WO2017211254A1 - 媒体接入控制方法及无线接入设备 - Google Patents

媒体接入控制方法及无线接入设备 Download PDF

Info

Publication number
WO2017211254A1
WO2017211254A1 PCT/CN2017/087193 CN2017087193W WO2017211254A1 WO 2017211254 A1 WO2017211254 A1 WO 2017211254A1 CN 2017087193 W CN2017087193 W CN 2017087193W WO 2017211254 A1 WO2017211254 A1 WO 2017211254A1
Authority
WO
WIPO (PCT)
Prior art keywords
control entity
air interface
dedicated control
public
dedicated
Prior art date
Application number
PCT/CN2017/087193
Other languages
English (en)
French (fr)
Inventor
张健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17809693.9A priority Critical patent/EP3468136B1/en
Publication of WO2017211254A1 publication Critical patent/WO2017211254A1/zh
Priority to US16/211,948 priority patent/US10841960B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a media access control method and a wireless access device.
  • the fifth generation of mobile communication (English: The 5 th generation, 5G) technology network will support more diverse business needs and scenarios, such as enhanced mobile broadband (enhanced Mobile BroadBand, eMBB), mass Massive Machine Type Communication (mMTC), ultra reliable machine type communication (uMTC), etc.
  • enhanced mobile broadband enhanced Mobile BroadBand, eMBB
  • massive MTC massive Machine Type Communication
  • uMTC ultra reliable machine type communication
  • the wireless access device (such as a base station) usually only supports the processing of a single air interface, and cannot satisfy the support of the multi-air interface technology.
  • the wireless access device such as a base station
  • the present application provides a medium access control method and a wireless access device.
  • the present application provides a media access control method, where the method is used in a wireless access device, where the wireless access device supports at least two air interfaces, and the wireless access device and the terminal pass the designated air interface. And performing the communication, the designated air interface is at least one of the at least two air interfaces, where the wireless access device includes a public control entity and a dedicated control entity corresponding to the at least two air interfaces, the method includes:
  • the public control entity determines a dedicated control entity corresponding to the designated air interface between the wireless access device and the terminal; the public control entity interacts with the dedicated control entity corresponding to the designated air interface to implement media access control of the designated air interface Features.
  • the solution shown in the first aspect divides an execution entity of a media access control (MAC) layer in a wireless access device into a dedicated control entity and a corresponding one of at least one air interface.
  • the control entity implements the media access control function of the air interface through the interaction between the public control entity and the dedicated control entity corresponding to any air interface, thereby implementing the wireless access device in the wireless communication system to support the multiple air interface.
  • MAC media access control
  • the public control entity has a dedicated control entity corresponding to the air interface Interact, including:
  • the dedicated control entity acquires wireless condition information of the designated air interface, and sends the wireless condition information to the public control entity;
  • the public control entity determines the radio resource interval corresponding to the designated air interface according to the wireless condition information, and performs resource scheduling on the data transmitted through the designated air interface in the radio resource interval corresponding to the designated air interface.
  • the implementation provides an implementation scheme of the resource scheduling function.
  • the public control entity interacts with the dedicated control entity corresponding to the designated air interface, including:
  • the public control entity determines the size information of the media access control layer protocol data unit corresponding to the designated air interface, and sends the size information to the dedicated control entity corresponding to the designated air interface and the radio link control entity corresponding to the designated air interface, where a wireless link control entity is disposed in the wireless access device;
  • the dedicated control entity generates a medium access control layer protocol data unit according to the size information and the radio link control layer protocol data unit delivered by the radio link control entity, and sends the medium access control layer protocol data unit to the Specifies the physical layer corresponding to the air interface.
  • the implementation manner provides an implementation scheme of the MAC layer multiplexing function when the execution entity of the medium access control layer in the wireless access device is divided into a dedicated control entity corresponding to a common control entity and at least one air interface. .
  • the public control entity interacts with the dedicated control entity corresponding to the designated air interface, including:
  • the dedicated control entity determines size information of the media access control layer protocol data unit scheduled by the specified air interface, and sends the size information to the public control entity;
  • the public control entity sends the size information to the radio link control entity corresponding to the designated air interface, and sends the radio link control layer protocol data unit delivered by the radio link control entity to the dedicated control entity, the radio chain
  • the path control entity is disposed in the wireless access device;
  • the dedicated control entity generates a medium access control layer protocol data unit according to the size information and the radio link control layer protocol data unit delivered by the radio link control entity, and sends the medium access control layer protocol data unit to the Specifies the physical layer corresponding to the air interface.
  • the implementation provides another implementation of the MAC layer multiplexing function. Program.
  • the public control entity interacts with the dedicated control entity corresponding to the designated air interface, including:
  • the dedicated control entity receives the data sent by the physical layer corresponding to the designated air interface, generates a media access control layer service data unit (SDU) according to the data sent by the physical layer, and accesses the media access control layer service data.
  • SDU media access control layer service data unit
  • the unit sends to the public control entity;
  • the public control entity sends the media access control layer service data unit to the radio link control entity corresponding to the designated air interface.
  • the implementation Separating an execution entity of a medium access control layer in the wireless access device into a public control entity and at least one
  • the implementation provides a implementation scheme of the MAC layer demultiplexing function when the respective control entities corresponding to the air interfaces are provided.
  • the public control entity interacts with the dedicated control entity corresponding to the designated air interface, including:
  • the public control entity When the wireless access device sends data to the terminal through the designated air interface, the public control entity generates downlink authorization information corresponding to the data, and transmits the downlink authorization information to the dedicated control entity; the dedicated control entity passes the designated air interface.
  • the physical layer sends the downlink authorization information to the terminal, and receives a hybrid automatic repeat request response message for the data returned by the terminal through the physical layer of the designated air interface, and sends the hybrid automatic repeat request response message.
  • Giving the public control entity; the public control entity determines to retransmit the data or send new data according to the hybrid automatic repeat request response message;
  • the public control entity When the wireless access device sends data through the designated air interface receiving terminal, the public control entity generates uplink authorization information corresponding to the data, and transmits the uplink authorization information to the dedicated control entity; the dedicated control entity passes the designated air interface.
  • the physical layer sends the uplink authorization information to the terminal; after receiving the data, the dedicated control entity generates a hybrid automatic repeat request response message for the data, and sends the hybrid automatic repeat request response message to the terminal And the public control entity; the public control entity, configured to generate new uplink authorization information according to the hybrid automatic repeat request response message.
  • the implementation provides an uplink and downlink hybrid automatic retransmission function.
  • Implementation plan When the execution entity of the medium access control layer in the wireless access device is divided into a dedicated control entity corresponding to a common control entity and at least one air interface, the implementation provides an uplink and downlink hybrid automatic retransmission function. Implementation plan.
  • the public control entity interacts with the dedicated control entity corresponding to the designated air interface, including:
  • the dedicated control entity When the wireless access device sends data to the terminal through the designated air interface, the dedicated control entity generates downlink authorization information corresponding to the data, and sends the downlink authorization information to the terminal through the physical layer of the designated air interface, and passes the air interface. Receiving, by the physical layer, a hybrid automatic repeat request response message for the data returned by the terminal, determining, according to the hybrid automatic repeat request response message, retransmitting the data or sending new data;
  • the dedicated control entity When the wireless access device sends data through the designated air interface receiving terminal, the dedicated control entity generates uplink authorization information corresponding to the data, and sends the uplink authorization information to the terminal; after receiving the data, the dedicated control entity receives the data. Generating a hybrid automatic repeat request response message for the data, and transmitting the hybrid automatic repeat request response message to the terminal; the dedicated control entity generates new uplink grant information according to the hybrid automatic repeat request response message.
  • the implementation provides another uplink and downlink hybrid automatic retransmission function.
  • Implementation plan When the execution entity of the medium access control layer in the wireless access device is divided into a common control entity corresponding to a public control entity and at least one air interface, the implementation provides another uplink and downlink hybrid automatic retransmission function. Implementation plan.
  • the public control entity interacts with the dedicated control entity corresponding to the designated air interface, including:
  • the dedicated control entity receives the random access request message sent by the terminal through the designated air interface, and sends the random access request message to the public control entity, where the random access request message includes a random access preamble or a random access procedure message. ;
  • the public control entity interacts with the radio resource control entity corresponding to the designated air interface to generate a response message corresponding to the random access request message, and sends the response message to the dedicated control entity, where the response message includes a random access response message or a contention resolution solution.
  • the radio resource control entity is disposed in the wireless access device;
  • the dedicated control entity sends the response message to the terminal through the designated air interface.
  • the implementation provides an implementation scheme of the random access function.
  • the public control entity interacts with the dedicated control entity corresponding to the designated air interface, including:
  • the dedicated control entity receives a random access request message sent by the terminal through the designated air interface, where the random access request message includes a random access preamble or a random access procedure message 3;
  • the dedicated control entity interacts with the radio resource control entity corresponding to the designated air interface to generate a response message corresponding to the random access request message, where the response message includes a random access response message or a contention resolution message, and the radio resource control
  • the entity is disposed in the wireless access device;
  • the dedicated control entity sends the response message to the terminal through the designated air interface.
  • the implementation provides another implementation solution of the random access function.
  • a second aspect provides a medium access control method, where the method is used in a wireless access device, where the wireless access device supports at least two air interfaces, and the wireless access device includes a dedicated one of the at least two air interfaces. Controlling the entity, the method includes:
  • the dedicated control entity independently implements the media access control function of the air interface corresponding to the dedicated control entity, or interacts with other dedicated control entities in the dedicated control entity corresponding to the at least two air interfaces to implement media access of the air interface. control function.
  • the solution shown in the second aspect divides the execution entity of the medium access control layer in the wireless access device into a dedicated control entity corresponding to each of the at least one air interface, and implements the air interface by using each dedicated control entity independently or interacting with each other.
  • the media access control function realizes the support of the wireless access device in the wireless communication system for multiple air interfaces.
  • the dedicated control entity interacts with another dedicated control entity in the dedicated control entity corresponding to the at least two air interfaces, including:
  • the dedicated control entity acquires wireless condition information of the corresponding air interface
  • Resource scheduling is performed on data transmitted through the air interface.
  • the implementation provides an implementation scheme of the resource scheduling function.
  • the embodiment of the present application provides a wireless access device, where the wireless access device supports at least two types of air interfaces, and the wireless access device communicates with the terminal through a designated air interface, where the designated air interface is the at least At least one of the two air interfaces, the radio access device includes: a public control entity and a dedicated control entity corresponding to each of the at least two air interfaces; the public control entity and the corresponding control entity corresponding to the at least two air ports are used for A medium access control method as provided by the first aspect or the various possible implementations of the first aspect.
  • the embodiment of the present application provides a wireless access device, where the wireless access device supports at least two air interfaces, and the wireless access device includes: a dedicated control entity corresponding to each of the at least two air interfaces; A dedicated control entity corresponding to each of the air interfaces is used to implement the medium access control method provided by the second aspect or the various possible implementation manners of the second aspect.
  • an embodiment of the present application provides a network device, where the network device includes a processor and a memory, where the processor is configured to execute a software program of the memory storage to implement the foregoing first aspect or various aspects of the first aspect.
  • the embodiment of the present application further provides a computer readable medium, where the computer readable medium stores a media access control method provided by implementing the first aspect or the first possible implementation manner of the first aspect
  • the instructions, or the computer readable medium store instructions for implementing the media access control method provided by the second aspect or the first possible implementation of the second aspect.
  • FIG. 1 is an architectural diagram of a network environment involved in the present application
  • FIG. 2 is a schematic structural diagram of a distributed base station involved in the implementation environment shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • 4-8 are schematic diagrams of five distributions of a common control entity and a dedicated control entity in a distributed base station;
  • FIG. 9 is a flowchart of a media access control method according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a resource allocation method according to the embodiment shown in FIG. 9;
  • FIG. 11 is a flowchart of another resource allocation method according to the embodiment shown in FIG. 9;
  • Figure 12 is a flowchart of a multiplexing method involved in the embodiment shown in Figure 9;
  • FIG. 13 is a flowchart of another multiplexing method involved in the embodiment shown in FIG. 9;
  • FIG. 14 is a flowchart of a demultiplexing method according to the embodiment shown in FIG. 9; FIG.
  • FIG. 15 is a flowchart of a downlink HARQ control method according to the embodiment shown in FIG. 9;
  • FIG. 16 is a flowchart of another downlink HARQ control method according to the embodiment shown in FIG. 9;
  • FIG. 17 is a flowchart of an uplink HARQ control method according to the embodiment shown in FIG. 9;
  • FIG. 18 is a flowchart of another uplink HARQ control method according to the embodiment shown in FIG. 9;
  • FIG. 19 is a flowchart of a random access control method according to the embodiment shown in FIG. 9;
  • FIG. 20 is a flowchart of another random access control method according to the embodiment shown in FIG. 9;
  • 21 to 24 are four distribution diagrams of dedicated control entities in a distributed base station
  • 25 is a flowchart of a media access control method provided by an embodiment of the present application.
  • FIG. 26 is a block diagram of a medium access control apparatus according to an embodiment of the present application.
  • FIG. 27 is a block diagram of a medium access control apparatus according to an embodiment of the present application.
  • FIG. 1 is a structural diagram of a network environment involved in the present application.
  • the network environment includes the following network devices: a wireless access device 110, and at least one terminal 120 that accesses or is to access the wireless access device 110.
  • the present application proposes a multi-air interface coexistence idea, that is, based on A wireless access device of the wireless access technology supports a plurality of air interfaces at the same time. For wireless services with different service quality requirements between the wireless access device and the terminal, data transmission can be performed through different air interfaces.
  • the wireless access device 110 in the present application supports at least two air interfaces, and the wireless access device 110 communicates with the terminal 120 through a designated air interface, which is in at least two air interfaces supported by the wireless access device 110. At least one type of each type of air interface is responsible for transmitting a wireless service between the wireless access device 110 and the terminal 120, or a plurality of wireless services having similar service quality requirements.
  • an air interface may correspond to only one air interface, or an air interface may also correspond to two or more air interfaces.
  • the terminal 120 involved in the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, and various forms of user equipment (English: User Equipment, abbreviation: UE), mobile station (English: Mobile station, abbreviation: MS), terminal (terminal), terminal equipment (Terminal Equipment), soft terminal, and so on.
  • user equipment English: User Equipment, abbreviation: UE
  • mobile station English: Mobile station, abbreviation: MS
  • terminal terminal
  • Terminal Equipment Terminal Equipment
  • soft terminal and so on.
  • the above mentioned devices are collectively referred to as a terminal or a UE.
  • the wireless access device 110 may be an independent base station, such as a macro base station, a micro base station, or a pico base station, or the wireless access device 110 may also be a distributed base station that constitutes a cloud radio access network, or the wireless access device 110 may also be It can be a wireless router.
  • an independent base station such as a macro base station, a micro base station, or a pico base station
  • the wireless access device 110 may also be a distributed base station that constitutes a cloud radio access network, or the wireless access device 110 may also be It can be a wireless router.
  • the wireless access device 110 in the network environment shown in FIG. 1 is a distributed base station.
  • FIG. 2 it is a schematic structural diagram of a distributed base station according to an embodiment of the present application.
  • the base station includes a baseband unit 210 (BBU) and at least one radio access point (RAP).
  • the at least one wireless access point 220 is also referred to as a remote radio frequency endpoint (RRH) of the distributed base station.
  • a common public radio interface (CPRI) is connected between the baseband unit 210 and the wireless access point 220.
  • CPRI common public radio interface
  • FIG. 3 is a schematic structural diagram of a network device 30 according to an embodiment of the present disclosure.
  • the network device 30 can be separately implemented as the baseband unit 210 or the wireless access point 220 in the distributed base station corresponding to FIG. 2 .
  • the network device 30 can include a processor 31 and a communication interface 34.
  • the processor 31 may include one or more processing units, which may be a central processing unit (CPU) or a network processor (NP).
  • the processor 31 is configured to schedule and process an association message (an association request or a re-association request) sent by the terminal.
  • Communication interface 34 may include a wired network interface, such as an Ethernet interface or a fiber optic interface, and may also include a wireless network interface, such as a cellular mobile network interface.
  • the communication interface 34 may include an Ethernet interface for connecting to the upper layer network, and a wireless interface for connecting the distributed base station.
  • Communication interface 34 is controlled by processor 31.
  • the network device 30 may further include a memory 33, and the processor 31 may be connected to the memory 33 and the communication interface 34 by using a bus.
  • the memory 33 can be used to store a software program that can be executed by the processor 31.
  • various types of service data or user data can be stored in the memory 33.
  • the network device 30 may further include an output device 35 and an input device 37.
  • the output device 35 and the input device 37 are connected to the processor 31.
  • the output device 35 may be a display for displaying information, a power amplifier device or a printer that plays sound, and the output device 35 may further include an output controller for providing output to a display screen, a power amplifier device, or a printer.
  • the input device 37 may be a device such as a mouse, a keyboard, an electronic stylus or a touch panel for inputting information by the user, and the input device 37 may further include an output controller for receiving and processing from the mouse, the keyboard, the electronic Input from devices such as stylus or touch panel.
  • the medium access control MAC entity corresponding to the at least two air interfaces in the wireless access device may be composed of a common control entity and a dedicated control entity corresponding to the at least two air interfaces. Any one of the dedicated control entities corresponding to each of the at least two air interfaces, the public control entity interacting with the dedicated control entity to implement a media access control function.
  • the media access control function may include: resource scheduling (including semi-static configuration and dynamic allocation of radio resources between different air interfaces and resource allocation of specific air interfaces), multiplexing/demultiplexing, priority processing, and hybrid automatic repeat request. (English: hybrid automatic retransmission request, HARQ) and random access control.
  • the dedicated control entity may interact with the public control entity to implement a function in the media access control function, or may interact with the public control entity to implement multiple functions in the media access control function.
  • the dedicated control entity may be referred to as a HARQ entity.
  • the wireless access device is a distributed base station including a BBU and at least one RAP.
  • FIG. 4 is a schematic diagram showing five distributions of a common control entity and a dedicated control entity in a distributed base station.
  • one cell of the distributed base station supports at least two air interfaces (only air interface 1 and air interface 2 are shown in the figure), and each air interface corresponds to a media outlet control MAC entity.
  • RRC Radio resource control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • physical layer English: Physical Layer, PHY
  • the public control entity, the radio resource control entity corresponding to each air interface, the packet data convergence protocol corresponding to each air interface, and the radio link control entity corresponding to each air interface are set in the BBU, and each air port corresponds to a dedicated
  • the control entity and the physical layer corresponding to each air interface are set in each RAP.
  • the public control entity, the radio resource control entity corresponding to each air interface, the packet data convergence protocol corresponding to each air interface, the radio link control entity corresponding to each air interface, and the dedicated control entity corresponding to each air interface are set.
  • the physical layer corresponding to each air interface is set in each RAP.
  • the public control entity, the radio resource control entity corresponding to each air interface, the packet data convergence protocol corresponding to each air interface, the radio link control entity corresponding to each air interface, and the dedicated control corresponding to the partial air interface (air interface 1)
  • the entity is set in the BBU, and the dedicated control entity corresponding to the remaining air interface (air interface 2) and the physical layer corresponding to each air interface are set in each RAP.
  • the public control entity, the radio resource control entity corresponding to each air interface, the packet data convergence protocol corresponding to each air interface, the radio link control entity corresponding to each air interface, and the dedicated control entity corresponding to each air interface The uplink processing part is set in the BBU, and the downlink processing part of the dedicated control entity corresponding to each air interface is set in the RAP.
  • the uplink processing part in a dedicated control entity refers to a part of the dedicated control entity that is responsible for processing the uplink service.
  • the downlink processing part in the dedicated control entity refers to the negative in the dedicated control entity. Responsible for the processing of the downlink business.
  • a public control entity a radio resource control entity corresponding to each air interface, a packet data convergence protocol corresponding to each air interface, a radio link control entity corresponding to each air interface, and a part of a dedicated control entity corresponding to each air interface
  • the uplink processing part of the dedicated control entity (the dedicated control entity corresponding to the air interface 1) is set in the BBU; the downlink processing part of the part of the dedicated control entity (the dedicated control entity corresponding to the air interface 1), and the dedicated control entity corresponding to the various air interfaces
  • Other part of the dedicated control entity (the dedicated control entity corresponding to the air interface 2) is set in the RAP.
  • the common control entity or the dedicated control entity may be implemented by a corresponding BBU or a processor in the RAP executing a corresponding software program.
  • the execution entity of the medium access control MAC layer in the wireless access device is divided into a dedicated control entity corresponding to a common control entity and at least one air interface, and the The interaction between the public control entity and the dedicated control entity corresponding to any air interface implements media access control of the traffic transmitted in the air interface, thereby implementing wireless access device support for multiple air interfaces in the wireless communication system.
  • the public control entity interacting with the dedicated control entity to implement the media access control function reference may be made to the description in the corresponding embodiment in FIG. 9 below.
  • FIG. 9 is a flowchart of a media access control method provided by an embodiment of the present application.
  • the method can be used in the wireless access device 110 in the implementation environment as shown in FIG. 1 , the wireless access device supports at least two air interfaces, and the at least two air interfaces correspond to the same wireless interface protocol, and the wireless access device includes A public control entity and a dedicated control entity corresponding to each of the at least two air interfaces, as shown in FIG. 10, the method includes:
  • Step 901 The public control entity determines a dedicated control entity corresponding to the designated air interface between the wireless access device and the terminal.
  • the public control entity in the wireless access device and the dedicated control entity corresponding to the various air interfaces may execute a preset software program by the processor in the wireless access device (for example, the software program may be It is implemented by storing it in a memory in the wireless access device.
  • various air interfaces are pre-designed with corresponding dedicated control entities, and the method for the public control entity to determine the dedicated control entity corresponding to the designated air interface between the wireless access device and the terminal can be divided into the following two types:
  • the public control entity determines that the air interface that meets the service requirement is the designated air interface according to the service requirement of the communication service and the design features of the various air interfaces, and further determines a dedicated control entity corresponding to the designated air interface.
  • the public control entity may determine the air interface that receives the communication service data as the designated air interface, and determine a dedicated control entity corresponding to the designated air interface.
  • Step 902 The public control entity interacts with the dedicated control entity corresponding to the designated air interface to implement the media access control function of the air interface.
  • FIG. 10 is a flowchart of a resource allocation method according to an embodiment of the present application.
  • a public control entity is responsible for resource allocation among various air interfaces, and is responsible for each type of air interface.
  • Resource scheduling As shown in FIG. 10, the resource allocation method may include the following steps:
  • Step 1001 The dedicated control entity acquires wireless condition information of the designated air interface.
  • the dedicated control entity corresponding to the designated air interface can measure and obtain the wireless condition information of the air interface through the physical layer corresponding to the designated air interface, such as a channel quality indicator (CQI) and a signal to noise ratio (English: Signal Noise) Ratio, SNR) and signal to noise plus interference power ratio (SINR).
  • CQI channel quality indicator
  • SNR Signal Noise Ratio
  • SINR signal to noise plus interference power ratio
  • Step 1002 The dedicated control entity corresponding to the designated air interface sends the wireless condition information to a public control entity, and the public control entity receives the wireless condition information.
  • Step 1003 The public control entity determines, according to the wireless condition information, a radio resource interval corresponding to the designated air interface, and performs resource scheduling on the data transmitted through the designated air interface in the radio resource interval corresponding to the designated air interface.
  • the public control entity may obtain wireless condition information corresponding to various air interfaces, and determine wireless resource intervals that can be used by each air interface according to the wireless condition information corresponding to the air interfaces.
  • the radio resource interval may be a frequency interval of the radio resource, and the radio resource interval that can be used by the designated air interface is a frequency band that can transmit data on the designated air interface.
  • the public control entity when determining, by the radio condition information, the radio resource interval corresponding to the designated air interface, the public control entity may determine, as the designation, the best frequency interval corresponding to the radio condition (such as CQI/SNR/SINR) of the designated air interface.
  • the radio resource interval corresponding to the air interface when determining, by the radio condition information, the radio resource interval corresponding to the designated air interface, the public control entity may determine, as the designation, the best frequency interval corresponding to the radio condition (such as CQI/SNR/SINR) of the designated air interface.
  • the radio resource interval corresponding to the air interface such as CQI/SNR/SINR
  • the public control entity may also allocate various radio resource intervals for various air interfaces in combination with various air interface design features and various air interface wireless conditions, wherein the air interface design feature may indicate service requirements of service data transmitted in the air interface.
  • the public control entity may assign a radio resource interval to the air interface with the highest service demand according to the design features of the air interface. For example, the frequency range corresponding to the radio condition corresponding to the air interface with the highest service demand is determined as the air interface corresponding to the air interface. The radio resource interval), and then, from the remaining radio resource intervals, allocate radio resource intervals for the air interface with the second highest service demand, and so on, until all the air ports are allocated.
  • the public control entity may also perform resource scheduling on data transmitted through the designated air interface, for example, scheduling data sent to the terminal through the designated air interface or The resource used for the signaling, and the downlink control information (Downlink Control Information, DCI) used to transmit data or signaling on the designated air interface for the terminal connected to the wireless access device.
  • the public control entity notifies the scheduling result to the dedicated control entity corresponding to the designated air interface, and the dedicated control entity performs downlink control processing according to the scheduling result, and sends the downlink control information to the physical layer, which is processed by the physical layer and then sent to the terminal.
  • the public control entity may perform resource scheduling on data transmitted through various air interfaces by combining upper/downstream buffer information of various air interfaces, and the uplink/downstream buffer information of various air interfaces may be uniformly maintained by the public control entity, or
  • the uplink/downstream buffer information corresponding to each air interface can also be maintained by a dedicated control entity corresponding to the air interface.
  • the dedicated control entity may notify the public control entity of the uplink/downstream buffer information of the air interface.
  • FIG. 11 is a flowchart of another resource allocation method according to an embodiment of the present application.
  • a public control entity is responsible for resource allocation among various air interfaces, and a dedicated control entity is responsible for this. Resource scheduling within the air interface.
  • the resource allocation method may include the following steps:
  • Step 1101 The dedicated control entity acquires wireless condition information of the designated air interface.
  • Step 1102 The dedicated control entity sends the wireless condition information to a public control entity, and the public control entity receives The wireless condition information.
  • Step 1103 The public control entity determines, according to the wireless condition information, a radio resource interval corresponding to the designated air interface.
  • Step 1104 The public control entity sends the radio resource interval corresponding to the designated air interface to the dedicated control entity, where the dedicated control entity receives the radio resource interval corresponding to the designated air interface.
  • Step 1105 The dedicated control entity performs resource scheduling on the data transmitted through the designated air interface in the radio resource interval corresponding to the designated air interface.
  • the public control entity determines the radio resources that can be used by each of the air interfaces after determining the radio resource ranges that can be used by the various air ports according to the wireless condition information corresponding to the various air interfaces.
  • the interval is notified to the dedicated control entity corresponding to the various air interfaces.
  • the resources used for data or signaling sent to the terminal through the air interface corresponding to the dedicated control entity may be scheduled, and the wireless access is connected.
  • the terminal of the device generates downlink control information used for transmitting data or signaling on the air interface.
  • the dedicated control entity may also perform resource scheduling on the data transmitted through the corresponding air interface in combination with the uplink/downstream buffer information of the corresponding air interface.
  • the public control entity When the uplink/downstream buffer information of the corresponding air interface is uniformly maintained by the public control entity, the public control entity The upper/downstream buffer information of the corresponding air interface may be notified to the dedicated control entity.
  • FIG. 12 is a flowchart of a multiplexing method according to an embodiment of the present application. As shown in FIG. 12, the multiplexing method may include the following steps:
  • Step 1201 The public control entity determines size information of a Media Access Control Layer Protocol Data Unit (MAC PDU) corresponding to the designated air interface.
  • MAC PDU Media Access Control Layer Protocol Data Unit
  • the public control entity may determine the size information of the MAC PDU corresponding to the designated air interface according to the resource scheduling for the data transmitted through the designated air interface.
  • Step 1202 The public control entity sends the size information to the dedicated control entity corresponding to the designated air interface and the radio link control entity corresponding to the designated air interface, and the dedicated control entity and the radio link control entity corresponding to the designated air interface receive the size. information.
  • the wireless link control entity is disposed in the wireless access device.
  • Step 1203 The public control entity sends the radio link control layer protocol data unit RLC PDU delivered by the radio link control entity to the dedicated control entity, where the dedicated control entity receives the radio link control layer protocol data unit.
  • Step 1204 The dedicated control entity generates a medium access control layer protocol data unit according to the size information and the radio link control layer protocol data unit delivered by the radio link control entity.
  • Step 1205 The dedicated control entity sends the media access control layer protocol data unit to the physical layer corresponding to the designated air interface.
  • FIG. 13 is a flowchart of another multiplexing method according to an embodiment of the present application. As shown in FIG. 13, the multiplexing method may include the following steps:
  • Step 1301 The dedicated control entity determines size information of the media access control layer protocol data unit of the corresponding designated air interface scheduling.
  • Step 1302 The dedicated control entity sends the size information to the public control entity, and the public control entity receives the size information.
  • Step 1303 The public control entity sends the size information to the radio link control entity corresponding to the designated air interface, and the radio link control entity receives the size information.
  • Step 1304 The public control entity sends the radio link control layer protocol data unit delivered by the radio link control entity to the dedicated control entity, and the dedicated control entity receives the radio link control layer protocol data unit.
  • Step 1305 The dedicated control entity generates a medium access control layer protocol data unit according to the size information and the radio link control layer protocol data unit delivered by the radio link control entity.
  • Step 1306 The dedicated control entity sends the media access control layer protocol data unit to the physical layer corresponding to the designated air interface.
  • the dedicated control entity may further determine the service bearer to be scheduled according to the RRC configuration or the dynamic scheduling decision, or may determine, by the public control entity, the service bearer to be scheduled.
  • FIG. 14 is a flowchart of a demultiplexing method according to an embodiment of the present application. As shown in FIG. 14, the demultiplexing method may include the following steps:
  • Step 1401 The dedicated control entity receives data sent by the physical layer of the corresponding designated air interface.
  • Step 1402 The dedicated control entity generates a media access control layer service data unit according to the data.
  • Step 1403 The dedicated control entity sends the media access control layer service data unit to the public control entity, where the public control entity receives the media access control layer service data unit.
  • Step 1404 The public control entity sends the media access control layer service data unit to the radio link control entity corresponding to the designated air interface.
  • FIG. 15 is a flowchart of a downlink HARQ control method according to an embodiment of the present application.
  • the downlink HARQ control method may include the following steps:
  • Step 1501 The public control entity generates downlink authorization information corresponding to the data when the wireless access device sends data to the terminal through the designated air interface.
  • Step 1502 The public control entity transmits the downlink grant information (DL assignment) to the dedicated control entity.
  • DL assignment downlink grant information
  • the downlink authorization information may be HARQ information, including information such as a new data indicator (NDI), a transport block (TB), and a HARQ process ID.
  • NDI new data indicator
  • TB transport block
  • HARQ process ID a HARQ process ID
  • Step 1503 The dedicated control entity sends the downlink authorization information to the terminal by using a physical layer of the designated air interface.
  • Step 1504 The dedicated control entity receives, by the physical layer of the designated air interface, a hybrid automatic repeat request response message returned by the terminal for the data, and sends the hybrid automatic repeat request response message to the public control entity.
  • the hybrid automatic repeat request response message is ACK/NACK.
  • Step 1505 The public control entity determines to retransmit the data or send new data according to the hybrid automatic repeat request response message.
  • the public control entity decides to schedule a new transmission or retransmit the HARQ redundancy version (RV) according to the hybrid automatic repeat request response message, and generates new downlink authorization information.
  • RV redundancy version
  • FIG. 16 is a flowchart of another downlink HARQ control method according to an embodiment of the present application. As shown in FIG. 16, the downlink HARQ control method may include the following steps:
  • Step 1601 The dedicated control entity generates downlink authorization information corresponding to the data when the wireless access device sends data to the terminal through the designated air interface.
  • Step 1602 The dedicated control entity sends the downlink authorization information to the terminal by using a physical layer of the designated air interface.
  • step 1603 the dedicated control entity receives the hybrid automatic repeat request response message for the data returned by the terminal through the physical layer of the designated air interface, and determines to retransmit the data or send new data according to the hybrid automatic repeat request response message.
  • FIG. 17 is a flowchart of an uplink HARQ control method according to an embodiment of the present application.
  • the uplink HARQ control method may include the following steps:
  • Step 1701 The public control entity generates uplink authorization information corresponding to the data when the wireless access device sends data through the designated air interface receiving terminal.
  • Step 1702 The public control entity transmits the uplink authorization information to the dedicated control entity.
  • Step 1703 The dedicated control entity sends the uplink authorization information to the terminal by using a physical layer of the designated air interface.
  • Step 1704 After receiving the data, the dedicated control entity generates a hybrid automatic repeat request response message for the data, and sends the hybrid automatic repeat request response message to the terminal and the public control entity.
  • Step 1705 The public control entity generates new uplink grant information according to the hybrid automatic repeat request response message.
  • uplink grant (UL grant) information such as HARQ information, including new data indication, transport block size, redundancy version, and the like, are indicated by the public control entity to the dedicated control entity, and are processed by the dedicated control entity through the physical layer.
  • the above information is indicated to the UE.
  • the UE sends the uplink data packet to the PHY corresponding to the air interface by specifying the time-frequency resource location.
  • the MAC PDU is sent to the corresponding dedicated control entity, and is sent by the dedicated control entity to the public control entity, and the dedicated control entity generates
  • the HARQ ACK/NACK is sent to the UE, and the HARQ ACK/NACK message is indicated to the public control entity, and the public control entity decides to schedule a new transmission or retransmit the HARQ redundancy version, and the public control entity sends the new downlink authorization information to the dedicated Control entity.
  • FIG. 18 is a flowchart of another uplink HARQ control method according to an embodiment of the present application.
  • the uplink HARQ control method may include the following steps:
  • Step 1801 The dedicated control entity generates uplink authorization information corresponding to the data when the wireless access device sends data through the corresponding designated air interface receiving terminal.
  • Step 1802 The dedicated control entity sends the uplink authorization information to the terminal.
  • Step 1803 After receiving the data, the dedicated control entity generates a hybrid automatic repeat request response message for the data.
  • Step 1804 The dedicated control entity sends the hybrid automatic repeat request response message to the terminal.
  • Step 1805 The dedicated control entity generates new uplink grant information according to the hybrid automatic repeat request response message.
  • FIG. 19 is a flowchart of a random access control method according to an embodiment of the present application. As shown in FIG. 19, the random access control method may include the following steps:
  • Step 1901 The dedicated control entity receives the random access request message sent by the terminal through the designated air interface, and sends the random access request message to the public control entity, where the random access request message includes a random access preamble or a random access procedure message.
  • Step 1902 The public control entity interacts with the radio resource control entity corresponding to the designated air interface to generate a response message corresponding to the random access request message, and sends the response message to the dedicated control entity, where the response message includes a random access response message or Competition resolved messages.
  • the radio resource control entity is disposed in the wireless access device.
  • Step 1903 The dedicated control entity sends the response message to the terminal by using the designated air interface.
  • the random access procedure of the UE does not distinguish between air interfaces, and the UE accesses the network through a common frequency interval or a public air interface or a default air interface.
  • the MAC layer related function module of the random access process is located in the public control entity, and the physical layer corresponding to the air interface performs a random access process by interacting with the public control entity, and the dedicated control entity corresponding to the air interface transparently transmits the message.
  • the wireless access device Take the wireless access device as a distributed base station as an example. The specific process is as follows:
  • the UE sends a random access preamble to the radio access network
  • the RAP of the radio access network receives and detects the preamble sent by the UE through the physical layer of the default air interface, and the RAP instructs the public MAC layer of the BBU to generate a random access response (RAR) message, and the BBU sends the RAR message.
  • RAR random access response
  • the RAP sends the RAR to the UE.
  • the UE sends a random access procedure message 3 (msg3) containing the UE identification information to the radio access network, and the message may further include a radio resource control connection request (RRC Connection Request) message.
  • the RRU receives the message from the UE and sends it to the BBU.
  • the public MAC layer in the BBU interacts with the RRC layer to generate a contention resolution message for random access, and the message may further include a RRC connection establishment message; the BBU sends the message to the RAP, and the RAP sends the message to the UE; Into the process.
  • FIG. 20 is a flowchart of another random access control method according to an embodiment of the present application. As shown in FIG. 20, the random access control method may include the following steps:
  • Step 2001 The dedicated control entity receives a random access request message sent by the terminal through the designated air interface, where the random access request message includes a random access preamble or a random access procedure message 3.
  • Step 2002 The dedicated control entity interacts with the radio resource control entity corresponding to the designated air interface to generate a response message corresponding to the random access request message, where the response message includes a random access response message or a contention resolution message.
  • Step 2003 The dedicated control entity sends the response message to the terminal through the designated air interface.
  • the MAC layer related function module of the random access process is located in a dedicated control entity corresponding to a specified air interface, and the physical layer of the designated air interface performs a random access process by interacting with a dedicated control entity of the designated air interface, and the public control entity is transparent. Transmitting messages (eg, the public control entity interacts with the RRC layer).
  • the RAR is directly generated by the dedicated control entity of the designated air interface and sent to the UE, and no public control entity is required to participate.
  • Step 3) and step 4) still require the participation of the public control entity, and the public control entity interacts with the RRC layer, and the contention resolution message can be generated by the dedicated control entity or the public control entity.
  • the medium access control method shown in the embodiment of the present application configures a public control entity and a dedicated control entity corresponding to various air interfaces in a wireless access device that supports at least two air interfaces in a cell, and adopts a public control entity.
  • the interaction between the dedicated control entities corresponding to the various air interfaces implements various media access control functions, thereby implementing flexible multi-air interface resource allocation, enabling the network architecture to support multi-air interface coexistence and better adapting services of diverse services. Quality requirements improve spectrum utilization and reduce the cost of the forward link.
  • the media access control MAC entity corresponding to the at least two types of air interfaces in the wireless access device may be composed of a dedicated control entity corresponding to each of the at least two air interfaces, and the at least two air ports respectively
  • the corresponding dedicated control entities can interact with each other or independently implement media access control functions.
  • media access control The functions may include: resource scheduling (including semi-static configuration and dynamic allocation of radio resources between different air interfaces and resource allocation of specific air interfaces), multiplexing/demultiplexing, priority processing, hybrid automatic repeat request, random access control, etc. .
  • the dedicated control entities corresponding to the at least two air interfaces can mutually interact to implement the resource scheduling function, and other functions such as multiplexing/demultiplexing, priority processing, hybrid automatic repeat request, and random access control can be performed. Implemented by any one of the dedicated control entities.
  • the wireless access device is a distributed base station including a BBU and at least one RAP.
  • a distributed base station including a BBU and at least one RAP.
  • FIG. 21 to FIG. 24 four distribution diagrams of dedicated control entities in a distributed base station are shown.
  • one cell of the distributed base station supports at least two air interfaces (only air interface 1 and air interface 2 are shown in the figure).
  • the radio resource control entity corresponding to each air interface, the packet data convergence protocol corresponding to each air interface, and the radio link control entity corresponding to each air interface are set in the BBU, and the dedicated control entity corresponding to each air interface and each The physical layer corresponding to the air interface is set in each RAP.
  • the radio resource control entity corresponding to each air interface, the packet data convergence protocol corresponding to each air interface, the radio link control entity corresponding to each air interface, and the dedicated control entity corresponding to each air interface are all set in the BBU.
  • the physical layer corresponding to each air interface is set in each RAP.
  • the radio resource control entity corresponding to each air interface, the packet data convergence protocol corresponding to each air interface, the radio link control entity corresponding to each air interface, and the dedicated control entity corresponding to the partial air interface are set in the BBU, and the rest
  • the dedicated control entity corresponding to the air interface and the physical layer corresponding to each air interface are set in each RAP.
  • the radio resource control entity corresponding to each air interface and the packet data convergence protocol entity corresponding to each air interface are set in the BBU, and the radio link control entity corresponding to each air interface, the dedicated control entity corresponding to each air interface, and The physical layer corresponding to each air interface is set in each RAP.
  • an uplink processing part and a downlink part of some or all of the dedicated control entities corresponding to the at least two types of air interfaces respectively may be respectively disposed in the BBU and each RAP.
  • the dedicated control entities corresponding to the various air interfaces may be implemented by a processor in the corresponding BBU or RAP executing a corresponding software program.
  • a dedicated control entity can be independently implemented by dividing an execution entity of a medium access control MAC layer in a wireless access device into a dedicated control entity corresponding to each of at least one air interface.
  • the media access control function of the air interface corresponding to the dedicated control entity, or a dedicated control entity may also interact with other dedicated control entities in the dedicated control entity corresponding to the at least two air interfaces to implement media access of the air interface.
  • control function For example, the dedicated control entities corresponding to the at least one air interface can negotiate and determine the resources used by the various air interfaces, and perform media access control on the services transmitted in the corresponding air ports according to the negotiated resources, thereby implementing wireless Support for multiple air interfaces by wireless access devices in a communication system.
  • FIG. 25 is a flowchart of a media access control method provided by an embodiment of the present application.
  • the method can be used in the wireless access device 110 in the implementation environment as shown in FIG. 1 , the wireless access device supports at least two air interfaces, and the at least two air interfaces correspond to the same wireless interface protocol, and the wireless access device includes A public control entity and a dedicated control entity corresponding to each of the at least two air interfaces, as shown in FIG. 25, the method includes:
  • Step 2501 The dedicated control entity acquires wireless condition information of the corresponding air interface.
  • Step 2502 The dedicated control entity determines, according to the wireless condition information of the air interface, the wireless resource interval corresponding to the air interface by negotiating with another dedicated control entity in the dedicated control entity corresponding to each of the at least two air interfaces.
  • Step 2503 The dedicated control entity performs resource scheduling on data transmitted through the air interface in a radio resource interval corresponding to the air interface.
  • a dedicated control entity may independently implement media access control steps other than resource scheduling in the media access control of the service transmitted by the air interface corresponding to the dedicated control entity, such as Multiplexing/demultiplexing, priority processing, hybrid automatic repeat request, and random access control.
  • the medium access control method shown in the embodiment of the present application configures a dedicated control entity corresponding to each air interface in a wireless access device that supports at least two air interfaces, and uses a dedicated control entity corresponding to each air interface.
  • the steps of the flexible multi-air interface resource allocation enable the network architecture to support the coexistence of multiple air interfaces, better adapt to the service quality requirements of the diverse services, improve the spectrum utilization rate, and reduce the cost of the preamble link.
  • the radio access device supports at least three air interfaces, where the media access control MAC entity corresponding to the at least two air interfaces may be dedicated by a common control entity and the at least two air interfaces respectively.
  • the control entity is composed of any one of the dedicated control entities corresponding to the at least two air interfaces, and the public control entity interacts with the dedicated control entity to implement a media access control function;
  • the medium access control MAC entity corresponding to the at least one type of air interface other than the at least two types of air interfaces may be composed of a dedicated control entity corresponding to each of the at least one air interface, and the corresponding specific control entities of the at least one air interface are independently implemented.
  • FIG. 26 shows a block diagram of a medium access control apparatus provided by an embodiment of the present application.
  • the device may be implemented as a part or all of the wireless access device 110 of the network environment shown in FIG. 1 by hardware or a combination of software and hardware.
  • the wireless access device is configured to perform the method shown in any one of FIG. 9 to FIG. All or part of the steps.
  • the device may include: a common control unit 2601 and a dedicated control unit 2602 corresponding to each of the at least two air ports;
  • the device is presented in the form of a functional unit.
  • a "unit” herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above.
  • ASIC application-specific integrated circuit
  • the common control unit 2601 has the same or similar function as the public control entity in the method shown in any of Figs. 9 to 20.
  • the dedicated control unit 2602 is for the same or similar function as the dedicated control entity in the method of any of Figures 9-20.
  • FIG. 27 shows a block diagram of a medium access control apparatus provided by an embodiment of the present application.
  • the device may be implemented as part or all of the wireless access device 110 of the network environment shown in FIG. 1 by hardware or a combination of software and hardware.
  • the wireless access device is configured to perform all or part of the steps of the method shown in FIG.
  • the device may include: a dedicated control unit 2701 corresponding to each of at least two air ports;
  • the device is presented in the form of a functional unit.
  • the "unit” here can refer to a specific application.
  • An application-specific integrated circuit (ASIC) a circuit, a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality.
  • ASIC application-specific integrated circuit
  • the dedicated control unit 2701 is for the same or similar function as the dedicated control entity in the method shown in FIG.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种媒体接入控制方法,属于无线通信技术领域。该方法用于支持至少两种空口的无线接入设备中,该无线接入设备包括公共控制实体以及该至少两种空口各自对应的专用控制实体,该公共控制实体确定该无线接入设备与终端之间的指定空口对应的专用控制实体,并与该指定空口对应的专用控制实体进行交互,以实现该指定空口的媒体接入控制功能,将无线接入设备中的媒体接入控制MAC层的执行实体划分为一个公共控制实体和至少一种空口各自对应的专用控制实体,通过公共控制实体与任一空口对应的专用控制实体之间的交互来实现该空口的媒体接入控制功能,从而实现无线通信系统中的无线接入设备对多空口的支持。

Description

媒体接入控制方法及无线接入设备
本申请要求于2016年06月06日提交中国专利局、申请号为201610394865.X、发明名称为“媒体接入控制方法及无线接入设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种媒体接入控制方法及无线接入设备。
背景技术
随着无线通信技术的不断发展,第五代移动通信(英文:The 5th generation,5G)技术网络将支持更加多样化的业务需求和场景,例如增强移动宽带(enhanced Mobile BroadBand,eMBB)、海量机器类型连接(massive Machine Type Communication,mMTC)、超高可靠机器类型连接(ultra reliable Machine Type Communication,uMTC)等。
对服务质量(英文:quality of service,缩写:QoS)需求差异较大的业务有时对空口(英文:air interface,缩写:AI)技术的需求也不同,例如eMBB业务和URLLC业务对AI技术的需求不同,因此为了支持更加多样化的业务需求,无线通信系统需要支持的AI技术也将越来越多。
在实现本申请的过程中,发明人发现现有技术存在如下问题:
现有的无线通信系统中,无线接入设备(比如基站)通常只支持对单空口的处理,无法满足对多空口技术的支持。
发明内容
为了解决现有技术中无线接入设备(比如基站)通常只支持对单空口的处理,无法满足对多空口技术的支持的问题,本申请提供了一种媒体接入控制方法及无线接入设备。
第一方面,本申请提供了一种媒体接入控制方法,该方法用于无线接入设备中,该无线接入设备支持至少两种空口,且该无线接入设备与终端之间通过指定空口进行通信,该指定空口是该至少两种空口中的至少一种,该无线接入设备包括公共控制实体以及该至少两种空口各自对应的专用控制实体,该方法包括:
该公共控制实体确定该无线接入设备与该终端之间的指定空口对应的专用控制实体;该公共控制实体与该指定空口对应的专用控制实体进行交互,以实现该指定空口的媒体接入控制功能。
该第一方面所示的方案,将无线接入设备中的媒体接入控制(英文:Media Access Control,缩写:MAC)层的执行实体划分为一个公共控制实体和至少一种空口各自对应的专用控制实体,通过公共控制实体与任一空口对应的专用控制实体之间的交互来实现该空口的媒体接入控制功能,从而实现无线通信系统中的无线接入设备对多空口的支持。
在第一方面的第一种可能实现方式中,该公共控制实体与该空口对应的专用控制实体 进行交互,包括:
该专用控制实体获取该指定空口的无线条件信息,并将该无线条件信息发送给该公共控制实体;
该公共控制实体根据该无线条件信息确定该指定空口对应的无线资源区间,并在该指定空口对应的无线资源区间内,针对通过该指定空口传输的数据进行资源调度。
在将无线接入设备中的媒体接入控制层的执行实体划分为一个公共控制实体和至少一种空口各自对应的专用控制实体时,该实现方式提供了资源调度功能的实现方案。
在第一方面的第二种可能实现方式中,该公共控制实体与该指定空口对应的专用控制实体进行交互,包括:
该公共控制实体确定该指定空口对应的媒体接入控制层协议数据单元的尺寸信息,并将该尺寸信息发送给该指定空口对应的专用控制实体以及该指定空口对应的无线链路控制实体,该无线链路控制实体设置于该无线接入设备中;
该公共控制实体将该无线链路控制实体下发的无线链路控制层协议数据单元发送给该专用控制实体;
该专用控制实体根据该尺寸信息以及该无线链路控制实体下发的无线链路控制层协议数据单元生成媒体接入控制层协议数据单元,并将该媒体接入控制层协议数据单元发送给该指定空口对应的物理层。
在将无线接入设备中的媒体接入控制层的执行实体划分为一个公共控制实体和至少一种空口各自对应的专用控制实体时,该实现方式提供了一种MAC层复用功能的实现方案。
在第一方面的第三种可能实现方式中,该公共控制实体与该指定空口对应的专用控制实体进行交互,包括:
该专用控制实体确定该指定空口调度的媒体接入控制层协议数据单元的尺寸信息,并将该尺寸信息发送给该公共控制实体;
该公共控制实体将该尺寸信息发送给该指定空口对应的无线链路控制实体,并将该无线链路控制实体下发的无线链路控制层协议数据单元发送给该专用控制实体,该无线链路控制实体设置于该无线接入设备中;
该专用控制实体根据该尺寸信息以及该无线链路控制实体下发的无线链路控制层协议数据单元生成媒体接入控制层协议数据单元,并将该媒体接入控制层协议数据单元发送给该指定空口对应的物理层。
在将无线接入设备中的媒体接入控制层的执行实体划分为一个公共控制实体和至少一种空口各自对应的专用控制实体时,该实现方式提供了另一种MAC层复用功能的实现方案。
结合第一方面的第二或者第三种可能实现方式,在第一方面的第四种可能实现方式中,该公共控制实体与该指定空口对应的专用控制实体进行交互,包括:
该专用控制实体接收该指定空口对应的物理层发送的数据,根据该物理层发送的数据生成媒体接入控制层服务数据单元(service data unit,SDU),并将该媒体接入控制层服务数据单元发送给该公共控制实体;
该公共控制实体将该媒体接入控制层服务数据单元发送给该指定空口对应的无线链路控制实体。
在将无线接入设备中的媒体接入控制层的执行实体划分为一个公共控制实体和至少一 种空口各自对应的专用控制实体时,该实现方式提供了一种MAC层解复用功能的实现方案。
在第一方面的第五种可能实现方式中,该公共控制实体与该指定空口对应的专用控制实体进行交互,包括:
该公共控制实体在该无线接入设备通过该指定空口向终端发送数据时,生成该数据对应的下行授权信息,并将该下行授权信息传送给该专用控制实体;该专用控制实体通过该指定空口的物理层将该下行授权信息发送给该终端,并通过该指定空口的物理层接收该终端返回的、针对该数据的混合自动重传请求响应消息,并将该混合自动重传请求响应消息发送给该公共控制实体;该公共控制实体根据该混合自动重传请求响应消息确定重传该数据或者发送新数据;
该公共控制实体在该无线接入设备通过该指定空口接收终端发送数据时,生成该数据对应的上行授权信息,并将该上行授权信息传送给该专用控制实体;该专用控制实体通过该指定空口的物理层将该上行授权信息发送给该终端;该专用控制实体在接收该数据之后,生成针对该数据的混合自动重传请求响应消息,并将该混合自动重传请求响应消息发送给该终端和该公共控制实体;该公共控制实体,用于根据该混合自动重传请求响应消息生成新的上行授权信息。
在将无线接入设备中的媒体接入控制层的执行实体划分为一个公共控制实体和至少一种空口各自对应的专用控制实体时,该实现方式提供了一种上下行混合自动重传功能的实现方案。
在第一方面的第六种可能实现方式中,该公共控制实体与该指定空口对应的专用控制实体进行交互,包括:
该专用控制实体在该无线接入设备通过该指定空口向终端发送数据时,生成该数据对应的下行授权信息,通过该指定空口的物理层将该下行授权信息发送给该终端,并通过该空口的物理层接收该终端返回的、针对该数据的混合自动重传请求响应消息,根据该混合自动重传请求响应消息确定重传该数据或者发送新数据;
该专用控制实体在该无线接入设备通过该指定空口接收终端发送数据时,生成该数据对应的上行授权信息,并将该上行授权信息发送给该终端;该专用控制实体在接收该数据之后,生成针对该数据的混合自动重传请求响应消息,并将该混合自动重传请求响应消息发送给该终端;该专用控制实体根据该混合自动重传请求响应消息生成新的上行授权信息。
在将无线接入设备中的媒体接入控制层的执行实体划分为一个公共控制实体和至少一种空口各自对应的专用控制实体时,该实现方式提供了另一种上下行混合自动重传功能的实现方案。
在第一方面的第七种可能实现方式中,该公共控制实体与该指定空口对应的专用控制实体进行交互,包括:
该专用控制实体接收终端通过该指定空口发送的随机接入请求消息,将该随机接入请求消息发送给该公共控制实体,该随机接入请求消息包括随机接入前导或者随机接入过程消息3;
该公共控制实体与该指定空口对应的无线资源控制实体交互生成该随机接入请求消息对应的响应消息,将该响应消息发送给该专用控制实体,该响应消息包括随机接入响应消息或者竞争解决消息,该无线资源控制实体设置于该无线接入设备中;
该专用控制实体通过该指定空口向该终端发送该响应消息。
在将无线接入设备中的媒体接入控制层的执行实体划分为一个公共控制实体和至少一种空口各自对应的专用控制实体时,该实现方式提供了一种随机接入功能的实现方案。
在第一方面的第八种可能实现方式中,该公共控制实体与该指定空口对应的专用控制实体进行交互,包括:
该专用控制实体接收终端通过该指定空口发送的随机接入请求消息,该随机接入请求消息包括随机接入前导或者随机接入过程消息3;
该专用控制实体通过该公共控制实体与该指定空口对应的无线资源控制实体交互生成该随机接入请求消息对应的响应消息,该响应消息包括随机接入响应消息或者竞争解决消息,该无线资源控制实体设置于该无线接入设备中;
该专用控制实体通过该指定空口向该终端发送该响应消息。
在将无线接入设备中的媒体接入控制层的执行实体划分为一个公共控制实体和至少一种空口各自对应的专用控制实体时,该实现方式提供了另一种随机接入功能的实现方案。
第二方面,提供了一种媒体接入控制方法,该方法用于无线接入设备中,该无线接入设备支持至少两种空口,该无线接入设备包括该至少两种空口各自对应的专用控制实体,该方法包括:
该专用控制实体独立实现该专用控制实体对应的空口的媒体接入控制功能,或者,与该至少两种空口各自对应的专用控制实体中的其它专用控制实体交互,以实现该空口的媒体接入控制功能。
该第二方面所示的方案,将无线接入设备中的媒体接入控制层的执行实体划分为至少一种空口各自对应的专用控制实体,通过各个专用控制实体独立或者相互交互来实现该空口的媒体接入控制功能,从而实现无线通信系统中的无线接入设备对多空口的支持。
在第二方面的第一种可能实现方式中,专用控制实体与该至少两种空口各自对应的专用控制实体中的其它专用控制实体交互实现,包括:
该专用控制实体获取对应的空口的无线条件信息;
该专用控制实体根据该空口的无线条件信息与该至少两种空口各自对应的专用控制实体中的其它专用控制实体协商确定该空口对应的无线资源区间,并在该空口对应的无线资源区间内,针对通过该空口传输的数据进行资源调度。
在将无线接入设备中的媒体接入控制层的执行实体划分为至少一种空口各自对应的专用控制实体时,该实现方式提供了一种资源调度功能的实现方案。
第三方面,本申请实施例提供了一种无线接入设备,该无线接入设备支持至少两种空口,且该无线接入设备与终端之间通过指定空口进行通信,该指定空口是该至少两种空口中的至少一种,该无线接入设备包括:公共控制实体以及该至少两种空口各自对应的专用控制实体;该公共控制实体以及该至少两种空口各自对应的专用控制实体用于实现如上述第一方面或者第一方面的各种可能的实现方式所提供的媒体接入控制方法。
第四方面,本申请实施例提供了一种无线接入设备,该无线接入设备支持至少两种空口,该无线接入设备包括:该至少两种空口各自对应的专用控制实体;该至少两种空口各自对应的专用控制实体用于实现如上述第二方面或者第二方面的各种可能的实现方式所提供的媒体接入控制方法。
第五方面,本申请实施例提供了一种网络设备,该网络设备包括处理器和存储器;该处理器被配置为执行存储器存储的软件程序,以实现上述第一方面或者第一方面的各种可能实现方式所提供的媒体接入控制方法,或者,以实现上述第二方面或者第二方面的各种可能实现方式所提供的媒体接入控制方法。
第六方面,本申请实施例还提供了一种计算机可读介质,该计算机可读介质存储有用于实现第一方面或第一方面的第一种可能的实现方式所提供的媒体接入控制方法的指令,或者,该计算机可读介质存储有用于实现第二方面或第二方面的第一种可能的实现方式所提供的媒体接入控制方法的指令。
附图说明
图1是本申请所涉及的网络环境的架构图;
图2是图1所示实施环境涉及的一种分布式基站的结构示意图;
图3是本申请一个实施例提供的一种网络设备的结构示意图;
图4-图8是分布式基站中公共控制实体和专用控制实体的五种分布示意图;
图9是本申请一个实施例提供的媒体接入控制方法的流程图;
图10是图9所示实施例涉及的一种资源分配方法的流程图;
图11是图9所示实施例涉及的另一种资源分配方法的流程图;
图12是图9所示实施例涉及的一种复用方法的流程图;
图13是图9所示实施例涉及的另一种复用方法的流程图;
图14是图9所示实施例涉及的一种解复用方法的流程图;
图15是图9所示实施例涉及的一种下行HARQ控制方法的流程图;
图16是图9所示实施例涉及的另一种下行HARQ控制方法的流程图;
图17是图9所示实施例涉及的一种上行HARQ控制方法的流程图;
图18是图9所示实施例涉及的另一种上行HARQ控制方法的流程图;
图19是图9所示实施例涉及的一种随机接入控制方法的流程图;
图20是图9所示实施例涉及的另一种随机接入控制方法的流程图;
图21-图24是分布式基站中专用控制实体的四种分布示意图;
图25是本申请一个实施例提供的媒体接入控制方法的流程图;
图26是本申请一个实施例提供的媒体接入控制装置的框图;
图27是本申请一个实施例提供的媒体接入控制装置的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1是本申请所涉及的一种网络环境的架构图。该网络环境包括以下网络设备:无线接入设备110,以及接入或待接入该无线接入设备110的至少一个终端120。
为了在满足5G网络中多种无线业务的服务质量(英文:Quality of Service,QoS)需求的同时尽可能的提高无线资源的利用率,本申请提出一种多空口共存的思路,即基于 一种无线接入技术的无线接入设备同时支持多种空口,对于无线接入设备与终端之间对服务质量需求差异较大的无线业务,可以通过不同的空口进行数据传输。
本申请中的无线接入设备110支持至少两种空口,且该无线接入设备110与终端120之间通过指定空口进行通信,该指定空口是无线接入设备110支持的至少两种空口中的至少一种,每种空口负责传输无线接入设备110和终端120之间的一种无线业务,或者多种对服务质量需求较为接近的无线业务。在本申请实施例中,一种空口可以只对应一个空口,或者,一种空口也可以对应两个或者两个以上的空口。
本申请所涉及到的终端120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(英文:User Equipment,缩写:UE),移动台(英文:Mobile station,缩写:MS),终端(terminal),终端设备(Terminal Equipment),软终端等等。为方便描述,本申请中,上面提到的设备统称为终端或UE。
无线接入设备110可以是独立基站,比如宏基站、微基站或者微微基站,或者,该无线接入设备110也可以是组成云无线接入网的分布式基站,或者,无线接入设备110也可以是无线路由器。
以上述图1所示网络环境中的无线接入设备110为分布式基站为例,请参考图2,其示出了本申请实施例涉及的一种分布式基站的结构示意图,其中,分布式基站包括一个基带单元210(英文:Base Band Unit,BBU),以及至少一个无线接入点220(英文:radio access point,RAP)。该至少一个无线接入点220也称为该分布式基站的远端无线射频端点(英文:Remote Radio Head,RRH)。基带单元210和无线接入点220之间通用公共无线接口(英文:common public radio interface,CPRI)连接。
图3是本申请一个实施例提供的一种网络设备30的结构示意图,该网络设备30可以单独实现为图2对应的分布式基站中的基带单元210或者无线接入点220。如图3所示,该网络设备30可以包括:处理器31以及通信接口34。
处理器31可以包括一个或者一个以上处理单元,该处理单元可以是中央处理单元(英文:central processing unit,CPU)或者网络处理器(英文:network processor,NP)等。处理器31用于对终端发送的关联消息(关联请求或者重关联请求)进行调度和处理。
通信接口34可以包括有线网络接口,比如以太网接口或者光纤接口,也可以包括无线网络接口,比如蜂窝移动网络接口。比如,当该网络设备30实现为图2对应的分布式基站中的基带单元210时,该通信接口34可以包括用于连接上层网络的以太网接口,以及用于连接分布式基站中的无线接入点220的光纤接口;当该网络设备30实现为图2对应的分布式基站中的无线接入点220时,该通信接口34可以包括用于连接分布式基站中的基带单元210的光纤接口,以及用于连接终端的蜂窝移动网络接口。通信接口34由处理器31控制。
可选的,该网络设备30还可以包括存储器33,处理器31可以用总线与存储器33和通信接口34相连。
存储器33可用于存储软件程序,该软件程序可以由处理器31执行。此外,该存储器33中还可以存储各类业务数据或者用户数据。
可选地,该网络设备30还可以包括输出设备35以及输入设备37。输出设备35和输入设备37与处理器31相连。输出设备35可以是用于显示信息的显示器、播放声音的功放设备或者打印机等,输出设备35还可以包括输出控制器,用以提供输出到显示屏、功放设备或者打印机。输入设备37可以是用于用户输入信息的诸如鼠标、键盘、电子触控笔或者触控面板之类的设备,输入设备37还可以包括输出控制器以用于接收和处理来自鼠标、键盘、电子触控笔或者触控面板等设备的输入。
在一种可能的实现方式中,无线接入设备中的至少两种空口所对应的媒体接入控制MAC实体可以由一个公共控制实体以及该至少两种空口各自对应的专用控制实体组成,对于该至少两种空口各自对应的专用控制实体中的任意一个专用控制实体,该公共控制实体与该专用控制实体进行交互以实现媒体接入控制功能。其中,媒体接入控制功能可以包括:资源调度(包括不同空口间无线资源的半静态配置和动态分配以及具体空口的资源分配)、复用/解复用、优先级处理、混合自动重传请求(英文:hybrid automatic retransmission request,HARQ)以及随机接入控制等。专用控制实体可以与公共控制实体交互实现媒体接入控制功能中的一项功能,或者,也可以与公共控制实体交互实现媒体接入控制功能中的多项功能。比如,当专用控制实体只用于与公共控制实体交互来实现HARQ过程时,该专用控制实体可以称为HARQ实体。
具体的,以无线接入设备为包含BBU和至少一个RAP的分布式基站为例,请参考图4至图8,其示出了分布式基站中公共控制实体和专用控制实体的五种分布示意图。如图4至图8所示,该分布式基站的一个小区支持至少两种空口(图中仅示出空口1和空口2),除了媒体接入控制MAC实体之外,每种空口对应各自的无线资源控制实体(英文:radio resource control,RRC)、分组数据汇聚协议(英文:Packet Data Convergence Protocol,PDCP)实体、无线链路控制(英文:Radio Link Control,RLC)实体以及物理层(英文:Physical Layer,PHY)。
在图4中,公共控制实体、每种空口对应的无线资源控制实体、每种空口对应的分组数据汇聚协议以及每种空口对应的无线链路控制实体设置于BBU中,每种空口对应的专用控制实体以及每种空口对应的物理层设置于每个RAP中。
在图5中,公共控制实体、每种空口对应的无线资源控制实体、每种空口对应的分组数据汇聚协议、每种空口对应的无线链路控制实体以及每种空口对应的专用控制实体都设置在BBU中,每种空口对应的物理层设置于每个RAP中。
在图6中,公共控制实体、每种空口对应的无线资源控制实体、每种空口对应的分组数据汇聚协议、每种空口对应的无线链路控制实体以及部分空口(空口1)对应的专用控制实体设置在BBU中,其余部分的空口(空口2)对应的专用控制实体以及每种空口对应的物理层设置于每个RAP中。
在图7中,公共控制实体、每种空口对应的无线资源控制实体、每种空口对应的分组数据汇聚协议、每种空口对应的无线链路控制实体以及各种空口对应的专用控制实体中的上行处理部分设置于BBU中,各种空口各自对应的专用控制实体中下行处理部分设置于RAP中。其中,一个专用控制实体中的上行处理部分指的是该专用控制实体中负责对上行业务进行处理的部分,类似的,该专用控制实体中的下行处理部分指的是该专用控制实体中负 责对下行业务进行处理的部分。
在图8中,公共控制实体、每种空口对应的无线资源控制实体、每种空口对应的分组数据汇聚协议、每种空口对应的无线链路控制实体以及各种空口对应的专用控制实体中部分专用控制实体(空口1对应的专用控制实体)的上行处理部分设置于BBU中;该部分专用控制实体(空口1对应的专用控制实体)的下行处理部分,以及各种空口对应的专用控制实体中其它部分专用控制实体(空口2对应的专用控制实体)设置于RAP中。
在图4至图8任一所示的方案中,公共控制实体或者专用控制实体可以由对应的BBU或者RAP中的处理器执行相应的软件程序来实现。
在上述图4至图8所示的方案中,通过将无线接入设备中的媒体接入控制MAC层的执行实体划分为一个公共控制实体和至少一种空口各自对应的专用控制实体,可以通过公共控制实体与任一空口对应的专用控制实体之间的交互来实现对该空口中所传输业务的媒体接入控制,从而实现无线通信系统中的无线接入设备对多空口的支持。其中,公共控制实体与专用控制实体进行交互以实现媒体接入控制功能的具体流程可以参考下述图9对应实施例中的描述。
请参考图9,其示出了本申请一个实施例提供的媒体接入控制方法的流程图。该方法可以用于如图1所示实施环境中的无线接入设备110中,该无线接入设备支持至少两种空口,该至少两种空口对应相同的无线接口协议,该无线接入设备包括公共控制实体以及该至少两种空口各自对应的专用控制实体,如图10所示,该方法包括:
步骤901,公共控制实体确定无线接入设备与终端之间的指定空口对应的专用控制实体。
在本申请实施例中,无线接入设备中的公共控制实体和各种空口对应的专用控制实体都可以由无线接入设备中的处理器执行预先设置的软件程序(比如,该软件程序可以是存储在无线接入设备中的存储器内)来实现。
在本申请实施例中,各种空口预先设计有对应的专用控制实体,公共控制实体确定无线接入设备与终端之间的指定空口对应的专用控制实体的方法可以分为以下两种:
无线接入设备向终端发起通信时,公共控制实体根据通信业务的业务需求以及各种空口的设计特征确定满足业务需求的空口为指定空口,并进一步确定与该指定空口相对应的专用控制实体。
终端向无线接入设备发起通信时,公共控制实体可以将接收到该通信业务数据的空口确定为指定空口,并确定与该指定空口相对应的专用控制实体。
步骤902,公共控制实体与该指定空口对应的专用控制实体进行交互,以实现该空口的媒体接入控制功能。
对于该交互步骤,本申请实施例将分别以资源分配、复用/解复用、上/下行HARQ以及随机接入控制等功能为例进行详细说明。
一、资源分配时公共控制实体与指定空口对应的专用控制实体之间的交互流程。
请参考图10,其示出了本申请实施例涉及的一种资源分配方法的流程图,该方法中,由公共控制实体负责在各种空口之间进行资源分配,以及负责每一种空口内的资源调度。如图10所示,该资源分配方法可以包括如下步骤:
步骤1001,专用控制实体获取指定空口的无线条件信息。
其中,指定空口对应的专用控制实体可以通过该指定空口对应的物理层测量并获取该空口的无线条件信息,比如信道质量指示(英文:Channel Quality Indicator,CQI)以及信噪比(英文:Signal Noise Ratio,SNR)以及信干噪比(英文:signal to noise plus interference power ratio,SINR)。
步骤1002,该指定空口对应的专用控制实体将该无线条件信息发送给公共控制实体,公共控制实体接收该无线条件信息。
步骤1003,公共控制实体根据该无线条件信息确定该指定空口对应的无线资源区间,并在该指定空口对应的无线资源区间内,针对通过该指定空口传输的数据进行资源调度。
公共控制实体可以获取各种空口对应的无线条件信息,并根据各种空口对应的无线条件信息确定各种空口各自可以使用的无线资源区间。
在本申请实施例中,无线资源区间可以是无线资源的频率区间,指定空口可以使用的无线资源区间就是可以在该指定空口上传输数据的频段。
在本申请实施例中,公共控制实体在根据无线条件信息确定指定空口对应的无线资源区间时,可以将该指定空口对应无线条件(比如CQI/SNR/SINR)最好的频率区间确定为该指定空口对应的无线资源区间。
或者,公共控制实体也可以结合各种空口的设计特征以及各种空口的无线条件为各种空口分配各自的无线资源区间,其中,空口的设计特征可以指示在空口中传输的业务数据的业务需求,比如,公共控制实体可以按照各种空口的设计特征,优先为业务需求最高的空口分配无线资源区间(比如,将该业务需求最高的空口对应的无线条件最好的频率区间确定为该空口对应的无线资源区间),然后,再从剩余的无线资源区间中,为业务需求第二高的空口分配无线资源区间,以此类推,直至所有的空口都分配完成。
对于任意一种空口,比如无线接入设备与终端之间的指定空口,该公共控制实体还可以针对通过该指定空口传输的数据进行资源调度,比如,调度通过该指定空口发送给终端的数据或者信令所使用的资源,以及,为连接该无线接入设备的终端生成在该指定空口上发送数据或者信令所使用的下行控制信息(英文:Downlink Control Information,DCI)。公共控制实体将调度结果通知给该指定空口对应的专用控制实体,该专用控制实体根据该调度结果进行下行控制处理,并将下行控制信息发送给物理层,由物理层处理后发送给终端。
可选的,公共控制实体可以结合各种空口的上/下行缓冲区信息对通过各种空口传输的数据进行资源调度,各种空口的上/下行缓冲区信息可以由公共控制实体统一维护,或者,每种空口对应的上/下行缓冲区信息也可以由该空口对应的专用控制实体来维护。在该方法中,当每个专用控制实体维护对应空口的上/下行缓冲区信息时,该专用控制实体可以将该空口的上/下行缓冲区信息通知给公共控制实体。
请参考图11,其示出了本申请实施例涉及的另一种资源分配方法的流程图,该方法中,由公共控制实体负责在各种空口之间进行资源分配,有专用控制实体负责本空口内的资源调度。如图12所示,该资源分配方法可以包括如下步骤:
步骤1101,专用控制实体获取指定空口的无线条件信息。
步骤1102,专用控制实体将该无线条件信息发送给公共控制实体,公共控制实体接收 该无线条件信息。
步骤1103,公共控制实体根据该无线条件信息确定该指定空口对应的无线资源区间。
步骤1104,公共控制实体将该指定空口对应的无线资源区间发送给该专用控制实体,该专用控制实体接收该指定空口对应的无线资源区间。
步骤1105,专用控制实体在该指定空口对应的无线资源区间内,针对通过该指定空口传输的数据进行资源调度。
与图10对应的方法不同的是,在本方法中,公共控制实体根据各种空口对应的无线条件信息确定各种空口各自可以使用的无线资源区间后,将各种空口各自可以使用的无线资源区间通知给各种空口对应的专用控制实体,对于任一专用控制实体,可以调度通过该专用控制实体对应的空口发送给终端的数据或者信令所使用的资源,以及,为连接该无线接入设备的终端生成在该空口上发送数据或者信令所使用的下行控制信息。
类似的,专用控制实体也可以结合对应空口的上/下行缓冲区信息对通过对应空口传输的数据进行资源调度,当对应空口的上/下行缓冲区信息由公共控制实体统一维护时,公共控制实体可以将对应空口的上/下行缓冲区信息通知给该专用控制实体。
二、复用时公共控制实体与一种空口对应的专用控制实体之间的交互流程。
请参考图12,其示出了本申请实施例涉及的一种复用方法的流程图。如图12所示,该复用方法可以包括如下步骤:
步骤1201,公共控制实体确定指定空口对应的媒体接入控制层协议数据单元(英文:MAC Packet Data Unit,MAC PDU)的尺寸信息。
其中,公共控制实体可以根据针对通过该指定空口传输的数据进行资源调度的情况确定该指定空口对应的MAC PDU的尺寸信息。
步骤1202,公共控制实体将该尺寸信息发送给该指定空口对应的专用控制实体以及该指定空口对应的无线链路控制实体,该专用控制实体以及该指定空口对应的无线链路控制实体接收该尺寸信息。
其中,无线链路控制实体设置在无线接入设备中。
步骤1203,公共控制实体将该无线链路控制实体下发的无线链路控制层协议数据单元RLC PDU发送给该专用控制实体,该专用控制实体接收该无线链路控制层协议数据单元。
步骤1204,专用控制实体根据该尺寸信息以及该无线链路控制实体下发的无线链路控制层协议数据单元生成媒体接入控制层协议数据单元。
步骤1205,专用控制实体将该媒体接入控制层协议数据单元发送给该指定空口对应的物理层。
请参考图13,其示出了本申请实施例涉及的另一种复用方法的流程图。如图13所示,该复用方法可以包括如下步骤:
步骤1301,专用控制实体确定对应的指定空口调度的媒体接入控制层协议数据单元的尺寸信息。
步骤1302,专用控制实体将该尺寸信息发送给该公共控制实体,公共控制实体接收该尺寸信息。
步骤1303,公共控制实体将该尺寸信息发送给该指定空口对应的无线链路控制实体,无线链路控制实体接收该尺寸信息。
步骤1304,公共控制实体将该无线链路控制实体下发的无线链路控制层协议数据单元发送给该专用控制实体,专用控制实体接收该无线链路控制层协议数据单元。
步骤1305,专用控制实体根据该尺寸信息以及该无线链路控制实体下发的无线链路控制层协议数据单元生成媒体接入控制层协议数据单元。
步骤1306,专用控制实体将该媒体接入控制层协议数据单元发送给该指定空口对应的物理层。
可选的,在本方案中,专用控制实体还可以根据RRC配置或动态调度决策进一步决定所需调度的业务承载,或者,也可以由公共控制实体决定所需调度的业务承载。
三、解复用时公共控制实体与指定空口对应的专用控制实体之间的交互流程。
请参考图14,其示出了本申请实施例涉及的一种解复用方法的流程图。如图14所示,该解复用方法可以包括如下步骤:
步骤1401,专用控制实体接收对应的指定空口的物理层发送的数据。
步骤1402,专用控制实体根据该数据生成媒体接入控制层服务数据单元。
步骤1403,专用控制实体将该媒体接入控制层服务数据单元发送给公共控制实体,公共控制实体接收该媒体接入控制层服务数据单元;
步骤1404,公共控制实体将该媒体接入控制层服务数据单元发送给该指定空口对应的无线链路控制实体。
四、下行HARQ时公共控制实体与指定空口对应的专用控制实体之间的交互流程。
请参考图15,其示出了本申请实施例涉及的一种下行HARQ控制方法的流程图。如图15所示,该下行HARQ控制方法可以包括如下步骤:
步骤1501,公共控制实体在无线接入设备通过指定空口向终端发送数据时,生成该数据对应的下行授权信息。
步骤1502,公共控制实体将该下行授权信息(DL assignment)传送给该专用控制实体。
其中,下行授权信息可以是HARQ信息,包括新数据指示(英文:new data indicator,NDI)、传输块(英文:transport block,TB)大小、HARQ进程标识(HARQ process ID)等信息。
步骤1503,专用控制实体通过该指定空口的物理层将该下行授权信息发送给该终端。
步骤1504,专用控制实体通过该指定空口的物理层接收该终端返回的、针对该数据的混合自动重传请求响应消息,并将该混合自动重传请求响应消息发送给该公共控制实体。
该混合自动重传请求响应消息即为ACK/NACK。
步骤1505,公共控制实体根据该混合自动重传请求响应消息确定重传该数据或者发送新数据。
公共控制实体根据该混合自动重传请求响应消息决定调度新传输或者重传HARQ冗余版本(英文:redundancy version,RV),并生成新的下行授权信息。
请参考图16,其示出了本申请实施例涉及的另一种下行HARQ控制方法的流程图。如图16所示,该下行HARQ控制方法可以包括如下步骤:
步骤1601,专用控制实体在无线接入设备通过指定空口向终端发送数据时,生成该数据对应的下行授权信息。
步骤1602,专用控制实体通过该指定空口的物理层将该下行授权信息发送给该终端。
步骤1603,专用控制实体通过该指定空口的物理层接收该终端返回的、针对该数据的混合自动重传请求响应消息,根据该混合自动重传请求响应消息确定重传该数据或者发送新数据。
五、上行HARQ时公共控制实体与指定空口对应的专用控制实体之间的交互流程。
请参考图17,其示出了本申请实施例涉及的一种上行HARQ控制方法的流程图。如图17所示,该上行HARQ控制方法可以包括如下步骤:
步骤1701,公共控制实体在该无线接入设备通过指定空口接收终端发送数据时,生成该数据对应的上行授权信息。
步骤1702,公共控制实体将该上行授权信息传送给该专用控制实体。
步骤1703,专用控制实体通过该指定空口的物理层将该上行授权信息发送给该终端。
步骤1704,专用控制实体在接收该数据之后,生成针对该数据的混合自动重传请求响应消息,并将该混合自动重传请求响应消息发送给该终端和该公共控制实体。
步骤1705,公共控制实体根据该混合自动重传请求响应消息生成新的上行授权信息。
在本方案中,上行授权(UL grant)信息如HARQ信息,包括新数据指示、传输块大小、冗余版本等信息由公共控制实体指示给专用控制实体,由专用控制实体通过物理层处理后把上述信息指示给UE。UE通过指定时频资源位置发送上行数据包给空口对应的PHY,空口对应的PHY层解码成功后把MAC PDU发送给对应的专用控制实体,由专用控制实体发送给公共控制实体,专用控制实体生成HARQ ACK/NACK发送给UE,并指示给公共控制实体上述HARQ ACK/NACK消息,公共控制实体据此决定调度新传输或者重传HARQ冗余版本,公共控制实体把新的下行授权信息发送给专用控制实体。
请参考图18,其示出了本申请实施例涉及的另一种上行HARQ控制方法的流程图。如图18所示,该上行HARQ控制方法可以包括如下步骤:
步骤1801,专用控制实体在无线接入设备通过对应的指定空口接收终端发送数据时,生成该数据对应的上行授权信息。
步骤1802,专用控制实体将该上行授权信息发送给该终端。
步骤1803,专用控制实体在接收该数据之后,生成针对该数据的混合自动重传请求响应消息。
步骤1804,专用控制实体将该混合自动重传请求响应消息发送给该终端。
步骤1805,专用控制实体根据该混合自动重传请求响应消息生成新的上行授权信息。
六、随机接入控制时公共控制实体与指定空口对应的专用控制实体之间的交互流程。
请参考图19,其示出了本申请实施例涉及的一种随机接入控制方法的流程图。如图19所示,该随机接入控制方法可以包括如下步骤:
步骤1901,专用控制实体接收终端通过指定空口发送的随机接入请求消息,将该随机接入请求消息发送给该公共控制实体,该随机接入请求消息包括随机接入前导或者随机接入过程消息3。
步骤1902,公共控制实体与该指定空口对应的无线资源控制实体交互生成该随机接入请求消息对应的响应消息,将该响应消息发送给该专用控制实体,该响应消息包括随机接入响应消息或者竞争解决消息。
其中,无线资源控制实体设置于无线接入设备中。
步骤1903,专用控制实体通过该指定空口向该终端发送该响应消息。
在本方法中,设UE的随机接入过程不区分空口,UE通过公共频率区间或者公共空口或者默认空口接入网络。这种情况下随机接入过程的MAC层相关功能模块位于公共控制实体,对应空口的物理层通过与公共控制实体交互来执行随机接入过程,对应空口的专用控制实体透传消息。以无线接入设备为分布式基站为例,其具体过程如下:
1)UE向无线接入网发送随机接入前导(preamble);
2)无线接入网的RAP通过默认空口的物理层接收并检测到UE发送的preamble,RAP指示BBU的公共MAC层生成随机接入响应(英文:random access response,RAR)消息,BBU将RAR发送给RAP,RAP把RAR发送给UE。
3)UE向无线接入网发送包含UE标识信息的随机接入过程消息3(msg3),该消息可能还包含无线资源控制连接请求(RRC Connection Request)消息。RRU接收到UE的该消息,发送给BBU。
4)BBU中的公共MAC层与RRC层交互生成随机接入的竞争解决消息,该消息可以进一步包含无线资源控制连接建立消息;BBU将该消息发送给RAP,由RAP发送给UE;完成随机接入过程。
请参考图20,其示出了本申请实施例涉及的另一种随机接入控制方法的流程图。如图20所示,该随机接入控制方法可以包括如下步骤:
步骤2001,专用控制实体接收终端通过指定空口发送的随机接入请求消息,该随机接入请求消息包括随机接入前导或者随机接入过程消息3。
步骤2002,专用控制实体通过该公共控制实体与该指定空口对应的无线资源控制实体交互生成该随机接入请求消息对应的响应消息,该响应消息包括随机接入响应消息或者竞争解决消息。
步骤2003,专用控制实体通过该指定空口向该终端发送该响应消息。
这种情况下随机接入过程的MAC层相关功能模块位于某一个指定空口对应的专用控制实体,指定空口的物理层通过与指定空口的专用控制实体交互来执行随机接入过程,公共控制实体透传消息(例如公共控制实体与RRC层交互)。
具体过程与图19所示方式类似,不同之处在于:
在该方法中由指定空口的专用控制实体直接生成RAR发送给UE,不需要公共控制实体参与。步骤3)和步骤4)仍需要公共控制实体参与,由公共控制实体与RRC层交互,竞争解决消息可以由专用控制实体或公共控制实体生成。
综上所述,本申请实施例所示的媒体接入控制方法,在一个小区支持至少两种空口的无线接入设备中配置公共控制实体与各种空口对应的专用控制实体,通过公共控制实体与各种空口对应的专用控制实体之间的交互实现各种媒体接入控制功能,从而实现灵活的多空口资源分配,使网络架构能够支持多空口共存,更好的适配多样性业务的服务质量需求,提高了频谱利用率、降低了前传链路成本。
在另一种可能的实现方式中,无线接入设备中的至少两种空口所对应的媒体接入控制MAC实体可以由该至少两种空口各自对应的专用控制实体组成,该至少两种空口各自对应的专用控制实体可以互相交互实现,或者独立实现媒体接入控制功能。其中,媒体接入控制 功能可以包括:资源调度(包括不同空口间无线资源的半静态配置和动态分配以及具体空口的资源分配)、复用/解复用、优先级处理、混合自动重传请求以及随机接入控制等。比如,该至少两种空口各自对应的专用控制实体可以互相交互来实现资源调度功能,而其它诸如复用/解复用、优先级处理、混合自动重传请求以及随机接入控制等功能则可以由任意一个专用控制实体单独实现。
具体的,以该无线接入设备为包含BBU和至少一个RAP的分布式基站为例,请参考图21至图24,其示出了分布式基站中专用控制实体的四种分布示意图。如图21至图24所示,该分布式基站的一个小区支持至少两种空口(图中仅示出空口1和空口2)。
在图21中,每种空口对应的无线资源控制实体、每种空口对应的分组数据汇聚协议以及每种空口对应的无线链路控制实体设置于BBU中,每种空口对应的专用控制实体以及每种空口对应的物理层设置于每个RAP中。
在图22中,每种空口对应的无线资源控制实体、每种空口对应的分组数据汇聚协议、每种空口对应的无线链路控制实体以及每种空口对应的专用控制实体都设置在BBU中,每种空口对应的物理层设置于每个RAP中。
在图23中,每种空口对应的无线资源控制实体、每种空口对应的分组数据汇聚协议、每种空口对应的无线链路控制实体以及部分空口对应的专用控制实体设置在BBU中,其余部分的空口对应的专用控制实体以及每种空口对应的物理层设置于每个RAP中。
在图24中,每种空口对应的无线资源控制实体以及每种空口对应的分组数据汇聚协议实体设置于BBU中,每种空口对应的无线链路控制实体、每种空口对应的专用控制实体以及每种空口对应的物理层设置于每个RAP中。
可选的,上述至少两种空口各自对应的专用控制实体中的部分或全部专用控制实体的上行处理部分和下行部分可以分别设置在BBU和每个RAP中。
在图21至图24任一所示的方案中,各种空口对应的专用控制实体可以由对应的BBU或者RAP中的处理器执行相应的软件程序来实现。
在上述图21至图24所示的方案中,通过将无线接入设备中的媒体接入控制MAC层的执行实体划分为至少一种空口各自对应的专用控制实体,一个专用控制实体可以独立实现该专用控制实体对应的空口的媒体接入控制功能,或者,一个专用控制实体也可以与该至少两种空口各自对应的专用控制实体中的其它专用控制实体交互,以实现该空口的媒体接入控制功能。比如,该至少一种空口各自对应的专用控制实体之间可以协商确定各种空口所使用的资源,并各自根据协商的资源对各自对应的空口中所传输业务进行媒体接入控制,从而实现无线通信系统中的无线接入设备对多空口的支持。其中,各个专用控制实体进行交互协商确定各种空口所使用的资源的具体流程可以参考下述图25对应实施例中的描述。
请参考图25,其示出了本申请一个实施例提供的媒体接入控制方法的流程图。该方法可以用于如图1所示实施环境中的无线接入设备110中,该无线接入设备支持至少两种空口,该至少两种空口对应相同的无线接口协议,该无线接入设备包括公共控制实体以及该至少两种空口各自对应的专用控制实体,如图25所示,该方法包括:
步骤2501,专用控制实体获取对应的空口的无线条件信息。
步骤2502,该专用控制实体根据该空口的无线条件信息与至少两种空口各自对应的专用控制实体中的其它专用控制实体协商确定该空口对应的无线资源区间。
步骤2503,该专用控制实体在该空口对应的无线资源区间内,针对通过该空口传输的数据进行资源调度。
在本申请实施例所示的方案中,一个专用控制实体可以独立实现对该专用控制实体对应的空口所传输业务的媒体接入控制中,除资源调度之外的其它媒体接入控制步骤,比如复用/解复用、优先级处理、混合自动重传请求以及随机接入控制等。
综上所述,本申请实施例所示的媒体接入控制方法,在支持至少两种空口的无线接入设备中配置各种空口对应的专用控制实体,通过各种空口对应的专用控制实体之间的交互来实现各种空口间的资源调度,并且每个专用控制实体独立实现对该专用控制实体对应的空口所传输业务的媒体接入控制中,除资源调度之外的其它媒体接入控制步骤,从而实现灵活的多空口资源分配,使网络架构能够支持多空口共存,更好的适配多样性业务的服务质量需求,提高了频谱利用率、降低了前传链路成本。
在又一种可能的实现方式中,无线接入设备支持至少三种空口,其中至少两种空口所对应的媒体接入控制MAC实体可以由一个公共控制实体和该至少两种空口各自对应的专用控制实体组成,对于该至少两种空口各自对应的专用控制实体中的任意一个专用控制实体,该公共控制实体与该专用控制实体进行交互以实现媒体接入控制功能;该至少三种空口中除了上述至少两种空口之外的其它至少一种空口所对应的媒体接入控制MAC实体可以由该至少一种空口各自对应的专用控制实体组成,该至少一种空口各自对应的专用控制实体独立实现对该专用控制实体对应的空口所传输业务的媒体接入控制。
请参考图26,其示出了本申请一个实施例提供的媒体接入控制装置的框图。该装置可以通过硬件或者软硬结合的方式实现为图1所示网络环境的无线接入设备110的部分或者全部,该无线接入设备用以执行如图9至图20任一所示方法的全部或者部分步骤。该装置可以包括:公共控制单元2601和至少两种空口各自对应的专用控制单元2602;
在本实施例中,该装置是以功能单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
该公共控制单元2601,具有与图9至图20任一所示方法中的公共控制实体相同或相似的功能。
该专用控制单元2602,用于与图9至图20任一所示方法中的专用控制实体相同或相似的功能。
请参考图27,其示出了本申请一个实施例提供的媒体接入控制装置的框图。该装置可以通过硬件或者软硬结合的方式实现为图1所示网络环境的无线接入设备110的部分或者全部,该无线接入设备用以执行如图25所示方法的全部或者部分步骤。该装置可以包括:至少两种空口各自对应的专用控制单元2701;
在本实施例中,该装置是以功能单元的形式来呈现。这里的“单元”可以指特定应用 集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
该专用控制单元2701,用于与图25所示方法中的专用控制实体相同或相似的功能。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种无线接入设备,其特征在于,所述无线接入设备支持至少两种空口,且所述无线接入设备与终端之间通过指定空口进行通信,所述指定空口是所述至少两种空口中的至少一种,所述无线接入设备包括:公共控制实体以及所述至少两种空口各自对应的专用控制实体;
    所述公共控制实体,用于确定所述无线接入设备与所述终端之间的所述指定空口对应的专用控制实体;
    所述公共控制实体,用于与所述指定空口对应的专用控制实体进行交互,以实现所述指定空口的媒体接入控制功能。
  2. 根据权利要求1所述的无线接入设备,其特征在于,在所述公共控制实体与所述指定空口对应的专用控制实体进行交互的过程中,
    所述专用控制实体,用于获取所述指定空口的无线条件信息,并将所述无线条件信息发送给所述公共控制实体;
    所述公共控制实体,用于根据所述无线条件信息确定所述指定空口对应的无线资源区间,并在所述指定空口对应的无线资源区间内,针对通过所述指定空口传输的数据进行资源调度。
  3. 根据权利要求1所述的无线接入设备,其特征在于,在所述公共控制实体与所述指定空口对应的专用控制实体进行交互的过程中,
    所述公共控制实体,用于确定所述指定空口对应的媒体接入控制层协议数据单元的尺寸信息,并将所述尺寸信息发送给所述指定空口对应的专用控制实体以及所述指定空口对应的无线链路控制实体,所述无线链路控制实体设置于所述无线接入设备中;
    所述公共控制实体,用于将所述无线链路控制实体下发的无线链路控制层协议数据单元发送给所述专用控制实体;
    所述专用控制实体,用于根据所述尺寸信息以及所述无线链路控制实体下发的所述无线链路控制层协议数据单元生成媒体接入控制层协议数据单元,并将所述媒体接入控制层协议数据单元发送给所述指定空口对应的物理层。
  4. 根据权利要求1所述的无线接入设备,其特征在于,在所述公共控制实体与所述指定空口对应的专用控制实体进行交互的过程中,
    所述专用控制实体,用于确定所述指定空口调度的媒体接入控制层协议数据单元的尺寸信息,并将所述尺寸信息发送给所述公共控制实体;
    所述公共控制实体,用于将所述尺寸信息发送给所述指定空口对应的无线链路控制实体,并将所述无线链路控制实体下发的无线链路控制层协议数据单元发送给所述专用控制实体,所述无线链路控制实体设置于所述无线接入设备中;
    所述专用控制实体,用于根据所述尺寸信息以及所述无线链路控制层协议数据单元生成媒体接入控制层协议数据单元,并将所述媒体接入控制层协议数据单元发送给所述指定空口对应的物理层。
  5. 根据权利要求3或4所述的无线接入设备,其特征在于,在所述公共控制实体与所述指定空口对应的专用控制实体进行交互的过程中,
    所述专用控制实体,还用于接收所述指定空口对应的物理层发送的数据,根据所述物理层发送的数据生成媒体接入控制层服务数据单元,并将所述媒体接入控制层服务数据单元发送给所述公共控制实体;
    所述公共控制实体,用于将所述媒体接入控制层服务数据单元发送给所述指定空口对应的无线链路控制实体。
  6. 根据权利要求1所述的无线接入设备,其特征在于,在所述公共控制实体与所述指定空口对应的专用控制实体进行交互的过程中,
    所述公共控制实体,用于在所述无线接入设备通过所述指定空口向所述终端发送数据时,生成所述数据对应的下行授权信息,并将所述下行授权信息传送给所述专用控制实体;所述专用控制实体,用于通过所述指定空口的物理层将所述下行授权信息发送给所述终端,并通过所述指定空口的物理层接收所述终端返回的、针对所述数据的混合自动重传请求响应消息,并将所述混合自动重传请求响应消息发送给所述公共控制实体;所述公共控制实体,用于根据所述混合自动重传请求响应消息确定重传所述数据或者发送新数据;
    所述公共控制实体,还用于在所述无线接入设备通过所述指定空口接收终端发送数据,生成所述数据对应的上行授权信息,并将所述上行授权信息传送给所述专用控制实体;所述专用控制实体,用于通过所述指定空口的物理层将所述上行授权信息发送给所述终端;所述专用控制实体,用于在接收所述数据之后,生成针对所述数据的混合自动重传请求响应消息,并将所述混合自动重传请求响应消息发送给所述终端和所述公共控制实体;所述公共控制实体,用于根据所述混合自动重传请求响应消息生成新的上行授权信息。
  7. 根据权利要求1所述的无线接入设备,其特征在于,在所述公共控制实体与所述指定空口对应的专用控制实体进行交互的过程中,
    所述专用控制实体,用于在所述无线接入设备通过所述指定空口向所述终端发送数据时,生成所述数据对应的下行授权信息,通过所述指定空口的物理层将所述下行授权信息发送给所述终端,并通过所述指定空口的物理层接收所述终端返回的、针对所述数据的混合自动重传请求响应消息,根据所述混合自动重传请求响应消息确定重传所述数据或者发送新数据;
    所述专用控制实体,还用于在所述无线接入设备通过所述指定空口接收所述终端发送数据时,生成所述数据对应的上行授权信息,并将所述上行授权信息发送给所述终端;所述专用控制实体,用于在接收所述数据之后,生成针对所述数据的混合自动重传请求响应消息,并将所述混合自动重传请求响应消息发送给所述终端;所述专用控制实体,用于根据所述混合自动重传请求响应消息生成新的上行授权信息。
  8. 根据权利要求1所述的无线接入设备,其特征在于,在所述公共控制实体与所述指定空口对应的专用控制实体进行交互的过程中,
    所述专用控制实体,用于接收终端通过所述指定空口发送的随机接入请求消息,将所述随机接入请求消息发送给所述公共控制实体,所述随机接入请求消息包括随机接入前导或者 随机接入过程消息3;
    所述公共控制实体,用于与所述指定空口对应的无线资源控制实体交互生成所述随机接入请求消息对应的响应消息,将所述响应消息发送给所述专用控制实体,所述响应消息包括随机接入响应消息或者竞争解决消息,所述无线资源控制实体设置于所述无线接入设备中;
    所述专用控制实体,用于通过所述指定空口向所述终端发送所述响应消息。
  9. 根据权利要求1所述的无线接入设备,其特征在于,在所述公共控制实体与所述空口对应的专用控制实体进行交互的过程中,
    所述专用控制实体,用于接收终端通过所述指定空口发送的随机接入请求消息,所述随机接入请求消息包括随机接入前导或者随机接入过程消息3;
    所述专用控制实体,用于通过所述公共控制实体与所述指定空口对应的无线资源控制实体交互生成所述随机接入请求消息对应的响应消息,所述响应消息包括随机接入响应消息或者竞争解决消息;
    所述专用控制实体,用于通过所述指定空口向所述终端发送所述响应消息。
  10. 根据权利要求1所述的无线接入设备,其特征在于,所述无线接入设备为分布式基站,所述无线接入设备包括基带单元BBU和无线接入点RAP,
    所述公共控制实体设置于BBU中,所述至少两种空口各自对应的专用控制实体设置于RAP中;
    或者,所述公共控制实体和所述至少两种空口各自对应的专用控制实体中的部分专用控制实体设置于BBU中,所述至少两种空口各自对应的专用控制实体中的其它专用控制实体设置于RAP中;
    或者,所述公共控制实体和所述至少两种空口各自对应的专用控制实体设置于BBU中;
    或者,所述公共控制实体和所述至少两种空口各自对应的专用控制实体设置于RAP中;
    或者,所述公共控制实体以及所述至少两种空口各自对应的专用控制实体中上行处理部分设置于BBU中,所述至少两种空口各自对应的专用控制实体中下行处理部分设置于RAP中;
    或者,所述公共控制实体以及所述至少两种空口各自对应的专用控制实体中部分专用控制实体的上行处理部分设置于BBU中,所述部分专用控制实体的下行处理部分以及所述至少两种空口各自对应的专用控制实体中其它专用控制实体设置于RAP中。
  11. 一种媒体接入控制方法,其特征在于,所述方法用于无线接入设备中,所述无线接入设备支持至少两种空口,且所述无线接入设备与终端之间通过指定空口进行通信,所述指定空口是所述至少两种空口中的至少一种空口,所述无线接入设备包括公共控制实体以及所述至少两种空口各自对应的专用控制实体,所述方法包括:
    所述公共控制实体确定所述无线接入设备与所述终端之间所述指定空口对应的专用控制实体;
    所述公共控制实体与所述指定空口对应的专用控制实体进行交互,以实现所述指定空口的媒体接入控制功能。
  12. 根据权利要求11所述的方法,其特征在于,所述公共控制实体与所述指定空口对应的专用控制实体进行交互,包括:
    所述专用控制实体获取所述指定空口的无线条件信息,并将所述无线条件信息发送给所述公共控制实体;
    所述公共控制实体根据所述无线条件信息确定所述指定空口对应的无线资源区间,并在所述指定空口对应的无线资源区间内,针对通过所述指定空口传输的数据进行资源调度。
  13. 根据权利要求11所述的方法,其特征在于,所述公共控制实体与所述指定空口对应的专用控制实体进行交互,包括:
    所述公共控制实体确定所述指定空口对应的媒体接入控制层协议数据单元的尺寸信息,并将所述尺寸信息发送给所述指定空口对应的专用控制实体以及所述指定空口对应的无线链路控制实体,所述无线链路控制实体设置于所述无线接入设备中;
    所述公共控制实体将所述无线链路控制实体下发的无线链路控制层协议数据单元发送给所述专用控制实体;
    所述专用控制实体根据所述尺寸信息以及所述无线链路控制实体下发的无线链路控制层协议数据单元生成媒体接入控制层协议数据单元,并将所述媒体接入控制层协议数据单元发送给所述指定空口对应的物理层。
  14. 根据权利要求11所述的方法,其特征在于,所述公共控制实体与所述指定空口对应的专用控制实体进行交互,包括:
    所述专用控制实体确定所述指定空口调度的媒体接入控制层协议数据单元的尺寸信息,并将所述尺寸信息发送给所述公共控制实体;
    所述公共控制实体将所述尺寸信息发送给所述指定空口对应的无线链路控制实体,并将所述无线链路控制实体下发的无线链路控制层协议数据单元发送给所述专用控制实体,所述无线链路控制实体设置于所述无线接入设备中;
    所述专用控制实体根据所述尺寸信息以及所述无线链路控制实体下发的无线链路控制层协议数据单元生成媒体接入控制层协议数据单元,并将所述媒体接入控制层协议数据单元发送给所述指定空口对应的物理层。
  15. 根据权利要求13或14所述的方法,其特征在于,所述公共控制实体与所述指定空口对应的专用控制实体进行交互,包括:
    所述专用控制实体接收所述指定空口对应的物理层发送的数据,根据所述物理层发送的数据生成媒体接入控制层服务数据单元,并将所述媒体接入控制层服务数据单元发送给所述公共控制实体;
    所述公共控制实体将所述媒体接入控制层服务数据单元发送给所述指定空口对应的无线链路控制实体。
  16. 根据权利要求11所述的方法,其特征在于,所述公共控制实体与所述指定空口对应的专用控制实体进行交互,包括:
    所述公共控制实体在所述无线接入设备通过所述指定空口向所述终端发送数据时,生成所述数据对应的下行授权信息,并将所述下行授权信息传送给所述专用控制实体;所述专用控制实体通过所述指定空口的物理层将所述下行授权信息发送给所述终端,并通过所述指定空口的物理层接收所述终端返回的、针对所述数据的混合自动重传请求响应消息,并将所述混合自动重传请求响应消息发送给所述公共控制实体;所述公共控制实体根据所述混合自动重传请求响应消息确定重传所述数据或者发送新数据;
    所述公共控制实体在所述无线接入设备通过所述指定空口接收终端发送数据时,生成所述数据对应的上行授权信息,并将所述上行授权信息传送给所述专用控制实体;所述专用控制实体通过所述指定空口的物理层将所述上行授权信息发送给所述终端;所述专用控制实体在接收所述数据之后,生成针对所述数据的混合自动重传请求响应消息,并将所述混合自动重传请求响应消息发送给所述终端和所述公共控制实体;所述公共控制实体,用于根据所述混合自动重传请求响应消息生成新的上行授权信息。
  17. 根据权利要求11所述的方法,其特征在于,所述公共控制实体与所述指定空口对应的专用控制实体进行交互,包括:
    所述专用控制实体在所述无线接入设备通过所述指定空口向所述终端发送数据时,生成所述数据对应的下行授权信息,通过所述指定空口的物理层将所述下行授权信息发送给所述终端,并通过所述指定空口的物理层接收所述终端返回的、针对所述数据的混合自动重传请求响应消息,根据所述混合自动重传请求响应消息确定重传所述数据或者发送新数据;
    所述专用控制实体在所述无线接入设备通过所述指定空口接收所述终端发送数据时,生成所述数据对应的上行授权信息,并将所述上行授权信息发送给所述终端;所述专用控制实体在接收所述数据之后,生成针对所述数据的混合自动重传请求响应消息,并将所述混合自动重传请求响应消息发送给所述终端;所述专用控制实体根据所述混合自动重传请求响应消息生成新的上行授权信息。
  18. 根据权利要求11所述的方法,其特征在于,所述公共控制实体与所述指定空口对应的专用控制实体进行交互,包括:
    所述专用控制实体接收终端通过所述指定空口发送的随机接入请求消息,将所述随机接入请求消息发送给所述公共控制实体,所述随机接入请求消息包括随机接入前导或者随机接入过程消息3;
    所述公共控制实体与所述指定空口对应的无线资源控制实体交互生成所述随机接入请求消息对应的响应消息,将所述响应消息发送给所述专用控制实体,所述响应消息包括随机接入响应消息或者竞争解决消息,所述无线资源控制实体设置于所述无线接入设备中;
    所述专用控制实体通过所述指定空口向所述终端发送所述响应消息。
  19. 根据权利要求11所述的方法,其特征在于,所述公共控制实体与所述指定空口对应的专用控制实体进行交互,包括:
    所述专用控制实体接收终端通过所述指定空口发送的随机接入请求消息,所述随机接入请求消息包括随机接入前导或者随机接入过程消息3;
    所述专用控制实体通过所述公共控制实体与所述指定空口对应的无线资源控制实体交互生成所述随机接入请求消息对应的响应消息,所述响应消息包括随机接入响应消息或者竞争解决消息,所述无线资源控制实体设置于所述无线接入设备中;
    所述专用控制实体通过所述指定空口向所述终端发送所述响应消息。
  20. 一种无线接入设备,其特征在于,所述无线接入设备支持至少两种空口,所述无线接入设备包括:所述至少两种空口各自对应的专用控制实体;
    所述专用控制实体,用于独立实现所述专用控制实体对应的空口的媒体接入控制功能,或者,与所述至少两种空口各自对应的专用控制实体中的其它专用控制实体交互,以实现所述空口的媒体接入控制功能。
  21. 根据权利要求20所述的无线接入设备,其特征在于,在所述专用控制实体与所述至少两种空口各自对应的专用控制实体中的其它专用控制实体交互的过程中,
    所述专用控制实体,用于获取对应的空口的无线条件信息;
    所述专用控制实体,用于根据所述空口的无线条件信息与所述至少两种空口各自对应的专用控制实体中的其它专用控制实体协商确定所述空口对应的无线资源区间,并在所述空口对应的无线资源区间内,针对通过所述空口传输的数据进行资源调度。
  22. 根据权利要求20所述的无线接入设备,其特征在于,所述无线接入设备为分布式基站,所述无线接入设备包括基带单元BBU和无线接入点RAP,
    所述至少两种空口各自对应的专用控制实体设置于BBU中;
    或者,所述至少两种空口各自对应的专用控制实体设置于RAP中;
    或者,所述至少两种空口各自对应的专用控制实体中的部分专用控制实体设置于BBU中,所述至少两种空口各自对应的专用控制实体中的其它专用控制实体设置于RAP中。
  23. 一种媒体接入控制方法,其特征在于,所述方法用于无线接入设备中,所述无线接入设备支持至少两种空口,所述无线接入设备包括所述至少两种空口各自对应的专用控制实体,所述方法包括:
    所述专用控制实体独立实现所述专用控制实体对应的空口的媒体接入控制功能,或者,与所述至少两种空口各自对应的专用控制实体中的其它专用控制实体交互,以实现所述空口的媒体接入控制功能。
  24. 根据权利要求23所述的方法,其特征在于,所述专用控制实体与所述至少两种空口各自对应的专用控制实体中的其它专用控制实体交互,包括:
    所述专用控制实体获取对应的空口的无线条件信息;
    所述专用控制实体根据所述空口的无线条件信息与所述至少两种空口各自对应的专用控制实体中的其它专用控制实体协商确定所述空口对应的无线资源区间,并在所述空口对应的无线资源区间内,针对通过所述空口传输的数据进行资源调度。
PCT/CN2017/087193 2016-06-06 2017-06-05 媒体接入控制方法及无线接入设备 WO2017211254A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17809693.9A EP3468136B1 (en) 2016-06-06 2017-06-05 Wireless access device
US16/211,948 US10841960B2 (en) 2016-06-06 2018-12-06 Media access control method and wireless access device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610394865.X 2016-06-06
CN201610394865.XA CN107466111B (zh) 2016-06-06 2016-06-06 媒体接入控制方法及无线接入设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/211,948 Continuation US10841960B2 (en) 2016-06-06 2018-12-06 Media access control method and wireless access device

Publications (1)

Publication Number Publication Date
WO2017211254A1 true WO2017211254A1 (zh) 2017-12-14

Family

ID=60544488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087193 WO2017211254A1 (zh) 2016-06-06 2017-06-05 媒体接入控制方法及无线接入设备

Country Status (4)

Country Link
US (1) US10841960B2 (zh)
EP (1) EP3468136B1 (zh)
CN (1) CN107466111B (zh)
WO (1) WO2017211254A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075874B (zh) * 2017-12-22 2020-04-28 上海华为技术有限公司 一种资源调度方法及基站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647804A (zh) * 2011-02-21 2012-08-22 中国移动通信集团公司 一种分布式基站、数据传输方法和装置
US20150341802A1 (en) * 2014-05-23 2015-11-26 Verizon Patent And Licensing Inc. Ran performance through digital signal processing between baseband unit and remote radio heads
CN105165087A (zh) * 2013-02-12 2015-12-16 奥提欧斯塔网络公司 长期演进无线电接入网络

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9295092B2 (en) * 2009-08-21 2016-03-22 Interdigital Patent Holdings, Inc. Method and apparatus for a multi-radio access technology layer for splitting downlink-uplink over different radio access technologies
US8989004B2 (en) * 2010-11-08 2015-03-24 Qualcomm Incorporated System and method for multi-point HSDPA communication utilizing a multi-link PDCP sublayer
US8867511B2 (en) * 2010-12-09 2014-10-21 Qualcomm Incorporated System and method for reducing resets during handovers in a single frequency dual carrier wireless communication system
US8903874B2 (en) * 2011-11-03 2014-12-02 Osr Open Systems Resources, Inc. File system directory attribute correction
US9313756B2 (en) * 2012-10-10 2016-04-12 Qualcomm Incorporated Apparatus and methods for managing hyper frame number (HFN) de-synchronization in radio link control (RLC) unacknowledged mode (UM)
CN106576395B (zh) * 2014-07-14 2020-10-27 康维达无线有限责任公司 经由集成小小区和WiFi网关的系统间切换和多连接
CN108781403B (zh) * 2016-01-08 2020-12-08 华为技术有限公司 终端设备、接入网设备、空口配置方法和无线通信系统
CN107371184B (zh) * 2016-05-13 2020-08-11 中兴通讯股份有限公司 资源配置方法、装置及基站
MX2018014854A (es) * 2016-06-20 2019-05-06 Ericsson Telefon Ab L M Red de transmision flexible.
WO2018053692A1 (zh) * 2016-09-20 2018-03-29 北京小米移动软件有限公司 数据传输方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647804A (zh) * 2011-02-21 2012-08-22 中国移动通信集团公司 一种分布式基站、数据传输方法和装置
CN105165087A (zh) * 2013-02-12 2015-12-16 奥提欧斯塔网络公司 长期演进无线电接入网络
US20150341802A1 (en) * 2014-05-23 2015-11-26 Verizon Patent And Licensing Inc. Ran performance through digital signal processing between baseband unit and remote radio heads

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "RAN Internal Architecture for a Flexible Function Distribution", 3GPP TSG-RAN WG3 #92, R3-161297, 27 May 2016 (2016-05-27), XP051106097 *

Also Published As

Publication number Publication date
CN107466111B (zh) 2020-11-06
US20190191465A1 (en) 2019-06-20
EP3468136A4 (en) 2019-05-08
CN107466111A (zh) 2017-12-12
EP3468136A1 (en) 2019-04-10
US10841960B2 (en) 2020-11-17
EP3468136B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP7436719B2 (ja) 異なる信頼度を有するデータを転送するための方法、システム、およびデバイス
WO2020052391A1 (zh) 一种通信方法、资源分配方法及装置
US10149171B2 (en) Resource allocation method and apparatus for cooperative transmission of base stations in wireless communication system
WO2016188250A1 (zh) 一种资源分配的方法和装置
WO2019157945A1 (zh) 一种用于上行授权的方法及装置
WO2017018538A1 (ja) 無線端末
CN106332152B (zh) 一种数据传输方法以及相关设备
WO2014183688A1 (zh) 上报bsr的方法、基站和终端、计算机存储介质
WO2018171475A1 (zh) 用于无线通信的电子设备和方法
TW202123766A (zh) 無線網路中用於多重鏈路觸發上鏈存取的基於觸發協議資料單元對準之裝置和方法
JP2014147079A (ja) 移動通信システムにおけるスケジューリング要請を受信する方法及び装置
WO2020221260A1 (zh) 一种通信方法及通信装置
WO2009006821A1 (en) High speed uplink packet access method in multi-carrier td-scdma system
US20220167352A1 (en) User equipment and scheduling node
JP6559355B2 (ja) 移動通信方法、基地局、プロセッサ及びユーザ装置
US9425931B2 (en) PUCCH resource management mechanism for coordinated multi-point operation
WO2009006823A1 (en) Random access method of time division synchronization code division mulitple access enhanced uplink system
WO2020199901A1 (zh) 一种通信方法和装置
WO2012136101A1 (zh) 一种混合自动重传的处理方法、系统及装置
TW201828762A (zh) 點對點無線通信網路中的操作方法及其通信設備
JP6600117B1 (ja) 移動通信方法
WO2014121442A1 (zh) 通信资源的分配方法、基站及用户设备
US10841960B2 (en) Media access control method and wireless access device
US20130039320A1 (en) Base station apparatus and scheduling method
KR20120048433A (ko) 이동통신 시스템에서 스케줄링 요청 신호를 전송하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017809693

Country of ref document: EP

Effective date: 20190107