WO2017211167A1 - 一种可自动调平的轮式拖拉机驱动桥装置及调平方法 - Google Patents

一种可自动调平的轮式拖拉机驱动桥装置及调平方法 Download PDF

Info

Publication number
WO2017211167A1
WO2017211167A1 PCT/CN2017/084645 CN2017084645W WO2017211167A1 WO 2017211167 A1 WO2017211167 A1 WO 2017211167A1 CN 2017084645 W CN2017084645 W CN 2017084645W WO 2017211167 A1 WO2017211167 A1 WO 2017211167A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical
bevel gear
wheel
vertical cylinder
transaxle
Prior art date
Application number
PCT/CN2017/084645
Other languages
English (en)
French (fr)
Inventor
韩江义
商高高
夏长高
高翔
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US16/070,091 priority Critical patent/US10625796B2/en
Publication of WO2017211167A1 publication Critical patent/WO2017211167A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D49/00Tractors
    • B62D49/08Tractors having means for preventing overturning or tipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D49/00Tractors
    • B62D49/08Tractors having means for preventing overturning or tipping
    • B62D49/085Counterweight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/001Axles of the portal type, i.e. axles designed for higher ground clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01908Acceleration or inclination sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/14Torque-transmitting axles composite or split, e.g. half- axles; Couplings between axle parts or sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/413Hydraulic actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/419Gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/08Agricultural vehicles
    • B60G2300/082Tractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0511Roll angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0512Pitch angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/019Inclination due to load distribution or road gradient
    • B60G2800/0192Inclination due to load distribution or road gradient longitudinal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/019Inclination due to load distribution or road gradient
    • B60G2800/0194Inclination due to load distribution or road gradient transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/912Attitude Control; levelling control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/221Tractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/86Suspension systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2257Vehicle levelling or suspension systems

Definitions

  • the invention belongs to the technical field of tractors, and particularly relates to a wheel tractor driving bridge device and a leveling method capable of automatically leveling.
  • Horizontal horizontal mountain tractor introduces a tractor that can adjust the horizontal level of the vehicle body.
  • the overall arrangement is that the frame is hinged when separated, and the whole vehicle is divided into The front frame, the middle frame and the rear frame are hinged, and the steering mode is a waist-turn steering type; the frame leveling detection signal is controlled by the inclination of the mercury switch mounted on the frame to control the electromagnetic reversing valve, thereby adjusting one side The relative distance between the two drive wheel reducers and the frame is adjusted horizontally.
  • a mountain remote control tractor (application number: CN201010215718.4) introduces a crawler tractor that can be remotely operated in mountainous hills. The power is directly transmitted to the crawler's drive wheel through the gearbox. There are two on the two sides of the frame. The hydraulic cylinders are respectively connected to the support frame and the vehicle body of the left and right track roller. The processor of the remote control device sends out a self-leveling signal to control the lifting and lowering of the hydraulic cylinder and adjust the horizontal position of the vehicle body.
  • a mountain tractor transmission mechanism (application number CN200920093628.5), the power transmission between the transmission half shaft and the driving wheel is completed by the sprocket structure, and the wheel track can be adjusted without the function of adjusting the body.
  • Mountain hand-held tractor balance control device (application number: CN201220194143.7) proposes a balancing device for walking tractors, which adjusts the position of the gearbox and the driving wheel through two hydraulic cylinders on the left and right to achieve the purpose of leveling the body.
  • Patent Announcement 1 can realize the horizontal leveling of the vehicle body, but the frame is divided into three hinges, which increases the instability of the slope driving, and the driving axle passes the wheel and the transmission mechanism around the vehicle body in the horizontal leveling. Rotate to adjust the distance between the wheel center and the body, so that although the body is leveled, the wheelbase between the front and rear wheels The wheelbase parameters of the left and right wheels have changed, and the load ratio of each wheel has changed, and finally the adhesion of the wheel has also changed. At the same time, due to the wheelbase, the wheelbase changes, resulting in increased instability of the vehicle.
  • Patent Announcement 2 realizes the electronically controlled automatic control of the body leveling by wirelessly controlling the position of the left and right crawler belts relative to the vehicle body, but lacks the advantage of high power transmission efficiency of the wheeled tractor; the mountain tractor driving wheel power of Patent Announcement 3 is completed by the sprocket, The sprocket transmission has no gear transmission high in driving force and efficiency, and there is no automatic body posture adjustment function; Patent Announcement 4 is a balance device of the walking tractor, which changes the height of the driving wheel and the body by driving the turbine speed reduction mechanism around the body.
  • the longitudinal position of the driving wheel relative to the body is also changed while the height of the driving wheel is changed.
  • the bearing load of the left and right driving wheels to the vehicle body is When the change occurs, the adhesion of the wheel also changes. Due to the change of the track, the steering performance parameter of the whole vehicle changes, which is not conducive to the steering operation. In addition, the automatic control of the vertical level adjustment cannot be realized.
  • a wheeled tractor drive axle with automatic leveling function is proposed, which is used in the lateral direction on the transaxle when used in mountain or hilly terrain.
  • the inclination sensor and the longitudinal inclination sensor of the whole vehicle obtain the parameters of the transverse direction of the transaxle and the longitudinal inclination of the whole vehicle.
  • the electronic control unit controls the hydraulic system.
  • the hydraulic drive technology is used to adjust the height position of the drive wheel at both ends of the axle to the axle housing.
  • the chassis is in horizontal and vertical horizontal state; during the adjustment process, the driving force of the four driving wheels can be continuously transmitted and the tractor wheelbase and wheelbase parameters are not changed, and the steering performance of the vehicle is not affected.
  • the technical solution for implementing the present invention is as follows:
  • a wheel-type tractor drive axle device capable of automatically leveling, comprising a transmission device and a leveling device;
  • the transmission device includes a transaxle housing, a semi-axle bevel gear, a vertical transmission shaft, and a wheel planetary reduction mechanism; the upper end of the vertical transmission shaft is provided with a vertical shaft capable of sliding up and down along the vertical transmission shaft An upper bevel gear and a lower end are provided with a fixed integral vertical shaft down bevel gear; the semi-axle bevel gear is mounted on the transaxle housing, and the engine power drives the semi-axle bevel gear in the transaxle housing
  • the semi-axle bevel gear meshes with the vertical shaft upper bevel gear to drive the vertical shaft upper bevel gear to rotate; the rotation of the vertical shaft upper bevel gear can drive the vertical transmission shaft to rotate, Further driving the vertical shaft lower bevel gear; the vertical shaft lower bevel gear meshes with the bevel gear of the wheel planetary reduction mechanism, and the wheel rotation is driven by the wheel planetary reduction mechanism;
  • the leveling device employs a hydraulic system that is capable of driving the transaxle housing up and down relative to the wheel such that the transaxle housing remains horizontal.
  • the hydraulic system includes a tilt sensor, an electronic control unit, an electromagnetic hydraulic reversing valve, and a hydraulic chamber device in communication with the electromagnetic hydraulic reversing valve; the tilt sensor is connected to an electronic control unit, and the electronic control unit is The information of the tilt sensor controls the opening and closing of the electromagnetic hydraulic reversing valve port to increase or decrease the liquid in the hydraulic chamber device; the hydraulic chamber device can drive the transaxle housing to move up and down.
  • the hydraulic chamber device comprises a vertical cylinder and a vertical cylinder; the vertical cylinder top is sleeved with the vertical cylinder, and a hydraulic chamber is formed between the two, the vertical cylinder is composed of
  • the vertical cylinder is supported; the hydraulic chamber is connected to the electromagnetic hydraulic reversing valve in the hydraulic system through a hydraulic pipeline; the vertical cylinder and the wheel center position are limited by the wheel planetary reduction mechanism
  • the vertical cylinder is fixedly connected to the drive axle housing; the vertical cylinder can move up and down along the vertical cylinder, thereby driving the drive axle housing to move up and down; the vertical transmission A shaft passes through the center of the vertical cylinder and the vertical cylinder and is rotatable relative to the vertical cylinder and the vertical cylinder.
  • a motion seal is adopted between the vertical cylinder and the vertical cylinder; a motion seal is adopted between the vertical transmission shaft and the vertical cylinder and the vertical cylinder.
  • the tilt sensor is a lateral tilt sensor or a longitudinal tilt sensor, the lateral tilt sensor is mounted on the transaxle housing, and the longitudinal tilt sensor is mounted on the frame; the electronic control unit is collected by a single chip and a peripheral signal. It consists of an op amp circuit.
  • the semi-axle bevel gear is mounted on the transaxle case via a bearing; the vertical-axis bevel gear is splined with the vertical drive shaft.
  • transaxle device is applied to a front drive axle and a rear drive axle of the wheeled tractor;
  • the front drive axle is coupled to the frame by a ball joint pair disposed on the extension line of the front axle drive shaft through a center of the ball; the rear drive axle is coupled to the frame by two ball hinge pairs, and the two balls
  • the midpoint of the articulated sub-center connection is located on the rear axle drive shaft.
  • transaxle device can also be used on hilly mountain tractors or other self-propelled machine chassis.
  • the present invention also provides an automatic leveling method for a wheeled tractor, comprising:
  • the lateral tilt sensor mounted on the transaxle housing detects the lateral tilt angle of the transaxle housing and transmits the detected dip signal to the electronic control unit;
  • the electronic control unit sends an instruction to the electromagnetic hydraulic reversing valve of the hydraulic system according to the detected lateral inclination angle signal, and the two ports of the electromagnetic hydraulic reversing valve are energized, so that the oil chamber on the lower side is oiled, and the position is relatively
  • the oil chamber on the high side is oily;
  • the electronic control unit controls the electromagnetic hydraulic reversing valve so that the ports of the electromagnetic hydraulic reversing valve are not energized, the spool is in the neutral position, and the two ends of the transaxle housing are respectively maintained The wheel center distance of the left and right wheels no longer changes, and the automatic lateral leveling process of the transaxle is completed.
  • the method further includes: utilizing a longitudinal sensor mounted on the frame to enable longitudinal leveling of the wheeled tractor.
  • FIG. 1 is a schematic structural view of a wheel-type tractor drive axle device capable of automatically leveling according to the present invention.
  • FIG. 2 is a schematic view showing a case of an automatic leveling wheeled tractor drive axle applied to a lateral inclination leveling according to the present invention.
  • FIG. 3 is a schematic view showing a case of a horizontally leveling wheel drive tractor applied to a lateral inclination leveling according to the present invention.
  • FIG. 4 is a side view showing the application of the automatic leveling tractor drive axle in the longitudinal leveling of the four-wheel tractor frame according to the present invention.
  • FIG. 5 is a top plan view showing the application of the automatic leveling tractor drive axle in the vertical leveling of the four-wheel tractor frame according to the present invention.
  • 1-lateral inclination sensor 2-drive axle housing; 3-half-axle bevel gear; 4-vertical drive shaft; 5--vertical shaft upper bevel gear; 6-vertical cylinder; 7-vertical cylinder; 8-wheel; 9-wheel planetary reduction mechanism; 10-electromagnetic hydraulic reversing valve; 11-vertical shaft lower bevel gear; 12-electronic control unit; 13-left vertical cylinder; 14-left oil chamber; - left wheel; 17-right vertical Cylinder; 18-right oil chamber; 20-right wheel; 23-longitudinal inclination sensor; 24-frame; 26-first ball hinge pair; 27-front drive axle; 30-rear drive axle; 31-second ball Hinged pair; 32-rear axle drive shaft; 33-front axle drive shaft.
  • the apparatus of the present invention comprises a lateral inclination sensor 1, a transaxle housing 2, a semi-axle bevel gear 3, a vertical transmission shaft 4, a vertical shaft upper bevel gear 5, a vertical cylinder 6, and a vertical
  • the semi-axle bevel gear 3 is mounted on the transaxle case 2 via a bearing, and the bevel gear 5 on the vertical shaft is spline-mounted on the upper end of the vertical drive shaft 4 and is slidable along the vertical drive shaft 4, vertical
  • the under-shaft bevel gear 11 is integrated with the bottom end of the vertical drive shaft 4, the semi-axle bevel gear 3 meshes with the vertical shaft upper bevel gear 5, and the vertical shaft lower bevel gear 11 meshes with the bevel gear of the wheel-side planetary reduction mechanism 9
  • the semi-axle bevel gear 3 transmits power to the vertical shaft bevel gear 5, the vertical transmission shaft 4, the vertical lower bevel gear 11, the wheel planetary reduction mechanism 9, and the wheel 8 in order to drive the wheel 8.
  • the vertical drive shaft 4 is mounted through the center of the vertical cylinder 6 and the vertical cylinder 7, and is rotatable relative to the vertical cylinder 6 and the vertical cylinder 7, the vertical drive shaft 4 and the vertical cylinder 6
  • the contact portion with the vertical cylinder 7 adopts a motion sealing measure
  • the vertical cylinder 6 is sleeved on the vertical cylinder 7, and the vertical cylinder 7 and the vertical cylinder 6 are sport-sealed, and the vertical cylinder 6 Supporting the vertical cylinder block 7 and being movable up and down with respect to the vertical cylinder block 7, such that the vertical cylinder tube 6 and the vertical cylinder block 7 form a hydraulic chamber
  • the vertical cylinder tube 6 is rigidly fixed to the transaxle housing 2 Coupling, the position of the vertical cylinder 7 and the wheel 8 is limited by the wheel planetary reduction mechanism 9, and when the hydraulic oil enters or flows out of the vertical cylinder 6 and the vertical cylinder 7 constitutes a hydraulic chamber (oil chamber)
  • the lateral inclination sensor 1 detects the lateral inclination angle of the transaxle case 2, and sends a signal to the electronic control unit 12, and the electronic control unit 12 according to the lateral inclination sensor
  • the signal of 1 controls the electromagnetic hydraulic reversing valve 10, and the position of the vertical cylinder of the left and right vertical cylinders of the transaxle and the vertical cylinder is adjusted by the hydraulic system, thereby adjusting the left and right ends of the transaxle housing 2 to the left and right wheels.
  • Histogram The height position of the drive makes the drive axle in a horizontal condition. Since the vertical drive shaft 4 can rotate relative to the vertical cylinder 6 and the vertical cylinder 7, the drive axle self-leveling process does not affect the power transmission of the drive axle and the steering of the wheel 8, and the left and right wheelbase parameters are unchanged.
  • the invention discloses a concrete implementation example of a self-leveling wheeled tractor drive axle device and a control method.
  • the drive axle When the terrain of the tractor is hilly slope, the drive axle will have a lateral inclination, and the left end of the drive axle is low and the right end is high, as shown in FIG. 2, thereby causing the lateral inclination of the whole vehicle; when the automatic leveling tractor according to the present invention is used
  • the lateral inclination sensor 1 mounted on the transaxle case 2 detects the lateral inclination angle of the transaxle case 2, and transmits the detected inclination angle signal to the electronic control unit 12, and the electronic control unit 12 tilts according to the detected lateral direction.
  • the angle signal sends an instruction to the electromagnetic hydraulic reversing valve 10 of the hydraulic system.
  • the 1DT and 4DT of the electromagnetic hydraulic reversing valve 10 are energized, and the 1DT is energized, so that the hydraulic system supplies oil to the left oil chamber 14, and the volume of the left oil chamber 14 increases.
  • the left vertical cylinder 13 is pushed upward, and the left end of the transaxle housing 2 is moved upward; meanwhile, the 4DT of the electromagnetic hydraulic reversing valve 10 is energized, and the oil passage of the right oil chamber 18 is connected with the fuel tank of the hydraulic system, and the right vertical cylinder
  • the cylinder 17 moves downward under the gravitational load of the transaxle housing 2, the volume of the right oil chamber 18 decreases, and the right end of the transaxle housing 2 descends until the left and right ends of the transaxle housing 2 are horizontal, at this time, the lateral direction
  • the detection angle of the angle sensor 1 is 0, and the electronic control unit 12 controls the electromagnetic hydraulic directional control valve 10 so that the 1DT, 2DT, 3DT, 4DT of the electromagnetic hydraulic directional control valve 10 are
  • the lateral inclination sensor 1 mounted on the transaxle case 2 detects the lateral inclination angle signal.
  • the electronic control unit 12 issues an instruction to the electromagnetic hydraulic reversing valve 10 of the hydraulic system according to the lateral inclination signal.
  • the 2DT and 3DT of the electromagnetic hydraulic reversing valve 10 are energized, the right oil chamber 18 is oiled, and the right vertical cylinder 17 is raised.
  • the right end of the drive axle housing 2 rises, the left oil chamber 14 is oiled under the gravity load of the drive axle, and the left vertical cylinder tube 13 is lowered to drive the left end of the transaxle housing 2 to descend until the left and right ends of the transaxle housing 2 are horizontal.
  • the electronic control unit 12 controls the 2DT and 3DT of the electromagnetic hydraulic reversing valve 10 to lose power, and the electromagnetic hydraulic reversing valve 10 is in a neutral state, and completes the lateral angle self-leveling process of the transaxle case.
  • FIG. 4 is a side view of a self-leveling tractor drive axle applied to the longitudinal leveling of a four-wheel tractor frame
  • FIG. 5 is a self-leveling tractor drive axle applied to a four-wheel tractor frame longitudinally.
  • Leveling schematic view As shown in FIG. 4 and FIG. 5, the four-wheel tractor front drive axle and the rear drive axle both use the self-leveling drive axle structure of the present invention, and the frame 24 is coupled to the front drive axle 27 through the first ball hinge pair 26 Connected to the rear drive axle 30 by two second ball hinge pairs 31; and, the first ball hinge pair 26 is positioned on the extension of the front axle drive shaft 33, and the rear axle drive shaft 32 passes through the two second balls.
  • the frame 24 must have a longitudinal inclination, and the longitudinal inclination sensor 23 mounted on the frame 24 transmits the longitudinal inclination to the electronic control.
  • the electronic control unit 12 issues an instruction to the electromagnetic hydraulic directional control valve 10, 2DT, 4DT is energized, so that the oil in the two oil chambers of the front drive axle 27 is reduced, the position of the front drive axle 27 is lowered, 5DT, 7DT Electric, so that the oil in the two oil chambers of the rear axle 30 increases, and the position of the rear axle 30 rises.
  • the control unit 12 controls the 1DT, 2DT, 3DT, 4DT, 5DT, 6DT, 7DT, 8DT of the electromagnetic hydraulic directional control valve 10 to be de-energized, and the longitudinal horizontal adjustment of the frame is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种可自动调平的轮式拖拉机驱动桥装置及调平方法,包括传动装置和调平装置;传动装置包括驱动桥壳体(2)、半轴锥齿轮(3)、竖直传动轴(4)、轮边行星减速机构(9);竖直传动轴(4)的上端通过花键连接竖直轴上锥齿轮(5)、下端固定竖直轴下锥齿轮(11);半轴锥齿轮(3)通过轴承安装在驱动桥壳体(2)上;半轴锥齿轮(3)与竖直轴上锥齿轮(5)啮合;竖直轴下锥齿轮(11)与轮边行星减速机构(9)锥齿轮啮合,实现车轮(8)的驱动;调平装置采用液压系统,液压系统包括电磁液压换向阀(10)和与其连通的设置在驱动桥壳下的液压腔,通过控制液压腔内的油液进出,带动驱动桥壳体(2)相对于车轮(8)上下移动,实现驱动桥的调平。本装置仅改变驱动桥相对车轮的竖直位置,车轮轴距及轮心间距不变,增加车辆的行驶稳定性。

Description

一种可自动调平的轮式拖拉机驱动桥装置及调平方法 技术领域
本发明属于拖拉机技术领域,具体涉及一种可自动调平的轮式拖拉机驱动桥装置及调平方法。
背景技术
随着我国农业机械化水平的提高,应用于山地丘陵的拖拉机也得到了一定程度的发展,山地拖拉机不但可以提高丘陵山地地区的机械化程度,而且可以改善山区劳动者的生活条件。为了适应山地丘陵的地形特点,山地拖拉机的车身姿态调平成为拖拉机使用中的重要要求。传统的山地拖拉机的车身调平通过操作者手工控制;其次,目前国内的山地拖拉机以手扶式拖拉机和微型履带拖拉机为主,具有拖拉机车身自动调平的四轮驱动的轮式拖拉机驱动桥还没有见到相关文献和专利检索提及。
目前,通过关键词,“山地拖拉机”和“自调平”的专利公告有以下4项:
1.车身横向水平式山地拖拉机(申请号:CN201520084082.2,公开号;CN204432812U),介绍一种可进行车身横向水平调节的拖拉机,其整体布置为分置时车架进行铰接,整车分为,前车架,中车架和后车架进行铰接,转向方式为折腰转向式;车架调平检测信号来自安装在车架上的水银开关的倾斜来控制电磁换向阀,从而调整单侧两个驱动轮减速器与车架的相对距离,进行横向水平调节。
2.一种山地遥控拖拉机(申请号为:CN201010215718.4)介绍一种可在山地丘陵遥控作业的履带拖拉机,动力通过变速箱直接专递给履带的驱动轮,在两侧的车架上有两个液压缸分别连接左右履带支重轮的支撑架和车身;通过遥控装置的处理器发出车身自调平的信号,控制液压油缸的升降,调整车身的横向水平位置。
3.一种山地拖拉机传动机构(申请号CN200920093628.5),传动半轴和驱动轮之间的动力传递通过链轮结构完成,可以实现轮距可调,无调整车身的功能。
4.山地手扶拖拉机平衡控制装置(申请号:CN201220194143.7)提出一种手扶拖拉机的平衡装置,通过左右两个液压油缸调节变速箱和驱动轮的位置,达到车身姿态调平的目的。
从上述检索可见,专利公告1,可以实现车身的横向调平,但车架分成三块铰接而成,增加了坡地行驶的不稳定,并且驱动桥在横向调平时通过车轮及传动机构绕车身纵向转动来调节车轮轮心与车身的距离,这样,虽然调平了车身,但是前后轮之间的轴距 及左右车轮的轮距参数发生了变化,各车轮的承载的载荷比发生了变化,最终使得车轮的附着力也改变;同时,由于轮距,轴距发生变化,导致整车增加的不稳定性,在转向操作时,由于轮距和轴距参数的变化导致整车的转向性能参数也发生变化,增加了驾驶员的转向操作难度。专利公告2通过无线控制左右履带相对车身的位置,实现电控自动控制车身调平,但缺少轮式拖拉机动力传递效率高的优点;专利公告3的山地拖拉机驱动轮动力是通过链轮完成的,链轮传递在驱动力和效率上没有齿轮传递高,同时没有自动车身姿态调整功能;专利公告4是一种手扶拖拉机的平衡装置,通过驱动轮机减速机构绕机体转动改变驱动轮与机体的高度位置,由于驱动轮及减速机构绕机体在纵向方向转动,在驱动轮高度改变的同时,驱动轮相对机体纵向位置也在改变,对于四轮拖拉机而言,这样左右驱动轮的对车身的承载载荷发生变化,车轮的附着力也发生变化,由于轮距发生变化,导致整车转向性能参数发生变化,不利于转向操作,另外,不能够实现纵向水平调整的自动控制。
发明内容
针对山地拖拉机的驱动桥传动系统结构和车身姿态调平需要,提出一种带有自动调平功能的轮式拖拉机驱动桥,该拖拉机驱动桥在山地或丘陵地带使用时,通过驱动桥上的横向倾角传感器和整车纵向倾角传感器获得驱动桥横向、整车纵向倾斜姿态参数,电子控制单元对液压系统进行控制,最终采用液压驱动技术调节驱动桥两端的驱动轮相对车桥壳体高度位置,使得车身底盘处于横向和纵向水平状态;调节过程中,可实现四个驱动轮驱动力不间断传递和拖拉机轮距和轴距参数不改变,不影响车辆的转向性能。实现本发明的技术方案如下:
一种可自动调平的轮式拖拉机驱动桥装置,包括传动装置和调平装置;
所述传动装置包括驱动桥壳体、半轴锥齿轮、竖直传动轴、轮边行星减速机构;所述竖直传动轴的上端设有能够沿所述竖直传动轴上下滑动的竖直轴上锥齿轮、下端设有固定一体的竖直轴下锥齿轮;所述半轴锥齿轮安装在所述驱动桥壳体上,发动机动力驱动所述驱动桥壳体中所述半轴锥齿轮转动;所述半轴锥齿轮与所述竖直轴上锥齿轮啮合,能够带动所述竖直轴上锥齿轮转动;所述竖直轴上锥齿轮的转动能够带动所述竖直传动轴转动,进而能够带动所述竖直轴下锥齿轮转动;所述竖直轴下锥齿轮与所述轮边行星减速机构的锥齿轮啮合,通过所述轮边行星减速机构带动车轮转动;
所述调平装置采用液压系统,所述液压系统能够带动驱动桥壳体相对于车轮上下移动,使得驱动桥壳体保持水平。
进一步,所述液压系统包括倾角传感器、电子控制单元、电磁液压换向阀以及与所述电磁液压换向阀连通的液压腔装置;所述倾角传感器与电子控制单元相连,所述电子控制单元根据所述倾角传感器的信息控制所述电磁液压换向阀端口的开闭实现所述液压腔装置内的液体增加或减少;所述液压腔装置能够带动所述驱动桥壳体上下运动。
进一步,所述液压腔装置包括竖直缸筒和竖直缸体;所述竖直缸体顶端外面套有所述竖直缸筒、两者之间形成液压腔,所述竖直缸体由所述竖直缸筒支撑;所述液压腔通过液压管路与液压系统中所述电磁液压换向阀连接;所述竖直缸体与车轮轮心位置通过所述轮边行星减速机构限位;所述竖直缸筒与所述驱动桥壳体固定连接;所述竖直缸筒能够沿所述竖直缸体上下运动,进而带动所述驱动桥壳体上下运动;所述竖直传动轴穿过所述竖直缸筒和所述竖直缸体的中心,并且能够相对于所述竖直缸筒和所述竖直缸体转动。
进一步,所述竖直缸筒和所述竖直缸体之间采用运动密封;所述竖直传动轴与所述竖直缸筒、所述竖直缸体之间均采用运动密封。
进一步,所述倾角传感器为横向倾角传感器或纵向倾角传感器,所述横向倾角传感器安装在驱动桥壳体上,所述纵向倾角传感器安装在车架上;所述电子控制单元由单片机加外围信号采集与运放电路组成。
进一步,所述半轴锥齿轮通过轴承安装在所述驱动桥壳体上;所述竖直轴上锥齿轮与所述竖直传动轴之间采用花键连接。
进一步,所述驱动桥装置应用在所述轮式拖拉机的前驱动桥和后驱动桥上;
所述前驱动桥通过一个球心位置设置在前桥驱动轴延长线上的球铰接副与车架联接;所述后驱动桥通过两个球铰接副与车架联接,并且所述两个球铰接副球心连线的中点位于后桥驱动轴上。
进一步,所述驱动桥装置还能够用于丘陵山地拖拉机或者其他自走机器底盘上。
根据上述驱动桥装置,本发明还提出了一种轮式拖拉机的自动调平方法,包括:
a.当拖拉机整车产生横向倾斜时,安装在驱动桥壳体上的横向倾角传感器检测到驱动桥壳体的横向倾斜角度,并向电子控制单元发送检测的倾角信号;
b.电子控制单元根据检测的横向倾斜角度信号向液压系统的电磁液压换向阀发出指令,电磁液压换向阀的2个端口得电,使得位置较低一侧的油腔进油,位置较高一侧的油腔出油;
c.进油的油腔容积增大,能够推动竖直缸筒向上位移,进而带动驱动桥壳体较低的一 侧向上移动;出油的油腔,在驱动桥壳体的重力载荷下推动竖直缸筒向下移动,带动驱动桥壳体较高的一侧向下移动,直到驱动桥壳体的两端处于水平状态;
d.横向倾角传感器检测到横向倾角为0时,电子控制单元控制电磁液压换向阀,使得电磁液压换向阀的端口都不得电,阀芯处于中位,保持驱动桥壳体两端分别至左车轮和右车轮的轮心距离不再改变,驱动桥的自动横向调平过程完成。
进一步,所述方法还包括:利用安装在车架上的纵向传感器,能够实现轮式拖拉机的纵向调平。
本发明的有益效果:
1、可用于丘陵山地拖拉机或其他自走机器底盘上,拖拉机在丘陵坡地上行驶时,根据需要,可通过驱动桥的自动调节水平功能使得拖拉机车身处于横向和纵向水平状态,增加拖拉机及自走机器底盘的稳定性。
2、在驱动桥姿态调平过程中,仅改变驱动轮相对车身的竖直方向的位置,车辆的前后驱动轮纵向方向的轴距基本不变,因此,不改变前后驱动桥的承受载荷比,增加车辆的行驶稳定性。
3、由于驱动桥自动调平过程,轴距和轮距基本不变,因此,整车的转向性能参数基本不变,有利于整车的转向系统设计。
附图说明
图1为本发明所述一种可自动调平的轮式拖拉机驱动桥装置的结构原理图。
图2为本发明所述一种自动调平的轮式拖拉机驱动桥应用于横向倾角调平案例示意图。
图3为本发明所述一种自动调平的轮式拖拉机驱动桥应用于横向倾角调平案例示意图。
图4为本发明所述一种自动调平的拖拉机驱动桥在四轮拖拉机车架纵向调平的应用侧视示意图。
图5为本发明所述一种自动调平的拖拉机驱动桥在四轮拖拉机车架纵向调平的应用俯视示意图。
附图标记说明如下:
1-横向倾角传感器;2-驱动桥壳体;3-半轴锥齿轮;4-竖直传动轴;5-竖直轴上锥齿轮;6-竖直缸筒;7-竖直缸体;8-车轮;9-轮边行星减速机构;10-电磁液压换向阀;11-竖直轴下锥齿轮;12-电子控制单元;13-左竖直缸筒;14-左油腔;16-左车轮;17-右竖直 缸筒;18-右油腔;20-右车轮;23-纵向倾角传感器;24-车架;26-第一球铰接副;27-前驱动桥;30-后驱动桥;31-第二球铰接副;32-后桥驱动轴;33-前桥驱动轴。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
1)带有自调平的拖拉机驱动桥的结构与连接
如图1所示,本发明的装置包括横向倾角传感器1、驱动桥壳体2,半轴锥齿轮3、竖直传动轴4、竖直轴上锥齿轮5、竖直缸筒6、竖直缸体7、轮边行星减速机构9、液压系统及电磁液压换向阀10、竖直轴下锥齿轮11,电子控制单元12。半轴锥齿轮3通过轴承安装在驱动桥壳体2上,竖直轴上锥齿轮5通过花键安装在竖直传动轴4的上端、并且能够沿竖直传动轴4上下滑移,竖直轴下锥齿轮11与竖直传动轴4底端做成一体,半轴锥齿轮3与竖直轴上锥齿轮5啮合,竖直轴下锥齿轮11与轮边行星减速机构9的锥齿轮啮合;半轴锥齿轮3将动力依次传递给竖直轴上锥齿轮5、竖直传动轴4、竖直下锥齿轮11、轮边行星减速机构9、车轮8,实现对车轮8的驱动。竖直传动轴4穿过竖直缸筒6和竖直缸体7的中心安装、且能够相对于竖直缸筒6和竖直缸体7转动,竖直传动轴4与竖直缸筒6和竖直缸体7的接触部分采取运动密封措施;竖直缸筒6套在竖直缸体7上,竖直缸体7与竖直缸筒6之间采用运动密封,竖直缸筒6支撑竖直缸体7、且能够相对于竖直缸体7上下移动,这样竖直缸筒6与竖直缸体7构成一个液压腔体;竖直缸筒6与驱动桥壳体2刚性固定联接,竖直缸体7与车轮8轮心位置通过轮边行星减速机构9限位,当液压油液进入或流出该竖直缸筒6与竖直缸体7组成液压腔体(油腔)时,竖直缸筒6和竖直缸体7的竖直相对位置发生变化,从而,带动驱动桥壳体2相对车轮8在竖直方向位置发生变化;在竖直缸筒6和竖直缸体7竖直方向上位置改变时,竖直轴上锥齿轮5可在竖直传动轴4上滑移,以保证竖直轴上锥齿轮5与半轴锥齿轮3的啮合位置不改变,同时,竖直轴下锥齿轮11与轮边行星减速机构9中锥齿轮的啮合位置不改变。
2)一种自动调平的拖拉机驱动桥工作原理
如图1所示,当驱动桥的左右车轮处于斜坡地形时,横向倾角传感器1检测到驱动桥壳体2横向倾斜角度,并将信号发给电子控制单元12,电子控制单元12根据横向倾角传感器1的信号对电磁液压换向阀10进行控制,通过液压系统调节驱动桥左右竖直缸筒与竖直缸体竖直方向的位置,从而调节驱动桥壳体2左右两端相对左右车轮在竖直方 向的高度位置,使得驱动桥处于水平工况。由于竖直传动轴4可以相对竖直缸筒6和竖直缸体7转动,驱动桥自调平过程中,不影响驱动桥的动力传递和车轮8转向,并且左右轮距参数不变。
具体实施例
本发明所述一种可自调平的轮式拖拉机驱动桥装置与控制方法具体实施案例。
1)拖拉机驱动桥的横向倾角自调平应用:
当拖拉机行走的地形为丘陵坡地时,驱动桥会产生横向倾斜,驱动桥左端低右端高,如图2所示,从而引起整车的横向倾斜;当采用本发明所述的自动调平的拖拉机驱动桥时,安装在驱动桥壳体2上的横向倾角传感器1检测到驱动桥壳体2的横向倾斜角度,并向电子控制单元12发送检测的倾角信号,电子控制单元12根据检测的横向倾斜角度信号向液压系统的电磁液压换向阀10发出指令,电磁液压换向阀10的1DT、4DT得电,1DT得电,使得液压系统给左油腔14供油,左油腔14容积增加,推动左竖直缸筒13向上位移,驱动桥壳体2左端向上移动;同时,电磁液压换向阀10的4DT得电,右油腔18的油路与液压系统的油箱连通,右竖直缸筒17在驱动桥壳体2的重力载荷下向下移动,右油腔18容积减小,驱动桥壳体2右端下降,直到驱动桥壳体2的左右两端处于水平状态,此时,横向倾角传感器1的检测横向倾角为0,电子控制单元12控制电磁液压换向阀10,使得电磁液压换向阀10的1DT、2DT、3DT、4DT都不得电,阀芯处于中位,保持驱动桥壳体2左右两端分别至左车轮16和右车轮20的轮心距离不再改变,驱动桥的自动调平过程完成。
反之,当拖拉机行走在丘陵坡地时,驱动桥若产生左端高,右端地的横向倾斜时,如图3所示,安装在驱动桥壳体2上的横向倾角传感器1检测到横向倾斜角度信号,电子控制单元12根据横向倾角信号向液压系统的电磁液压换向阀10发出指令,电磁液压换向阀10的2DT、3DT得电,右油腔18进油,右竖直缸筒17上升,带动驱动桥壳体2右端上升,左油腔14在驱动桥重力载荷下出油,左竖直缸筒13下降,带动驱动桥壳体2左端下降,直至驱动桥壳体2左右两端水平时,电子控制单元12控制电磁液压换向阀10的2DT、3DT失电,电磁液压换向阀10处于中立状态,完成驱动桥壳的横向角度自调平过程。
2)拖拉机驱动桥的四轮拖拉机车架纵向倾角调平应用案例
如图4和图5所示,图4是自调平拖拉机驱动桥应用于四轮拖拉机车架纵向调平的侧视示意图,图5是自调平拖拉机驱动桥应用于四轮拖拉机车架纵向调平的示意图俯视 图;图4和图5所示,四轮拖拉机前驱动桥和后驱动桥都使用本发明所述的自调平驱动桥结构,车架24通过第一球铰接副26与前驱动桥27联接,通过两个第二球铰接副31与后驱动桥30联接;并且,第一球铰接副26球心位置在前桥驱动轴33的延长线上,后桥驱动轴32经过两个第二球铰接副31球心的连线的中点。在坡地作业时,如前驱动桥27和后驱动桥30产生横向侧倾,根据前述驱动桥横向自调平应用案例的原理可以使得前驱动桥27和后驱动桥30实现横向自动调平,具体调节原理过程不再累述。
若如图4所示,拖拉机的前轮着地点与后轮的着地点产生高度差,那么车架24必然产生纵向倾角,安装在车架24上的纵向倾角传感器23将纵向倾角传给电子控制单元12,电子控制单元12向电磁液压换向阀10发出指令,2DT、4DT得电,使得前驱动桥27的两个油腔内的油液减少,前驱动桥27位置降低,5DT,7DT得电,使得后驱动桥30的两个油腔内的油液增加,后驱动桥30位置升高,当纵向倾角传感器23测得的车架24横向倾角为0时,车架24处于水平,电子控制单元12控制电磁液压换向阀10的1DT,2DT,3DT,4DT,5DT,6DT,7DT,8DT处于失电,车架纵向水平调节完成。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种可自动调平的轮式拖拉机驱动桥装置,其特征在于,包括传动装置和调平装置;
    所述传动装置包括驱动桥壳体(2)、半轴锥齿轮(3)、竖直传动轴(4)、轮边行星减速机构(9);所述竖直传动轴(4)的上端设有能够沿所述竖直传动轴(4)上下滑动的竖直轴上锥齿轮(5)、下端设有固定一体的竖直轴下锥齿轮(11);所述半轴锥齿轮安装在所述驱动桥壳体上,发动机动力驱动所述驱动桥壳体(2)中所述半轴锥齿轮(3)转动;所述半轴锥齿轮(3)与所述竖直轴上锥齿轮(5)啮合,能够带动所述竖直轴上锥齿轮(5)转动;所述竖直轴上锥齿轮(5)的转动能够带动所述竖直传动轴(4)转动,进而能够带动所述竖直轴下锥齿轮(11)转动;所述竖直轴下锥齿轮(11)与所述轮边行星减速机构(9)的锥齿轮啮合,通过所述轮边行星减速机构(9)带动车轮(8)转动;
    所述调平装置采用液压系统,所述液压系统能够带动驱动桥壳体(2)相对于车轮(8)上下移动,使得驱动桥壳体(2)保持水平。
  2. 根据权利要求1所述的一种可自动调平的轮式拖拉机驱动桥装置,其特征在于,所述液压系统包括倾角传感器、电子控制单元(12)、电磁液压换向阀(10)以及与所述电磁液压换向阀(10)连通的液压腔装置;所述倾角传感器与电子控制单元(12)相连,所述电子控制单元(12)根据所述倾角传感器的信息控制所述电磁液压换向阀端口的开闭实现所述液压腔装置内的液体增加或减少;所述液压腔装置能够带动所述驱动桥壳体(2)上下运动。
  3. 根据权利要求2所述的一种可自动调平的轮式拖拉机驱动桥装置,其特征在于,所述液压腔装置包括竖直缸筒(6)和竖直缸体(7);所述竖直缸体(7)顶端外面套有所述竖直缸筒(6)、两者之间形成液压腔,所述竖直缸体(7)由所述竖直缸筒(6)支撑;所述液压腔通过液压管路与所述液压系统中的电磁液压换向阀(10)连接;所述竖直缸体(7)与车轮轮心位置通过所述轮边行星减速机构(9)限位;所述竖直缸筒(6)与所述驱动桥壳体(2)固定连接;所述竖直缸筒(6)能够沿所述竖直缸体(7)上下运动,进而带动所述驱动桥壳体(2)上下运动;所述竖直传动轴(4)穿过所述竖直缸筒(6)和所述竖直缸体(7)的中心,并且能够相对于所述竖直缸筒(6)和所述竖直缸体(7)转动。
  4. 根据权利要求3所述的一种可自动调平的轮式拖拉机驱动桥装置,其特征在于,所述竖直缸筒(6)和所述竖直缸体(7)之间采用运动密封;所述竖直传动轴(4)与所 述竖直缸筒(6)、所述竖直缸体(7)之间均采用运动密封。
  5. 根据权利要求2所述的一种可自动调平的轮式拖拉机驱动桥装置,其特征在于,所述倾角传感器为横向倾角传感器(1)或纵向倾角传感器(23),所述横向倾角传感器(1)安装在驱动桥壳体(2)上,所述纵向倾角传感器(23)安装在车架上;所述电子控制单元(12)由单片机加外围信号采集与运放电路组成。
  6. 根据权利要求1所述的一种可自动调平的轮式拖拉机驱动桥装置,其特征在于,所述半轴锥齿轮(3)通过轴承安装在所述驱动桥壳体(2)上;所述竖直轴上锥齿轮(5)与所述竖直传动轴(4)之间采用花键连接。
  7. 根据权利要求1-6任意一项所述的一种可自动调平的轮式拖拉机驱动桥装置,其特征在于,所述驱动桥装置应用在所述轮式拖拉机的前驱动桥和后驱动桥上;
    所述前驱动桥(27)通过一个球心位置设置在前桥驱动轴(33)延长线上的球铰接副与车架联接;所述后驱动桥(30)通过两个球铰接副与车架联接,并且所述两个球铰接副球心连线的中点位于后桥驱动轴(32)上。
  8. 根据权利要求1-6任意一项所述的一种可自动调平的轮式拖拉机驱动桥装置,其特征在于,所述驱动桥装置还能够用于丘陵山地拖拉机或者其他自走机器底盘上。
  9. 一种轮式拖拉机的自动调平方法,其特征在于,包括:
    a.当拖拉机整车产生横向倾斜时,安装在驱动桥壳体上的横向倾角传感器(1)检测到驱动桥壳体的横向倾斜角度,并向电子控制单元(12)发送检测的倾角信号;
    b.电子控制单元(12)根据检测的横向倾斜角度信号向液压系统的电磁液压换向阀(10)发出指令,电磁液压换向阀(10)的2个端口得电,使得位置较低一侧的油腔进油,位置较高一侧的油腔出油;
    c.进油的油腔容积增大,能够推动竖直缸筒(6)向上位移,进而带动驱动桥壳体(2)较低的一侧向上移动;出油的油腔,在驱动桥壳体(2)的重力载荷下推动竖直缸筒(6)向下移动,带动驱动桥壳体(2)较高的一侧向下移动,直到驱动桥壳体(2)的两端处于水平状态;
    d.横向倾角传感器(2)检测到横向倾角为0时,电子控制单元(12)控制电磁液压换向阀,使得电磁液压换向阀的端口都不得电,阀芯处于中位,保持驱动桥壳体(2)两端分别至左车轮(16)和右车轮(20)的轮心距离不再改变,驱动桥的自动横向调平过程完成。
  10. 根据权利要求9所述的一种轮式拖拉机的自动调平方法,其特征在于,所述方法还包括:利用安装在车架上的纵向传感器(23),能够实现轮式拖拉机的纵向调平。
PCT/CN2017/084645 2016-06-08 2017-05-17 一种可自动调平的轮式拖拉机驱动桥装置及调平方法 WO2017211167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/070,091 US10625796B2 (en) 2016-06-08 2017-05-17 Auto-leveling drive axle device for wheeled tractor, and leveling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610405558.7 2016-06-08
CN201610405558.7A CN106043473B (zh) 2016-06-08 2016-06-08 一种可自动调平的轮式拖拉机驱动桥装置及调平方法

Publications (1)

Publication Number Publication Date
WO2017211167A1 true WO2017211167A1 (zh) 2017-12-14

Family

ID=57170731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084645 WO2017211167A1 (zh) 2016-06-08 2017-05-17 一种可自动调平的轮式拖拉机驱动桥装置及调平方法

Country Status (3)

Country Link
US (1) US10625796B2 (zh)
CN (1) CN106043473B (zh)
WO (1) WO2017211167A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415117A (zh) * 2021-05-14 2021-09-21 四川农业大学 一种小型底盘调平装置
CN113950981A (zh) * 2021-11-19 2022-01-21 新疆农垦科学院 一种用于修剪机的减震式仿形自动保护避障装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106043473B (zh) * 2016-06-08 2018-04-17 江苏大学 一种可自动调平的轮式拖拉机驱动桥装置及调平方法
CN106741244A (zh) * 2017-03-14 2017-05-31 四川川龙拖拉机制造有限公司 一种拖拉机调平总成和调平拖拉机
CN106982812B (zh) * 2017-04-03 2023-11-28 重庆亘坤农业科技发展有限公司 一种具有多种功能的打药机
CN106948404A (zh) * 2017-04-12 2017-07-14 管中林 一种具有多功能的步履挖掘机
DE102017109145B3 (de) * 2017-04-28 2018-05-09 Schaeffler Technologies AG & Co. KG Getriebeanordnung für eine Aktuatorvorrichtung zur Höhenverstellung eines Fahrzeugaufbaus
CN107521289B (zh) * 2017-09-22 2024-04-09 江苏大学 一种驱动轮姿态可调节的山地拖拉机驱动桥及其调节方法
FR3071565B1 (fr) * 2017-09-27 2019-10-25 Eliatis Systeme de stabilisation pour un engin a roues equipe d'un bras porteur de charge, et engin a roues equipe d'un bras porteur de charge, incluant ce systeme de stabilisation
CN107558518B (zh) * 2017-10-21 2023-04-07 盐城师范学院 可自动调整水平度的滩涂泥土平整装置
CN108215696B (zh) * 2018-03-27 2023-12-15 四川川龙拖拉机制造有限公司 一种调平装置、调平转向驱动桥及拖拉机
CN109050195A (zh) * 2018-07-17 2018-12-21 上海交通大学 丘陵山地拖拉机横向姿态调整机构及其调整方法
WO2020137581A1 (ja) * 2018-12-27 2020-07-02 株式会社クボタ 作業車
US11285772B2 (en) 2019-08-23 2022-03-29 Robby Gordon Front portal spindle assembly
CN110468896B (zh) * 2019-08-24 2023-12-29 中铁电气化局集团有限公司西安电气化工程分公司 一种履带式开沟机
CN110435378B (zh) * 2019-08-26 2024-02-09 吉林大学 一种特种车辆使用的油气悬架高度自动平衡机构
JP7042781B2 (ja) * 2019-09-25 2022-03-28 日立建機株式会社 作業車両
KR102059839B1 (ko) * 2019-10-22 2019-12-27 대호 (주) 트랙터 차체 레벨 감지장치
CN110762066A (zh) * 2019-11-21 2020-02-07 山东交通学院 基于能量再生的机器人液压移动平台
CN112026444A (zh) * 2020-07-22 2020-12-04 太原重工股份有限公司 液压驱动桥
CN112810729B (zh) * 2021-02-09 2022-10-14 益阳富佳科技有限公司 一种履带式拖拉机的车身姿态自调整装置
CN116394695B (zh) * 2023-06-06 2023-08-11 济南大学 一种四轮立柱滑移式电动缸调平车体及调平方法
CN118070532A (zh) * 2024-03-01 2024-05-24 东北电力大学 一种轮式拖拉机纵向稳定性增强方法、系统、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005060173A1 (de) * 2004-12-15 2006-07-13 Continental Teves Ag & Co. Ohg Sensoranordnung und Verfahren zum Ermitteln der Bewegung eines Fahrzeugaufbaus
CN103144498A (zh) * 2013-03-18 2013-06-12 江苏大学 一种自动升降驱动桥
CN104149573A (zh) * 2014-08-25 2014-11-19 大汉汽车集团有限公司 一种自主升降的空气悬架调平控制系统
CN104428199A (zh) * 2013-03-14 2015-03-18 萱场工业株式会社 车高调整装置
US9133586B2 (en) * 2013-06-19 2015-09-15 Bomag Gmbh Construction machine, more particularly road milling machine, and method for compensating for ground unevenness by means of said construction machine
CN106043473A (zh) * 2016-06-08 2016-10-26 江苏大学 一种可自动调平的轮式拖拉机驱动桥装置及调平方法
CN206171100U (zh) * 2016-06-08 2017-05-17 江苏大学 一种可自动调平的轮式拖拉机驱动桥装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19705583A1 (de) * 1997-02-14 1998-08-20 Deere & Co Erntemaschine
US4612996A (en) * 1983-08-08 1986-09-23 Kimberly Hills, Ltd. Robotic agricultural system with tractor supported on tracks
FI71269C (fi) * 1983-10-07 1986-12-19 Valmet Oy Anordning foer foerbaettrande av stabiliteten av traktor ellernaogon annan arbetsmaskin
FR2577879B3 (fr) * 1985-02-22 1987-03-06 Morin Freres Tracteur agricole
FR2609262B1 (fr) * 1987-01-05 1991-08-16 Lignones Hubert Installation hydraulique formant palonnier de limitation d'inclinaison transversale d'un train de roulement d'un vehicule et vehicule en faisant application
US5639119A (en) * 1992-12-04 1997-06-17 Trak International, Inc. Forklift stabilizing apparatus
FR2809196B1 (fr) * 2000-05-19 2004-10-01 Frema Vehicule motorise destine a evoluer sur une surface a declivite variable
CN201457674U (zh) 2009-05-15 2010-05-12 陈仲鸣 山地拖拉机传动机构
DE102009060999A1 (de) * 2009-06-24 2011-01-05 German Gresser Energieoptimiertes Elektrofahrzeug mit autarker Stromversorgung und Verfahren zur Stromerzeugung, bevorzugt aus kinetischer und Gravitationsenergie
CN102295028A (zh) 2010-06-26 2011-12-28 西北农林科技大学 一种山地遥控拖拉机
CN202587793U (zh) 2012-05-03 2012-12-12 陈斌 山地手扶拖拉机平衡控制装置
CN203267711U (zh) * 2013-05-29 2013-11-06 西北农林科技大学 一种山地农业机器人车身调平装置
US9409459B2 (en) * 2013-07-19 2016-08-09 Papé Machinery, Inc. 4-way leveling
CN204432812U (zh) 2015-02-06 2015-07-01 冯计贵 车身横向水平式山地拖拉机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005060173A1 (de) * 2004-12-15 2006-07-13 Continental Teves Ag & Co. Ohg Sensoranordnung und Verfahren zum Ermitteln der Bewegung eines Fahrzeugaufbaus
CN104428199A (zh) * 2013-03-14 2015-03-18 萱场工业株式会社 车高调整装置
CN103144498A (zh) * 2013-03-18 2013-06-12 江苏大学 一种自动升降驱动桥
US9133586B2 (en) * 2013-06-19 2015-09-15 Bomag Gmbh Construction machine, more particularly road milling machine, and method for compensating for ground unevenness by means of said construction machine
CN104149573A (zh) * 2014-08-25 2014-11-19 大汉汽车集团有限公司 一种自主升降的空气悬架调平控制系统
CN106043473A (zh) * 2016-06-08 2016-10-26 江苏大学 一种可自动调平的轮式拖拉机驱动桥装置及调平方法
CN206171100U (zh) * 2016-06-08 2017-05-17 江苏大学 一种可自动调平的轮式拖拉机驱动桥装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415117A (zh) * 2021-05-14 2021-09-21 四川农业大学 一种小型底盘调平装置
CN113950981A (zh) * 2021-11-19 2022-01-21 新疆农垦科学院 一种用于修剪机的减震式仿形自动保护避障装置
CN113950981B (zh) * 2021-11-19 2024-05-03 新疆农垦科学院 一种用于修剪机的减震式仿形自动保护避障装置

Also Published As

Publication number Publication date
CN106043473A (zh) 2016-10-26
CN106043473B (zh) 2018-04-17
US20190009844A1 (en) 2019-01-10
US10625796B2 (en) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2017211167A1 (zh) 一种可自动调平的轮式拖拉机驱动桥装置及调平方法
CN103935410B (zh) 一种基于轮毂电机的全方位转向越障车
CN201492595U (zh) 可爬楼梯的电动轮椅
WO2021017102A1 (zh) 一种具备复杂地形自适应功能的特种机器人及其运动作业方法
CN109367636B (zh) 一种水田播种农用机器人
CN104443093A (zh) 一种无人驾驶阶梯攀爬机器人
CN2841272Y (zh) 自主越障机器人的复合移动机构
CN211581320U (zh) 一种喷雾施肥一体机
CN206983657U (zh) 一种水平自适应调节的液压独立悬架
CN101428652B (zh) 冰雪面移动机器人
CN205970702U (zh) 一种拖拉机
CN208630732U (zh) 一种具有电液调节水平与升降功能的履带底盘
CN101767616A (zh) 一种高机动性车辆
CN206171100U (zh) 一种可自动调平的轮式拖拉机驱动桥装置
CN112931462A (zh) 一种喷雾施肥一体机
CN202892263U (zh) 可变轴距的车架
CN115655676A (zh) 一种土槽试验台车及配套土槽试验台
JP5297280B2 (ja) 作業機の傾斜角度検出構造
CN204661247U (zh) 臂式四驱越野叉车
CN115675671A (zh) 一种履带式运输车及其承载装置
CN210337456U (zh) 轮式农机浮动后桥以及轮式农机
CN207241312U (zh) 一种驱动轮姿态可调节的山地拖拉机驱动桥
CN207589549U (zh) 一种玉米收获机四轮液压驱动装置
CN207260023U (zh) 隔离带转移输送装置
CN101200166B (zh) 自动平衡三轮拖拉机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809606

Country of ref document: EP

Kind code of ref document: A1