントの前記第2溝部が位置するように構成したことを特徴とする請求項1に記載のサーモアクチュエータのケーシング構造。
  3.  前記ケーシング本体の基端部には、前記係止部材が挿入可能な溝状の窓孔が形成されると共に、前記窓孔が前記第1溝部を構成し、前記窓孔内にサーモエレメントの前記第2溝部が位置するように構成され、かつ前記サーモアクチュエータを被取付け部に締結するフランジが、前記ケーシング本体とは別部材で形成されて、サーモエレメントに装着されていることを特徴とする請求項1に記載のサーモアクチュエータのケーシング構造。
  4.  前記第1溝部と第2溝部に沿って装着される係止部材は、線材をコ字状に折り曲げ形成したストップリングにより構成され、ストップリングの折り曲げ中央部が前記第1溝部に位置し、前記折り曲げ中央部に続く一対の折り曲げ脚部が前記第2溝部に挿入されることを特徴とする請求項1ないし請求項3のいずれか1項に記載のサーモアクチュエータのケーシング構造。
  5.  前記第1溝部と第2溝部に沿って装着される前記係止部材は、前記サーモアクチュエータを被取り付け部に締結するフランジであり、前記フランジに形成されたコ字状の切り込み溝における切り込み底辺が前記第1溝部に挿入され、前記切り込み底辺に続く対向する切り込み側辺が前記第2溝部に挿入されて、前記フランジが前記ケーシング本体と前記サーモエレメントとを結合することを特徴とする請求項1または請求項3に記載のサーモアクチュエータのケーシング構造。
  6.  前記フランジに形成されたコ字状の切り込み溝における対向する切り込み側辺には、面に直交する方向に弾性変形する起立片が形成され、当該起立片が前記第2溝部に当接することで、前記ケーシング本体と前記サーモエレメントおよび前記フランジとの間におけるがたつきの発生を抑制することを特徴とする請求項5に記載のサーモアクチュエータのケーシング構造。
  7.  前記ケーシング本体の基端部の内径には、サーモエレメントの前記支持部を囲撓する支持面が形成され、当該支持面には軸芯に向かって突出するリブ部が周に沿って間欠的に形成されていることを特徴とする請求項1ないし請求項6のいずれか1項に記載のサーモアクチュエータのケーシング構造。
  8.  前記支持面に接するサーモエレメントの前記支持部は、前記エレメントケースに向かって外径を太くするテーパ面になされていることを特徴とする請求項1ないし請求項7のいずれか1項に記載のサーモアクチュエータのケーシング構造。
PCT/JP2017/006508 2016-06-17 2017-02-22 サーモアクチュエータのケーシング構造 WO2017217018A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016120915A JP6684163B2 (ja) 2016-06-17 2016-06-17 サーモアクチュエータのケーシング構造
JP2016-120915 2016-06-17

Publications (1)

Publication Number Publication Date
WO2017217018A1 true WO2017217018A1 (ja) 2017-12-21

Family

ID=60663128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006508 WO2017217018A1 (ja) 2016-06-17 2017-02-22 サーモアクチュエータのケーシング構造

Country Status (2)

Country Link
JP (1) JP6684163B2 (ja)
WO (1) WO2017217018A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356463A (zh) 2017-11-20 2020-06-30 学校法人庆应义塾 使用多能干细胞的自杀基因脑肿瘤治疗药
JP2021071049A (ja) * 2018-02-28 2021-05-06 日立Astemo株式会社 内燃機関のバルブタイミング制御装置
JP7424700B1 (ja) 2023-06-30 2024-01-30 富士精工株式会社 サーモアクチュエーター

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318213A (ja) * 1997-05-19 1998-12-02 Ckd Corp 流体圧シリンダ
JP2001315524A (ja) * 2000-03-02 2001-11-13 Denso Corp 車両用空調装置
US20050029901A1 (en) * 2002-08-07 2005-02-10 Eltek S.P.A. Electro-thermal actuation device
JP2005233362A (ja) * 2004-02-23 2005-09-02 Tokai Rubber Ind Ltd 防振用アクチュエータおよびそれを用いた能動型防振装置
US20060087395A1 (en) * 2004-09-22 2006-04-27 Bargholtz William E Wax motor assembly system
JP2010275928A (ja) * 2009-05-28 2010-12-09 Honda Motor Co Ltd 感温アクチュエータ取付構造
JP2013231392A (ja) * 2012-04-27 2013-11-14 Yutaka Giken Co Ltd サーモアクチュエータ
JP2015105645A (ja) * 2013-12-02 2015-06-08 日本サーモスタット株式会社 サーモアクチュエータ及びその取付構造
JP2016205315A (ja) * 2015-04-27 2016-12-08 株式会社三五 サーモアクチュエータ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318213A (ja) * 1997-05-19 1998-12-02 Ckd Corp 流体圧シリンダ
JP2001315524A (ja) * 2000-03-02 2001-11-13 Denso Corp 車両用空調装置
US20050029901A1 (en) * 2002-08-07 2005-02-10 Eltek S.P.A. Electro-thermal actuation device
JP2005233362A (ja) * 2004-02-23 2005-09-02 Tokai Rubber Ind Ltd 防振用アクチュエータおよびそれを用いた能動型防振装置
US20060087395A1 (en) * 2004-09-22 2006-04-27 Bargholtz William E Wax motor assembly system
JP2010275928A (ja) * 2009-05-28 2010-12-09 Honda Motor Co Ltd 感温アクチュエータ取付構造
JP2013231392A (ja) * 2012-04-27 2013-11-14 Yutaka Giken Co Ltd サーモアクチュエータ
JP2015105645A (ja) * 2013-12-02 2015-06-08 日本サーモスタット株式会社 サーモアクチュエータ及びその取付構造
JP2016205315A (ja) * 2015-04-27 2016-12-08 株式会社三五 サーモアクチュエータ

Also Published As

Publication number Publication date
JP6684163B2 (ja) 2020-04-22
JP2017223202A (ja) 2017-12-21

Similar Documents

Publication Publication Date Title
US11828334B2 (en) Power transmission shaft and propeller shaft for vehicle
WO2017217018A1 (ja) サーモアクチュエータのケーシング構造
US8291561B2 (en) Thermostat installing structure
JP3795921B2 (ja) ガイドスリーブを有する、特に自動車用のダイヤフラム式クラッチのための流体制御式クラッチ解除ベアリング
US20140338485A1 (en) Rack guide unit and steering system including the rack guide unit
JP5106145B2 (ja) シリンダ型アクチュエータ
US9970346B2 (en) Thermoactuator and attachment structure thereof
JP6422392B2 (ja) サーモアクチュエータ
JP2017223202A5 (ja)
JP2007092796A (ja) ブーツ
US5447271A (en) Thermostatic valve
JP2003501592A (ja) クラッチ、特に自動車用クラッチのための簡略化された液圧制御装置
JP6687470B2 (ja) ロック機能を備えたサーモアクチュエータ
US20220029559A1 (en) Electromechanical Linear Drive
WO2017217017A1 (ja) サーモアクチュエータのケーシング構造
CN110603394B (zh) 致动器的密封构造
US20040206232A1 (en) Vacuum unit for producing a stroke movement
JP4798337B2 (ja) リップシール
US2245691A (en) Operating mechanism for refrigerator controllers and other devices
JPH0613418Y2 (ja) ベローズ式ダイアフラム装置
JP2017223201A5 (ja)
JP2003048548A (ja) ラック・ピニオン式ステアリング装置のラック軸保持用ブッシュの取付構造
JP2001214928A (ja) 軸部材の圧入組付方法および軸部材の圧入組付用支持治具
JPS5884206A (ja) 圧力駆動式直動モ−タ
JPH09170660A (ja) ピストン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812927

Country of ref document: EP

Kind code of ref document: A1