WO2021017102A1 - 一种具备复杂地形自适应功能的特种机器人及其运动作业方法 - Google Patents

一种具备复杂地形自适应功能的特种机器人及其运动作业方法 Download PDF

Info

Publication number
WO2021017102A1
WO2021017102A1 PCT/CN2019/104834 CN2019104834W WO2021017102A1 WO 2021017102 A1 WO2021017102 A1 WO 2021017102A1 CN 2019104834 W CN2019104834 W CN 2019104834W WO 2021017102 A1 WO2021017102 A1 WO 2021017102A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
gear
steering
crawler
power
Prior art date
Application number
PCT/CN2019/104834
Other languages
English (en)
French (fr)
Inventor
李娟�
郝显慧
韩仲志
杨传安
赵妍玲
邓立苗
吴自库
高洪伟
Original Assignee
青岛农业大学
青岛希玛机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛农业大学, 青岛希玛机器人有限公司 filed Critical 青岛农业大学
Publication of WO2021017102A1 publication Critical patent/WO2021017102A1/zh
Priority to US17/525,733 priority Critical patent/US11427272B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/075Tracked vehicles for ascending or descending stairs, steep slopes or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/001Steering non-deflectable wheels; Steering endless tracks or the like control systems
    • B62D11/003Electric or electronic control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/04Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of separate power sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/084Endless-track units or carriages mounted separably, adjustably or extensibly on vehicles, e.g. portable track units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/10Bogies; Frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/104Suspension devices for wheels, rollers, bogies or frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/104Suspension devices for wheels, rollers, bogies or frames
    • B62D55/108Suspension devices for wheels, rollers, bogies or frames with mechanical springs, e.g. torsion bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/104Suspension devices for wheels, rollers, bogies or frames
    • B62D55/116Attitude or position control of chassis by action on suspension, e.g. to compensate for a slope

Definitions

  • the invention relates to the technical field of engineering machinery, in particular to a special robot with a complex terrain adaptive function and a motion operation method thereof.
  • Crawler-type chassis has the advantages of flexible movement, good load-bearing performance, and strong ability to overcome obstacles. It is often used for mobile platforms for special machines on complex and harsh ground. Compared with the wheeled chassis, the crawler chassis is equipped with a suspension damping mechanism, which has stronger obstacle crossing performance and the ability to pass through complex terrain. As the walking mechanism of related machinery, the crawler chassis and the supporting suspension structure have always been developed around high adaptability, high sports performance, safety and reliability, and smooth movement.
  • the suspension structure of the existing crawler chassis generally adopts a fixed structure, and the angle of the suspension system cannot be changed when it is moving.
  • the suspension structure passes through the cross section, it is " ⁇ " type, " ⁇ " type or other complex slopes of different sides.
  • the stability of the chassis will decrease, the suspension system will receive uneven force, and the crawler will be severely deformed. Slightly, the crawler will be damaged or dropped, and the heavy will cause uneven force on the left and right sides of the crawler structure. Body damage or even overturning seriously endangers the life of the tracked chassis and poses a huge challenge to the passage and obstacle surmountability of the chassis.
  • crawler-type chassis adopt a specific structure of the damping suspension system, which is divided into a symmetrical suspension structure on the left and right sides.
  • damping suspension system which is divided into a symmetrical suspension structure on the left and right sides.
  • a mechanical lifting mechanism is used to achieve the height of the robot's chassis during the traveling process, thereby achieving obstacle avoidance.
  • a typical technical solution is an adjustable crawler device published by the patent number 201810575356.6, which realizes the height adjustment of the chassis by adjusting the length of the hydraulic rod, thereby improving the passability of the crawler chassis.
  • the present invention provides a special robot with adaptive function of complex terrain, which can change the pitch and roll working angles of the suspension structure on both sides of the crawler chassis in real time, thereby making the suspension system and the crawler system better It fits the ground and improves the performance of the chassis climbing obstacles.
  • a special robot with adaptive function for complex terrain including tracked chassis, shock-absorbing suspension assembly, suspension adaptive adjustment assembly and electronic control assembly;
  • the crawler-type chassis includes a chassis body, the chassis body is a frame structure, suspension support side plates are provided on both sides of the chassis body, and fixed cover plates are provided on the top, bottom, front, and rear ends of the chassis;
  • the damping suspension assembly includes a suspension body and a crawler.
  • the two ends of the suspension body are respectively provided with a driving wheel and a driven wheel, and the upper part of the suspension body
  • Support pulleys are arranged at intervals, and load wheels are arranged at intervals at the bottom of the suspension body.
  • the load wheels are connected to a tensioning mechanism for controlling the tensioning of the crawler.
  • the crawler is wound around the support pulley, driving wheel, and driven wheel. On the outer contour formed by the load wheel;
  • Each set of damping suspension components corresponds to a set of suspension adaptive adjustment components.
  • the suspension adaptive adjustment assembly includes a steering motor, a main gear, a secondary gear, a steering gear, a power transmission mechanism, and a fixing mechanism;
  • the steering motor includes a first steering motor and a second steering motor, and a first steering motor and a second steering motor.
  • the motors are placed in parallel and are all arranged at the rear end of the suspension support side plate;
  • the main gear includes a first main gear and a second main gear, and the auxiliary gear includes a first auxiliary gear and a second auxiliary gear.
  • the first main gear , The second main gear is respectively arranged on the rotating shafts of the first steering motor and the second steering motor, and respectively meshes with the first auxiliary gear and the second auxiliary gear, and the steering gear is arranged between the first auxiliary gear and the second auxiliary gear , And respectively mesh with the first auxiliary gear and the second auxiliary gear;
  • the center of the steering gear is connected to one end of the hollow shaft, and the other end of the hollow shaft is fixedly connected to the rear end of the suspension body;
  • the power transmission mechanism includes a driving shaft, a universal joint and a driven shaft, and the universal joint is connected between the driving shaft and the driven shaft;
  • the fixing mechanism includes a first fixing rod and a second fixing rod, the first fixing rod is a T-shaped hollow rod structure, the first steering motor and the second steering motor are connected to the tail end of the first fixing rod, the first pinion and The second auxiliary gears are respectively connected to the two ends of the front end of the first fixed rod.
  • the first auxiliary gear and the second auxiliary gear are connected by a rigid shaft. The rigid shaft passes through the front end of the first fixed rod.
  • Both ends are provided with sleeves;
  • the second fixed rod has a U-shaped structure, which straddles the first auxiliary gear and the second auxiliary gear, and both ends of the second fixed rod are respectively fixed to the rigid shaft passing through the first auxiliary gear and
  • a fixed seat is connected at the center of the second fixed rod corresponding to the center of the steering gear.
  • the hollow shaft connected with the steering gear passes through the fixed seat perpendicularly, and the hollow shaft can be fixed relative to the fixed seat. The seat rotates freely;
  • the electronic control assembly includes a controller, a sensor, a driver, and a power motor.
  • the controller is connected to the sensor and the driver.
  • the driver is respectively connected to the power motor and the steering motor.
  • the power motor is connected to the driving shaft of the power transmission mechanism.
  • the driven shaft of the mechanism is connected with the driving wheel of the shock-absorbing suspension assembly.
  • the present invention realizes the adaptive angle adjustment of the left and right sides of the shock-absorbing suspension assembly by arranging the structure of the suspension adaptive adjustment component, including the left and right independent pitch and roll angle adjustments of the shock-absorbing suspension component, and cooperates with the road sensing sensor, It realizes the adaptability of crawler robots to complex and harsh road conditions, guarantees the passage performance and fitting ability of crawlers and other mechanisms to different complex road obstacles, further improves the load performance of crawler robots, and ensures the safety and stability of mobile platforms Performance and adaptability are of great significance for improving the high performance, adaptability, high stability and intelligence of special robots in complex environments.
  • Figure 1 is a schematic diagram of the three-dimensional structure of a special robot with adaptive function of complex terrain according to the present invention
  • FIG. 2 is a schematic diagram of the front view structure of the special robot with adaptive function of complex terrain according to the present invention
  • FIG. 3 is a schematic diagram of the left-side structure of the special robot with adaptive function of complex terrain according to the present invention
  • FIG. 4 is a schematic diagram of the right side structure of the special robot with adaptive function of complex terrain according to the present invention.
  • FIG. 5 is a schematic diagram of the top view structure of the special robot with adaptive function of complex terrain according to the present invention.
  • FIG. 6 is a schematic diagram of the bottom structure of the special robot with adaptive function of complex terrain according to the present invention.
  • FIG. 7 is a schematic diagram of the structural principle of the suspension adaptive component in the special robot of the present invention.
  • Fig. 8 shows a three-dimensional schematic diagram of the meshing of the main gear, the auxiliary gear and the steering gear in Fig. 7;
  • FIG. 9 is a schematic diagram of the structure principle of the power transmission mechanism in the special robot of the present invention.
  • Figure 10 is a state diagram of the special robot of the present invention when it passes through a normal road;
  • Figure 11 is a diagram of the adjusted state of the special robot of the present invention when passing through a " ⁇ "-shaped road surface
  • Fig. 12 is a diagram of the adjusted state of the special robot of the present invention when passing through the " ⁇ "-shaped road surface.
  • the present invention proposes a special robot with a complex terrain adaptive function and its motion operation method. It changes the pitch and roll working angles of the suspension structure on both sides of the crawler chassis in real time, thereby making the suspension system and the crawler system better Fit to the ground, improve the performance of the chassis climbing obstacles, and solve the problems of poor fit, track dropping, and weak obstacle crossing performance and even overturning when the crawler faces various complex ground.
  • the special robot with adaptive function for complex terrain of the present invention includes: a crawler chassis 1, a shock-absorbing suspension assembly 2, a suspension adaptive adjustment assembly 3, and an electronic control assembly 4.
  • the crawler chassis 1 is the body of a special robot, which realizes the functions of connecting, supporting and fixing other components, including: the chassis body 1-1, the cover plate 1-2, and the suspension support side plate 1-3.
  • the chassis body 1-1 is a frame structure, the two sides are connected with the suspension supporting side plates 1-3, and the top, front, rear and bottom sides are connected with the fixed cover plate 1-2.
  • the fixed cover 1-2 is a plate-like structure with 4 sides, which are respectively arranged on the top, front, rear and bottom sides of the chassis body 1-1, and are used to protect the internal components of the robot (such as the electronic control component 4).
  • the suspension support side plates 1-3 are rectangular strip-shaped plates, and the number is two sets, which are respectively fixed on both sides of the chassis body 1-1.
  • the suspension support side plates 1-3 are the medium connecting the crawler chassis 1, the shock-absorbing suspension assembly 2 and the suspension adaptive adjustment assembly 3.
  • the shock-absorbing suspension assembly 2 can realize the robot's adhesion to the road surface, frictional rotation and shock-absorbing effects. It is the main body of the robot to realize the smoothness of crossing obstacles. There are two sets of components, respectively set on the suspension support side plate 1-3. 1 set of shock-absorbing suspension assembly 2, including at least: suspension body 2-1, supporting pulley 2-2, driving wheel 2-3, driven wheel 2-4, load wheel 2-5, tensioning mechanism 2-6, crawler 2-7.
  • the suspension body 2-1 is a plate structure and is connected to the suspension adaptive adjustment assembly 3 through a bracket (specifically connected to the hollow shaft in the suspension adaptive adjustment assembly 3), and the suspension body 2-1 is provided with a support pulley 2-2 , Driving wheel 2-3, driven wheel 2-4, load wheel 2-5 and tensioning mechanism 2-6 and other components.
  • the supporting pulley 2-2 is arranged at intervals on the upper side of the suspension body 2-1 for passively dragging the crawler.
  • the driving wheel 2-3 and the driven wheel 2-4 are respectively arranged on the rear side and front side of the suspension body 2-1.
  • the driving wheel 2-3 obtains power from the power assembly 4 through the power transmission mechanism, and drags the crawler 2-7 to rotate to achieve Robot movement.
  • the load wheel 2-5 is arranged at the bottom end of the suspension body 2-1 through a bracket for bearing weight.
  • the tension mechanism 2-6 is arranged inside the suspension body 2-1, and the load wheel 2-5 in the suspension mechanism is tensioned by elastic elements, thereby tensioning the crawler belt 2-7.
  • the crawler belt 2-7 is arranged on the outer contour composed of the supporting pulley 2-2, the driving wheel 2-3, the driven wheel 2-4, the load wheel 2-5, and the tensioning mechanism 2-6.
  • the overall working effect of the shock-absorbing suspension assembly 2 is: the driving wheel 2-3 rotates, the drag track 2-7 rotates, and the supporting pulley 2-2, the driven wheel 2-4, and the load wheel 2-5 cooperate with the tensioning mechanism 2 -6 Realize the continuous drag cycle laying of crawlers 2-7, and drive crawler chassis 1 to move.
  • the suspension adaptive adjustment component 3 realizes automatic adjustment of the angle of the damping suspension component 2, which are respectively arranged at the back positions on both sides of the chassis body 1-1.
  • the following mechanisms are included: Steering motor 3-1.
  • the steering motor 3-1 includes: a first steering motor 3--1-a, a second steering motor 3--1-b, the first steering motor 3-1-1 and the second steering motor 3--1-b are placed in parallel, and A first fixed rod 3-6-a is arranged in the middle, the steering motor 3-1 is arranged at the rear end of the suspension support side plate 1-3, and the main gear 3-2 is arranged on the rotating shaft.
  • the steering motor 3-1 is also arranged at both ends of the tail of the "T"-shaped first fixed rod 3-6 through a bracket.
  • the main gear 3-2 includes: the first main gear 3-2-a, the second main gear 3-2-b, which are all bevel gears, the first main gear 3-2-a, the second main gear 3-2- b are respectively arranged on the shafts of the first steering motor 3-1-a and the second steering motor 3-1-b, and respectively mesh with the first auxiliary gear 3-3-a and the second auxiliary gear 3-3-b .
  • the auxiliary gear 3-3 includes: the first auxiliary gear 3-3-a, the second auxiliary gear 3-3-b, which are all bevel gears, the first auxiliary gear 3-3-a, the second auxiliary gear 3-3- b is symmetrically arranged on both sides of the front end of the "T"-shaped first fixed rod 3-6-a, the axis is perpendicular to the first main gear 3-2-a, the second main gear 3-2-b, and the two first
  • the auxiliary gear 3-3-a and the second auxiliary gear 3-3-b are connected by a rigid shaft, and the rigid shaft passes through the front end 3-6-a-1 of the first fixed rod.
  • the steering gear 3-4 is also a bevel gear, which is arranged between the first auxiliary gear 3-3-a and the second auxiliary gear 3-3-b, and is connected to the two first auxiliary gears 3-3-a and the second auxiliary gear.
  • the gears 3-3-b mesh with each other, and are fixed to the front end of the second fixed rod 3-6-b through a hollow shaft 3-4-1.
  • the axis is perpendicular to the auxiliary gear 3-3 and parallel to the main gear 3-2.
  • the outer end of the hollow shaft of the steering gear 3-4 is fixed to the rear end of the suspension body 2-1, and the axis is perpendicular to the plane of the suspension body 2-1.
  • the power transmission mechanism 3-5 mainly realizes the transmission of rotational power from the power motor 4-4 to the driving wheel 2-3, including: the driving shaft 3-5-1, the universal joint 3-5-b, and the driven shaft 3-5 -c.
  • the driving shaft 3-5-a, the universal joint 3-5-b, and the driven shaft 3-5-c are connected to form a power changing transmission mechanism.
  • the direction change of the universal joint 3-6-b can still achieve power from Power motor 4-4 ⁇ driving shaft 3-5-a ⁇ universal joint 3-5-b ⁇ slaving shaft 3-5-c ⁇ driving wheel 2-3.
  • the end of the driven shaft 3-5-c is arranged at the axis of the driving wheel 2-3.
  • the power transmission mechanism is provided with a universal joint between the driving shaft and the driven shaft to ensure that when the driven shaft is angularly deflected with the damping suspension assembly 2 (the driving shaft 3-5-a and the driven shaft 3 There is a certain angle between -5-c), which still does not affect the normal transmission of power.
  • the fixing mechanism 3-6 can support, connect and fix the steering motor 3-1, main gear 3-2, auxiliary gear 3-3, steering gear 3-4, power transmission mechanism 3-5, etc., including:
  • the fixing mechanism 3-6 includes a first fixing rod 3-6-a and a second fixing rod 3-6-b, the first fixing rod 3-6-a is a T-shaped hollow rod structure, and the first steering motor 3-1 -a and the second steering motor 3-1-b are connected to the end of the first fixed rod 3-6-a, the first auxiliary gear 3-3-a and the second auxiliary gear 3-3-b are respectively connected to the At both ends of the front end of a fixed rod 3-6-a.
  • the first auxiliary gear 3-3-a and the second auxiliary gear 3-3-b are connected by a rigid shaft.
  • the rigid shaft passes through the front end 3-6-a-1 of the first fixed rod.
  • Shaft sleeves 3-6-c are provided on the outer sides of both ends.
  • the second fixed rod 3-6-b has a U-shaped structure, which straddles the first auxiliary gear 3-3-a and the second auxiliary gear 3-3-b, and both ends of the second fixed rod 3-6-b They are respectively fixed on the shaft sleeves 3-6-c on the outer sides of the two ends of the first auxiliary gear and the second auxiliary gear through the rigid shaft, after the second fixed rod 3-6-b is connected with the shaft sleeves 3-6-c at both ends
  • the whole is a ⁇ -shaped structure, and the second fixed rod is also a hollow rod structure.
  • a fixed seat 3-6-d is connected to the center of the second fixed rod 3-6-b and corresponding to the center of the steering gear 3-4, and the hollow shaft 3-4-1 connected to the steering gear 3-4 penetrates vertically. Through the fixed seat 3-6-d, and the hollow shaft 3-4-1 can freely rotate relative to the fixed seat 3-6-d.
  • the overall work effect of the suspension adaptive adjustment component 3 is:
  • the electronic control component 4 is a robot parameter collection, information fusion, power drive and control decision-making mechanism, including: a controller 4-1, a sensor 4-2, a driver 4-3, a power motor 4-4, and a power battery 4-5.
  • the controller 4-1, the sensor 4-2, and the driver 4-3 are set on the chassis body 1-1.
  • the controller 4-1 connects the sensor 4-2 and the driver 4-3, and controls the driver by collecting and making decisions on road parameters 4-3 realizes 4-4 control of power motor.
  • the power battery 4-5 can supply power for the internal power consumption components of the robot.
  • the sensor 4-2 is a laser or visual sensor, and is arranged at the front end of the crawler chassis 1 to detect obstacles on the ground or the shape of the road surface.
  • the driver 4-3 can drive the power motor 4-4.
  • the controller 4-1 analyzes the decision and drives the robot according to the conventional power driving method in step A above, and at the same time drives the suspension through the driver 4-3
  • the adaptive adjustment component 3 performs the following control actions on the damping suspension component 2, so as to realize the adaptive obstacle crossing function for complex and severe road conditions. Specifically,
  • the controller 4-1 When the controller 4-1 detects through the sensor 4-2 that the special robot is about to pass through the " ⁇ "-shaped road surface, the controller 4-1 controls the driver 4-3 to drive the left first steering motor 3-1-1, The second steering motor 3-1-b rotates in reverse and forward respectively, at this time, the first auxiliary gear 3-3-a and the second auxiliary gear 3-3-b rotate forward at the same time;
  • the steering gear 3-4 meshing with the first auxiliary gear 3-3-a and the second auxiliary gear 3-3-b does not spin. At this time, the steering gear 3-4 follows the first auxiliary gear 3-3-a , The axis of the second auxiliary gear 3-3-b swings forward;
  • the left suspension body 2-1 connected to the hollow shaft of the steering gear 3-4 rotates positively around the axis of the auxiliary gear 3-3, thereby driving the deflection angle (rolling) of the damping suspension assembly 2 relative to the crawler chassis 1 Angle) increases, and finally realizes that the load wheels 2-5 and crawlers 2-7 in the shock-absorbing suspension assembly 2 realize the proper application to the " ⁇ " road surface.
  • the suspension adaptive adjustment component 3 is the same as the above process.
  • the controller 4-1 When the controller 4-1 detects through the sensor 4-2 that the special robot is about to pass the " ⁇ " road surface, the controller 4-1 controls the driver 4-3 to drive the first steering motor 3-1-1 and the second steering motor on the left.
  • the steering motor 3--1-b rotates forward and forward respectively, at this time the first auxiliary gear 3-3-a and the second auxiliary gear 3-3-b rotate in reverse at the same time;
  • the steering gear 3-4 meshing with the first auxiliary gear 3-3-a and the second auxiliary gear 3-3-b does not spin. At this time, the steering gear 3-4 follows the first auxiliary gear 3-3-a , The axis of the second auxiliary gear 3-3-b makes a reverse swing movement;
  • the left suspension body 2-1 connected to the hollow shaft of the steering gear 3-4 rotates in the opposite direction around the axis of the auxiliary gear 3-3, thereby driving the deflection angle (rolling) of the damping suspension assembly 2 relative to the crawler chassis 1 Angle) is reduced, and finally the load wheels 2-5 and crawler 2-7 in the shock-absorbing suspension assembly 2 can be applied to the " ⁇ " road surface.
  • the suspension adaptive adjustment component 3 is the same as the above process.
  • the controller 4-1 When the controller 4-1 detects through the sensor 4-2 that the special robot is about to pass the "/" road, the controller 4-1 controls the driver 4-3 to drive the first steering motor 3-1-1 and the second steering motor on the left.
  • the steering motor 3--1-b reverses at the same time, and the first auxiliary gear 3-3-a and the second auxiliary gear 3-3-b rotate in the reverse and forward directions respectively;
  • the left suspension body 2-1 connected to the hollow shaft of the steering gear 3-4 rotates counterclockwise around the steering gear 3-4, so as to reduce the pitch angle of the shock-absorbing suspension assembly 2 and adapt to the low front and high rear "/" road surface, to improve the load wheel 2-5, crawler 2-7 and other mechanisms in the shock-absorbing suspension assembly 2 to achieve a suitable response to the "/" road surface.
  • the suspension adaptive adjustment component 3 is the same as the above process.
  • the controller 4-1 controls the driver 4-3 to drive the left first steering motor 3-1-1, second The steering motor 3--1-b rotates forward at the same time, at this time the first auxiliary gear 3-3-a and the second auxiliary gear 3-3-b rotate forward and backward respectively;
  • the left suspension body 2-1 connected to the hollow shaft of the steering gear 3-4 rotates clockwise around the steering gear 3-4, so as to increase the pitch angle of the shock-absorbing suspension assembly 2 and adapt to the high front and low rear " ⁇ " road surface, improve the load wheel 2-5, crawler 2-7 and other mechanisms in the shock-absorbing suspension assembly 2 to achieve a suitable response to the " ⁇ " road surface.
  • the suspension adaptive adjustment component 3 is the same as the above process.
  • the controller 4-1 analyzes the decision and implements the corrective action according to one or more of the driving methods in the above step B method (1)-(4)
  • the pitch and roll angles of the damping suspension components 2 on the left and right sides are adjusted to adapt to different complex ground environments, realize the adaptive obstacle crossing function for complex and harsh road conditions, and ensure the smooth and high movement of the crawler chassis 1 Obstacle crossing and road adaptability.

Abstract

一种具备复杂地形自适应功能的特种机器人及其运动作业方法,该特种机器人包括履带式底盘(1)、减震悬挂组件(2)、悬挂自适应调整组件(3)和电控组件(4),悬挂自适应调整组件(3)用于实现对减震悬挂组件(2)的角度调整。

Description

一种具备复杂地形自适应功能的特种机器人及其运动作业方法 技术领域
本发明涉及工程机械技术领域,具体地说是涉及一种具备复杂地形自适应功能的特种机器人及其运动作业方法。
背景技术
履带式底盘具有动作灵活、负重性能好、越障能力强等优点,常用于复杂恶劣地面特种机器移动平台。相对轮式底盘,履带式底盘由于设置有悬挂减震机构,具备更强的越障性能和复杂地形通过能力。履带式底盘以及配套的悬挂结构作为相关机械的行走机构,其发展方向始终围绕着高自适应性、高运动性能、安全可靠性和运动平稳性等方面发展。
现有的履带式底盘的悬挂结构一般采用固定式结构,其运动时悬挂系统的角度等无法改变,当悬挂结构经过截面呈“∨”型、“∧”型或其它两侧坡度各异的复杂地面、障碍物或坡道时,底盘工作平稳性降低、悬挂系统受力不均,履带会发生严重形变,轻微者损伤履带或掉带,重则使左右两侧履带结构受力不均发生车体损伤甚至倾覆,严重危害履带底盘寿命,对底盘通过性和越障性提出巨大挑战。
目前履带式底盘有些采用特定结构的减震悬挂系统,分为左右两侧各设置对称的悬挂结构。为提高履带式底盘复杂路面通过能力,一般采用如下两种方案:
(1)采用机械式抬高机构实现机器人在行进过程中的底盘高度,从而实现避障等。典型的技术方案有专利号为201810575356.6公布的一种可调整履带装置,其通过调整液压杆长度,实现底盘的高度调整,从而提高履带式底盘的通过性。
(2)改变减震悬挂系统前后倾斜角度,实现对坡面的适应性,从而补偿机器人履带底盘倾斜角度,提高平台的水平性。典型的技术方案有专利号为201610975634.8公布的自适应调平底盘,其采用车轮与悬架配合,各悬架高度自适应调整,减小由地形变化引起底盘的侧倾角和俯仰角变化量,实现底盘的动态调平。
技术问题
现有技术方案中仅对底盘高度或前后俯仰角调节,仅能调平底盘的工作角度,无法从本质上解决底盘的越障自适应问题。
技术解决方案
针对上述技术问题,本发明提供一种具备复杂地形自适应功能的特种机器人,其可实时改变履带式底盘的两侧悬挂结构的俯仰和横滚工作角度,从而使悬挂系统和履带系统更好的贴合地面,提高底盘爬坡越障性能。
本发明所采用的技术解决方案是:
一种具备复杂地形自适应功能的特种机器人,包括履带式底盘、减震悬挂组件、悬挂自适应调整组件和电控组件;
    所述履带式底盘包括底盘本体,底盘本体为框架式结构,在底盘本体的两侧面设置有悬挂支撑侧板,在底盘本体的顶面、底面、前端面和后端面均设置有固定盖板;
    所述减震悬挂组件共设置两套,分别位于履带式底盘的两侧;减震悬挂组件包括悬挂本体和履带,在悬挂本体的两端分别设置有主动轮和从动轮,在悬挂本体的上部间隔设置有托带轮,在悬挂本体的底部间隔设置有负载轮,负载轮与用于控制其张紧履带的张紧机构连接,所述履带绕设于由托带轮、主动轮、从动轮和负载轮组成的外轮廓上;
所述悬挂自适应调整组件共设置两套,分别位于底盘本体的两侧靠后位置处,每一套减震悬挂组件对应一套悬挂自适应调整组件,悬挂自适应调整组件用于实现对减震悬挂组件的角度调整;
所述悬挂自适应调整组件包括转向电机、主齿轮、副齿轮、转向齿轮、动力传递机构和固定机构;所述转向电机包括第一转向电机和第二转向电机,第一转向电机和第二转向电机平行放置,且均设置于悬挂支撑侧板的后端;所述主齿轮包括第一主齿轮和第二主齿轮,所述副齿轮包括第一副齿轮和第二副齿轮,第一主齿轮、第二主齿轮分别设置于第一转向电机、第二转向电机的转轴上,且分别与第一副齿轮、第二副齿轮啮合,转向齿轮设置于第一副齿轮和第二副齿轮之间,并与第一副齿轮和第二副齿轮分别啮合;转向齿轮的中心与空心轴的一端连接,空心轴的另一端固定连接于悬挂本体的后端;
所述动力传递机构包括主动轴、万向节和从动轴,万向节连接在主动轴和从动轴之间;
所述固定机构包括第一固定杆和第二固定杆,第一固定杆为T型空心杆结构,第一转向电机和第二转向电机连接在第一固定杆的尾端,第一副齿轮和第二副齿轮分别连接在第一固定杆的前端两端头处,第一副齿轮和第二副齿轮间通过刚性轴连接,刚性轴从第一固定杆的前端穿过,在刚性轴的两端外侧均设置有轴套;第二固定杆呈U形结构,其横跨第一副齿轮和第二副齿轮,且第二固定杆的两端分别固定于刚性轴穿过第一副齿轮和第二副齿轮两端外侧的轴套上,在第二固定杆的中心对应转向齿轮的中心处连接有固定座,与转向齿轮相连的空心轴垂直穿过固定座,且空心轴能相对于固定座自由转动;
所述电控组件包括控制器、传感器、驱动器和动力电机,控制器连接传感器和驱动器,驱动器分别与动力电机和转向电机相连接,所述动力电机与动力传递机构的主动轴相连接,动力传递机构的从动轴与减震悬挂组件的主动轮相连接。
有益效果
本发明通过设置悬挂自适应调整组件等结构,实现了对减震悬挂组件的左右两侧自适应角度调整,包括对减震悬挂组件的左右独立俯仰角和横滚角调整,配合路面感知传感器,实现了履带式机器人对复杂恶劣路况的自适应性,保障了履带等机构对不同复杂路面障碍物的通过性能和贴合能力,进一步提升了履带式机器人负载性能,保障了移动平台安全性、稳定性和自适应性,对提升特种机器人复杂环境运动的高性能、自适应、高稳定和智能化具有重要意义。
附图说明
下面结合附图与具体实施方式对本发明作进一步说明:
图1为本发明具备复杂地形自适应功能的特种机器人的立体结构示意图;
图2为本发明具备复杂地形自适应功能的特种机器人的主视结构示意图;
图3为本发明具备复杂地形自适应功能的特种机器人的左视结构示意图;
图4为本发明具备复杂地形自适应功能的特种机器人的右视结构示意图;
图5为本发明具备复杂地形自适应功能的特种机器人的俯视结构示意图;
图6为本发明具备复杂地形自适应功能的特种机器人的仰视结构示意图;
图7为本发明特种机器人中悬挂自适应组件的结构原理示意图;
图8示出图7中主齿轮、副齿轮与转向齿轮相啮合的立体结构示意图;
图9为本发明特种机器人中动力传递机构的结构原理示意图;
图10为本发明特种机器人通过正常路面时的状态图;
图11为本发明特种机器人通过“∧”型路面时调整后的状态图;
图12为本发明特种机器人通过“∨”型路面时调整后的状态图。
本发明的实施方式
本发明提出一种具备复杂地形自适应功能的特种机器人及其运动作业方法,其通过实时改变履带式底盘的两侧悬挂结构的俯仰和横滚工作角度,从而使悬挂系统和履带系统更好的贴合地面,提高底盘爬坡越障性能,解决履带面临各类复杂地面时的贴合度差、掉履带和越障性能弱甚至倾覆等难题。
结合附图,本发明具备复杂地形自适应功能的特种机器人,包括:履带式底盘1、减震悬挂组件2、悬挂自适应调整组件3和电控组件4。
履带式底盘1是特种机器人的本体,实现对其它组件的连接、支撑和固定功能,包括:底盘本体1-1、盖板1-2、悬挂支撑侧板1-3。其中底盘本体1-1是框架式结构,两侧连接悬挂支撑侧板1-3,顶、前、后和底侧连接固定盖板1-2。固定盖板1-2是板状结构,共4面,分别设置于底盘本体1-1的顶、前、后和底侧,用于保护机器人内部组件(如电控组件4)。悬挂支撑侧板1-3是长方形条形板,数量为两套,分别固定于底盘本体1-1两侧。悬挂支撑侧板1-3是连接履带式底盘1、减震悬挂组件2和悬挂自适应调整组件3的媒介。
减震悬挂组件2可实现机器人对路面的贴合、摩擦转动和减震效果,是机器人实现越障平稳性的主体,共2套组件,分别设置于悬挂支撑侧板1-3上,对于每1套减震悬挂组件2,至少包含:悬挂本体2-1、托带轮2-2、主动轮2-3、从动轮2-4、负载轮2-5、张紧机构2-6、履带2-7。
悬挂本体2-1为板结构,通过支架与悬挂自适应调整组件3连接(具体为与悬挂自适应调整组件3中的空心轴连接),悬挂本体2-1上设置有托带轮2-2、主动轮2-3、从动轮2-4、负载轮2-5和张紧机构2-6等组件。托带轮2-2间隔设置于悬挂本体2-1上侧,用以被动拖动履带。主动轮2-3和从动轮2-4分别设置于悬挂本体2-1后侧和前侧,主动轮2-3通过动力传递机构从动力组件4获取动力,拖动履带2-7旋转,实现机器人运动。负载轮2-5通过支架设置于悬挂本体2-1最底端,用以承重。张紧机构2-6设置于悬挂本体2-1内部,通过弹性元件实现对悬挂机构中负载轮2-5张紧,从而张紧履带2-7。履带2-7设置于由托带轮2-2、主动轮2-3、从动轮2-4、负载轮2-5、张紧机构2-6组成的外轮廓上。
减震悬挂组件2的整体工作效果为:主动轮2-3转动,拖动履带2-7转动,通过托带轮2-2、从动轮2-4、负载轮2-5配合张紧机构2-6实现对履带2-7的连续拖动循环铺设,带动履带式底盘1运动。
悬挂自适应调整组件3实现对减震悬挂组件2的角度自动调整,分别设置于底盘本体1-1两侧靠后位置处,对于任意一套悬挂自适应调整组件3,包含如下机构:转向电机3-1、主齿轮3-2、副齿轮3-3、转向齿轮3-4、动力传递机构3-5、固定机构3-6。
转向电机3-1包括:第一转向电机3-1-a、第二转向电机3-1-b,第一转向电机3-1-a和第二转向电机3-1-b平行放置,之间设置有第一固定杆3-6-a,转向电机3-1设置于悬挂支撑侧板1-3后端,其转轴上设置有主齿轮3-2。转向电机3-1还通过支架设置于“T”型第一固定杆3-6-a的尾部两端。
主齿轮3-2包括:第一主齿轮3-2-a、第二主齿轮3-2-b,均为伞齿轮,第一主齿轮3-2-a、第二主齿轮3-2-b分别设置于第一转向电机3-1-a、第二转向电机3-1-b的转轴上,且分别与第一副齿轮3-3-a、第二副齿轮3-3-b啮合。
副齿轮3-3包括:第一副齿轮3-3-a、第二副齿轮3-3-b,均为伞齿轮,第一副齿轮3-3-a、第二副齿轮3-3-b对称设置于“T”型第一固定杆3-6-a的前端两侧,轴线垂直于第一主齿轮3-2-a、第二主齿轮3-2-b,且两个第一副齿轮3-3-a、第二副齿轮3-3-b间通过刚性轴连接,刚性轴穿过第一固定杆的前端头3-6-a-1。
转向齿轮3-4同样是伞齿轮,设置于第一副齿轮3-3-a、第二副齿轮3-3-b之间,与两个第一副齿轮3-3-a、第二副齿轮3-3-b分别啮合,通过空心轴3-4-1固定于第二固定杆3-6-b的前端,轴心垂直于副齿轮3-3,平行于主齿轮3-2。转向齿轮3-4的空心轴外端固定于悬挂本体2-1的后端,且轴心垂直于悬挂本体2-1平面。
动力传递机构3-5主要实现转动动力从动力电机4-4传递至主动轮2-3上,包括:主动轴3-5-a、万向节3-5-b、从动轴3-5-c。主动轴3-5-a、万向节3-5-b、从动轴3-5-c相连接形成动力变向传递机构。当转向齿轮3-4的轴心相对“T”型第一固定杆3-6-a的轴心呈现夹角时,通过万向节3-5-b的变向作用,仍能实现动力从动力电机4-4→主动轴3-5-a→万向节3-5-b→从动轴3-5-c→主动轮2-3。从动轴3-5-c的末端设置于主动轮2-3轴心处。总体来说,动力传递机构在主动轴和从动轴之间设置万向节,可确保当从动轴随减震悬挂组件2发生角度偏转时(主动轴3-5-a与从动轴3-5-c之间呈现一定的夹角),仍不影响动力的正常传输。
固定机构3-6可实现对转向电机3-1、主齿轮3-2、副齿轮3-3、转向齿轮3-4、动力传递机构3-5等的支撑、连接和固定作用,包括:所述固定机构3-6包括第一固定杆3-6-a和第二固定杆3-6-b,第一固定杆3-6-a为T型空心杆结构,第一转向电机3-1-a和第二转向电机3-1-b连接在第一固定杆3-6-a的尾端,第一副齿轮3-3-a和第二副齿轮3-3-b分别连接在第一固定杆3-6-a的前端两端头处。第一副齿轮3-3-a和第二副齿轮3-3-b间通过刚性轴连接,刚性轴从第一固定杆的前端头3-6-a-1处穿过,在刚性轴的两端外侧均设置有轴套3-6-c。第二固定杆3-6-b呈U形结构,其横跨第一副齿轮3-3-a和第二副齿轮3-3-b,且第二固定杆3-6-b的两端分别固定于刚性轴穿过第一副齿轮和第二副齿轮两端外侧的轴套3-6-c上,第二固定杆3-6-b和两端轴套3-6-c连接后整体呈 ∏ 形结构,第二固定杆也为空心杆结构。在第二固定杆3-6-b的中间位置且对应转向齿轮3-4的中心处连接有固定座3-6-d,与转向齿轮3-4相连的空心轴3-4-1垂直穿过固定座3-6-d,且空心轴3-4-1能相对于固定座3-6-d自由转动。
悬挂自适应调整组件3的整体工作效果为:
(1)转向电机3-1中的两套第一转向电机3-1-a、第二转向电机3-1-b同向转动(转动方向相同,同为正向或同为反向)时,两套第一副齿轮3-3-a、第二副齿轮3-3-b反向旋转,从而与第一副齿轮3-3-a、第二副齿轮3-3-b相啮合的转向齿轮3-4实现正向或反向旋转,从而带动与其空心轴连接的悬挂本体2-1旋转,从而实现对减震悬挂组件2的俯仰角调节。
(2)转向电机3-1中的两套第一转向电机3-1-a、第二转向电机3-1-b异向转动(转动方向相反,一正一反或一反一正)时,两套第一副齿轮3-3-a、第二副齿轮3-3-b同向旋转,从而与第一副齿轮3-3-a、第二副齿轮3-3-b相啮合的转向齿轮3-4不自旋,但会随第一副齿轮3-3-a、第二副齿轮3-3-b的轴心作摆动运动,从而带动与其空心轴连接的悬挂本体2-1绕副齿轮3-3的轴心转动,实现对减震悬挂组件2的横滚角调节。
电控组件4为机器人参数采集、信息融合、动力驱动和控制决策机构,包括:控制器4-1、传感器4-2、驱动器4-3、动力电机4-4、动力电池4-5。控制器4-1、传感器4-2、驱动器4-3设置于底盘本体1-1上,控制器4-1连接传感器4-2和驱动器4-3,通过对路面参数采集并决策,控制驱动器4-3实现对动力电机4-4控制。动力电池4-5可为机器人内部耗电元件供电。传感器4-2为激光或视觉传感器,设置于履带式底盘1前端,用以探测地面障碍物或路面形状。驱动器4-3可实现对动力电机4-4的驱动,动力电机4-4共两套,左右对称设置于底盘本体1-1后端两侧,通过减速箱后,输出轴通过联轴器与主动轴3-5-a连接。
如上所述的一种具备复杂地形自适应功能的特种机器人的运动作业方法,其特征在于步骤如下:
A特种机器人常规运动(前进、后退和转弯)作业方法
在此不再进行说明。
B特种机器人自适应越障(通过截面呈“∨”、“∧”型等路面)运动作业方法
当传感器4-2检测到机器人前方待通过路面复杂不平整时,控制器4-1分析决策后,按照上述步骤A中常规的动力驱动方法驱动机器人运动的同时,还通过驱动器4-3驱动悬挂自适应调整组件3对减震悬挂组件2作如下控制动作,从而实现对复杂恶劣路况的自适应越障通过功能,具体的,
(1)    特种机器人经过“∨”型路面作业方法
对于处于履带式底盘1左侧的减震悬挂组件2、悬挂自适应调整组件3来讲,
①控制器4-1通过传感器4-2检测到特种机器人即将通过截面呈“∨”型路面时,控制器4-1控制驱动器4-3驱动左侧的第一转向电机3-1-a、第二转向电机3-1-b分别反转和正转,此时第一副齿轮3-3-a、第二副齿轮3-3-b同时正向旋转;
② 与第一副齿轮3-3-a、第二副齿轮3-3-b相啮合的转向齿轮3-4不自旋,此时转向齿轮3-4随第一副齿轮3-3-a、第二副齿轮3-3-b的轴心作正向摆动运动;
③ 与转向齿轮3-4的空心转轴相连的左侧悬挂本体2-1绕副齿轮3-3的轴心正向转动,从而带动减震悬挂组件2相对履带式底盘1的偏转角(横滚角)增大,最终实现减震悬挂组件2中的负载轮2-5、履带2-7等机构实现对“∨”路面的贴合适应。
④ 对于右侧的减震悬挂组件2、悬挂自适应调整组件3来讲,与上述过程相同。
(2)特种机器人经过“∧”型路面作业方法
对于处于履带式底盘1左侧的减震悬挂组件2、悬挂自适应调整组件3来讲,
① 控制器4-1通过传感器4-2检测到特种机器人即将通过“∧”型路面时,控制器4-1控制驱动器4-3驱动左侧的第一转向电机3-1-a、第二转向电机3-1-b分别正转和正转,此时第一副齿轮3-3-a、第二副齿轮3-3-b同时反向旋转;
② 与第一副齿轮3-3-a、第二副齿轮3-3-b相啮合的转向齿轮3-4不自旋,此时转向齿轮3-4随第一副齿轮3-3-a、第二副齿轮3-3-b的轴心作反向摆动运动;
③ 与转向齿轮3-4的空心转轴相连的左侧悬挂本体2-1绕副齿轮3-3的轴心反向转动,从而带动减震悬挂组件2相对履带式底盘1的偏转角(横滚角)减小,最终实现减震悬挂组件2中的负载轮2-5、履带2-7等机构实现对“∧”路面的贴合适应。
④ 对于右侧的减震悬挂组件2、悬挂自适应调整组件3来讲,与上述过程相同。
(3)特种机器人经过前低后高的“/”型路面作业方法
对于处于履带式底盘1左侧的减震悬挂组件2、悬挂自适应调整组件3来讲,
① 控制器4-1通过传感器4-2检测到特种机器人即将通过“/”型路面时,控制器4-1控制驱动器4-3驱动左侧的第一转向电机3-1-a、第二转向电机3-1-b同时反转,此时第一副齿轮3-3-a、第二副齿轮3-3-b分别反向和正向旋转;
② 与第一副齿轮3-3-a、第二副齿轮3-3-b相啮合的转向齿轮3-4开始自旋,此时转向齿轮3-4开始反向旋转;
③ 与转向齿轮3-4的空心转轴相连的左侧悬挂本体2-1绕转向齿轮3-4逆时针旋转,从而实现对减震悬挂组件2的俯仰角减小调节,适应前低后高的“/”路面,提高减震悬挂组件2中的负载轮2-5、履带2-7等机构实现对“/”路面的贴合适应能力。
④ 对于右侧的减震悬挂组件2、悬挂自适应调整组件3来讲,与上述过程相同。
(4)特种机器人经过前高后低的“\”型路面作业方法
对于处于履带式底盘1左侧的减震悬挂组件2、悬挂自适应调整组件3来讲,
① 控制器4-1通过传感器4-2检测到特种机器人即将通过“\”型路面时,控制器4-1控制驱动器4-3驱动左侧的第一转向电机3-1-a、第二转向电机3-1-b同时正转,此时第一副齿轮3-3-a、第二副齿轮3-3-b分别正向和反向旋转;
② 与第一副齿轮3-3-a、第二副齿轮3-3-b相啮合的转向齿轮3-4开始自旋,此时转向齿轮3-4开始正向旋转;
③ 与转向齿轮3-4的空心转轴相连的左侧悬挂本体2-1绕转向齿轮3-4顺时针旋转,从而实现对减震悬挂组件2的俯仰角增大调节,适应前高后低的“\”路面,提高减震悬挂组件2中的负载轮2-5、履带2-7等机构实现对“\”路面的贴合适应能力。
④ 对于右侧的减震悬挂组件2、悬挂自适应调整组件3来讲,与上述过程相同。
(5)特种机器人经过其它各类复杂路面的作业方法
当传感器4-2检测到机器人前方待通过路面复杂不平整时,控制器4-1分析决策后,按照上述步骤B方法(1)-(4)中某一个或多个组合的驱动方法实现对左右两侧的减震悬挂组件2的俯仰角和横滚角调整,从而适应不同的复杂地面环境,实现对复杂恶劣路况的自适应越障通过功能,保证履带式底盘1的运动平稳性、高越障性和路面自适应性。

Claims (5)

  1. 一种具备复杂地形自适应功能的特种机器人,其特征在于:包括履带式底盘、减震悬挂组件、悬挂自适应调整组件和电控组件;
        所述履带式底盘包括底盘本体,底盘本体为框架式结构,在底盘本体的两侧面设置有悬挂支撑侧板,在底盘本体的顶面、底面、前端面和后端面均设置有固定盖板;
        所述减震悬挂组件共设置两套,分别位于履带式底盘的两侧;减震悬挂组件包括悬挂本体和履带,在悬挂本体的两端分别设置有主动轮和从动轮,在悬挂本体的上部间隔设置有托带轮,在悬挂本体的底部间隔设置有负载轮,负载轮与用于控制其张紧履带的张紧机构连接,所述履带绕设于由托带轮、主动轮、从动轮和负载轮组成的外轮廓上;
    所述悬挂自适应调整组件共设置两套,分别位于底盘本体的两侧靠后位置处,每一套减震悬挂组件对应一套悬挂自适应调整组件,悬挂自适应调整组件用于实现对减震悬挂组件的角度调整;
    所述悬挂自适应调整组件包括转向电机、主齿轮、副齿轮、转向齿轮、动力传递机构和固定机构;所述转向电机包括第一转向电机和第二转向电机,第一转向电机和第二转向电机平行放置,且均设置于悬挂支撑侧板的后端;所述主齿轮包括第一主齿轮和第二主齿轮,所述副齿轮包括第一副齿轮和第二副齿轮,第一主齿轮、第二主齿轮分别设置于第一转向电机、第二转向电机的转轴上,且分别与第一副齿轮、第二副齿轮啮合,转向齿轮设置于第一副齿轮和第二副齿轮之间,并与第一副齿轮和第二副齿轮分别啮合;转向齿轮的中心与空心轴的一端连接,空心轴的另一端固定连接于悬挂本体的后端;
    所述动力传递机构包括主动轴、万向节和从动轴,万向节连接在主动轴和从动轴之间;
    所述固定机构包括第一固定杆和第二固定杆,第一固定杆为T型空心杆结构,第一转向电机和第二转向电机连接在第一固定杆的尾端,第一副齿轮和第二副齿轮分别连接在第一固定杆的前端两端头处,第一副齿轮和第二副齿轮间通过刚性轴连接,刚性轴从第一固定杆的前端穿过,在刚性轴的两端外侧均设置有轴套;第二固定杆呈U形结构,其横跨第一副齿轮和第二副齿轮,且第二固定杆的两端分别固定于刚性轴穿过第一副齿轮和第二副齿轮两端外侧的轴套上,在第二固定杆的中心对应转向齿轮的中心处连接有固定座,与转向齿轮相连的空心轴垂直穿过固定座,且空心轴能相对于固定座自由转动;
    所述电控组件包括控制器、传感器、驱动器和动力电机,控制器连接传感器和驱动器,驱动器分别与动力电机和转向电机相连接,所述动力电机与动力传递机构的主动轴相连接,动力传递机构的从动轴与减震悬挂组件的主动轮相连接。
  2. 根据权利要求1所述的一种具备复杂地形自适应功能的特种机器人,其特征在于:所述电控组件设置在底盘本体上,所述悬挂支撑侧板和固定盖板共同围拢形成用于保护电控组件的空间。
  3. 根据权利要求1所述的一种具备复杂地形自适应功能的特种机器人,其特征在于:所述第一主齿轮、第二主齿轮、第一副齿轮、第二副齿轮和转向齿轮均为伞齿轮;第一副齿轮和第二副齿轮的轴线重合,且垂直于第一主齿轮和第二主齿轮的轴线,转向齿轮的轴线平行于第一主齿轮和第二主齿轮的轴线。
  4. 根据权利要求1所述的一种具备复杂地形自适应功能的特种机器人,其特征在于:所述传感器为激光传感器或视觉传感器,传感器设置于履带式底盘的前端,用以探测地面障碍物或路面形状;控制器通过对路面参数采集并决策,控制驱动器实现对动力电机控制;动力电机共设置两套,左右对称设置于底盘本体后端两侧,通过减速箱后,输出轴通过联轴器与动力传递机构的主动轴连接。
  5. 如权利要求1-4中任一权利要求所述的一种具备复杂地形自适应功能的特种机器人的运动作业方法,其特征在于步骤如下:
    A特种机器人常规运动作业方法
    当传感器检测到特种机器人前方待通过路面平整时,控制器分析决策后,仅驱动两套动力电机运动,而转向电机不动作;
    具体的,
    (1)特种机器人直线前进运动作业方法
    ① 控制器通过控制驱动器,实现对两套动力电机的正向转动驱动;
    ② 动力电机将动力传递至主动轴,左右两套悬挂自适应调整组件中的主动轴均正转;
    ③ 主动轴通过万向节将动力传递至从动轴上,从动轴正转;
    ④ 从动轴转动时,带动主动轮正转,从而拖动履带正向向前滚动铺设,驱动履带式底盘直线前进;
    (2)特种机器人直线后退运动作业方法
    ① 控制器通过控制驱动器,实现对两套动力电机的反向转动驱动;
    ② 动力电机将动力传递至主动轴,左右两套悬挂自适应调整组件中的主动轴均反转;
    ③ 主动轴通过万向节将动力传递至从动轴上,从动轴反转;
    ④ 从动轴转动时,带动主动轮反转,从而拖动履带正向向后滚动铺设,驱动履带式底盘直线后退。
    (3)特种机器人差速转弯运动作业方法
    ① 控制器通过控制驱动器,实现对两套动力电机的同时正向或反向转动驱动,但两套动力电机转动速度有差异;
    ② 动力电机将动力传递至主动轴,左右两套悬挂自适应调整组件中的主动轴实现差异性转动;
    ③ 主动轴通过万向节将动力传递至从动轴上,从动轴转动;
    ④ 从动轴转动时,带动主动轮转动,从而拖动履带滚动铺设,由于左右两侧的动力电机转速差异原因,动力传递至主动轮的转动速度也存在差异,从而导致履带滚动转动速度不同,实现驱动履带式底盘转弯前进;
    ⑤ 通过控制左右两套动力电机的转动方向,重复步骤①-④,可实现对履带式底盘的向左或向右转弯运动;
    (4)特种机器人原地转圈运动作业方法
    ① 控制器通过控制驱动器,实现对两套动力电机的一正一反转动驱动;
    ② 动力电机将动力传递至主动轴,左右两套悬挂自适应调整组件中的主动轴实现一正一反转动;
    ③ 主动轴通过万向节将动力传递至从动轴上,左右两套从动轴也一正一反转动;
    ④ 从动轴转动时,带动主动轮转动,从而拖动履带滚动铺设,由于左右两侧的动力电机转速相反原因,动力传递至主动轮的转动速度也相反,从而导致履带滚动转动速度大小相同、方向相反,从而实现驱动履带式底盘运抵转弯;
    ⑤ 通过控制左右两套动力电机的转动方向,重复步骤①-④,可实现对履带式底盘的向左或向右原地转圈运动;
    B特种机器人自适应越障运动作业方法
    当传感器检测到机器人前方待通过路面复杂不平整时,控制器分析决策后,按照上述步骤中常规的动力驱动方法驱动机器人运动的同时,还通过驱动器驱动悬挂自适应调整组件对减震悬挂组件作如下控制动作,从而实现对复杂恶劣路况的自适应越障通过功能,具体的,
    (1)特种机器人经过 ∨ 型路面作业方法
    对于处于履带式底盘左侧的减震悬挂组件、悬挂自适应调整组件来讲,
    ①控制器通过传感器检测到特种机器人即将通过截面呈∨型的路面时,控制器控制驱动器驱动左侧的第一转向电机、第二转向电机分别反转和正转,此时第一副齿轮、第二副齿轮同时正向旋转;
    ② 与第一副齿轮、第二副齿轮相啮合的转向齿轮不自旋,此时转向齿轮随第一副齿轮、第二副齿轮的轴心作正向摆动运动;
    ③ 与转向齿轮的空心转轴相连的左侧悬挂本体绕副齿轮的轴心正向转动,从而带动减震悬挂组件相对履带式底盘的偏转角增大,最终实现减震悬挂组件对∨型路面的贴合适应;
    ④ 对于右侧的减震悬挂组件、悬挂自适应调整组件来讲,与上述过程相同;
    (2)特种机器人经过 ∧ 型路面作业方法
    对于处于履带式底盘左侧的减震悬挂组件、悬挂自适应调整组件来讲,
    ① 控制器通过传感器检测到特种机器人即将通过∧型路面时,控制器控制驱动器驱动左侧的第一转向电机、第二转向电机分别正转和反转,此时第一副齿轮3-3-a、第二副齿轮3-3-b同时反向旋转;
    ② 与第一副齿轮、第二副齿轮相啮合的转向齿轮不自旋,此时转向齿轮随第一副齿轮、第二副齿轮的轴心作反向摆动运动;
    ③ 与转向齿轮的空心转轴相连的左侧悬挂本体绕副齿轮的轴心反向转动,从而带动减震悬挂组件相对履带式底盘的偏转角减小,最终实现减震悬挂组件对∧型路面的贴合适应;
    ④ 对于右侧的减震悬挂组件、悬挂自适应调整组件来讲,与上述过程相同;
    (3)特种机器人经过前低后高的“/”路面作业方法
    对于处于履带式底盘左侧的减震悬挂组件、悬挂自适应调整组件来讲,
    ① 控制器通过传感器检测到特种机器人即将通过“/”型路面时,控制器控制驱动器驱动左侧的第一转向电机、第二转向电机同时反转,此时第一副齿轮、第二副齿轮分别反向和正向旋转;
    ② 与第一副齿轮、第二副齿轮相啮合的转向齿轮开始自旋,转向齿轮反向旋转;
    ③ 与转向齿轮的空心转轴相连的左侧悬挂本体绕转向齿轮逆时针旋转,从而实现对减震悬挂组件的俯仰角减小调节,适应前低后高的“/”型路面,提高减震悬挂组件对“/”型路面的贴合适应能力;
    ④ 对于右侧的减震悬挂组件、悬挂自适应调整组件来讲,与上述过程相同;
    (4)特种机器人经过前高后低的“\”型路面作业方法
    对于处于履带式底盘左侧的减震悬挂组件、悬挂自适应调整组件来讲,
    ① 控制器通过传感器检测到特种机器人即将通过“\”型路面时,控制器控制驱动器驱动左侧的第一转向电机、第二转向电机同时正转,此时第一副齿轮、第二副齿轮分别正向和反向旋转;
    ② 与第一副齿轮、第二副齿轮相啮合的转向齿轮开始自旋,转向齿轮正向旋转;
    ③ 与转向齿轮的空心转轴相连的左侧悬挂本体绕转向齿轮顺时针旋转,从而实现对减震悬挂组件的俯仰角增大调节,适应前高后低的“\”型路面,提高减震悬挂组件对“\”型路面的贴合适应能力;
    ④ 对于右侧的减震悬挂组件、悬挂自适应调整组件来讲,与上述过程相同;
    (5)特种机器人经过其它各类复杂路面的作业方法
    当传感器检测到机器人前方待通过路面复杂不平整时,控制器分析决策后,按照上述步骤B中的(1)-(4)中某一个或多个组合的驱动方法实现对左右两侧的减震悬挂组件的俯仰角和偏转角调整,从而适应不同的复杂地面环境。
PCT/CN2019/104834 2019-07-31 2019-09-09 一种具备复杂地形自适应功能的特种机器人及其运动作业方法 WO2021017102A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/525,733 US11427272B2 (en) 2019-07-31 2021-11-12 Special robot with complex terrain adaptive function and a motion and operation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910699762.8 2019-07-31
CN201910699762.8A CN110481657B (zh) 2019-07-31 2019-07-31 一种具备复杂地形自适应功能的特种机器人及其运动作业方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/525,733 Continuation US11427272B2 (en) 2019-07-31 2021-11-12 Special robot with complex terrain adaptive function and a motion and operation method thereof

Publications (1)

Publication Number Publication Date
WO2021017102A1 true WO2021017102A1 (zh) 2021-02-04

Family

ID=68548878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104834 WO2021017102A1 (zh) 2019-07-31 2019-09-09 一种具备复杂地形自适应功能的特种机器人及其运动作业方法

Country Status (3)

Country Link
US (1) US11427272B2 (zh)
CN (1) CN110481657B (zh)
WO (1) WO2021017102A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113441501A (zh) * 2021-07-07 2021-09-28 梧州科润润滑科技有限公司 一种智能化储料罐检测清洁机器人
CN114408051A (zh) * 2022-02-21 2022-04-29 之江实验室 一种带主动悬挂结构的三轮轻质探测采样轮式机器人
CN115463865A (zh) * 2022-08-22 2022-12-13 武汉大学 拉伸式自适应越障光伏板清扫机器人及其运载装置
CN116101460A (zh) * 2022-12-02 2023-05-12 青岛海洋地质研究所 一种水下变姿的履带式机器人及其变姿方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107813287A (zh) * 2017-12-06 2018-03-20 翟家怡 一种适应多种地形的树干涂白机器人
CA3110625A1 (en) * 2018-09-07 2020-03-12 Soucy International Inc. Track system
CN112108806A (zh) * 2019-06-22 2020-12-22 北京博清科技有限公司 爬行焊接机器人
CN113581305B (zh) * 2021-08-13 2023-04-28 西南石油大学 一种角钢塔架自动检测机器人
CN114194291B (zh) * 2021-12-02 2023-03-17 中国煤炭科工集团太原研究院有限公司 煤矿履带式采掘装备的控制方法及装置
CN114313041A (zh) * 2022-01-13 2022-04-12 江苏英拓动力科技有限公司 无人履带车整车液压防倾控制机构
US20230321813A1 (en) * 2022-04-07 2023-10-12 Off-World, Inc. Robotic platform with dual track
CN117418779A (zh) * 2023-12-18 2024-01-19 哈尔滨荣实基业工程建设有限公司 一种工程建设用地质勘探设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302083A (ja) * 2006-05-10 2007-11-22 Kikuichi:Kk 無限軌道の走行装置
CN204937293U (zh) * 2015-08-03 2016-01-06 中国矿业大学 被动适应地形的履带式移动平台及具有其的机器人
FR3058702A1 (fr) * 2016-11-17 2018-05-18 Nexter Systems Train de roulement pour vehicule chenille, vehicule chenille incorporant un tel train de roulement et procede de conversion d'un vehicule a roues en vehicule chenille
CN208746112U (zh) * 2018-07-18 2019-04-16 山东阿图机器人科技有限公司 悬挂策略自动调整的全地形履带移动机器人

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB804240A (en) * 1956-04-04 1958-11-12 Chicago Pneumatic Tool Co Improvements in endless track vehicles
US4124124A (en) * 1975-08-25 1978-11-07 Rivet Huey J Hydraulic control and drive system for amphibious vehicle having a topside dragline draw works thereon
CH707606A1 (de) * 2013-02-05 2014-08-15 Studersond Ag Fahrzeug.
US9096264B2 (en) * 2013-03-14 2015-08-04 Cnh Industrial America Llc Implement carrier with steerable tracks
CN104108431A (zh) * 2013-04-16 2014-10-22 北京理工大学 履带式智能游壁平台
CN104875802A (zh) * 2015-05-13 2015-09-02 西北工业大学 一种轻量化折叠式履带机器人底盘
DE102015109112A1 (de) * 2015-06-09 2016-12-15 Wacker Neuson Linz Gmbh Baufahrzeug mit verkippbarem Fahrgestell
CN105150834B (zh) * 2015-09-21 2017-07-07 中国矿业大学 可控的锥齿轮式差动平衡装置及具有其的移动平台
US9688322B1 (en) * 2016-04-07 2017-06-27 Cnh Industrial America Llc Implement steerable track assembly with pivoting steering actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302083A (ja) * 2006-05-10 2007-11-22 Kikuichi:Kk 無限軌道の走行装置
CN204937293U (zh) * 2015-08-03 2016-01-06 中国矿业大学 被动适应地形的履带式移动平台及具有其的机器人
FR3058702A1 (fr) * 2016-11-17 2018-05-18 Nexter Systems Train de roulement pour vehicule chenille, vehicule chenille incorporant un tel train de roulement et procede de conversion d'un vehicule a roues en vehicule chenille
CN208746112U (zh) * 2018-07-18 2019-04-16 山东阿图机器人科技有限公司 悬挂策略自动调整的全地形履带移动机器人

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113441501A (zh) * 2021-07-07 2021-09-28 梧州科润润滑科技有限公司 一种智能化储料罐检测清洁机器人
CN114408051A (zh) * 2022-02-21 2022-04-29 之江实验室 一种带主动悬挂结构的三轮轻质探测采样轮式机器人
CN115463865A (zh) * 2022-08-22 2022-12-13 武汉大学 拉伸式自适应越障光伏板清扫机器人及其运载装置
CN115463865B (zh) * 2022-08-22 2023-08-18 武汉大学 拉伸式自适应越障光伏板清扫机器人及其运载装置
CN116101460A (zh) * 2022-12-02 2023-05-12 青岛海洋地质研究所 一种水下变姿的履带式机器人及其变姿方法
CN116101460B (zh) * 2022-12-02 2023-09-01 青岛海洋地质研究所 一种水下变姿的履带式机器人及其变姿方法

Also Published As

Publication number Publication date
US11427272B2 (en) 2022-08-30
US20220063739A1 (en) 2022-03-03
CN110481657B (zh) 2020-02-21
CN110481657A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021017102A1 (zh) 一种具备复杂地形自适应功能的特种机器人及其运动作业方法
CN107953937B (zh) 一种步履复合式移动机器人行走系统的改良结构
CN208746112U (zh) 悬挂策略自动调整的全地形履带移动机器人
CN202529053U (zh) 一种采用弹簧减震的三角履带行走装置
CN108454718B (zh) 一种履带式被动自适应机器人
CN106828633B (zh) 一种电动履带式全地形底盘
CN110962626B (zh) 一种多轴轮毂电机驱动车辆的自适应电子差速控制方法
CN201231791Y (zh) 多关节型履带式移动机器人
US11945527B2 (en) Planetary wheel type obstacle crossing robot
CN110282042B (zh) 一种高性能自适应履带底盘装置及工作方法
CN206900502U (zh) 轮履复合式全地形机器人
CN210258605U (zh) 一种高性能自适应履带底盘装置
CN101428652B (zh) 冰雪面移动机器人
CN2841272Y (zh) 自主越障机器人的复合移动机构
CN105059408A (zh) 被动适应地形的履带式移动平台及具有其的机器人
CN112572626B (zh) 一种三角履带式液压直驱仿形底盘及其仿形方法
CN101767616B (zh) 一种高机动性车辆
CN112896348A (zh) 一种自动导航三点调平式液压主动悬挂底盘
CN210258604U (zh) 一种全地形自适应智能移动平台
CN110466296B (zh) 双驱动源的水陆两栖智能移动底盘及其工作方法
CN201148179Y (zh) 一种冰雪面移动机器人
CN205819358U (zh) 一种高载荷与高精度行走控制用履带底盘机构
CN110450590B (zh) 一种基于摇臂悬架的车辆行走系统的自适应越障控制方法
CN204937293U (zh) 被动适应地形的履带式移动平台及具有其的机器人
CN109436127B (zh) 一种适应复杂地形的移动机器人底盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939622

Country of ref document: EP

Kind code of ref document: A1