WO2017215522A1 - 红外发光二极管 - Google Patents

红外发光二极管 Download PDF

Info

Publication number
WO2017215522A1
WO2017215522A1 PCT/CN2017/087712 CN2017087712W WO2017215522A1 WO 2017215522 A1 WO2017215522 A1 WO 2017215522A1 CN 2017087712 W CN2017087712 W CN 2017087712W WO 2017215522 A1 WO2017215522 A1 WO 2017215522A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting diode
light emitting
infrared light
type
Prior art date
Application number
PCT/CN2017/087712
Other languages
English (en)
French (fr)
Inventor
黄俊凯
吴俊毅
王笃祥
吴超瑜
王进
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Publication of WO2017215522A1 publication Critical patent/WO2017215522A1/zh
Priority to US15/871,358 priority Critical patent/US10249777B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Definitions

  • the present invention belongs to the field of optoelectronic technology, and particularly relates to an infrared light emitting diode for improving current spreading and improving luminous efficiency.
  • Infrared light-emitting diodes are widely used in security monitoring, wearable devices, space communications, remote controls, medical appliances, sensor light sources, and night lighting due to their specific frequency bands, low power consumption, and high reliability.
  • a multi-quantum well structure in which InGaAs is generally used as an active layer, an infrared light-emitting diode having an emission peak wavelength of 900 nm or more, and an AlGaAs having an indirect energy gap is used for the overcoat layer, wherein A1 is an active, easily oxidized atom,
  • A1 is an active, easily oxidized atom
  • the present invention provides an infrared light emitting diode having a low bandgap cap layer, which uses gallium arsenide GaAs or indium gallium arsenide I nx G ai — x As as a cap layer compared to an AlGaAs material.
  • Gallium arsenide or indium gallium arsenide has a low resistivity and does not contain an easily oxidized A1 component. When applied to a cap layer, it can improve the lateral conduction of current and has a better current spreading effect.
  • An infrared light emitting diode includes: a first type cover layer, an active layer, and a second cover layer, wherein the first cover layer is In x G ai — x
  • composition is Oy ⁇ X ⁇ lattice matching difference Aa between layers. ⁇ 3800ppm.
  • the first cover layer has a thickness of 1 to 20 micrometers.
  • the second cover layer is In y G ai — y As, wherein the In composition is 0 ⁇ 3 ⁇ 4 ⁇ y ⁇ 5 ⁇ 3 ⁇ 4, and the lattice matching difference between the layers. ⁇ 3800ppm.
  • an infrared light emitting diode includes a P-type ohmic electrode, a contact layer, a P-type cover layer, an active layer, an N-type cover layer, a buffer layer, and a buffer layer from top to bottom.
  • an infrared light emitting diode in another preferred embodiment, includes an N-type ohmic electrode, an N-type contact layer, an N-type cladding layer, a quantum well active layer, and a P-type cover from top to bottom.
  • N-type cover layer As an N-type cover layer and a P-type cover layer, or one of them.
  • the thickness of the N-type cover layer and the P-type cover layer is between 1 and 20 micrometers, and the component of the thickness range is better in antistatic resistance.
  • the active layer has a luminescence peak wavelength of 930 nm or more, which is higher than a maximum absorption wavelength of 910 nm of the indium arsenide material.
  • the active layer adopts a plurality of well structures, wherein the well layer uses (In x G ai — x ) As or (Al xl G ai — xl )
  • X2 P 2 or (8 1 xl Ga !_ xl ) Y2 In is applied with the opposite strain to the well layer, and its thickness is d2.
  • the quantum well structure is formed by stacking two materials with different strains, and the dl is controlled separately. In the case of d2, the total strain can be reconciled with each other, and finally the quantum well lattice and the substrate GaAs are matched with each other, the lattice misalignment is effectively improved, the generation of the defective defects is reduced, and the luminous efficiency of the structure is improved.
  • the present invention has at least the following beneficial effects:
  • Gallium arsenide and indium gallium arsenide materials have lower energy gap value and lower resistivity, which can reduce the series resistance of the component, lower voltage value, and enhance lateral diffusion of current, thereby improving luminous efficiency. .
  • the gallium arsenide and the indium gallium arsenide material can block the visible light emitting component, and when the component is illuminated, the red light is not seen, and the red burst phenomenon of the infrared light emitting diode is improved.
  • FIG. 1 is a schematic structural view of an infrared light emitting diode according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of another infrared light emitting diode according to an embodiment of the present invention.
  • the first cover layer and the second cover layer are mutually opposite semiconductor layers, such as the first cover layer being an N-type semiconductor layer ⁇ , and the second cover layer being a P-type semiconductor layer, if A cover layer is a P-type semiconductor layer, and the second cover layer is an N-type semiconductor layer.
  • an infrared light emitting diode chip having a low band gap cover layer includes a P-type ohmic electrode 108, a contact layer 106, a P-type clad layer 105, and a quantum well active layer 104 in order from top to bottom.
  • a multi-quantum well active layer composed of InGaAs as a well layer and AlGaAsP as a barrier layer is grown by an organometallic vapor phase epitaxy (OMVPE), and the luminescence peak wavelength is above 900 nm, and the quantum well logarithm is between 3 to 25 pairs.
  • OMVPE organometallic vapor phase epitaxy
  • the GaAs substrate 101 is made of a single Si-type GaAs substrate with a concentration of 4E17 to 3E18 atoms/cm, preferably at a concentration of 1.2E18 atoms/cm; and the buffer layer 102 is made of GaAs.
  • the composition has a concentration of 8E17 ⁇ 5E18 atoms/cm, preferably a concentration of 1.5E18 atoms/cm;
  • the N-type coating layer is indium gallium arsenide In Ga i- x As, wherein the indium component X is between O ⁇ S and preferably X 2 ⁇ 3 ⁇ 4, a concentration of 5E17 ⁇ 2E18 atoms/cm, preferably a concentration of 7E17 atomic centimeters, and a thickness of between 1-20 micrometers;
  • the active layer 104 is a doubly multi-quantum well structure active layer, wherein the well The layer is AlInGaAs material, the thickness is 3 ⁇ 80nm, the barrier layer is AlGaAsP, the thickness is 5 ⁇ 90nm, the thickness is preferably 24nm, the quantum well logarithm is between 3 pairs and 25 pairs, and the preferred logarithm is 12 pairs.
  • the P-type cap layer 105 is arbitrarily C indium gallium arsenide In x G ai — x As, wherein the indium component X is between 0 ⁇ 3 ⁇ 4 ⁇ 5 ⁇ 3 ⁇ 4, preferably X is 2%, and the concentration is 8E17 ⁇ 6E18 Atom/cm, preferably at a concentration of 1E18 atoms/cm; the P-type contact layer 106 is a heavily doped C GaAs having a concentration greater than 5E18 atoms/cm, preferably concentrated To 8E18 atoms / cm.
  • the active layer 104 adopts a multiple quantum well structure, the quantum well has a logarithm of 12 pairs, and the well layer can be used (In 0 . 15 Ga o. 75 )As.
  • the thickness is 8 nm
  • the material is subjected to compressive strain to the substrate GaAs
  • the barrier layer is made of (Al i Ga.. 9 ) As. 85 P o.i5 , with a thickness of 24 nm, the material exerts tensile strain on the substrate GaAs.
  • the total strain is adjusted to match the substrate, and the lattices are matched to each other.
  • the total strain is adjusted to match the substrate, and the lattices are mutually Matching, the lattice matching difference Aa between the layers. ⁇ 1500ppm, no mismatch defects will occur.
  • the above-mentioned infrared light emitting diode has a forward voltage of 1.27V, an emission peak wavelength of 956 nm, and an emission output power of 4.9 mW when a forward current of 20 mA is applied.
  • Indium gallium arsenide In x Ga x As is used as the overcoat layer, and the maximum wavelength of light absorption is 910 nm, which can block visible light emission, and the observation component illuminates and does not see weak red light.
  • an infrared light emitting diode chip having a low band gap cover layer includes an N-type ohmic electrode 209, an N-type contact layer 207, an N-type cover layer 206, and an active layer 205 in order from top to bottom.
  • a Si substrate is used, and a metal bonding layer is used to reflect the downward light of the active layer, thereby effectively improving light extraction and further improving luminous efficiency.
  • the N-type cap layer 206 and the P-type cap layer 204 are made of indium gallium arsenide In x Ga , _ x
  • the indium component X is between 0 ⁇ 3 ⁇ 4 and 5 ⁇ 3 ⁇ 4, preferably X is 2 ⁇ 3 ⁇ 4, and the concentration is 5E17 to 2E18 atoms/cm, and the preferred concentration is 7E17 atoms/cm.
  • the active layer 205 is a multiple quantum well layer including a well layer and a barrier layer, and the quantum well has a logarithm of 12 pairs, wherein the well layer is used (In. 15 Ga.. 85
  • GaAs growth substrate material which is subjected to compressive strain
  • barrier layer using (Al O5 Ga .. 95) 6 5 ⁇ .. 35 ⁇ , thickness 20nm, the material applied tensile strain to the growth substrate GaAs, where the total strain of the thickness ⁇ is matched with the substrate, the lattices are matched with each other, and the aluminum component of the coating layer is controlled by the same From 0% to 5%, the lattice matching difference Aa between layers is guaranteed. ⁇ 1500ppm, no mismatch defects will occur.
  • the above-mentioned infrared light-emitting diode has a forward voltage of 1.42V, a light-emitting peak wavelength of 950 nm, and an emission output power of 16.5 mW when a forward current of 50 mA is applied.
  • Indium gallium arsenide is used as the coating layer, and its light absorption has a maximum wavelength of 910 nm, which can block visible light emission. When the component is illuminated, it will not see weak red light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)

Abstract

提供一种红外光发光二极管,自上而下包括P型欧姆电极(108)、接触层(106)、P型覆盖层(105)、活性层(104)、N型覆盖层(103)、缓冲层(102)、GaAs衬底(101)、N型欧姆电极(107),其特征为采用In xGa 1-xAs作为N型覆盖层(103)及P型覆盖层(105),或是两者其一,优点在于采用In xGa 1-xAs作为覆盖层时,其材料的低电阻值可有效提升电流扩散,并降低电压以及提高发光效率。

Description

红外发光二极管 技术领域
[0001] 本发明属于光电子技术领域, 具体涉及一种改善电流扩散、 提高发光效率的红 外发光二级管。
背景技术
[0002] 红外发光二极管由于其特定的波段, 以及低功耗和高可靠性, 被广泛应用于安 全监控、 穿戴式装置、 空间通信、 遥控、 医疗器具、 传感器用光源及夜间照明 等领域。
技术问题
[0003] 一般使用 InGaAs作为活性层之多量子阱结构, 发光峰波长在 900nm以上的红外 光发光二极管, 覆盖层多使用非直接能隙的 AlGaAs, 其中 A1属于活性大、 容易 氧化的原子, 同吋材料电阻率较高, 使得电流扩散以及组件抗静电耐性较差。 问题的解决方案
技术解决方案
[0004] 针对前述问题, 本发明提出一种具有低带隙覆盖层的红外发光二极管, 其以砷 化镓 GaAs或者砷化铟镓 In xGa ixAs作为覆盖层, 相较于 AlGaAs材料, 砷化镓或 砷化铟镓具备较低的电阻率, 而且不含有容易氧化的 A1成份, 应用在覆盖层吋 , 可以提高电流的横向传导, 具有较佳的电流扩散效果。
[0005] 本发明解决上述问题的技术方案为: 一种红外发光二极管, 包括: 第一型覆盖 层、 活性层、 第二覆盖层, 所述第一覆盖层为 In xGa ix
As , 其中 In组分为 Oy^X^ 各层间的晶格匹配差异 Aa。<3800ppm。
[0006] 进一步地, 所述第一覆盖层的厚度为 1~20微米。
[0007] 进一步地, 所述第二覆盖层为 In yGa iyAs, 其中 In组分为 0<¾≤y≤5<¾, 各层间的 晶格匹配差异 。<3800ppm。
[0008] 在本发明的一个较佳实施例中, 一种红外发光二极管, 其自上而下包括 P型欧 姆电极、 接触层、 P型覆盖层、 活性层、 N型覆盖层、 缓冲层、 GaAs衬底、 N型 欧姆电极, 其特征为采用 In xGa ixAs作为 N型覆盖层及 P型覆盖层, 或是两者其一 , 优点在于采用 In xGa ixAs作为覆盖层吋, 其材料低电阻值可有效提升电流扩散
, 并降低电压以及提高发光效率。
[0009] 在本发明的另一个较佳实施例中, 一种红外发光二极管, 其自上而下包括 N型 欧姆电极、 N型接触层、 N型覆盖层、 量子阱活性层、 P型覆盖层、 P型接触层、 金属键合层、 Si衬底、 N型欧姆电极, 其特征为采用 In xGa ix
As作为 N型覆盖层及 P型覆盖层, 或是两者其一。
[0010] 进一步地, N型覆盖层以及 P型覆盖层的厚度介于 1~20微米之间, 在此厚度范 围的组件, 其抗静电耐性较佳。
[0011] 进一步地, 当采用砷化铟镓作为 P型覆盖层和 /或 N型覆盖层吋, 活性层的发光 峰波长在 930nm以上, 高于砷化铟镓材料光吸收最大波长 910nm。
[0012] 进一步地, 活性层采用多量阱结构, 其中阱层使用 (In xGa ix)As或 (Al xlGa ixl)
Y1In iY1As材料, 与衬底相比为压应变, 其厚度为 dl, 再透过势垒层 (Al xlGa ixl
)As X2P 2或(八1 xlGa !_xl) Y2In 施以与阱层相反的应变, 其厚度为 d2, 藉由互 相堆栈不同应变的两种材料形成量子阱结构, 在分别控制 dl及 d2的情况下, 可 以使得总应变量互相调和, 最终量子阱晶格与衬底 GaAs互相匹配, 有效改善晶 格错位, 减少差排缺陷产生, 进而提高结构的发光效率。
发明的有益效果
有益效果
[0013] 本发明至少具有以下有益效果:
[0014] 一、 砷化镓及砷化铟镓材料具有较低的能隙值和较低的电阻率, 可以降低 组件的串联电阻, 其电压值较低, 并加强电流横向扩散, 提高发光效率。
[0015] 二、 砷化镓及砷化铟镓材料可以阻隔可见光发出组件, 在组件点亮发光吋, 不 会看件微弱的红色光, 改善红外发光二极管的红爆现象。
[0016] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明 附图说明
[0017] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0018] 图 1为根据本发明实施的一种红外发光二极管结构示意图。
[0019] 图 2为根据本发明实施的另一种一种红外发光二极管结构示意图。
[0020] 图中标号如下:
[0021] 101: GaAs衬底
[0022] 102 : 缓冲层
[0023] 103: N型覆盖层
[0024] 104 : 量子阱活性层
[0025] 105: P型覆盖层
[0026] 106: 接触层
[0027] 107: N型欧姆电极
[0028] 108: P型欧姆电极
[0029] 201: Si衬底
[0030] 202 : 金属键合层
[0031] 203: P型接触层
[0032] 204 : P型覆盖层
[0033] 205: 量子阱活性层
[0034] 206: N型覆盖层
[0035] 207: N型接触层
[0036] 208: P型欧姆电极
[0037] 209: N型欧姆电极。
本发明的实施方式
以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明如何应 用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解并据以实 施。 需要说明的是, 只要不构成冲突, 本发明中的各个实施例以及各实施例中 的各个特征可以相互结合, 所形成的技术方案均在本发明的保护范围之内。
[0039] 在发明中, 第一覆盖层和第二覆盖层系互为反型的半导体层, 诸如第一覆盖层 为 N型半导体层吋, 则第二覆盖层为 P型半导体层, 如果第一覆盖层为 P型半导体 层吋, 则第二覆盖层为 N型半导体层。
[0040] 实施例一
[0041] 如图 1所示, 一种具有低带隙覆盖层的红外发光二极管芯片, 从上到下依次 包括 P型欧姆电极 108、 接触层 106、 P型覆盖层 105、 量子阱活性层 104、 N型覆盖 层 103、 缓冲层 102、 GaAs衬底 101、 N型欧姆电极 107。 在本实施例中, 采用有 机金属气相外延法 (OMVPE)成长, 以 InGaAs作为阱层及 AlGaAsP作为势垒层构 成之多量子阱活性层, 其发光峰波长在 900nm以上, 量子阱对数介于 3对到 25对 之间。
[0042] 具体的, 该 GaAs衬底 101采用惨杂 Si的单晶 N型 GaAs衬底, 浓度为介于 8E17 ~ 3E18原子 /厘米, 优选浓度为 1.2E18原子 /厘米; 该缓冲层 102由 GaAs构成, 浓度 介于 8E17~5E18原子 /厘米, 优选浓度为 1.5E18原子 /厘米; 该 N型覆盖层为砷化铟 镓 In Ga i— xAs, 其中铟组分 X介于 O^ S 优选 X为 2<¾, 浓度为 5E17~ 2E18原子 / 厘米, 优选浓度为 7E17原子厘米, 厚度介于 1-20微米之间; 该活性层 104为不具 有惨杂的多量子阱结构活性层, 其中阱层为 AlInGaAs材料, 其厚度为 3~80nm, 势垒层为 AlGaAsP , 其厚度为 5~90nm, 优选厚度为 24nm, 量子阱对数介于 3对到 25对之间, 优选对数为 12对; 该 P型覆盖层 105为惨杂 C的砷化铟镓 In xGa ixAs, 其中铟组分 X介于 0<¾~5<¾, 优选 X为 2%, 浓度为 8E17 ~ 6E18原子 /厘米, 优选浓 度为 1E18原子 /厘米; 该 P型接触层 106为重惨杂 C的 GaAs , 浓度为大于 5E18原子 / 厘米, 优选浓度为 8E18原子 /厘米。
[0043] 在本实施例中, 活性层 104采用多量子阱结构, 量子阱对数为 12对, 阱层可使 用 (In 0.15Ga o.75)As
s, 厚度为 8nm, 其材料对衬底 GaAs施以压应变, 势垒层使用 (Al iGa。.9)As。.85P o.i5 , 厚度为 24nm, 其材料对衬底 GaAs施以张应变。 在此厚度吋总应变调和与衬 底符合, 晶格得以互相匹配。 在此厚度吋总应变调和与衬底符合, 晶格得以互 相匹配, 各层间的晶格匹配差异 Aa。<1500ppm, 不会产生失配缺陷。
[0044] 上述红外发光二极管在通入正向电流 20mA情况下, 正向电压为 1.27V, 发光峰 波长为 956nm, 发光输出功率为 4.9mW。 采用砷化铟镓 In xGa xAs作为覆盖层, 其光吸收最大波长为 910nm, 可以阻隔可见光发光, 观察组件点亮吋不会看到微 弱的红色光。
[0045] 实施例二
[0046] 如图 2所示, 一种具有低带隙覆盖层的红外发光二极管芯片, 从上到下依次 包括 N型欧姆电极 209、 N型接触层 207、 N型覆盖层 206、 活性层 205、 P型覆盖层 204、 P型接触层 203、 金属键合层 202、 Si衬底 201和 P型欧姆电极 208。 在本实施 例, 采用 Si衬底, 并使用金属键合层反射活性层向下的光线, 有效提高光取出, 进而提升发光效率。
[0047] 具体的, N型覆盖层 206和 P型覆盖层 204采用砷化铟镓 In xGa ,_x
As , 其中铟组分 X介于 0<¾~5<¾, 优选 X为 2<¾, 浓度为 5E17 ~ 2E18原子 /厘米, 优 选浓度为 7E17原子 /厘米。 活性层 205为多量子阱层, 包括阱层和势垒层, 量子阱 对数为 12对, 其中阱层使用 (In。.15Ga。.85
)As, 厚度为 8nm, 其材料对生长衬底 GaAs施以压应变; 势垒层使用 (Al。O5Ga。.95) 65Ιη。.35Ρ, 厚度为 20nm, 其材料对生长衬底 GaAs施以张应变, 在此厚度吋总应 变调和与衬底符合, 晶格得以互相匹配, 同吋控制了覆盖层的铝组分 X介于 0%~ 5% , 从而保证各层间的晶格匹配差异 Aa。<1500ppm, 不会产生失配缺陷。
[0048] 上述红外发光二极管在通入正向电流 50mA情况下, 正向电压为 1.42V, 发光峰 波长为 950nm, 发光输出功率为 16.5mW。 采用砷化铟镓作为覆盖层, 其光吸收 最大波长 910nm, 可以阻隔可见光发光, 观察组件点亮吋不会看到微弱的红色光
[0049] 很明显地, 本发明的说明不应理解为仅仅限制在上述实施例, 而是包括利用本 发明构思的所有可能的实施方式。

Claims

权利要求书
一种红外发光二极管, 包括: 第一覆盖层、 活性层、 第二覆盖层, 其 特征在于: 所述第一覆盖层为 In xGa ixAs, 其中 In组分为 0%≤X≤5<¾ , 各层间的晶格匹配差异 Aa。<3800ppm。
根据权利要求 1所述的红外发光二极管, 其特征在于: 所述第一覆盖 层和第二覆盖层的厚度为 1~20微米。
根据权利要求 1所述的红外发光二极管, 其特征在于: 所述第一覆盖 层为 In xGa xAs的 In组分为 2。
根据权利要求 1所述的红外发光二极管, 其特征在于: 所述第二覆盖 层为 In yGa !_y
As , 其中 In组分为 0<¾^≤5<¾, 各层间的晶格匹配差异 Aa。<3800ppm 根据权利要求 4所述的红外发光二极管, 其特征在于: 所述第二覆盖 层为 In yGa yAs的 In组分为 2。
根据权利要求 1所述的红外发光二极管, 其特征在于: 所述第一覆盖 层为砷化铟镓, 所述活性层的发光峰波长为 930nm以上。
根据权利要求 1所述的红外发光二极管, 其特征在于: 所述活性层为 多量子阱结构, 其中阱层和垒层具有相反方向的应变, 其总应变量互 相调和。
根据权利要求 7所述的红外发光二极管, 其特征在于: 各层间的晶格 匹配差异 。<1500ppm。
根据权利要求 1所述的红外发光二极管, 其特征在于: 所述发光二极 管自上而下包括第一欧姆电极、 接触层、 第一覆盖层、 活性层、 第二 覆盖层、 缓冲层、 GaAs衬底和第二型欧姆电极。
根据权利要求 1所述的红外发光二极管, 其特征在于: 所述发光二极 管自上而下包括第二型欧姆电极、 接触层、 第二覆盖层、 活性层、 第 二型覆盖层、 接触层、 金属键合层、 Si衬底和第一型欧姆电极。
PCT/CN2017/087712 2016-06-12 2017-06-09 红外发光二极管 WO2017215522A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/871,358 US10249777B2 (en) 2016-06-12 2018-01-15 Infrared light emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610403930.0 2016-06-12
CN201610403930.0A CN105870227B (zh) 2016-06-12 2016-06-12 红外发光二极管

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/871,358 Continuation US10249777B2 (en) 2016-06-12 2018-01-15 Infrared light emitting diode

Publications (1)

Publication Number Publication Date
WO2017215522A1 true WO2017215522A1 (zh) 2017-12-21

Family

ID=56676193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087712 WO2017215522A1 (zh) 2016-06-12 2017-06-09 红外发光二极管

Country Status (3)

Country Link
US (1) US10249777B2 (zh)
CN (1) CN105870227B (zh)
WO (1) WO2017215522A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870227B (zh) * 2016-06-12 2017-07-14 天津三安光电有限公司 红外发光二极管
CN113345987B (zh) * 2021-04-16 2022-05-13 华灿光电(苏州)有限公司 红外发光二极管芯片及其制备方法
CN118099316A (zh) * 2021-12-02 2024-05-28 泉州三安半导体科技有限公司 一种不可见光发光二极管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805624A (en) * 1996-07-30 1998-09-08 Hewlett-Packard Company Long-wavelength infra-red vertical cavity surface-emitting laser on a gallium arsenide substrate
CN102822999A (zh) * 2010-02-08 2012-12-12 昭和电工株式会社 发光二极管及其制造方法以及发光二极管灯
CN105489719A (zh) * 2015-12-31 2016-04-13 天津三安光电有限公司 一种带应变调和多量子阱结构的红外发光二极管
CN105870227A (zh) * 2016-06-12 2016-08-17 天津三安光电有限公司 红外发光二极管

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362977A (en) * 1992-12-28 1994-11-08 At&T Bell Laboratories Single mirror light-emitting diodes with enhanced intensity
CN1227670A (zh) * 1996-08-07 1999-09-01 西门子公司 制造一种红外发射发光二极管的方法
US6657233B2 (en) * 1998-08-19 2003-12-02 Ricoh Company, Ltd. Light emitting devices with layered III-V semiconductor structures, and modules and systems for computer, network and optical communication, using such device
US7492801B2 (en) * 2003-11-11 2009-02-17 Sharp Kabushiki Kaisha Semiconductor laser element, manufacturing method thereof, optical disk apparatus and optical transmission system
CN104201268A (zh) * 2014-08-29 2014-12-10 厦门乾照光电股份有限公司 一种具有嵌入式扩展电极的红外发光二极管制作方法
CN105489732B (zh) * 2015-12-08 2017-12-22 天津三安光电有限公司 垂直发光二极管的制作方法
CN105633226A (zh) * 2015-12-31 2016-06-01 天津三安光电有限公司 一种具有双结的红外光发光二极管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805624A (en) * 1996-07-30 1998-09-08 Hewlett-Packard Company Long-wavelength infra-red vertical cavity surface-emitting laser on a gallium arsenide substrate
CN102822999A (zh) * 2010-02-08 2012-12-12 昭和电工株式会社 发光二极管及其制造方法以及发光二极管灯
CN105489719A (zh) * 2015-12-31 2016-04-13 天津三安光电有限公司 一种带应变调和多量子阱结构的红外发光二极管
CN105870227A (zh) * 2016-06-12 2016-08-17 天津三安光电有限公司 红外发光二极管

Also Published As

Publication number Publication date
CN105870227A (zh) 2016-08-17
US20180151762A1 (en) 2018-05-31
US10249777B2 (en) 2019-04-02
CN105870227B (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
US9048364B2 (en) Nitride semiconductor structure and semiconductor light emitting device including the same
CN108346973B (zh) 一种基于AlGaAs/GaInP有源区的795nm量子阱激光器
WO2017215522A1 (zh) 红外发光二极管
US8890114B2 (en) Light-emitting device
CN209183567U (zh) 具有双层布拉格反射层的深紫外led外延结构及器件
CN103296170A (zh) 一种AlGaN基深紫外LED器件及其制造方法
CN105489719A (zh) 一种带应变调和多量子阱结构的红外发光二极管
KR101201641B1 (ko) 투명 박막, 이를 포함하는 발광 소자와 이들의 제조 방법
TWI466343B (zh) 發光二極體裝置
WO2023025246A1 (zh) 一种薄膜型半导体芯片结构及应用其的光电器件
CN103208571A (zh) 一种氮化镓基led外延片及其生产方法
CN103996766B (zh) 氮化镓基发光二极管及其制备方法
CN105957936A (zh) 一种duv led外延片结构
CN103022211B (zh) 极化增强的p-i-n结InGaN太阳电池
CN211017113U (zh) 一种利用双层表面等离激元增强led发光效率的结构
CN206210825U (zh) 一种n型氮化镓基发光二极管
CN109671825B (zh) 一种极性半导体发光二极管
TW523940B (en) III-Group Nitrides Semiconductor Luminescence Diode and Method for preparing the same
CN205900578U (zh) 一种发光二极管外延片
CN110600595A (zh) 铝镓氮基紫外led外延结构及紫外led灯
CN213636023U (zh) 一种多量子阱结构及发光二极管
TW201501345A (zh) 發光晶片及其製造方法
TW201349569A (zh) 發光元件及其製作方法
CN203659930U (zh) 具有金属反射层的半导体发光器件
TWI584493B (zh) 發光二極體及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812633

Country of ref document: EP

Kind code of ref document: A1