WO2017211285A1 - 信息发送方法及装置、用户设备和基站 - Google Patents

信息发送方法及装置、用户设备和基站 Download PDF

Info

Publication number
WO2017211285A1
WO2017211285A1 PCT/CN2017/087395 CN2017087395W WO2017211285A1 WO 2017211285 A1 WO2017211285 A1 WO 2017211285A1 CN 2017087395 W CN2017087395 W CN 2017087395W WO 2017211285 A1 WO2017211285 A1 WO 2017211285A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
downlink
uplink
transmission
symbols
Prior art date
Application number
PCT/CN2017/087395
Other languages
English (en)
French (fr)
Inventor
韩祥辉
毕峰
夏树强
张雯
石靖
任敏
左志松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017211285A1 publication Critical patent/WO2017211285A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications, and in particular to a method and device for transmitting information, a user equipment, and a base station.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • GP guard interval between the downlink transmission and the uplink transmission of the TDD system, which is mainly used to protect the interference of the downlink signal to the uplink signal.
  • the GP usually occupies an integer multiple of Orthogonal Frequency Division Multiplexing (OFDM) symbols, and does not transmit any data in the existing GP. Therefore, the existence of the GP may result in a decrease in resource utilization.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the coverage supported by the system will be reduced, and it may only support the coverage of several hundred meters or even tens of meters to some extent.
  • the length of the GP in the existing TDD system configuration is an integer multiple of the OFDM symbol (minimum of 1, maximum of 10). Taking the subcarrier spacing of 15 kHz as an example, the length of one GP will support a coverage of about 11 km, which is much larger than the requirement of a low coverage scenario. At this point, the GP's overhead problem will become more prominent.
  • one solution is to adopt a self-contained frame structure, in which case the uplink transmission data in the previous transmission interval may be fed back on the downlink control symbols at the beginning of the latter transmission interval.
  • fast feedback by the base station may be difficult to implement, and a time interval should be introduced between the uplink transmission and the downlink transmission handover as necessary to reserve the processing time of the base station. The time interval of introducing an integer number of symbols leads to excessive waste of resources.
  • the embodiment of the invention provides a method and a device for transmitting information, a user equipment and a base station, so as to at least solve the problem that the resource utilization rate is low due to an excessive protection interval between the downlink transmission and the uplink transmission in the related art.
  • a method for transmitting information including: dividing pre-processed information to be transmitted into first information and second information, where the information to be transmitted is used for downlink transmission and uplink transmission.
  • n ⁇ ⁇ 1, 2, ..., N-1 ⁇ a positive integer equal to 2, n ⁇ ⁇ 1, 2, ..., N-1 ⁇ .
  • the symbols used for downlink transmission and uplink transmission conversion include at least one of: a symbol occupied by a guard interval when converting from a downlink transmission to an uplink transmission, and J uplink transmission symbols before being converted from an uplink transmission to a downlink transmission, by The uplink transmission is converted to K downlink transmission symbols after the downlink transmission, where J and K are integers greater than or equal to 1.
  • the pre-processing of the information to be sent includes: mapping the information to be transmitted in a frequency domain to a comb structure of N times subcarrier spacing; performing inverse Fourier transform processing on the information to be transmitted of the comb structure.
  • the method before transmitting the first information and the second information set to 0 on the symbols used for the downlink transmission and the uplink transmission conversion, the method further includes: performing linear transformation on the first information.
  • the type of linear transformation is pre-agreed by the transmitting end and the receiving end of the information to be transmitted.
  • linearly transforming the first information comprises: multiplying each information symbol of the first information by a linear transform factor Where k is any integer between -(N-1) and N-1.
  • k 0.
  • the information to be sent is downlink information, and is used for downlink transmission and uplink transmission conversion.
  • the information to be sent is downlink information, and is used for downlink transmission and uplink transmission conversion.
  • the downlink information includes at least one of the following: downlink physical shared channel data; downlink common control information at the cell level or system level; and reference information used for channel measurement.
  • the downlink information is the downlink physical shared channel data
  • the information sent on the symbols used for the downlink transmission and the uplink transmission conversion and the downlink symbols before the conversion are sent.
  • the information is from the same transport block; when the uplink transmission is switched to the downlink transmission, the information transmitted on the symbols used for the downlink transmission and the uplink transmission conversion and the information transmitted on the converted downlink symbols are from the same transport block.
  • the information to be sent is uplink information, and is used for downlink transmission and uplink transmission conversion.
  • the information to be sent is uplink information, and is used for downlink transmission and uplink transmission conversion.
  • the uplink information is the uplink physical shared channel data
  • the downlink transmission when the downlink transmission is switched to the uplink transmission, the information sent on the symbols used for the downlink transmission and the uplink transmission conversion and the converted uplink symbol are sent.
  • the information is from the same transport block; when the uplink transmission is switched to the downlink transmission, the information transmitted on the symbols used for the downlink transmission and the uplink transmission conversion and the information transmitted on the uplink symbols before the conversion are from the same transport block.
  • n 1.
  • the information to be sent includes both downlink information and uplink information, and the symbols used for downlink transmission and uplink transmission conversion are occupied by the guard interval when the downlink transmission is switched to the uplink transmission.
  • N1 is a positive integer greater than or equal to 2
  • n1 is a positive integer greater than or equal to 2
  • n2 is a positive integer greater than or equal to 2
  • the information to be sent includes both downlink information and uplink information, and the symbols used for downlink transmission and uplink transmission conversion are converted from the uplink transmission to the J uplink transmission symbols before the downlink transmission, or are converted from the uplink transmission to the downlink.
  • K downlink transmission symbols after transmission Any integer between, N1 is a positive integer greater than or equal to 2, n1 ⁇ ⁇ 1, 2, ..., N1-1 ⁇ ; Any integer, N2 is a positive integer greater than or equal to 2, n2 ⁇ ⁇ 1, 2, ..., N2-1 ⁇ .
  • the downlink information is the downlink physical shared channel data
  • the downlink information sent on the symbols used for the downlink transmission and the uplink transmission conversion and the downlink symbol before the conversion are performed.
  • the downlink information sent is from the same transport block; when the uplink transmission is switched to the downlink transmission, the downlink information sent on the symbols used for downlink transmission and uplink transmission conversion and the downlink information transmitted on the converted downlink symbols are from the same a transport block; in the case where the uplink information is uplink physical shared channel data, when the downlink transmission is switched to the uplink transmission, the uplink information transmitted on the symbols used for the downlink transmission and the uplink transmission conversion and the converted uplink symbol are transmitted.
  • the uplink information is from the same transport block; when the uplink transmission is switched to the downlink transmission, the uplink information sent on the symbols used for the downlink transmission and the uplink transmission conversion and the uplink information transmitted on the uplink symbol before the conversion are from the same transmission. Piece.
  • n1 and/or n2 is equal to one.
  • the information about the to-be-transmitted information is mapped to a comb structure packet of N times subcarrier spacing in the frequency domain.
  • the information to be sent of different user equipments is mapped to the same frequency domain resource block location but different subcarrier offsets, when used for downlink transmission and uplink when converting from downlink transmission to uplink transmission.
  • the downlink information transmitted on the transmitted converted symbol is a linear transformation of the downlink information transmitted on the downlink symbol before the conversion; and the downlink information transmitted on the symbol used for the downlink transmission and the uplink transmission conversion when the uplink transmission is switched to the downlink transmission.
  • the transformation factor of the linear transformation is k is any integer between -(N-1) and N-1; when converted from downlink transmission to uplink transmission, the uplink information transmitted on the symbols used for downlink transmission and uplink transmission conversion is the converted uplink
  • the transformation factor of the linear transformation is k is any integer between -(N-1) and N-1.
  • an information transmitting apparatus including: a dividing module, configured to divide pre-processed information to be transmitted into first information and second information; and a sending module, configured to The information is set to 0, and the first information and the second information set to 0 are transmitted on the symbols used for the downlink transmission and the uplink transmission conversion.
  • the method further includes: a linear transformation module, configured to linearly transform the first information.
  • a user equipment including: a first processor, configured to divide pre-processed uplink to-be-transmitted information into first information and second information, and set second information Is 0, wherein the uplink to-be-sent information is information to be transmitted on the symbols used for downlink transmission and uplink transmission conversion; the first sending unit is configured to use the first information and the second information set to 0 at the The downlink transmission and the uplink transmission are transmitted on the symbol.
  • a base station including: a second processor, The method is configured to divide the pre-processed downlink to-be-transmitted information into the first information and the second information, and set the second information to 0, where the downlink to-be-sent information is to be used on the symbols used for downlink transmission and uplink transmission conversion.
  • the information sent by the second sending unit is configured to send the first information and the second information set to 0 on the symbol for downlink transmission and uplink transmission conversion.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the following steps: dividing the pre-processed information to be transmitted into first information and second information, wherein the information to be transmitted is a symbol used for downlink transmission and uplink transmission conversion
  • the information to be transmitted is set; the second information is set to 0, and the first information and the second information set to 0 are transmitted on symbols for downlink transmission and uplink transmission conversion.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the information to be sent is information to be sent on the symbols used for downlink transmission and uplink transmission conversion; setting the second information to 0, and The first information and the second information set to 0 are transmitted on symbols for downlink transmission and uplink transmission conversion.
  • the information is divided into two different parts, a part of which is set to 0, and then the information is transmitted on the symbols used for downlink transmission and uplink transmission conversion, thereby realizing the downlink transmission and The data is transmitted on the symbol of the uplink transmission conversion, which solves the problem that the resource utilization rate is low due to the excessive protection interval between the downlink transmission and the uplink transmission in the related art, thereby effectively improving the time division duplex system or the half duplex. System resource utilization.
  • FIG. 1 is a flowchart of an information transmitting method according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of reception corresponding to Figure 2;
  • Figure 5 is a schematic diagram of reception corresponding to Figure 4.
  • Figure 7 is a schematic diagram of reception corresponding to Figure 6;
  • FIG. 10 is a schematic diagram of transmission of transmitting downlink data on a first guard interval when symbols for downlink transmission and uplink transmission conversion include two guard intervals according to an embodiment of the present invention
  • 11 is a frequency domain structure diagram for simultaneously transmitting downlink data for two user equipments on symbols for downlink transmission and uplink transmission conversion according to an embodiment of the present invention
  • Figure 15 is a block diagram showing the structure of an information transmitting apparatus according to an embodiment of the present invention.
  • 16 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • Figure 17 is a schematic diagram of a base station in accordance with an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for sending information according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 The pre-processed information is divided into first information and second information, where the to-be-sent information is information to be sent on the symbols used for downlink transmission and uplink transmission conversion.
  • Step S104 setting the second information to 0, and transmitting the first information and the second information set to 0 on the symbols used for the downlink transmission and the uplink transmission conversion.
  • the information is divided into two different parts, one of which is set to 0, and then the information is transmitted on the symbols for downlink transmission and uplink transmission conversion, thereby realizing the use for downlink transmission and uplink transmission.
  • the data is transmitted on the converted symbol, which solves the problem that the resource utilization rate is low due to the protection interval between the downlink transmission and the uplink transmission in the related art, thereby effectively improving the resource utilization ratio of the time division duplex system or the half duplex system. .
  • the execution body of the foregoing step may be a base station or a terminal.
  • the foregoing information may be uplink information or downlink information.
  • the symbols used for downlink transmission and uplink transmission conversion include at least one of: a symbol occupied by a guard interval when converting from a downlink transmission to an uplink transmission, and J uplink transmission symbols before being converted from an uplink transmission to a downlink transmission, by Uplink transmission is converted to K after downlink transmission A line transmission symbol, where J and K are integers greater than or equal to one.
  • the GP can be manually introduced during the uplink to downlink handover, and the necessary processing time can be reserved for the base station in the URLLC scenario.
  • the information to be sent is pre-processed by: mapping the information to be transmitted to a comb structure of N times subcarrier spacing in a frequency domain; performing inverse Fourier transform processing on the information to be transmitted of the comb structure.
  • the method may further include: performing linear transformation on the first information.
  • the information to be sent is mapped in the frequency domain to a comb structure of N times subcarrier spacing, and then subjected to inverse Fourier transform, and the output information is divided into first information and Two information. After the first information is linearly transformed and the second information is all set to 0, it is used for The value ranges from 1 to N-1.
  • the type of linear transformation is pre-agreed by the transmitting end and the receiving end of the information to be transmitted.
  • the information to be sent is downlink information, and is used for downlink transmission and uplink transmission conversion.
  • the information to be sent is downlink information, and is used for downlink transmission and uplink transmission conversion.
  • the downlink information includes at least one of the following: downlink physical shared channel data; downlink common control information at the cell level or system level; and reference information used for channel measurement.
  • the downlink information is the downlink physical shared channel data
  • the information sent on the symbols used for the downlink transmission and the uplink transmission conversion and the downlink symbols before the conversion are sent.
  • the information is from the same transport block; when the uplink transmission is switched to the downlink transmission, the information transmitted on the symbols used for the downlink transmission and the uplink transmission conversion and the information transmitted on the converted downlink symbols are from the same transport block.
  • the information to be sent is uplink information, and is used for downlink transmission and uplink transmission conversion.
  • the information to be sent is uplink information, and is used for downlink transmission and uplink transmission conversion.
  • the uplink information is the uplink physical shared channel data
  • the downlink transmission when the downlink transmission is switched to the uplink transmission, the information sent on the symbols used for the downlink transmission and the uplink transmission conversion and the converted uplink symbol are sent.
  • Information from the same transport block When switching to downlink transmission, the information transmitted on the symbols used for the downlink transmission and the uplink transmission conversion and the information transmitted on the uplink symbols before the conversion are from the same transport block.
  • n 1.
  • the information to be sent includes both downlink information and uplink information, and the symbols used for downlink transmission and uplink transmission conversion are occupied by the guard interval when the downlink transmission is switched to the uplink transmission.
  • k is any integer between -(N-1) and N-1.
  • the downlink information and the uplink information may be independently processed as described above.
  • Sent for downlink information, Sent, where N2 is a positive integer greater than or equal to 2.
  • the information to be sent includes both downlink information and uplink information, and the symbols used for downlink transmission and uplink transmission conversion are converted from the uplink transmission to the J uplink transmission symbols before the downlink transmission, or are converted from the uplink transmission to the downlink.
  • the information symbol occupied by the first information corresponding to the downlink information is pre- Any integer between N-1.
  • the downlink information is the downlink physical shared channel data
  • the downlink information sent on the symbols used for the downlink transmission and the uplink transmission conversion and the downlink symbol before the conversion are performed.
  • the downlink information sent is from the same transport block; when the uplink transmission is switched to the downlink transmission, the downlink information sent on the symbols used for downlink transmission and uplink transmission conversion and the downlink information transmitted on the converted downlink symbols are from the same a transport block; in the case where the uplink information is uplink physical shared channel data, when the downlink transmission is switched to the uplink transmission, the uplink information transmitted on the symbols used for the downlink transmission and the uplink transmission conversion and the converted uplink symbol are transmitted.
  • the uplink information is from the same transport block; when the uplink transmission is switched to the downlink transmission, the uplink information sent on the symbols used for the downlink transmission and the uplink transmission conversion and the uplink information transmitted on the uplink symbol before the conversion are from the same transmission. Piece.
  • n1 and/or n2 is equal to one.
  • the comb structure that maps the information to be transmitted to the N times subcarrier spacing in the frequency domain includes at least one of: mapping one to be sent on every N subcarriers (that is, N-1 subcarriers per interval) Bit or symbol of information; mapping the information to be transmitted from the lowest index of the allocated resource block, wherein the number of zeros between every two information symbols is N-1; mapping the information to be sent of different user equipments to different The frequency domain resource block location, or the same frequency domain resource block location but different subcarrier offsets.
  • the three embodiments are an alternative embodiment that describes a comb structure in which the information to be transmitted is mapped to N times subcarrier spacing in the frequency domain from three different levels, and the three can also be used. In any combination.
  • the information is mapped from the lowest index of the allocated resource block, that is, the value of the lowest index subcarrier is the first information symbol of the information, if the mapping is similar to d0, 0. , 0, ..., d1, 0, 0, ... d2, 0, 0, ..., wherein the number of zeros between every two information symbols is N-1.
  • the information to be sent of different user equipments is mapped to the same frequency domain resource block location but different subcarrier offsets, when used for downlink transmission and uplink when converting from downlink transmission to uplink transmission.
  • the downlink information transmitted on the transmitted converted symbol is a linear transformation of the downlink information transmitted on the downlink symbol before the conversion; and the downlink information transmitted on the symbol used for the downlink transmission and the uplink transmission conversion when the uplink transmission is switched to the downlink transmission.
  • the transformation factor of the linear transformation is k is any integer between -(N-1) and N-1; when converted from downlink transmission to uplink transmission, the uplink information transmitted on the symbols used for downlink transmission and uplink transmission conversion is the converted uplink
  • the transformation factor of the linear transformation is k is any integer between -(N-1) and N-1.
  • the present invention may include a situation in which the information may be selectively encoded and/or modulated, and/or serial-to-parallel converted, and/or prior to performing the method of the present invention.
  • Processing such as Fourier transform; between the processing of the present invention, the processing steps may be selectively increased, such as processing after other inverse rules after the inverse Fourier transform, and then dividing the processed information into the first
  • the information and the second information may be selectively transmitted after the processing of the method of the present invention, such as symbol prefix addition, antenna port mapping, and the like.
  • the information is used for downlink transmission and uplink transmission conversion by comb mapping in the frequency domain, inverse Fourier transform (IFFT transform), linear transformation in the time domain, and zeroing processing.
  • the symbol is sent on. Can be charged in the downlink transmission and uplink transmission conversion
  • the use of idle resources to transmit valid data is beneficial to improve the resource utilization of the time division duplex system or the half duplex system, and solves the problem that the resource utilization rate is excessive due to the excessive protection interval between the downlink transmission and the uplink transmission in the related art. Low, and the problem of insufficient processing time between uplink transmission and downlink transmission.
  • the information to be transmitted is defined as d0, d1, d2, ..., dK, and the information to be transmitted and the transmission information of the previous downlink symbol are from one transport block.
  • A represents a complete piece of information of the cyclically repeated portion.
  • the first information is the top 1/2 information
  • the second information is the last 1/2 information.
  • the first information remains unchanged, and the second information is set to 0, and the processed information is prefixed and sent.
  • the added prefix content may be the last information symbol in the first information.
  • FIG. 3 is a schematic diagram of reception corresponding to FIG. 2.
  • the received information is repeatedly processed, that is, the last 1/2 sample of the information is copied into the first 1/2 sample, and then DFT transform (Fourier transform), 2 times subcarrier
  • DFT transform Frourier transform
  • the information to be sent is d0, d1, D2,...,dK.
  • A represents a complete information of the periodic repetition portion.
  • the first information is kept unchanged, and the second information is set to 0, and the processed information is added to the prefix and sent.
  • the added prefix content may be the last information symbol in the first information.
  • FIG. 5 is a schematic diagram of reception corresponding to FIG. 4.
  • the received information is repeatedly processed, that is, the first 1/4 sample of the information is copied 3 times into the last 3/4 sample, and then DFT transform is performed, and data is extracted by 4 times subcarrier spacing.
  • IFFT conversion, parallel-to-serial conversion, etc. can obtain the uplink information sent by the transmitting end.
  • the information to be transmitted is d0, d1, d2, ..., dK.
  • the first part of the definition is A
  • the following is followed by jA, -A, -jA.
  • the second information is set to the top 3/4 information.
  • the first information is linearly transformed, multiplied by the complex factor j, and the second information is set to 0, and the processed information is added to the prefix and then transmitted.
  • adding a prefix content may Think of the last information symbol in the first message.
  • FIG. 7 is a schematic diagram of reception corresponding to FIG. 6.
  • the received information is linearly transformed and repeatedly processed. This requires the receiving end to know the mapping rule of the transmitting end, so that the repeated processed data is consistent with the transmission, and then performs DFT transform to perform 4-time subcarrier spacing extraction. Data, IFFT conversion, and parallel-to-serial conversion, etc., can obtain the downlink information sent by the transmitting end.
  • downlink information and uplink information can be simultaneously transmitted within symbols for downlink transmission and uplink transmission conversion.
  • the transmission structure can be similar to that described in the first to third embodiments above.
  • the symbol for the downlink transmission and the uplink transmission conversion is defined as the guard interval symbol GP, in this case, the first 1/4 of the GP symbol is used for transmitting the downlink information, and the last 1/4 of the GP symbol is used.
  • the uplink data is transmitted, that is, the equivalent GP length is 0.5 symbol length.
  • user equipment 1 and user equipment 2 transmit information on the same resource block.
  • two user equipments are mapped onto different subcarriers within the same resource block.
  • the information to be transmitted by the user equipment 1 is defined as d0, d1, d2, ..., dK.
  • the information defined by the user equipment 2 to be transmitted is s0, s1, s2, ..., sK.
  • the user equipment 2 can be respectively in two parts in the time domain, and can be represented by B and -B, respectively.
  • the first information is the top 1/2 information
  • the second information is the last 1/2 information.
  • the first information is linearly transformed by a factor of -1, and the second information portion is set to 0, and the processed information is added to the prefix and transmitted.
  • the data received by the receiving end can be represented as A+B,0.
  • the data cannot be correctly demodulated. Therefore, different linear transformations need to be performed on the previous downlink symbol, and the other half of the information is transmitted in advance, and the first information of the user equipment 2 remains unchanged on the symbol.
  • the data obtained by the receiving end is A-B, 0, and the receiving information of the two symbols can be demodulated to obtain the sending information of the two user equipments.
  • FIG. 10 is a schematic diagram of transmission of downlink data transmitted on a first guard interval when symbols for downlink transmission and uplink transmission conversion include two guard intervals according to an embodiment of the present invention.
  • the downlink data can be transmitted on the first GP symbol of the present invention.
  • the first information accounts for 1/2 of the symbol length, that is, the equivalent GP length is 1.5 symbols at this time.
  • the downlink data of the two user equipments contains an even number of subcarriers.
  • the base station can simultaneously transmit data of two user equipments by using the present invention.
  • the receiving end can receive according to the structure similar to FIG. 3, respectively.
  • the information to be transmitted is defined as d0, d1, d2, ..., dK.
  • A represents a complete piece of information of the periodic repetition portion.
  • the first information is the last 1/2 information
  • the second information is the top 1/2 information.
  • the first information remains unchanged, and the second information is set to 0, and the processed information is prefixed and sent.
  • the added prefix content may be the last information symbol within the first information.
  • the information to be transmitted is d0, d1, d2, ..., dK.
  • the first information is kept unchanged, and the second information is set to 0, and the processed information is added to the prefix and sent.
  • the added prefix content may be the last information symbol within the first information.
  • A represents a complete piece of information of the periodic repeating portion.
  • the first, third, and fourth pieces of duplicate information are used as the second information, and the second piece of duplicate information is used as the first information.
  • the first information is kept unchanged, and the second information is set to 0, and the processed information is added to the prefix and sent.
  • the added prefix content may be the last information symbol within the first information.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • an information transmitting apparatus is further provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and the detailed description thereof has been omitted.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function. Although described in the following examples The described apparatus is preferably implemented in software, but hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 15 is a structural block diagram of an information transmitting apparatus according to an embodiment of the present invention. As shown in FIG. 15, the apparatus includes:
  • the dividing module 1402 is configured to divide the pre-processed information to be sent into the first information and the first Is a positive integer greater than or equal to 2, n ⁇ ⁇ 1, 2, ..., N-1 ⁇ ;
  • the sending module 1404 is configured to set the second information to 0, and send the first information and the second information set to 0 on the symbols used for downlink transmission and uplink transmission conversion.
  • the transmitting module 1404 transmits the information to be transmitted on the symbols for downlink transmission and uplink transmission conversion, thereby
  • the invention realizes that the data is transmitted on the symbols used for the downlink transmission and the uplink transmission conversion, and solves the problem that the resource utilization rate is low due to the excessive protection interval between the downlink transmission and the uplink transmission in the related art, thereby effectively improving the problem.
  • the apparatus may further include: a linear transformation module, configured to perform linear transformation on the first information.
  • a linear transformation module configured to perform linear transformation on the first information.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • the embodiment of the present invention further provides a user equipment.
  • the user equipment includes: a first processor 1502, configured to divide the pre-processed uplink to-be-sent information into first information and second information. And setting the second information to 0, where the uplink to-be-sent information is information to be sent on the symbols used for downlink transmission and uplink transmission conversion; the first sending unit 1504 is configured to set the first information to 0.
  • the second information is transmitted on symbols for downlink transmission and uplink transmission conversion.
  • the embodiment of the present invention further provides a base station.
  • the base station includes: a second processor 1602, configured to divide the pre-processed downlink to-be-sent information into first information and second information, where The second information is set to 0, wherein the downlink to-be-sent information is information to be sent on the symbols used for downlink transmission and uplink transmission conversion; and the second sending unit 1604 is configured to set the first information and the second to 0. The information is transmitted on the symbols used for the downlink transmission and the uplink transmission conversion.
  • base station or user equipment may be used to perform an information sending method according to an embodiment of the present invention, respectively.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the pre-processed information to be sent is divided into first information and second information, where the information to be sent is information to be sent on the symbols used for downlink transmission and uplink transmission conversion;
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the information is divided into two different parts, one of which is set to 0, and then the information is transmitted on the symbols used for downlink transmission and uplink transmission conversion, thereby realizing
  • the transmission of the data on the symbol of the transmission and the uplink transmission solves the problem that the resource utilization rate is low due to the excessive protection interval between the downlink transmission and the uplink transmission in the related art, thereby effectively improving the time division duplex system or the half. Resource utilization of the duplex system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信息发送方法及装置、用户设备和基站。该方法包括:将经过预处理的待发送信息划分为第一信息和第二信息,其中,待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;将第二信息置为0,并将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上发送。通过本发明,解决了相关技术中由于在下行传输和上行传输之间存在过大保护间隔,导致资源利用率低的问题。

Description

信息发送方法及装置、用户设备和基站 技术领域
本发明涉及通信领域,具体而言,涉及一种信息发送方法及装置、用户设备和基站。
背景技术
在第三代合作伙伴项目(3rd Generation Partnership Project,简称为3GPP)长期演进(Long Term Evolution,简称为LTE)及高级长期研究(LTE-Advanced,简称为LTE-A)系统中主要包括两种双工方式:一种为频分双工(Frequency Division Duplex,简称为FDD);另一种为时分双工(Time Division Duplex,简称为TDD)。其中,在TDD系统的下行传输和上行传输之间会存在保护间隔(Guard Period,简称为GP),主要用于保护下行信号对上行信号的干扰。GP通常会占用整数倍个数的正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号,且现有GP内并不发送任何数据,因此GP的存在会导致资源利用率降低。
在3GPP后续演进,如第五代移动通信系统(5G),将支持如工业自动化、远程控制、智能电网等超低时延业务。为了支持超低时延,主要有两种解决方案:一种是将现有的传输时间间隔(Transmission Time Interval,简称为TTI)降低,如将现有子帧内14个OFDM符号降低为1~7个;另外一种解决方案是高频实现方案,也即通过增加子载波间隔来实现符号长度的降低,进而直接降低子帧的长度。
然而,不论是降低TTI长度还是高频场景,系统支持的覆盖都将降低,一定程度上可能只支持几百米甚至几十米的覆盖。而现有TDD系统配置中GP的长度为OFDM符号的整数倍(最小为1,最大为10)。以子载波间隔为15kHz为例,1个GP的长度将支持的覆盖为11km左右,远远大于低覆盖场景的要求。此时,GP的开销问题将愈加突出。
同时,除了有必要实现更短GP长度外,也有必要实现更加灵活的GP长度,如1.5个OFDM符号长度,这样可以根据网络覆盖情况更加精确的实现GP的长度,进而最大限度的提升资源利用率。
另外,为实现快速的HARQ反馈,一种解决方案是采用自包含的帧结构,此时前一个传输间隔内的上行传输数据可能在后一个传输间隔开始处的下行控制符号上进行反馈。然而,基站如此快速的反馈可能很难实现,必要时应当在从上行传输到下行传输切换之间引入一定时间间隔以留作基站的处理时间。而引入整数个符号的时间间隔会导致资源的过多浪费。
针对相关技术中,由于在下行传输和上行传输之间存在过大的保护间隔,导致资源利用率低的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种信息发送方法及装置、用户设备和基站,以至少解决相关技术中由于在下行传输和上行传输之间存在过大的保护间隔,导致资源利用率低的问题。
根据本发明的一个实施例,提供了一种信息发送方法,包括:将经过预处理的待发送信息划分为第一信息和第二信息,其中,待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;将第二信息置为0,并将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上发送。
Figure PCTCN2017087395-appb-000001
或等于2的正整数,n∈{1,2,......,N-1}。
可选地,用于下行传输和上行传输转换的符号包括以下至少之一:由下行传输转换到上行传输时保护间隔占用的符号、由上行传输转换到下行传输之前的J个上行传输符号、由上行传输转换到下行传输之后的K个下行传输符号,其中,J、K均为大于或等于1的整数。
可选地,K=1和/或J=1。
可选地,对待发送信息进行预处理包括:将待发送信息在频域上映射为N倍子载波间隔的梳状结构;对梳状结构的待发送信息进行傅里叶反变换处理。
可选地,在将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上发送之前,还包括:对第一信息进行线性变换。
可选地,线性变换的类型由待发送信息的发送端和接收端预先约定。
可选地,对第一信息进行线性变换包括:将第一信息的每个信息符号乘以线性变换因子
Figure PCTCN2017087395-appb-000002
其中,k为-(N-1)到N-1之间的任一整数。
可选地,k=0。
可选地,在待发送信息为下行信息,且用于下行传输和上行传输转换
Figure PCTCN2017087395-appb-000003
可选地,在待发送信息为下行信息,且用于下行传输和上行传输转换
Figure PCTCN2017087395-appb-000004
可选地,下行信息包括以下至少之一:下行物理共享信道数据;小区级或系统级的下行公共控制信息;用于信道测量的参考信息。
可选地,在下行信息为下行物理共享信道数据的情况下,在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的信息和转换前的下行符号上发送的信息来自同一个传输块;在由上行传输转换到下行传输时,在用于下行传输和上行传输转换的符号上发送的信息和转换后的下行符号上发送的信息来自同一个传输块。
可选地,在待发送信息为上行信息,且用于下行传输和上行传输转换
Figure PCTCN2017087395-appb-000005
可选地,在待发送信息为上行信息,且用于下行传输和上行传输转换
Figure PCTCN2017087395-appb-000006
可选地,在上行信息为上行物理共享信道数据的情况下,在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的信息和转换后的上行符号上发送的信息来自同一个传输块;在由上行传输转换到下行传输时,在用于下行传输和上行传输转换的符号上发送的信息和转换前的上行符号上发送的信息来自同一个传输块。
可选地,n=1。
可选地,在待发送信息同时包括下行信息和上行信息,且用于下行传输和上行传输转换的符号为由下行传输转换到上行传输时保护间隔占用
Figure PCTCN2017087395-appb-000007
为-(N1-1)到N1-1之间的任一整数,N1为大于或等于2的正整数,n1
Figure PCTCN2017087395-appb-000008
为-(N2-1)到N2-1之间的任一整数,N2为大于或等于2的正整数,n2∈{1,2,......,N2-1}。
可选地,在待发送信息同时包括下行信息和上行信息,且用于下行传输和上行传输转换的符号为由上行传输转换到下行传输之前的J个上行传输符号,或者由上行传输转换到下行传输之后的K个下行传输符号的情况
Figure PCTCN2017087395-appb-000009
之间的任一整数,N1为大于或等于2的正整数,n1∈{1,2,......,N1-1};
Figure PCTCN2017087395-appb-000010
的任一整数,N2为大于或等于2的正整数,n2∈{1,2,......,N2-1}。
可选地,在下行信息为下行物理共享信道数据的情况下,在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的下行信息和转换前的下行符号上发送的下行信息来自同一个传输块;在由上行传输转换到下行传输时,在用于下行传输和上行传输转换的符号上发送的下行信息和转换后的下行符号上发送的下行信息来自同一个传输块;在上行信息为上行物理共享信道数据的情况下,在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的上行信息和转换后的上行符号上发送的上行信息来自同一个传输块;在由上行传输转换到下行传输时,在用于下行传输和上行传输转换的符号上发送的上行信息和转换前的上行符号上发送上行的信息来自同一个传输块。
可选地,n1和/或n2等于1。
可选地,将待发送信息在频域上映射为N倍子载波间隔的梳状结构包 括以下至少之一:在每N个子载波上映射一个待发送信息的比特或符号;将待发送信息从所分配资源块的最低索引开始映射,其中,每两个信息符号之间零的个数为N-1;将不同用户设备的待发送信息映射到不同的频域资源块位置,或相同的频域资源块位置但不同的子载波偏移。
可选地,在将不同用户设备的待发送信息映射到相同的频域资源块位置但不同的子载波偏移的情况下,在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的下行信息为转换前的下行符号上发送的下行信息的线性变换;在由上行传输转换到下行传输时,在用于下行传输和上行传输转换的符号上发送的下行信息为转换后的下行符号上发送的下行信息的线性变换;其中,线性变换的变换因子为
Figure PCTCN2017087395-appb-000011
k为-(N-1)到N-1之间的任一整数;在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的上行信息为转换后的上行符号上发送的上行信息的线性变换;在由上行传输转换到下行传输时,在用于下行传输和上行传输转换的符号上发送的上行信息为转换前的上行符号上发送的上行信息的线性变换;其中,线性变换的变换因子为
Figure PCTCN2017087395-appb-000012
k为-(N-1)到N-1之间的任一整数。
根据本发明的另一个实施例,提供了一种信息发送装置,包括:划分模块,用于将经过预处理的待发送信息划分为第一信息和第二信息;发送模块,用于将第二信息置为0,并将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上发送。
可选地,还包括:线性变换模块,用于对第一信息进行线性变换。
根据本发明的另一个实施例,提供了一种用户设备,包括:第一处理器,用于将经过预处理的上行待发送信息划分为第一信息和第二信息,并将第二信息置为0,其中,上行待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;第一发送单元,用于将第一信息和置为0的第二信息在该用于下行传输和上行传输转换的符号上发送。
根据本发明的另一个实施例,提供了一种基站,包括:第二处理器, 用于将经过预处理的下行待发送信息划分为第一信息和第二信息,并将第二信息置为0,其中,下行待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;第二发送单元,用于将第一信息和置为0的第二信息在该用于下行传输和上行传输转换的符号上发送。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:将经过预处理的待发送信息划分为第一信息和第二信息,其中,待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;将第二信息置为0,并将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上发送。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
将经过预处理的待发送信息划分为第一信息和第二信息,其中,待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;将第二信息置为0,并将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上发送。
通过本发明实施例,由于将信息划分为不同的两个部分,其中一部分置0,然后将该信息在用于下行传输和上行传输转换的符号上进行发送,从而实现了在用于下行传输和上行传输转换的符号上发送数据,解决了相关技术中由于在下行传输和上行传输之间存在过大的保护间隔,导致资源利用率低的问题,从而有效提高了时分双工系统或半双工系统的资源利用率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的信息发送方法的流程图;
图2是根据本发明实施例的TDD系统中在用于下行传输和上行传输转换的符号上发送下行数据且N=2的发送示意图;
图3是对应图2的接收示意图;
图4是根据本发明实施例的在用于下行传输和上行传输转换的符号上发送上行数据且N=4的发送示意图;
图5是对应图4的接收示意图;
图6是根据本发明实施例的在用于下行传输和上行传输转换的符号上发送上行信息且N=4的发送示意图;
图7是对应图6的接收示意图;
图8是根据本发明实施例的用户设备1在用于下行传输和上行传输转换的符号上发送下行数据且N=2的发送示意图;
图9是根据本发明实施例的用户设备2在用于下行传输和上行传输转换的符号上发送下行数据且N=2的发送示意图;
图10是根据本发明实施例的在用于下行传输和上行传输转换的符号包括两个保护间隔时,在第一个保护间隔上发送下行数据的发送示意图;
图11是根据本发明实施例的在用于下行传输和上行传输转换的符号上同时用于两个用户设备发送下行数据的频域结构图;
图12是根据本发明实施例的在上行传输转换到下行传输时,在转换处的下行传输符号上发送下行数据且N=2的发送示意图;
图13是根据本发明实施例的在上行传输转换到下行传输时,在转换处的上行传输符号上发送上行数据且N=2的发送示意图;
图14是根据本发明实施例的在下行传输转换到上行传输时,在转换保护间隔符号的非边界位置发送下行数据且N=4的发送示意图;
图15是根据本发明实施例的信息发送装置的结构框图;
图16是根据本发明实施例的用户设备的示意图;
图17是根据本发明实施例的基站的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种信息发送方法,图1是根据本发明实施例的信息发送方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,将经过预处理的信息划分为第一信息和第二信息,其中,待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息。
步骤S104,将第二信息置为0,并将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上发送。
通过本发明,由于将信息划分为不同的两个部分,其中一部分置0,然后将该信息在用于下行传输和上行传输转换的符号上进行发送,从而实现了在用于下行传输和上行传输转换的符号上发送数据,解决了相关技术中由于在下行传输和上行传输之间存在保护间隔,导致资源利用率低的问题,从而有效提高了时分双工系统或半双工系统的资源利用率。
可选地,上述步骤的执行主体可以是基站,也可以是终端。
可选地,上述的信息可以是上行信息,也可以是下行信息。
Figure PCTCN2017087395-appb-000013
或等于2的正整数,n∈{1,2,......,N-1}。
可选地,用于下行传输和上行传输转换的符号包括以下至少之一:由下行传输转换到上行传输时保护间隔占用的符号、由上行传输转换到下行传输之前的J个上行传输符号、由上行传输转换到下行传输之后的K个下 行传输符号,其中,J、K均为大于或等于1的整数。
在该实施例中,在上行到下行切换时可以人为引入GP,在URLLC场景中可以为基站留出必要的处理时间。
可选地,K=1和/或J=1。
可选地,通过以下步骤对待发送信息进行预处理:将待发送信息在频域上映射为N倍子载波间隔的梳状结构;对梳状结构的待发送信息进行傅里叶反变换处理。
可选地,在将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上进行发送之前,该方法还可以包括:对第一信息进行线性变换。
在该实施例中,优选地,将上述待发送的信息在频域上映射为N倍子载波间隔的梳状结构,然后经过傅里叶反变换,并将输出信息分为第一信息和第二信息。将第一信息作线性变换、第二信息全部置为0后,在用于
Figure PCTCN2017087395-appb-000014
取值范围为1至N-1中的任一整数。
可选地,线性变换的类型由待发送信息的发送端和接收端预先约定。
Figure PCTCN2017087395-appb-000015
可选地,在待发送信息为下行信息,且用于下行传输和上行传输转换
Figure PCTCN2017087395-appb-000016
可选地,在待发送信息为下行信息,且用于下行传输和上行传输转换
Figure PCTCN2017087395-appb-000017
可选地,下行信息包括以下至少之一:下行物理共享信道数据;小区级或系统级的下行公共控制信息;用于信道测量的参考信息。
可选地,在下行信息为下行物理共享信道数据的情况下,在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的信息和转换前的下行符号上发送的信息来自同一个传输块;在由上行传输转换到下行传输时,在用于下行传输和上行传输转换的符号上发送的信息和转换后的下行符号上发送的信息来自同一个传输块。
可选地,在待发送信息为上行信息,且用于下行传输和上行传输转换
Figure PCTCN2017087395-appb-000018
可选地,在待发送信息为上行信息,且用于下行传输和上行传输转换
Figure PCTCN2017087395-appb-000019
可选地,在上行信息为上行物理共享信道数据的情况下,在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的信息和转换后的上行符号上发送的信息来自同一个传输块;在由上行传输转 换到下行传输时,在用于下行传输和上行传输转换的符号上发送的信息和转换前的上行符号上发送的信息来自同一个传输块。
可选地,n=1。
可选地,在待发送信息同时包括下行信息和上行信息,且用于下行传输和上行传输转换的符号为由下行传输转换到上行传输时保护间隔占用
Figure PCTCN2017087395-appb-000020
其中,k为-(N-1)到N-1之间的任一整数。
在该实施例中,在上述信息同时包括下行信息和上行信息的情况下,可将下行信息和上行信息独立进行上述处理。优选地,对于下行信息,在
Figure PCTCN2017087395-appb-000021
送,其中N2为大于或等于2的正整数。
可选地,在待发送信息同时包括下行信息和上行信息,且用于下行传输和上行传输转换的符号为由上行传输转换到下行传输之前的J个上行传输符号,或者由上行传输转换到下行传输之后的K个下行传输符号的情况下,对于下行信息,下行信息对应的第一信息所占用的信息符号为经过预
Figure PCTCN2017087395-appb-000022
到N-1之间的任一整数。
可选地,在下行信息为下行物理共享信道数据的情况下,在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的下行信息和转换前的下行符号上发送的下行信息来自同一个传输块;在由上行传输转换到下行传输时,在用于下行传输和上行传输转换的符号上发送的下行信息和转换后的下行符号上发送的下行信息来自同一个传输块;在上行信息为上行物理共享信道数据的情况下,在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的上行信息和转换后的上行符号上发送的上行信息来自同一个传输块;在由上行传输转换到下行传输时,在用于下行传输和上行传输转换的符号上发送的上行信息和转换前的上行符号上发送上行的信息来自同一个传输块。
可选地,n1和/或n2等于1。
可选地,将待发送信息在频域上映射为N倍子载波间隔的梳状结构包括以下至少之一:在每N个子载波上(也即每间隔N-1个子载波)映射一个待发送信息的比特或符号;将待发送信息从所分配资源块的最低索引开始映射,其中,每两个信息符号之间零的个数为N-1;将不同用户设备的待发送信息映射到不同的频域资源块位置,或相同的频域资源块位置但不同的子载波偏移。
在上述实施例中,三种实施方式是从三个不同的层面上描述了待发送信息在频域上映射为N倍子载波间隔的梳状结构的可选实施例,三者也可 以任一组合。
其中,优选地,在等间隔子载波映射时,将信息从所分配资源块的最低索引开始映射,即最低索引子载波的值为该信息的第一个信息符号,如映射为类似d0,0,0,…,d1,0,0,…d2,0,0,…的结构,其中每两个信息符号之间零的个数为N-1个。
可选地,在将不同用户设备的待发送信息映射到相同的频域资源块位置但不同的子载波偏移的情况下,在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的下行信息为转换前的下行符号上发送的下行信息的线性变换;在由上行传输转换到下行传输时,在用于下行传输和上行传输转换的符号上发送的下行信息为转换后的下行符号上发送的下行信息的线性变换;其中,线性变换的变换因子为
Figure PCTCN2017087395-appb-000023
k为-(N-1)到N-1之间的任一整数;在由下行传输转换到上行传输时,在用于下行传输和上行传输转换的符号上发送的上行信息为转换后的上行符号上发送的上行信息的线性变换;在由上行传输转换到下行传输时,在用于下行传输和上行传输转换的符号上发送的上行信息为转换前的上行符号上发送的上行信息的线性变换;其中,线性变换的变换因子为
Figure PCTCN2017087395-appb-000024
k为-(N-1)到N-1之间的任一整数。
需要说明的是,本领域技术人员应当明晰本发明内容可包含如下情形:所述信息在进行本发明方法处理之前可以有选择地进行编码和/或调制,和/或串并转换,和/或傅里叶变换等处理;在本发明处理之间,可以有选择地增加处理步骤,如在傅里叶反变换后先经过其他预定规则的处理,再将处理后的信息分为所述第一信息和第二信息;在本发明方法处理之后,也可以有选择地进行符号前缀添加、天线端口映射等处理后再执行信息的发送。
在上述实施例中,通过频域上的梳状映射、反傅里叶变换(IFFT变换)、时域上的线性变换以及置零处理等,实现了将信息在用于下行传输和上行传输转换的符号上进行发送。在下行传输和上行传输转换处可以充 分利用空闲资源发送有效数据,有利于提升时分双工系统或半双工系统的资源利用率,解决了相关技术中由于在下行传输和上行传输之间存在过大的保护间隔,导致资源利用率低,以及上行传输和下行传输之间预留处理时间不足的问题。
下面通过具体的实施例来说明本申请的信息发送方法。
实施例一
图2是根据本发明实施例的TDD系统中在用于下行传输和上行传输转换的符号上发送下行数据且N=2的发送示意图。如图2所示,定义待发送信息为d0,d1,d2,…,dK,且待发送信息与上一个下行符号的发送信息来自一个传输块。首先,进行串并转换后在频域上映射为N=2的等间隔子载波梳状结构,即d0,0,d1,0,d2,0,…dK,0,其中,d0对应的是所在资源块最低索引的子载波,K为总的发送信息符号数。随后在进行IFFT变换后,在时域上为N=2倍重复的结构,如图2中,A代表所周期重复部分的完整信息的一份。其中第一信息为最靠前的1/2的信息,第二信息为最靠后的1/2的信息。第一信息保持不变,而第二信息置为0,将处理后的信息添加前缀后发送。其中,可选地,添加前缀内容可以为第一信息内的最靠后的信息符号。
相应地,图3是对应图2的接收示意图。在接收端去掉前缀后,将接收到的信息做重复处理,即将信息的后1/2样点复制为前1/2的样点,然后作DFT变换(傅里叶变换),2倍子载波间隔地提取数据、并串转换等,即得到发送端所发送的下行信息。
需要说明的是,如果将上述用于下行传输和上行传输转换的符号看作是TDD系统中的GP,则此种设计等效的GP长度为0.5个OFDM符号。
实施例二
图4是根据本发明实施例的在用于下行传输和上行传输转换的符号上发送上行数据且N=4的发送示意图。如图4所示,待发送信息为d0,d1, d2,…,dK。首先,在进行串并转换并进行DFT变换后,在频域上映射为N=4的等间隔子载波梳状结构,即d0,0,0,0,d1,0,0,0,d2,0,0,0,…,dK,0,0,0,其中,d0对应的是所在资源块最低索引的子载波,K为总的发送信息符号数。随后,在进行IFFT变换后,在时域上为N=4倍重复的结构,如图3中A代表所周期重复部分的完整信息的一份。其中,第一信息为最靠后的1/4的信息(n=1),第二信息为最靠前的3/4的信息。将第一信息保持不变,而第二信息置为0,将处理后的信息添加前缀后发送。其中,可选地,添加前缀内容可以为第一信息内的最靠后的信息符号。
相应地,图5是对应图4的接收示意图。在接收端去掉前缀后,将接收信息做重复处理,即将信息的前1/4样点复制3次为后3/4的样点,然后作DFT变换,进行4倍子载波间隔地提取数据、IFFT变换及并串转换等,即可以得到发送端发送的上行信息。
需要说明的是,如果将该用于下行传输和上行传输转换的符号看作是TDD系统中的GP,则此种设计等效的GP长度为0.75个SC-FDMA符号。
实施例三
图6是根据本发明实施例的在用于下行传输和上行传输转换的符号上发送上行信息且N=4的发送示意图。如图6所示,待发送的信息为d0,d1,d2,…,dK。首先,在进行串并转换并进行DFT变换后,在频域上映射为N=4的等间隔子载波梳状结构,即0,d0,0,0,0,d1,0,0,0,d2,0,0,0,…,dK,0,0,其中,d0对应的是所在资源块第二个子载波,K为总的发送信息符号数。随后,在进行IFFT变换后,在时域上可分为4个部分。如果定义最前面的部分为A,则后面依次为jA,-A,-jA。其中,将第一信息设为最靠后的1/4的信息(n=1),第二信息设为最靠前的3/4的信息。将第一信息进行线性变换,乘上复因子j,而第二信息置为0,将处理后的信息添加前缀后发送。其中,可选地,添加前缀内容可 以为第一信息内的最靠后的信息符号。
相应地,图7是对应图6的接收示意图。在接收端去掉前缀后,将接收信息做线性变换及重复处理,这需要接收端知悉发送端的映射规则,使得重复处理后的数据与发送一致,然后作DFT变换,进行4倍子载波间隔地提取数据、IFFT变换及并串转换等,即可以得到发送端所发送的下行信息。
需要说明的是,如果将上述用于下行传输和上行传输转换的符号看作是TDD系统中的GP,此种设计等效的GP长度为0.75个SC-FDMA符号长度。
实施例四
在该实施例中,在用于下行传输和上行传输转换的符号内可以同时发送下行信息和上行信息。例如,对于下行信息,发送时定义N=4,且将第一信息定义为最靠前的1/4的信息;对于上行信息,发送时同样定义N=4,且将第一信息定义为最靠后的1/4的信息。发送结构可以类似于上述实施例一至三所述。
需要说明的是,如果定义用于下行传输和上行传输转换的符号为保护间隔符号GP,此时,相当于将GP符号的前1/4用于发送下行信息,GP符号的后1/4用于发送上行数据,即等效的GP长度为0.5个符号长度。
实施例五
图8、9分别是根据本发明实施例的两个用户设备在用于下行传输和上行传输转换的符号上发送下行数据且N=2的发送示意图。图中用户设备1和用户设备2在相同的资源块上发送信息。为了区分不同信息,两个用户设备在在相同的资源块内映射到不同的子载波上。定义用户设备1待发送的信息为d0,d1,d2,…,dK。对于该信息,首先在进行串并转换后在频域上映射为N=2的等间隔子载波梳状结构,即d0,0,d1,0,d2,0,…, dK,0,其中,d0对应的是所在资源块最低索引的子载波,K为总的发送信息符号数。图中定义用户设备2待发送的信息为s0,s1,s2,…,sK。对于该信息,首先在进行串并转换后在频域上映射为N=2的等间隔子载波梳状结构,即0,s0,0,s1,0,s2,0,…,sL,其中,s0对应的是所在资源块内的第二个索引的子载波,L为总的发送信息符号数。
用户设备1在进行IFFT变换后,在时域上为N=2倍重复的结构,可以分别用A、A表示,其中,第一信息为最靠前的1/2的信息,第二信息为最靠后的1/2的信息。将第一信息保持不变,而第二信息置为0,将处理后的信息添加前缀后发送。
用户设备2在进行IFFT变换后,在时域上可分别为两部分,可以分别用B、-B表示。其中,第一信息为最靠前的1/2的信息,第二信息为最靠后的1/2的信息。对第一信息进行线性变换乘上因子-1,而第二信息部分置为0,将处理后的信息添加前缀后发送。
此时,接收端接收到的数据可表示为A+B,0。此时无法正确解调数据,因此,需要在上一个下行符号上进行不同的线性变换,并提前发送所述信息的另一半,且在该符号上用户设备2的第一信息保持不变。此时,接收端获得的数据为A-B,0,结合两个符号的接收信息可以解调获得两个用户设备的发送信息。
实施例六
图10是根据本发明实施例的在用于下行传输和上行传输转换的符号包括两个保护间隔时,在第一个保护间隔上发送下行数据的发送示意图。如图10所示,在下行传输和上行传输之间含有2个GP符号,可以利用本发明实在第一个GP符号上发送下行数据。此时,第一信息占符号长度的1/2,即此时等效的GP长度为1.5个符号。
实施例七
图11是根据本发明实施例的在用于下行传输和上行传输转换的符号上同时用于两个用户设备发送下行数据的频域结构图。如图11所示,用户设备1的下行数据间隔地映射在偶数索引的12个子载波上,映射间隔N=2,频域跨度为24个子载波。图11中用户设备2的下行数据间隔地映射在偶数索引的6个子载波上,映射间隔N=2,频域跨度为12个子载波。两个用户设备的下行数据之间含有偶数个子载波。此时,基站可以通过本发明对两个用户设备的数据进行同时发送,例如,接收端可分别根据类似图3的结构进行接收。
实施例八
图12是根据本发明实施例的TDD系统中在上行传输转换到下行传输时,在转换后的下行传输符号上发送下行数据且N=2的发送示意图。如图12所示,定义待发送信息为d0,d1,d2,…,dK。首先,在进行串并转换后,在频域上映射为N=2的等间隔子载波梳状结构,即d0,0,d1,0,d2,0,…dK,0,其中,d0对应的是所在资源块最低索引的子载波,K为总的发送信息符号数。随后在进行IFFT变换后,在时域上为N=2倍重复的结构,如图12所示,A代表所周期重复部分的完整信息的一份。其中,第一信息为最靠后的1/2的信息,第二信息为最靠前的1/2的信息。第一信息保持不变,而第二信息置为0,将处理后的信息添加前缀后发送。可选地,添加前缀内容可以为第一信息内的最靠后的信息符号。
实施例九
图13是根据本发明实施例的在由上行传输转换到下行传输时,在转换处的上行符号上发送上行传输且N=2的发送示意图。如图13所示,待发送信息为d0,d1,d2,…,dK。首先,在进行串并转换并进行DFT变换后,在频域上映射为N=2的等间隔子载波梳状结构,即d0,0,d1,0,d2,0,…,dK,0,其中,d0对应的是所在资源块最低索引的子载波, K为总的发送信息符号数。随后,在进行IFFT变换后,在时域上为N=2倍重复的结构,如图13中A代表所周期重复部分的完整信息的一份。其中,第一信息为最靠前的1/2的信息(n=1),第二信息为最靠后的1/2的信息。将第一信息保持不变,而第二信息置为0,将处理后的信息添加前缀后发送。可选地,添加前缀内容可以为第一信息内的最靠后的信息符号。
实施例十
图14是根据本发明实施例的在下行传输转换到上行传输时,在转换保护间隔符号的非边界位置发送下行数据且N=4的发送示意图。如图14所示,当所述下行数据在频域上映射为N=4的等间隔子载波梳状结构时,在进行IFFT变换后,在时域上为N=4倍重复的结构,如图14中A代表所周期重复部分的完整信息的一份。其中,将第一、第三和第四份重复信息作为第二信息,将第二份重复信息作为第一信息。将第一信息保持不变,而第二信息置为0,将处理后的信息添加前缀后发送。可选地,添加前缀内容可以为第一信息内的最靠后的信息符号。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种信息发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描 述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图15是根据本发明实施例的信息发送装置的结构框图,如图15所示,该装置包括:
划分模块1402,用于将经过预处理的待发送信息划分为第一信息和第
Figure PCTCN2017087395-appb-000025
为大于或等于2的正整数,n∈{1,2,......,N-1};
发送模块1404,用于将第二信息置为0,并将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上进行发送。
通过该实施例,由于通过划分模块1402将信息划分为不同的两个部分,其中一部分置0,然后发送模块1404将该待发送信息在用于下行传输和上行传输转换的符号上进行发送,从而实现了在用于下行传输和上行传输转换的符号上发送数据,解决了相关技术中由于在下行传输和上行传输之间存在过大的保护间隔,导致资源利用率低的问题,从而有效提高了时分双工系统或半双工系统的资源利用率。
可选地,该装置还可以包括:线性变换模块,用于对第一信息进行线性变换。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种用户设备,如图16所示,该用户设备包括:第一处理器1502,用于将经过预处理的上行待发送信息划分为第一信息和第二信息,将第二信息置为0,其中,上行待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;第一发送单元1504,用于将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上进行发送。
本发明的实施例还提供了一种基站,如图17所示,该基站包括:第二处理器1602,用于将经过预处理的下行待发送信息划分为第一信息和第二信息,将第二信息置为0,其中,下行待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;第二发送单元1604,用于将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上进行发送。
需要说明的是,上述的基站或者用户设备可以分别用于执行根据本发明实施例的信息发送方法。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,将经过预处理的待发送信息划分为第一信息和第二信息,其中,待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;
S2,将第二信息置为0,并将第一信息和置为0的第二信息在用于下行传输和上行传输转换的符号上发送。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明的信息发送过程中,将信息划分为不同的两个部分,其中一部分置0,然后将该信息在用于下行传输和上行传输转换的符号上进行发送,从而实现了在用于下行传输和上行传输转换的符号上发送数据,解决了相关技术中由于在下行传输和上行传输之间存在过大的保护间隔,导致资源利用率低的问题,从而有效提高了时分双工系统或半双工系统的资源利用率。

Claims (27)

  1. 一种信息发送方法,包括:
    将经过预处理的待发送信息划分为第一信息和第二信息,其中,所述待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;
    将所述第二信息置为0,并将所述第一信息和置为0的所述第二信息在所述用于下行传输和上行传输转换的符号上发送。
  2. 根据权利要求1所述的方法,其中,所述第一信息的信息量占所述经过预处理的待发送信息的信息量的
    Figure PCTCN2017087395-appb-100001
    所述第二信息的信息量占所述经过预处理的待发送信息的信息量的
    Figure PCTCN2017087395-appb-100002
    N为大于或等于2的正整数,n∈{1,2,......,N-1}。
  3. 根据权利要求2所述的方法,其中,所述用于下行传输和上行传输转换的符号包括以下至少之一:由下行传输转换到上行传输时保护间隔占用的符号、由上行传输转换到下行传输之前的J个上行传输符号、由上行传输转换到下行传输之后的K个下行传输符号,其中,J、K均为大于或等于1的整数。
  4. 根据权利要求3所述的方法,其中,K=1和/或J=1。
  5. 根据权利要求2所述的方法,其中,对所述待发送信息进行所述预处理包括:
    将所述待发送信息在频域上映射为N倍子载波间隔的梳状结构;
    对所述梳状结构的待发送信息进行傅里叶反变换处理。
  6. 根据权利要求2所述的方法,其中,在将所述第一信息和置为0的所述第二信息在用于下行传输和上行传输转换的符号上发送之前,还包括:
    对所述第一信息进行线性变换。
  7. 根据权利要求6所述的方法,其中,所述线性变换的类型由所述待发送信息的发送端和接收端预先约定。
  8. 根据权利要求6所述的方法,其中,对所述第一信息进行线性变换包括:
    将所述第一信息的每个信息符号乘以线性变换因子
    Figure PCTCN2017087395-appb-100003
    其中,k为-(N-1)到N-1之间的任一整数。
  9. 根据权利要求8所述的方法,其中,k=0。
  10. 根据权利要求3所述的方法,其中,在所述待发送信息为下行信息,且所述用于下行传输和上行传输转换的符号为所述由下行传输转换到上行传输时保护间隔占用的符号的情况下,
    所述第一信息占用的信息符号为所述经过预处理的待发送信息的最靠前的
    Figure PCTCN2017087395-appb-100004
    个信息符号;
    所述第二信息占用的信息符号为所述经过预处理的待发送信息的最靠后的
    Figure PCTCN2017087395-appb-100005
    个信息符号。
  11. 根据权利要求3述的方法,其中,在所述待发送信息为下行信息,且所述用于下行传输和上行传输转换的符号为所述由上行传输转换到下行传输之后的K个下行传输符号的情况下,
    所述第一信息占用的信息符号为所述经过预处理的待发送信息的最靠后的
    Figure PCTCN2017087395-appb-100006
    个信息符号;
    所述第二信息占用的信息符号为所述经过预处理的待发送信息的最靠前的
    Figure PCTCN2017087395-appb-100007
    个信息符号。
  12. 根据权利要求10或11所述的方法,其中,所述下行信息包括以下至少之一:下行物理共享信道数据;小区级或系统级的下行公共控制信息;用于信道测量的参考信息。
  13. 根据权利要求12所述的方法,其中,在所述下行信息为所述下行物理共享信道数据的情况下,
    在由下行传输转换到上行传输时,在所述用于下行传输和上行传输转换的符号上发送的信息和转换前的下行符号上发送的信息来自同一个传输块;
    在由上行传输转换到下行传输时,在所述用于下行传输和上行传输转换的符号上发送的信息和转换后的下行符号上发送的信息来自同一个传输块。
  14. 根据权利要求3所述的方法,其中,在所述待发送信息为上行信息,且所述用于下行传输和上行传输转换的符号为所述由下行传输转换到上行传输时保护间隔占用的符号的情况下,
    所述第一信息占用的信息符号为所述经过预处理的待发送信息的最靠后的
    Figure PCTCN2017087395-appb-100008
    个信息符号;
    所述第二信息占用的信息符号为所述经过预处理的待发送信息的最靠前的
    Figure PCTCN2017087395-appb-100009
    个信息符号。
  15. 根据权利要求3述的方法,其中,在所述待发送信息为上行信息,且所述用于下行传输和上行传输转换的符号为所述由上行传输转换到下行传输之前的J个上行传输符号的情况下,
    所述第一信息占用的信息符号为所述经过预处理的待发送信息的最靠前的
    Figure PCTCN2017087395-appb-100010
    个信息符号;
    所述第二信息占用的信息符号为所述经过预处理的待发送信息的最靠后的
    Figure PCTCN2017087395-appb-100011
    个信息符号。
  16. 根据权利要求14或15所述的方法,其中,在所述上行信息为上行物理共享信道数据的情况下,
    在由下行传输转换到上行传输时,在所述用于下行传输和上行传输转换的符号上发送的信息和转换后的上行符号上发送的信息来自同一个传输块;
    在由上行传输转换到下行传输时,在所述用于下行传输和上行传输转换的符号上发送的信息和转换前的上行符号上发送的信息来自同一个传输块。
  17. 根据权利要求2所述的方法,其中,n=1。
  18. 根据权利要求3所述的方法,其中,在所述待发送信息同时包括下行信息和上行信息,且所述用于下行传输和上行传输转换的符号为所述由下行传输转换到上行传输时保护间隔占用的符号的情况下,
    对于所述下行信息,所述下行信息对应的第一信息所占用的信息符号为所述经过预处理的下行信息的最靠前的
    Figure PCTCN2017087395-appb-100012
    个信息符号,所述下行信息对应的第二信息所占用的信息符号为所述经过预处理的下行信息的最靠后的
    Figure PCTCN2017087395-appb-100013
    个信息符号,所述
    Figure PCTCN2017087395-appb-100014
    个信息符号对应的线性变换因子为
    Figure PCTCN2017087395-appb-100015
    其中,k为-(N1-1)到N1-1之间的任一整数,N1为大于或等于2的正整数,n1∈{1,2,......,N1-1};
    对于所述上行信息,所述上行信息对应的第一信息所占用的信息符号为所述经过预处理的上行信息的最靠后的
    Figure PCTCN2017087395-appb-100016
    个信息符号,所述 上行信息对应的第二信息所占用的信息符号为所述经过预处理的上行信息的最靠前的
    Figure PCTCN2017087395-appb-100017
    个信息符号,所述
    Figure PCTCN2017087395-appb-100018
    个信息符号对应的性变换因子为
    Figure PCTCN2017087395-appb-100019
    其中,k为-(N2-1)到N2-1之间的任一整数,N2为大于或等于2的正整数,n2∈{1,2,......,N2-1}。
  19. 根据权利要求3所述的方法,其中,在所述待发送信息同时包括下行信息和上行信息,且所述用于下行传输和上行传输转换的符号为所述由上行传输转换到下行传输之前的J个上行传输符号,或者所述由上行传输转换到下行传输之后的K个下行传输符号的情况下,
    对于所述下行信息,所述下行信息对应的第一信息所占用的信息符号为所述经过预处理的下行信息的最靠后的
    Figure PCTCN2017087395-appb-100020
    个信息符号,所述下行信息对应的第二信息所占用的信息符号为所述经过预处理的下行信息的最靠前的
    Figure PCTCN2017087395-appb-100021
    个信息符号,所述
    Figure PCTCN2017087395-appb-100022
    个信息符号对应的线性变换因子为
    Figure PCTCN2017087395-appb-100023
    其中,k为-(N1-1)到N1-1之间的任一整数,N1为大于或等于2的正整数,n1∈{1,2,......,N1-1};
    对于所述上行信息,所述上行信息对应的第一信息所占用的信息符号为所述经过预处理的上行信息的最靠前的
    Figure PCTCN2017087395-appb-100024
    个信息符号,所述上行信息对应的第二信息所占用的信息符号为所述经过预处理的上行信息的最靠后的
    Figure PCTCN2017087395-appb-100025
    个信息符号,所述
    Figure PCTCN2017087395-appb-100026
    个信息符号对应的性变换因子为
    Figure PCTCN2017087395-appb-100027
    其中,k为-(N2-1)到N2-1之间的任一整数,N2为大于或等于2的正整数,n2∈{1,2,......,N2-1}。
  20. 根据权利要求18或19所述的方法,其中,
    在所述下行信息为下行物理共享信道数据的情况下,在由下行传输转换到上行传输时,在所述用于下行传输和上行传输转换的符号上发送的下行信息和转换前的下行符号上发送的下行信息来自同一个 传输块;在由上行传输转换到下行传输时,在所述用于下行传输和上行传输转换的符号上发送的下行信息和转换后的下行符号上发送的下行信息来自同一个传输块;
    在所述上行信息为上行物理共享信道数据的情况下,在由下行传输转换到上行传输时,在所述用于下行传输和上行传输转换的符号上发送的上行信息和转换后的上行符号上发送的上行信息来自同一个传输块;在由上行传输转换到下行传输时,在所述用于下行传输和上行传输转换的符号上发送的上行信息和转换前的上行符号上发送上行的信息来自同一个传输块。
  21. 根据权利要求18或19所述的方法,其中,n1和/或n2等于1。
  22. 根据权利要求5所述的方法,其中,将所述待发送信息在频域上映射为N倍子载波间隔的梳状结构包括以下至少之一:
    在每N个子载波上映射一个所述待发送信息的比特或符号;
    将所述待发送信息从所分配资源块的最低索引开始映射,其中,每两个信息符号之间零的个数为N-1;
    将不同用户设备的所述待发送信息映射到不同的频域资源块位置,或相同的频域资源块位置但不同的子载波偏移。
  23. 根据权利要求22所述的方法,其中,在将所述不同用户设备的所述待发送信息映射到相同的频域资源块位置但不同的子载波偏移的情况下,
    在由下行传输转换到上行传输时,在所述用于下行传输和上行传输转换的符号上发送的下行信息为转换前的下行符号上发送的下行信息的线性变换;在由上行传输转换到下行传输时,在所述用于下行 传输和上行传输转换的符号上发送的下行信息为转换后的下行符号上发送的下行信息的线性变换;其中,所述线性变换的变换因子为
    Figure PCTCN2017087395-appb-100028
    k为-(N-1)到N-1之间的任一整数;
    在由下行传输转换到上行传输时,在所述用于下行传输和上行传输转换的符号上发送的上行信息为转换后的上行符号上发送的上行信息的线性变换;在由上行传输转换到下行传输时,在所述用于下行传输和上行传输转换的符号上发送的上行信息为转换前的上行符号上发送的上行信息的线性变换;其中,所述线性变换的变换因子为
    Figure PCTCN2017087395-appb-100029
    k为-(N-1)到N-1之间的任一整数。
  24. 一种信息发送装置,包括:
    划分模块,设置为将经过预处理的待发送信息划分为第一信息和第二信息;
    发送模块,设置为将所述第二信息置为0,并将所述第一信息和置为0的所述第二信息在用于下行传输和上行传输转换的符号上发送。
  25. 根据权利要求24所述的装置,其中,还包括:
    线性变换模块,设置为对所述第一信息进行线性变换。
  26. 一种用户设备,其中,包括:
    第一处理器,设置为将经过预处理的上行待发送信息划分为第一信息和第二信息,并将所述第二信息置为0,其中,所述上行待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;
    第一发送单元,设置为将所述第一信息和置为0的所述第二信息在所述用于下行传输和上行传输转换的符号上发送。
  27. 一种基站,包括:
    第二处理器,设置为将经过预处理的下行待发送信息划分为第一 信息和第二信息,并将所述第二信息置为0,其中,所述下行待发送信息为在用于下行传输和上行传输转换的符号上待发送的信息;
    第二发送单元,设置为将所述第一信息和置为0的所述第二信息在所述用于下行传输和上行传输转换的符号上发送。
PCT/CN2017/087395 2016-06-08 2017-06-07 信息发送方法及装置、用户设备和基站 WO2017211285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610409144.1 2016-06-08
CN201610409144.1A CN107484253B (zh) 2016-06-08 2016-06-08 信息发送方法及装置、用户设备和基站

Publications (1)

Publication Number Publication Date
WO2017211285A1 true WO2017211285A1 (zh) 2017-12-14

Family

ID=60578390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087395 WO2017211285A1 (zh) 2016-06-08 2017-06-07 信息发送方法及装置、用户设备和基站

Country Status (2)

Country Link
CN (1) CN107484253B (zh)
WO (1) WO2017211285A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130732B (zh) * 2018-11-01 2021-12-21 华为技术有限公司 通信资源的配置方法、通信装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197615A (zh) * 2007-12-11 2008-06-11 中兴通讯股份有限公司 Lte tdd系统的信号发送方法和装置
CN101917252A (zh) * 2010-08-06 2010-12-15 电子科技大学 一种基于添零方式的ci-ofdm通信方法
WO2013001342A1 (en) * 2011-06-30 2013-01-03 Alcatel Lucent Method and apparatus for data transmission in wireless communication system
CN104125644A (zh) * 2013-04-24 2014-10-29 电信科学技术研究院 指示、使用保护间隔上的可用子帧的方法、设备和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222309B (zh) * 2008-01-25 2013-06-05 中兴通讯股份有限公司 Lte tdd系统上行harq进程的配置方法和装置
CN101931456B (zh) * 2010-08-09 2016-05-25 中兴通讯股份有限公司 一种移动通信系统中测量参考信号的发送方法
WO2012070917A2 (ko) * 2010-11-26 2012-05-31 Jung Hyeok Koo 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신기 및 그 수신방법
WO2013167160A1 (en) * 2012-05-07 2013-11-14 Nokia Siemens Networks Oy Speeding up user equipment reachability after network element restart
EP2823594A4 (en) * 2012-09-25 2015-10-14 Nec China Co Ltd APPARATUS AND METHOD FOR INCREASED COVERAGE
US9591596B2 (en) * 2013-08-08 2017-03-07 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system and apparatus for same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197615A (zh) * 2007-12-11 2008-06-11 中兴通讯股份有限公司 Lte tdd系统的信号发送方法和装置
CN101917252A (zh) * 2010-08-06 2010-12-15 电子科技大学 一种基于添零方式的ci-ofdm通信方法
WO2013001342A1 (en) * 2011-06-30 2013-01-03 Alcatel Lucent Method and apparatus for data transmission in wireless communication system
CN104125644A (zh) * 2013-04-24 2014-10-29 电信科学技术研究院 指示、使用保护间隔上的可用子帧的方法、设备和系统

Also Published As

Publication number Publication date
CN107484253A (zh) 2017-12-15
CN107484253B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
CN109474402B (zh) 一种发送、接收物理上行控制信道的方法及设备
WO2018171474A1 (zh) 数据传输的方法、设备和系统
KR102647621B1 (ko) 서브프레임 배열을 위한 장치 및 방법
US11206112B2 (en) Grant-free uplink transmission method and apparatus
CN108667492B (zh) 一种预编码颗粒度的确定方法和装置
WO2020103687A1 (zh) 一种信号传输方法及装置
CN111565458B (zh) 一种下行传输方法及其装置
WO2014190792A1 (zh) 灵活子帧的处理方法及装置
TW201818751A (zh) 傳輸信號的方法、終端設備和網路設備
GB2558586A (en) Resource block waveform transmission structures for uplink communications
WO2018228434A1 (zh) 上行控制信道的发送方法、接收方法、装置、终端及基站
CN112740632B (zh) 52.6GHz以上的可配置波形
TWI704787B (zh) 一種上行控制通道傳輸方法及裝置
WO2017076155A1 (zh) 一种数据发送方法及装置
WO2017211285A1 (zh) 信息发送方法及装置、用户设备和基站
US20190386723A1 (en) Signal transmission method and apparatus
WO2016161916A1 (zh) 一种数据传输方法及设备
WO2017121208A1 (zh) 传输时间间隔tti的确定方法及装置
WO2020063260A1 (zh) 数据传输方法及装置
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
WO2018006783A1 (zh) 一种传输方法、用户设备及基站
WO2017193373A1 (zh) 资源映射方法、装置以及通信系统
WO2016101615A1 (zh) 数据传输、数据处理方法及装置
CN113765635B (zh) 数据变换预处理方法、装置及网络设备
EP4207622A1 (en) Data sending method and apparatus, storage medium, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809724

Country of ref document: EP

Kind code of ref document: A1