WO2017208866A1 - Crystal oscillator and method for manufacturing same - Google Patents

Crystal oscillator and method for manufacturing same Download PDF

Info

Publication number
WO2017208866A1
WO2017208866A1 PCT/JP2017/018910 JP2017018910W WO2017208866A1 WO 2017208866 A1 WO2017208866 A1 WO 2017208866A1 JP 2017018910 W JP2017018910 W JP 2017018910W WO 2017208866 A1 WO2017208866 A1 WO 2017208866A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
electrode
region
crystal resonator
electrodes
Prior art date
Application number
PCT/JP2017/018910
Other languages
French (fr)
Japanese (ja)
Inventor
利克 大櫃
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018520802A priority Critical patent/JPWO2017208866A1/en
Publication of WO2017208866A1 publication Critical patent/WO2017208866A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Definitions

  • the present invention relates to a crystal resonator and a manufacturing method thereof.
  • Quartz vibrators with thickness shear vibration as the main vibration are widely used as signal sources for reference signals used in oscillators and bandpass filters.
  • the crystal resonator there is a structure including a resonator body made of an AT-cut quartz material and having a pair of excitation electrodes, and a lid and a base bonded to the front and back main surfaces of the resonator body. It is known (see Patent Document 1).
  • the crystal resonator has a connection pad electrically connected to an external electrode provided on the base on the base side of the resonator body, and the adjustment pad used for the inspection of the resonator body It is on the lid side of the main body.
  • connection pad and the adjustment pad for each of the connection pad and the adjustment pad, one wiring is required to be routed on the front and back of the crystal resonator element, and at least two wirings in total are required. For this reason, there is a case where a short circuit or disconnection due to the wiring occurs due to the miniaturization of the crystal unit.
  • the present invention has been made in view of such circumstances, and an object thereof is to suppress defects caused by wiring and to improve the quality of a crystal resonator.
  • the crystal resonator according to the present invention includes a crystal piece having first and second main surfaces facing each other, a first excitation electrode provided on the first main surface of the crystal piece, and the second piece of the crystal piece.
  • a quartz resonator element including a second excitation electrode provided on the main surface and facing the first excitation electrode; a frame surrounding the outer periphery of the crystal piece; and a connecting member connecting the frame and the crystal piece;
  • the lid member is disposed opposite to the first excitation electrode side of the crystal resonator element, and is joined to the second excitation electrode side of the crystal resonator element, and the lid member joined to the frame so as to excite the crystal piece.
  • the child has a first electrode electrically connected to the first excitation electrode and a second electrode electrically connected to the second excitation electrode, and each of the first and second electrodes includes a first electrode A first pad portion provided on the region and a second pad portion provided on the second region, wherein the first and second excitation electrodes are the first pad portions of the first and second electrodes, respectively. Is electrically connected to the external electrode of the base member.
  • Each second pad portion of the second electrode is formed.
  • the method for manufacturing a crystal resonator according to the present invention includes: (a) preparing a first substrate having a plurality of crystal resonator elements, wherein the crystal resonator elements have first and second main surfaces facing each other. A piece, a first excitation electrode provided on the first main surface of the crystal piece, a second excitation electrode provided on the second main surface of the crystal piece and facing the first excitation electrode, Preparing a first substrate comprising a frame body that surrounds the outer periphery of the crystal piece and a connecting member that connects the frame body and the crystal piece; and (b) facing the first excitation electrode side of the crystal resonator element.
  • Preparing a third substrate having a plurality of base members (d) A crystal piece can be excited
  • the first, second, and third substrates are joined so that the frame of the crystal resonator element is joined to the lid member and the base member, and (e) the joined first, second, and second substrates.
  • the quartz crystal resonator element includes a first electrode electrically connected to the first excitation electrode and a second electrode electrically connected to the second excitation electrode.
  • Each of the first and second electrodes has a first pad portion provided on the first region and a second pad portion provided on the second region, and (a) Electrically inspecting the quartz crystal vibrating element through each second pad portion of the second electrode, wherein (d) is the first and second excitation electrodes Involves electrically connected to the external electrode of the base member through the respective first pad portions of the first and second electrodes.
  • Each second pad portion of the second electrode can be formed.
  • defects due to wiring can be suppressed and the quality of the crystal unit can be improved.
  • FIG. 1 is an exploded perspective view of a crystal resonator according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3A is a plan view of the crystal resonator element according to the embodiment of the invention.
  • FIG. 3B is a plan view of the crystal resonator element according to the embodiment of the invention.
  • FIG. 4 is a partially enlarged perspective view of the crystal resonator element according to the embodiment of the invention.
  • FIG. 5 is a flowchart showing a method for manufacturing a crystal resonator according to an embodiment of the present invention.
  • FIG. 6A is a diagram showing a procedure of a method for manufacturing a crystal resonator element according to an embodiment of the present invention.
  • FIG. 6B is a diagram illustrating the procedure of the method for manufacturing the crystal resonator element according to the embodiment of the invention.
  • FIG. 6C is a diagram illustrating a procedure of a method for manufacturing a crystal resonator element according to an embodiment of the present invention.
  • FIG. 6D is a diagram illustrating a procedure of a method for manufacturing a crystal resonator element according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a crystal resonator according to a modification of one embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a crystal resonator according to another modification of the embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of the crystal resonator according to this embodiment
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1
  • FIG. 3A is a plan view of the crystal resonator element viewed from the lid member side.
  • FIG. 3B is a plan view seen from the base member side of the crystal resonator element.
  • FIG. 4 is a partially enlarged perspective view of the crystal resonator element.
  • the crystal resonator 1 includes a crystal resonator element 100 (Quartz Crystal Resonator), a lid member 200, and a base member 300.
  • the crystal resonator element 100 is constituted by an AT-cut quartz substrate, for example.
  • the AT-cut quartz substrate has an X-axis, a Y-axis, and a Z-axis which are crystal axes of artificial quartz, and the Y-axis and the Z-axis are 35 degrees 15 minutes in the direction from the Y-axis to the Z-axis around the X-axis.
  • the axes rotated for 1 minute 30 seconds are the Y ′ axis and the Z ′ axis, respectively, the surfaces parallel to the plane specified by the X axis and the Z ′ axis are cut out.
  • a quartz resonator element using an AT-cut quartz substrate has high frequency stability over a wide temperature range, is excellent in aging characteristics, and can be manufactured at low cost.
  • the AT-cut crystal resonator element often uses a thickness shear vibration mode as a main vibration.
  • each configuration of the crystal resonator will be described with reference to the axial direction of the AT cut.
  • the quartz resonator element 100 may be composed of a quartz substrate formed by a cut other than the AT cut.
  • the lid member 200 and the base member 300 are a part of the configuration of a case or a package for housing a part of the crystal resonator element 100 (crystal piece).
  • the crystal resonator element 100, the lid member 200, and the base member 300 have substantially the same dimensions and outer shapes when viewed in plan (for example, substantially rectangular outer shapes).
  • wafer level CSP also referred to as Chip Size Package
  • a wafer corresponding to a lid member a wafer corresponding to a crystal vibrating element
  • a base member a base member
  • the crystal resonator element 100, the lid member 200, and the base member 300 have substantially the same size and shape.
  • the crystal resonator element 100 includes a substantially rectangular crystal piece 110 (Quartz Crystal Blank), a frame body 120 that surrounds the outer periphery of the crystal piece 110 with a predetermined gap when the main surface of the crystal piece 110 is viewed in plan, Connection members 111 a and 111 b that are arranged in the gap and connect the crystal piece 110 and the frame body 120 are provided.
  • the crystal piece 110, the frame body 120, and the connecting members 111a and 111b are all formed from an AT-cut crystal substrate.
  • the quartz crystal resonator element 100 as a whole has a long side parallel to the X axis, a short side parallel to the Z ′ axis, and a thickness parallel to the Y ′ axis. In the example shown in FIG.
  • both of the connecting members 111 a and 111 b are arranged at one end (X-axis negative direction side) of the crystal piece 110 in the X-axis direction. That is, the crystal piece 110 is provided away from the frame body 120, and both are connected by the connecting members 111a and 111b.
  • FIG. 1 two connecting members arranged on one end side in the X-axis direction are shown, but the number of connecting members, their arrangement, and the like are not particularly limited.
  • each corner 102, 104, 106, 108 of the crystal resonator element 100 is not particularly limited, and is a rectangular shape having no notches as shown in FIG. Also good.
  • each corner may be formed with a cut-out side surface formed by cutting a part of the corner into a cylindrical curved surface (or castellation shape).
  • each corner of the lid member 200 and the base member 300 may be formed with the cut-out side surface.
  • Such a cut-out side surface is often formed in accordance with the adoption of a manufacturing method called wafer level CSP in which a wafer is packaged in a wafer state.
  • the crystal resonator element 100, the lid member 200, and the base are formed.
  • each cut-out side surface at the corresponding corner is arranged so as to coincide with the Y′-axis direction.
  • the shape in case a notch side surface is formed may be shapes other than a cylindrical curved surface shape.
  • First and second excitation electrodes 130 and 140 are formed on the front and back of the opposing main surface of the crystal piece 110.
  • a portion where the first and second excitation electrodes 130 and 140 face each other is an excitation portion (a portion excluding the first and second excitation electrodes 130 and 140).
  • the thickness of the crystal piece 110 is not particularly limited, the thickness of the excitation portion of the crystal piece 110 is larger than the thickness of the frame 120 (a portion excluding a concave portion 126 described later) as shown in FIG. It may be thin. Alternatively, unlike the example shown in FIG. 2, the thickness of the excitation portion of the crystal piece 110 may be substantially the same as the thickness of the frame 120.
  • substantially the same is not limited to the case where the thickness of the crystal piece 110 and the frame body 120 are strictly the same.
  • a flat crystal substrate having an upper surface and a lower surface facing each other is used. This means that it includes a dimensional difference due to processing variations that may occur when forming by removal processing. The same applies to the following description.
  • the thickness of the connecting members 111a and 111b is substantially the same as the thickness of the crystal portion serving as the excitation portion of the crystal piece 110 as shown in FIG. Or the thickness of the crystal portion may be smaller.
  • the crystal piece 110 can be configured to be similar to the mesa structure. Therefore, it is possible to improve the confinement property of the vibration energy by the connecting members 111a and 111b while maintaining the mechanical strength of the crystal resonator element 100 by the thickness of the frame body 120.
  • the first excitation electrode 130 is formed on the first surface 112 (first main surface) that is the surface on the Y′-axis positive direction side of the crystal piece 110, while the second excitation electrode 140 is formed on the Y ′ axis of the crystal piece 110. It is formed on the second surface 114 (second main surface) that is the surface on the negative axis direction side.
  • the first and second excitation electrodes 130 and 140 are arranged as a pair of electrodes so as to substantially overlap each other in plan view of the XZ ′ plane.
  • a through hole 150 is formed between the crystal piece 110 and the frame body 120 (for example, a region surrounded by the crystal piece 110, the frame body 120, and the connecting members 111a and 111b).
  • the 1st excitation electrode 130 is formed so that the outer edge of the X-axis positive direction side of the opening part of the Y'-axis positive direction side of the said through-hole 150 may be contact
  • An extraction electrode 132 is formed on the inner wall of the through-hole 150, and the extraction electrode 132 is electrically connected to the first excitation electrode 130 at the opening (see FIGS. 3A and 4). Thereby, the 1st excitation electrode 130 is electrically connected with the 1st electrode 133 formed in the 2nd surface 124 of the frame 120 via the extraction electrode 132 (refer FIG. 3B and FIG. 4).
  • the extraction electrode of the second excitation electrode 140 it is not necessary to form the extraction electrode of the second excitation electrode 140 on the inner wall of the through hole 150. Therefore, a resist forming process for providing an insulating portion on the inner wall is not necessary, and the manufacturing process is reduced, and occurrence of short circuit and disconnection is suppressed.
  • the extraction electrode 132 extracted from the first excitation electrode 130 to the first electrode 133 is formed on the entire inner wall of the through hole 150 as shown in FIG. 3A. By forming the extraction electrode 132 on the entire surface of the inner wall, the quality inspection of the wiring inside the through hole 150 can be omitted. Therefore, the work process is reduced and the manufacturing time is shortened.
  • the extraction electrode may be formed on a part of the inner wall of the through hole.
  • the extraction electrode 142 electrically connected to the second excitation electrode 140 passes through the coupling member 111b and is extracted to the frame body 120 side (see FIGS. 3B and 4).
  • the extraction electrode 142 is provided at a predetermined interval from the outer edge on the Z′-axis positive direction side of the opening on the Y′-axis negative direction side of the through hole 150 (see FIGS. 3B and 4). ). That is, the extraction electrode 142 is formed so as not to be electrically connected to the extraction electrode 132.
  • the 2nd excitation electrode 140 is electrically connected with the 2nd electrode 143 formed in the 2nd surface 124 side of the frame 120 (refer FIG. 3B and FIG. 4).
  • the 2nd electrode 143 is formed in the extraction electrode 142 on the same surface side (side where the base member 300 is arrange
  • First and second electrodes 133 and 143 are formed on the second surface 124 side of the frame body 120.
  • the first electrode 133 includes measurement pads 134 and 134a (second pad portion) and a connection pad 136 (first pad portion), and the second electrode 143 includes measurement pads 144 and 144a (second pad portion) and connection.
  • Pad 146 (first pad portion).
  • the measurement pads 134 and 134a or the measurement pads 144 and 144a may be referred to as “measurement pad 134” or “measurement pad 144” without distinction.
  • a recess 126 is formed on the second surface 124 side of the frame 120.
  • the concave portion 126 is a region that is recessed on the Y′-axis positive direction side from the bonding region (first region) with the base member 300 on the second surface 124 side (the side on which the base member 300 is disposed) of the frame body 120. (Second region) (see FIG. 4).
  • the joining region is formed in the outer edge portion including the outer edge of the frame body 120, and the recess 126 is formed in the region adjacent to the connecting members 111a and 111b on the X axis negative direction side of the frame body 120. (See FIGS. 3B and 4).
  • the shape of the recessed part 126 is not specifically limited, For example, a substantially rectangular external shape may be sufficient.
  • the depth of the concave portion 126 on the Y′-axis positive direction side is not particularly limited, but in this embodiment, the bottom surface of the concave portion 126 (the surface facing the base member 300) is the same as the second surface 114 of the crystal piece 110. It is deep enough to be located at the height. Specifically, the recess 126, the connecting members 111a and 111b, and the crystal piece 110 are flush with each other on the side where the base member 300 is disposed.
  • the thickness of the connecting members 111 a and 111 b in the Y′-axis direction is equal to the thickness of the frame body 120 (part excluding the recess 126). Since the thickness is comparatively smaller, the distance of the extraction electrode 132 provided on the inner wall of the through hole 150 is shortened. Thereby, generation
  • the measurement pads 134 and 144 are formed on the bottom surface of the recess 126. Specifically, the measurement pad 134 is formed so that at least a part of the bottom surface of the recess 126 is in contact with the outer edge of the through hole 150 on the Y′-axis negative direction side on the X-axis negative direction side. Yes. Thereby, the measurement pad 134 is electrically connected to the extraction electrode 132 formed on the inner wall of the through hole 150. On the other hand, the measurement pad 144 is electrically connected to the extraction electrode 142 on the bottom surface of the concave portion 126 so as not to contact the outer edge of the opening of the through hole 150 (that is, not electrically connected to the extraction electrode 132). Is formed).
  • the measurement pad 134 is electrically connected to the measurement pad 134a formed on the side surface of the concave portion 126 on the negative side of the Z ′ axis, and the measurement pad 144 is connected to the concave portion 126 on the positive side of the Z ′ axis. It is electrically connected to the measurement pad 144a formed on the side surface (see FIG. 4).
  • the measurement pads 134 and 144 are pads used for applying a voltage to the first and second excitation electrodes 130 and 140 when the crystal resonator element 100 is electrically inspected.
  • the electrical inspection is performed, for example, by bringing a pair of probes or the like into contact with the measurement pads 134 and 144 and applying a voltage to the first and second excitation electrodes. Details of the electrical inspection method will be described later.
  • the measurement pads 134 and 144 are formed so as to be partially extended from the extension lines of the connecting members 111a and 111b (that is, on the vibration propagation path of the excitation vibration) (see FIG. 4). . Thereby, the influence on the oscillation frequency caused by bringing the probe into contact with the measurement pad is suppressed, and the measurement accuracy is improved.
  • wire of the connection members 111a and 111b may be an outer side in the Z'-axis direction from the said extension line
  • connection pads 136 and 146 are formed on the second surface 124 of the frame body 120 (joining region with the base member 300). Specifically, the connection pad 136 is at least partially in contact with the outer edge of the concave portion 126 on the Z′-axis negative direction side near the corner 102 of the frame body 120 on the second surface 124 of the frame body 120. The connection pad 146 is formed on the second surface 124 of the frame body 120 so that the outer edge of the concave portion 126 on the Z′-axis positive direction side is at least partially in contact with the corner 104 of the frame body 120. (See FIG. 4).
  • connection pad 136 is in contact with the measurement pad 134a (electrically connected to the measurement pad 134), and the connection pad 146 is in contact with the measurement pad 144a (electrically connected to the measurement pad 144). Accordingly, the connection pad 136 is electrically connected to the first excitation electrode 130 via the measurement pads 134a and 134 and the extraction electrode 132, and the connection pad 146 includes the measurement pads 144a and 144 and the extraction electrode 142. And is electrically connected to the second excitation electrode 140.
  • connection pads 136 and 146 are connected to the first and second excitation electrodes 130 and 140 and the first surface 302 of the base member (on the side where the crystal resonator element 100 is disposed) when the crystal resonator element 100 and the base member 300 are joined. It is a pad used for electrically connecting an external electrode formed on the surface).
  • the first and second excitation electrodes 130 and 140 are electrically connected to the external electrodes 322 and 326 formed on the base member 300 through connection pads 136 and 146, respectively (see FIG. 1).
  • the base is formed of a chromium (Cr) layer, and a gold (Au) layer is formed on the surface of the chromium layer.
  • each electrode is not limited only to said material.
  • the lid member 200 is disposed on the first surface 122 side of the frame body 120 so as to face the first excitation electrode 130 formed on the first surface 112 of the crystal piece 110, and the base member 300 is disposed on the first surface 122 of the crystal piece 110.
  • the lid member 200, the crystal resonator element 100, and the base member 300 are arranged in three layers in this stacking order so as to be opposed to the second excitation electrode 140 formed on the second surface 114 and on the second surface 124 side of the frame body 120. It has a structure.
  • the lid member 200 has a first surface 202 and a second surface 204 opposite to the first surface 202 and facing the crystal resonator element 100.
  • the base member 300 has a first surface 302 that faces the crystal resonator element 100 and a second surface 304 that is opposite to the first surface 302.
  • the second surface 304 of the base member 300 is a mounting surface that is electrically connected to the outside.
  • External electrodes 322, 324, 326, and 328 are formed on the second surface 304 of the base member 300 at each corner. Specifically, external electrodes 322 and 324 are formed at two corners on the X axis negative direction side, and external electrodes 326 and 328 are formed at two corners on the X axis positive direction side. The external electrodes 322, 324, 326, and 328 are drawn out to the first surface 302 side by electrodes formed on the end surface of the base member 300. Further, on the first surface 302 of the base member 300, the external electrode 322 is provided to extend to a certain extent at the corner on the negative side in the X-axis negative direction Z′-axis, and the external electrode 326 faces the negative side in the X-axis direction. Are extended to a certain extent at the corner on the X-axis negative direction Z′-axis positive direction side (see FIG. 1).
  • the external electrode 322 is electrically connected to the first excitation electrode 130 via the connection pad 136, the measurement pad 134, and the extraction electrode 132, and the external electrode 326. Is electrically connected to the second excitation electrode 140 via the connection pad 146, the measurement pad 144, and the extraction electrode 142 (see FIG. 1).
  • the remaining external electrodes 324 and 328 are dummy electrodes (also called floating electrodes) that are not electrically connected to any of the first and second excitation electrodes 130 and 140.
  • the dummy electrode may be connected to a terminal provided on a substrate (not shown) on which the crystal unit 1 is mounted and not connected to any other electronic element. In the example shown in FIG.
  • the external electrodes 322 and 326 that are electrically connected to the first and second excitation electrodes 130 and 140 are arranged at opposite corners of the base member 300, It is not limited and may be arranged at other corners. Further, when notched side surfaces such as castellation shapes are formed at each corner of the base member 300, each external electrode extends from the second surface 304 of the base member 300 to the notched side surface at each corresponding corner. It may have been issued.
  • External electrodes 322, 324, 326, and 328 are formed of, for example, chromium (Cr) or gold (Au). Specifically, for example, the external electrode is formed by forming a conductive material by a sputtering method and then additionally forming a conductive material by a plating method. Note that the external electrodes 322, 324, 326, and 328 are not particularly limited to the above materials, and a known conductive material can be used. Moreover, well-known formation methods other than said formation method can be used. In the present embodiment, a four-terminal structure including four external electrodes is shown. However, the number of external electrodes is not particularly limited. For example, a two-terminal structure including two external electrodes may be applied. .
  • the lid member 200 and the base member 300 are flat substrates, but the lid member 200 and the base member 300 may have a concave shape opened in a direction facing the crystal resonator element 100.
  • the material of the lid member 200 and the base member 300 is made of glass (for example, silicate glass or a material mainly composed of materials other than silicate and having a glass transition phenomenon due to temperature rise).
  • it may be made of quartz (for example, AT-cut quartz), which is the same material as the quartz resonator element 100, or glass epoxy resin in which glass fiber is impregnated with epoxy resin.
  • the lid member 200 is joined to the entire circumference of the first surface 122 of the frame body 120 via the sealing member 170, while the base member 300 is connected to the second surface of the frame body 120.
  • the entire periphery of the surface 124 is joined via a sealing member 172.
  • the crystal piece 110 is hermetically sealed in the internal space (cavity). It is preferable that the pressure in the internal space is in a vacuum state lower than the atmospheric pressure because changes with time due to oxidation of the first excitation electrode 130 and the second excitation electrode 140 can be reduced.
  • the material of the sealing members 170 and 172 is not limited as long as the bonding surfaces of the members can be bonded to each other and the internal space can be hermetically sealed.
  • low-melting glass for example, lead borate or tin phosphate
  • Glass adhesive material such as a system
  • a resin adhesive may be used.
  • connection pads 136 and 146 that is, the joint surface with the base member 300
  • the reliability of joining between the connection pads 136 and 146 and the external electrodes 322 and 326 may be lowered.
  • a probe or the like can be brought into contact with the measurement pads 134 and 144 formed on the inner bottom surface of the recess 126 that is recessed from the second surface 124 to the first surface 122 side of the frame 120. .
  • the measurement pads 134 and 144 that is, the surface that is not bonded to the base member 300
  • the bonding force is reduced due to the damage or contamination.
  • the crystal resonator element 100 and the base member 300 can be joined. Therefore, it is possible to suppress a decrease in bonding reliability caused by the electrical inspection of the crystal resonator element 100.
  • connection pad first pad portion of the first electrode
  • the measurement pad first electrode
  • second pad portion a connection pad (first pad portion of the second electrode) and a measurement pad (second pad portion of the second electrode) electrically connected to the second excitation electrode 140, Both are formed on the second surface 124 side of the frame body 120.
  • the pad While the pad is formed, it is possible to reduce the total number of wirings routed on the front and back surfaces of the crystal resonator element having a high probability of wiring peeling and cutting. Accordingly, it is possible to improve the quality of the crystal unit while reducing the size of the crystal unit and suppressing defects such as a short circuit and disconnection of wiring.
  • the wiring manufacturing process can be simplified. Furthermore, since both the measurement pad and the connection pad are formed on the same surface side of the crystal resonator element 100, the inspection of the pad quality (for example, shape, misalignment, etc.) using image capturing or the like is simplified.
  • the measurement pad is formed not only on the bottom surface of the recess 126 but also on the side surface, so that the area in which the probe can be contacted is expanded and the operation in the inspection becomes easy.
  • region in which the recessed part 126 is formed is not specifically limited, What is necessary is just the area
  • the measurement pad can be hermetically sealed together with the crystal piece in the internal space (cavity) of the crystal resonator.
  • first and second electrodes 133 and 143 including the measurement pads 134 and 144 and the connection pads 136 and 146) electrically connected to the first and second excitation electrodes 130 and 140 is particularly limited. Is not to be done. As shown in this embodiment, each of the measurement pads 134 and 144 may be disposed between the connection pad 136 and the connection pad 146, or conversely, the connection pad is connected to each measurement pad. You may arrange
  • the manufacturing method of the crystal unit in the present embodiment includes manufacturing by applying a wafer level packaging technique for packaging in a wafer state.
  • the same constituent elements as those in the state after being singulated are denoted by the same terms and symbols for convenience of explanation. explain.
  • a first substrate 10 is prepared (S10 in FIG. 5).
  • the first substrate 10 is a substrate for forming a plurality of crystal resonator elements 100.
  • the contents described for the quartz resonator element 100 described above can be applied.
  • a quartz substrate obtained by cutting a quartz material from an artificial quartz or a natural quartz ore into a wafer at a predetermined cut angle is used. Can be used.
  • the first and second electrodes 133 and 143 are formed.
  • the measurement pads 134 and 144 and the connection pads 136 and 146 are formed, for example, by forming a recess 126 in the frame body 120 of the first substrate 10 by photolithography and etching, and forming a conductive material in the recess 126 by sputtering or the like. It can be formed as a film.
  • each crystal resonator element 100 formed on the first substrate 10 (S20 in FIG. 5).
  • a pair of probes or the like are brought into contact with the measurement pads 134 and 144 and a voltage is applied to the first and second excitation electrodes 130 and 140.
  • the oscillation frequency and crystal impedance value (CI value) of the crystal resonator element 100 are measured, and the frequency of the crystal resonator element 100 is adjusted.
  • the frequency is adjusted by, for example, removing a part of the first or second excitation electrodes 130 and 140 by laser light irradiation or attaching a metal to the crystal piece 110 by vapor deposition. This is done by adjusting the mass of the excitation electrodes 130 and 140.
  • the second substrate 20 and the third substrate 30 are substrates for forming the lid member 200 and the base member 300, respectively.
  • the second substrate 20 has a region corresponding to the plurality of lid members 200
  • the third substrate 30 has a region corresponding to the plurality of base members 300.
  • the materials described for the lid member 200 and the base member 300 can be applied to the materials of the second substrate 20 and the third substrate 30.
  • the second substrate 20 and the third substrate 30 can be made of quartz. it can.
  • the first substrate 10, the second substrate 20, and the third substrate 30 may be crystal substrates having the same cut angle (for example, AT cut).
  • the first substrate 10, the second substrate 20, and the third substrate 30 have substantially the same outer shape in plan view as viewed in the thickness direction.
  • the external electrodes described above are formed for each predetermined region by processes such as photolithography, etching, and film formation.
  • the second substrate 20 is bonded to the upper surface of the first substrate 10 (the side where the first excitation electrode 130 is formed on the crystal piece 110), and the lower surface of the first substrate 10 (the crystal The 3rd board
  • substrate 30 is joined to the piece 110 in which the 2nd excitation electrode 140 was formed, and the laminated member 40 is obtained (S40 of FIG. 5).
  • the second substrate 20, the first substrate 10, and the third substrate 30 are laminated and joined in this order.
  • the sealing members 170 and 172 (not shown) so that each crystal piece 110 of the first substrate 10 can be excited on the entire circumference of each surface of the frame body 120 of the first substrate 10.
  • the second substrate 20 and the third substrate 30 are joined.
  • the plurality of crystal pieces 110 on the first substrate 10 are hermetically sealed.
  • each substrate may be bonded by an intermolecular force of quartz without using a sealing member.
  • the laminated member 40 is cut out to obtain a plurality of pieces (S50 in FIG. 5).
  • the laminated member 40 is cut out by a method such as dicing or wire cutting, and is separated into pieces for each crystal resonator.
  • an external electrode is formed on each crystal resonator (S60 in FIG. 5).
  • An external electrode is formed on the bottom surface of the crystal resonator (the surface of the base member 300 opposite to the crystal resonator element 100) by appropriately combining, for example, a sputtering method, a vacuum evaporation method, or a plating method. By forming the external electrode, the mountability of the crystal resonator is ensured.
  • the first region is formed in a region including the outer edge of the frame body 120, and the second region (that is, the concave portion 126) is formed in a region adjacent to the connecting members 111a and 111b.
  • 134 and 144 may be formed in a region between the connection pad 136 and the connection pad 146 and out of the extension line of the coupling members 111a and 111b.
  • the extraction electrode 132 is connected to the first excitation electrode 130 through the inner wall of the through hole 150 between the crystal piece 110 and the frame body 120. You may form in an inner wall.
  • the extraction electrode 132 may be formed on the entire inner wall of the through hole 150.
  • steps S10 to S30 shown in FIG. 5 are not limited to this order, and the order may be changed.
  • FIG. 7 is a cross-sectional view of a crystal resonator 2 according to a modification of the present embodiment.
  • This sectional view shows a sectional view of the crystal unit 2 in the same direction as the sectional view taken along the line II-II of FIG. 1 shown in FIG.
  • the crystal resonator 2 includes a crystal resonator element 103.
  • the crystal vibrating element 103 includes a crystal piece 113 and a connecting member 115b instead of the crystal piece 110 and the connecting member 111b in the crystal vibrating element 100 shown in FIG. Note that the connecting member on the Z′-axis negative direction side is the same as the connecting member 115b, and thus detailed description thereof is omitted.
  • the second surface 114 of the crystal piece 113 is closer to the first surface 302 of the base member 300 than the bottom surface of the recess 126 formed in the frame body 120 (the surface on the side where the base member 300 is disposed). 2 is different from the configuration shown in FIG. 2 in this respect.
  • the thickness of the frame body 120 the portion excluding the concave portion 126
  • the thickness of the region where the concave portion 126 of the frame body 120 is formed and the crystal piece
  • the thicknesses of the 113 and the connecting member 115b are reduced in this order. Accordingly, a step is formed between the recess 126 of the frame body 120 and the connecting member 115b.
  • the measurement pads 134 and 144 are on the extension line of the connecting member (that is, on the vibration propagation path of the excitation vibration) and are formed from the connecting member through the step (see FIG. 7).
  • the vibration propagation is reflected or diffused by the above-described step, so that the influence on the oscillation frequency caused by the contact of the probe is suppressed. Measurement accuracy is improved.
  • the measurement pad can be arranged on the extension line of the vibration propagation path, the degree of freedom in design such as the arrangement of the measurement pad and the width of the bonding region is increased. Accordingly, it is easy to improve the bonding force between the crystal resonator element and the base member and to reduce the size of the crystal resonator.
  • the thickness of the connecting member that is, the thickness of the through hole
  • the distance between the extraction electrodes provided on the inner wall of the through hole is further shortened. The occurrence of disconnection due to electrode defects can be suppressed.
  • FIG. 8 is a cross-sectional view of a crystal resonator 3 according to another modification of the present embodiment.
  • This sectional view shows a sectional view of the crystal unit 3 in the same direction as the sectional view taken along the line II-II in FIG. 1 shown in FIG.
  • the crystal resonator 3 includes a crystal resonator element 105.
  • the crystal vibrating element 105 includes a crystal piece 117 and a connecting member 119b instead of the crystal piece 110 and the connecting member 111b in the crystal vibrating element 100 shown in FIG. Note that the connecting member on the Z′-axis negative direction side is the same as the connecting member 119b, and thus detailed description thereof is omitted.
  • the crystal piece 117 has a forward mesa shape in which the outer edge portion is formed thinner than the center portion, and this is different from the configuration shown in FIG. Further, the second surface 114 at the center of the crystal piece 117 is the bottom surface of the recess 126 formed in the frame 120 with respect to the first surface 302 of the base member 300 (the surface on the side where the base member 300 is disposed). And at approximately the same position.
  • the crystal piece 117 has a substantially rectangular outer shape in plan view, but the shape of the crystal piece 117 is not limited to this.
  • the first and second electrodes electrically connected to the first and second excitation electrodes 130 and 140 are both the first and second electrodes of the frame body 120.
  • the total number of wirings routed on the front and back of the crystal resonator element can be reduced. Accordingly, it is possible to improve the quality of the crystal unit while reducing the size of the crystal unit and suppressing defects such as a short circuit and disconnection of wiring.
  • the wiring manufacturing process can be simplified.
  • the quartz crystal resonators 1 to 3 include first and second excitation electrodes 130 and 140 in a region that is depressed to a predetermined extent from the joint surface with the base member 300 on the surface of the frame 120 where the base member 300 is disposed.
  • the second pad portions of the first and second electrodes 133 and 143 that are electrically connected are formed.
  • the second pad portions of the first and second electrodes 133 and 143 are disposed between the first pad portion of the first electrode 133 and the second pad portion of the second electrode 143. It may be arranged.
  • a joining region of the frame 120 is formed in a region including the outer edge of the frame 120, and a recess 126 is formed in a region adjacent to the connecting members 111a and 111b.
  • the measurement pads 134 and 144 can be hermetically sealed together with the crystal piece 110 in the internal space (cavity) of the crystal resonator.
  • the second pad portions of the first and second electrodes 133 and 143 are arranged at least partially in a region off the extension line of the connecting members 111a and 111b.
  • the first electrode 133 is electrically connected to the first excitation electrode 130 via the extraction electrode 132 provided on the inner wall of the through hole 150 between the crystal piece 110 and the frame body 120. It is connected to the. Further, it is not necessary to form the extraction electrode of the second excitation electrode 140 on the inner wall of the through hole 150. Therefore, a resist forming process for providing an insulating portion on the inner wall is not necessary, and the manufacturing process is reduced, and occurrence of short circuit and disconnection is suppressed.
  • the extraction electrode 132 is formed on the entire inner wall of the through hole 150. Therefore, the quality inspection of the wiring inside the through hole 150 can be omitted. Therefore, the work process is reduced and the manufacturing time is shortened.
  • the first electrode 133 is provided in contact with at least a part of the outer edge of the lead electrode 132 and the through hole 150, and the second electrode 143 is provided apart from the outer edge of the opening. Yes.
  • the configuration of the extraction electrode is not limited to this.
  • the surface of the crystal piece 110 on the side where the base member 300 is disposed is positioned at the same height as the surface of the frame body 120 on which the base member 300 is disposed.
  • the depth of the concave portion 126 in the Y′-axis direction is not limited to this.
  • the surface on the side where the base member 300 of the crystal piece 113 is disposed is located farther from the base member 300 than the surface on the side where the base member 300 of the recess 126 in the frame 120 is disposed. Is formed. Thereby, a level
  • the crystal resonator 3 has a forward mesa shape in which the crystal piece 117 has a substantially rectangular outer shape in plan view and the outer edge portion is formed thinner than the center portion. Even in such a configuration, similarly to the crystal resonator 2, the propagation of vibration is reflected or diffused by the step formed between the concave portion 126 of the frame body 120 and the connecting member, resulting from the contact of the probe. The influence on the oscillation frequency is suppressed and the measurement accuracy is improved.
  • the first and second excitation electrodes 130, the region of the frame 120 on the side where the base member 300 is disposed are recessed to a predetermined extent from the joint surface with the base member 300.
  • a bonding region of the frame body 120 is formed in a region including the outer edge of the frame member 120, a recess 126 is formed in a region adjacent to the connecting members 111a and 111b, and the first electrode 133 is formed.
  • the first and second electrodes 133 and 143 Forming each second pad portion.
  • the method for manufacturing the crystal resonator is such that the first electrode 133 is electrically connected to the first excitation electrode 130 through the inner wall of the through hole 150 between the crystal piece 110 and the frame body 120. Forming the extraction electrode 132 on the inner wall of the through-hole 150. This eliminates the need for a resist forming step for providing an insulating portion on the inner wall of the through-hole 150, reduces the manufacturing steps, and suppresses the occurrence of short circuits and disconnections.
  • the method for manufacturing a crystal resonator includes forming the extraction electrode 132 on the entire inner wall of the through hole 150. Thereby, the quality inspection of the wiring inside the through hole 150 can be omitted. Therefore, the work process is reduced and the manufacturing time is shortened.
  • an aspect having a long side parallel to the X axis and a short side parallel to the Z ′ axis has been described as an example of an AT-cut quartz crystal resonator element.
  • the present invention is not limited to this.
  • the present invention may be applied to an AT-cut quartz crystal resonator element having a long side parallel to the Z ′ axis and a short side parallel to the X axis.
  • the aspect which has two connection members was demonstrated in the above description, the number of connection members is not limited, For example, the crystal piece and the frame may be connected by one connection member. .
  • each embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention.
  • the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
  • those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention.
  • each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate.
  • each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.
  • Crystal resonators 100, 103, 105 Crystal resonator elements 110, 113, 117 Crystal pieces 111a, 111b, 115b, 119b Connecting member 120 Frame body 130 First excitation electrode 132, 142 Extraction electrode 133 First electrode 134, 134a , 144, 144a Measurement pad 136, 146 Connection pad 140 Second excitation electrode 143 Second electrode 150 Through hole 170, 172 Sealing member 200 Lid member 300 Base member 322, 324, 326, 328 External electrode

Abstract

The present invention is provided with: a crystal oscillation element (100) including a crystal strip (110) that has principal surfaces facing each other, a first excitation electrode (130) and a second excitation electrode (140) provided on the principal surfaces, a frame body (120) surrounding an outer periphery of the crystal strip, and a joining member (111); a lid member (200); and a base member (300) having outer electrodes. The frame body (120) has a first region provided on the side on which the base member is disposed and a second region that is recessed more deeply than the first region. The crystal oscillation element (100) has a first electrode (133) electrically connected to the first excitation electrode (130) and a second electrode (143) electrically connected to the second excitation electrode (140). The first and second electrodes have respective first pad sections (136, 146) provided on the first region and respective second pad sections (134, 144) provided on the second region. The first and second excitation electrodes are electrically connected to the outer electrodes of the base member via the respective first pad sections of the first and second electrodes.

Description

水晶振動子及びその製造方法Quartz crystal resonator and manufacturing method thereof
 本発明は、水晶振動子及びその製造方法に関する。 The present invention relates to a crystal resonator and a manufacturing method thereof.
 発振装置や帯域フィルタなどに用いられる基準信号の信号源に、厚みすべり振動を主振動とする水晶振動子が広く用いられている。例えば、水晶振動子の一態様として、ATカットされた水晶材からなり1対の励振電極を有する振動子本体と、当該振動子本体の表裏主面に接合されるリッド及びベースとを有する構造が知られている(特許文献1参照)。当該水晶振動子は、ベースに設けられた外部電極と電気的に接続される接続用パッドを振動子本体のベース側に有し、振動子本体の検査のために用いられる調整用パッドを振動子本体のリッド側に有している。 Quartz vibrators with thickness shear vibration as the main vibration are widely used as signal sources for reference signals used in oscillators and bandpass filters. For example, as one aspect of the crystal resonator, there is a structure including a resonator body made of an AT-cut quartz material and having a pair of excitation electrodes, and a lid and a base bonded to the front and back main surfaces of the resonator body. It is known (see Patent Document 1). The crystal resonator has a connection pad electrically connected to an external electrode provided on the base on the base side of the resonator body, and the adjustment pad used for the inspection of the resonator body It is on the lid side of the main body.
特開2015-192279号公報JP2015-192279A
 しかしながら、かかる構成によれば、接続用パッドと調整用パッドの各々について、水晶振動素子の表裏に引き回す配線が1本ずつ必要となり、少なくとも合計2本の配線が必要となる。そのため、水晶振動子の小型化に伴って配線に起因する短絡及び断線等が発生する場合があった。 However, according to such a configuration, for each of the connection pad and the adjustment pad, one wiring is required to be routed on the front and back of the crystal resonator element, and at least two wirings in total are required. For this reason, there is a case where a short circuit or disconnection due to the wiring occurs due to the miniaturization of the crystal unit.
 本発明はこのような事情に鑑みてなされたものであり、配線に起因する不良を抑制し、水晶振動子の品質の向上を図ることを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to suppress defects caused by wiring and to improve the quality of a crystal resonator.
 本発明に係る水晶振動子は、対向する第1及び第2主面を有する水晶片と、当該水晶片の当該第1主面に設けられた第1励振電極と、当該水晶片の当該第2主面に設けられ、当該第1励振電極に対向する第2励振電極と、当該水晶片の外周を囲む枠体と、当該枠体と水晶片を連結する連結部材と、を含む水晶振動素子と、水晶振動素子の第1励振電極側に対向して配置され、水晶片を励振可能なように枠体に接合されたリッド部材と、水晶振動素子の第2励振電極側に対向して配置され、水晶片を励振可能なように枠体に接合され、かつ外部と電気的に接続可能である外部電極を有する、ベース部材と、を備え、枠体は、ベース部材が配置された側に設けられた第1領域及び当該第1領域よりも窪んでいる第2領域を有しており、水晶振動素子は、第1励振電極と電気的に接続された第1電極と、第2励振電極と電気的に接続された第2電極とを有し、第1及び第2電極の各々は、第1領域上に設けられた第1パッド部分と、第2領域上に設けられた第2パッド部分とを有し、第1及び第2励振電極は、第1及び第2電極の各第1パッド部分を介してベース部材の外部電極と電気的に接続される。 The crystal resonator according to the present invention includes a crystal piece having first and second main surfaces facing each other, a first excitation electrode provided on the first main surface of the crystal piece, and the second piece of the crystal piece. A quartz resonator element including a second excitation electrode provided on the main surface and facing the first excitation electrode; a frame surrounding the outer periphery of the crystal piece; and a connecting member connecting the frame and the crystal piece; The lid member is disposed opposite to the first excitation electrode side of the crystal resonator element, and is joined to the second excitation electrode side of the crystal resonator element, and the lid member joined to the frame so as to excite the crystal piece. A base member having an external electrode that is joined to the frame body so as to excite the crystal piece and that can be electrically connected to the outside, and the frame body is provided on a side where the base member is disposed. A first region that is formed and a second region that is recessed from the first region. The child has a first electrode electrically connected to the first excitation electrode and a second electrode electrically connected to the second excitation electrode, and each of the first and second electrodes includes a first electrode A first pad portion provided on the region and a second pad portion provided on the second region, wherein the first and second excitation electrodes are the first pad portions of the first and second electrodes, respectively. Is electrically connected to the external electrode of the base member.
 上記構成によれば、枠体におけるベース部材が配置された側の面において、ベース部材との接合面から所定程度窪んだ領域に、第1及び第2励振電極と電気的に接続された第1及び第2電極の各第2パッド部分が形成される。これにより、例えば、水晶振動素子の電気的検査時に必要な測定用パッドを形成しつつも、水晶振動素子の表裏に引き回す配線の数を減らすことができる。従って、配線の短絡及び断線などの不良を抑制し、水晶振動子の品質の向上を図ることができる。 According to the above configuration, the first electrically connected to the first and second excitation electrodes in the region recessed from the joint surface with the base member to a predetermined extent on the surface of the frame on which the base member is disposed. Each second pad portion of the second electrode is formed. Thereby, for example, the number of wirings routed on the front and back sides of the crystal resonator element can be reduced while forming a measurement pad necessary for electrical inspection of the crystal resonator element. Accordingly, it is possible to suppress defects such as a short circuit and disconnection of the wiring and improve the quality of the crystal resonator.
 本発明に係る水晶振動子の製造方法は、(a)複数の水晶振動素子を有する第1基板を用意することであって、水晶振動素子が、対向する第1及び第2主面を有する水晶片と、当該水晶片の当該第1主面に設けられた第1励振電極と、当該水晶片の当該第2主面に設けられ、当該第1励振電極に対向する第2励振電極と、当該水晶片の外周を囲む枠体と、当該枠体と水晶片を連結する連結部材と、を備える、第1基板を用意すること、(b)水晶振動素子の第1励振電極側に対向して配置される複数のリッド部材を有する第2基板を用意すること、(c)水晶振動素子の第2励振電極側に対向して配置され、かつ外部と電気的に接続可能である外部電極を有する複数のベース部材を有する第3基板を用意すること、(d)水晶片が励振可能なように、水晶振動素子の枠体がリッド部材及びベース部材に接合するように、第1、第2及び第3基板を接合すること、及び、(e)接合された第1、第2及び第3基板を切断して、個片化された複数の水晶振動子を得ること、を含み、枠体は、ベース部材が配置された側に設けられた第1領域及び当該第1領域よりも窪んでいる第2領域を有しており、水晶振動素子は、第1励振電極と電気的に接続された第1電極と、第2励振電極と電気的に接続された第2電極とを有し、第1及び第2電極の各々は、第1領域上に設けられた第1パッド部分と、第2領域上に設けられた第2パッド部分とを有し、(a)は、第1及び第2電極の各第2パッド部分を介して水晶振動素子を電気的に検査することを含み、(d)は、第1及び第2励振電極を、第1及び第2電極の各第1パッド部分を介してベース部材の外部電極と電気的に接続することを含む。 The method for manufacturing a crystal resonator according to the present invention includes: (a) preparing a first substrate having a plurality of crystal resonator elements, wherein the crystal resonator elements have first and second main surfaces facing each other. A piece, a first excitation electrode provided on the first main surface of the crystal piece, a second excitation electrode provided on the second main surface of the crystal piece and facing the first excitation electrode, Preparing a first substrate comprising a frame body that surrounds the outer periphery of the crystal piece and a connecting member that connects the frame body and the crystal piece; and (b) facing the first excitation electrode side of the crystal resonator element. Providing a second substrate having a plurality of lid members to be disposed; and (c) having an external electrode disposed facing the second excitation electrode side of the crystal resonator element and electrically connectable to the outside. Preparing a third substrate having a plurality of base members, (d) A crystal piece can be excited As described above, the first, second, and third substrates are joined so that the frame of the crystal resonator element is joined to the lid member and the base member, and (e) the joined first, second, and second substrates. Cutting the three substrates to obtain a plurality of individual crystal resonators, and the frame body is provided with a first region provided on a side where the base member is disposed, and a lower portion than the first region. The quartz crystal resonator element includes a first electrode electrically connected to the first excitation electrode and a second electrode electrically connected to the second excitation electrode. , Each of the first and second electrodes has a first pad portion provided on the first region and a second pad portion provided on the second region, and (a) Electrically inspecting the quartz crystal vibrating element through each second pad portion of the second electrode, wherein (d) is the first and second excitation electrodes Involves electrically connected to the external electrode of the base member through the respective first pad portions of the first and second electrodes.
 上記方法によれば、枠体におけるベース部材が配置された側の面において、ベース部材との接合面から所定程度窪んだ領域に、第1及び第2励振電極と電気的に接続された第1及び第2電極の各第2パッド部分を形成することができる。これにより、例えば、水晶振子の電気的検査時に必要な測定用パッドを形成しつつも、水晶振動素子の表裏に引き回す配線の数を減らすことができる。従って、配線の短絡及び断線などの不良を抑制し、水晶振動子の品質の向上を図ることができる。 According to the above method, the first electrically connected to the first and second excitation electrodes in a region recessed by a predetermined extent from the joint surface with the base member on the surface of the frame on which the base member is disposed. Each second pad portion of the second electrode can be formed. Thereby, for example, the number of wirings routed on the front and back of the crystal resonator element can be reduced while forming a measurement pad necessary for electrical inspection of the crystal pendulum. Accordingly, it is possible to suppress defects such as a short circuit and disconnection of the wiring and improve the quality of the crystal resonator.
 本発明によれば、配線に起因する不良を抑制し、水晶振動子の品質の向上を図ることができる。 According to the present invention, defects due to wiring can be suppressed and the quality of the crystal unit can be improved.
図1は、本発明の一実施形態に係る水晶振動子の分解斜視図である。FIG. 1 is an exploded perspective view of a crystal resonator according to an embodiment of the present invention. 図2は、図1のII-II線断面図である。2 is a cross-sectional view taken along line II-II in FIG. 図3Aは、本発明の一実施形態に係る水晶振動素子の平面図である。FIG. 3A is a plan view of the crystal resonator element according to the embodiment of the invention. 図3Bは、本発明の一実施形態に係る水晶振動素子の平面図である。FIG. 3B is a plan view of the crystal resonator element according to the embodiment of the invention. 図4は、本発明の一実施形態に係る水晶振動素子の部分拡大斜視図である。FIG. 4 is a partially enlarged perspective view of the crystal resonator element according to the embodiment of the invention. 図5は、本発明の一実施形態に係る水晶振動子の製造方法を示すフローチャートである。FIG. 5 is a flowchart showing a method for manufacturing a crystal resonator according to an embodiment of the present invention. 図6Aは、本発明の一実施形態に係る水晶振動素子の製造方法の手順を示す図である。FIG. 6A is a diagram showing a procedure of a method for manufacturing a crystal resonator element according to an embodiment of the present invention. 図6Bは、本発明の一実施形態に係る水晶振動素子の製造方法の手順を示す図である。FIG. 6B is a diagram illustrating the procedure of the method for manufacturing the crystal resonator element according to the embodiment of the invention. 図6Cは、本発明の一実施形態に係る水晶振動素子の製造方法の手順を示す図である。FIG. 6C is a diagram illustrating a procedure of a method for manufacturing a crystal resonator element according to an embodiment of the present invention. 図6Dは、本発明の一実施形態に係る水晶振動素子の製造方法の手順を示す図である。FIG. 6D is a diagram illustrating a procedure of a method for manufacturing a crystal resonator element according to an embodiment of the present invention. 図7は、本発明の一実施形態の変形例に係る水晶振動子の断面図である。FIG. 7 is a cross-sectional view of a crystal resonator according to a modification of one embodiment of the present invention. 図8は、本発明の一実施形態の他の変形例に係る水晶振動子の断面図である。FIG. 8 is a cross-sectional view of a crystal resonator according to another modification of the embodiment of the present invention.
 以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表されている。図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施の形態に限定して解するべきではない。 Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar components are denoted by the same or similar reference numerals. The drawings are exemplary, the dimensions and shapes of each part are schematic, and the technical scope of the present invention should not be construed as being limited to the embodiments.
 図1~図4を参照しつつ、本発明の一実施形態に係る水晶振動子(Quartz Crystal Resonator Unit)を説明する。ここで、図1は本実施形態に係る水晶振動子の分解斜視図であり、図2は図1のII-II線断面図であり、図3Aは水晶振動素子のリッド部材側から見た平面図であり、図3Bは水晶振動素子のベース部材側から見た平面図である。また、図4は水晶振動素子の部分拡大斜視図である。 A crystal resonator (Quartz Crystal Resonator Unit) according to an embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is an exploded perspective view of the crystal resonator according to this embodiment, FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1, and FIG. 3A is a plan view of the crystal resonator element viewed from the lid member side. FIG. 3B is a plan view seen from the base member side of the crystal resonator element. FIG. 4 is a partially enlarged perspective view of the crystal resonator element.
 図1に示されるように、本実施形態に係る水晶振動子1は、水晶振動素子100(Quartz Crystal Resonator)と、リッド部材200と、ベース部材300とを備える。 As shown in FIG. 1, the crystal resonator 1 according to this embodiment includes a crystal resonator element 100 (Quartz Crystal Resonator), a lid member 200, and a base member 300.
 水晶振動素子100は、例えばATカットされた水晶基板から構成される。ATカットされた水晶基板は、人工水晶の結晶軸であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分±1分30秒回転させた軸をそれぞれY´軸及びZ´軸とした場合、X軸及びZ´軸によって特定される面と平行な面を主面として切り出されたものである。ATカット水晶基板を用いた水晶振動素子は、広い温度範囲で高い周波数安定性を有し、また、経時変化特性にも優れている上、低コストで製造することが可能である。また、ATカット水晶振動素子は、厚みすべり振動モード(Thickness Shear Mode)を主振動として用いられることが多い。以下、ATカットの軸方向を基準として水晶振動子の各構成を説明する。なお、水晶振動素子100として、ATカット以外の他のカットによる水晶基板から構成されたものを用いてもよい。 The crystal resonator element 100 is constituted by an AT-cut quartz substrate, for example. The AT-cut quartz substrate has an X-axis, a Y-axis, and a Z-axis which are crystal axes of artificial quartz, and the Y-axis and the Z-axis are 35 degrees 15 minutes in the direction from the Y-axis to the Z-axis around the X-axis. When the axes rotated for 1 minute 30 seconds are the Y ′ axis and the Z ′ axis, respectively, the surfaces parallel to the plane specified by the X axis and the Z ′ axis are cut out. A quartz resonator element using an AT-cut quartz substrate has high frequency stability over a wide temperature range, is excellent in aging characteristics, and can be manufactured at low cost. In addition, the AT-cut crystal resonator element often uses a thickness shear vibration mode as a main vibration. Hereinafter, each configuration of the crystal resonator will be described with reference to the axial direction of the AT cut. Note that the quartz resonator element 100 may be composed of a quartz substrate formed by a cut other than the AT cut.
 リッド部材200及びベース部材300は、水晶振動素子100の一部(水晶片)を収容するためのケース又はパッケージの構成の一部である。水晶振動素子100、リッド部材200及びベース部材300は、それぞれ略同一の寸法及び平面視した場合の外形形状(例えば略矩形の外形形状)を有している。ウエハ状態のまま水晶片のパッケージングまでを行う製法(ウエハレベルCSP:Chip Size Packageとも呼ばれる。)を採用した場合は、リッド部材に相当するウエハ、水晶振動素子に相当するウエハ及びベース部材に相当するウエハからなる3層構造を一括してダイシングして個々の水晶振動子1を製造するため、水晶振動素子100、リッド部材200及びベース部材300は実質的に同一の寸法及び外形形状を有する。 The lid member 200 and the base member 300 are a part of the configuration of a case or a package for housing a part of the crystal resonator element 100 (crystal piece). The crystal resonator element 100, the lid member 200, and the base member 300 have substantially the same dimensions and outer shapes when viewed in plan (for example, substantially rectangular outer shapes). When a manufacturing method (wafer level CSP: also referred to as Chip Size Package) in which wafers are packaged in a wafer state is used, a wafer corresponding to a lid member, a wafer corresponding to a crystal vibrating element, and a base member In order to manufacture each crystal resonator 1 by dicing a three-layer structure made of wafers to be manufactured at once, the crystal resonator element 100, the lid member 200, and the base member 300 have substantially the same size and shape.
 水晶振動素子100は、略矩形の水晶片110(Quartz Crystal Blank)と、水晶片110の主面を平面視して水晶片110の外周を所定の隙間で離れて囲む枠体120と、所定の隙間に配置され、水晶片110と枠体120を連結する連結部材111a,111bとを備える。水晶片110、枠体120及び連結部材111a,111bはいずれもATカットされた水晶基板から形成される。水晶振動素子100は、全体として、X軸に平行な長辺と、Z´軸に平行な短辺と、Y´軸に平行な厚みとを有している。図1に示される例においては、連結部材111a,111bは、いずれも、水晶片110のX軸方向の一方端(X軸負方向側)に配置されている。すなわち、水晶片110は、枠体120から離れて設けられており、両者は連結部材111a,111bによって連結されている。なお、図1ではX軸方向の一方端側に配置された2個の連結部材が示されているが、連結部材の個数やその配置等は特に限定されるものではない。 The crystal resonator element 100 includes a substantially rectangular crystal piece 110 (Quartz Crystal Blank), a frame body 120 that surrounds the outer periphery of the crystal piece 110 with a predetermined gap when the main surface of the crystal piece 110 is viewed in plan, Connection members 111 a and 111 b that are arranged in the gap and connect the crystal piece 110 and the frame body 120 are provided. The crystal piece 110, the frame body 120, and the connecting members 111a and 111b are all formed from an AT-cut crystal substrate. The quartz crystal resonator element 100 as a whole has a long side parallel to the X axis, a short side parallel to the Z ′ axis, and a thickness parallel to the Y ′ axis. In the example shown in FIG. 1, both of the connecting members 111 a and 111 b are arranged at one end (X-axis negative direction side) of the crystal piece 110 in the X-axis direction. That is, the crystal piece 110 is provided away from the frame body 120, and both are connected by the connecting members 111a and 111b. In FIG. 1, two connecting members arranged on one end side in the X-axis direction are shown, but the number of connecting members, their arrangement, and the like are not particularly limited.
 水晶振動素子100の各コーナー102,104,106,108の形状は特に限定されるものではなく、図1に示されるように切欠きがなく、平面視して四隅が直角な矩形状であってもよい。あるいは、図1に示される例とは別に、各コーナーは、当該コーナーの一部が円筒曲面状(又はキャスタレーション形状)に切断して形成された切り欠き側面をもって形成されていてもよい。この場合、リッド部材200及びベース部材300においても、各コーナーが上記切り欠き側面をもって形成されてもよい。このような切り欠き側面は、ウエハレベルCSPと呼ばれるウエハ状態のままパッケージングまでを行う製法を採用したことに伴って形成されることが多く、この場合、水晶振動素子100、リッド部材200及びベース部材300のうち、対応するコーナーにおける各切り欠き側面はそれぞれY´軸方向に一致して配置されている。なお、切り欠き側面が形成される場合のその形状は円筒曲面状以外の形状であってもよい。 The shape of each corner 102, 104, 106, 108 of the crystal resonator element 100 is not particularly limited, and is a rectangular shape having no notches as shown in FIG. Also good. Alternatively, apart from the example shown in FIG. 1, each corner may be formed with a cut-out side surface formed by cutting a part of the corner into a cylindrical curved surface (or castellation shape). In this case, each corner of the lid member 200 and the base member 300 may be formed with the cut-out side surface. Such a cut-out side surface is often formed in accordance with the adoption of a manufacturing method called wafer level CSP in which a wafer is packaged in a wafer state. In this case, the crystal resonator element 100, the lid member 200, and the base are formed. In the member 300, each cut-out side surface at the corresponding corner is arranged so as to coincide with the Y′-axis direction. In addition, the shape in case a notch side surface is formed may be shapes other than a cylindrical curved surface shape.
 水晶片110の対向する主面の表裏には第1及び第2励振電極130,140が形成されている。水晶片110のうち、第1及び第2励振電極130,140が対向する部分は励振部分(第1及び第2励振電極130,140を除く部分)となる。水晶片110の厚さは特に限定されるものではないが、水晶片110の励振部分の厚さは、図2に示されるように枠体120(後述する凹部126を除く部分)の厚さよりも薄くてもよい。あるいは、図2に示される例とは異なり、水晶片110の励振部分の厚さは、枠体120の厚さと実質的に同一であってもよい。ここで、「実質的に同一」とは、水晶片110及び枠体120の厚みが厳密に同一である場合に限られるものではなく、例えば、対向する上面及び下面を有する平板状の水晶基板を除去加工して形成する場合に発生し得る加工ばらつき等に起因する寸法差を含む意味である。このことは、以下の説明においても同様である。また、水晶片110の主面の法線方向に沿った厚みにおいて、連結部材111a,111bの厚さは、図2に示されるように水晶片110の励振部分となる水晶部分の厚さと実質的に同一であってもよく、又は当該水晶部分の厚さよりも薄くてもよい。連結部材111a,111bの厚さを水晶部分の厚さよりも薄くすることにより、水晶片110をメサ構造に類似した構成とすることができる。従って、枠体120の厚さによって水晶振動素子100の機械的強度を保ちつつ、連結部材111a,111bによる振動エネルギーの閉じ込め性の向上を図ることができる。 First and second excitation electrodes 130 and 140 are formed on the front and back of the opposing main surface of the crystal piece 110. In the crystal piece 110, a portion where the first and second excitation electrodes 130 and 140 face each other is an excitation portion (a portion excluding the first and second excitation electrodes 130 and 140). Although the thickness of the crystal piece 110 is not particularly limited, the thickness of the excitation portion of the crystal piece 110 is larger than the thickness of the frame 120 (a portion excluding a concave portion 126 described later) as shown in FIG. It may be thin. Alternatively, unlike the example shown in FIG. 2, the thickness of the excitation portion of the crystal piece 110 may be substantially the same as the thickness of the frame 120. Here, “substantially the same” is not limited to the case where the thickness of the crystal piece 110 and the frame body 120 are strictly the same. For example, a flat crystal substrate having an upper surface and a lower surface facing each other is used. This means that it includes a dimensional difference due to processing variations that may occur when forming by removal processing. The same applies to the following description. Further, in the thickness along the normal direction of the main surface of the crystal piece 110, the thickness of the connecting members 111a and 111b is substantially the same as the thickness of the crystal portion serving as the excitation portion of the crystal piece 110 as shown in FIG. Or the thickness of the crystal portion may be smaller. By making the thickness of the connecting members 111a and 111b thinner than the thickness of the crystal portion, the crystal piece 110 can be configured to be similar to the mesa structure. Therefore, it is possible to improve the confinement property of the vibration energy by the connecting members 111a and 111b while maintaining the mechanical strength of the crystal resonator element 100 by the thickness of the frame body 120.
 第1励振電極130は、水晶片110のY´軸正方向側の面である第1面112(第1主面)に形成され、他方、第2励振電極140は、水晶片110のY´軸負方向側の面である第2面114(第2主面)に形成されている。第1及び第2励振電極130,140は、一対の電極としてXZ´面の平面視において互いに略全体が重なり合うように配置されている。 The first excitation electrode 130 is formed on the first surface 112 (first main surface) that is the surface on the Y′-axis positive direction side of the crystal piece 110, while the second excitation electrode 140 is formed on the Y ′ axis of the crystal piece 110. It is formed on the second surface 114 (second main surface) that is the surface on the negative axis direction side. The first and second excitation electrodes 130 and 140 are arranged as a pair of electrodes so as to substantially overlap each other in plan view of the XZ ′ plane.
 水晶片110と枠体120との間(例えば、水晶片110、枠体120、及び連結部材111a,111bによって囲まれた領域)には貫通孔150が形成されている。そして、第1励振電極130が当該貫通孔150のY´軸正方向側の開口部のX軸正方向側の外縁に接するように形成されている(図3A参照)。また、貫通孔150の内壁には引出電極132が形成されており、当該引出電極132は当該開口部において第1励振電極130と電気的に接続される(図3A、図4参照)。これにより、第1励振電極130は、引出電極132を介して枠体120の第2面124に形成された第1電極133と電気的に接続される(図3B、図4参照)。 A through hole 150 is formed between the crystal piece 110 and the frame body 120 (for example, a region surrounded by the crystal piece 110, the frame body 120, and the connecting members 111a and 111b). And the 1st excitation electrode 130 is formed so that the outer edge of the X-axis positive direction side of the opening part of the Y'-axis positive direction side of the said through-hole 150 may be contact | connected (refer FIG. 3A). An extraction electrode 132 is formed on the inner wall of the through-hole 150, and the extraction electrode 132 is electrically connected to the first excitation electrode 130 at the opening (see FIGS. 3A and 4). Thereby, the 1st excitation electrode 130 is electrically connected with the 1st electrode 133 formed in the 2nd surface 124 of the frame 120 via the extraction electrode 132 (refer FIG. 3B and FIG. 4).
 なお、後述するように、本実施形態においては貫通孔150の内壁に第2励振電極140の引出電極を形成する必要がない。従って、当該内壁に絶縁部を設けるためのレジスト形成工程等が不要となり、製造工程が削減され短絡及び断線の発生が抑制される。また、第1励振電極130から第1電極133へ引き出される引出電極132は、図3Aに示されるように貫通孔150の内壁の全面に形成されている。引出電極132が当該内壁の全面に形成されることにより、貫通孔150の内部の配線の品質検査を省略することができる。従って、作業工程が削減され、製造時間が短縮される。なお、引出電極は貫通孔の内壁の一部に形成されていてもよい。 As will be described later, in the present embodiment, it is not necessary to form the extraction electrode of the second excitation electrode 140 on the inner wall of the through hole 150. Therefore, a resist forming process for providing an insulating portion on the inner wall is not necessary, and the manufacturing process is reduced, and occurrence of short circuit and disconnection is suppressed. In addition, the extraction electrode 132 extracted from the first excitation electrode 130 to the first electrode 133 is formed on the entire inner wall of the through hole 150 as shown in FIG. 3A. By forming the extraction electrode 132 on the entire surface of the inner wall, the quality inspection of the wiring inside the through hole 150 can be omitted. Therefore, the work process is reduced and the manufacturing time is shortened. The extraction electrode may be formed on a part of the inner wall of the through hole.
 第2励振電極140と電気的に接続された引出電極142は、連結部材111b上を通り、枠体120側に引き出されている(図3B、図4参照)。連結部材111b上において、引出電極142は、貫通孔150のY´軸負方向側の開口部のZ´軸正方向側の外縁から所定間隔をあけて設けられている(図3B、図4参照)。すなわち、引出電極142は、引出電極132に電気的に導通しないように形成されている。これにより、第2励振電極140は、枠体120の第2面124側に形成された第2電極143と電気的に接続される(図3B、図4参照)。なお、引出電極142については、第2励振電極140と同一面側(ベース部材300が配置された側)に第2電極143が形成されているため、貫通孔を介して反対側の面に引き出す必要がない。 The extraction electrode 142 electrically connected to the second excitation electrode 140 passes through the coupling member 111b and is extracted to the frame body 120 side (see FIGS. 3B and 4). On the connecting member 111b, the extraction electrode 142 is provided at a predetermined interval from the outer edge on the Z′-axis positive direction side of the opening on the Y′-axis negative direction side of the through hole 150 (see FIGS. 3B and 4). ). That is, the extraction electrode 142 is formed so as not to be electrically connected to the extraction electrode 132. Thereby, the 2nd excitation electrode 140 is electrically connected with the 2nd electrode 143 formed in the 2nd surface 124 side of the frame 120 (refer FIG. 3B and FIG. 4). In addition, since the 2nd electrode 143 is formed in the extraction electrode 142 on the same surface side (side where the base member 300 is arrange | positioned) as the 2nd excitation electrode 140, it pulls out to the surface on the opposite side through a through-hole. There is no need.
 枠体120の第2面124側には、第1及び第2電極133,143が形成されている。第1電極133は測定用パッド134,134a(第2パッド部分)及び接続用パッド136(第1パッド部分)を含み、第2電極143は測定用パッド144,144a(第2パッド部分)及び接続用パッド146(第1パッド部分)を含む。ここで、第1及び第2電極133,143について説明する前に、凹部126について説明する。なお、以後の説明においては、測定用パッド134,134a又は測定用パッド144,144aを区別せずに「測定用パッド134」又は「測定用パッド144」ということがある。 First and second electrodes 133 and 143 are formed on the second surface 124 side of the frame body 120. The first electrode 133 includes measurement pads 134 and 134a (second pad portion) and a connection pad 136 (first pad portion), and the second electrode 143 includes measurement pads 144 and 144a (second pad portion) and connection. Pad 146 (first pad portion). Here, before describing the first and second electrodes 133 and 143, the recess 126 will be described. In the following description, the measurement pads 134 and 134a or the measurement pads 144 and 144a may be referred to as “measurement pad 134” or “measurement pad 144” without distinction.
 枠体120の第2面124側には凹部126が形成されている。凹部126とは、枠体120の第2面124側(ベース部材300が配置された側)において、ベース部材300との接合領域(第1領域)よりもY´軸正方向側に窪んだ領域(第2領域)である(図4参照)。本実施形態においては、接合領域は枠体120の外縁を含む外縁部に形成され、凹部126は枠体120のX軸負方向側であって、連結部材111a,111bに隣接する領域に形成されている(図3B、図4参照)。凹部126の形状は特に限定されないが、例えば、略矩形の外形形状であってもよい。凹部126のY´軸正方向側の深さは特に限定されないが、本実施形態においては、凹部126の底面(ベース部材300と対向する側の面)が水晶片110の第2面114と同じ高さに位置する程度の深さである。具体的には、凹部126、連結部材111a,111b、及び水晶片110は、ベース部材300が配置された側の各々の面について面一となっている。枠体120に凹部126を形成することにより、連結部材111a,111bのY´軸方向の厚さ(すなわち、貫通孔150の厚さ)が枠体120(凹部126を除く部分)の厚さに比べて薄くなるため、貫通孔150の内壁に設ける引出電極132の距離が短くなる。これにより、電極の欠損による断線の発生を抑制することができる。 A recess 126 is formed on the second surface 124 side of the frame 120. The concave portion 126 is a region that is recessed on the Y′-axis positive direction side from the bonding region (first region) with the base member 300 on the second surface 124 side (the side on which the base member 300 is disposed) of the frame body 120. (Second region) (see FIG. 4). In the present embodiment, the joining region is formed in the outer edge portion including the outer edge of the frame body 120, and the recess 126 is formed in the region adjacent to the connecting members 111a and 111b on the X axis negative direction side of the frame body 120. (See FIGS. 3B and 4). Although the shape of the recessed part 126 is not specifically limited, For example, a substantially rectangular external shape may be sufficient. The depth of the concave portion 126 on the Y′-axis positive direction side is not particularly limited, but in this embodiment, the bottom surface of the concave portion 126 (the surface facing the base member 300) is the same as the second surface 114 of the crystal piece 110. It is deep enough to be located at the height. Specifically, the recess 126, the connecting members 111a and 111b, and the crystal piece 110 are flush with each other on the side where the base member 300 is disposed. By forming the recess 126 in the frame body 120, the thickness of the connecting members 111 a and 111 b in the Y′-axis direction (that is, the thickness of the through hole 150) is equal to the thickness of the frame body 120 (part excluding the recess 126). Since the thickness is comparatively smaller, the distance of the extraction electrode 132 provided on the inner wall of the through hole 150 is shortened. Thereby, generation | occurrence | production of the disconnection by the defect | deletion of an electrode can be suppressed.
 測定用パッド134,144は、凹部126の底面に形成されている。具体的には、測定用パッド134は、当該凹部126の底面において、少なくとも一部が貫通孔150のY´軸負方向側の開口部のX軸負方向側の外縁に接するように形成されている。これにより、測定用パッド134は、貫通孔150の内壁に形成された引出電極132と電気的に接続される。一方、測定用パッド144は、当該凹部126の底面において、引出電極142と電気的に接続され、貫通孔150の開口部の外縁に接しないように(すなわち、引出電極132に電気的に導通しないように)形成されている。また、測定用パッド134は、凹部126のZ´軸負方向側の側面に形成された測定用パッド134aと電気的に接続され、測定用パッド144は、凹部126のZ´軸正方向側の側面に形成された測定用パッド144aと電気的に接続される(図4参照)。 The measurement pads 134 and 144 are formed on the bottom surface of the recess 126. Specifically, the measurement pad 134 is formed so that at least a part of the bottom surface of the recess 126 is in contact with the outer edge of the through hole 150 on the Y′-axis negative direction side on the X-axis negative direction side. Yes. Thereby, the measurement pad 134 is electrically connected to the extraction electrode 132 formed on the inner wall of the through hole 150. On the other hand, the measurement pad 144 is electrically connected to the extraction electrode 142 on the bottom surface of the concave portion 126 so as not to contact the outer edge of the opening of the through hole 150 (that is, not electrically connected to the extraction electrode 132). Is formed). The measurement pad 134 is electrically connected to the measurement pad 134a formed on the side surface of the concave portion 126 on the negative side of the Z ′ axis, and the measurement pad 144 is connected to the concave portion 126 on the positive side of the Z ′ axis. It is electrically connected to the measurement pad 144a formed on the side surface (see FIG. 4).
 測定用パッド134,144は、水晶振動素子100の電気的検査時に第1及び第2励振電極130,140に電圧を印加するために用いられるパッドである。電気的検査は、例えば、1対のプローブ等を測定用パッド134,144に当接させ、第1及び第2励振電極に電圧を印加することによりなされる。電気的検査の方法の詳細については後述する。 The measurement pads 134 and 144 are pads used for applying a voltage to the first and second excitation electrodes 130 and 140 when the crystal resonator element 100 is electrically inspected. The electrical inspection is performed, for example, by bringing a pair of probes or the like into contact with the measurement pads 134 and 144 and applying a voltage to the first and second excitation electrodes. Details of the electrical inspection method will be described later.
 なお、測定用パッド134,144は、部分的に連結部材111a,111bの延長線上(すなわち、励振振動の振動伝搬経路上)から外れた領域に延出されて形成されている(図4参照)。これにより、プローブを測定用パッドに当接させることに起因する発振周波数への影響が抑制され、測定精度が向上する。なお、連結部材111a,111bの延長線上から外れた領域は、当該延長線よりもZ´軸方向について外側でもよく、内側でもよい。 Note that the measurement pads 134 and 144 are formed so as to be partially extended from the extension lines of the connecting members 111a and 111b (that is, on the vibration propagation path of the excitation vibration) (see FIG. 4). . Thereby, the influence on the oscillation frequency caused by bringing the probe into contact with the measurement pad is suppressed, and the measurement accuracy is improved. In addition, the area | region remove | deviated from the extension line | wire of the connection members 111a and 111b may be an outer side in the Z'-axis direction from the said extension line | wire, and may be inside.
 接続用パッド136,146は、枠体120の第2面124上(ベース部材300との接合領域)に形成されている。具体的には、接続用パッド136は、枠体120の第2面124上において、枠体120のコーナー102の付近に凹部126のZ´軸負方向側の外縁と少なくとも一部が接するように形成され、接続用パッド146は、枠体120の第2面124上において、枠体120のコーナー104の付近に凹部126のZ´軸正方向側の外縁と少なくとも一部が接するように形成されている(図4参照)。これにより、接続用パッド136は測定用パッド134a(測定用パッド134と電気的に接続)に接し、接続用パッド146は測定用パッド144a(測定用パッド144と電気的に接続)に接する。従って、接続用パッド136は、測定用パッド134a,134及び引出電極132を介して第1励振電極130に電気的に接続され、接続用パッド146は、測定用パッド144a,144及び引出電極142を介して第2励振電極140に電気的に接続される。 The connection pads 136 and 146 are formed on the second surface 124 of the frame body 120 (joining region with the base member 300). Specifically, the connection pad 136 is at least partially in contact with the outer edge of the concave portion 126 on the Z′-axis negative direction side near the corner 102 of the frame body 120 on the second surface 124 of the frame body 120. The connection pad 146 is formed on the second surface 124 of the frame body 120 so that the outer edge of the concave portion 126 on the Z′-axis positive direction side is at least partially in contact with the corner 104 of the frame body 120. (See FIG. 4). Accordingly, the connection pad 136 is in contact with the measurement pad 134a (electrically connected to the measurement pad 134), and the connection pad 146 is in contact with the measurement pad 144a (electrically connected to the measurement pad 144). Accordingly, the connection pad 136 is electrically connected to the first excitation electrode 130 via the measurement pads 134a and 134 and the extraction electrode 132, and the connection pad 146 includes the measurement pads 144a and 144 and the extraction electrode 142. And is electrically connected to the second excitation electrode 140.
 接続用パッド136,146は、水晶振動素子100とベース部材300の接合時に、第1及び第2励振電極130,140と、ベース部材の第1面302(水晶振動素子100が配置された側の面)に形成された外部電極とを電気的に接続するために用いられるパッドである。第1及び第2励振電極130,140は、それぞれ、接続用パッド136,146を介して、ベース部材300に形成された外部電極322,326と電気的に接続される(図1参照)。 The connection pads 136 and 146 are connected to the first and second excitation electrodes 130 and 140 and the first surface 302 of the base member (on the side where the crystal resonator element 100 is disposed) when the crystal resonator element 100 and the base member 300 are joined. It is a pad used for electrically connecting an external electrode formed on the surface). The first and second excitation electrodes 130 and 140 are electrically connected to the external electrodes 322 and 326 formed on the base member 300 through connection pads 136 and 146, respectively (see FIG. 1).
 第1及び第2励振電極130,140を含む上記各電極及びパッドにおいては、例えば、下地がクロム(Cr)層で形成され、クロム層の表面に金(Au)層が形成される。なお、各電極は、上記の材料にのみ限定されるものではない。 In each of the electrodes and pads including the first and second excitation electrodes 130 and 140, for example, the base is formed of a chromium (Cr) layer, and a gold (Au) layer is formed on the surface of the chromium layer. In addition, each electrode is not limited only to said material.
 リッド部材200は、水晶片110の第1面112に形成された第1励振電極130に対向して枠体120の第1面122の側に配置され、ベース部材300は、水晶片110の第2面114に形成された第2励振電極140に対向して枠体120の第2面124の側に配置され、リッド部材200、水晶振動素子100及びベース部材300はこの積層の順番で3層構造をなしている。リッド部材200は、第1面202と、第1面202と反対であって水晶振動素子100に対向する第2面204とを有する。また、ベース部材300は、水晶振動素子100に対向する第1面302と、第1面302と反対の第2面304とを有する。本実施形態においては、ベース部材300の第2面304は、外部と電気的に接続される実装面である。 The lid member 200 is disposed on the first surface 122 side of the frame body 120 so as to face the first excitation electrode 130 formed on the first surface 112 of the crystal piece 110, and the base member 300 is disposed on the first surface 122 of the crystal piece 110. The lid member 200, the crystal resonator element 100, and the base member 300 are arranged in three layers in this stacking order so as to be opposed to the second excitation electrode 140 formed on the second surface 114 and on the second surface 124 side of the frame body 120. It has a structure. The lid member 200 has a first surface 202 and a second surface 204 opposite to the first surface 202 and facing the crystal resonator element 100. The base member 300 has a first surface 302 that faces the crystal resonator element 100 and a second surface 304 that is opposite to the first surface 302. In the present embodiment, the second surface 304 of the base member 300 is a mounting surface that is electrically connected to the outside.
 ベース部材300の第2面304には、各コーナーにおいて、外部電極322,324,326,328が形成されている。具体的には、X軸負方向側の2つのコーナーには外部電極322,324が形成され、X軸正方向側の2つのコーナーには外部電極326,328が形成されている。外部電極322,324,326,328は、ベース部材300の端面に形成された電極により第1面302側に引き出されている。また、ベース部材300の第1面302上において、外部電極322はX軸負方向Z´軸負方向側のコーナーにおいて一定程度延在して設けられ、外部電極326はX軸負方向側に向かって延出された後、X軸負方向Z´軸正方向側のコーナーにおいて一定程度延在して設けられる(図1参照)。 External electrodes 322, 324, 326, and 328 are formed on the second surface 304 of the base member 300 at each corner. Specifically, external electrodes 322 and 324 are formed at two corners on the X axis negative direction side, and external electrodes 326 and 328 are formed at two corners on the X axis positive direction side. The external electrodes 322, 324, 326, and 328 are drawn out to the first surface 302 side by electrodes formed on the end surface of the base member 300. Further, on the first surface 302 of the base member 300, the external electrode 322 is provided to extend to a certain extent at the corner on the negative side in the X-axis negative direction Z′-axis, and the external electrode 326 faces the negative side in the X-axis direction. Are extended to a certain extent at the corner on the X-axis negative direction Z′-axis positive direction side (see FIG. 1).
 水晶振動素子100がベース部材300に搭載されると、外部電極322が接続用パッド136、測定用パッド134、及び引出電極132を介して第1励振電極130に電気的に接続され、外部電極326が接続用パッド146、測定用パッド144、及び引出電極142を介して第2励振電極140に電気的に接続される(図1参照)。残りの外部電極324,328は、第1及び第2励振電極130,140のいずれとも電気的に接続されていないダミー電極(又は浮き電極とも呼ばれる。)である。当該ダミー電極は、水晶振動子1が実装される基板(図示しない)に設けられた端子であって他のいずれの電子素子とも接続されない端子に接続されてもよい。なお、図1に示される例では、第1及び第2励振電極130,140に電気的に接続される外部電極322,326は、ベース部材300の対向するコーナーに配置されているが、これに限定されるものではなく他のコーナーに配置されていてもよい。また、ベース部材300の各コーナーにキャスタレーション形状などの切り欠き側面が形成される場合、各外部電極は対応する各コーナーにおいて、ベース部材300の第2面304から切り欠き側面に至るように延出されていてもよい。 When the crystal resonator element 100 is mounted on the base member 300, the external electrode 322 is electrically connected to the first excitation electrode 130 via the connection pad 136, the measurement pad 134, and the extraction electrode 132, and the external electrode 326. Is electrically connected to the second excitation electrode 140 via the connection pad 146, the measurement pad 144, and the extraction electrode 142 (see FIG. 1). The remaining external electrodes 324 and 328 are dummy electrodes (also called floating electrodes) that are not electrically connected to any of the first and second excitation electrodes 130 and 140. The dummy electrode may be connected to a terminal provided on a substrate (not shown) on which the crystal unit 1 is mounted and not connected to any other electronic element. In the example shown in FIG. 1, the external electrodes 322 and 326 that are electrically connected to the first and second excitation electrodes 130 and 140 are arranged at opposite corners of the base member 300, It is not limited and may be arranged at other corners. Further, when notched side surfaces such as castellation shapes are formed at each corner of the base member 300, each external electrode extends from the second surface 304 of the base member 300 to the notched side surface at each corresponding corner. It may have been issued.
 外部電極322,324,326,328は、例えば、クロム(Cr)や金(Au)などで形成される。具体的には例えば、外部電極はスパッタ法によって導電材料が成膜され、その後めっき法によって導電材料が追加的に成膜されることにより形成される。なお、外部電極322,324,326,328は上記の材料に特に限定されるものではなく公知の導電材料を用いることができる。また、上記の形成方法以外の公知の形成方法を用いることができる。また、本実施形態においては4つの外部電極からなる4端子構造が示されるが、外部電極の数は特に限定されるものではなく、例えば2つの外部電極からなる2端子構造が適用されてもよい。 External electrodes 322, 324, 326, and 328 are formed of, for example, chromium (Cr) or gold (Au). Specifically, for example, the external electrode is formed by forming a conductive material by a sputtering method and then additionally forming a conductive material by a plating method. Note that the external electrodes 322, 324, 326, and 328 are not particularly limited to the above materials, and a known conductive material can be used. Moreover, well-known formation methods other than said formation method can be used. In the present embodiment, a four-terminal structure including four external electrodes is shown. However, the number of external electrodes is not particularly limited. For example, a two-terminal structure including two external electrodes may be applied. .
 本実施形態においてはリッド部材200及びベース部材300は平板な基板であるが、リッド部材200及びベース部材300は水晶振動素子100に対向する向きに開口した凹状をなしていてもよい。また、リッド部材200及びベース部材300の材質は、ガラス(例えばケイ酸塩ガラス、又はケイ酸塩以外を主成分とする材料であって、昇温によりガラス転移現象を有する材料)から構成されていてもよいし、あるいは水晶振動素子100と同一材質である水晶(例えばATカット水晶)又はガラス繊維にエポキシ系樹脂を含浸させたガラスエポキシ樹脂から構成されていてもよい。 In the present embodiment, the lid member 200 and the base member 300 are flat substrates, but the lid member 200 and the base member 300 may have a concave shape opened in a direction facing the crystal resonator element 100. Moreover, the material of the lid member 200 and the base member 300 is made of glass (for example, silicate glass or a material mainly composed of materials other than silicate and having a glass transition phenomenon due to temperature rise). Alternatively, it may be made of quartz (for example, AT-cut quartz), which is the same material as the quartz resonator element 100, or glass epoxy resin in which glass fiber is impregnated with epoxy resin.
 図1及び図2に示されるように、リッド部材200は枠体120の第1面122の全周に封止部材170を介して接合され、他方、ベース部材300は、枠体120の第2面124の全周に封止部材172を介して接合される。封止部材170,172が枠体120の各面の全周に設けられることにより、水晶片110が内部空間(キャビティ)に密封封止される。内部空間の圧力は、大気圧力よりも低圧な真空状態であることが、第1励振電極130、第2励振電極140の酸化による経時変化などが低減できるため好ましい。封止部材170,172は、各部材の接合面同士を接合するとともに内部空間を密封封止できればその材料は限定されるものではなく、例えば、低融点ガラス(例えば鉛ホウ酸系や錫リン酸系等)などのガラス接着材料であってもよいし、あるいは、樹脂接着剤を用いてもよい。ガラス接着材料に比べ機械的品質係数Qmが小さな樹脂材料を含む接着材料を用いて、枠体120がリッド部材200及びベース部材300に接合された場合、枠体120から封止部材170,172を介して伝搬する振動が接着材料でより大きく消費されるため望ましい。 As shown in FIGS. 1 and 2, the lid member 200 is joined to the entire circumference of the first surface 122 of the frame body 120 via the sealing member 170, while the base member 300 is connected to the second surface of the frame body 120. The entire periphery of the surface 124 is joined via a sealing member 172. By providing the sealing members 170 and 172 on the entire circumference of each surface of the frame body 120, the crystal piece 110 is hermetically sealed in the internal space (cavity). It is preferable that the pressure in the internal space is in a vacuum state lower than the atmospheric pressure because changes with time due to oxidation of the first excitation electrode 130 and the second excitation electrode 140 can be reduced. The material of the sealing members 170 and 172 is not limited as long as the bonding surfaces of the members can be bonded to each other and the internal space can be hermetically sealed. For example, low-melting glass (for example, lead borate or tin phosphate) Glass adhesive material such as a system) or a resin adhesive may be used. When the frame body 120 is bonded to the lid member 200 and the base member 300 using an adhesive material including a resin material having a smaller mechanical quality factor Qm than the glass adhesive material, the sealing members 170 and 172 are removed from the frame body 120. Is desirable because vibration propagating through is consumed more in the adhesive material.
 次に、凹部126の内部に測定用パッド134,144を設ける理由について説明する。仮に接続用パッド136,146にプローブ等を当接させて電気的検査を行うと、接続用パッド136,146(すなわち、ベース部材300との接合面)が損傷又は汚染され、水晶振動素子100とベース部材300との接合時に接続用パッド136,146と外部電極322,326との接合の信頼性が低下するおそれがある。一方、本実施形態においては、枠体120の第2面124から第1面122側に窪んだ凹部126の内部底面に形成された測定用パッド134,144にプローブ等を当接させることができる。これにより、水晶振動素子100の電気的検査において測定用パッド134,144(すなわち、ベース部材300と接合されない面)が損傷又は汚染された場合においても、当該損傷又は汚損により接合力を低減させることなく、水晶振動素子100とベース部材300とを接合することができる。従って、水晶振動素子100の電気的検査に起因する接合の信頼性の低下を抑制することができる。 Next, the reason why the measurement pads 134 and 144 are provided inside the recess 126 will be described. If electrical inspection is performed by bringing a probe or the like into contact with the connection pads 136 and 146, the connection pads 136 and 146 (that is, the joint surface with the base member 300) are damaged or contaminated, and When joining with the base member 300, the reliability of joining between the connection pads 136 and 146 and the external electrodes 322 and 326 may be lowered. On the other hand, in the present embodiment, a probe or the like can be brought into contact with the measurement pads 134 and 144 formed on the inner bottom surface of the recess 126 that is recessed from the second surface 124 to the first surface 122 side of the frame 120. . As a result, even when the measurement pads 134 and 144 (that is, the surface that is not bonded to the base member 300) are damaged or contaminated in the electrical inspection of the crystal resonator element 100, the bonding force is reduced due to the damage or contamination. In addition, the crystal resonator element 100 and the base member 300 can be joined. Therefore, it is possible to suppress a decrease in bonding reliability caused by the electrical inspection of the crystal resonator element 100.
 上述の通り、本実施形態に係る水晶振動子1によれば、第1励振電極130と電気的に接続された接続用パッド(第1電極の第1パッド部分)及び測定用パッド(第1電極の第2パッド部分)と、第2励振電極140と電気的に接続された接続用パッド(第2電極の第1パッド部分)及び測定用パッド(第2電極の第2パッド部分)とが、いずれも枠体120の第2面124側に形成されている。これにより、特許文献1に開示される水晶振動子と比べて、水晶振動素子の電気的検査時に必要な測定用パッド、及び第1及び第2励振電極と外部電極との接合時に必要な接続用パッドを形成しつつも、配線の剥離及び切断の発生確率が高い水晶振動素子の表裏に引き回す配線の総数を減らすことができる。従って、水晶振動子を小型化しつつも、配線の短絡及び断線などの不良を抑制し、水晶振動子の品質の向上を図ることができる。また、配線の製造工程を簡素化することができる。さらに、水晶振動素子100の同一面側に測定用パッド及び接続用パッドの双方が形成されるため、画像撮影等を用いたパッドの品質(例えば、形状、位置ずれ等)の検査が簡素化される。 As described above, according to the crystal resonator 1 according to the present embodiment, the connection pad (first pad portion of the first electrode) and the measurement pad (first electrode) electrically connected to the first excitation electrode 130. Second pad portion), a connection pad (first pad portion of the second electrode) and a measurement pad (second pad portion of the second electrode) electrically connected to the second excitation electrode 140, Both are formed on the second surface 124 side of the frame body 120. Thereby, compared to the crystal resonator disclosed in Patent Document 1, a measurement pad required for electrical inspection of the crystal resonator element and a connection required for bonding the first and second excitation electrodes and the external electrode are required. While the pad is formed, it is possible to reduce the total number of wirings routed on the front and back surfaces of the crystal resonator element having a high probability of wiring peeling and cutting. Accordingly, it is possible to improve the quality of the crystal unit while reducing the size of the crystal unit and suppressing defects such as a short circuit and disconnection of wiring. In addition, the wiring manufacturing process can be simplified. Furthermore, since both the measurement pad and the connection pad are formed on the same surface side of the crystal resonator element 100, the inspection of the pad quality (for example, shape, misalignment, etc.) using image capturing or the like is simplified. The
 また、本実施形態においては、測定用パッドが凹部126の底面のみならず側面にも形成されることによって、プローブが当接可能な面積が拡張され、検査における操作が容易となる。 In the present embodiment, the measurement pad is formed not only on the bottom surface of the recess 126 but also on the side surface, so that the area in which the probe can be contacted is expanded and the operation in the inspection becomes easy.
 なお、凹部126が形成される領域は特に限定されず、枠体の第2面側であって、引出電極と電気的に接続されるように測定用パッドが設けられる領域であればよい。なお、枠体の外縁を含まない領域に当該凹部を形成することにより、測定用パッドを水晶片とともに水晶振動子の内部空間(キャビティ)に密封封止することができる。 In addition, the area | region in which the recessed part 126 is formed is not specifically limited, What is necessary is just the area | region which is a 2nd surface side of a frame, and is provided with the measurement pad so that it may be electrically connected with an extraction electrode. In addition, by forming the concave portion in a region not including the outer edge of the frame body, the measurement pad can be hermetically sealed together with the crystal piece in the internal space (cavity) of the crystal resonator.
 また、第1及び第2励振電極130,140に電気的に接続される第1及び第2電極133,143(測定用パッド134,144及び接続用パッド136,146を含む)の配置は特に限定されるものではない。本実施形態に示されるように、各測定用パッド134,144は接続用パッド136と接続用パッド146との間に配置されていてもよく、又は反対に、接続用パッドが各測定用パッドの間に配置されていてもよい。また、第1及び第2電極は、枠体120のX軸正方向側の2つのコーナー106,108側に配置されてもよい。 Further, the arrangement of the first and second electrodes 133 and 143 (including the measurement pads 134 and 144 and the connection pads 136 and 146) electrically connected to the first and second excitation electrodes 130 and 140 is particularly limited. Is not to be done. As shown in this embodiment, each of the measurement pads 134 and 144 may be disposed between the connection pad 136 and the connection pad 146, or conversely, the connection pad is connected to each measurement pad. You may arrange | position between. Further, the first and second electrodes may be disposed on the two corners 106 and 108 side of the frame body 120 on the X axis positive direction side.
 次に、図5のフローチャートに基づいて、図6A~図6Dを参照しつつ、本発明の一実施形態に係る水晶振動子の製造方法について説明する。本実施形態では、一例として、図1~図4に示される水晶振動子1を製造する方法を説明する。本実施形態における水晶振動子の製造方法は、ウエハ状態でパッケージングを行うウエハレベルパッケージング技術を適用して製造することを含む。なお、以下においては、水晶振動子1に個片化する前の状態における構成要素のうち、個片化した後の状態と同一の構成要素は、説明の便宜上、同一の用語及び符号を用いて説明する。 Next, a method for manufacturing a crystal resonator according to an embodiment of the present invention will be described with reference to FIGS. 6A to 6D based on the flowchart of FIG. In the present embodiment, as an example, a method for manufacturing the crystal resonator 1 shown in FIGS. 1 to 4 will be described. The manufacturing method of the crystal unit in the present embodiment includes manufacturing by applying a wafer level packaging technique for packaging in a wafer state. In the following, among the constituent elements in the state before being singulated into the crystal unit 1, the same constituent elements as those in the state after being singulated are denoted by the same terms and symbols for convenience of explanation. explain.
 まず、図6Aに示されるように、第1基板10を用意する(図5のS10)。第1基板10は、複数の水晶振動素子100を形成するための基板である。第1基板10の材料は上述の水晶振動素子100について説明した内容を適用することができ、例えば、水晶材料を人工水晶又は天然水晶の原石から所定のカット角でウエハ状に切り出した水晶基板を用いることができる。 First, as shown in FIG. 6A, a first substrate 10 is prepared (S10 in FIG. 5). The first substrate 10 is a substrate for forming a plurality of crystal resonator elements 100. As the material of the first substrate 10, the contents described for the quartz resonator element 100 described above can be applied. For example, a quartz substrate obtained by cutting a quartz material from an artificial quartz or a natural quartz ore into a wafer at a predetermined cut angle is used. Can be used.
 第1基板10について、所定の領域ごとにフォトリソグラフィー、エッチング及び成膜などの各プロセスによって、上述した水晶振動素子100の水晶片110と、水晶片110の外周を囲む枠体120と、水晶片110と枠体120を連結する連結部材111a,111bと、第1及び第2励振電極130,140と、引出電極132,142と、測定用パッド134,144及び接続用パッド136,146を含む第1及び第2電極133,143とを形成する。なお、測定用パッド134,144及び接続用パッド136,146は、例えば、第1基板10の枠体120にフォトリソグラフィー及びエッチングによって凹部126を形成し、当該凹部126にスパッタリングなどによって導電材料を成膜して形成することができる。 For the first substrate 10, the crystal piece 110 of the crystal resonator element 100 described above, the frame body 120 surrounding the outer periphery of the crystal piece 110, and the crystal piece by a process such as photolithography, etching, and film formation for each predetermined region. 110 and 110, the first and second excitation electrodes 130 and 140, the extraction electrodes 132 and 142, the measurement pads 134 and 144, and the connection pads 136 and 146. The first and second electrodes 133 and 143 are formed. The measurement pads 134 and 144 and the connection pads 136 and 146 are formed, for example, by forming a recess 126 in the frame body 120 of the first substrate 10 by photolithography and etching, and forming a conductive material in the recess 126 by sputtering or the like. It can be formed as a film.
 次に、図6Bに示されるように、第1基板10に形成された各水晶振動素子100に対し、電気的検査を行う(図5のS20)。電気的検査においては、例えば、1対のプローブ等を測定用パッド134,144に当接させ、第1及び第2励振電極130,140に電圧を印加する。これにより、水晶振動素子100の発振周波数やクリスタルインピーダンス値(CI値)を測定し、水晶振動素子100の周波数を調整する。周波数の調整は、例えば、レーザー光の照射によって第1又は第2励振電極130,140の一部を除去するか、又は、蒸着によって水晶片110に金属を付着させることにより、第1又は第2励振電極130,140の質量を調整することによって行われる。 Next, as shown in FIG. 6B, an electrical inspection is performed on each crystal resonator element 100 formed on the first substrate 10 (S20 in FIG. 5). In the electrical inspection, for example, a pair of probes or the like are brought into contact with the measurement pads 134 and 144 and a voltage is applied to the first and second excitation electrodes 130 and 140. Thereby, the oscillation frequency and crystal impedance value (CI value) of the crystal resonator element 100 are measured, and the frequency of the crystal resonator element 100 is adjusted. The frequency is adjusted by, for example, removing a part of the first or second excitation electrodes 130 and 140 by laser light irradiation or attaching a metal to the crystal piece 110 by vapor deposition. This is done by adjusting the mass of the excitation electrodes 130 and 140.
 次に、第2基板20及び第3基板30を用意する(図5のS30)。第2基板20及び第3基板30は、各々、リッド部材200及びベース部材300を形成するための基板である。第2基板20は、複数のリッド部材200に対応する領域を有し、第3基板30は、複数のベース部材300に対応する領域を有する。第2基板20及び第3基板30の各材料は上述のリッド部材200及びベース部材300について説明した内容を適用することができ、例えば、第2基板20及び第3基板30は水晶とすることができる。その場合、第1基板10、第2基板20及び第3基板30は、同一カット角(例えばATカット)を有する水晶基板であってもよい。第1基板10、第2基板20及び第3基板30は厚み方向に見た平面視において略同じ外形を有している。第3基板30については、所定の領域ごとにフォトリソグラフィー、エッチング及び成膜などの各プロセスによって、上述した外部電極を形成する。 Next, the second substrate 20 and the third substrate 30 are prepared (S30 in FIG. 5). The second substrate 20 and the third substrate 30 are substrates for forming the lid member 200 and the base member 300, respectively. The second substrate 20 has a region corresponding to the plurality of lid members 200, and the third substrate 30 has a region corresponding to the plurality of base members 300. The materials described for the lid member 200 and the base member 300 can be applied to the materials of the second substrate 20 and the third substrate 30. For example, the second substrate 20 and the third substrate 30 can be made of quartz. it can. In that case, the first substrate 10, the second substrate 20, and the third substrate 30 may be crystal substrates having the same cut angle (for example, AT cut). The first substrate 10, the second substrate 20, and the third substrate 30 have substantially the same outer shape in plan view as viewed in the thickness direction. For the third substrate 30, the external electrodes described above are formed for each predetermined region by processes such as photolithography, etching, and film formation.
 次に、図6Cに示されるように、第1基板10の上面(水晶片110に第1励振電極130が形成された側)に第2基板20を接合し、第1基板10の下面(水晶片110に第2励振電極140が形成された側)に第3基板30を接合し、積層部材40を得る(図5のS40)。 Next, as shown in FIG. 6C, the second substrate 20 is bonded to the upper surface of the first substrate 10 (the side where the first excitation electrode 130 is formed on the crystal piece 110), and the lower surface of the first substrate 10 (the crystal The 3rd board | substrate 30 is joined to the piece 110 in which the 2nd excitation electrode 140 was formed, and the laminated member 40 is obtained (S40 of FIG. 5).
 第2基板20、第1基板10、第3基板30を、この順番で積層し、接合する。この際、第1基板10の枠体120の各々の面における全周に、第1基板10の各々の水晶片110が励振可能なように、封止部材170,172(不図示)を介して第2基板20及び第3基板30が接合される。このように、第2基板20及び第3基板30を接合することにより、第1基板10における複数の水晶片110が密封封止される。なお、いずれの基板も水晶基板とした場合、各々の基板について封止部材を用いることなく水晶の分子間力により接合してもよい。 The second substrate 20, the first substrate 10, and the third substrate 30 are laminated and joined in this order. At this time, through the sealing members 170 and 172 (not shown) so that each crystal piece 110 of the first substrate 10 can be excited on the entire circumference of each surface of the frame body 120 of the first substrate 10. The second substrate 20 and the third substrate 30 are joined. In this way, by bonding the second substrate 20 and the third substrate 30, the plurality of crystal pieces 110 on the first substrate 10 are hermetically sealed. In addition, when any substrate is a quartz substrate, each substrate may be bonded by an intermolecular force of quartz without using a sealing member.
 次に、図6Dに示されるように、積層部材40を切り出して、複数の個片を得る(図5のS50)。積層部材40は、ダイシング又はワイヤーカットなどの工法によって切り出され、水晶振動子ごとに個片化される。 Next, as shown in FIG. 6D, the laminated member 40 is cut out to obtain a plurality of pieces (S50 in FIG. 5). The laminated member 40 is cut out by a method such as dicing or wire cutting, and is separated into pieces for each crystal resonator.
 その後、各水晶振動子に外部電極を形成する(図5のS60)。水晶振動子の底面(ベース部材300における水晶振動素子100とは反対側の面)に、例えば、スパッタ法、真空蒸着法又はめっき法を適宜組み合わせて外部電極を形成する。外部電極を形成することにより、水晶振動子の実装性が確保される。 Thereafter, an external electrode is formed on each crystal resonator (S60 in FIG. 5). An external electrode is formed on the bottom surface of the crystal resonator (the surface of the base member 300 opposite to the crystal resonator element 100) by appropriately combining, for example, a sputtering method, a vacuum evaporation method, or a plating method. By forming the external electrode, the mountability of the crystal resonator is ensured.
 なお、図5のS10において、第1領域を枠体120の外縁を含む領域に形成し、第2領域(すなわち、凹部126)を連結部材111a,111bに隣接した領域に形成し、測定用パッド134,144を接続用パッド136と接続用パッド146との間であって連結部材111a,111bの延長線上から外れた領域に形成してもよい。 In S10 of FIG. 5, the first region is formed in a region including the outer edge of the frame body 120, and the second region (that is, the concave portion 126) is formed in a region adjacent to the connecting members 111a and 111b. 134 and 144 may be formed in a region between the connection pad 136 and the connection pad 146 and out of the extension line of the coupling members 111a and 111b.
 また、図5のS10において、水晶片110と枠体120との間の貫通孔150の内壁を介して第1励振電極130と電気的に接続されるように、引出電極132を貫通孔150の内壁に形成してもよい。なお、引出電極132は貫通孔150の内壁の全面に形成してもよい。 Further, in S10 of FIG. 5, the extraction electrode 132 is connected to the first excitation electrode 130 through the inner wall of the through hole 150 between the crystal piece 110 and the frame body 120. You may form in an inner wall. The extraction electrode 132 may be formed on the entire inner wall of the through hole 150.
 また、図5に示されるステップS10~S30はこの順に限られず、それぞれ順序を入れ替えてもよい。 Further, steps S10 to S30 shown in FIG. 5 are not limited to this order, and the order may be changed.
 本実施形態に係る水晶振動素子の態様は様々に変形して適用することが可能である。以下、図7及び図8を参照しつつ、本実施形態に係る水晶振動子の変形例を説明する。なお、以下の説明においては上記実施形態で説明した内容と異なる点を説明する。 The aspect of the crystal resonator element according to the present embodiment can be applied with various modifications. Hereinafter, a modification of the crystal resonator according to the present embodiment will be described with reference to FIGS. In the following description, differences from the contents described in the above embodiment will be described.
 図7は、本実施形態の変形例に係る水晶振動子2の断面図である。当該断面図は、図2に示される図1のII-II線断面図と同方向の断面図を水晶振動子2について示したものである。この水晶振動子2は水晶振動素子103を含む。水晶振動素子103は、図2に示される水晶振動素子100における水晶片110及び連結部材111bの代わりに、水晶片113及び連結部材115bを含む。なお、Z´軸負方向側の連結部材については、連結部材115bと同様であるため、詳細な説明は省略する。 FIG. 7 is a cross-sectional view of a crystal resonator 2 according to a modification of the present embodiment. This sectional view shows a sectional view of the crystal unit 2 in the same direction as the sectional view taken along the line II-II of FIG. 1 shown in FIG. The crystal resonator 2 includes a crystal resonator element 103. The crystal vibrating element 103 includes a crystal piece 113 and a connecting member 115b instead of the crystal piece 110 and the connecting member 111b in the crystal vibrating element 100 shown in FIG. Note that the connecting member on the Z′-axis negative direction side is the same as the connecting member 115b, and thus detailed description thereof is omitted.
 本変形例においては、水晶片113の第2面114は、枠体120に形成された凹部126の底面(ベース部材300が配置された側の面)よりも、ベース部材300の第1面302から離れた位置にあり、この点で図2に示される構成と異なっている。言い換えると、水晶片113の主面の法線方向に沿った厚みにおいて、枠体120(凹部126を除く部分)の厚さと、枠体120の凹部126が形成された領域の厚さと、水晶片113及び連結部材115bの厚さが、この順に薄くなっている。従って、枠体120の凹部126と連結部材115bとの間に段差が形成さる。測定用パッド134,144は、連結部材の延長線上(すなわち、励振振動の振動伝搬経路上)であって、連結部材から当該段差を介して形成されている(図7参照)。 In the present modification, the second surface 114 of the crystal piece 113 is closer to the first surface 302 of the base member 300 than the bottom surface of the recess 126 formed in the frame body 120 (the surface on the side where the base member 300 is disposed). 2 is different from the configuration shown in FIG. 2 in this respect. In other words, in the thickness along the normal direction of the main surface of the crystal piece 113, the thickness of the frame body 120 (the portion excluding the concave portion 126), the thickness of the region where the concave portion 126 of the frame body 120 is formed, and the crystal piece The thicknesses of the 113 and the connecting member 115b are reduced in this order. Accordingly, a step is formed between the recess 126 of the frame body 120 and the connecting member 115b. The measurement pads 134 and 144 are on the extension line of the connecting member (that is, on the vibration propagation path of the excitation vibration) and are formed from the connecting member through the step (see FIG. 7).
 これにより、測定用パッド134,144が振動伝搬経路上に形成されていても、上述の段差によって振動の伝搬が反射又は拡散されるため、プローブの当接に起因する発振周波数への影響が抑制され、測定精度が向上する。また、振動伝搬経路の延長線上にも測定用パッドを配置できるため、測定用パッドの配置及び接合領域の幅等の設計の自由度が高くなる。従って、水晶振動素子とベース部材との接合力の向上や、水晶振動子の小型化が容易となる。さらに、図1に示される水晶振動素子100に比べて連結部材の厚さ(すなわち、貫通孔の厚さ)が薄くなることにより、貫通孔の内壁に設ける引出電極の距離がさらに短くなるため、電極の欠損による断線の発生を抑制することができる。 As a result, even if the measurement pads 134 and 144 are formed on the vibration propagation path, the vibration propagation is reflected or diffused by the above-described step, so that the influence on the oscillation frequency caused by the contact of the probe is suppressed. Measurement accuracy is improved. In addition, since the measurement pad can be arranged on the extension line of the vibration propagation path, the degree of freedom in design such as the arrangement of the measurement pad and the width of the bonding region is increased. Accordingly, it is easy to improve the bonding force between the crystal resonator element and the base member and to reduce the size of the crystal resonator. Furthermore, since the thickness of the connecting member (that is, the thickness of the through hole) is reduced as compared with the crystal resonator element 100 shown in FIG. 1, the distance between the extraction electrodes provided on the inner wall of the through hole is further shortened. The occurrence of disconnection due to electrode defects can be suppressed.
 図8は、本実施形態の他の変形例に係る水晶振動子3の断面図である。当該断面図は、図2に示される図1のII-II線断面図と同方向の断面図を水晶振動子3について示したものである。この水晶振動子3は水晶振動素子105を含む。水晶振動素子105は、図2に示される水晶振動素子100における水晶片110及び連結部材111bの代わりに、水晶片117及び連結部材119bを含む。なお、Z´軸負方向側の連結部材については、連結部材119bと同様であるため、詳細な説明は省略する。 FIG. 8 is a cross-sectional view of a crystal resonator 3 according to another modification of the present embodiment. This sectional view shows a sectional view of the crystal unit 3 in the same direction as the sectional view taken along the line II-II in FIG. 1 shown in FIG. The crystal resonator 3 includes a crystal resonator element 105. The crystal vibrating element 105 includes a crystal piece 117 and a connecting member 119b instead of the crystal piece 110 and the connecting member 111b in the crystal vibrating element 100 shown in FIG. Note that the connecting member on the Z′-axis negative direction side is the same as the connecting member 119b, and thus detailed description thereof is omitted.
 本変形例においては、水晶片117が中央部よりも外縁部が薄く形成された順メサ形状であり、この点で図2に示される構成と異なっている。また、水晶片117の中央部の第2面114は、ベース部材300の第1面302に対して、枠体120に形成された凹部126の底面(ベース部材300が配置された側の面)と略同一の位置にある。なお、本変形例においては、水晶片117は平面視において略矩形の外形形状を有しているが、水晶片117の形状はこれに限られない。 In this modification, the crystal piece 117 has a forward mesa shape in which the outer edge portion is formed thinner than the center portion, and this is different from the configuration shown in FIG. Further, the second surface 114 at the center of the crystal piece 117 is the bottom surface of the recess 126 formed in the frame 120 with respect to the first surface 302 of the base member 300 (the surface on the side where the base member 300 is disposed). And at approximately the same position. In this modification, the crystal piece 117 has a substantially rectangular outer shape in plan view, but the shape of the crystal piece 117 is not limited to this.
 このような構成においても、水晶振動子2と同様に、枠体120の凹部126と連結部材との間に形成された段差により、振動の伝搬が反射又は拡散され、プローブの当接に起因する発振周波数への影響を抑制することができる。 Even in such a configuration, similarly to the crystal resonator 2, the propagation of vibration is reflected or diffused by the step formed between the concave portion 126 of the frame body 120 and the connecting member, resulting from the contact of the probe. The influence on the oscillation frequency can be suppressed.
 上記各変形例で説明したいずれの構成においても、既に説明した通り、第1及び第2励振電極130,140と電気的に接続された第1及び第2電極が、いずれも枠体120の第2面124側に形成されることにより、水晶振動素子の表裏に引き回す配線の総数を減らすことができる。従って、水晶振動子を小型化しつつも、配線の短絡及び断線などの不良を抑制し、水晶振動子の品質の向上を図ることができる。また、配線の製造工程を簡素化することができる。 In any of the configurations described in the above modifications, as described above, the first and second electrodes electrically connected to the first and second excitation electrodes 130 and 140 are both the first and second electrodes of the frame body 120. By being formed on the second surface 124 side, the total number of wirings routed on the front and back of the crystal resonator element can be reduced. Accordingly, it is possible to improve the quality of the crystal unit while reducing the size of the crystal unit and suppressing defects such as a short circuit and disconnection of wiring. In addition, the wiring manufacturing process can be simplified.
 以上、本発明の例示的な実施形態について説明した。水晶振動子1~3は、枠体120におけるベース部材300が配置された側の面において、ベース部材300との接合面から所定程度窪んだ領域に、第1及び第2励振電極130,140と電気的に接続された第1及び第2電極133,143の各第2パッド部分が形成される。これにより、例えば、水晶振動素子の電気的検査時に必要な測定用パッド134,144を形成しつつも、水晶振動素子100の表裏に引き回す配線の数を減らすことができる。従って、配線の短絡及び断線などの不良を抑制し、水晶振動子の品質の向上を図ることができる。 The exemplary embodiments of the present invention have been described above. The quartz crystal resonators 1 to 3 include first and second excitation electrodes 130 and 140 in a region that is depressed to a predetermined extent from the joint surface with the base member 300 on the surface of the frame 120 where the base member 300 is disposed. The second pad portions of the first and second electrodes 133 and 143 that are electrically connected are formed. Thereby, for example, the number of wirings routed on the front and back of the crystal resonator element 100 can be reduced while forming the measurement pads 134 and 144 necessary for the electrical inspection of the crystal resonator element. Accordingly, it is possible to suppress defects such as a short circuit and disconnection of the wiring and improve the quality of the crystal resonator.
 また、水晶振動子1~3は、第1及び第2電極133,143の各第2パッド部分が、第1電極133の第1パッド部分と第2電極143の第2パッド部分との間に配置されていてもよい。 In the crystal resonators 1 to 3, the second pad portions of the first and second electrodes 133 and 143 are disposed between the first pad portion of the first electrode 133 and the second pad portion of the second electrode 143. It may be arranged.
 また、水晶振動子1~3は、枠体120の外縁を含む領域に枠体120の接合領域が形成され、連結部材111a,111bに隣接した領域に凹部126が形成されている。これにより、測定用パッド134,144を水晶片110とともに水晶振動子の内部空間(キャビティ)に密封封止することができる。 Further, in the crystal resonators 1 to 3, a joining region of the frame 120 is formed in a region including the outer edge of the frame 120, and a recess 126 is formed in a region adjacent to the connecting members 111a and 111b. Thus, the measurement pads 134 and 144 can be hermetically sealed together with the crystal piece 110 in the internal space (cavity) of the crystal resonator.
 また、水晶振動子1~3は、第1及び第2電極133,143の各第2パッド部分が、少なくとも部分的に連結部材111a,111bの延長線上から外れた領域に配置されている。これにより、プローブを測定用パッド134,144に当接させることに起因する発振周波数への影響が抑制され、測定精度が向上する。 Further, in the crystal resonators 1 to 3, the second pad portions of the first and second electrodes 133 and 143 are arranged at least partially in a region off the extension line of the connecting members 111a and 111b. As a result, the influence on the oscillation frequency caused by bringing the probe into contact with the measurement pads 134 and 144 is suppressed, and the measurement accuracy is improved.
 また、水晶振動子1~3は、水晶片110と枠体120との間の貫通孔150の内壁に設けられた引出電極132を介して、第1電極133が第1励振電極130と電気的に接続されている。また、貫通孔150の内壁に第2励振電極140の引出電極を形成する必要がない。従って、当該内壁に絶縁部を設けるためのレジスト形成工程等が不要となり、製造工程が削減され短絡及び断線の発生が抑制される。 In the crystal resonators 1 to 3, the first electrode 133 is electrically connected to the first excitation electrode 130 via the extraction electrode 132 provided on the inner wall of the through hole 150 between the crystal piece 110 and the frame body 120. It is connected to the. Further, it is not necessary to form the extraction electrode of the second excitation electrode 140 on the inner wall of the through hole 150. Therefore, a resist forming process for providing an insulating portion on the inner wall is not necessary, and the manufacturing process is reduced, and occurrence of short circuit and disconnection is suppressed.
 また、水晶振動子1~3は、貫通孔150の内壁の全面に引出電極132が形成されている。これにより、貫通孔150の内部の配線の品質検査を省略することができる。従って、作業工程が削減され、製造時間が短縮される。 Further, in the crystal resonators 1 to 3, the extraction electrode 132 is formed on the entire inner wall of the through hole 150. Thereby, the quality inspection of the wiring inside the through hole 150 can be omitted. Therefore, the work process is reduced and the manufacturing time is shortened.
 また、水晶振動子1~3は、第1電極133が引出電極132と貫通孔150の開口外縁の少なくとも一部で接して設けられ、第2電極143は、当該開口外縁から離れて設けられている。なお、引出電極の構成はこれに限られない。 In the crystal resonators 1 to 3, the first electrode 133 is provided in contact with at least a part of the outer edge of the lead electrode 132 and the through hole 150, and the second electrode 143 is provided apart from the outer edge of the opening. Yes. The configuration of the extraction electrode is not limited to this.
 また、水晶振動子1は、水晶片110のベース部材300が配置された側の面が、枠体120における凹部126のベース部材300が配置された側の面と同じ高さに位置している。なお、凹部126のY´軸方向の深さはこれに限られない。 Further, in the crystal unit 1, the surface of the crystal piece 110 on the side where the base member 300 is disposed is positioned at the same height as the surface of the frame body 120 on which the base member 300 is disposed. . The depth of the concave portion 126 in the Y′-axis direction is not limited to this.
 また、水晶振動子2は、水晶片113のベース部材300が配置された側の面が枠体120における凹部126のベース部材300が配置された側の面よりもベース部材300から離れた位置に形成されている。これにより、枠体120の凹部126と連結部材との間に段差が形成さる。従って、測定用パッド134,144が振動伝搬経路上に形成されていても、上述の段差によって振動の伝搬が反射又は拡散され、プローブの当接に起因する発振周波数への影響が抑制され、測定精度が向上する。 Further, in the crystal resonator 2, the surface on the side where the base member 300 of the crystal piece 113 is disposed is located farther from the base member 300 than the surface on the side where the base member 300 of the recess 126 in the frame 120 is disposed. Is formed. Thereby, a level | step difference is formed between the recessed part 126 of the frame 120, and a connection member. Therefore, even if the measurement pads 134 and 144 are formed on the vibration propagation path, the propagation of vibration is reflected or diffused by the above-described step, and the influence on the oscillation frequency due to the contact of the probe is suppressed, and measurement is performed. Accuracy is improved.
 また、水晶振動子3は、水晶片117が平面視において略矩形の外形形状を有し、中央部よりも外縁部が薄く形成された順メサ形状である。このような構成においても、水晶振動子2と同様に、枠体120の凹部126と連結部材との間に形成された段差により、振動の伝搬が反射又は拡散され、プローブの当接に起因する発振周波数への影響を抑制され、測定精度が向上する。 Further, the crystal resonator 3 has a forward mesa shape in which the crystal piece 117 has a substantially rectangular outer shape in plan view and the outer edge portion is formed thinner than the center portion. Even in such a configuration, similarly to the crystal resonator 2, the propagation of vibration is reflected or diffused by the step formed between the concave portion 126 of the frame body 120 and the connecting member, resulting from the contact of the probe. The influence on the oscillation frequency is suppressed and the measurement accuracy is improved.
 また、水晶振動子の製造方法は、枠体120におけるベース部材300が配置された側の面において、ベース部材300との接合面から所定程度窪んだ領域に、第1及び第2励振電極130,140と電気的に接続された第1及び第2電極133,143の各第2パッド部分を形成することを含む。これにより、例えば、水晶振動素子の電気的検査時に必要な測定用パッド134,144を形成しつつも、水晶振動素子100の表裏に引き回す配線の数を減らすことができる。従って、配線の短絡及び断線などの不良を抑制し、水晶振動子の品質の向上を図ることができる。 In addition, in the method for manufacturing the crystal resonator, the first and second excitation electrodes 130, the region of the frame 120 on the side where the base member 300 is disposed are recessed to a predetermined extent from the joint surface with the base member 300. Forming a second pad portion of each of the first and second electrodes 133, 143 electrically connected to 140. Thereby, for example, the number of wirings routed on the front and back of the crystal resonator element 100 can be reduced while forming the measurement pads 134 and 144 necessary for the electrical inspection of the crystal resonator element. Accordingly, it is possible to suppress defects such as a short circuit and disconnection of the wiring and improve the quality of the crystal resonator.
 また、水晶振動子の製造方法は、枠体120の外縁を含む領域に枠体120の接合領域を形成し、連結部材111a,111bに隣接した領域に凹部126を形成し、第1電極133の第1パッド部分と第2電極143の第1パッド部分との間であって、連結部材111a,111bの延長線上から外れた領域に、少なくとも部分的に、第1及び第2電極133,143の各第2パッド部分を形成することを含む。これにより、プローブを測定用パッド134,144に当接させることに起因する発振周波数への影響が抑制され、測定精度が向上する。 Further, in the method for manufacturing the crystal resonator, a bonding region of the frame body 120 is formed in a region including the outer edge of the frame member 120, a recess 126 is formed in a region adjacent to the connecting members 111a and 111b, and the first electrode 133 is formed. Between the first pad portion and the first pad portion of the second electrode 143, at least partially in a region outside the extension line of the connecting members 111 a and 111 b, the first and second electrodes 133 and 143 Forming each second pad portion. As a result, the influence on the oscillation frequency caused by bringing the probe into contact with the measurement pads 134 and 144 is suppressed, and the measurement accuracy is improved.
 また、水晶振動子の製造方法は、水晶片110と枠体120との間の貫通孔150の内壁を介して、第1電極133が第1励振電極130と電気的に接続されるように、引出電極132を貫通孔150の内壁に形成することを含む。これにより、貫通孔150の内壁に絶縁部を設けるためのレジスト形成工程等が不要となり、製造工程が削減され短絡及び断線の発生が抑制される。 In addition, the method for manufacturing the crystal resonator is such that the first electrode 133 is electrically connected to the first excitation electrode 130 through the inner wall of the through hole 150 between the crystal piece 110 and the frame body 120. Forming the extraction electrode 132 on the inner wall of the through-hole 150. This eliminates the need for a resist forming step for providing an insulating portion on the inner wall of the through-hole 150, reduces the manufacturing steps, and suppresses the occurrence of short circuits and disconnections.
 また、水晶振動子の製造方法は、貫通孔150の内壁の全面に引出電極132を形成することを含む。これにより、貫通孔150の内部の配線の品質検査を省略することができる。従って、作業工程が削減され、製造時間が短縮される。 Further, the method for manufacturing a crystal resonator includes forming the extraction electrode 132 on the entire inner wall of the through hole 150. Thereby, the quality inspection of the wiring inside the through hole 150 can be omitted. Therefore, the work process is reduced and the manufacturing time is shortened.
 なお、以上説明した実施形態(変形例を含む。)においては、ATカット水晶振動素子の一例として、X軸に平行な長辺、及びZ´軸に平行な短辺を有する態様を説明したが、本発明はこれに限定されるものではなく、例えば、Z´軸に平行な長辺、及びX軸に平行な短辺を有するATカット水晶振動素子に本発明を適用してもよい。また、以上の説明においては2つの連結部材を有する態様を説明したが、連結部材の個数は限定されるものではなく、例えば水晶片と枠体とが1つの連結部材によって連結されていてもよい。 In the above-described embodiment (including modifications), an aspect having a long side parallel to the X axis and a short side parallel to the Z ′ axis has been described as an example of an AT-cut quartz crystal resonator element. The present invention is not limited to this. For example, the present invention may be applied to an AT-cut quartz crystal resonator element having a long side parallel to the Z ′ axis and a short side parallel to the X axis. Moreover, although the aspect which has two connection members was demonstrated in the above description, the number of connection members is not limited, For example, the crystal piece and the frame may be connected by one connection member. .
 なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 Each embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof. In other words, those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention. For example, each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate. In addition, each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.
   1~3 水晶振動子
   100,103,105 水晶振動素子
   110,113,117 水晶片
   111a,111b,115b,119b 連結部材
   120 枠体
   130 第1励振電極
   132,142 引出電極
   133 第1電極
   134,134a,144,144a 測定用パッド
   136,146 接続用パッド
   140 第2励振電極
   143 第2電極
   150 貫通孔
   170,172 封止部材
   200 リッド部材
   300 ベース部材
   322,324,326,328 外部電極
1-3 Crystal resonators 100, 103, 105 Crystal resonator elements 110, 113, 117 Crystal pieces 111a, 111b, 115b, 119b Connecting member 120 Frame body 130 First excitation electrode 132, 142 Extraction electrode 133 First electrode 134, 134a , 144, 144a Measurement pad 136, 146 Connection pad 140 Second excitation electrode 143 Second electrode 150 Through hole 170, 172 Sealing member 200 Lid member 300 Base member 322, 324, 326, 328 External electrode

Claims (15)

  1.  対向する第1及び第2主面を有する水晶片と、当該水晶片の当該第1主面に設けられた第1励振電極と、当該水晶片の当該第2主面に設けられ、当該第1励振電極に対向する第2励振電極と、当該水晶片の外周を囲む枠体と、当該枠体と前記水晶片を連結する連結部材と、を含む水晶振動素子と、
     前記水晶振動素子の前記第1励振電極側に対向して配置され、前記水晶片を励振可能なように前記枠体に接合されたリッド部材と、
     前記水晶振動素子の前記第2励振電極側に対向して配置され、前記水晶片を励振可能なように前記枠体に接合され、かつ外部と電気的に接続可能である外部電極を有する、ベース部材と、
    を備え、
     前記枠体は、前記ベース部材が配置された側に設けられた第1領域及び当該第1領域よりも窪んでいる第2領域を有しており、
     前記水晶振動素子は、前記第1励振電極と電気的に接続された第1電極と、前記第2励振電極と電気的に接続された第2電極とを有し、
     前記第1及び第2電極の各々は、前記第1領域上に設けられた第1パッド部分と、前記第2領域上に設けられた第2パッド部分とを有し、
     前記第1及び第2励振電極は、前記第1及び第2電極の前記各第1パッド部分を介して前記ベース部材の前記外部電極と電気的に接続された、水晶振動子。
    A crystal piece having first and second main surfaces facing each other, a first excitation electrode provided on the first main surface of the crystal piece, and provided on the second main surface of the crystal piece, the first A quartz resonator element comprising: a second excitation electrode facing the excitation electrode; a frame surrounding the outer periphery of the crystal piece; and a connecting member connecting the frame and the crystal piece;
    A lid member that is disposed opposite to the first excitation electrode side of the crystal resonator element and is bonded to the frame so as to excite the crystal piece;
    A base having an external electrode that is disposed opposite to the second excitation electrode side of the crystal resonator element, is joined to the frame body so as to excite the crystal piece, and is electrically connectable to the outside. A member,
    With
    The frame body has a first region provided on the side where the base member is disposed and a second region that is recessed from the first region,
    The crystal resonator element includes a first electrode electrically connected to the first excitation electrode, and a second electrode electrically connected to the second excitation electrode,
    Each of the first and second electrodes has a first pad portion provided on the first region and a second pad portion provided on the second region,
    The first and second excitation electrodes are crystal resonators that are electrically connected to the external electrodes of the base member through the first pad portions of the first and second electrodes.
  2.  前記第1及び第2電極の前記各第2パッド部分は、電気的検査のための測定用パッドである、請求項1に記載の水晶振動子。 2. The crystal resonator according to claim 1, wherein each of the second pad portions of the first and second electrodes is a measurement pad for electrical inspection.
  3.  前記第1及び第2電極の前記各第2パッド部分は、前記第1電極の前記第1パッド部分と前記第2電極の前記第1パッド部分との間に配置された、請求項1又は2に記載の水晶振動子。 The each second pad portion of the first and second electrodes is disposed between the first pad portion of the first electrode and the first pad portion of the second electrode. The crystal unit described in 1.
  4.  前記枠体の前記第1領域は、前記枠体の外縁を含む領域であり、
     前記枠体の前記第2領域は、前記連結部材に隣接した領域である、請求項1~3のいずれか一項に記載の水晶振動子。
    The first region of the frame is a region including an outer edge of the frame,
    The crystal resonator according to any one of claims 1 to 3, wherein the second region of the frame is a region adjacent to the connecting member.
  5.  前記第1及び第2電極の前記各第2パッド部分は、少なくとも部分的に、前記連結部材の延長線上から外れた領域に配置された、請求項1~4のいずれか一項に記載の水晶振動子。 The quartz crystal according to any one of claims 1 to 4, wherein each of the second pad portions of the first and second electrodes is disposed at least partially in a region off the extension line of the connecting member. Vibrator.
  6.  前記第1電極は、前記水晶片と前記枠体との間の貫通孔の内壁に設けられた引出電極を介して、前記第1励振電極と電気的に接続された、請求項1~5のいずれか一項に記載の水晶振動子。 The first electrode of claim 1 to 5, wherein the first electrode is electrically connected to the first excitation electrode via an extraction electrode provided on an inner wall of a through hole between the crystal piece and the frame. The crystal unit according to any one of the above.
  7.  前記貫通孔の内壁の全面に前記引出電極が形成された、請求項6に記載の水晶振動子。 The crystal resonator according to claim 6, wherein the extraction electrode is formed on the entire inner wall of the through hole.
  8.  前記第1電極は、前記引出電極と前記貫通孔の開口外縁の少なくとも一部で接して設けられ、前記第2電極は、前記貫通孔の開口外縁から離れて設けられた、請求項6又は7に記載の水晶振動子。 The first electrode is provided in contact with at least a part of the outer edge of the opening of the through hole, and the second electrode is provided apart from the outer edge of the opening of the through hole. The crystal unit described in 1.
  9.  前記水晶片の前記ベース部材が配置された側の面は、前記枠体における前記第2領域の前記ベース部材が配置された側の面と同じ高さに位置する、請求項1~8のいずれか一項に記載の水晶振動子。 The surface of the crystal piece on the side where the base member is disposed is positioned at the same height as the surface of the second region of the frame on which the base member is disposed. The crystal unit according to claim 1.
  10.  前記水晶片の前記ベース部材が配置された側の面は、前記枠体における前記第2領域の前記ベース部材が配置された側の面よりも前記ベース部材から離れた位置である、請求項1~8のいずれか一項に記載の水晶振動子。 2. The surface of the crystal piece on the side where the base member is arranged is a position farther from the base member than the surface of the second region on the side where the base member is arranged. The crystal resonator according to any one of 1 to 8.
  11.  前記水晶片は、平面視において略矩形の外形形状を有し、中央部よりも外縁部が薄く形成された順メサ形状である、請求項1~10のいずれか一項に記載の水晶振動子。 The crystal resonator according to any one of claims 1 to 10, wherein the crystal piece has a substantially rectangular outer shape in a plan view and a forward mesa shape in which an outer edge portion is formed thinner than a center portion. .
  12.  (a)複数の水晶振動素子を有する第1基板を用意することであって、前記水晶振動素子が、対向する第1及び第2主面を有する水晶片と、当該水晶片の当該第1主面に設けられた第1励振電極と、当該水晶片の当該第2主面に設けられ、当該第1励振電極に対向する第2励振電極と、当該水晶片の外周を囲む枠体と、当該枠体と前記水晶片を連結する連結部材と、を備える、第1基板を用意すること、
     (b)前記水晶振動素子の前記第1励振電極側に対向して配置される複数のリッド部材を有する第2基板を用意すること、
     (c)前記水晶振動素子の前記第2励振電極側に対向して配置され、かつ外部と電気的に接続可能である外部電極を有する複数のベース部材を有する第3基板を用意すること、
     (d)前記水晶片が励振可能なように、前記水晶振動素子の前記枠体が前記リッド部材及び前記ベース部材に接合するように、前記第1、第2及び第3基板を接合すること、及び、
     (e)接合された前記第1、第2及び第3基板を切断して、個片化された複数の水晶振動子を得ること、
    を含み、
     前記枠体は、前記ベース部材が配置された側に設けられた第1領域及び当該第1領域よりも窪んでいる第2領域を有しており、
     前記水晶振動素子は、前記第1励振電極と電気的に接続された第1電極と、前記第2励振電極と電気的に接続された第2電極とを有し、
     前記第1及び第2電極の各々は、前記第1領域上に設けられた第1パッド部分と、前記第2領域上に設けられた第2パッド部分とを有し、
     前記(a)は、前記第1及び第2電極の前記各第2パッド部分を介して前記水晶振動素子を電気的に検査することを含み、
     前記(d)は、前記第1及び第2励振電極を、前記第1及び第2電極の前記各第1パッド部分を介して前記ベース部材の前記外部電極と電気的に接続することを含む、水晶振動子の製造方法。
    (A) preparing a first substrate having a plurality of crystal resonator elements, wherein the crystal resonator elements have first and second main surfaces facing each other, and the first main portion of the crystal fragments; A first excitation electrode provided on a surface, a second excitation electrode provided on the second main surface of the crystal piece and facing the first excitation electrode, a frame surrounding the outer periphery of the crystal piece, Providing a first substrate comprising a frame and a connecting member for connecting the crystal piece;
    (B) preparing a second substrate having a plurality of lid members arranged to face the first excitation electrode side of the crystal resonator element;
    (C) providing a third substrate having a plurality of base members having external electrodes that are arranged opposite to the second excitation electrode side of the crystal resonator element and that can be electrically connected to the outside;
    (D) bonding the first, second, and third substrates so that the frame of the crystal resonator element is bonded to the lid member and the base member so that the crystal piece can be excited; as well as,
    (E) cutting the bonded first, second and third substrates to obtain a plurality of separated crystal resonators;
    Including
    The frame body has a first region provided on the side where the base member is disposed and a second region that is recessed from the first region,
    The crystal resonator element includes a first electrode electrically connected to the first excitation electrode, and a second electrode electrically connected to the second excitation electrode,
    Each of the first and second electrodes has a first pad portion provided on the first region and a second pad portion provided on the second region,
    (A) includes electrically inspecting the crystal resonator element through the second pad portions of the first and second electrodes;
    (D) includes electrically connecting the first and second excitation electrodes to the external electrode of the base member via the first pad portions of the first and second electrodes, A method for manufacturing a crystal unit.
  13.  前記(a)において、
     前記第1領域を前記枠体の外縁を含む領域に形成し、前記第2領域を前記連結部材に隣接した領域に形成し、
     前記第1電極の前記第1パッド部分と前記第2電極の前記第1パッド部分との間であって、前記連結部材の延長線上から外れた領域に、少なくとも部分的に、前記第1及び第2電極の前記各第2パッド部分を形成する、請求項12に記載の水晶振動子の製造方法。
    In (a) above,
    Forming the first region in a region including an outer edge of the frame, and forming the second region in a region adjacent to the connecting member;
    At least partially between the first pad portion of the first electrode and the first pad portion of the second electrode and in a region outside the extension line of the connecting member, the first and second The method for manufacturing a crystal resonator according to claim 12, wherein each of the second pad portions of two electrodes is formed.
  14.  前記(a)において、
     前記第1電極が前記水晶片と前記枠体との間の貫通孔の内壁を介して前記第1励振電極と電気的に接続されるように、引出電極を前記貫通孔の内壁に形成する、請求項12又は13に記載の水晶振動子の製造方法。
    In (a) above,
    Forming an extraction electrode on the inner wall of the through hole so that the first electrode is electrically connected to the first excitation electrode via the inner wall of the through hole between the crystal piece and the frame; A method for manufacturing a crystal resonator according to claim 12 or 13.
  15.  前記(a)において、
     前記貫通孔の内壁の全面に前記引出電極を形成する、請求項14に記載の水晶振動子の製造方法。
    In (a) above,
    The method for manufacturing a crystal resonator according to claim 14, wherein the extraction electrode is formed on the entire inner wall of the through hole.
PCT/JP2017/018910 2016-05-31 2017-05-19 Crystal oscillator and method for manufacturing same WO2017208866A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018520802A JPWO2017208866A1 (en) 2016-05-31 2017-05-19 Quartz crystal resonator and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016108963 2016-05-31
JP2016-108963 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017208866A1 true WO2017208866A1 (en) 2017-12-07

Family

ID=60478060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018910 WO2017208866A1 (en) 2016-05-31 2017-05-19 Crystal oscillator and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2017208866A1 (en)
WO (1) WO2017208866A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020027121A1 (en) * 2018-08-02 2021-08-02 株式会社村田製作所 MEMS device
WO2022014494A1 (en) * 2020-07-15 2022-01-20 株式会社村田製作所 Elastic wave device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119264A (en) * 1999-10-15 2001-04-27 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP2007013729A (en) * 2005-06-30 2007-01-18 Kyocera Kinseki Corp Electrode structure of crystal oscillator
JP2007243378A (en) * 2006-03-07 2007-09-20 Epson Toyocom Corp Piezoelectric vibrator and its manufacturing method
JP2010109528A (en) * 2008-10-29 2010-05-13 Epson Toyocom Corp Piezoelectric vibration piece and piezoelectric device
JP2013098813A (en) * 2011-11-02 2013-05-20 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrating piece and piezoelectric device
JP2015192279A (en) * 2014-03-28 2015-11-02 京セラクリスタルデバイス株式会社 Piezoelectric vibrator, piezoelectric device, and manufacturing method of piezoelectric vibrator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5129005B2 (en) * 2008-04-17 2013-01-23 日本電波工業株式会社 Piezoelectric vibrator, piezoelectric element manufacturing method, and piezoelectric vibrator manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119264A (en) * 1999-10-15 2001-04-27 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP2007013729A (en) * 2005-06-30 2007-01-18 Kyocera Kinseki Corp Electrode structure of crystal oscillator
JP2007243378A (en) * 2006-03-07 2007-09-20 Epson Toyocom Corp Piezoelectric vibrator and its manufacturing method
JP2010109528A (en) * 2008-10-29 2010-05-13 Epson Toyocom Corp Piezoelectric vibration piece and piezoelectric device
JP2013098813A (en) * 2011-11-02 2013-05-20 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrating piece and piezoelectric device
JP2015192279A (en) * 2014-03-28 2015-11-02 京セラクリスタルデバイス株式会社 Piezoelectric vibrator, piezoelectric device, and manufacturing method of piezoelectric vibrator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020027121A1 (en) * 2018-08-02 2021-08-02 株式会社村田製作所 MEMS device
JP7015484B2 (en) 2018-08-02 2022-02-03 株式会社村田製作所 MEMS device
US11909379B2 (en) 2018-08-02 2024-02-20 Murata Manufacturing Co., Ltd. MEMS device having a connection portion formed of a eutectic alloy
WO2022014494A1 (en) * 2020-07-15 2022-01-20 株式会社村田製作所 Elastic wave device

Also Published As

Publication number Publication date
JPWO2017208866A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6579344B2 (en) Quartz crystal resonator and manufacturing method thereof
KR101249312B1 (en) Piezoelectric vibrating device
US20130193807A1 (en) Quartz crystal vibrating piece and quartz crystal device
US10523173B2 (en) Quartz crystal resonator and method for manufacturing the same, and quartz crystal resonator unit and method for manufacturing the same
TWI668960B (en) Piezo vibrating element and system integration package (SIP) module having the same
JP6275526B2 (en) Piezoelectric vibrator, piezoelectric device, and method of manufacturing piezoelectric vibrator
JP6052651B1 (en) Crystal oscillator
CN108352820B (en) Piezoelectric vibration device
WO2017208866A1 (en) Crystal oscillator and method for manufacturing same
CN109891745B (en) Tuning fork vibrator and method for manufacturing tuning fork vibrator
CN110622416B (en) Crystal oscillation element, crystal oscillator, and method for manufacturing crystal oscillation element and crystal oscillator
TW201939888A (en) Piezoelectric vibration device
US10938368B2 (en) Piezoelectric-resonator-mounting substrate, and piezoelectric resonator unit and method of manufacturing the piezoelectric resonator unit
JP5276773B2 (en) Crystal oscillator for surface mounting
US20090160561A1 (en) Surface-mount type crystal oscillator
JP7196726B2 (en) crystal wafer
JP2019009716A (en) Crystal diaphragm and crystal vibration device
JP4900489B2 (en) Tuning fork type piezoelectric vibrator
JP2009124587A (en) Piezoelectric vibrating chip, piezoelectric vibration device, and method of manufacturing piezoelectric vibrating chip
WO2024024614A1 (en) Quartz crystal vibration plate and quartz crystal vibration device
JP7302618B2 (en) Crystal oscillator and its manufacturing method
WO2024048201A1 (en) Vibration device and method for manufacturing vibration device
WO2022255113A1 (en) Piezoelectric diaphragm and piezoelectric vibration device
WO2021106921A1 (en) Crystal element, crystal device, electronic equipment, and method for manufacturing crystal element
JP2012124706A (en) Method of manufacturing piezoelectric oscillator, and piezoelectric oscillator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806423

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806423

Country of ref document: EP

Kind code of ref document: A1