WO2017212721A1 - Hole inner surface processing device and hole inner surface processing method - Google Patents

Hole inner surface processing device and hole inner surface processing method Download PDF

Info

Publication number
WO2017212721A1
WO2017212721A1 PCT/JP2017/009242 JP2017009242W WO2017212721A1 WO 2017212721 A1 WO2017212721 A1 WO 2017212721A1 JP 2017009242 W JP2017009242 W JP 2017009242W WO 2017212721 A1 WO2017212721 A1 WO 2017212721A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal hole
nozzle
hole
nozzles
horizontal
Prior art date
Application number
PCT/JP2017/009242
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 後和
境 茂和
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to BR112018017176A priority Critical patent/BR112018017176A2/en
Priority to JP2018522329A priority patent/JP6624286B2/en
Priority to KR1020187029053A priority patent/KR20190015191A/en
Priority to CN201780022305.4A priority patent/CN109070313B/en
Publication of WO2017212721A1 publication Critical patent/WO2017212721A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials

Definitions

  • the present disclosure relates to a hole inner surface processing apparatus and a hole inner surface processing method.
  • Patent Document 1 discloses a core sand removing device and a removing method.
  • the oblique injection nozzle is inserted into the hollow portion (hole) formed in the object to be processed (hereinafter referred to as “work”), and the oblique injection nozzle is formed.
  • the workpiece is rotated while projecting the projection material from the injection port. Thereby, the projection material is applied to the entire circumference of the inner surface of the hole of the workpiece, and the inner surface of the hole of the workpiece is cleaned.
  • Patent Document 1 In the configuration disclosed in Patent Document 1, only a part of the hole inner surface of the workpiece cannot be cleaned, and the projection material is projected to a range where the cleaning is unnecessary. For this reason, the structure disclosed in Patent Document 1 has room for improvement from the viewpoint of improving the processing efficiency.
  • a hole inner surface processing apparatus is formed in a bottomed cylindrical shape, and injects a projection material fed together with air into the cylinder from a projection hole formed in a part of the outer peripheral surface.
  • at least one reciprocating rotation driving mechanism for reciprocatingly driving the driving shaft in a predetermined angular range, and a drive shaft of the reciprocating rotation driving mechanism.
  • a motor side gear that rotates together with the drive shaft of the reciprocating rotation drive mechanism, and a nozzle side gear that is attached to the horizontal hole nozzle and rotates together with the horizontal hole nozzle.
  • the motor side gear and the nozzle side gear are directly or indirectly By engaging, the operation of the drive shaft of the reciprocating rotation drive mechanism is transmitted to the horizontal hole nozzle, and the horizontal hole nozzle is reciprocally rotated around the cylindrical axis of the horizontal hole nozzle within a predetermined angle range. Also has one gear drive unit.
  • the operation of the drive shaft of the reciprocating rotation drive mechanism is transmitted to the side hole nozzle through the gear drive unit. Since the reciprocating rotation driving mechanism is driven to reciprocate in a predetermined angular range, the horizontal hole nozzle reciprocates in a predetermined angular range around the cylindrical axis of the horizontal hole nozzle. At this time, since the motor side gear and the nozzle side gear mesh with each other directly or indirectly, the followability of the horizontal hole nozzle to the movement of the drive shaft of the reciprocating rotation drive mechanism is improved. Therefore, management of the angle range in the reciprocating rotational movement of the horizontal hole nozzle becomes easy.
  • this device rotates the horizontal hole nozzle in a reciprocating manner corresponding to the target portion of the hole inner surface of the workpiece, so that the projection material is applied to the target target portion. Can be projected.
  • the reciprocating rotational drive mechanism may be a servo motor.
  • the servo motor may be capable of adjusting an angle range in which the drive shaft is driven to reciprocate.
  • the servo motor drive shaft can adjust the angular range for reciprocating rotation. Therefore, the angle range during the reciprocating rotation of the horizontal hole nozzle that reciprocally rotates by the operation of the drive shaft of the servo motor can be similarly adjusted. For this reason, this apparatus can easily change the range in which the projection material is projected even when machining a workpiece having a different target polishing range on the inner surface of the hole of the workpiece. Thereby, this apparatus can improve processing efficiency corresponding to various workpieces.
  • the at least one side hole nozzle may include a plurality of side hole nozzles.
  • the plurality of horizontal hole nozzles may be unitized in the apparatus housing.
  • this apparatus since the plurality of horizontal hole nozzles are unitized in the apparatus casing, the plurality of horizontal hole nozzles can be moved simultaneously by moving the apparatus casing. Therefore, this apparatus moves the apparatus casing to move the plurality of horizontal hole nozzles to the hole inner surface of the work even when the target area for cleaning on the inner surface of the hole of the work is wide. By projecting, the projection material can be efficiently projected onto the workpiece. Thereby, this apparatus can further improve processing efficiency.
  • the plurality of horizontal hole nozzles may be reciprocally rotated within a predetermined angular range about the cylindrical axis of each horizontal hole nozzle by one reciprocating rotation driving mechanism and a driving force transmission mechanism.
  • the plurality of horizontal hole nozzles are reciprocally rotated by one reciprocating rotation driving mechanism and a drive transmission mechanism, so that the apparatus can have a simple structure. Thereby, this apparatus can suppress the cost of an apparatus.
  • At least one reciprocating rotational drive mechanism may include a plurality of reciprocating rotational drive mechanisms.
  • the at least one gear driving unit may have a plurality of gear driving units.
  • the plurality of horizontal hole nozzles may be provided with a reciprocating rotation driving mechanism and a gear driving unit, respectively. Each horizontal hole nozzle may reciprocate within a predetermined angle range about the cylindrical axis by operation of a corresponding reciprocating rotation drive mechanism.
  • each of the plurality of horizontal hole nozzles is provided with a reciprocating rotation driving mechanism and a gear driving unit, the reciprocating rotation of each horizontal hole nozzle can be performed by changing the control of each reciprocating rotation driving mechanism.
  • the angle range of each can be adjusted. Therefore, this apparatus can project a finer projection material that matches the workpiece. Thereby, this apparatus can process more appropriately according to the hole inner surface of a workpiece
  • the hole inner surface processing method is formed in a bottomed cylindrical shape, and the projection material fed together with air into the cylinder is externally projected from a projection hole formed in a part of the outer peripheral surface.
  • At least one horizontal hole nozzle to be ejected, a drive shaft, and at least one reciprocating rotation drive mechanism for driving the drive shaft to reciprocate within a predetermined angular range, and a drive shaft of the reciprocating rotation drive mechanism are attached.
  • a motor side gear that rotates together with the drive shaft of the reciprocating rotation drive mechanism, and a nozzle side gear that is attached to the horizontal hole nozzle and rotates together with the horizontal hole nozzle.
  • the motor side gear and the nozzle side gear are directly or indirectly ,
  • the operation of the drive shaft of the reciprocating rotation drive mechanism is transmitted to the horizontal hole nozzle, and the horizontal hole nozzle is reciprocally rotated around the cylindrical axis of the horizontal hole nozzle within a predetermined angular range.
  • a horizontal hole nozzle is inserted into the work in the first step, and the projection material is projected while the horizontal hole nozzle is reciprocally rotated around the cylindrical axis in the second step. Since the angle range in which the horizontal hole nozzle reciprocates corresponds to the target polishing range on the hole inner surface of the workpiece, it is possible to suppress the projection material from being projected to the other range and cleaned. Thereby, this method can improve processing efficiency.
  • the at least one horizontal hole nozzle may include a plurality of horizontal hole nozzles, and the plurality of horizontal hole nozzles may be unitized in the apparatus housing. And a some horizontal hole nozzle may be simultaneously inserted in the inside of the hole of a to-be-processed object at a 1st process, and a projection material may be projected from a plurality of horizontal hole nozzle at a 2nd process.
  • a plurality of horizontal hole nozzles are inserted into the workpiece in the first step, and the projection material is projected while reciprocatingly rotating the plurality of horizontal hole nozzles about the cylindrical axis in the second step. Therefore, even when the target area for cleaning on the inner surface of the workpiece hole is wide, the projection material can be efficiently projected by projecting the projection material from the plurality of horizontal hole nozzles. Thereby, this method can further improve the processing efficiency.
  • the parts corresponding to the respective horizontal hole nozzles are not in direct communication with each other or the parts are directly connected to each other.
  • a plurality of horizontal hole nozzles may be inserted into the hole inner surface of the object to be processed, and the projection material may be simultaneously projected from the plurality of horizontal hole nozzles.
  • part corresponding to each horizontal hole nozzle is directly communicating and adjoining within the hole of the to-be-processed object which can insert a several horizontal hole nozzle, it adjoins in several horizontal hole nozzles.
  • the horizontal hole nozzles may project the projection material onto the inner surface of the hole of the object to be processed at different timings.
  • the workpiece can be efficiently polished by simultaneously projecting the projection material from the plurality of inserted horizontal hole nozzles.
  • the portions corresponding to the plurality of horizontal hole nozzles on the inner surface of the workpiece are in direct communication and close to each other, the adjacent horizontal hole nozzles project at different timings in the plurality of horizontal hole nozzles.
  • the inner surface of the hole of the workpiece can be cleaned while suppressing interference between the projection materials projected from the plurality of horizontal hole nozzles. Thereby, this method can be sharpened appropriately according to the workpiece.
  • directly communicating indicates that a portion that communicates one portion corresponding to the horizontal hole nozzle on the inner surface of the workpiece and the other portion is formed in a substantially linear shape.
  • the mass ratio (A / B) between the mass A of the projection material projected per unit time from the projection hole of the horizontal hole nozzle and the mass B of the air is 0.3 or more and 0.9 or less. May be.
  • this method by setting the mass ratio of the projection material projected from the projection port of the horizontal hole nozzle to the mass B of air and the mass ratio of 0.3 to 0.9, the hole inner surface of the workpiece and the horizontal hole nozzle Even if the gap is narrow, the projection material can be projected without the projection material staying. Thereby, this method can be sharpened even when the space between the hole inner surface of the workpiece and the horizontal hole nozzle is narrow.
  • the processing efficiency can be improved.
  • FIG. 1 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating an operation example of reciprocal rotation in the horizontal hole nozzle of the hole inner surface processing apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating the workpiece.
  • FIG. 4 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the comparative example.
  • FIG. 5 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the second embodiment.
  • FIG. 6 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the third embodiment.
  • FIG. 7 is a table showing experimental results.
  • FIG. 1 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the first embodiment.
  • the hole inner surface processing apparatus 10 includes an apparatus housing 12, a horizontal hole nozzle 14, a servo motor 16 (an example of a reciprocating rotation driving mechanism), a gear driving unit 18, and an angle adjusting device 20. have.
  • the apparatus housing 12 constitutes a part of a housing (not shown) of the hole inner surface processing apparatus 10.
  • a horizontal hole nozzle 14 is attached to a hollow device case 12 so as to be rotatable about a cylindrical axis L.
  • a servo motor 16 is attached at a position adjacent to the horizontal hole nozzle 14 in the apparatus housing 12.
  • the horizontal hole nozzle 14 has a bottomed cylindrical shape and extends along the vertical direction of the apparatus.
  • a projection hole (not shown) is formed in a part of the outer peripheral surface of the lower end 24 of the horizontal hole nozzle 14.
  • the lateral hole nozzle 14 has an outer diameter of 8 mm and an inner diameter of 5 mm from the lower end portion 24 to the substantially central portion in the longitudinal direction.
  • the projection hole is formed in a substantially circular shape when the projection hole is viewed from the surface so as to communicate the inside and the outside of the horizontal hole nozzle 14.
  • the inner diameter of the projection hole is 5 mm.
  • the upper end portion 26 of the horizontal hole nozzle 14 is inserted into the apparatus housing 12.
  • a nozzle-side gear 28 constituting a part of the gear drive unit 18 is attached to a portion corresponding to the inside of the apparatus housing 12 in the upper end portion 26 of the horizontal hole nozzle 14.
  • the nozzle side gear 28 is formed in a disc shape, and meshing teeth 30 are formed on the outer peripheral surface.
  • the nozzle side gear 28 is provided such that the plate thickness direction is the vertical direction of the apparatus.
  • the nozzle-side gear 28 is provided so that the drive shaft center is located at the same position as the cylindrical shaft L extending in the vertical direction of the horizontal hole nozzle 14.
  • a holder 32 is provided on the apparatus upper side of the horizontal hole nozzle 14 in the apparatus housing 12.
  • the holder 32 has a lower end 34 attached to the upper surface 36 of the apparatus housing 12.
  • One end of a hose 40 is attached to the upper end 38 of the holder 32.
  • the other end of the hose 40 is connected to an air blast tank (not shown).
  • the projection material is fed into the holder 32 through the inside of the hose 40 together with the compressed air.
  • an opening (not shown) of the upper end portion 26 of the horizontal hole nozzle 14 is disposed inside the holder 32. Therefore, the projection material and compressed air from the hose 40 are sent into the cylinder of the horizontal hole nozzle 14.
  • the servo motor 16 is attached to the upper surface 36 of the apparatus housing 12.
  • the drive shaft 42 of the servo motor 16 is inserted into the apparatus housing 12.
  • a motor-side gear 44 constituting a part of the gear drive unit 18 is attached to the drive shaft 42 of the servo motor 16.
  • the motor-side gear 44 is formed in a disc shape and has meshing teeth 46 on the outer peripheral surface.
  • the motor side gear 44 is provided such that the plate thickness direction is the vertical direction of the apparatus.
  • the motor-side gear 44 is provided such that the center of rotation thereof is at the same position as the axis L ⁇ b> 2 extending in the vertical direction of the drive shaft 42 of the servomotor 16.
  • the gear drive unit 18 is configured by directly engaging the motor side gear 44 and the nozzle side gear 28 provided in the side hole nozzle 14.
  • the gear drive unit 18 is configured such that the motor side gear 44 and the nozzle side gear 28 are directly meshed with each other.
  • the present invention is not limited to this, and other gears are interposed between the motor side gear 44 and the nozzle side gear 28. It is good also as a structure which provides and indirectly meshes.
  • An angle adjusting device 20 is connected to the servo motor 16.
  • the angle adjusting device 20 includes a controller that inputs an angular range for reciprocating rotation, a servo amplifier that sends an operation signal to the servo motor 16 based on an instruction from the controller, and an encoder that monitors the operating state of the servo motor 16. (Both not shown). Then, the drive shaft 42 of the servo motor 16 is driven to reciprocate within the angle range input to the controller of the angle adjusting device 20.
  • FIG. 2 is a schematic view showing an operation example of reciprocating rotation in the horizontal hole nozzle 14 of the hole inner surface processing apparatus 10 according to the first embodiment.
  • the horizontal hole nozzle 14 reciprocally rotates in an angle range indicated by an arrow in the figure.
  • FIG. 3 is a diagram illustrating the workpiece.
  • Symbol (A) in FIG. 3 is a plan view of the workpiece, and symbol (B) is a cross-sectional view showing the inside of the workpiece indicated by symbol (A).
  • the workpiece 50 is a processing target and has a substantially rectangular cubic shape in plan view.
  • the work 50 has an internal path 52 (an example of a hole in the object to be processed) formed therein.
  • a plurality (four in this embodiment) of insertion ports 54 are formed in the upper surface 51 of the work 50 so as to communicate with the inside of the internal path 52.
  • each part corresponding to the insertion port 54 in the internal path 52 is configured not to communicate directly.
  • the work 50 has its outer peripheral surface including the upper surface 51 polished in advance by another shot blasting apparatus. At this time, the projection material enters the internal path 52 from the insertion port 54, so that the portion A of the internal path 52 that is relatively close to the insertion port 54 is sharpened. However, since the projecting material does not hit other portions in the internal path 52, the state is not cleaned.
  • the horizontal hole nozzle 14 of the hole inner surface processing apparatus 10 is inserted into one of the insertion ports 54 of the workpiece 50 (an example of the first step). Then, in accordance with the target polishing range of the workpiece 50, the projection material is projected while the horizontal hole nozzle 14 is reciprocally rotated about the cylindrical axis L (see the arrow in FIG. 2 and FIG. 3B). (Example of the second step).
  • the cleaning target range is a range set in advance as a target of the cleaning. In the present embodiment, the blast target range is a range in which scouring other than the portion A of the internal path 52 is not performed.
  • the projection material projected from the horizontal hole nozzle 14 in the “second step” is projected from the horizontal hole nozzle 14 together with the compressed air.
  • the mass ratio A / B of the projection material to the compressed air per unit time is 0.3 or more. Also good.
  • the mass ratio A / B is smaller than 0.3, since there are few projection materials projected per unit time, there is a possibility that the cleaning ability cannot be sufficiently exhibited.
  • 0.9 or less may be sufficient as mass ratio A / B.
  • the mass ratio A / B is larger than 0.9, the projecting material stays in the hole of the workpiece 50 and the projecting materials interfere with each other.
  • the mass ratio A / B may be set between 0.3 and 0.9.
  • the mass ratio A / B is set to 1.4 to 3.3. That is, the mass ratio A / B of the projection material is set lower in the hole inner surface processing method according to the present embodiment than in the shot blast processing method using a general shot blasting apparatus.
  • the projection material is projected to a range other than the portion A in the internal path 52, so that a wide range in the internal path 52 is sharpened.
  • FIG. 4 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the comparative example. Note that the same reference numerals are given to the same components as the comparative embodiment, and the description thereof is omitted.
  • a belt drive unit 100 is provided inside the apparatus housing 12.
  • the belt drive unit 100 includes a motor-side pulley 102 attached to the drive shaft 42 of the servo motor 16 and a nozzle-side pulley 104 attached to the lateral hole nozzle 14.
  • the motor-side pulley 102 and the nozzle side A belt 106 is hung on the pulley 104. Then, the operation of the drive shaft 42 of the servo motor 16 is transmitted to the lateral hole nozzle 14 via the belt drive unit 100. Since the servo motor 16 in the proportional relation is set to rotate in one direction, the horizontal hole nozzle 14 rotates in one direction, and the projection material is applied to the entire circumference of the inner surface of the hole of the workpiece.
  • the projection material is applied to the entire circumference of the hole inner surface of the workpiece. Therefore, when only a part of the hole inner surface of the workpiece is to be cleaned, the projection material is projected to a range where no cleaning is required. become. Therefore, it is conceivable that the servo motor 16 is driven to reciprocate in an angle range corresponding to the target cleaning range on the inner surface of the workpiece hole. However, in this case, slipping may occur between the belt 106 and the motor-side pulley 102 and the nozzle-side pulley 104. Further, depending on the tension of the belt 106, there is a possibility that the operation of the drive shaft 42 of the servo motor 16 is not sufficiently transmitted to the lateral hole nozzle 14.
  • the horizontal hole nozzle 14 does not follow the movement of the drive shaft 42 of the servo motor 16, and the angular range of the drive shaft 42 in the servo motor 16 reciprocally rotated corresponding to the work target erasing target range; There is a possibility that the angular range of reciprocating rotation of the horizontal hole nozzle 14 is different. In other words, there is a possibility that the projecting material cannot be sufficiently projected onto the target area of the workpiece to be polished, and there is a possibility that the projecting material is projected to a portion that does not need to be cleaned, so there is room for improvement from the viewpoint of improving machining efficiency. .
  • the operation of the drive shaft 42 of the servo motor 16 is transmitted to the side hole nozzle 14 via the gear drive unit 18. Since the servo motor 16 is driven to reciprocate in a predetermined angular range, the horizontal hole nozzle 14 reciprocates in a predetermined angular range around the cylindrical axis L of the horizontal hole nozzle 14. At this time, since the motor-side gear 44 and the nozzle-side gear 28 are meshed directly or indirectly, the followability of the horizontal hole nozzle 14 with respect to the movement of the drive shaft 42 of the servomotor 16 is improved. Therefore, management of the angle range in the reciprocating motion of the horizontal hole nozzle 14 is facilitated.
  • the hole inner surface processing apparatus 10 rotates the horizontal hole nozzle 14 in a reciprocating manner corresponding to the target area of the hole inner surface of the workpiece.
  • the projection material can be projected onto the sweep target range. Thereby, the hole inner surface treatment apparatus 10 can improve processing efficiency.
  • the angle range in which the drive shaft 42 of the servo motor 16 is driven to reciprocate by the angle adjusting device 20 can be adjusted. Therefore, the angle range during the reciprocating rotation of the horizontal hole nozzle 14 reciprocatingly rotated by the operation of the drive shaft 42 of the servo motor 16 can be similarly adjusted. For this reason, the hole inner surface processing apparatus 10 can easily change the range in which the projection material is projected by the angle adjusting device 20 even when processing a workpiece having a different target range of the blast on the hole inner surface of the workpiece. It becomes. Thereby, the hole inner surface treatment apparatus 10 can improve processing efficiency corresponding to various workpieces.
  • the horizontal hole nozzle 14 is inserted into the internal path 52 of the workpiece 50 in the first step, and the projecting material is projected while the horizontal hole nozzle 14 is reciprocally rotated about the cylindrical axis L in the second step. Since the angular range of the reciprocating rotation of the horizontal hole nozzle 14 corresponds to the target cleaning range (other than the portion A) on the inner surface of the internal path 52 of the workpiece 50, the projection material projects into the other range (portion A). It is possible to suppress being cleaned. Thereby, the hole inner surface treatment apparatus 10 can improve processing efficiency. Furthermore, the hole inner surface processing apparatus 10 can suppress damage to the portion A due to the projection of projection material more than necessary on the portion A of the internal path 52.
  • the internal path 52 of the workpiece 50 is obtained.
  • the projection material can be projected without stagnation of the projection material even at a location where the space between the inner surface of the nozzle and the horizontal hole nozzle 14 is narrow. Thereby, the hole inner surface processing apparatus 10 can sharpen even when the space between the inner surface of the internal path 52 of the workpiece 50 and the horizontal hole nozzle 14 is narrow.
  • FIG. 7 is a table showing experimental results.
  • the polishing was performed under the conditions of the mixing ratio (mass ratio) of 0.3 and 0.9, the workpiece was successfully polished, and the polishing was performed under the conditions of the mixing ratio of 1.3 and 1.8. When swept, the workpiece was not sufficiently polished. If it explains supplementarily, since it will become easy to retain a projection material between the horizontal hole nozzle 14 and the hole inner surface of a workpiece
  • FIG. 5 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the second embodiment.
  • symbol is attached
  • the hole inner surface processing apparatus 56 according to the second embodiment is unitized by providing a plurality of horizontal hole nozzles 14 as compared with the hole inner surface processing apparatus 10 according to the first embodiment. The difference is that each servo motor 16 and the driving force transmission mechanism 60 are operated, and the others are the same.
  • the apparatus housing 58 is provided with a plurality of side hole nozzles 14 adjacent to each other (four in this embodiment).
  • the distances between the plurality of horizontal hole nozzles 14 are set to be substantially the same as the distances between the plurality of insertion openings 54 of the workpiece 50 shown by the symbol (A) in FIG.
  • a driving force transmission mechanism 60 is provided inside the apparatus housing 58.
  • the driving force transmission mechanism 60 includes a plurality of worm gears 64 (an example of a motor side gear) provided on the drive shaft 62 of the servo motor 16 and a nozzle side gear 28 provided on the lateral hole nozzle 14. .
  • the drive shaft 62 of the servo motor 16 extends in the direction orthogonal to the vertical direction of the apparatus and in the vicinity of the plurality of nozzle-side gears 28.
  • the plurality of worm gears 64 provided on the drive shaft 62 are respectively disposed at positions corresponding to the nozzle-side gear 28 on the drive shaft 62. Each worm gear 64 is set to mesh with the corresponding nozzle side gear 28.
  • the servo motor 16 is held in the apparatus housing 58 by a bracket (not shown).
  • the drive shaft 62 of the servo motor 16 is supported by a bearing (not shown) provided inside the apparatus housing 58.
  • the driving force transmission mechanism 60 is configured such that the worm gear 64 and the nozzle-side gear 28 are directly meshed with each other.
  • the driving force transmission mechanism 60 is not limited to this and is indirectly provided by providing another gear between the worm gear 64 and the nozzle-side gear 28. It is good also as a structure which meshes.
  • each of the horizontal hole nozzles 14 is connected to the servo motor 16 by the driving force transmission mechanism 60.
  • the projection material is projected while being reciprocatingly rotated about the cylindrical axis L (see the arrow in FIG. 3B) by the power transmitted from (an example of the second step).
  • the mass ratio A / B per unit time with respect to the compressed air of the projection material projected from the horizontal nozzle 14 in the “second step” is set between 0.3 and 0.9, as in the first embodiment. Has been.
  • the hole inner surface processing device 56 moves the plurality of horizontal hole nozzles 14 simultaneously by moving the apparatus housing 58. Can do. Therefore, even when the target area for cleaning on the hole inner surface of the workpiece 50 is wide, the hole inner surface processing apparatus 56 moves the apparatus housing 58 to move the plurality of horizontal hole nozzles 14 to the hole inner surface of the workpiece 50, and thereby The projection material can be projected from the horizontal hole nozzle 14. Therefore, the hole inner surface processing device 56 can efficiently project the projection material onto the workpiece 50. Thereby, the hole inner surface treatment apparatus 56 can further improve processing efficiency.
  • the hole inner surface processing device 56 can have a simple structure. Thereby, the hole inner surface processing apparatus 56 can suppress the cost of an apparatus.
  • a plurality of horizontal hole nozzles 14 are inserted into the workpiece 50 in the first step, and the projection material is projected while reciprocating the plurality of horizontal hole nozzles 14 around the cylindrical axis L in the second step. Therefore, even when the blast target range on the inner surface of the internal path 52 of the workpiece 50 is wide, the hole inner surface processing device 56 can project the projection material efficiently by projecting the projection material from the plurality of horizontal hole nozzles 14. it can. Thereby, the hole inner surface treatment apparatus 56 can further improve processing efficiency.
  • the inner surface of the hole The processing device 56 can project the projection material without the projection material staying even at a narrow space between the inner surface of the internal path 52 of the workpiece 50 and the horizontal hole nozzle 14. Thereby, the hole inner surface processing apparatus 56 can sharpen even when the space between the inner surface of the internal path 52 of the workpiece 50 and the horizontal hole nozzle 14 is narrow.
  • horizontal hole nozzles 14 In the present embodiment, four horizontal hole nozzles 14 are provided. However, the present invention is not limited to this, and the number of horizontal hole nozzles 14 may be increased or decreased according to the workpiece.
  • FIG. 6 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the third embodiment.
  • symbol is attached
  • the hole inner surface processing apparatus 66 according to the third embodiment is provided with a plurality of side hole nozzles 14 as a unit as compared with the hole inner surface processing apparatus 10 according to the first embodiment.
  • the difference is that the servomotor 16 and the gear drive unit 18 are individually operated, and the other points are the same.
  • the apparatus housing 68 is provided with a plurality of side hole nozzles 14 and servo motors 16 adjacent to each other (four in this embodiment).
  • the distances between the plurality of horizontal hole nozzles 14 are set to be substantially the same as the distances between the plurality of insertion openings 54 of the workpiece 50 shown by the symbol (A) in FIG.
  • gear drive units 18 corresponding to the respective side hole nozzles 14 and the servo motors 16 are provided inside the apparatus housing 68.
  • the hole inner surface processing method applied to the above-described hole inner surface processing apparatus 66 will be described.
  • the apparatus housing 68 is moved, and the hole inner surface processing apparatus 66 is inserted into the plurality of insertion ports 54 of the workpiece 50 indicated by the symbols (A) and (B) in FIG.
  • a plurality of horizontal hole nozzles 14 are simultaneously inserted (an example of a first step).
  • the horizontal hole nozzles 14 are respectively connected via the gear drive units 18.
  • the projecting material is projected while reciprocatingly rotating around the cylindrical axis L (see the arrow in FIG. 3B) by the transmitted power from each servo motor 16 (an example of the second step).
  • the mass ratio A / B per unit time with respect to the compressed air of the projection material projected from the horizontal nozzle 14 in the “second step” is set between 0.3 and 0.9, as in the first embodiment. Has been.
  • the hole inner surface processing device 66 moves the plurality of horizontal hole nozzles 14 simultaneously by moving the apparatus housing 68. Can do. Therefore, even when the target area for cleaning on the hole inner surface of the workpiece 50 is wide, the hole inner surface processing apparatus 66 moves the apparatus housing 68 to move the plurality of horizontal hole nozzles 14 to the hole inner surface of the workpiece 50, thereby The projection material can be projected from the horizontal hole nozzle 14. Therefore, the hole inner surface processing device 66 can efficiently project the projection material onto the workpiece 50. Thereby, the hole inner surface treatment apparatus 66 can further improve processing efficiency.
  • the hole inner surface processing device 66 changes the control of each servo motor 16, thereby changing each horizontal hole nozzle 14.
  • the angular range of 14 reciprocating rotations can be adjusted respectively. Therefore, the hole inner surface processing device 66 can project a finer projection material that matches the workpiece 50. Thereby, the hole inner surface processing device 66 can perform processing more appropriately according to the inner surface of the internal path 52 of the workpiece 50.
  • the hole inner surface processing device 66 has a mass ratio (A / B) satisfying a relationship of 0.3 or more and 0.9 or less between the mass A of the projection material projected from the projection port of the horizontal hole nozzle 14 and the mass B of the air. And thereby, the hole inner surface processing apparatus 66 can project the projection material without the projection material remaining even in a narrow space between the inner surface of the internal path 52 of the workpiece 50 and the horizontal hole nozzle 14. Therefore, the hole inner surface processing device 66 can sharpen even when the space between the inner surface of the internal path 52 of the workpiece 50 and the horizontal hole nozzle 14 is narrow.
  • a plurality of horizontal hole nozzles 14 are simultaneously inserted into a plurality of insertion openings 54 provided in the work 50 shown in FIG. 3 to project a projection material. That is, as indicated by the symbols (A) and (B) in FIG. 3, the portions (insertion ports 54) corresponding to the plurality of horizontal hole nozzles 14 in the internal path 52 of the workpiece 50 are not in direct communication with each other. Or, if they are in direct communication but are separated (for example, 50 mm or more), the internal path 52 of the workpiece 50 is efficiently polished by simultaneously projecting the projection material from the plurality of lateral hole nozzles 14. Can do.
  • the parts (insertion ports 54) corresponding to the plurality of horizontal hole nozzles 14 in the internal path 52 of the workpiece 50 are in direct communication and close to each other (as an example, 50 mm or less), for example, a plurality of horizontal holes A mechanism or the like for individually operating the nozzles 14 in the vertical direction of the apparatus is provided, and the adjacent horizontal hole nozzles 14 are inserted into the insertion ports 54 at different timings to project the projection material.
  • the plurality of horizontal hole nozzles 14 are simultaneously inserted in a state where the insertion ports 54 are blown out one by one, and the projection material is projected.
  • a plurality of horizontal hole nozzles 14 may be simultaneously inserted into 54 and the adjacent horizontal hole nozzles 14 may be projected at different timings. Furthermore, a plurality of horizontal hole nozzles 14 may be simultaneously inserted into the insertion port 54 and the projection material may be projected at different timings. As a result, the inside of the workpiece 50 can be sharpened while suppressing interference between the projection materials projected from the plurality of horizontal hole nozzles 14.
  • the servo motor 16 is provided as the reciprocating rotational drive mechanism.
  • the present invention is not limited to this, and the motor is provided with a link mechanism to reciprocate the horizontal hole nozzle 14 within a predetermined angle range. It is good also as a structure to rotate. Further, the angular range of the reciprocating rotation of the horizontal hole nozzle 14 may be adjustable by making it possible to adjust the position of the joint or the like of the link mechanism.
  • SYMBOLS 10 Hole inner surface processing apparatus, 14 ... Side hole nozzle, 16 ... Servo motor, 18 ... Gear drive part, 28 ... Nozzle side gear, 42 ... Drive shaft, 44 ... Motor side gear, 50 ... Workpiece (object to be processed), 52 ... Internal path (hole to be processed), 64 ... Worm gear (motor side gear), L ... Cylindrical shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Spray Control Apparatus (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

A hole inner surface processing device (10) having: a lateral hole nozzle (14) formed to a bottomed cylindrical shape, the lateral hole nozzle (14) discharging a shot material fed into the cylinder with air to the exterior through a projection hole formed on a part of the outer circumferential surface; a servo motor (16) provided with a drive shaft (42), the servo motor (16) driving the drive shaft (42) so as to reciprocatingly rotate in a predetermined angular range; and a gear drive unit (18) having a motor-side gear (44) that is mounted on the drive shaft (42) of the servo motor (16) and that rotates with the drive shaft (42) of the servo motor (16), and a nozzle-side gear (28) that is mounted on the lateral hole nozzle (14) and that rotates with the lateral hole nozzle (14). The motor-side gear (44) and the nozzle-side gear (28) directly or indirectly engage with each other, whereby the operation of the drive shaft (42) of the servo motor (16) is transmitted to the lateral hole nozzle (14), and the lateral hole nozzle (14) is caused to reciprocatingly rotate in a predetermined angular range about the cylinder axis L of the lateral hole nozzle (14).

Description

穴内面処理装置及び穴内面処理方法Hole inner surface processing apparatus and hole inner surface processing method
 本開示は、穴内面処理装置及び穴内面処理方法に関する。 The present disclosure relates to a hole inner surface processing apparatus and a hole inner surface processing method.
 特許文献1には、中子砂除去装置及び除去方法が開示されている。この中子砂除去装置及び除去方法では、被処理対象物(以下、「ワーク」と称する。)に形成された中空部(穴)に斜噴射ノズルが挿入され、この斜噴射ノズルに形成された噴射口から投射材を投射させながらワークを回転させる。これにより、ワークの穴内面の全周に投射材が当てられて、ワークの穴内面の研掃が行われる。 Patent Document 1 discloses a core sand removing device and a removing method. In the core sand removing device and the removing method, the oblique injection nozzle is inserted into the hollow portion (hole) formed in the object to be processed (hereinafter referred to as “work”), and the oblique injection nozzle is formed. The workpiece is rotated while projecting the projection material from the injection port. Thereby, the projection material is applied to the entire circumference of the inner surface of the hole of the workpiece, and the inner surface of the hole of the workpiece is cleaned.
特開平9-314469号公報JP-A-9-314469
 しかしながら、特許文献1に開示された構成では、ワークの穴内面のうち一部のみを研掃することができず、研掃が不要な範囲まで投射材を投射することになる。このため、特許文献1に開示された構成は、加工効率の向上という観点から改良の余地がある。 However, in the configuration disclosed in Patent Document 1, only a part of the hole inner surface of the workpiece cannot be cleaned, and the projection material is projected to a range where the cleaning is unnecessary. For this reason, the structure disclosed in Patent Document 1 has room for improvement from the viewpoint of improving the processing efficiency.
 本技術分野では、加工効率を向上させることができる穴内面処理装置及び穴内面処理方法を得ることが望まれている。 In this technical field, it is desired to obtain a hole inner surface processing apparatus and a hole inner surface processing method capable of improving the processing efficiency.
 本開示の一側面に係る穴内面処理装置は、有底円筒状に形成されていると共に、円筒内部に空気と共に送り込まれた投射材を外周面の一部に形成された投射孔から外部へ噴射する少なくとも1つの横穴ノズルと、駆動軸が設けられていると共に、当該駆動軸を所定の角度範囲にて往復回転駆動させる少なくとも1つの往復回転駆動機構と、往復回転駆動機構の駆動軸に取り付けられかつ往復回転駆動機構の駆動軸と共に回転するモータ側ギヤと、横穴ノズルに取り付けられかつ横穴ノズルと共に回転するノズル側ギヤとを有し、モータ側ギヤとノズル側ギヤとは直接的又は間接的に噛合うことで、往復回転駆動機構の駆動軸の作動が横穴ノズルに伝達されて横穴ノズルを横穴ノズルの円筒軸中心に所定の角度範囲にて往復回転させる少なくとも1つのギヤ駆動部と、を有する。 A hole inner surface processing apparatus according to one aspect of the present disclosure is formed in a bottomed cylindrical shape, and injects a projection material fed together with air into the cylinder from a projection hole formed in a part of the outer peripheral surface. And at least one reciprocating rotation driving mechanism for reciprocatingly driving the driving shaft in a predetermined angular range, and a drive shaft of the reciprocating rotation driving mechanism. And a motor side gear that rotates together with the drive shaft of the reciprocating rotation drive mechanism, and a nozzle side gear that is attached to the horizontal hole nozzle and rotates together with the horizontal hole nozzle. The motor side gear and the nozzle side gear are directly or indirectly By engaging, the operation of the drive shaft of the reciprocating rotation drive mechanism is transmitted to the horizontal hole nozzle, and the horizontal hole nozzle is reciprocally rotated around the cylindrical axis of the horizontal hole nozzle within a predetermined angle range. Also has one gear drive unit.
 この装置においては、往復回転駆動機構の駆動軸の作動がギヤ駆動部を介して横穴ノズルへと伝達される。往復回転駆動機構は、所定の角度範囲にて往復回転駆動することから、横穴ノズルは横穴ノズルの円筒軸を中心に所定の角度範囲にて往復回転運動する。この際、モータ側ギヤとノズル側ギヤとが直接的又は間接的に噛合っていることから、往復回転駆動機構の駆動軸の動きに対する横穴ノズルの追従性が向上する。したがって、横穴ノズルの往復回転運動における角度範囲の管理が容易となる。ワークの穴内面のうち一部のみを研掃したい場合には、この装置は、横穴ノズルをワークの穴内面のうち研掃目標部分に対応した往復回転をさせて、研掃目標部分に投射材を投射させることができる。 In this device, the operation of the drive shaft of the reciprocating rotation drive mechanism is transmitted to the side hole nozzle through the gear drive unit. Since the reciprocating rotation driving mechanism is driven to reciprocate in a predetermined angular range, the horizontal hole nozzle reciprocates in a predetermined angular range around the cylindrical axis of the horizontal hole nozzle. At this time, since the motor side gear and the nozzle side gear mesh with each other directly or indirectly, the followability of the horizontal hole nozzle to the movement of the drive shaft of the reciprocating rotation drive mechanism is improved. Therefore, management of the angle range in the reciprocating rotational movement of the horizontal hole nozzle becomes easy. When only a part of the hole inner surface of the workpiece is to be cleaned, this device rotates the horizontal hole nozzle in a reciprocating manner corresponding to the target portion of the hole inner surface of the workpiece, so that the projection material is applied to the target target portion. Can be projected.
 一実施形態においては、往復回転駆動機構は、サーボモータであってもよい。当該サーボモータは、駆動軸を往復回転駆動させる角度範囲を調整可能としてもよい。 In one embodiment, the reciprocating rotational drive mechanism may be a servo motor. The servo motor may be capable of adjusting an angle range in which the drive shaft is driven to reciprocate.
 この装置においては、サーボモータの駆動軸は、往復回転駆動させる際の角度範囲を調整することができる。したがって、このサーボモータの駆動軸の作動により往復回転する横穴ノズルの往復回転時の角度範囲も、同様に調整することができる。このため、この装置は、ワークの穴内面における研掃目標範囲が異なるワークを加工する場合であっても、投射材を投射する範囲を容易に変更することが可能となる。これにより、この装置は、様々なワークに対応して加工効率を向上させることができる。 In this device, the servo motor drive shaft can adjust the angular range for reciprocating rotation. Therefore, the angle range during the reciprocating rotation of the horizontal hole nozzle that reciprocally rotates by the operation of the drive shaft of the servo motor can be similarly adjusted. For this reason, this apparatus can easily change the range in which the projection material is projected even when machining a workpiece having a different target polishing range on the inner surface of the hole of the workpiece. Thereby, this apparatus can improve processing efficiency corresponding to various workpieces.
 一実施形態においては、少なくとも1つの横穴ノズルは複数の横穴ノズルを有してもよい。そして、当該複数の横穴ノズルは装置筐体にユニット化されていてもよい。 In one embodiment, the at least one side hole nozzle may include a plurality of side hole nozzles. The plurality of horizontal hole nozzles may be unitized in the apparatus housing.
 この装置によれば、複数の横穴ノズルは装置筐体にユニット化されていることから、装置筐体を移動させることで複数の横穴ノズルを同時に移動させることができる。したがって、この装置は、ワークの穴内面における研掃目標範囲が広い場合でも、装置筐体を移動させて複数の横穴ノズルをワークの穴内面へと移動させて、複数の横穴ノズルから投射材を投射させることで、効率良く投射材をワークへ投射させることができる。これにより、この装置は、加工効率を更に向上させることができる。 According to this apparatus, since the plurality of horizontal hole nozzles are unitized in the apparatus casing, the plurality of horizontal hole nozzles can be moved simultaneously by moving the apparatus casing. Therefore, this apparatus moves the apparatus casing to move the plurality of horizontal hole nozzles to the hole inner surface of the work even when the target area for cleaning on the inner surface of the hole of the work is wide. By projecting, the projection material can be efficiently projected onto the workpiece. Thereby, this apparatus can further improve processing efficiency.
 一実施形態においては、複数の横穴ノズルは、一つの往復回転駆動機構と駆動力伝達機構とによって各横穴ノズルの円筒軸中心に所定の角度範囲にて往復回転してもよい。 In one embodiment, the plurality of horizontal hole nozzles may be reciprocally rotated within a predetermined angular range about the cylindrical axis of each horizontal hole nozzle by one reciprocating rotation driving mechanism and a driving force transmission mechanism.
 この装置によれば、複数の横穴ノズルは、一つの往復回転駆動機構と駆動伝達機構とによって往復回転することから、装置を簡素な構造にすることができる。これにより、この装置は、装置のコストを抑制することができる。 According to this apparatus, the plurality of horizontal hole nozzles are reciprocally rotated by one reciprocating rotation driving mechanism and a drive transmission mechanism, so that the apparatus can have a simple structure. Thereby, this apparatus can suppress the cost of an apparatus.
 一実施形態においては、少なくとも1つの往復回転駆動機構は、複数の往復回転駆動機構を有してもよい。少なくとも1つのギヤ駆動部は、複数のギヤ駆動部を有してもよい。そして、複数の横穴ノズルには、往復回転駆動機構とギヤ駆動部とがそれぞれ設けられてもよい。各横穴ノズルは、対応する往復回転駆動機構の作動によって円筒軸中心に所定の角度範囲にて往復回転してもよい。 In one embodiment, at least one reciprocating rotational drive mechanism may include a plurality of reciprocating rotational drive mechanisms. The at least one gear driving unit may have a plurality of gear driving units. The plurality of horizontal hole nozzles may be provided with a reciprocating rotation driving mechanism and a gear driving unit, respectively. Each horizontal hole nozzle may reciprocate within a predetermined angle range about the cylindrical axis by operation of a corresponding reciprocating rotation drive mechanism.
 この装置によれば、複数の横穴ノズルにはそれぞれ往復回転駆動機構とギヤ駆動部とが設けられていることから、それぞれの往復回転駆動機構の制御を変化させることで、各横穴ノズルの往復回転の角度範囲をそれぞれ調整することができる。したがって、この装置は、ワークに合わせたより細かな投射材の投射を行うことができる。これにより、この装置は、ワークの穴内面に合わせてより適切に加工を行うことができる。 According to this apparatus, since each of the plurality of horizontal hole nozzles is provided with a reciprocating rotation driving mechanism and a gear driving unit, the reciprocating rotation of each horizontal hole nozzle can be performed by changing the control of each reciprocating rotation driving mechanism. The angle range of each can be adjusted. Therefore, this apparatus can project a finer projection material that matches the workpiece. Thereby, this apparatus can process more appropriately according to the hole inner surface of a workpiece | work.
 本開示の他の側面に係る穴内面処理方法は、有底円筒状に形成されていると共に、円筒内部に空気と共に送り込まれた投射材を外周面の一部に形成された投射孔から外部へ噴射する少なくとも1つの横穴ノズルと、駆動軸が設けられていると共に、当該駆動軸を所定の角度範囲にて往復回転駆動させる少なくとも1つの往復回転駆動機構と、往復回転駆動機構の駆動軸に取り付けられかつ往復回転駆動機構の駆動軸と共に回転するモータ側ギヤと、横穴ノズルに取り付けられかつ横穴ノズルと共に回転するノズル側ギヤとを有し、モータ側ギヤとノズル側ギヤとは直接的又は間接的に噛合うことで、往復回転駆動機構の駆動軸の作動が横穴ノズルに伝達されて横穴ノズルを横穴ノズルの円筒軸中心に所定の角度範囲にて往復回転させる少なくとも1つのギヤ駆動部と、を有する穴内面処理装置に適用され、被処理対象物の穴の内部に横穴ノズルを挿入する第1工程と、横穴ノズルを被処理対象物の穴内面における研掃目標範囲に対応して横穴ノズルの円筒軸中心に往復回転させながら投射材を投射する第2工程と、を有している。 The hole inner surface processing method according to another aspect of the present disclosure is formed in a bottomed cylindrical shape, and the projection material fed together with air into the cylinder is externally projected from a projection hole formed in a part of the outer peripheral surface. At least one horizontal hole nozzle to be ejected, a drive shaft, and at least one reciprocating rotation drive mechanism for driving the drive shaft to reciprocate within a predetermined angular range, and a drive shaft of the reciprocating rotation drive mechanism are attached. And a motor side gear that rotates together with the drive shaft of the reciprocating rotation drive mechanism, and a nozzle side gear that is attached to the horizontal hole nozzle and rotates together with the horizontal hole nozzle. The motor side gear and the nozzle side gear are directly or indirectly , The operation of the drive shaft of the reciprocating rotation drive mechanism is transmitted to the horizontal hole nozzle, and the horizontal hole nozzle is reciprocally rotated around the cylindrical axis of the horizontal hole nozzle within a predetermined angular range. A first step of inserting a horizontal hole nozzle into the hole of the object to be processed, and a cleaning of the horizontal hole nozzle on the inner surface of the hole of the object to be processed. And a second step of projecting the projection material while reciprocatingly rotating around the cylindrical axis center of the horizontal hole nozzle corresponding to the target range.
 この方法においては、第1工程でワークの内部に横穴ノズルを挿入して第2工程で横穴ノズルを円筒軸中心に往復回転させながら投射材を投射する。この横穴ノズルの往復回転する角度範囲は、ワークの穴内面における研掃目標範囲に対応しているため、それ以外の範囲に投射材が投射されて研掃されるのを抑制することができる。これにより、この方法は、加工効率を向上させることができる。 In this method, a horizontal hole nozzle is inserted into the work in the first step, and the projection material is projected while the horizontal hole nozzle is reciprocally rotated around the cylindrical axis in the second step. Since the angle range in which the horizontal hole nozzle reciprocates corresponds to the target polishing range on the hole inner surface of the workpiece, it is possible to suppress the projection material from being projected to the other range and cleaned. Thereby, this method can improve processing efficiency.
 一実施形態においては、少なくとも1つの横穴ノズルは複数の横穴ノズルを有し、かつ、当該複数の横穴ノズルが装置筐体にユニット化されていてもよい。そして、第1工程で複数の横穴ノズルを被処理対象物の穴の内部に同時に挿入して第2工程で複数の横穴ノズルから投射材を投射してもよい。 In one embodiment, the at least one horizontal hole nozzle may include a plurality of horizontal hole nozzles, and the plurality of horizontal hole nozzles may be unitized in the apparatus housing. And a some horizontal hole nozzle may be simultaneously inserted in the inside of the hole of a to-be-processed object at a 1st process, and a projection material may be projected from a plurality of horizontal hole nozzle at a 2nd process.
 この方法においては、第1工程でワークの内部に複数の横穴ノズルを挿入して第2工程で複数の横穴ノズルを円筒軸中心に往復回転させながら投射材を投射する。したがって、ワークの穴内面における研掃目標範囲が広い場合でも、複数の横穴ノズルから投射材を投射させることで効率良く投射材を投射することができる。これにより、この方法は、加工効率を一層向上させることができる。 In this method, a plurality of horizontal hole nozzles are inserted into the workpiece in the first step, and the projection material is projected while reciprocatingly rotating the plurality of horizontal hole nozzles about the cylindrical axis in the second step. Therefore, even when the target area for cleaning on the inner surface of the workpiece hole is wide, the projection material can be efficiently projected by projecting the projection material from the plurality of horizontal hole nozzles. Thereby, this method can further improve the processing efficiency.
 一実施形態においては、複数の横穴ノズルが挿入可能な被処理対象物の穴の内部において、それぞれの横穴ノズルに対応した部位同士が直接的に連通していないか又は当該部位同士が直接的に連通しかつ離間している場合は、被処理対象物の穴内面に複数の横穴ノズルを挿入して複数の横穴ノズルから同時に投射材を投射してもよい。そして、複数の横穴ノズルが挿入可能な被処理対象物の穴の内部において、それぞれの横穴ノズルに対応した部位同士が直接的に連通しかつ近接している場合は、複数の横穴ノズルにおいて隣り合う横穴ノズルはそれぞれ異なるタイミングで被処理対象物の穴内面に投射材を投射してもよい。 In one embodiment, in the hole of the object to be processed into which a plurality of horizontal hole nozzles can be inserted, the parts corresponding to the respective horizontal hole nozzles are not in direct communication with each other or the parts are directly connected to each other. When communicating and spaced apart, a plurality of horizontal hole nozzles may be inserted into the hole inner surface of the object to be processed, and the projection material may be simultaneously projected from the plurality of horizontal hole nozzles. And when the site | part corresponding to each horizontal hole nozzle is directly communicating and adjoining within the hole of the to-be-processed object which can insert a several horizontal hole nozzle, it adjoins in several horizontal hole nozzles. The horizontal hole nozzles may project the projection material onto the inner surface of the hole of the object to be processed at different timings.
 この方法によれば、ワークの穴内面において複数の横穴ノズルに対応した部位同士が直接的に連通していないか又は直接的に連通していても離間している場合は、ワークの穴内面に挿入された複数の横穴ノズルから同時に投射材を投射することで効率良くワークを研掃することができる。また、この方法においては、ワークの穴内面における複数の横穴ノズルに対応した部位同士が直接的に連通しかつ近接している場合は、複数の横穴ノズルにおいて隣り合う横穴ノズルはそれぞれ異なるタイミングで投射材をワークの穴内面に投射することから、複数の横穴ノズルから投射された投射材同士の干渉を抑制してワークの穴内面を研掃することができる。これにより、この方法は、ワークに合わせて適切に研掃することができる。 According to this method, when the parts corresponding to the plurality of horizontal hole nozzles are not in direct communication with each other on the inner surface of the workpiece hole or are separated from each other even if they are in direct communication with each other, The workpiece can be efficiently polished by simultaneously projecting the projection material from the plurality of inserted horizontal hole nozzles. Further, in this method, when the portions corresponding to the plurality of horizontal hole nozzles on the inner surface of the workpiece are in direct communication and close to each other, the adjacent horizontal hole nozzles project at different timings in the plurality of horizontal hole nozzles. Since the material is projected onto the inner surface of the hole of the workpiece, the inner surface of the hole of the workpiece can be cleaned while suppressing interference between the projection materials projected from the plurality of horizontal hole nozzles. Thereby, this method can be sharpened appropriately according to the workpiece.
 ここで、「直接的に連通」とは、ワークの穴内面における横穴ノズルに対応した一方の部位と他方の部位とを連通する部位が、略直線状に形成されていることを示す。 Here, “directly communicating” indicates that a portion that communicates one portion corresponding to the horizontal hole nozzle on the inner surface of the workpiece and the other portion is formed in a substantially linear shape.
 一実施形態においては、横穴ノズルの投射孔から単位時間当たりに投射される投射材の質量Aと空気の質量Bとの質量比(A/B)が、0.3以上0.9以下であってもよい。 In one embodiment, the mass ratio (A / B) between the mass A of the projection material projected per unit time from the projection hole of the horizontal hole nozzle and the mass B of the air is 0.3 or more and 0.9 or less. May be.
 この方法によれば、横穴ノズルの投射口から投射される投射材の質量Aと空気の質量Bと質量比を0.3以上0.9以下とすることで、ワークの穴内面と横穴ノズルとの間が狭い箇所でも投射材が滞留することなく投射材を投射することができる。これにより、この方法は、ワークの穴内面と横穴ノズルとの間が狭い場合でも研掃することができる。 According to this method, by setting the mass ratio of the projection material projected from the projection port of the horizontal hole nozzle to the mass B of air and the mass ratio of 0.3 to 0.9, the hole inner surface of the workpiece and the horizontal hole nozzle Even if the gap is narrow, the projection material can be projected without the projection material staying. Thereby, this method can be sharpened even when the space between the hole inner surface of the workpiece and the horizontal hole nozzle is narrow.
 本開示に係る穴内面処理装置及び方法によれば、加工効率を向上させることができる。 According to the hole inner surface treatment apparatus and method according to the present disclosure, the processing efficiency can be improved.
図1は、第1実施形態に係る穴内面処理装置の要部を示す部分断面図である。FIG. 1 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the first embodiment. 図2は、第1実施形態に係る穴内面処理装置の横穴ノズルにおける往復回転の作動例を示す概略図である。FIG. 2 is a schematic diagram illustrating an operation example of reciprocal rotation in the horizontal hole nozzle of the hole inner surface processing apparatus according to the first embodiment. 図3は、ワークを説明する図である。FIG. 3 is a diagram illustrating the workpiece. 図4は、対比例に係る穴内面処理装置の要部を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the comparative example. 図5は、第2実施形態に係る穴内面処理装置の要部を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the second embodiment. 図6は、第3実施形態に係る穴内面処理装置の要部を示す部分断面図である。FIG. 6 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the third embodiment. 図7は、実験結果を示す表である。FIG. 7 is a table showing experimental results.
(第1実施形態)
 以下、図を用いて、本開示の第1実施形態に係る穴内面処理装置及び穴内面処理方法について説明する。図1は、第1実施形態に係る穴内面処理装置の要部を示す部分断面図である。
(First embodiment)
Hereinafter, the hole inner surface processing apparatus and the hole inner surface processing method according to the first embodiment of the present disclosure will be described with reference to the drawings. FIG. 1 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the first embodiment.
 図1に示されるように、穴内面処理装置10は、装置筐体12と、横穴ノズル14と、サーボモータ16(往復回転駆動機構の一例)と、ギヤ駆動部18と、角度調整装置20とを有している。装置筐体12は、穴内面処理装置10の図示しない躯体の一部を構成している。中空状に形成された装置筐体12には、横穴ノズル14が円筒軸Lを中心に回動自在に取り付けられている。また、装置筐体12における横穴ノズル14に隣り合った位置には、サーボモータ16が取り付けられている。 As shown in FIG. 1, the hole inner surface processing apparatus 10 includes an apparatus housing 12, a horizontal hole nozzle 14, a servo motor 16 (an example of a reciprocating rotation driving mechanism), a gear driving unit 18, and an angle adjusting device 20. have. The apparatus housing 12 constitutes a part of a housing (not shown) of the hole inner surface processing apparatus 10. A horizontal hole nozzle 14 is attached to a hollow device case 12 so as to be rotatable about a cylindrical axis L. A servo motor 16 is attached at a position adjacent to the horizontal hole nozzle 14 in the apparatus housing 12.
 横穴ノズル14は、有底円筒状を呈し、装置上下方向に沿って延設される。横穴ノズル14の下端部24の外周面の一部には、図示しない投射孔が形成されている。一例として、横穴ノズル14は、下端部24から長手方向略中央部までの部位における外径が8mmであり、かつ、内径は5mmである。また、投射孔は、横穴ノズル14の内部と外部とを連通するようにこの投射孔の面直視で略円形に形成されている。一例として、投射孔の内径は5mmである。横穴ノズル14の円筒内部に空気と共に送り込まれた投射材は、投射孔から横穴ノズル14の外部へ噴射される。 The horizontal hole nozzle 14 has a bottomed cylindrical shape and extends along the vertical direction of the apparatus. A projection hole (not shown) is formed in a part of the outer peripheral surface of the lower end 24 of the horizontal hole nozzle 14. As an example, the lateral hole nozzle 14 has an outer diameter of 8 mm and an inner diameter of 5 mm from the lower end portion 24 to the substantially central portion in the longitudinal direction. Further, the projection hole is formed in a substantially circular shape when the projection hole is viewed from the surface so as to communicate the inside and the outside of the horizontal hole nozzle 14. As an example, the inner diameter of the projection hole is 5 mm. The projection material fed into the cylinder of the horizontal hole nozzle 14 together with air is jetted from the projection hole to the outside of the horizontal hole nozzle 14.
 横穴ノズル14の上端部26は、装置筐体12の内部に挿通されている。横穴ノズル14の上端部26における装置筐体12の内部に対応した部位には、ギヤ駆動部18の一部を構成するノズル側ギヤ28が取り付けられている。このノズル側ギヤ28は、円盤状に形成されかつ外周面に噛合い歯30が形成されている。ノズル側ギヤ28は、板厚方向が装置上下方向となるように設けられている。ノズル側ギヤ28は、駆動軸中心が横穴ノズル14の装置上下方向に延伸された円筒軸Lと同一の位置となるように設けられている。 The upper end portion 26 of the horizontal hole nozzle 14 is inserted into the apparatus housing 12. A nozzle-side gear 28 constituting a part of the gear drive unit 18 is attached to a portion corresponding to the inside of the apparatus housing 12 in the upper end portion 26 of the horizontal hole nozzle 14. The nozzle side gear 28 is formed in a disc shape, and meshing teeth 30 are formed on the outer peripheral surface. The nozzle side gear 28 is provided such that the plate thickness direction is the vertical direction of the apparatus. The nozzle-side gear 28 is provided so that the drive shaft center is located at the same position as the cylindrical shaft L extending in the vertical direction of the horizontal hole nozzle 14.
 装置筐体12における横穴ノズル14の装置上方側には、ホルダ32が設けられている。このホルダ32は、下端部34が装置筐体12の上面36に取り付けられている。ホルダ32の上端部38には、ホース40の一端部が取り付けられている。このホース40の他端部は、図示しないエアブラストタンクに接続されている。投射材は、圧縮空気と共にホース40の内部を通ってホルダ32内に送り込まれる。また、ホルダ32の内部には、横穴ノズル14の上端部26の図示しない開口が配置されている。したがって、ホース40からの投射材及び圧縮空気は、横穴ノズル14の円筒内へと送られる。 A holder 32 is provided on the apparatus upper side of the horizontal hole nozzle 14 in the apparatus housing 12. The holder 32 has a lower end 34 attached to the upper surface 36 of the apparatus housing 12. One end of a hose 40 is attached to the upper end 38 of the holder 32. The other end of the hose 40 is connected to an air blast tank (not shown). The projection material is fed into the holder 32 through the inside of the hose 40 together with the compressed air. In addition, an opening (not shown) of the upper end portion 26 of the horizontal hole nozzle 14 is disposed inside the holder 32. Therefore, the projection material and compressed air from the hose 40 are sent into the cylinder of the horizontal hole nozzle 14.
 サーボモータ16は、装置筐体12の上面36に取り付けられている。サーボモータ16の駆動軸42は、装置筐体12の内部へと挿入されている。このサーボモータ16の駆動軸42には、ギヤ駆動部18の一部を構成するモータ側ギヤ44が取り付けられている。このモータ側ギヤ44は、円盤状に形成されかつ外周面に噛合い歯46が形成されている。モータ側ギヤ44は、板厚方向が装置上下方向となるように設けられている。モータ側ギヤ44は、その回転中心がサーボモータ16の駆動軸42の装置上下方向に延伸された軸L2と同一の位置となるように設けられている。そして、ギヤ駆動部18は、このモータ側ギヤ44と横穴ノズル14に設けられたノズル側ギヤ28とが直接噛合って構成されている。なお、ギヤ駆動部18は、モータ側ギヤ44とノズル側ギヤ28とが直接噛合って構成されているが、これに限らず、モータ側ギヤ44とノズル側ギヤ28との間に他のギヤを設けて間接的に噛合う構成としてもよい。 The servo motor 16 is attached to the upper surface 36 of the apparatus housing 12. The drive shaft 42 of the servo motor 16 is inserted into the apparatus housing 12. A motor-side gear 44 constituting a part of the gear drive unit 18 is attached to the drive shaft 42 of the servo motor 16. The motor-side gear 44 is formed in a disc shape and has meshing teeth 46 on the outer peripheral surface. The motor side gear 44 is provided such that the plate thickness direction is the vertical direction of the apparatus. The motor-side gear 44 is provided such that the center of rotation thereof is at the same position as the axis L <b> 2 extending in the vertical direction of the drive shaft 42 of the servomotor 16. The gear drive unit 18 is configured by directly engaging the motor side gear 44 and the nozzle side gear 28 provided in the side hole nozzle 14. The gear drive unit 18 is configured such that the motor side gear 44 and the nozzle side gear 28 are directly meshed with each other. However, the present invention is not limited to this, and other gears are interposed between the motor side gear 44 and the nozzle side gear 28. It is good also as a structure which provides and indirectly meshes.
 サーボモータ16には、角度調整装置20が接続されている。この角度調整装置20は、一例として、往復回転させる角度範囲を入力するコントローラと、コントローラからの指示に基づいてサーボモータ16へ作動信号を送るサーボアンプと、サーボモータ16の作動状態を監視するエンコーダとを有している(いずれも不図示)。そして、角度調整装置20のコントローラに入力された角度範囲にてサーボモータ16の駆動軸42が往復回転駆動される。 An angle adjusting device 20 is connected to the servo motor 16. As an example, the angle adjusting device 20 includes a controller that inputs an angular range for reciprocating rotation, a servo amplifier that sends an operation signal to the servo motor 16 based on an instruction from the controller, and an encoder that monitors the operating state of the servo motor 16. (Both not shown). Then, the drive shaft 42 of the servo motor 16 is driven to reciprocate within the angle range input to the controller of the angle adjusting device 20.
 サーボモータ16の駆動軸42の作動は、ギヤ駆動部18を介して横穴ノズル14へと伝達される。サーボモータ16は、所定の角度範囲にて往復回転駆動することから、横穴ノズル14は横穴ノズル14の円筒軸Lを中心に所定の角度範囲にて往復回転運動する。図2は、第1実施形態に係る穴内面処理装置10の横穴ノズル14における往復回転の作動例を示す概略図である。横穴ノズル14は、図中の矢印で示される角度範囲において往復回転運動する。 The operation of the drive shaft 42 of the servo motor 16 is transmitted to the side hole nozzle 14 via the gear drive unit 18. Since the servo motor 16 is driven to reciprocate in a predetermined angle range, the horizontal hole nozzle 14 reciprocates in a predetermined angle range around the cylindrical axis L of the horizontal hole nozzle 14. FIG. 2 is a schematic view showing an operation example of reciprocating rotation in the horizontal hole nozzle 14 of the hole inner surface processing apparatus 10 according to the first embodiment. The horizontal hole nozzle 14 reciprocally rotates in an angle range indicated by an arrow in the figure.
 次に、上述の穴内面処理装置10に適用される穴内面処理方法について説明する。図3は、ワークを説明する図である。図3の記号(A)は、ワークの平面図であり、記号(B)は記号(A)で示されたワークの内部を示す横断面図である。図3の記号(A)及び記号(B)に示されるように、ワーク50は、被処理対象物であり、平面視で略矩形の立方体形状とされている。ワーク50は、その内部に内部経路52(被処理対象物の穴の一例)が形成されている。なお、ワーク50の上面51には、この内部経路52内と連通された挿入口54が複数(本実施形態では4つ)形成されている。また、内部経路52における挿入口54に対応したそれぞれの部位は、直接的に連通していない構成とされている。 Next, a hole inner surface processing method applied to the above-described hole inner surface processing apparatus 10 will be described. FIG. 3 is a diagram illustrating the workpiece. Symbol (A) in FIG. 3 is a plan view of the workpiece, and symbol (B) is a cross-sectional view showing the inside of the workpiece indicated by symbol (A). As shown by the symbols (A) and (B) in FIG. 3, the workpiece 50 is a processing target and has a substantially rectangular cubic shape in plan view. The work 50 has an internal path 52 (an example of a hole in the object to be processed) formed therein. Note that a plurality (four in this embodiment) of insertion ports 54 are formed in the upper surface 51 of the work 50 so as to communicate with the inside of the internal path 52. In addition, each part corresponding to the insertion port 54 in the internal path 52 is configured not to communicate directly.
 ワーク50は、予め別のショットブラスト装置により、上面51を含めた外周面が研掃されている。この際に、挿入口54から投射材が内部経路52に入り込むことで、挿入口54に比較的近い内部経路52の部分Aは研掃されている。しかし、内部経路52におけるそれ以外の箇所には、投射材が当たらないため、研掃されていない状態となる。 The work 50 has its outer peripheral surface including the upper surface 51 polished in advance by another shot blasting apparatus. At this time, the projection material enters the internal path 52 from the insertion port 54, so that the portion A of the internal path 52 that is relatively close to the insertion port 54 is sharpened. However, since the projecting material does not hit other portions in the internal path 52, the state is not cleaned.
 穴内面処理を行うためには、まず、ワーク50の挿入口54のうち一つに、穴内面処理装置10の横穴ノズル14を挿入させる(第1工程の一例)。そして、ワーク50における研掃目標範囲に対応して、横穴ノズル14を、円筒軸Lを中心に往復回転(図2及び図3の記号(B)中の矢印参照)させながら投射材を投射させる(第2工程の一例)。研掃目標範囲とは、研掃の対象として予め設定された範囲である。本実施形態においては、研掃目標範囲は、内部経路52の部分A以外の研掃が行われていない範囲である。 In order to perform the hole inner surface treatment, first, the horizontal hole nozzle 14 of the hole inner surface processing apparatus 10 is inserted into one of the insertion ports 54 of the workpiece 50 (an example of the first step). Then, in accordance with the target polishing range of the workpiece 50, the projection material is projected while the horizontal hole nozzle 14 is reciprocally rotated about the cylindrical axis L (see the arrow in FIG. 2 and FIG. 3B). (Example of the second step). The cleaning target range is a range set in advance as a target of the cleaning. In the present embodiment, the blast target range is a range in which scouring other than the portion A of the internal path 52 is not performed.
 「第2工程」における横穴ノズル14から投射される投射材は、圧縮空気と共に横穴ノズル14から投射される。単位時間に投射される投射材の質量をAとし、このときの圧縮空気の質量をBとすると、圧縮空気に対する投射材の単位時間当たりの質量比A/Bは、0.3以上であってもよい。質量比A/Bが0.3より小さい場合、単位時間に投射される投射材が少ないため、研掃能力を十分に発揮できないおそれがある。また、質量比A/Bは、0.9以下であってもよい。質量比A/Bが0.9より大きい場合、投射材がワーク50の穴に滞留し、投射材同士が干渉するため、研掃能力を十分に発揮できないおそれがある。つまり、質量比A/Bは、0.3以上0.9以下の間に設定されてもよい。なお、一般的なショットブラスト装置では、この質量比A/Bは1.4~3.3に設定されている。つまり、一般的なショットブラスト装置によるショットブラスト処理方法に比べて、本実施形態による穴内面処理方法は、投射材の質量比A/Bが低く設定されている。 The projection material projected from the horizontal hole nozzle 14 in the “second step” is projected from the horizontal hole nozzle 14 together with the compressed air. Assuming that the mass of the projection material projected per unit time is A and the mass of the compressed air at this time is B, the mass ratio A / B of the projection material to the compressed air per unit time is 0.3 or more. Also good. When the mass ratio A / B is smaller than 0.3, since there are few projection materials projected per unit time, there is a possibility that the cleaning ability cannot be sufficiently exhibited. Moreover, 0.9 or less may be sufficient as mass ratio A / B. When the mass ratio A / B is larger than 0.9, the projecting material stays in the hole of the workpiece 50 and the projecting materials interfere with each other. That is, the mass ratio A / B may be set between 0.3 and 0.9. In a general shot blasting apparatus, the mass ratio A / B is set to 1.4 to 3.3. That is, the mass ratio A / B of the projection material is set lower in the hole inner surface processing method according to the present embodiment than in the shot blast processing method using a general shot blasting apparatus.
 以上の処理を、その他の挿入口54においても同様に行うことで、内部経路52における部分A以外の範囲にも投射材が投射されるため、内部経路52内の広い範囲が研掃される。 By performing the above processing in the other insertion ports 54 in the same manner, the projection material is projected to a range other than the portion A in the internal path 52, so that a wide range in the internal path 52 is sharpened.
(第1実施形態の作用・効果)
 次に、本実施形態の作用並びに効果を説明する。ここで、図4に示される対比例を用いながら、本実施形態の作用並びに効果を説明することにする。図4は、対比例に係る穴内面処理装置の要部を示す部分断面図である。なお、対比例の本実施形態と同一構成部分については同一符号を付してその説明を省略する。
(Operation and effect of the first embodiment)
Next, the operation and effect of this embodiment will be described. Here, the operation and effect of this embodiment will be described using the proportionality shown in FIG. FIG. 4 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the comparative example. Note that the same reference numerals are given to the same components as the comparative embodiment, and the description thereof is omitted.
 図4に示されるように、装置筐体12の内部には、ベルト駆動部100が設けられている。このベルト駆動部100は、サーボモータ16の駆動軸42に取り付けられたモータ側プーリ102と、横穴ノズル14に取り付けられたノズル側プーリ104とを有しており、このモータ側プーリ102とノズル側プーリ104とにベルト106が架けられた構成とされている。そして、サーボモータ16の駆動軸42の作動がベルト駆動部100を介して横穴ノズル14へと伝達される。なお、対比例におけるサーボモータ16は、一方向に回転するよう設定されているため、横穴ノズル14は一方向に回転してワークの穴内面の全周に投射材が当てられる。 As shown in FIG. 4, a belt drive unit 100 is provided inside the apparatus housing 12. The belt drive unit 100 includes a motor-side pulley 102 attached to the drive shaft 42 of the servo motor 16 and a nozzle-side pulley 104 attached to the lateral hole nozzle 14. The motor-side pulley 102 and the nozzle side A belt 106 is hung on the pulley 104. Then, the operation of the drive shaft 42 of the servo motor 16 is transmitted to the lateral hole nozzle 14 via the belt drive unit 100. Since the servo motor 16 in the proportional relation is set to rotate in one direction, the horizontal hole nozzle 14 rotates in one direction, and the projection material is applied to the entire circumference of the inner surface of the hole of the workpiece.
 対比例による構成の場合、ワークの穴内面の全周に投射材が当てられるため、ワークの穴内面のうち一部のみを研掃したい場合、研掃が不要な範囲まで投射材を投射することになる。したがって、サーボモータ16をワークの穴内面の研掃目標範囲に対応した角度範囲で往復回転駆動させることが考えられる。しかし、この場合、ベルト106と、モータ側プーリ102及びノズル側プーリ104との間で滑りが発生する可能性がある。また、ベルト106のテンションによっては、サーボモータ16の駆動軸42の作動が横穴ノズル14へと十分に伝達されない可能性がある。したがって、サーボモータ16の駆動軸42の動きに対して横穴ノズル14が追従せずに、ワークの研掃目標範囲に対応して設定したサーボモータ16における駆動軸42の往復回転する角度範囲と、横穴ノズル14の往復回転する角度範囲とが異なる可能性がある。つまり、ワークにおいて研掃目標範囲に十分に投射材を投射できない可能性や、研掃が不要な部位に投射材を投射する可能性があり、加工効率の向上という観点からは改良の余地がある。 In the case of the configuration based on proportionality, the projection material is applied to the entire circumference of the hole inner surface of the workpiece. Therefore, when only a part of the hole inner surface of the workpiece is to be cleaned, the projection material is projected to a range where no cleaning is required. become. Therefore, it is conceivable that the servo motor 16 is driven to reciprocate in an angle range corresponding to the target cleaning range on the inner surface of the workpiece hole. However, in this case, slipping may occur between the belt 106 and the motor-side pulley 102 and the nozzle-side pulley 104. Further, depending on the tension of the belt 106, there is a possibility that the operation of the drive shaft 42 of the servo motor 16 is not sufficiently transmitted to the lateral hole nozzle 14. Therefore, the horizontal hole nozzle 14 does not follow the movement of the drive shaft 42 of the servo motor 16, and the angular range of the drive shaft 42 in the servo motor 16 reciprocally rotated corresponding to the work target erasing target range; There is a possibility that the angular range of reciprocating rotation of the horizontal hole nozzle 14 is different. In other words, there is a possibility that the projecting material cannot be sufficiently projected onto the target area of the workpiece to be polished, and there is a possibility that the projecting material is projected to a portion that does not need to be cleaned, so there is room for improvement from the viewpoint of improving machining efficiency. .
 これに対し、本実施形態では、図1に示されるように、サーボモータ16の駆動軸42の作動がギヤ駆動部18を介して横穴ノズル14へと伝達される。サーボモータ16は、所定の角度範囲にて往復回転駆動することから、横穴ノズル14は横穴ノズル14の円筒軸Lを中心に所定の角度範囲にて往復運動する。この際、モータ側ギヤ44とノズル側ギヤ28とが直接的又は間接的に噛合っていることから、サーボモータ16の駆動軸42の動きに対する横穴ノズル14の追従性が向上する。したがって、横穴ノズル14の往復運動における角度範囲の管理が容易となる。穴内面処理装置10は、ワーク50の内部経路52の内面のうち一部のみを研掃したい場合に横穴ノズル14をワークの穴内面のうち研掃目標範囲に対応した往復回転をさせて、研掃目標範囲に投射材を投射することができる。これにより、穴内面処理装置10は、加工効率を向上させることができる。 In contrast, in the present embodiment, as shown in FIG. 1, the operation of the drive shaft 42 of the servo motor 16 is transmitted to the side hole nozzle 14 via the gear drive unit 18. Since the servo motor 16 is driven to reciprocate in a predetermined angular range, the horizontal hole nozzle 14 reciprocates in a predetermined angular range around the cylindrical axis L of the horizontal hole nozzle 14. At this time, since the motor-side gear 44 and the nozzle-side gear 28 are meshed directly or indirectly, the followability of the horizontal hole nozzle 14 with respect to the movement of the drive shaft 42 of the servomotor 16 is improved. Therefore, management of the angle range in the reciprocating motion of the horizontal hole nozzle 14 is facilitated. When it is desired to clean only a part of the inner surface 52 of the internal path 52 of the workpiece 50, the hole inner surface processing apparatus 10 rotates the horizontal hole nozzle 14 in a reciprocating manner corresponding to the target area of the hole inner surface of the workpiece. The projection material can be projected onto the sweep target range. Thereby, the hole inner surface treatment apparatus 10 can improve processing efficiency.
 また、角度調整装置20によってサーボモータ16の駆動軸42を往復回転駆動させる角度範囲を調整することができる。したがって、このサーボモータ16の駆動軸42の作動により往復回転する横穴ノズル14の往復回転時の角度範囲も、同様に調整することができる。このため、ワークの穴内面における研掃目標範囲が異なるワークを加工する場合であっても、穴内面処理装置10は、角度調整装置20により投射材を投射する範囲を容易に変更することが可能となる。これにより、穴内面処理装置10は、様々なワークに対応して加工効率を向上させることができる。 Further, the angle range in which the drive shaft 42 of the servo motor 16 is driven to reciprocate by the angle adjusting device 20 can be adjusted. Therefore, the angle range during the reciprocating rotation of the horizontal hole nozzle 14 reciprocatingly rotated by the operation of the drive shaft 42 of the servo motor 16 can be similarly adjusted. For this reason, the hole inner surface processing apparatus 10 can easily change the range in which the projection material is projected by the angle adjusting device 20 even when processing a workpiece having a different target range of the blast on the hole inner surface of the workpiece. It becomes. Thereby, the hole inner surface treatment apparatus 10 can improve processing efficiency corresponding to various workpieces.
 さらに、第1工程でワーク50の内部経路52に横穴ノズル14が挿入され、第2工程で円筒軸Lを中心に横穴ノズル14を往復回転させながら投射材を投射させる。この横穴ノズル14の往復回転する角度範囲は、ワーク50の内部経路52の内面における研掃目標範囲(部分A以外)に対応しているため、それ以外の範囲(部分A)に投射材が投射されて研掃されるのを抑制することができる。これにより、穴内面処理装置10は、加工効率を向上させることができる。さらに、穴内面処理装置10は、内部経路52の部分Aに必要以上の投射材の投射が行われることによる部分Aの損傷を抑制することができる。 Further, the horizontal hole nozzle 14 is inserted into the internal path 52 of the workpiece 50 in the first step, and the projecting material is projected while the horizontal hole nozzle 14 is reciprocally rotated about the cylindrical axis L in the second step. Since the angular range of the reciprocating rotation of the horizontal hole nozzle 14 corresponds to the target cleaning range (other than the portion A) on the inner surface of the internal path 52 of the workpiece 50, the projection material projects into the other range (portion A). It is possible to suppress being cleaned. Thereby, the hole inner surface treatment apparatus 10 can improve processing efficiency. Furthermore, the hole inner surface processing apparatus 10 can suppress damage to the portion A due to the projection of projection material more than necessary on the portion A of the internal path 52.
 さらにまた、横穴ノズル14の投射口から投射される投射材の質量Aと空気の質量Bとを0.3以上0.9以下の関係を満たす質量比とすることで、ワーク50の内部経路52の内面と横穴ノズル14との間が狭い箇所でも投射材が滞留することなく投射材の投射を行うことができる。これにより、穴内面処理装置10は、ワーク50の内部経路52の内面と横穴ノズル14との間が狭い場合でも研掃することができる。 Furthermore, by setting the mass ratio of the projection material projected from the projection port of the horizontal hole nozzle 14 and the mass B of the air to a mass ratio that satisfies the relationship of 0.3 or more and 0.9 or less, the internal path 52 of the workpiece 50 is obtained. The projection material can be projected without stagnation of the projection material even at a location where the space between the inner surface of the nozzle and the horizontal hole nozzle 14 is narrow. Thereby, the hole inner surface processing apparatus 10 can sharpen even when the space between the inner surface of the internal path 52 of the workpiece 50 and the horizontal hole nozzle 14 is narrow.
 上述した効果は、以下に説明する実験結果に顕れている。この実験では、内部の径が12mmとされたワークの穴内面へ図1に示される横穴ノズル14からスチールショットφ0.3の投射材を異なる質量比で投射した場合のショットブラスト処理状況についてそれぞれ調べた。なお、投射材の投射圧は0.5MPaとし、投射時間は16秒とした。 The effects described above are evident in the experimental results described below. In this experiment, the state of shot blasting when the projecting material of steel shot φ0.3 was projected at different mass ratios from the lateral hole nozzle 14 shown in FIG. It was. The projection pressure of the projection material was 0.5 MPa, and the projection time was 16 seconds.
 実験結果は、図7に示される通りであった。図7は、実験結果を示す表である。図7に示されるように、混合比(質量比)0.3及び0.9の条件で研掃した場合にはワークの研磨に成功し、混合比1.3及び1.8の条件で研掃した場合にはワークが十分に研磨されなかった。補足説明すると、質量比が高くなる(投射材が多くなる)と、横穴ノズル14とワークの穴内面との間に投射材が滞留し易くなるため、滞留した投射材と投射された投射材とが干渉し易くなってショットブラスト処理によるワークの研掃が行われ難くなる。 The experimental results were as shown in FIG. FIG. 7 is a table showing experimental results. As shown in FIG. 7, when the polishing was performed under the conditions of the mixing ratio (mass ratio) of 0.3 and 0.9, the workpiece was successfully polished, and the polishing was performed under the conditions of the mixing ratio of 1.3 and 1.8. When swept, the workpiece was not sufficiently polished. If it explains supplementarily, since it will become easy to retain a projection material between the horizontal hole nozzle 14 and the hole inner surface of a workpiece | work when mass ratio becomes high (projection material increases), the retained projection material and the projected projection material and Are more likely to interfere with each other, making it difficult for the workpiece to be polished by shot blasting.
(第2実施形態)
 次に、図5を用いて、本開示の第2実施形態に係る穴内面処理装置及び穴内面処理方法について説明する。図5は、第2実施形態に係る穴内面処理装置の要部を示す部分断面図である。なお、前述した第1実施形態と同一構成部分については、同一符号を付してその説明を省略する。
(Second Embodiment)
Next, the hole inner surface processing apparatus and the hole inner surface processing method according to the second embodiment of the present disclosure will be described with reference to FIG. FIG. 5 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the second embodiment. In addition, about the same component as 1st Embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図5に示されるように、この第2実施形態に係る穴内面処理装置56は、第1実施形態に係る穴内面処理装置10と比べて、横穴ノズル14が複数設けられてユニット化されている点、及び、一つのサーボモータ16と駆動力伝達機構60とによりそれぞれが作動する点が相違し、その他は同一である。 As shown in FIG. 5, the hole inner surface processing apparatus 56 according to the second embodiment is unitized by providing a plurality of horizontal hole nozzles 14 as compared with the hole inner surface processing apparatus 10 according to the first embodiment. The difference is that each servo motor 16 and the driving force transmission mechanism 60 are operated, and the others are the same.
 すなわち、装置筐体58には、複数の横穴ノズル14が隣り合って設けられている(本実施形態では4つ)。この複数の横穴ノズル14同士の距離は、図3の記号(A)に示されるワーク50の複数の挿入口54同士の距離と略同一に設定されている。また、装置筐体58の内部には、駆動力伝達機構60が設けられている。この駆動力伝達機構60は、サーボモータ16の駆動軸62に複数設けられたウォームギヤ64(モータ側ギヤの一例)と、横穴ノズル14に設けられたノズル側ギヤ28とを含んで構成されている。 That is, the apparatus housing 58 is provided with a plurality of side hole nozzles 14 adjacent to each other (four in this embodiment). The distances between the plurality of horizontal hole nozzles 14 are set to be substantially the same as the distances between the plurality of insertion openings 54 of the workpiece 50 shown by the symbol (A) in FIG. In addition, a driving force transmission mechanism 60 is provided inside the apparatus housing 58. The driving force transmission mechanism 60 includes a plurality of worm gears 64 (an example of a motor side gear) provided on the drive shaft 62 of the servo motor 16 and a nozzle side gear 28 provided on the lateral hole nozzle 14. .
 サーボモータ16の駆動軸62は、装置上下方向と直交する方向かつ複数のノズル側ギヤ28の近傍に延設されている。この駆動軸62に設けられた複数のウォームギヤ64は、駆動軸62におけるノズル側ギヤ28に対応した位置にそれぞれ配置されている。そして、それぞれのウォームギヤ64は、対応したそれぞれのノズル側ギヤ28と噛合うように設定されている。サーボモータ16は図示しないブラケットにより装置筐体58に保持されている。サーボモータ16の駆動軸62は、装置筐体58の内部に設けられた図示しない軸受けにより軸支されている。駆動力伝達機構60は、ウォームギヤ64とノズル側ギヤ28とが直接噛合って構成されているが、これに限らず、ウォームギヤ64とノズル側ギヤ28との間に他のギヤを設けて間接的に噛合う構成としてもよい。 The drive shaft 62 of the servo motor 16 extends in the direction orthogonal to the vertical direction of the apparatus and in the vicinity of the plurality of nozzle-side gears 28. The plurality of worm gears 64 provided on the drive shaft 62 are respectively disposed at positions corresponding to the nozzle-side gear 28 on the drive shaft 62. Each worm gear 64 is set to mesh with the corresponding nozzle side gear 28. The servo motor 16 is held in the apparatus housing 58 by a bracket (not shown). The drive shaft 62 of the servo motor 16 is supported by a bearing (not shown) provided inside the apparatus housing 58. The driving force transmission mechanism 60 is configured such that the worm gear 64 and the nozzle-side gear 28 are directly meshed with each other. However, the driving force transmission mechanism 60 is not limited to this and is indirectly provided by providing another gear between the worm gear 64 and the nozzle-side gear 28. It is good also as a structure which meshes.
 次に、上述の穴内面処理装置56に適用される穴内面処理方法について説明する。実際に穴内面処理を行うには、まず装置筐体58を移動させて、図3の記号(A)及び記号(B)に示されるワーク50の複数の挿入口54に、穴内面処理装置56の複数の横穴ノズル14を同時に挿入させる(第1工程の一例)。そして、ワーク50における研掃目標範囲(すなわち、内部経路52の部分A以外の研掃が行われていない範囲)に対応して、それぞれの横穴ノズル14を、駆動力伝達機構60によりサーボモータ16から伝達される動力によって、円筒軸Lを中心に往復回転(図3の記号(B)中の矢印参照)させながら投射材を投射させる(第2工程の一例)。 Next, a hole inner surface processing method applied to the hole inner surface processing apparatus 56 will be described. In order to actually perform the hole inner surface treatment, first, the device housing 58 is moved, and the hole inner surface treatment device 56 is inserted into the plurality of insertion ports 54 of the work 50 indicated by the symbols (A) and (B) in FIG. Are inserted simultaneously (an example of the first step). Corresponding to the target polishing range of the workpiece 50 (that is, the range in which the portion other than the portion A of the internal path 52 is not cleaned), each of the horizontal hole nozzles 14 is connected to the servo motor 16 by the driving force transmission mechanism 60. The projection material is projected while being reciprocatingly rotated about the cylindrical axis L (see the arrow in FIG. 3B) by the power transmitted from (an example of the second step).
 「第2工程」における横穴ノズル14から投射される投射材の圧縮空気に対する単位時間当たりの質量比A/Bは、第1実施形態と同様に、0.3以上0.9以下の間に設定されている。 The mass ratio A / B per unit time with respect to the compressed air of the projection material projected from the horizontal nozzle 14 in the “second step” is set between 0.3 and 0.9, as in the first embodiment. Has been.
 (第2実施形態の作用・効果)
 次に、本実施形態の作用並びに効果を説明する。上記構成によっても、横穴ノズル14は複数設けられていると共に一つのサーボモータ16によりそれぞれが作動する点以外は、第1実施形態の穴内面処理装置10と同一に構成されているので、第1実施形態と同一の効果が得られる。すなわち、サーボモータ16の駆動軸62の動きへの横穴ノズル14の追従性が向上する。したがって、横穴ノズル14の往復運動における角度範囲の管理が容易となる。そして、穴内面処理装置56は、横穴ノズル14をワーク50の内部経路52の内面のうち一部のみに対応して往復回転させて投射材を投射することができる。これにより、穴内面処理装置56は、加工効率を向上させることができる。
(Operation and effect of the second embodiment)
Next, the operation and effect of this embodiment will be described. Also with the above configuration, since the plurality of horizontal hole nozzles 14 are provided and each is operated by one servo motor 16, it is configured in the same manner as the hole inner surface processing apparatus 10 of the first embodiment. The same effect as the embodiment can be obtained. That is, the followability of the horizontal hole nozzle 14 to the movement of the drive shaft 62 of the servo motor 16 is improved. Therefore, management of the angle range in the reciprocating motion of the horizontal hole nozzle 14 is facilitated. And the hole inner surface processing apparatus 56 can project the projection material by reciprocatingly rotating the horizontal hole nozzle 14 corresponding to only a part of the inner surface of the internal path 52 of the workpiece 50. Thereby, the hole inner surface treatment apparatus 56 can improve processing efficiency.
 また、横穴ノズル14は、複数設けられかつ装置筐体58にユニット化されていることから、穴内面処理装置56は、装置筐体58を移動させることで複数の横穴ノズル14を同時に移動させることができる。したがって、ワーク50の穴内面における研掃目標範囲が広い場合でも、穴内面処理装置56は、装置筐体58を移動させて複数の横穴ノズル14をワーク50の穴内面へと移動させて、複数の横穴ノズル14から投射材を投射させることができる。よって、穴内面処理装置56は、効率良く投射材をワーク50へ投射させることができる。これにより、穴内面処理装置56は、加工効率を更に向上させることができる。 In addition, since a plurality of the horizontal hole nozzles 14 are provided and are unitized in the apparatus housing 58, the hole inner surface processing device 56 moves the plurality of horizontal hole nozzles 14 simultaneously by moving the apparatus housing 58. Can do. Therefore, even when the target area for cleaning on the hole inner surface of the workpiece 50 is wide, the hole inner surface processing apparatus 56 moves the apparatus housing 58 to move the plurality of horizontal hole nozzles 14 to the hole inner surface of the workpiece 50, and thereby The projection material can be projected from the horizontal hole nozzle 14. Therefore, the hole inner surface processing device 56 can efficiently project the projection material onto the workpiece 50. Thereby, the hole inner surface treatment apparatus 56 can further improve processing efficiency.
 さらに、複数の横穴ノズル14は、一つのサーボモータ16と駆動力伝達機構60とによって往復回転されることから、穴内面処理装置56を簡素な構造にすることができる。これにより、穴内面処理装置56は、装置のコストを抑制することができる。 Furthermore, since the plurality of horizontal hole nozzles 14 are reciprocally rotated by one servo motor 16 and the driving force transmission mechanism 60, the hole inner surface processing device 56 can have a simple structure. Thereby, the hole inner surface processing apparatus 56 can suppress the cost of an apparatus.
 さらにまた、第1工程でワーク50の内部に複数の横穴ノズル14が挿入され、第2工程で円筒軸Lを中心に複数の横穴ノズル14を往復回転させながら投射材を投射させる。したがって、ワーク50の内部経路52の内面における研掃目標範囲が広い場合でも、穴内面処理装置56は、複数の横穴ノズル14から投射材を投射させることで、効率良く投射材を投射することができる。これにより、穴内面処理装置56は、加工効率を一層向上させることができる。 Furthermore, a plurality of horizontal hole nozzles 14 are inserted into the workpiece 50 in the first step, and the projection material is projected while reciprocating the plurality of horizontal hole nozzles 14 around the cylindrical axis L in the second step. Therefore, even when the blast target range on the inner surface of the internal path 52 of the workpiece 50 is wide, the hole inner surface processing device 56 can project the projection material efficiently by projecting the projection material from the plurality of horizontal hole nozzles 14. it can. Thereby, the hole inner surface treatment apparatus 56 can further improve processing efficiency.
 また、横穴ノズル14の投射口から投射される投射材の質量Aと空気の質量Bとを0.3以上0.9以下の関係を満たす質量比(A/B)とすることで、穴内面処理装置56は、ワーク50の内部経路52の内面と横穴ノズル14との間が狭い箇所でも投射材が滞留することなく投射材の投射を行うことができる。これにより、穴内面処理装置56は、ワーク50の内部経路52の内面と横穴ノズル14との間が狭い場合でも研掃することができる。 Moreover, by making the mass ratio (A / B) satisfying the relationship of 0.3 or more and 0.9 or less between the mass A of the projection material projected from the projection port of the horizontal hole nozzle 14 and the mass B of the air, the inner surface of the hole The processing device 56 can project the projection material without the projection material staying even at a narrow space between the inner surface of the internal path 52 of the workpiece 50 and the horizontal hole nozzle 14. Thereby, the hole inner surface processing apparatus 56 can sharpen even when the space between the inner surface of the internal path 52 of the workpiece 50 and the horizontal hole nozzle 14 is narrow.
 なお、本実施形態では、横穴ノズル14は4つ設けられた構成とされているが、これに限らず、ワークに応じて横穴ノズル14の数を増減させてもよい。 In the present embodiment, four horizontal hole nozzles 14 are provided. However, the present invention is not limited to this, and the number of horizontal hole nozzles 14 may be increased or decreased according to the workpiece.
(第3実施形態)
 次に、図6を用いて、本開示の第3実施形態に係る穴内面処理装置及び穴内面処理方法について説明する。図6は、第3実施形態に係る穴内面処理装置の要部を示す部分断面図である。なお、前述した第1実施形態と同一構成部分については、同一符号を付してその説明を省略する。
(Third embodiment)
Next, a hole inner surface processing apparatus and a hole inner surface processing method according to a third embodiment of the present disclosure will be described with reference to FIG. FIG. 6 is a partial cross-sectional view showing the main part of the hole inner surface processing apparatus according to the third embodiment. In addition, about the same component as 1st Embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図6に示されるように、この第3実施形態に係る穴内面処理装置66は、第1実施形態に係る穴内面処理装置10と比べて、横穴ノズル14は複数設けられてユニット化されている点、及び、それぞれが個別に設けられたサーボモータ16とギヤ駆動部18とにより作動する点が相違し、その他は同一である。 As shown in FIG. 6, the hole inner surface processing apparatus 66 according to the third embodiment is provided with a plurality of side hole nozzles 14 as a unit as compared with the hole inner surface processing apparatus 10 according to the first embodiment. The difference is that the servomotor 16 and the gear drive unit 18 are individually operated, and the other points are the same.
 すなわち、装置筐体68には、複数の横穴ノズル14とサーボモータ16とが隣り合って設けられている(本実施形態では4つ)。この複数の横穴ノズル14同士の距離は、図3の記号(A)に示されるワーク50の複数の挿入口54同士の距離と略同一に設定されている。また、装置筐体68の内部には、それぞれの横穴ノズル14とサーボモータ16とに対応したギヤ駆動部18が設けられている。 That is, the apparatus housing 68 is provided with a plurality of side hole nozzles 14 and servo motors 16 adjacent to each other (four in this embodiment). The distances between the plurality of horizontal hole nozzles 14 are set to be substantially the same as the distances between the plurality of insertion openings 54 of the workpiece 50 shown by the symbol (A) in FIG. In addition, gear drive units 18 corresponding to the respective side hole nozzles 14 and the servo motors 16 are provided inside the apparatus housing 68.
 次に、上述の穴内面処理装置66に適用される穴内面処理方法について説明する。穴内面処理を行うには、まず、装置筐体68を移動させて、図3の記号(A)及び記号(B)に示されるワーク50の複数の挿入口54に、穴内面処理装置66の複数の横穴ノズル14を同時に挿入させる(第1工程の一例)。そして、ワーク50における研掃目標範囲(すなわち、内部経路52の部分A以外の研掃が行われていない範囲)に対応して、それぞれの横穴ノズル14を、それぞれのギヤ駆動部18を介して伝達される各サーボモータ16からの動力によって、円筒軸Lを中心に往復回転(図3の記号(B)中の矢印参照)させながら投射材を投射させる(第2工程の一例)。 Next, the hole inner surface processing method applied to the above-described hole inner surface processing apparatus 66 will be described. In order to perform the hole inner surface processing, first, the apparatus housing 68 is moved, and the hole inner surface processing apparatus 66 is inserted into the plurality of insertion ports 54 of the workpiece 50 indicated by the symbols (A) and (B) in FIG. A plurality of horizontal hole nozzles 14 are simultaneously inserted (an example of a first step). Then, corresponding to the target grinding range of the workpiece 50 (that is, the range where the portion other than the portion A of the internal path 52 is not cleaned), the horizontal hole nozzles 14 are respectively connected via the gear drive units 18. The projecting material is projected while reciprocatingly rotating around the cylindrical axis L (see the arrow in FIG. 3B) by the transmitted power from each servo motor 16 (an example of the second step).
 「第2工程」における横穴ノズル14から投射される投射材の圧縮空気に対する単位時間当たりの質量比A/Bは、第1実施形態と同様に、0.3以上0.9以下の間に設定されている。 The mass ratio A / B per unit time with respect to the compressed air of the projection material projected from the horizontal nozzle 14 in the “second step” is set between 0.3 and 0.9, as in the first embodiment. Has been.
 (第3実施形態の作用・効果)
 次に、本実施形態の作用並びに効果を説明する。上記構成によっても、横穴ノズル14は複数設けられていると共に、それぞれが個別に設けられたサーボモータ16により作動する点以外は第1実施形態の穴内面処理装置と同様に構成されているので、第1実施形態と同様の効果が得られる。すなわち、サーボモータ16の駆動軸42の動きへの横穴ノズル14の追従性が向上する。したがって、穴内面処理装置66は、横穴ノズル14の往復運動における角度範囲の管理が容易となる。そして、穴内面処理装置66は、横穴ノズル14をワーク50の内部経路52の内面のうち一部のみに対応して往復回転させて投射材を投射することができる。これにより、穴内面処理装置66は、加工効率を向上させることができる。
(Operations and effects of the third embodiment)
Next, the operation and effect of this embodiment will be described. Even with the above configuration, a plurality of horizontal hole nozzles 14 are provided, and each is configured similarly to the hole inner surface processing apparatus of the first embodiment, except that each is operated by a servo motor 16 provided individually. The same effect as the first embodiment can be obtained. That is, the followability of the horizontal hole nozzle 14 to the movement of the drive shaft 42 of the servo motor 16 is improved. Therefore, the hole inner surface processing device 66 can easily manage the angle range in the reciprocating motion of the horizontal hole nozzle 14. The hole inner surface processing device 66 can project the projection material by reciprocatingly rotating the horizontal hole nozzle 14 corresponding to only a part of the inner surface of the internal path 52 of the workpiece 50. Thereby, the hole inner surface processing apparatus 66 can improve processing efficiency.
 また、横穴ノズル14は、複数設けられかつ装置筐体68にユニット化されていることから、穴内面処理装置66は、装置筐体68を移動させることで複数の横穴ノズル14を同時に移動させることができる。したがって、ワーク50の穴内面における研掃目標範囲が広い場合でも、穴内面処理装置66は、装置筐体68を移動させて複数の横穴ノズル14をワーク50の穴内面へと移動させて、複数の横穴ノズル14から投射材を投射させることができる。よって、穴内面処理装置66は、効率良く投射材をワーク50へ投射させることができる。これにより、穴内面処理装置66は、加工効率を更に向上させることができる。 In addition, since the plurality of horizontal hole nozzles 14 are provided and unitized in the apparatus housing 68, the hole inner surface processing device 66 moves the plurality of horizontal hole nozzles 14 simultaneously by moving the apparatus housing 68. Can do. Therefore, even when the target area for cleaning on the hole inner surface of the workpiece 50 is wide, the hole inner surface processing apparatus 66 moves the apparatus housing 68 to move the plurality of horizontal hole nozzles 14 to the hole inner surface of the workpiece 50, thereby The projection material can be projected from the horizontal hole nozzle 14. Therefore, the hole inner surface processing device 66 can efficiently project the projection material onto the workpiece 50. Thereby, the hole inner surface treatment apparatus 66 can further improve processing efficiency.
 さらに、複数の横穴ノズル14にはそれぞれサーボモータ16とギヤ駆動部18とが設けられていることから、穴内面処理装置66は、それぞれのサーボモータ16の制御を変化させることで、各横穴ノズル14の往復回転の角度範囲をそれぞれ調整することができる。したがって、穴内面処理装置66は、ワーク50に合わせたより細かな投射材の投射を行うことができる。これにより、穴内面処理装置66は、ワーク50の内部経路52の内面に合わせてより適切に加工を行うことができる。 Furthermore, since the servo motor 16 and the gear drive unit 18 are provided for each of the plurality of horizontal hole nozzles 14, the hole inner surface processing device 66 changes the control of each servo motor 16, thereby changing each horizontal hole nozzle 14. The angular range of 14 reciprocating rotations can be adjusted respectively. Therefore, the hole inner surface processing device 66 can project a finer projection material that matches the workpiece 50. Thereby, the hole inner surface processing device 66 can perform processing more appropriately according to the inner surface of the internal path 52 of the workpiece 50.
 また、穴内面処理装置66は、横穴ノズル14の投射口から投射される投射材の質量Aと空気の質量Bとを0.3以上0.9以下の関係を満たす質量比(A/B)とする。これにより、穴内面処理装置66は、ワーク50の内部経路52の内面と横穴ノズル14との間が狭い箇所でも投射材が滞留することなく投射材の投射を行うことができる。よって、穴内面処理装置66は、ワーク50の内部経路52の内面と横穴ノズル14との間が狭い場合でも研掃することができる。 Further, the hole inner surface processing device 66 has a mass ratio (A / B) satisfying a relationship of 0.3 or more and 0.9 or less between the mass A of the projection material projected from the projection port of the horizontal hole nozzle 14 and the mass B of the air. And Thereby, the hole inner surface processing apparatus 66 can project the projection material without the projection material remaining even in a narrow space between the inner surface of the internal path 52 of the workpiece 50 and the horizontal hole nozzle 14. Therefore, the hole inner surface processing device 66 can sharpen even when the space between the inner surface of the internal path 52 of the workpiece 50 and the horizontal hole nozzle 14 is narrow.
(第2、第3実施形態の変形例)
 上述した第2、第3実施形態では、図3に示されるワーク50に設けられた複数の挿入口54に複数の横穴ノズル14を同時に挿入して投射材を投射する構成とされている。すなわち、図3の記号(A)及び記号(B)に示されるように、ワーク50の内部経路52における複数の横穴ノズル14に対応した部位(挿入口54)同士が直接的に連通していないか又は直接的に連通していても離間している場合(一例として50mm以上)は、複数の横穴ノズル14から同時に投射材を投射することで効率良くワーク50の内部経路52を研掃することができる。
(Modification of the second and third embodiments)
In the second and third embodiments described above, a plurality of horizontal hole nozzles 14 are simultaneously inserted into a plurality of insertion openings 54 provided in the work 50 shown in FIG. 3 to project a projection material. That is, as indicated by the symbols (A) and (B) in FIG. 3, the portions (insertion ports 54) corresponding to the plurality of horizontal hole nozzles 14 in the internal path 52 of the workpiece 50 are not in direct communication with each other. Or, if they are in direct communication but are separated (for example, 50 mm or more), the internal path 52 of the workpiece 50 is efficiently polished by simultaneously projecting the projection material from the plurality of lateral hole nozzles 14. Can do.
 これに対し、ワーク50の内部経路52における複数の横穴ノズル14に対応した部位(挿入口54)同士が直接的に連通しかつ近接している場合(一例として50mm以下)は、例えば複数の横穴ノズル14を個別に装置上下方向に作動させる機構等を設けて隣り合う横穴ノズル14をそれぞれ異なるタイミングで挿入口54に挿入させて投射材を投射させる。なお、上述した構成以外に、複数の挿入口54のうち一つずつ挿入口54を飛ばした状態で複数の横穴ノズル14を同時に挿入して投射材を投射し、次に、先程飛ばした挿入口54に複数の横穴ノズル14を同時に挿入して隣り合う横穴ノズル14をそれぞれ異なるタイミングで投射材を投射する構成としてもよい。さらに、複数の横穴ノズル14を同時に挿入口54に挿入しかつ異なるタイミングで投射材を投射させてもよい。これらにより、複数の横穴ノズル14から投射された投射材同士の干渉を抑制してワーク50の内部を研掃することができる。 On the other hand, when the parts (insertion ports 54) corresponding to the plurality of horizontal hole nozzles 14 in the internal path 52 of the workpiece 50 are in direct communication and close to each other (as an example, 50 mm or less), for example, a plurality of horizontal holes A mechanism or the like for individually operating the nozzles 14 in the vertical direction of the apparatus is provided, and the adjacent horizontal hole nozzles 14 are inserted into the insertion ports 54 at different timings to project the projection material. In addition to the above-described configuration, the plurality of horizontal hole nozzles 14 are simultaneously inserted in a state where the insertion ports 54 are blown out one by one, and the projection material is projected. A plurality of horizontal hole nozzles 14 may be simultaneously inserted into 54 and the adjacent horizontal hole nozzles 14 may be projected at different timings. Furthermore, a plurality of horizontal hole nozzles 14 may be simultaneously inserted into the insertion port 54 and the projection material may be projected at different timings. As a result, the inside of the workpiece 50 can be sharpened while suppressing interference between the projection materials projected from the plurality of horizontal hole nozzles 14.
 なお、上述した第1~3実施形態では、往復回転駆動機構としてサーボモータ16が設けられているが、これに限らず、モータにリンク機構を設けて横穴ノズル14を所定の角度範囲にて往復回転させる構成としてもよい。また、このリンク機構の関節等の位置を調整可能とすることで、横穴ノズル14の往復回転の角度範囲を調整可能としてもよい。 In the first to third embodiments described above, the servo motor 16 is provided as the reciprocating rotational drive mechanism. However, the present invention is not limited to this, and the motor is provided with a link mechanism to reciprocate the horizontal hole nozzle 14 within a predetermined angle range. It is good also as a structure to rotate. Further, the angular range of the reciprocating rotation of the horizontal hole nozzle 14 may be adjustable by making it possible to adjust the position of the joint or the like of the link mechanism.
 以上、本開示の実施形態について説明したが、本開示は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において上記以外にも種々変形して実施することが可能であることは勿論である。 The embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above, and various modifications other than the above can be implemented without departing from the scope of the present disclosure. Of course.
 10…穴内面処理装置、14…横穴ノズル、16…サーボモータ、18…ギヤ駆動部、28…ノズル側ギヤ、42…駆動軸、44…モータ側ギヤ、50…ワーク(被処理対象物)、52…内部経路(被処理対象物の穴)、64…ウォームギヤ(モータ側ギヤ)、L…円筒軸。 DESCRIPTION OF SYMBOLS 10 ... Hole inner surface processing apparatus, 14 ... Side hole nozzle, 16 ... Servo motor, 18 ... Gear drive part, 28 ... Nozzle side gear, 42 ... Drive shaft, 44 ... Motor side gear, 50 ... Workpiece (object to be processed), 52 ... Internal path (hole to be processed), 64 ... Worm gear (motor side gear), L ... Cylindrical shaft.

Claims (9)

  1.  有底円筒状に形成されていると共に、円筒内部に空気と共に送り込まれた投射材を外周面の一部に形成された投射孔から外部へ噴射する少なくとも1つの横穴ノズルと、
     駆動軸が設けられていると共に、当該駆動軸を所定の角度範囲にて往復回転駆動させる少なくとも1つの往復回転駆動機構と、
     前記往復回転駆動機構の駆動軸に取り付けられかつ前記往復回転駆動機構の駆動軸と共に回転するモータ側ギヤと、前記横穴ノズルに取り付けられかつ前記横穴ノズルと共に回転するノズル側ギヤとを有し、前記モータ側ギヤと前記ノズル側ギヤとは直接的又は間接的に噛合うことで、前記往復回転駆動機構の駆動軸の作動が前記横穴ノズルに伝達されて前記横穴ノズルを前記横穴ノズルの円筒軸中心に所定の角度範囲にて往復回転させる少なくとも1つのギヤ駆動部と、
    を有する穴内面処理装置。
    At least one horizontal hole nozzle that is formed into a bottomed cylindrical shape and that injects the projection material fed into the cylinder together with air from the projection hole formed in a part of the outer peripheral surface;
    A drive shaft, and at least one reciprocating rotation drive mechanism for reciprocatingly driving the drive shaft in a predetermined angle range;
    A motor side gear attached to the drive shaft of the reciprocating rotation drive mechanism and rotating together with the drive shaft of the reciprocating rotation drive mechanism; and a nozzle side gear attached to the horizontal hole nozzle and rotating together with the horizontal hole nozzle; The motor side gear and the nozzle side gear mesh with each other directly or indirectly so that the operation of the drive shaft of the reciprocating rotation drive mechanism is transmitted to the horizontal hole nozzle so that the horizontal hole nozzle is centered on the cylindrical axis of the horizontal hole nozzle. At least one gear driving part that reciprocates in a predetermined angle range;
    A hole inner surface treatment apparatus having
  2.  前記往復回転駆動機構は、サーボモータであり、当該サーボモータは、前記駆動軸を往復回転駆動させる角度範囲を調整可能とされている、
    請求項1に記載の穴内面処理装置。
    The reciprocating rotation drive mechanism is a servo motor, and the servo motor is capable of adjusting an angle range for reciprocatingly driving the drive shaft.
    The hole inner surface processing apparatus according to claim 1.
  3.  前記少なくとも1つの横穴ノズルは、複数の横穴ノズルを有し、当該複数の横穴ノズルが装置筐体にユニット化されている、
    請求項1又は2に記載の穴内面処理装置。
    The at least one horizontal hole nozzle has a plurality of horizontal hole nozzles, and the plurality of horizontal hole nozzles are unitized in the apparatus housing.
    The hole inner surface processing apparatus according to claim 1 or 2.
  4.  前記複数の横穴ノズルは、一つの前記往復回転駆動機構と駆動力伝達機構とによって各横穴ノズルの円筒軸中心に所定の角度範囲にて往復回転する、
    請求項3に記載の穴内面処理装置。
    The plurality of horizontal hole nozzles reciprocally rotate in a predetermined angular range about the cylindrical axis center of each horizontal hole nozzle by the single reciprocating rotation driving mechanism and the driving force transmission mechanism.
    The hole inner surface processing apparatus according to claim 3.
  5.  前記少なくとも1つの往復回転駆動機構は、複数の往復回転駆動機構を有し、
     前記少なくとも1つのギヤ駆動部は、複数のギヤ駆動部を有し、
     前記複数の横穴ノズルには、前記往復回転駆動機構と前記ギヤ駆動部とがそれぞれ設けられており、各横穴ノズルは、対応する前記往復回転駆動機構の作動によって円筒軸中心に所定の角度範囲にて往復回転する、
    請求項3に記載の穴内面処理装置。
    The at least one reciprocating rotational drive mechanism has a plurality of reciprocating rotational drive mechanisms,
    The at least one gear driving unit has a plurality of gear driving units;
    The plurality of horizontal hole nozzles are provided with the reciprocating rotation driving mechanism and the gear driving unit, respectively, and each horizontal hole nozzle is brought into a predetermined angular range around the cylindrical axis by the operation of the corresponding reciprocating rotation driving mechanism. Reciprocally rotate,
    The hole inner surface processing apparatus according to claim 3.
  6.  有底円筒状に形成されていると共に、円筒内部に空気と共に送り込まれた投射材を外周面の一部に形成された投射孔から外部へ噴射する少なくとも1つの横穴ノズルと、
     駆動軸が設けられていると共に、当該駆動軸を所定の角度範囲にて往復回転駆動させる少なくとも1つの往復回転駆動機構と、
     前記往復回転駆動機構の駆動軸に取り付けられかつ前記往復回転駆動機構の駆動軸と共に回転するモータ側ギヤと、前記横穴ノズルに取り付けられかつ前記横穴ノズルと共に回転するノズル側ギヤとを有し、前記モータ側ギヤと前記ノズル側ギヤとは直接的又は間接的に噛合うことで、前記往復回転駆動機構の駆動軸の作動が前記横穴ノズルに伝達されて前記横穴ノズルを前記横穴ノズルの円筒軸中心に所定の角度範囲にて往復回転させる少なくとも1つのギヤ駆動部と、
    を有する穴内面処理装置に適用され、
     被処理対象物の穴の内部に前記横穴ノズルを挿入する第1工程と、
     前記横穴ノズルを前記被処理対象物の穴内面における研掃目標範囲に対応して前記横穴ノズルの円筒軸中心に往復回転させながら前記投射材を投射する第2工程と、
    を有する穴内面処理方法。
    At least one horizontal hole nozzle that is formed into a bottomed cylindrical shape and that injects the projection material fed into the cylinder together with air from the projection hole formed in a part of the outer peripheral surface;
    A drive shaft, and at least one reciprocating rotation drive mechanism for reciprocatingly driving the drive shaft in a predetermined angle range;
    A motor side gear attached to the drive shaft of the reciprocating rotation drive mechanism and rotating together with the drive shaft of the reciprocating rotation drive mechanism; and a nozzle side gear attached to the horizontal hole nozzle and rotating together with the horizontal hole nozzle; The motor side gear and the nozzle side gear mesh with each other directly or indirectly so that the operation of the drive shaft of the reciprocating rotation drive mechanism is transmitted to the horizontal hole nozzle so that the horizontal hole nozzle is centered on the cylindrical axis of the horizontal hole nozzle. At least one gear driving part that reciprocates in a predetermined angle range;
    Applied to a hole inner surface treatment apparatus having
    A first step of inserting the horizontal hole nozzle into the hole of the object to be processed;
    A second step of projecting the projecting material while reciprocatingly rotating the horizontal hole nozzle around the cylindrical axis of the horizontal hole nozzle corresponding to the erasing target range in the hole inner surface of the object to be processed;
    A method for treating the inner surface of a hole.
  7.  前記穴内面処理装置には、前記少なくとも1つの横穴ノズルは複数の横穴ノズルを有し、かつ、当該複数の横穴ノズルが装置筐体にユニット化されており、
     前記第1工程で複数の前記横穴ノズルを前記被処理対象物の穴の内部に同時に挿入して前記第2工程で複数の前記横穴ノズルから前記投射材を投射する、
    請求項6に記載の穴内面処理方法。
    In the hole inner surface processing apparatus, the at least one horizontal hole nozzle has a plurality of horizontal hole nozzles, and the plurality of horizontal hole nozzles are unitized in an apparatus housing,
    A plurality of the horizontal hole nozzles are simultaneously inserted into the holes of the object to be processed in the first step, and the projection material is projected from the plurality of horizontal hole nozzles in the second step;
    The hole inner surface processing method according to claim 6.
  8.  前記複数の横穴ノズルが挿入可能な前記被処理対象物の穴の内部において、それぞれの前記横穴ノズルに対応した部位同士が直接的に連通していないか又は当該部位同士が直接的に連通しかつ離間している場合は、前記被処理対象物の穴内面に前記複数の横穴ノズルを挿入して前記複数の横穴ノズルから同時に前記投射材を投射し、
     前記複数の横穴ノズルが挿入可能な前記被処理対象物の穴の内部において、それぞれの前記横穴ノズルに対応した部位同士が直接的に連通しかつ近接している場合は、前記複数の横穴ノズルにおいて隣り合う前記横穴ノズルはそれぞれ異なるタイミングで前記被処理対象物の穴内面に前記投射材を投射する、
    請求項7に記載の穴内面処理方法。
    Inside the hole of the object to be processed into which the plurality of horizontal hole nozzles can be inserted, the parts corresponding to the horizontal hole nozzles are not in direct communication with each other, or the parts are in direct communication with each other. If spaced apart, insert the plurality of horizontal hole nozzles into the inner surface of the hole of the object to be processed and simultaneously project the projection material from the plurality of horizontal hole nozzles,
    In the inside of the hole of the object to be processed into which the plurality of horizontal hole nozzles can be inserted, when the portions corresponding to the respective horizontal hole nozzles are in direct communication and close to each other, in the plurality of horizontal hole nozzles, The adjacent horizontal hole nozzles project the projection material onto the hole inner surface of the object to be processed at different timings, respectively.
    The hole inner surface processing method according to claim 7.
  9.  前記横穴ノズルの投射孔から単位時間当たりに投射される前記投射材の質量Aと前記空気の質量Bとの質量比(A/B)が、0.3以上0.9以下である、
    請求項6~8のいずれか一項に記載の穴内面処理方法。
    The mass ratio (A / B) between the mass A of the projection material projected per unit time from the projection hole of the horizontal hole nozzle and the mass B of the air is 0.3 or more and 0.9 or less,
    The hole inner surface treatment method according to any one of claims 6 to 8.
PCT/JP2017/009242 2016-06-06 2017-03-08 Hole inner surface processing device and hole inner surface processing method WO2017212721A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112018017176A BR112018017176A2 (en) 2016-06-06 2017-03-08 hole inner surface processing device and hole inner surface processing method
JP2018522329A JP6624286B2 (en) 2016-06-06 2017-03-08 Hole inner surface processing apparatus and hole inner surface processing method
KR1020187029053A KR20190015191A (en) 2016-06-06 2017-03-08 Hole Inner Treatment Device and Hole Inner Treatment Method
CN201780022305.4A CN109070313B (en) 2016-06-06 2017-03-08 Device and method for treating surface in hole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-112974 2016-06-06
JP2016112974 2016-06-06

Publications (1)

Publication Number Publication Date
WO2017212721A1 true WO2017212721A1 (en) 2017-12-14

Family

ID=60578437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009242 WO2017212721A1 (en) 2016-06-06 2017-03-08 Hole inner surface processing device and hole inner surface processing method

Country Status (6)

Country Link
JP (1) JP6624286B2 (en)
KR (1) KR20190015191A (en)
CN (1) CN109070313B (en)
BR (1) BR112018017176A2 (en)
TW (1) TW201742708A (en)
WO (1) WO2017212721A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318969A (en) * 2020-04-22 2020-06-23 东莞吉川机械科技股份有限公司 Automatic sand blasting equipment of spray gun rotation type
CN117161987A (en) * 2023-11-03 2023-12-05 泰州市百冠泵阀科技有限公司 Pump case surface polishing tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753768B (en) * 2021-02-03 2022-01-21 甲富工業機械廠股份有限公司 Inner hole injection rinsing machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144668A (en) * 1981-02-24 1982-09-07 Kobe Steel Ltd Method and apparatus for shot peening of curved pipe
JPS606354A (en) * 1983-06-22 1985-01-14 Sumitomo Light Metal Ind Ltd How to remove deposits inside heat exchanger tube
JPH0398764A (en) * 1989-09-06 1991-04-24 Sinto Brator Co Ltd Air blast device
JPH06254765A (en) * 1993-01-11 1994-09-13 Nissan Motor Co Ltd Shot peening device for gear
JPH07501268A (en) * 1991-11-19 1995-02-09 チャーチ・アンド・ドゥワイト・カンパニー・インコーポレイテッド Blasting equipment and methods
JP2004106092A (en) * 2002-09-17 2004-04-08 Sinto Brator Co Ltd Air blast device and air blasting method
US20040162009A1 (en) * 2001-08-10 2004-08-19 Roto-Finish Company, Inc. Apparatus and process for surface treating interior of workpiece

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3674306B2 (en) * 1998-05-08 2005-07-20 スズキ株式会社 Cylinder inner surface blasting method
CN201799935U (en) * 2010-08-04 2011-04-20 霍山县忠福铸造有限责任公司 Spray gun for small hole ball blast
CN202556256U (en) * 2012-04-10 2012-11-28 上海良时喷涂设备有限公司 Novel needle-type spray gun
CN202592227U (en) * 2012-04-18 2012-12-12 重庆明治百通机械制造有限公司 Rotating sprayer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144668A (en) * 1981-02-24 1982-09-07 Kobe Steel Ltd Method and apparatus for shot peening of curved pipe
JPS606354A (en) * 1983-06-22 1985-01-14 Sumitomo Light Metal Ind Ltd How to remove deposits inside heat exchanger tube
JPH0398764A (en) * 1989-09-06 1991-04-24 Sinto Brator Co Ltd Air blast device
JPH07501268A (en) * 1991-11-19 1995-02-09 チャーチ・アンド・ドゥワイト・カンパニー・インコーポレイテッド Blasting equipment and methods
JPH06254765A (en) * 1993-01-11 1994-09-13 Nissan Motor Co Ltd Shot peening device for gear
US20040162009A1 (en) * 2001-08-10 2004-08-19 Roto-Finish Company, Inc. Apparatus and process for surface treating interior of workpiece
JP2004106092A (en) * 2002-09-17 2004-04-08 Sinto Brator Co Ltd Air blast device and air blasting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318969A (en) * 2020-04-22 2020-06-23 东莞吉川机械科技股份有限公司 Automatic sand blasting equipment of spray gun rotation type
CN117161987A (en) * 2023-11-03 2023-12-05 泰州市百冠泵阀科技有限公司 Pump case surface polishing tool
CN117161987B (en) * 2023-11-03 2024-02-27 泰州市百冠泵阀科技有限公司 Pump case surface polishing tool

Also Published As

Publication number Publication date
JP6624286B2 (en) 2019-12-25
CN109070313A (en) 2018-12-21
JPWO2017212721A1 (en) 2019-04-04
KR20190015191A (en) 2019-02-13
BR112018017176A2 (en) 2019-01-02
CN109070313B (en) 2021-07-23
TW201742708A (en) 2017-12-16

Similar Documents

Publication Publication Date Title
WO2017212721A1 (en) Hole inner surface processing device and hole inner surface processing method
JP4656601B2 (en) Pipe outer surface blasting equipment
KR101718442B1 (en) Blasting apparatus
CN107953264A (en) A kind of single-station frock rotating disc type automatic water sand-blasting machine
JP6112017B2 (en) Deburring method and apparatus for core member of electronic component
JP2008114360A (en) Rotary type automatic polishing device of glass lens
JP2009166166A (en) Barrel polishing device and barrel polishing method
KR101469528B1 (en) Shot peening device
JP2007042742A (en) Substrate cleaning method and device
CN102116880B (en) Processing device
KR200484722Y1 (en) Material Turning Device for Liquid Honing
JP2017148899A (en) Shot blast device and shot blast method thereby
JP2010042453A (en) Dicing device and blade distal end shape forming method
JP2012011524A (en) Metal ring grinding device
JPH07266228A (en) Grinding wheel correcting device
JP5697912B2 (en) Metal ring grinding method and metal ring grinding apparatus
JP2006142391A (en) Centering device for optical lens
KR20190086507A (en) Surface cleaning tools
RU2621493C1 (en) Head for abrasive blasting of surfaces
CN219767925U (en) Automatic sand blasting device
JP2000280162A (en) Method and device for grinding vibrating barrel of disk- like article
JP2012011523A (en) Metal ring grinding device
JP4649917B2 (en) Dicing machine
JP2011020260A (en) Dicing apparatus
JP2004122249A (en) Air blast device and air blast work method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018522329

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018017176

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187029053

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112018017176

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180822

122 Ep: pct application non-entry in european phase

Ref document number: 17809905

Country of ref document: EP

Kind code of ref document: A1