WO2017208831A1 - ヒートポンプ式給湯装置 - Google Patents

ヒートポンプ式給湯装置 Download PDF

Info

Publication number
WO2017208831A1
WO2017208831A1 PCT/JP2017/018601 JP2017018601W WO2017208831A1 WO 2017208831 A1 WO2017208831 A1 WO 2017208831A1 JP 2017018601 W JP2017018601 W JP 2017018601W WO 2017208831 A1 WO2017208831 A1 WO 2017208831A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
water supply
water
temperature
pump
Prior art date
Application number
PCT/JP2017/018601
Other languages
English (en)
French (fr)
Inventor
速彦 ▲高▼城
弘 山縣
Original Assignee
サンデン・リビングエンバイロメントシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・リビングエンバイロメントシステム株式会社 filed Critical サンデン・リビングエンバイロメントシステム株式会社
Priority to US16/305,622 priority Critical patent/US20200173686A1/en
Publication of WO2017208831A1 publication Critical patent/WO2017208831A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/025Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/07Heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/48Water heaters for central heating incorporating heaters for domestic water
    • F24H1/50Water heaters for central heating incorporating heaters for domestic water incorporating domestic water tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser

Definitions

  • the present invention relates to a heat pump type hot water supply apparatus that heats hot water in a hot water storage tank by a heat pump circuit.
  • a tank unit with a hot water storage tank for storing hot water supply water, and hot water in the hot water storage tank are taken out from the lower part of the hot water storage tank by a pump, and water heat exchange is performed through an inflow pipe.
  • a heating unit with a built-in heat pump circuit that heats the hot water water that flows through the water heat exchanger of the hot water supply circuit using a refrigerant are known (for example, see Patent Document 1).
  • the inflow pipe and the outflow pipe of the hot water supply circuit described above are normally insulated.
  • a water temperature sensor for detecting the temperature of hot water on the water inlet side of the water heat exchanger provided in the heating unit conventionally has a predetermined low temperature (however, a predetermined value higher than the freezing point). If detected, a freeze prevention operation was performed in which the pump was operated to circulate the hot water supply water (hot water) in the hot water storage tank in the hot water supply circuit (see, for example, Patent Document 2).
  • the heating unit is often installed on the roof of the residence, and the tank unit is often installed in the basement of the residence or on the ground outside the residence.
  • the heating unit is positioned higher than the tank unit, so if the temperature of hot water in the outflow pipe decreases due to a drop in the outside air temperature in winter, etc. Due to the difference, a hot water supply water (hot water) in the upper part of the hot water storage tank flows back to the outflow pipe.
  • hot water hot water
  • the incoming water temperature sensor which detects the temperature of the hot water supply water of the incoming side of a water heat exchanger also cannot detect the predetermined value mentioned above, freezing prevention operation is not performed.
  • the temperature does not rise up to the inflow pipe located between the heating unit and the tank unit, the hot water supply water in the inflow pipe originally having a low temperature freezes, and the circulation of the hot water supply water in the hot water supply circuit is hindered. Inconvenience occurred.
  • a check valve the hot water storage tank direction is the forward direction
  • the number of parts increases, leading to an increase in cost.
  • the present invention has been made to solve the conventional technical problems, and is a heat pump type that eliminates the inconvenience that the anti-freezing operation is not performed due to the reverse flow phenomenon from the hot water storage tank without increasing the number of parts. It aims at providing a hot-water supply apparatus.
  • the heat pump hot water supply apparatus of the present invention is provided with a heating unit provided with a heat pump circuit formed by connecting a compressor, a water heat exchanger, a decompression device, and an evaporator, and a hot water storage tank for storing hot water supply water.
  • the tank unit, hot water supply water in the hot water storage tank is taken out from the lower part of the hot water storage tank by the water pump, distributed to the water heat exchanger, and then supplied to the upper part of the hot water storage tank, and the water pump and compressor are operated.
  • a control device that performs a boiling operation for heating the hot-water supply water that circulates through the water heat exchanger with a refrigerant, wherein the control device is a hot-water supply water for a hot-water supply circuit located in the heating unit.
  • the control device is a hot-water supply water for a hot-water supply circuit located in the heating unit.
  • the control device increases after the temperature of the hot water supply water in the hot water supply circuit located in the heating unit is once lowered while the water pump is stopped. When it turns, it is characterized by operating a water pump.
  • the control device is configured so that the temperature of the hot water for the hot water supply circuit located in the heating unit is predetermined within a predetermined time in a state where the water pump is stopped. The water pump is operated when it rises above the value.
  • the heat pump type hot water supply apparatus in each of the above inventions, wherein the control device is a hot water supply circuit located in the heating unit in a state where the outside air temperature is equal to or lower than a predetermined value and the water pump is stopped.
  • the control device is a hot water supply circuit located in the heating unit in a state where the outside air temperature is equal to or lower than a predetermined value and the water pump is stopped.
  • the water pump is operated.
  • the temperature of the hot water supply water on the water inlet side of the water heat exchanger is a predetermined low value even if the control device is operated for a predetermined time in the freeze prevention operation. In this case, the compressor is operated.
  • the heat pump type hot water supply apparatus of the invention of claim 6 is the anti-freezing operation when the temperature of the hot water supply water in the hot water supply circuit located in the heating unit rises while the water pump is stopped in the control device. It is characterized by performing.
  • the temperature of the hot water in the hot water supply circuit located in the heating unit in each of the above inventions is the temperature of the hot water on the inlet side of the water heat exchanger or the water heat exchanger It is the temperature of the hot water supply water of the tapping side.
  • the heat pump hot water supply apparatus according to an eighth aspect of the present invention is characterized in that, in each of the above inventions, the heating unit is disposed at a position higher than the tank unit.
  • the heat pump type hot water supply apparatus of the invention of claim 9 is the inflow pipe for taking out the hot water in the hot water storage tank from the lower part of the hot water storage tank, the hot water supply circuit being located between the heating unit and the tank unit in each of the above inventions, , Having an outflow pipe for flowing hot water after flowing through the water heat exchanger into the upper part of the hot water storage tank, and at least a part of the inflow pipe and the outflow pipe are arranged at a position higher than the tank unit. It is characterized by.
  • the hot water supply water in the hot water storage tank is taken out from the lower part of the hot water storage tank by the water pump, circulated to the water heat exchanger, and then flows into the upper part of the hot water storage tank, and the water pump and the compressor are operated.
  • a heat pump type hot water supply apparatus comprising: a control device that executes a boiling operation for heating hot water flowing through the water heat exchanger with a refrigerant; and the temperature of the hot water in the hot water supply circuit located in the heating unit.
  • the water pump is operated when the temperature of the hot water in the hot water supply circuit located in the heating unit rises while the water pump is stopped when the antifreezing operation for operating the pump is performed.
  • the water pump can be operated to circulate the hot water supply water in the hot water supply circuit.
  • the heating unit when the heating unit is arranged at a position higher than the tank unit as in the invention of claim 8, or at least a part of the inflow pipe and outflow pipe of the hot water supply circuit is higher than the tank unit as in the invention of claim 9.
  • the anti-freezing operation is not executed due to the reverse flow phenomenon that is likely to occur when it is disposed at the position, and the inconvenience that the hot water supply circuit freezes can be avoided.
  • it is not necessary to provide a check valve or the like in the hot water supply circuit it is possible to prevent an increase in cost due to an increase in the number of parts.
  • the control device increases after the temperature of the hot water supply water in the hot water supply circuit located in the heating unit is temporarily lowered while the water pump is stopped. In this case, since the water pump is operated, it is possible to accurately determine the occurrence of the backflow phenomenon that occurs after the water pump is stopped.
  • the temperature of the hot water supply water in the hot water supply circuit located in the heating unit is within a predetermined time in a state where the water pump is stopped. Since the water pump is operated when it rises above a predetermined value, the occurrence of the backflow phenomenon can be determined more accurately.
  • the control device includes a hot water supply circuit located in the heating unit in a state where the outside air temperature is equal to or lower than a predetermined value and the water pump is stopped. Since the water pump is operated when the temperature of hot water for hot water rises, it is possible to accurately detect the reverse flow phenomenon in a low outside air temperature environment and to avoid unnecessary operation of the water pump. . If the temperature of the hot water supply water on the water inlet side of the water heat exchanger is a predetermined low value even if the water pump is operated for a predetermined time in the freeze prevention operation, the control device as in the invention of claim 5 However, it is possible to more smoothly realize prevention of freezing of the hot water supply circuit.
  • control device is installed in the heating unit while the water pump is stopped. If the freeze prevention operation is executed even when the temperature of the hot water supply water in the hot water supply circuit is increased, the hot water supply circuit can be more reliably prevented from freezing when a reverse flow phenomenon occurs. .
  • the heat pump type hot water supply apparatus 1 of the embodiment includes a hot water storage tank 10 that stores hot water supply water, a hot water supply circuit 20 that distributes hot water supply water in the hot water storage tank 10, a heat pump circuit 30 that distributes refrigerant, and hot water supply water in the hot water supply circuit 20.
  • a water heat exchanger 40 for exchanging heat with the refrigerant of the heat pump circuit 30 is provided, and the hot water supply water flowing through the hot water supply circuit 20 is heated by the refrigerant of the heat pump circuit 30.
  • Hot water storage tank 10 The hot water storage tank 10 is composed of a vertically long sealed container, and is installed on the ground outside the residence or in the basement. A water supply pipe 11 for introducing tap water is connected to the lower part of the hot water storage tank 10. The water supply pipe 11 is provided with a pressure reducing valve 12. A hot water supply pipe 13 for supplying hot water in the hot water storage tank 10 to a hot water supply destination in the residence is connected to the upper part of the hot water storage tank 10, and the hot water supply pipe 13 and the water supply pipe 11 are connected via a bypass pipe 14. .
  • a mixing valve 15 is provided between the hot water supply pipe 13 and the bypass pipe 14, and the mixing valve 15 is configured to mix the hot water in the hot water storage tank 10 and the water from the water supply pipe 11 and distribute them to the hot water supply pipe 13.
  • the hot water storage tank 10 is provided with a hot water storage temperature sensor 16 for detecting the temperature of hot water supply water in the hot water storage tank 10, and this hot water storage temperature sensor 16 is a predetermined location in the vertical direction of the hot water storage tank 10 (substantially the center in the embodiment). Is attached.
  • Hot water supply circuit 20 includes an inflow pipe 21 connected between a lower portion of the hot water storage tank 10 and an inflow side connection port 52 attached to an outer surface of an exterior case 51 of a heating unit 50 described later, a water pump 23, A water inlet pipe 22 connected between the suction side of the water pump 23 and the connection port 52, a water outlet pipe 24 connected between the discharge side of the water pump 23 and the inflow side of the water heat exchanger 40, water An outlet pipe 26 connected between the outflow side of the heat exchanger 40 and an outflow side connection port 54 attached to the outer surface of the outer case 51, and an outflow pipe connected to the connection port 54 and the upper part of the hot water storage tank 10.
  • a water inlet temperature sensor 28 for detecting the temperature of hot water supplied from the lower part of the hot water storage tank 10 (the temperature of hot water on the incoming side of the water heat exchanger 40) is provided in the incoming water pipe 22.
  • the hot water pipe 26 has a hydrothermal exchange.
  • Hot water temperature sensor 29 is provided for detecting the temperature of the hot water supply water having passed through the 40 (temperature of the hot water supply water for hot water side of the water heat exchanger 40).
  • the hot water supply circuit 20 is provided with a drain plug 18 for draining water inside. This drain plug 18 is also attached to the outer surface of the outer case 51 of the heating unit 50, and is connected to the inlet pipe 22 through the drain pipe 19.
  • the heat pump circuit 30 includes a compressor 31, the water heat exchanger 40, an expansion valve 33 as a decompression device, and an evaporator 32 to form a refrigerant circuit.
  • the compressor 31, the water heat exchanger 40, the expansion valve 33, the evaporator 32, and the compressor 31 are configured to circulate the refrigerant in this order.
  • the refrigerant used in the heat pump circuit 30 is a natural refrigerant such as CO 2 (carbon dioxide).
  • Reference numeral 34 denotes a blower for ventilating the outside air to the evaporator 32.
  • the water heat exchanger 40 is composed of a double-pipe heat exchanger having a refrigerant flow passage 41 and a water flow passage 42.
  • the heat pump circuit 30 is connected to the refrigerant flow passage 41, and the water flow passage 42 is connected to the water flow passage 42.
  • a water outlet pipe 24 and a hot water outlet pipe 26 of the hot water supply circuit 20 are connected.
  • the heat pump type hot water supply apparatus 1 of the embodiment includes a water pump 23, a heat pump circuit 30, a water heat exchanger 40, an incoming water temperature sensor 28, a hot water temperature sensor 29, and the like, the hot water storage tank 10,
  • the tank unit 60 provided with the hot water storage temperature sensor 16 is provided, and the heating unit 50 and the tank unit 60 are connected to the inflow pipe 21 of the hot water supply circuit 20 at the connection ports 52 and 54 attached to the outer case 51 of the heating unit 50. And through an outflow pipe 27.
  • the heating unit 50 is installed on the roof of the residence, and the heating unit 50 is installed on the roof of the residence, and the tank unit 60 including the hot water storage tank 10 is installed in the basement.
  • the inflow pipe 21 and the outflow pipe 27 of the hot water supply circuit 20 connecting the heating unit 50 and the hot water storage tank 10 have a length of more than a dozen meters, and from the hot water storage tank 10 in the basement toward the heating unit 50 on the roof, It is piped in the form of rising outside the house. Even when the heating unit 50 is installed on the ground outside the house, most of the inflow pipe 21 and the outflow pipe 27 connected to the hot water storage tank 10 installed in the basement or the like are routed around the attic. In many cases (referred to as torii piping), the inflow pipe 21 and the outflow pipe 27 once rise at a long distance from the hot water storage tank 10 and then descend toward the heating unit 50.
  • the inflow pipe 21 and the outflow pipe 27 are normally insulated by a heat insulating material (not shown) for the purpose of reducing the heat radiation of hot water flowing through the inside and preventing freezing.
  • the heat pump hot water supply device 1 includes a hot water storage temperature sensor 16, an incoming water temperature sensor 28, a hot water temperature sensor 29, an outside air temperature sensor 55, a compressor 31, a blower 34, and a control device 70 to which the water pump 23 is connected.
  • the control device 70 is disposed in the outer case 51 of the heating unit 50.
  • the control device 70 includes a CPU (microcomputer) in which a program is stored.
  • the control device 70 is based on the temperatures detected by the hot water storage temperature sensor 16, the incoming water temperature sensor 28, the outgoing hot water temperature sensor 29, and the outside air temperature sensor 55. 31, the water pump 23, and the blower 34 are configured to be controlled. Further, the control device 70 has a timer function, and a remote control (operation panel) 71 for performing setting and other operations of the timer function and displaying an error is connected to the control device 70. Arranged in the outer case 51. (6) Circulation of hot water in the hot water supply circuit 20 When the water pump 23 of the hot water supply circuit 20 is operated by the control device 70, the hot water in the hot water storage tank 10 is taken out from the lower part of the hot water storage tank 10, and the inflow pipe It rises in 21 toward the roof.
  • Hot water supply water that has risen in the inflow pipe 21 and entered the heating unit 50 from the connection port 52 circulates in the water flow passage 42 of the water heat exchanger 40 via the water inlet pipe 22, the water pump 23, and the water outlet pipe 24. Then, it flows through the hot water outlet pipe 26 and reaches the outlet pipe 27 from the connection port 54.
  • the hot water supply water flowing into the outflow pipe 27 descends in the outflow pipe 27 and flows into the upper part of the hot water storage tank 10. (7) Refrigerant circulation in heat pump circuit 30
  • the compressor 31 of the heat pump circuit 30 is operated by the control device 70, the high-temperature refrigerant (carbon dioxide) discharged from the compressor 31 is supplied to the water heat exchanger 40.
  • the refrigerant flow passage 41 is circulated to exchange heat between the high-temperature refrigerant in the refrigerant flow passage 41 and the hot water supply water in the water flow passage 42. Thereby, the hot water for the hot water supply circuit 20 is heated by the water heat exchanger 40. On the other hand, the temperature of the high-temperature refrigerant is lowered by heating the hot water supply water with the water heat exchanger 40.
  • the refrigerant further passes through the expansion valve 33 and expands to a low temperature and low pressure state to become a gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the evaporator 32 and evaporates.
  • the refrigerant pumps up heat from the outside air by the endothermic action accompanying evaporation.
  • the refrigerant that has absorbed heat in the evaporator 32 repeats circulation that is sucked into the compressor 31.
  • Boiling operation Further, when hot water is used at the hot water supply destination, the hot water supply water in the upper part of the hot water storage tank 10 flows out into the hot water supply pipe 13, and the amount of the discharged water flows from the water supply pipe 11 to the lower part of the hot water storage tank 10. Water is supplied.
  • the control device 70 determines whether or not the temperature detected by the hot water storage temperature sensor 16 has dropped below the predetermined hot water storage temperature T1 in step S1 of the flowchart of FIG. 2, and the hot water in the hot water storage tank 10 is used as described above.
  • the control device 70 proceeds from step S1 to step S2, starts the operation of the compressor 31, the blower 34, and the water pump 23, and performs the boiling operation.
  • the controller 70 determines whether or not the temperature of the hot water supply water in the inlet pipe 22 detected by the incoming water temperature sensor 28 in step S3 is equal to or higher than a predetermined incoming water temperature T2 (T1 ⁇ T2), and is lower than the incoming water temperature T2. If so, continue boiling operation.
  • step S3 the control device 70 proceeds from step S3 to step S4, and stops the compressor 31 and the blower 34.
  • the water pump 23 continues to operate.
  • step S5 the control device 70 proceeds to step S5, and the temperature of the hot water in the hot water outlet pipe 26 on the hot water side of the water heat exchanger 40 detected by the hot water temperature sensor 29 is detected by the incoming water temperature sensor 28. It is determined whether or not the temperature of the hot water supply water in the water inlet pipe 22 on the water inlet side 40 has become lower than 40.
  • the control device 70 proceeds to step S6, stops the water pump 23, and ends the boiling operation. In this way, hot water of a predetermined high temperature is always stored in the hot water storage tank 10 during operation.
  • the control device 70 Even when the temperature detected by the hot water storage temperature sensor 16 is not lower than the hot water storage temperature T1, the control device 70 is compressed even when the time measured by the timer function after the end of the previous boiling operation reaches a predetermined time.
  • the machine 31, the blower 34, and the water pump 23 are operated, and the boiling operation is started. Thereafter, similarly, the operations in steps S3 to S6 are executed, and then the boiling operation is finished. 0045 In this way, the control device 70 performs a boiling operation for storing hot water supply water at a predetermined temperature in the hot water storage tank 10.
  • the hot water storage temperature sensor 16 for detecting the temperature of the hot water supply water in the hot water storage tank 10 is stored in the hot water storage tank 10.
  • the hot water storage temperature sensor 16 is connected to the control device 70, and the control device 70 performs a boiling operation based on the detected temperature of the hot water storage temperature sensor 16. Therefore, it is not necessary to provide a control device on the hot water storage tank 10 side, and a general-purpose product can be used as the hot water storage tank 10, which is highly versatile. (9) Freezing prevention operation (including backflow judgment) Next, the freeze prevention operation (including the backflow determination) executed by the control device 70 will be described with reference to the flowchart of FIG.
  • the inflow pipe 21 and the outflow pipe 27 that are mainly piped with a relatively long dimension outside the house are heat insulating materials (not shown) for the purpose of reducing the heat radiation of hot water flowing inside and preventing freezing.
  • the control device 70 performs the freeze prevention operation for the inflow pipe 21 and the outflow pipe 27. That is, when the water pump 23 is stopped, the control device 70 detects the temperature of the hot water supply water on the water inlet side of the water heat exchanger 40 provided in the heating unit 50 and the water heat exchanger.
  • the temperature of hot water supply water detected by the hot water temperature sensor 29 for detecting the temperature of hot water supply water 40 on the side of the hot water 40 is constantly monitored, and the detected temperature of the incoming water temperature sensor 28 or the hot water temperature sensor 29 is a predetermined value T3 in step S7 of FIG. It is determined whether or not the temperature has fallen below (a predetermined low temperature higher than the freezing point). As is apparent from the flowchart of FIG. 2 described above, when the water pump 23 is stopped, the compressor 31 is also stopped (the same applies hereinafter). If the detected temperatures of the incoming water temperature sensor 28 and the hot water temperature sensor 29 are higher than the predetermined value T3, the process proceeds to step S8, and the control device 70 determines whether or not a predetermined backflow determination condition is satisfied.
  • the control device 70 returns to another control.
  • the control device 70 proceeds from step S7 to step S9. Then, the operation of the water pump 23 is started.
  • hot water supply water in the lower part of the hot water storage tank 10 is taken out to the water inlet pipe 21, passed through the water inlet pipe 22 and the water outlet pipe 24 to the water flow passage 42 of the water heat exchanger 40, and then the hot water outlet pipe.
  • the hot water supply circuit 20 is circulated so as to return to the upper part of the hot water storage tank 10 through the outflow pipe 27.
  • the control device 70 determines whether or not the predetermined time t1 has elapsed in step S10, and continues that state if it has not elapsed. After continuing the operation of the water pump 23 for a predetermined time t1, the control device 70 proceeds from step S10 to step S11, and next determines whether or not the detected temperature of the incoming water temperature sensor 28 is lower than the predetermined incoming water temperature T2. . When the detected temperature of the incoming water temperature sensor 28 is equal to or higher than the incoming water temperature T2 in step S11, the control device 70 proceeds to step S18 and stops the water pump 23.
  • step S11 when the detected temperature of the incoming water temperature sensor 28 is lower than the incoming water temperature T2 in step S11, the control device 70 proceeds to step S12 and determines whether or not a predetermined time t2 has elapsed.
  • the control device 70 proceeds to step S13 and starts operation of the compressor 31 and the blower 34. (The water pump 23 continues to operate).
  • the controller 70 starts the above-described boiling operation.
  • the control device 70 determines whether or not the temperature of the hot water supply water in the inlet pipe 22 detected by the incoming water temperature sensor 28 in step S14 is equal to or higher than the incoming water temperature T2, and if it is lower than the incoming water temperature T2, the boiling operation is performed.
  • the control device 70 proceeds from step S14 to step S15 and stops the compressor 31 and the blower 34 (the water pump 23 continues to operate).
  • the control device 70 proceeds to step S16, and the temperature of the hot water in the hot water outlet pipe 26 on the hot water side of the water heat exchanger 40 detected by the hot water temperature sensor 29 is detected by the incoming water temperature sensor 28. It is determined whether or not the temperature of the hot water supply water in the water inlet pipe 22 on the water inlet side 40 has become lower than 40.
  • the control device 70 proceeds to step S6, stops the water pump 23, and ends the freeze prevention operation.
  • the temperature detected by the incoming water temperature sensor 28 or the hot water temperature sensor 29 falls below the predetermined value T3, the hot water supply water is circulated in the hot water supply circuit 20, and when the temperature of the hot water supply water is low, the boiling operation is performed.
  • the hot water supply water having a high temperature flowing into the outflow pipe 27 eventually enters the heating unit 50 and reaches the water intake pipe 22 through the hot water discharge pipe 26, the water flow passage 42, the water discharge pipe 24, and the water pump 23. Accordingly, the detected temperatures of the hot water temperature sensor 29 and the incoming water temperature sensor 28 that detect the temperature of the hot water supply water in the hot water outlet pipe 26 and the incoming water pipe 22 do not become the predetermined value T3 or less. Therefore, in step S7 in the flowchart of FIG. 3, the process goes to step S9, and the freeze prevention operation is not executed. However, since the temperature does not increase up to the inflow pipe 21, if the outside air temperature decreases in winter or the like, the hot water supply water in the inflow pipe 21 will eventually freeze.
  • step S8 whether or not the reverse flow phenomenon occurs in step S8 even when the detected temperatures of the incoming water temperature sensor 28 and the hot water temperature sensor 29 do not become the predetermined value T3 or less in step S7 of the flowchart of FIG. Judgment is made.
  • (10-1) Backflow determination condition The backflow phenomenon can be detected by a temperature change of hot water in the heating unit 50. That is, when the previous boiling operation and freeze prevention operation are completed (the compressor 31 is stopped and the water pump 23 is also stopped), the detected temperatures of the incoming water temperature sensor 28 and the hot water temperature sensor 29 are lowered.
  • the backflow determination condition in this embodiment is as follows. That is, (I) The water pump 23 is stopped. (Ii) The temperature detected by the incoming water temperature sensor 28 or the hot water temperature sensor 29 has increased by a predetermined value or more. The condition (ii) may be that the temperature detected by the incoming water temperature sensor 28 or the hot water temperature sensor 29 once decreases and then increases and rises by a predetermined value or more.
  • the control device 70 detects the temperature of the hot water supply water of the hot water supply circuit 20 located in the heating unit 50, in the embodiment, the temperature of the hot water supply water 28 on the incoming water side of the water heat exchanger 40, or When the detected temperature of the hot water supply temperature sensor 29 for detecting the temperature of hot water supply water on the hot water side of the water heat exchanger 40 falls below a predetermined value T3, an antifreezing operation for operating the water pump 23 is performed and the water pump 23 When the temperature of the hot water supply water of the hot water supply circuit 20 located in the heating unit 50, in the embodiment, the detected temperature of the incoming water temperature sensor 28 or the outgoing hot water temperature sensor 29 rises, the water pump 23 is operated.
  • the water pump 23 is operated to circulate hot water supply water in the hot water supply circuit 20. It is possible to. Thereby, when the heating unit 50 is disposed at a position higher than the tank unit 60 as in the embodiment, or a part of the inflow pipe 21 and the outflow pipe 27 of the hot water supply circuit 20 is disposed at a position higher than the tank unit 60.
  • the anti-freezing operation is not executed due to the reverse flow phenomenon that is likely to occur when the torii piping is installed, and the inconvenience that the hot water in the inflow pipe 21 of the hot water supply circuit 20 is frozen can be avoided.
  • the temperature of the hot water supply water of the hot water supply circuit 20 located in the heating unit 50 (the detected temperature of the incoming water temperature sensor 28 or the outgoing hot water temperature sensor 29) is determined by the control device 70 in a state where the water pump 23 is stopped. In the case where the water pump 23 is operated when the water pump 23 is once increased and then turned up, it is possible to accurately determine the occurrence of the backflow phenomenon that occurs after the water pump 23 is stopped.
  • the control device 70 operates the water pump 23 for a predetermined time (t1 + t2) in the freeze prevention operation, the temperature of the hot water on the incoming side of the water heat exchanger 40 (the detected temperature of the incoming temperature sensor 28). Is a predetermined low value (a value lower than the incoming water temperature T2), it is possible to more smoothly realize prevention of freezing of the hot water supply circuit 20 by operating the compressor 31, but the control device 70 In the state where the water pump 23 is stopped, the temperature of the hot water supply water in the hot water supply circuit 20 located in the heating unit 50 (in the embodiment, the detected temperature of the incoming water temperature sensor 28 or the outgoing hot water temperature sensor 29) also increases.
  • the reverse flow determination conditions are not limited to those described above, and may be as follows. That is, (I) The water pump 23 is stopped. (Ii) The temperature detected by the incoming water temperature sensor 28 or the hot water temperature sensor 29 has risen by a predetermined value or more within a predetermined time. The condition (ii) may be that the temperature detected by the incoming water temperature sensor 28 or the hot water temperature sensor 29 once decreases, then starts increasing, and increases within a predetermined time by a predetermined value or more.
  • the control device 70 proceeds to step S9 when all of the above conditions (i) and (ii) are satisfied, the influence of the disturbance is eliminated and the occurrence of the backflow phenomenon is more accurately determined. Will be able to. (10-4) Backflow determination condition 3 Further, the reverse flow determination condition may be as follows. That is, (I) The water pump 23 is stopped.
  • condition (ii) is that the detected temperature of the incoming water temperature sensor 28 or the outgoing hot water temperature sensor 29 decreases once and then increases) It may be that it has turned over a predetermined value.
  • condition (ii) is that the detected temperature of the incoming water temperature sensor 28 or the outgoing hot water temperature sensor 29 decreases once and then increases) It may be that it has turned over a predetermined value.
  • the outside air temperature detected by the outside air temperature sensor 55 is below a predetermined value (a predetermined value lower than the predetermined value T3 and above the freezing point, such as 2 ° C.).
  • the reverse flow determination condition may be as follows. That is, (I) The water pump 23 is stopped. (Ii) The detected temperature of the incoming water temperature sensor 28 or the outgoing hot water temperature sensor 29 has increased by a predetermined value or more within a predetermined time (the condition (ii) is that the detected temperature of the incoming water temperature sensor 28 or the outgoing hot water temperature sensor 29 is temporarily lowered). After that, it may turn up and rise by a predetermined value or more within a predetermined time).
  • the outside air temperature detected by the outside air temperature sensor 55 is below a predetermined value (a predetermined value lower than the predetermined value T3 and above the freezing point, such as 2 ° C.). Then, even when the control device 70 proceeds to step S9 when all of the above conditions (i) to (iii) are satisfied, the reverse flow phenomenon in the low outside air temperature environment is accurately detected, and unnecessary water is The operation of the pump 23 can be avoided.
  • a predetermined value a predetermined value lower than the predetermined value T3 and above the freezing point, such as 2 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

部品点数を増加させること無く、貯湯タンクからの逆流現象によって凍結防止運転が実行されなくなる不都合を解消したヒートポンプ式給湯装置を提供する。制御装置(70)は、加熱ユニット(50)内に位置する給湯回路(20)の給湯用水の温度が所定値以下に低下した場合、水ポンプ(23)を運転する凍結防止運転を実行する。水ポンプ(23)が停止している状態で、加熱ユニット(50)内に位置する給湯回路(20)の給湯用水の温度が上昇した場合、水ポンプ(23)を運転する。

Description

ヒートポンプ式給湯装置
 本発明は、ヒートポンプ回路により貯湯タンク内の給湯用水を加熱するヒートポンプ式給湯装置に関するものである。
 従来、この種のヒートポンプ式給湯装置としては、給湯用水を貯留する貯湯タンクを内蔵したタンクユニットと、貯湯タンク内の給湯用水をポンプによって貯湯タンクの下部から取り出し、流入管を介して水熱交換器に流通させた後、流出管を介して貯湯タンクの上部に流入させる給湯回路と、この給湯回路の水熱交換器を流通する給湯用水を冷媒によって加熱するヒートポンプ回路を内蔵した加熱ユニットを備えたものが知られている(例えば、特許文献1参照)。
 また、上述した給湯回路の流入管や流出管は通常断熱されるが、この断熱が十分で無い場合や、冬季等に外気温度が極めて低くなる環境下では、上述した給湯回路の流入管や流出管内の給湯用水が凍結してしまう場合があった。流入管や流出管内で給湯用水が凍結すると、ポンプを運転しても給湯回路を循環させることができなくなると共に、結果的に加熱ユニット内の蒸発器に着霜が成長し、この着霜に送風機が当たって破損してしまう等の不都合が発生する。
 そこで、従来より加熱ユニット内に設けられた水熱交換器の入水側の給湯用水の温度を検出する入水温度センサ(入水温度検出手段)が所定の低い温度(但し、氷点より高い所定値)を検出した場合、ポンプを運転して貯湯タンク内の高温の給湯用水(湯)を給湯回路内に循環させる凍結防止運転を行っていた(例えば、特許文献2参照)。
特開2013−76512号公報 特開2014−196849号公報
 ここで、加熱ユニットは住居の屋根上等に設置され、タンクユニットは住居の地下室や住居外の地上に設置される場合が多い。このような設置状態では加熱ユニットはタンクユニットよりも高い位置となるため、ポンプが停止している状態で、冬季等に外気温が低下して流出管内の給湯用水の温度が低下すると、密度の差によって貯湯タンク内上部の高温の給湯用水(湯)が流出管に逆流する現象が発生する。
 このような逆流現象が発生すると、流出管の温度が上昇するため、やがて加熱ユニット内に位置する給湯回路の温度も上昇してくる。そして、水熱交換器の入水側の給湯用水の温度を検出する入水温度センサも前述した所定値を検出できなくなるため、凍結防止運転は実行されなくなる。
 しかしながら、加熱ユニットとタンクユニット間に位置する流入管までは温度は上がらないため、もともと温度が低い流入管内の給湯用水が凍結してしまい、給湯回路内の給湯用水の循環が阻害されると云う不都合が発生していた。このような逆流現象を防止する手段として、流出管に逆止弁(貯湯タンク方向が順方向)等を取り付けることが考えられるが、部品点数の増加となり、コストアップに繋がる。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、部品点数を増加させること無く、貯湯タンクからの逆流現象によって凍結防止運転が実行されなくなる不都合を解消したヒートポンプ式給湯装置を提供することを目的とする。
 本発明のヒートポンプ式給湯装置は、圧縮機、水熱交換器、減圧装置、及び、蒸発器を接続して成るヒートポンプ回路が設けられた加熱ユニットと、給湯用水を貯留する貯湯タンクが設けられたタンクユニットと、貯湯タンク内の給湯用水を水ポンプによって貯湯タンクの下部から取り出し、水熱交換器に流通させた後、貯湯タンクの上部に流入させる給湯回路と、水ポンプと圧縮機を運転することにより、水熱交換器を流通する給湯用水を冷媒によって加熱する沸き上げ運転を実行する制御装置と、を備えたものであって、制御装置は、加熱ユニット内に位置する給湯回路の給湯用水の温度が所定値以下に低下した場合、水ポンプを運転する凍結防止運転を実行すると共に、水ポンプが停止している状態で、加熱ユニット内に位置する給湯回路の給湯用水の温度が上昇した場合、水ポンプを運転することを特徴とする。
 請求項2の発明のヒートポンプ式給湯装置は、上記発明において制御装置は、水ポンプが停止している状態で、加熱ユニット内に位置する給湯回路の給湯用水の温度が一旦低下した後、上昇に転じた場合、水ポンプを運転することを特徴とする。
 請求項3の発明のヒートポンプ式給湯装置は、上記各発明において制御装置は、水ポンプが停止している状態で、加熱ユニット内に位置する給湯回路の給湯用水の温度が、所定時間以内に所定値以上、上昇した場合、水ポンプを運転することを特徴とする。
 請求項4の発明のヒートポンプ式給湯装置は、上記各発明において制御装置は、外気温度が所定値以下であり、且つ、水ポンプが停止している状態で、加熱ユニット内に位置する給湯回路の給湯用水の温度が上昇した場合、水ポンプを運転することを特徴とする。
 請求項5の発明のヒートポンプ式給湯装置は、上記各発明において制御装置は凍結防止運転において、水ポンプを所定時間運転しても水熱交換器の入水側の給湯用水の温度が所定の低い値である場合、圧縮機を運転することを特徴とする。
 請求項6の発明のヒートポンプ式給湯装置は、上記発明において制御装置は、水ポンプが停止している状態で、加熱ユニット内に位置する給湯回路の給湯用水の温度が上昇した場合、凍結防止運転を実行することを特徴とする。
 請求項7の発明のヒートポンプ式給湯装置は、上記各発明において加熱ユニット内に位置する給湯回路の給湯用水の温度は、水熱交換器の入水側の給湯用水の温度、又は、水熱交換器の出湯側の給湯用水の温度であることを特徴とする。
 請求項8の発明のヒートポンプ式給湯装置は、上記各発明において加熱ユニットがタンクユニットより高い位置に配置されていることを特徴とする。
 請求項9の発明のヒートポンプ式給湯装置は、上記各発明において給湯回路は、加熱ユニットとタンクユニット間に位置して貯湯タンク内の給湯用水を当該貯湯タンクの下部から取り出すための流入管、及び、水熱交換器を流通した後の給湯用水を貯湯タンクの上部に流入させるための流出管を有し、流入管、及び、流出管の少なくとも一部が、タンクユニットより高い位置に配設されていることを特徴とする。
 本発明によれば、圧縮機、水熱交換器、減圧装置、及び、蒸発器を接続して成るヒートポンプ回路が設けられた加熱ユニットと、給湯用水を貯留する貯湯タンクが設けられたタンクユニットと、貯湯タンク内の給湯用水を水ポンプによって貯湯タンクの下部から取り出し、水熱交換器に流通させた後、貯湯タンクの上部に流入させる給湯回路と、水ポンプと圧縮機を運転することにより、水熱交換器を流通する給湯用水を冷媒によって加熱する沸き上げ運転を実行する制御装置と、を備えたヒートポンプ式給湯装置において、制御装置が、加熱ユニット内に位置する給湯回路の給湯用水の温度、例えば、請求項7の発明の如き水熱交換器の入水側の給湯用水の温度、又は、水熱交換器の出湯側の給湯用水の温度が所定値以下に低下した場合、水ポンプを運転する凍結防止運転を実行するときに、水ポンプが停止している状態で、加熱ユニット内に位置する給湯回路の給湯用水の温度が上昇した場合、水ポンプを運転するようにしたので、貯湯タンクからの高温の給湯用水(湯)の逆流現象が給湯回路に発生した場合に、水ポンプを運転して給湯回路内に給湯用水を循環させることができるようになる。
 これにより、例えば請求項8の発明の如く加熱ユニットがタンクユニットより高い位置に配置された場合や、請求項9の発明の如く給湯回路の流入管と流出管の少なくとも一部がタンクユニットより高い位置に配設されているときに発生し易い逆流現象で凍結防止運転が実行され無くなり、給湯回路が凍結してしまう不都合を未然に回避することができるようになる。また、給湯回路に逆止弁等を設ける必要もなくなるので、部品点数の増加に伴うコストの高騰も防ぐことができるものである。
 また、請求項2の発明によれば、上記発明に加えて制御装置が、水ポンプが停止している状態で、加熱ユニット内に位置する給湯回路の給湯用水の温度が一旦低下した後、上昇に転じた場合、水ポンプを運転するようにしたので、水ポンプの停止後に発生する逆流現象の発生を的確に判定することができるようになる。
 また、請求項3の発明によれば、上記各発明に加えて制御装置が、水ポンプが停止している状態で、加熱ユニット内に位置する給湯回路の給湯用水の温度が、所定時間以内に所定値以上、上昇した場合、水ポンプを運転するようにしたので、逆流現象の発生をより的確に判定することができるようになる。
 また、請求項4の発明によれば、上記各発明に加えて制御装置が、外気温度が所定値以下であり、且つ、水ポンプが停止している状態で、加熱ユニット内に位置する給湯回路の給湯用水の温度が上昇した場合、水ポンプを運転するようにしたので、低外気温度環境下での逆流現象を的確に検出し、無用な水ポンプの運転を回避することができるようになる。
 ここで、請求項5の発明の如く制御装置が、凍結防止運転において水ポンプを所定時間運転しても水熱交換器の入水側の給湯用水の温度が所定の低い値である場合、圧縮機を運転することで、給湯回路の凍結防止をより円滑に実現することができるようになるが、請求項6の発明の如く制御装置が、水ポンプが停止している状態で、加熱ユニット内に位置する給湯回路の給湯用水の温度が上昇した場合にも係る凍結防止運転を実行するようにすれば、逆流現象が発生した場合の給湯回路の凍結をより確実に防止することができるようになる。
本発明を適用した一実施形態としてのヒートポンプ式給湯装置の構成図である。 図1のヒートポンプ式給湯装置の制御装置が実行する沸き上げ運転のフローチャートである。 図1のヒートポンプ式給湯装置の制御装置が実行する凍結防止運転(逆流判定を含む)のフローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
 (1)ヒートポンプ式給湯装置1
 実施例のヒートポンプ式給湯装置1は、給湯用水を貯留する貯湯タンク10と、貯湯タンク10の給湯用水を流通させる給湯回路20と、冷媒を流通させるヒートポンプ回路30と、給湯回路20の給湯用水とヒートポンプ回路30の冷媒とを熱交換させる水熱交換器40を備えており、給湯回路20を流通する給湯用水をヒートポンプ回路30の冷媒によって加熱するように構成されている。
 (2)貯湯タンク10
 前記貯湯タンク10は縦長の密閉容器から成り、住居外の地上、又は、地下室等に設置される。貯湯タンク10の下部には水道水を導入するための給水配管11が接続されている。また、給水配管11には減圧弁12が設けられている。貯湯タンク10の上部には、貯湯タンク10内の湯を住居内の給湯先に供給するための給湯配管13が接続され、給湯配管13と給水配管11はバイパス管14を介して接続されている。
 給湯配管13とバイパス管14との間には混合弁15が設けられ、混合弁15は、貯湯タンク10内の湯と給水配管11からの水を混合して給湯配管13に流通させるように構成されている。また、貯湯タンク10には、貯湯タンク10内の給湯用水の温度を検出する貯湯温度センサ16が設けられ、この貯湯温度センサ16は貯湯タンク10の上下方向の所定箇所(実施例では略中央)に取り付けられている。
 (3)給湯回路20
 前記給湯回路20は、貯湯タンク10の下部と後述する加熱ユニット50の外装ケース51の外面に取り付けられた流入側の接続口52との間に接続された流入管21と、水ポンプ23と、この水ポンプ23の吸入側と接続口52との間に接続された入水管22と、水ポンプ23の吐出側と水熱交換器40の流入側の間に接続された出水管24と、水熱交換器40の流出側と外装ケース51の外面に取り付けられた流出側の接続口54との間に接続された出湯管26と、接続口54と貯湯タンク10の上部に接続された流出管27とから構成されており、入水管22には貯湯タンク10の下部から取り出された給湯用水の温度(水熱交換器40の入水側の給湯用水の温度)を検出する入水温度センサ28が設けられ、出湯管26には水熱交換器40を流通した後の給湯用水の温度(水熱交換器40の出湯側の給湯用水の温度)を検出する出湯温度センサ29が設けられている。
 この給湯回路20には、内部の水を抜くための水抜き栓18が設けられている。この水抜き栓18も加熱ユニット50の外装ケース51の外面に取り付けられており、水抜き管19を介して入水管22に連通接続されている。尚、52A、54Aは、接続口52及び54に設けられた空気抜き弁であり、25は入水管22に設けられたフィルタである。また、55は外装ケース51内に取り付けられて外気温度を検出する外気温度センサである。
 (4)ヒートポンプ回路30
 前記ヒートポンプ回路30は、圧縮機31、前記水熱交換器40、減圧装置としての膨張弁33、及び、蒸発器32を接続して冷媒回路が構成されており、圧縮機31、水熱交換器40、膨張弁33、蒸発器32、圧縮機31の順に冷媒を流通させるように構成されている。尚、このヒートポンプ回路30で使用される冷媒は、例えばCO(二酸化炭素)等の自然系冷媒である。また、34は蒸発器32に外気を通風するための送風機である。
 前記水熱交換器40は、冷媒流通路41と水流通路42を有する二重管型の熱交換器から構成されており、冷媒流通路41にはヒートポンプ回路30が接続され、水流通路42には給湯回路20の出水管24及び出湯管26が接続されている。
 実施例のヒートポンプ式給湯装置1は、水ポンプ23、ヒートポンプ回路30、水熱交換器40、入水温度センサ28、及び、出湯温度センサ29等が設けられた前記加熱ユニット50と、貯湯タンク10及び貯湯温度センサ16が設けられたタンクユニット60を備えており、加熱ユニット50とタンクユニット60が、加熱ユニット50の外装ケース51に取り付けられた接続口52、54において、給湯回路20の流入管21と流出管27を介して接続される。
 この加熱ユニット50は住居の屋根上等に設置される場合が多く、実施例の場合にも加熱ユニット50は住居の屋根上に設置され、貯湯タンク10を含むタンクユニット60は地下室に設置されており、加熱ユニット50と貯湯タンク10とを結ぶ給湯回路20の流入管21、及び、流出管27は十数メートルの長さとなり、地下室の貯湯タンク10から屋根上の加熱ユニット50に向けて、住居外を上昇するかたちで配管されている。
 尚、加熱ユニット50が住居外の地上に設置される場合にも、地下室等に設置された貯湯タンク10に接続された流入管21及び流出管27の殆どの部分が屋根裏等を引き回される場合が多く(鳥居配管と称される)、この場合にも流入管21及び流出管27は貯湯タンク10から長い距離で一旦上昇した後、加熱ユニット50に向けて降下するかたちとなる。また、これら流入管21や流出管27は、内部を流れる給湯用水の放熱を減少させ、且つ、凍結を防ぐ目的で、通常は断熱材(図示せず)にて断熱される。
 (5)制御装置70
 また、ヒートポンプ式給湯装置1には、貯湯温度センサ16、入水温度センサ28、出湯温度センサ29、外気温度センサ55、圧縮機31、送風機34、及び、水ポンプ23が接続された制御装置70が設けられ、この制御装置70は加熱ユニット50の外装ケース51内に配置されている。制御装置70は、プログラムが格納されたCPU(マイクロコンピュータ)を備え、実施例では貯湯温度センサ16、入水温度センサ28、出湯温度センサ29、及び、外気温度センサ55の検出温度に基づいて圧縮機31、水ポンプ23、及び、送風機34を制御するように構成されている。また、制御装置70はタイマ機能を有しており、制御装置70には当該タイマ機能の設定その他の操作と、エラー表示等を行うためのリモコン(操作パネル)71が接続され、このリモコン71も外装ケース51内に配置されている。
 (6)給湯回路20内の給湯用水の循環
 この制御装置70により、給湯回路20の水ポンプ23が運転されると、貯湯タンク10内の給湯用水が貯湯タンク10の下部から取り出され、流入管21内を屋根上に向かって上昇する。流入管21内を上昇して接続口52から加熱ユニット50内に入った給湯用水は、入水管22、水ポンプ23、及び、出水管24を介して水熱交換器40の水流通路42を流通された後、出湯管26内を流れて接続口54から流出管27に至る。この流出管27に流入した給湯用水は当該流出管27内を降下し、貯湯タンク10内の上部に流入することになる。
 (7)ヒートポンプ回路30内の冷媒循環
 また、制御装置70により、ヒートポンプ回路30の圧縮機31が運転されると、圧縮機31から吐出された高温冷媒(二酸化炭素)が水熱交換器40の冷媒流通路41を流通され、冷媒流通路41の高温冷媒と水流通路42の給湯用水とが熱交換される。これにより、給湯回路20の給湯用水が水熱交換器40で加熱される。一方、高温冷媒は水熱交換器40で給湯用水を加熱することで温度が低下する。この冷媒は更に膨張弁33を通過することで低温低圧状態に膨張し、気液二相冷媒となる。この気液二相冷媒が蒸発器32に流入して蒸発する。この蒸発器32には送風機34により外気が通風されるので、冷媒は蒸発に伴う吸熱作用で外気から熱を汲み上げる。そして、蒸発器32で吸熱した冷媒は、圧縮機31に吸い込まれる循環を繰り返す。
 (8)沸き上げ運転
 また、給湯先で湯が使用されると、貯湯タンク10内の上部の給湯用水が給湯配管13に流出し、流出した分だけ給水配管11から貯湯タンク10内の下部に水が供給される。即ち、湯が使用されることにより、貯湯タンク10内の高温の給湯用水が減ると共に、低温の給湯用水が貯湯タンク10内の下部から増えていき、貯湯温度センサ16の検出温度が徐々に低下することになる。
 制御装置70は図2のフローチャートのステップS1で貯湯温度センサ16が検出する温度が所定の貯湯温度T1以下に低下したか否か判断しており、上述の如く貯湯タンク10内の湯が使用されて貯湯温度センサ16の検出温度が貯湯温度T1以下になると、制御装置70はステップS1からステップS2に進み、圧縮機31、送風機34、及び、水ポンプ23の運転を開始して、沸き上げ運転を始める。
 水熱交換器40の冷媒流通路41には高温冷媒が流通されるので、水流通路42に流通される給湯用水は加熱された後、貯湯タンク10に流入する。これによって、貯湯タンク10内には高温の湯が貯留されていく。制御装置70はステップS3で入水温度センサ28が検出する入水管22内の給湯用水の温度が所定の入水温度T2(T1<T2)以上になったか否か判断しており、入水温度T2より低い場合は沸き上げ運転を継続する。その後、入水温度センサ28の検出温度が入水温度T2以上になった場合、制御装置70はステップS3からステップS4に進み、圧縮機31及び送風機34を停止する。尚、水ポンプ23は運転を継続する。
 次に、制御装置70はステップS5に進み、出湯温度センサ29が検出する水熱交換器40の出湯側の出湯管26内の給湯用水の温度が、入水温度センサ28が検出する水熱交換器40の入水側の入水管22内の給湯用水の温度以下になったか否か判断する。そして、出湯温度センサ29の検出温度が入水温度センサ28の検出温度より高い場合には、そのまま水ポンプ23の運転を継続し、圧縮機31が停止した後の水熱交換器40の熱を回収する。
 その後、出湯温度センサ29の検出温度が入水温度センサ28の検出温度以下となった場合、制御装置70はステップS6に進んで水ポンプ23を停止し、沸き上げ運転を終了する。このようにして貯湯タンク10内には運転中、所定の高温度の湯が常時貯留されることになる。
 尚、貯湯温度センサ16の検出温度が前述した貯湯温度T1以下にならない場合でも、前回の沸き上げ運転終了から前記タイマ機能により計時した時間が所定時間となった場合にも、制御装置70は圧縮機31、送風機34、及び、水ポンプ23を運転し、沸き上げ運転を開始する。その後は同様にステップS3~ステップS6の動作を実行した後、沸き上げ運転を終了する。
 0045
 このようにして制御装置70は貯湯タンク10内に所定温度の給湯用水を貯留する沸き上げ運転を実行するものであるが、貯湯タンク10内の給湯用水の温度を検出する貯湯温度センサ16を貯湯タンク10の上下方向の所定箇所に設け、この貯湯温度センサ16を制御装置70に接続して、この貯湯温度センサ16の検出温度に基づいて制御装置70が沸き上げ運転を行うように構成したことで、貯湯タンク10側に制御装置を設ける必要がなくなり、貯湯タンク10として汎用品を使用することができるようになって、汎用性に富んだものとなる。
 (9)凍結防止運転(逆流判定を含む)
 次に、図3のフローチャートを参照しながら制御装置70が実行する凍結防止運転(逆流判定を含む)について説明する。前述した如く主に住居外に比較的長い寸法で配管される流入管21や流出管27は、内部を流れる給湯用水の放熱を減少させ、且つ、凍結を防ぐ目的で断熱材(図示せず)にて断熱されるが、この断熱が十分で無い場合や、冬季等に外気温度が極めて低くなる環境となると、給湯回路20の流入管21や流出管27内の給湯用水が凍結してしまう。
 そこで、制御装置70はこれら流入管21や流出管27の凍結防止運転を実行する。即ち、制御装置70は、水ポンプ23が停止しているとき、加熱ユニット50内に設けられた水熱交換器40の入水側の給湯用水の温度を検出する入水温度センサ28及び水熱交換器40の出湯側の給湯用水の温度を検出する出湯温度センサ29が検出する給湯用水の温度を常時監視し、図3のステップS7で入水温度センサ28又は出湯温度センサ29の検出温度が所定値T3(氷点より高い所定の低い温度)以下に低下したか否か判断している。尚、前述した図2のフローチャートでも明らかな如く、水ポンプ23が停止しているときは圧縮機31も停止している(以下、同様)。
 そして、入水温度センサ28及び出湯温度センサ29の検出温度が所定値T3より高い場合はステップS8に進み、制御装置70は所定の逆流判定条件が成立しているか否か判定する。この逆流判定条件については後述する。現在は逆流判定条件は成立していないものとすると制御装置70は他の制御に戻る。
 水ポンプ23が停止している状態で、外気温度の低下等により入水温度センサ28又は出湯温度センサ29の検出温度が所定値T3以下に低下した場合、制御装置70はステップS7からステップS9に進んで水ポンプ23の運転を開始する。この水ポンプ23の運転により、貯湯タンク10内下部の給湯用水が入水管21に取り出され、入水管22、出水管24を経て水熱交換器40の水流通路42に流通された後、出湯管26、流出管27を経て貯湯タンク10内上部に戻るように給湯回路20内を循環される。
 次に制御装置70は、ステップS10で所定時間t1が経過したか否か判断し、経過していなければその状態を継続する。この水ポンプ23の運転を所定時間t1継続した後、制御装置70はステップS10からステップS11に進み、次に入水温度センサ28の検出温度が前述した所定の入水温度T2より低いか否か判断する。そして、ステップS11で入水温度センサ28の検出温度が入水温度T2以上であった場合、制御装置70はステップS18に進んで水ポンプ23を停止する。
 一方、ステップS11で入水温度センサ28の検出温度が入水温度T2より低い場合、制御装置70はステップS12に進み、所定時間t2が経過したか否か判断する。そして、ステップS11で入水温度センサ28の検出温度が入水温度T2より低い状態がステップS12で所定時間t2継続した場合、制御装置70はステップS13に進んで圧縮機31及び送風機34の運転を開始する(水ポンプ23は運転を継続)。即ち、水ポンプ23を所定時間t1+t2の間運転しても入水温度センサ28の検出温度が入水温度T2以上となら無い場合、制御装置70は前述した沸き上げ運転を開始することになる。
 次に、制御装置70はステップS14で入水温度センサ28が検出する入水管22内の給湯用水の温度が入水温度T2以上になったか否か判断し、入水温度T2より低い場合は係る沸き上げ運転を継続する。その後、入水温度センサ28の検出温度が入水温度T2以上になった場合、制御装置70はステップS14からステップS15に進み、圧縮機31及び送風機34を停止する(水ポンプ23は運転を継続)。
 次に、制御装置70はステップS16に進み、出湯温度センサ29が検出する水熱交換器40の出湯側の出湯管26内の給湯用水の温度が、入水温度センサ28が検出する水熱交換器40の入水側の入水管22内の給湯用水の温度以下になったか否か判断する。そして、出湯温度センサ29の検出温度が入水温度センサ28の検出温度より高い場合には、そのまま水ポンプ23の運転を継続し、前述同様に圧縮機31が停止した後の水熱交換器40の熱を回収する。
 その後、出湯温度センサ29の検出温度が入水温度センサ28の検出温度以下となった場合、制御装置70はステップS6に進んで水ポンプ23を停止し、凍結防止運転を終了する。このように入水温度センサ28又は出湯温度センサ29の検出温度が所定値T3以下に低下した場合、給湯回路20内に給湯用水が循環され、更に、給湯用水の温度が低い場合には沸き上げ運転も実行されることで、入水管21や出湯管27内の給湯用水の凍結を防止している。
 (10)逆流判定
 ここで、実施例のように加熱ユニット50が住居の屋根上に設置され、タンクユニット60が地下室に設置されている場合、加熱ユニット50はタンクユニット60の貯湯タンク10よりも高い位置となるため、水ポンプ23が停止している状態で、冬季等に外気温が低下して流出管27内の給湯用水の温度が低下すると、前述した如く密度の差によって貯湯タンク10内上部の高温の給湯用水(湯)が流出管27に逆流する。これは前述した鳥居配管の場合も同様である。
 この流出管27に流入した温度の高い給湯用水は、やがて加熱ユニット50に入り、出湯管26、水流通路42、出水管24、及び、水ポンプ23を経て入水管22まで至るため、それらの温度も上昇するため、出湯管26や入水管22内の給湯用水の温度を検出している出湯温度センサ29及び入水温度センサ28の検出温度は、前述した所定値T3以下にならなくなる。
 そのため、図3のフローチャートのステップS7ではステップS9に向かわなくなり、凍結防止運転を実行されなくなる。しかしながら、流入管21までは温度は上昇しないため、冬季等に外気温度が低下すると、やがてこの流入管21内の給湯用水が凍結してしまうようになる。そこで、実施例では図3のフローチャートのステップS7で入水温度センサ28及び出湯温度センサ29の検出温度が所定値T3以下にならない場合にも、ステップS8で係る逆流現象が発生しているか否かを判定するようにしている。
 (10−1)逆流判定条件
 係る逆流現象は、加熱ユニット50内の給湯用水の温度変化で検出することができる。即ち、前回の沸き上げ運転や凍結防止運転が終了(圧縮機31が停止し、その後水ポンプ23も停止)すると、入水温度センサ28及び出湯温度センサ29の検出温度は低下していく。しかしながら、この水ポンプ23が停止している状態で流出管27に高温の給湯用水が逆流入すると、一旦低下した入水温度センサ28及び出湯温度センサ29の検出温度が上昇に転ずるようになる。
 そこで、この実施例の場合の逆流判定条件は以下の通りとする。即ち、
 (i)水ポンプ23が停止していること。
 (ii)入水温度センサ28又は出湯温度センサ29の検出温度が所定値以上、上昇したこと。
 尚、上記条件(ii)は、入水温度センサ28又は出湯温度センサ29の検出温度が一旦低下した後、上昇に転じて所定値以上、上昇したことであっても良い。
 (10−2)逆流判定条件成立時の動作
 制御装置70は図3のフローチャートのステップS7で入水温度センサ28又は出湯温度センサ29の検出温度が所定値T3より高い場合、ステップS8に進んで上記逆流判定条件(i)、(ii)を判定しており、条件(i)及び(ii)の全てが成立した場合、流出管27に高温の給湯用水が逆流していると判断し、ステップS8からステップS9に進んで水ポンプ23の運転を開始する。以下はステップS10~ステップS18を実行することで、前述した凍結防止運転を実行し、水ポンプ23によって給湯回路20内に給湯用水を循環し、所定時間(t1+t2)運転しても依然その温度が低い場合には、圧縮機31も運転して沸き上げ運転と同様に給湯用水を加熱する。
 このように、制御装置70は加熱ユニット50内に位置する給湯回路20の給湯用水の温度、実施例では水熱交換器40の入水側の給湯用水の温度を検出する入水温度センサ28、又は、水熱交換器40の出湯側の給湯用水の温度を検出する出湯温度センサ29の検出温度が所定値T3以下に低下した場合、水ポンプ23を運転する凍結防止運転を実行すると共に、水ポンプ23が停止している状態で、加熱ユニット50内に位置する給湯回路20の給湯用水の温度、実施例では入水温度センサ28又は出湯温度センサ29の検出温度が上昇した場合、水ポンプ23を運転するようにしたので、貯湯タンク10からの高温の給湯用水(湯)の逆流現象が給湯回路20に発生した場合に、水ポンプ23を運転して給湯回路20内に給湯用水を循環させることができるようになる。
 これにより、実施例のように加熱ユニット50がタンクユニット60より高い位置に配置された場合や、給湯回路20の流入管21と流出管27の一部がタンクユニット60より高い位置に配設されている鳥居配管のときに発生し易い逆流現象で凍結防止運転が実行され無くなり、給湯回路20の流入管21内の給湯用水が凍結してしまう不都合を未然に回避することができるようになる。また、給湯回路20の流出管27に逆止弁等を設ける必要もなくなるので、部品点数の増加に伴うコストの高騰も防ぐことができる。
 尚、上記の如く制御装置70が、水ポンプ23が停止している状態で、加熱ユニット50内に位置する給湯回路20の給湯用水の温度(入水温度センサ28又は出湯温度センサ29の検出温度)が一旦低下した後、上昇に転じた場合に、水ポンプ23を運転するようにした場合には、水ポンプ23の停止後に発生する逆流現象の発生を的確に判定することができるようになる。
 また、実施例の如く制御装置70が、凍結防止運転において水ポンプ23を所定時間(t1+t2)運転しても水熱交換器40の入水側の給湯用水の温度(入水温度センサ28の検出温度)が所定の低い値(入水温度T2より低い値)である場合、圧縮機31を運転することで、給湯回路20の凍結防止をより円滑に実現することができるようになるが、制御装置70は、水ポンプ23が停止している状態で、加熱ユニット50内に位置する給湯回路20の給湯用水の温度(実施例では入水温度センサ28又は出湯温度センサ29の検出温度)が上昇した場合も、実施例では凍結防止運転を実行するので、逆流現象が発生した場合の給湯回路20の流入管21の凍結をより確実に防止することができるようになる。
 (10−3)逆流判定条件2
 ここで、逆流判定条件は前述したものに限らず、以下のようであっても良い。即ち、
 (i)水ポンプ23が停止していること。
 (ii)入水温度センサ28又は出湯温度センサ29の検出温度が、所定時間以内に所定値以上、上昇したこと。
 尚、上記条件(ii)は、入水温度センサ28又は出湯温度センサ29の検出温度が一旦低下した後、上昇に転じて所定時間以内に所定値以上、上昇したことであっても良い。
 そして、制御装置70が上記条件(i)及び(ii)の全てが成立しているときに、ステップS9に進むようにすれば、外乱の影響を廃して、逆流現象の発生をより的確に判定することができるようになる。
 (10−4)逆流判定条件3
 また、逆流判定条件は更に以下のようであっても良い。即ち、
 (i)水ポンプ23が停止していること。
 (ii)入水温度センサ28又は出湯温度センサ29の検出温度が所定値以上、上昇したこと(条件(ii)は、入水温度センサ28又は出湯温度センサ29の検出温度が一旦低下した後、上昇に転じて所定値以上、上昇したことであっても良い)。
 (iii)外気温度センサ55が検出する外気温度が所定値(所定値T3より低く、氷点以上の所定値。例えば、2℃等)以下であること。
 そして、制御装置70が上記条件(i)~(iii)の全てが成立しているときに、ステップS9に進むようにすれば、低外気温度環境下での逆流現象を的確に検出し、無用な水ポンプ23の運転を回避することができるようになる。
 (10−5)逆流判定条件4
 更に、逆流判定条件は更に以下のようであっても良い。即ち、
 (i)水ポンプ23が停止していること。
 (ii)入水温度センサ28又は出湯温度センサ29の検出温度が、所定時間以内に所定値以上、上昇したこと(条件(ii)は、入水温度センサ28又は出湯温度センサ29の検出温度が一旦低下した後、上昇に転じて所定時間以内に所定値以上、上昇したことであっても良い)。
 (iii)外気温度センサ55が検出する外気温度が所定値(所定値T3より低く、氷点以上の所定値。例えば、2℃等)以下であること。
 そして、制御装置70が上記条件(i)~(iii)の全てが成立しているときに、ステップS9に進むようにしても、低外気温度環境下での逆流現象を的確に検出し、無用な水ポンプ23の運転を回避することができるようになる。
 尚、以上は本発明の好ましい実施形態で説明したが、本発明は上述した実施形態に制限されるものでは無く、本発明の技術的思想に基づいて更なる変形等が可能であることは云うまでもない。
 1 ヒートポンプ式給湯装置
 10 貯湯タンク
 16 貯湯温度センサ
 20 給湯回路
 21 流入管
 22 入水管
 23 水ポンプ
 24 出水管
 26 出湯管
 27 流出管
 28 入水温度センサ
 29 出湯温度センサ
 30 ヒートポンプ回路
 31 圧縮機
 32 蒸発器
 33 膨張弁
 34 送風機
 40 水熱交換器
 41 冷媒流通路
 42 水流通路
 50 加熱ユニット
 55 外気温度センサ
 60 タンクユニット
 70 制御装置

Claims (9)

  1.  圧縮機、水熱交換器、減圧装置、及び、蒸発器を接続して成るヒートポンプ回路が設けられた加熱ユニットと、
     給湯用水を貯留する貯湯タンクが設けられたタンクユニットと、
     前記貯湯タンク内の給湯用水を水ポンプによって前記貯湯タンクの下部から取り出し、前記水熱交換器に流通させた後、前記貯湯タンクの上部に流入させる給湯回路と、
     前記水ポンプと前記圧縮機を運転することにより、前記水熱交換器を流通する給湯用水を冷媒によって加熱する沸き上げ運転を実行する制御装置と、を備えたヒートポンプ式給湯装置において、
     前記制御装置は、前記加熱ユニット内に位置する前記給湯回路の給湯用水の温度が所定値以下に低下した場合、前記水ポンプを運転する凍結防止運転を実行すると共に、
     前記水ポンプが停止している状態で、前記加熱ユニット内に位置する前記給湯回路の給湯用水の温度が上昇した場合、前記水ポンプを運転することを特徴とするヒートポンプ式給湯装置。
  2.  前記制御装置は、前記水ポンプが停止している状態で、前記加熱ユニット内に位置する前記給湯回路の給湯用水の温度が一旦低下した後、上昇に転じた場合、前記水ポンプを運転することを特徴とする請求項1に記載ヒートポンプ式給湯装置。
  3.  前記制御装置は、前記水ポンプが停止している状態で、前記加熱ユニット内に位置する前記給湯回路の給湯用水の温度が、所定時間以内に所定値以上、上昇した場合、前記水ポンプを運転することを特徴とする請求項1又は請求項2に記載ヒートポンプ式給湯装置。
  4.  前記制御装置は、外気温度が所定値以下であり、且つ、前記水ポンプが停止している状態で、前記加熱ユニット内に位置する前記給湯回路の給湯用水の温度が上昇した場合、前記水ポンプを運転することを特徴とする請求項1乃至請求項3のうちの何れかに記載のヒートポンプ式給湯装置。
  5.  前記制御装置は前記凍結防止運転において、前記水ポンプを所定時間運転しても前記水熱交換器の入水側の給湯用水の温度が所定の低い値である場合、前記圧縮機を運転することを特徴とする請求項1乃至請求項4のうちの何れかに記載のヒートポンプ式給湯装置。
  6.  前記制御装置は、前記水ポンプが停止している状態で、前記加熱ユニット内に位置する前記給湯回路の給湯用水の温度が上昇した場合、前記凍結防止運転を実行することを特徴とする請求項5に記載のヒートポンプ式給湯装置。
  7.  前記加熱ユニット内に位置する前記給湯回路の給湯用水の温度は、前記水熱交換器の入水側の給湯用水の温度、又は、前記水熱交換器の出湯側の給湯用水の温度であることを特徴とする請求項1乃至請求項6のうちの何れかに記載のヒートポンプ式給湯装置。
  8.  前記加熱ユニットが前記タンクユニットより高い位置に配置されていることを特徴とする請求項1乃至請求項7のうちの何れかに記載のヒートポンプ式給湯装置。
  9.  前記給湯回路は、前記加熱ユニットと前記タンクユニット間に位置して前記貯湯タンク内の給湯用水を当該貯湯タンクの下部から取り出すための流入管、及び、前記水熱交換器を流通した後の給湯用水を前記貯湯タンクの上部に流入させるための流出管を有し、
     前記流入管、及び、流出管の少なくとも一部が、前記タンクユニットより高い位置に配設されていることを特徴とする請求項1乃至請求項8のうちの何れかに記載のヒートポンプ式給湯装置。
PCT/JP2017/018601 2016-05-31 2017-05-11 ヒートポンプ式給湯装置 WO2017208831A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/305,622 US20200173686A1 (en) 2016-05-31 2017-05-11 Heat pump type hot water supplying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-108619 2016-05-31
JP2016108619A JP2017215088A (ja) 2016-05-31 2016-05-31 ヒートポンプ式給湯装置

Publications (1)

Publication Number Publication Date
WO2017208831A1 true WO2017208831A1 (ja) 2017-12-07

Family

ID=60478432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018601 WO2017208831A1 (ja) 2016-05-31 2017-05-11 ヒートポンプ式給湯装置

Country Status (3)

Country Link
US (1) US20200173686A1 (ja)
JP (1) JP2017215088A (ja)
WO (1) WO2017208831A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016112851A1 (de) * 2016-07-13 2018-01-18 Viessmann Werke Gmbh & Co Kg Kältemodul
CN112902444A (zh) * 2021-02-09 2021-06-04 珠海格力电器股份有限公司 一种热泵水机的防冻保护方法、设备、装置和空调

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048399A (ja) * 2000-07-31 2002-02-15 Daikin Ind Ltd ヒートポンプ式給湯装置
JP2014062713A (ja) * 2012-09-24 2014-04-10 Rinnai Corp 熱供給システム
JP2015108467A (ja) * 2013-12-04 2015-06-11 パナソニックIpマネジメント株式会社 ヒートポンプ給湯機
JP2015194274A (ja) * 2014-03-31 2015-11-05 ダイキン工業株式会社 給湯装置
JP2016151366A (ja) * 2015-02-16 2016-08-22 リンナイ株式会社 温水加熱システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048399A (ja) * 2000-07-31 2002-02-15 Daikin Ind Ltd ヒートポンプ式給湯装置
JP2014062713A (ja) * 2012-09-24 2014-04-10 Rinnai Corp 熱供給システム
JP2015108467A (ja) * 2013-12-04 2015-06-11 パナソニックIpマネジメント株式会社 ヒートポンプ給湯機
JP2015194274A (ja) * 2014-03-31 2015-11-05 ダイキン工業株式会社 給湯装置
JP2016151366A (ja) * 2015-02-16 2016-08-22 リンナイ株式会社 温水加熱システム

Also Published As

Publication number Publication date
US20200173686A1 (en) 2020-06-04
JP2017215088A (ja) 2017-12-07

Similar Documents

Publication Publication Date Title
JP5185091B2 (ja) ヒートポンプ式給湯システム
EP2623897B1 (en) Refrigeration cycle equipment
EP2725305A2 (en) Hot-Water Supply Apparatus And Control Method Of The Same
JP7135493B2 (ja) ヒートポンプ給湯装置
KR101723419B1 (ko) 히트펌프 시스템
WO2017208831A1 (ja) ヒートポンプ式給湯装置
JP4089745B2 (ja) ヒートポンプ給湯装置
JP6551783B2 (ja) ヒートポンプ装置およびこれを備えた給湯装置
JP5318678B2 (ja) 貯湯式給湯装置
JP2011075200A (ja) ヒートポンプ給湯装置
JP6465332B2 (ja) ヒートポンプ給湯システム
JP5659610B2 (ja) ヒートポンプ装置
JP6152063B2 (ja) ヒートポンプ貯湯式給湯装置
JP5836899B2 (ja) 給湯機
JP3969383B2 (ja) ヒートポンプ給湯装置
JP5287821B2 (ja) 空気調和機
JP2009287794A (ja) ヒートポンプ式給湯機
JP2007057148A (ja) ヒートポンプ給湯装置
JP2005188923A (ja) ヒートポンプ給湯機
JP2009085476A (ja) ヒートポンプ給湯装置
JP2007010297A (ja) 給湯装置
JP4222993B2 (ja) 給湯装置
JP2016023920A (ja) ヒートポンプ給湯システム
JP5899344B2 (ja) ヒートポンプシステム
JP5797616B2 (ja) 給湯機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806389

Country of ref document: EP

Kind code of ref document: A1