WO2017208673A1 - 光センサ、電子機器 - Google Patents
光センサ、電子機器 Download PDFInfo
- Publication number
- WO2017208673A1 WO2017208673A1 PCT/JP2017/016069 JP2017016069W WO2017208673A1 WO 2017208673 A1 WO2017208673 A1 WO 2017208673A1 JP 2017016069 W JP2017016069 W JP 2017016069W WO 2017208673 A1 WO2017208673 A1 WO 2017208673A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- period
- pulse
- light
- optical sensor
- light receiving
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4865—Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
- G01S17/14—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4861—Circuits for detection, sampling, integration or read-out
- G01S7/4863—Detector arrays, e.g. charge-transfer gates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
Definitions
- the present invention relates to an optical sensor and an electronic device incorporating the optical sensor.
- an avalanche photodiode using avalanche amplification (avalanche) effect of a photodiode is used as a light receiving element that detects faint light at high speed (for example, Patent Document 1).
- the avalanche photodiode operates in a linear mode when a reverse bias voltage lower than the breakdown voltage (breakdown voltage) is applied, and the output current varies so as to have a positive correlation with the amount of received light.
- the avalanche photodiode operates as a Geiger mode when a reverse bias voltage equal to or higher than the breakdown voltage is applied.
- the Geiger-mode avalanche photodiode causes an avalanche phenomenon even when a single photon is incident, so that a large output current can be obtained. For this reason, the Geiger mode avalanche photodiode is called a single photon avalanche diode (SPAD).
- SBAD single photon avalanche diode
- Binary pulse output can be obtained by adding a quenching resistor in series to a Geiger mode avalanche photodiode.
- a quenching resistor in series to a Geiger mode avalanche photodiode.
- Such a circuit includes, for example, a photodiode PD10, an active quenching resistor R10 (a resistance component of a MOS transistor), and a buffer BUF10 as shown in FIG.
- the photodiode PD10 is a Geiger mode avalanche photodiode, and when a bias voltage higher than the breakdown voltage is applied, an avalanche phenomenon occurs with respect to incidence of a single photon, and a current flows. As current flows through the active quenching resistor R10 connected in series with the photodiode PD10, the voltage between the terminals of the active quenching resistor R10 increases, and accordingly, the bias voltage of the photodiode PD10 decreases, and the avalanche phenomenon is Stop.
- the buffer BUF10 extracts a voltage change between the photodiode PD10 and the active quenching resistor R10 as a binary pulse output.
- the SPAD is used to input reflected light and direct light from a light emitting element to different Delay Locked Loop circuits (DLLs), and to calculate the delay amount between two DLL output pulses as a digital value.
- DLLs Delay Locked Loop circuits
- Disclosed is a method for measuring distance by a method of converting to.
- Patent Document 2 discloses a method of correcting an error occurring on the long distance side by a distance after measurement with a count value of a housing panel signal. For this correction, it is necessary to set the light emission width (light emission cycle) of the light emitting element to be long, and to create a portion (delay amount) where the signal width due to the case panel reflection and the signal width due to the detection target object reflection overlap. In this case, if the light emission width is long, the signal is likely to be biased, which leads to an error. Moreover, since the delay amount is small on the short distance side, in order to obtain a portion where the signal widths necessary for correction overlap, the light emission width must be relatively long, and the error with respect to the distance measurement value is also relatively large. growing. In particular, this problem becomes prominent when the light emission width is increased for long distances.
- the present invention has been made in view of the above-mentioned problem of long distances, and its purpose is to maintain the measurement accuracy at a short distance and to detect the long distance when a housing panel exists between the object to be detected.
- An object of the present invention is to realize an optical sensor capable of achieving both maintenance of measurement accuracy.
- an optical sensor includes a light-emitting element, a photon-counting first light-receiving unit that outputs a pulse synchronized with photon incidence by reflected light from an object, and the like.
- a photon-counting second light-receiving unit disposed in the vicinity of the light-emitting element that outputs a pulse synchronized with photon incidence by reflected light inside the sensor package, and pulse outputs from the first and second light-receiving units A time difference extraction circuit that extracts a time difference corresponding to a distance on a spatial light path using a reference clock, and a first digital operation that counts the number of pulses from the pulse output of the first light receiving unit and outputs a digital value Output from the first digital calculation unit within the distance measurement period when the reference value is the number of pulses that can obtain sufficient measurement accuracy of the measurement distance to the object and the object Digital values, depending on whether exceeds the reference value, is characterized in that it comprises a, a cycle changing circuit for changing the light emission period and the period of the reference clock of the light-emitting element.
- FIG. 2 is a block diagram of a reference pulse generation circuit constituting the optical sensor shown in FIG. 1. It is a flowchart which shows the flow of the process of mode switching of the optical sensor shown in FIG. It is a graph showing the characteristic of a detection target and a count value.
- FIG. 1 It is the schematic which shows the light reception path
- FIG. 16 is a block diagram of a reference pulse generation circuit constituting the photosensor shown in FIG. 15.
- FIG. 16 is a waveform diagram showing an operation in a mask mode in the photosensor shown in FIG. 15. It is a wave form diagram which shows the operation
- FIG. 16 is a waveform diagram showing an operation in a normal mode in the photosensor shown in FIG. 15.
- It is a wave form diagram which shows the conditions which transfer to the normal mode in the optical sensor shown in FIG. FIG.
- FIG. 16 is a waveform diagram showing an operation in a normal mode in the photosensor shown in FIG. 15. It is a wave form diagram which shows the conditions which transfer to the mask mode in the optical sensor shown in FIG.
- FIG. 16 is a waveform diagram showing an operation in a mask mode in the photosensor shown in FIG. 15.
- DLL which comprises the optical sensor which concerns on Embodiment 3 of this invention.
- reference pulse generation circuit which comprises the optical sensor which concerns on Embodiment 3 of this invention.
- It is a wave form diagram which shows the initial value setting of DLL shown in FIG. It is a wave form diagram which shows the relationship between the initial value of DLL shown in FIG. 26, and the delay corresponding to a detection target object.
- Embodiment 1 Hereinafter, embodiments of the present invention will be described in detail.
- FIG. 1 is a block diagram illustrating a schematic configuration of an optical sensor 101 according to the present embodiment.
- the optical sensor 101 includes a photon count type first light receiving unit 11 that outputs a pulse synchronized with photon incidence by reflected light from the detection target S (object), and reflection inside the sensor package.
- the photon count type second light receiving unit 12 disposed in the vicinity of the light emitting element 18, which outputs a pulse synchronized with photon incidence by light (including direct light from the light emitting element 18), the first light receiving unit 11
- a first digital calculation unit 13 that counts the number of pulses from the pulse output and outputs a digital value
- a second digital calculation unit 14 that counts the number of pulses from the pulse output of the second light receiving unit 12 and outputs a digital value.
- the determination circuit unit 15 for determining whether the digital value output from the first digital calculation unit 13 exceeds the reference value, and the driver 17 (driver circuit)
- a reference pulse generation circuit 16 that gives a quasi-pulse and gives a reference clock to the time difference extraction circuit 19, a driver (driver circuit) 17 that drives the light emitting element 18 in a pulsed manner, the light emitting element 18, the first light receiving part 11 and the second light receiving part 12 includes a time difference extraction circuit 19 for extracting the time difference of the pulse output from 12.
- the distance to the detection object S is obtained as follows. That is, pulse light is emitted from the light emitting element 18, reflected light from the detection target S is incident on the first light receiving unit 11, and reflected light (including direct light) from the inside of the sensor package is incident on the second light receiving unit 12. Then, pulses are output from the first light receiving unit 11 and the second light receiving unit 12 at a frequency according to the amount of light. This pulse output is input to the time difference extraction circuit 19 as a binary pulse output having a time difference corresponding to the difference in distance on the spatial light path.
- the time difference extraction circuit 19 uses this two inputs (pulse output of the first light receiving unit 11 and second light receiving unit). 12) and a reference clock output from the reference pulse generation circuit 16 are used to extract a time difference corresponding to the distance on the spatial light path and to obtain the distance to the detection object S (reflecting object). it can.
- the time difference extraction circuit 19 is a Delay Locked Loop circuit. By using DLL1 and DLL2, the time difference can be extracted by locking the outputs of DLL1 and DLL2 at the centers of the light receiving widths of the first light receiving unit 11 and the second light receiving unit 12, respectively.
- FIG. 2 is a circuit diagram illustrating a schematic configuration of the first light receiving unit 11 and the second light receiving unit 12.
- the first light receiving unit 11 includes a plurality of CELLs each including a photodiode PD1, an active quenching resistor R1 (a resistance component of a MOS transistor), and a buffer BUF1.
- the photodiode PD1 is a Geiger mode avalanche photodiode, and the amount of incident light is extracted as a binary pulse output by the active quenching resistor R1 and the buffer BUF1.
- the output pulse of the first light receiving unit 11 is subjected to OR calculation with OR1, the number of pulses is counted by the first digital calculation unit 13, and the digital value is output to the determination circuit unit 15.
- FIG. 3 is a diagram for explaining the operation of the optical sensor 101 shown in FIG. 1 during a pulse acquisition period (a period during which the distance to the detection target S is measured) from the first light receiving unit 11 and the second light receiving unit 12. It is.
- the light emitting element 18 has two states of a first state (light emitting period) in which pulse light emission is repeated and a second state in which light is not emitted (non-light emitting period) in the pulse acquisition period.
- the output pulses from the first light receiving unit 11 and the second light receiving unit 12 include not only the reflected light from the detection target S (object) by the light emitting element 18 or the reflected light from the inside of the sensor package, but also disturbance light, Also included are noise pulses generated by thermally generated carriers.
- a pulse obtained by mixing a pulse of reflected light and a noise pulse is output from the first light receiving unit 11 and the second light receiving unit 12 in the second state.
- the first digital calculation unit 13 and the second digital calculation unit 14 add the number of pulses (C1) acquired in the first state, and add the number of pulses (C2) acquired in the second state within one cycle ( A value obtained by multiplying a coefficient of time (t1) of the first state / time (t2) of the second state) is subtracted.
- the digital value output from the digital operation unit at the end of one cycle is expressed by equation (1).
- the first digital arithmetic unit 13 and the second digital arithmetic unit 14 add the number of pulses in the first state, and the number of pulses in the second state is within one cycle ( The value multiplied by the coefficient of the first state time / second state time is subtracted, and is output from the first digital calculation unit of the first light receiving unit every time n cycles (n ⁇ 1) are completed.
- the digital value is input to the first determination circuit unit (determination circuit unit 15), and it is determined whether the first reference value is exceeded.
- the optical sensor 101 having the above configuration, every time n cycles (n ⁇ 1) are completed, the effective data number of the TOF sensor (the number of pulses due to the reflected light component) can be known, and the necessary and sufficient number of data can be obtained. As soon as the acquisition is completed, the pulse acquisition period can be completed to minimize the measurement time, so that high-accuracy measurement can be performed in a short time.
- FIG. 4 is a circuit diagram of DLL1 and DLL2 of the time difference extraction circuit 19. Since DLL1 and DLL2 have the same configuration, DLL1 will be described below.
- the DLL 1 includes a phase detector (not shown), a voltage control delay circuit 21, and a capacitive element CDLL that holds the control voltage of the voltage control delay circuit 21, and in the first period.
- the capacitance element CDLL is charged to a constant value, and a clock obtained by dividing the reference clock of the voltage control delay circuit 21 by 4 and a divided output of the voltage control delay circuit 21 by 4 in the second period are input to the phase detector.
- a pulse obtained by dividing the pulse of the first light receiving unit 11 and the output of the voltage control delay circuit 21 by two is input to the phase detector.
- the input voltage of the voltage control delay circuit 21 is determined by the voltage of CDLL, and (C) CLK delayed by t delay is input to DFF1.
- Fig. 5 is a waveform diagram of the locked state of DLL1.
- the rising edge of DLL1_PULSE of the waveform obtained by integrating the randomly generated SPAD_SG1 waveform matches the waveform (light receiving waveform) when the first light receiving unit 11 and the second light receiving unit 12 receive the light.
- this state becomes a locked state.
- FIG. 6 is a circuit diagram showing the reference pulse generation circuit 16.
- the reference pulse generation circuit 16 includes a ring oscillator 22, a level shifter 23, a level shifter 24, DFF1, DFF3, INV1, and AND.
- the pulse of the BASE and DELAY3 nodes is received from a ring oscillator with a variable constant current input. create.
- a clock from BASE via the level shifter 23 is output as CLK, and a signal obtained by dividing CLK by DFF1 by 2 is output as TX_CLK (TX rising timing).
- TX which is a drive signal for the light emitting element 18, creates TX equivalent to the delay width of DELAY 3 by calculating SIG 3 divided by 2 by DFF 3 from DELAY 3 delayed from BASE and TX_CLK.
- the frequency of the ring oscillator 22 can be changed by switching to the ring oscillator input current set by CH_F output from the determination circuit unit 15.
- FIG. 7 is a flowchart showing the flow of the mode determination process in the determination circuit unit 15.
- FIG. 8 is a graph showing the relationship between the count value and the detection object distance.
- the determination circuit unit 15 outputs CH_F to the reference pulse generation circuit 16 as a determination result.
- the output CH_F is used in the reference pulse generation circuit 16 to set the distance measurement mode to either the normal mode or the high frequency mode.
- CH_F0 indicates a normal mode
- CH_F1 indicates a high frequency mode.
- the normal mode is a mode that performs long-distance measurement where the count value is less than this reference value when the number of pulses that can obtain sufficient measurement accuracy by acquiring pulses by reflected light is used as the reference value. Is a mode in which the short distance measurement in which the count value exceeds the reference value is performed.
- the light emission cycle of the light emitting element 18 and the CLK (reference clock) cycle of the time difference extraction circuit 19 are set shorter than those in the normal mode. Specifically, in the high frequency mode, the light emission cycle of the light emitting element 18 and the cycle of the reference clock of the time difference extraction circuit 19 are changed to a preset magnification cycle.
- the reference pulse generation circuit 16 changes the period of CLK output to the time difference extraction circuit 19 according to the type of output CH_F (CH_F0 or CH_F1), and the light emission period of the light emitting element 18 with respect to the driver 17 that drives the light emitting element 18
- the drive signal TX including the contents to be changed is output.
- the determination circuit unit 15 first sets a determination period (distance measurement period) (step S11), and determines whether the count value exceeds the reference value within the determination period (step S11). S12).
- the following relational expression (3) is generally established between the count value count of the same time and the detection object distance x.
- the count value count is a SPAD signal having only a reflection component obtained by removing the disturbance light component from SPAD_SG1 in the digital calculation unit 1.
- step S12 determines that the count value does not exceed the reference value, that is, it is below the reference value (NO)
- the detection object distance x is a long distance (long distance) (step S13).
- the reference pulse generation circuit 16 outputs the CLK whose cycle is changed according to the type (CH_F0 or CH_F1) of the output CH_F from the determination circuit unit 15 to the time difference extraction circuit 19, and measures the delay difference due to DLL1 and DLL2. (Step S15).
- the determination circuit unit 15 and the reference pulse generation circuit 16 use the number of pulses that can obtain a sufficient measurement accuracy of the measurement distance to the detection target S as the reference value, the first measurement is performed within the distance measurement period.
- FIG. 9 is a diagram schematically illustrating a light receiving path of each light receiving unit of the optical sensor when a housing panel is disposed between the detection target and the optical sensor.
- FIG. 10 is a graph showing the influence on the measurement distance due to the reflection of the casing panel when it is assumed that the casing panel exists as shown in FIG.
- the characteristic (a) when there is a casing panel component has a particularly large error on the far side.
- the amount of the SPAD_SG1 signal of the casing panel component is the detection target distance.
- the SPAD_SG1 signal amount of the detection object reflection component decreases as the distance increases, and the SPAD_SG1 signal of the casing panel component relatively increases. Since the lock position of DLL1 is locked to the weighted average position of the SPAD_SG1 signal amount of the casing panel component and the SPAD_SG1 signal amount of the detected object reflection component, the method of correcting the measurement distance in this case is as follows ( There are methods shown in the procedures a) to (c). (A) The count value of the SPAD_SG1 signal by the casing panel component is measured in advance. (B) The SPAD_SG1 signal count value is acquired during distance measurement.
- the count value includes a casing panel reflection component (hereinafter referred to as a casing reflection component) and a detection object reflection component.
- a casing reflection component hereinafter referred to as a casing reflection component
- a detection object reflection component hereinafter referred to as a detection object reflection component
- correction delay value Measurement delay value * Meas_count / (Meas_count-Xtalk_count)
- Xtalk_count represents the SPAD_SG1 signal count value of the casing reflection component
- Meas_count represents the SPAD_SG1 signal count value including the casing reflection component and the detection object reflection component. It is assumed that the DLL lock position of only the casing panel reflection component is equivalent to the DLL lock position by direct light (0 distance).
- FIG. 11 is a diagram illustrating a state where the above correction method can be applied. Since the housing reflection component and the detection object reflection component are included in the high and low sections of the DLL1_PULSE waveform, a weighted average can be normally obtained.
- FIG. 12 is a diagram for explaining a state where the above correction method cannot be applied. Since the high section of the DLL1_PULSE waveform includes only the detection object reflection component and the low section includes only the case reflection component, a dead zone is formed in the period shown in (c), which is not stable.
- FIG. 13 is a diagram showing a state in which the detection target is at a short distance. In this case, since the housing reflection component is sufficiently smaller than the detection object reflection component, sufficient accuracy can be obtained without correction.
- the total value of t TX (light emission width of the light emitting element 18) and t oc (pulse width of SPAD_SG1) is determined as the case reflection component and the detection target.
- t TX light emission width of the light emitting element 18
- t oc pulse width of SPAD_SG1
- the determination circuit unit 15 determines the short distance, and at the short distance, t T is reduced to an appropriate width, and t TX is also reduced to an appropriate width.
- the delay calculated from the optical reciprocating speed is about Although a period of 13.3 ns is sufficient, for example, there is a case reflection component, and a state immediately before the determination becomes impossible as shown in FIG. 12 (FIG. 14: case reflection component and reflection of the detection object at this time)
- td shown in FIG. 14 is a 13.3Ns, emission cycle t T should satisfy the following conditions.
- t T > 2 * td 26.6ns t TX + t oc > 13.3ns
- t TX + t oc 13.3ns
- the deviation of the signal generated without 13.3 ns is 0.667 ns
- the error is large because it is large.
- t T is set to 1/2 after determining the short distance by the determination circuit
- t TX + t oc can also be reduced to 6.65 ns, which is 1/2. If the measurement time is set to be the same, the number of signals in the same period is doubled, so the signal bias itself can be reduced, and even if it is compatible with 2 meters, the accuracy of short distance is set to 1 meter. Equivalent accuracy can be achieved.
- the light emission cycle to be switched does not need to be binary, and a plurality of count determination values can be provided, and the light emission cycle corresponding to the distance can be selected.
- FIG. 15 is a block diagram illustrating a schematic configuration of the optical sensor 201 according to the present embodiment.
- the optical sensor 201 has almost the same configuration as the optical sensor 101 according to the first embodiment, but differs in that a mask circuit 30 is provided on the input side of the first digital arithmetic unit 13.
- the configuration of the reference pulse generation circuit 36 is also different from that of the reference pulse generation circuit 16 of the optical sensor 101 according to the first embodiment.
- the configuration of the determination circuit unit 35 is also different from the determination circuit unit 15 of the optical sensor 101 according to the first embodiment.
- FIG. 16 is a block diagram showing a schematic configuration of the reference pulse generation circuit 36.
- a level shifter 25 corresponding to the DELAY2 node is added to the reference pulse generation circuit 16 described in the first embodiment. That is, the reference pulse generation circuit 36 generates pulses of the BASE, DELAY 2 and DELAY 3 nodes from the ring oscillator 22. Using the positive edge of the pulse at the BASE node as a reference, the delay relationship is such that the pulse positive edge at the DELAY2 node> the pulse positive edge at the DELAY3 node.
- FIG. 20 is a block diagram illustrating a schematic configuration of the mask circuit 30.
- FIG. 21 is a flowchart showing the flow of determination processing in the determination circuit unit 35.
- the determination circuit unit 35 outputs REV_MASK and EN_MASK to the reference pulse generation circuit 36 as determination results.
- the outputs REV_MASK and EN_MASK are used in the reference pulse generation circuit 36 to set the distance measurement mode to either the normal mode or the mask mode.
- the normal mode is a mode that performs short-distance measurement where the count value exceeds this reference value when the number of pulses that can obtain sufficient measurement accuracy by acquiring pulses by reflected light is used as a reference value.
- the reference pulse generation circuit 36 changes the period of CLK output to the time difference extraction circuit 19 according to the values of the outputs REV_MASK and EN_MASK, and sets the light emission period of the light emitting element 18 to the driver 17 that drives the light emitting element 18.
- the drive signal TX including the contents to be changed is output.
- the determination circuit unit 35 first sets a determination period (distance measurement period) (step S21), and determines whether or not the count value exceeds the reference value in the determination period (step S22). ).
- the reference pulse generation circuit 36 outputs the CLK whose period is changed according to the values of the outputs REV_MASK and EN_MASK from the determination circuit unit 35 to the time difference extraction circuit 19, and measures the delay difference due to DLL1 and DLL2 (step S15). ).
- the digital value output from the first digital calculation unit 13 that counts only the period other than the first mask period that is repeated in the light emission period of the light emitting element 18 within the distance measurement period is the reference value. If not, the pulse is switched to a state where the pulse from the first light receiving unit 11 is input to the DLL1 (first DLL) in a period other than the second mask period that repeats in a half cycle of the light emission period, and the reference value is When it exceeds, the pulse from the first light receiving unit 11 is switched to the state of directly inputting to the DLL1 (first DLL).
- the first measurement is performed within the distance measurement period.
- a period changing circuit for changing the light emission period of the light emitting element 18 and the period of the reference clock of the time difference extraction circuit 19 according to whether or not the digital value output from the digital operation unit 13 exceeds the reference value Realized.
- FIG. 22 shows an example of the conditions under which the normal mode is entered by such determination processing.
- the optical delay according to the object distance is such that the SPAD_SG1 histogram of the object reflection component overlaps the SPAD_SG1 histogram of the case reflection component when the object distance is short. Further, since the signal component is large due to the short distance, the SPAD_SG1 histogram of the object reflection component has a sufficiently larger number of times than the histogram of SPAD_SG1 of the housing reflection component. From this, a histogram such as the SPAD_SG1_MASK histogram shown in FIG. 22 is completed. If the reference value is set slightly higher than the count number due to the case reflection and the count is set to exceed the reference value by the increment of SPAD_SG1_MASK, the mode is switched to the normal mode under this condition.
- the normal mode waveform is shown in FIG. Since the mask is released in the normal mode, the current integration value in the DLL generated from the SPAD_SG1_MASK pulse shown in FIG. 23 is obtained, and the convergence of DLL1_PULSE is almost at the center of the current integration ground formed from the object reflection component. Converge.
- FIG. 24 shows an example of the conditions for entering the mask mode.
- the optical delay corresponding to the object distance is such that when the distance of the object is long, the SPAD_SG1 histogram of the object reflection component cannot overlap the SPAD_SG1 histogram of the case reflection component, and the position of the histogram is separated. From this, a histogram of only the case reflection component is completed like the SPAD_SG1_MASK histogram shown in FIG.
- the reference value slightly higher than the count number due to the case reflection, the count falls below the reference value, and the mode is switched to the mask mode.
- the waveform of the mask mode is shown in FIG.
- the range of the housing reflection component is completely masked, and as shown in FIG. 25, the current integration value in the DLL generated from the SPAD_SG1_MASK pulse of only the object reflection component is obtained, and DLL1_PULSE Converges to the center of the current integration ground, which is formed from the object reflection component.
- the ratio of high and low of DLL1_PULSE becomes the same, so it is uniformly generated by receiving dark pulses and asynchronous light. Distributed SPAD_SG1 components can be removed.
- the optical sensor 201 shown in FIG. 15 can completely remove the case reflection component at a long distance where the error due to the case reflection component becomes large, and can also measure a short distance portion. .
- cycle changing circuit determination circuit unit 15, reference pulse generation circuit 16
- cycle change circuit determination circuit unit 35, reference pulse generation circuit 36
- an example of an optical sensor having the same configuration as that of the optical sensor 101 according to the first embodiment and different in the configuration of DLL1 and DLL2 in the time difference extraction circuit 19 and the configuration of the reference pulse generation circuit will be described.
- FIG. 26 is a circuit diagram of DLL1 and DLL2 of the optical sensor according to the present embodiment.
- the normal DFF1 output (G) is blocked by MUX1, and a pulse obtained by dividing (G) by 2 by DFF2 is output to (E) DLL_PULSE.
- FIG. 27 is a circuit diagram showing the reference pulse generation circuit 46.
- the reference pulse generation circuit 46 adds DFF4 and AND2 to the reference pulse generation circuit 16 shown in FIG. 6 of the first embodiment, and the Q initial values of the DFF1, DFF3, and DFF4 are set.
- DFF4 outputs 1 at the timing when DFF1 falls, and it is a pulse that delays CLK by half a period of TX_CLK with respect to TX_CLK.
- FIG. 28 shows the initial value setting of the voltage control delay circuit 21 that can be achieved by the configuration of the DLL1 and DLL2 shown in FIG. 26 and the configuration of the reference pulse generation circuit 46 shown in FIG.
- TX_CLK pulse is started, (C) CLK is delayed by (C) CLK1 period, (C) CLK4 divided signal is output to (J), and the normal delay circuit output is divided by 2 ( E) Output to DLL1_PULSE.
- the voltage control delay circuit 21 can calculate how much delay changes from the initial value to the delay corresponding to the detected object distance, even when the voltage control delay circuit initial value setting period varies, the measurement start time Since the initial delay is not changed and can be calculated in the same manner, an appropriate measurement time can be set, and the measurement time can be shortened.
- FIG. 30 is a block diagram illustrating a schematic configuration of the optical sensor 401 according to the present embodiment.
- the optical sensor 401 has basically the same configuration as the optical sensor 101 of the first embodiment, but has a plurality of first light receiving units 11 and matches the number of first light receiving units 11 as shown in FIG.
- the first digital operation unit 13, the determination circuit unit 15, the DLL 1 in the time difference extraction circuit 19, and the delay difference measurement circuit 20 are also different.
- the signal of the second light receiving unit 12 is the same as that of the optical sensor 101 of the first embodiment in order to determine the delay difference independently of the signals of the plurality of first light receiving units 11. DLL2 is used.
- the optical sensor 401 having the above configuration, when a plurality of first light receiving units 11 that receive reflected light from the detection target S are provided, distance measurement is performed according to the incident angle of the reflected light. It is advantageous. For example, by providing a plurality of light receiving sections for light entering according to incident angles, three-dimensional distance information can be measured simultaneously, and the measurement time can be shortened.
- FIG. 33 is a block diagram showing a schematic configuration of the optical sensor 501 according to the present embodiment.
- the optical sensor 501 basically has the same configuration as the optical sensor 101 of the first embodiment, but the first light receiving unit 11 and the second light receiving unit 12 are configured by one CELL shown in FIG. 2 of the first embodiment. Different in that it is.
- the first light receiving unit 11 and the second light receiving unit 12 are configured by one CELL shown in FIG. 2, thereby reducing the area of the light receiving unit, and the first sensor as in the optical sensor 401 of the fourth embodiment.
- An increase in area can be suppressed even when a plurality of light receiving portions 11 are arranged.
- OR1 and OR2 are not required, and the effect of simplifying the configuration of the photosensor is also achieved.
- the first digital calculation unit 13 and the second digital calculation unit 14 are not described in detail, but the configuration is common. Details of the first digital arithmetic units 13 and 14 will be described below.
- FIG. 32A is a circuit diagram in the first digital arithmetic unit 13 and the second digital arithmetic unit 14, and FIG. 32B is a diagram of the first digital arithmetic unit 13 and the second digital arithmetic unit 14. It is a drive waveform diagram.
- FIG. 33 is a circuit diagram for explaining the operation of each of the optical sensors of the first digital calculation unit 13 and the second digital calculation unit 14.
- the ratio of the first state in which the light emitting element 18 repeats pulsed light emission to the second state in which light emission is not performed in the pulse acquisition period is 4: 1, and the number of bits connected to the determination circuit unit 15 The case where is 5bit will be described.
- the light emitting element does not emit light.
- D_FF between each bit is separated during the count inversion period, and all bits are inverted when Signal2 L ⁇ H.
- addition at the time of bit inversion is equivalent to subtracting when the bit is restored.
- shifting and adding pulses by shifting i bits (i is a variable) in the upper bit direction is equivalent to the addition value being multiplied by 2 to the power of i.
- the addition since (time in the first state / time in the second state) is four times, the addition was performed by shifting by 2 bits in the second state.
- Each optical sensor described in the first to fifth embodiments may be incorporated in an electronic device.
- electronic devices include a camera, a robot cleaner, and a smartphone.
- the photosensor (101, 201, 401, 501) outputs a pulse synchronized with the light emitting element 18 and the photon incidence by the reflected light from the object (detection target S).
- the first digital calculation unit 13 that counts the number of pulses from the output and outputs a digital value, and a pulse that can obtain sufficient measurement accuracy of the measurement distance to the object (detection target S).
- the digital value output from the first digital calculation unit 13 within the distance measurement period (determination period) depends on whether the digital value exceeds the reference value.
- a cycle changing circuit (determination circuit unit 15, reference pulse generation circuit 16, determination circuit unit 35, reference pulse generation circuit 36) that changes the light emission cycle and the cycle of the reference clock is provided.
- a digital value output from the first digital calculation unit within the distance measurement period is the reference value.
- the distance to the object to be measured is a short distance, and the case of a long distance, respectively. It is possible to set an appropriate light emitting period and reference clock period. In particular, it is possible to set the light emission cycle of the light emitting element and the cycle of the reference clock in consideration of the case where a housing panel exists between the object that is the detection target and the optical sensor.
- the optical sensor 101 according to Aspect 2 of the present invention is the optical sensor 101 according to Aspect 1, wherein the period changing circuit (the determination circuit unit 15 and the reference pulse generation circuit 16) is configured to perform the first digital computation within a distance measurement period (determination period).
- the period changing circuit the determination circuit unit 15 and the reference pulse generation circuit 16
- the light emission cycle of the light emitting element 18 and the cycle of the reference clock may be changed to a preset magnification cycle.
- the measurement error at a short distance can be reduced by changing the light emission cycle of the light emitting element 18 and the cycle of the reference clock to a cycle of a preset magnification.
- the optical sensor 201 according to aspect 3 of the present invention is the optical sensor 201 according to aspect 1, wherein the time difference extraction circuit 19 includes a first DLL (DLL1) that inputs a pulse output from the first light receiving unit 11 and the second light receiving. And a second DLL (DLL2) for inputting a pulse output from the unit 12, and the period changing circuit (determination circuit unit 35, reference pulse generation circuit 36) is within the distance measurement period (determination period).
- DLL1 first DLL
- DLL2 DLL
- the period changing circuit determination circuit unit 35, reference pulse generation circuit 36
- the first light receiving unit 11 Direct pulse Serial first DLL may be switched to a state of inputting the (DLL1).
- the housing reflection component in a case where a housing panel is present between the object and the optical sensor, the housing reflection component can be completely removed, so that the error due to the housing reflection component increases. Measurement accuracy can be ensured.
- the optical sensor (101, 201) according to aspect 4 of the present invention is the optical sensor (101, 201) according to aspect 3, wherein the first and second DLLs (DLL1, DLL2) are a phase detector, a voltage control delay circuit 21, and the voltage control. It has a capacitive element CDLL that holds the control voltage of the delay circuit 21, charges the capacitive element CDLL to a constant value in the first period, and divides the reference clock of the voltage controlled delay circuit 21 by 4 in the second period Clock and the voltage-divided output of the voltage control delay circuit 21 are input to the phase detector, and the pulse from the first light receiving unit 11 and the output of the voltage control delay circuit 21 are divided by two in the third period.
- a clock may be input to the phase detector.
- the disturbance light component included in the measurement value can be removed.
- An optical sensor includes a period changing circuit (determination circuit unit 15, reference pulse generation circuit 16) described in aspect 2 and a period changing circuit (determination circuit unit 35, reference) described in aspect 3. And a pulse generation circuit 36), and the period changing circuit can be switched.
- the optical sensor according to aspect 6 of the present invention is the optical sensor according to any one of the above aspects 1 to 5, wherein the light emitting element 18 has a pulse acquisition period in the pulse acquisition period from the first and second light receiving units (11, 12).
- the first and second states are such that the time of the first state> the time of the second state.
- the operation is repeated with a period implemented at a certain time ratio as one cycle, and the digital operation units (first digital operation unit 13, second digital operation) of each of the first and second light receiving units (11, 12) are repeated.
- the unit 14 adds the number of pulses in the first state, and the number of pulses in the second state is a coefficient (time of the first state / time of the second state) within one cycle. Each time n cycles (n ⁇ 1) end, the value multiplied by The digital value output from the first digital operation unit 13 of the one light receiving unit 11 may be input to the first determination circuit unit (determination circuit unit 15) to determine whether or not the first reference value is exceeded.
- the effective data number of the TOF sensor (the number of pulses due to the reflected light component) can be known, and as soon as the necessary and sufficient number of data is acquired, the pulse acquisition period Since the measurement time is minimized by being able to complete the process, high-accuracy measurement can be performed in a short time.
- An electronic apparatus is characterized in that the optical sensor according to any one of Aspects 1 to 5 is incorporated.
- the optical sensor according to the eighth aspect of the present invention includes a light emitting element, a photon count type light receiving unit 1 that outputs a pulse synchronized with photon incidence caused by reflected light from an object, and photon incidence caused by reflected light inside the sensor package.
- a photon count type light receiving unit 2 arranged in the vicinity of the light emitting element, outputting a synchronized pulse, a time difference extracting circuit for extracting a time difference between pulse outputs from the light receiving unit 1 and the light receiving unit 2, and a light receiving unit 1
- Digital operation unit 1 that counts the number of pulses from the pulse output and outputs a digital value
- digital operation unit 2 that counts the number of pulses from the pulse output of the light receiving unit 2 and outputs the digital value
- digital operation unit 1 A determination circuit unit for determining whether the digital value output from the reference value exceeds the reference value, a driver circuit for driving the light emitting element in a pulsed manner, and a reference circuit for the driver circuit.
- a processing circuit that changes a cycle and a cycle of a reference pulse of the time difference extraction circuit to a cycle of a set magnification, and that the light receiving unit 1, the digital calculation unit 1, and the determination circuit unit are each at least one or more It is a feature.
- the optical sensor according to aspect 9 of the present invention is the optical sensor according to aspect 8 described above, wherein the time difference extraction circuit includes a first DLL that inputs a pulse output from the light receiving unit 1 and a pulse output from the light receiving unit 2. And the processing circuit counts only a period other than the first mask period repeated in the light emission cycle of the light emitting element, and the digital value output from the digital operation unit does not exceed a reference value In the case of switching to a state in which a pulse from the light receiving unit 1 in a period other than the second mask period that repeats in a half cycle of the light emission period is input to the first DLL, May be a processing circuit that switches to a state in which the first pulse is directly input to the first DLL.
- the optical sensor according to aspect 10 of the present invention is the optical sensor according to aspect 8 or 9, wherein the first and second DLLs are a phase detector, a voltage control delay circuit, and a capacitive element that holds a control voltage of the voltage control delay circuit.
- the capacitor is charged to a constant value in the first period, and the clock obtained by dividing the reference clock of the voltage controlled delay circuit by 4 in the second period and the divided output by 4 of the voltage controlled delay circuit are The clock may be input to the phase detector, and a pulse obtained by dividing the pulse from the light receiving element and the output of the voltage control delay circuit by two in the third period may be input to the phase detector.
- the processing circuit of aspect 8 and aspect 9 may be switched.
- the optical sensor according to aspect 12 of the present invention is the optical sensor according to any one of the above aspects 8 to 11, wherein the light emitting element repeats pulse light emission during a period of acquiring pulses from the light receiving unit 1 and the light receiving unit 2.
- the operation is repeated with the period implemented in (the time of the first state: the time ⁇ of the second state is constant) as one cycle, and (in the case where each state is divided and implemented within one cycle) (The time of each state of the time ratio is the total time implemented within one cycle.)
- Each of the digital calculation units of the light receiving unit 1 and the light receiving unit 2 adds the number of pulses in the first state.
- the digital value output from the digital operation unit 1 of the light receiving unit 1 is input to the determination circuit unit 1 every time n cycles (n ⁇ 1) are completed. Whether the reference value 1 is exceeded may be determined.
- An electronic apparatus is characterized in that the optical sensor according to any one of aspects 8 to 12 is incorporated.
- the optical sensor according to one embodiment of the present invention is effective in a short time by performing an operation of continuously removing the disturbance light component during the measurement period from the ratio of the period during which the light emitting element emits light and the period during which the light emitting element does not emit light. Get the pulse component.
- the effective pulse component it is possible to discriminate short distance and long distance in a short period of time, and to select an appropriate light emission cycle for the short distance and long distance, thereby correcting the short distance accuracy and the housing panel reflection component.
- the long distance measurement that can be done is compatible.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
本発明の光センサ(101)は、判定期間内に、第1デジタル演算部(13)より出力されるデジタル値が、基準値を超えたか否かに応じて、発光素子(18)の発光周期及び時間差抽出回路(19)で用いる基準クロックの周期を変更する。これにより、近距離の測定精度の維持と、検知対象物との間に筐体パネルが存在した場合の遠距離の測定精度の維持との両立を図ることができる光センサを実現する。
Description
本発明は、光センサ及び光センサを内蔵した電子機器に関する。
従来、光通信や飛行時間計測(TOF)において、微弱光を高速に検出する受光素子として、フォトダイオードの雪崩増幅(アバランシェ)効果を利用したアバランシェフォトダイオードが用いられている(例えば特許文献1)。アバランシェフォトダイオードは、降伏電圧(ブレークダウン電圧)未満の逆バイアス電圧を印加すると、リニアモードとして動作し、受光量に対して正の相関を有するように出力電流が変動する。一方、アバランシェフォトダイオードは、降伏電圧以上の逆バイアス電圧を印加すると、ガイガーモードとして動作する。ガイガーモードのアバランシェフォトダイオードは、単一フォトンの入射であってもアバランシェ現象を起こすので、大きな出力電流が得られる。このため、ガイガーモードのアバランシェフォトダイオードは、シングルフォトンアバランシェダイオード(SPAD:Single Photon Avalanche Diode)と呼ばれる。
ガイガーモードのアバランシェフォトダイオードに対し、クエンチング抵抗を直列に加えることで、2値のパルス出力を得ることができる。このような回路は、例えば、図27に示すように、フォトダイオードPD10、アクティブクエンチング抵抗R10(MOSトランジスタの抵抗成分)、バッファーBUF10で構成される。
フォトダイオードPD10は、ガイガーモードのアバランシェフォトダイオードであり、降伏電圧以上のバイアス電圧印加において、単一フォトンの入射に対してアバランシェ現象を起こし電流が流れる。フォトダイオードPD10に直列で接続されているアクティブクエンチング抵抗R10に電流が流れることで、アクティブクエンチング抵抗R10の端子間電圧が増加し、それに伴いフォトダイオードPD10のバイアス電圧が降下し、アバランシェ現象は停止する。アバランシェ現象による電流が無くなるとアクティブクエンチング抵抗R10の端子間電圧が低下し、フォトダイオードPD10には再び降伏電圧以上のバイアス電圧が印加される状態に戻る。バッファーBUF10により、フォトダイオードPD10とアクティブクエンチング抵抗R10間の電圧変化は2値のパルス出力として取り出される。
また、特許文献2には、前記SPADを用いて、発光素子からの反射光と直接光をそれぞれ別のDelay Locked Loop回路(DLL)に入力し、2つのDLL出力パルス間の遅延量をデジタル値に変換する方法で距離測定を行う方法が開示されている。
しかしながら、特許文献2に開示された方法では、例えば図9に示すように、検知対象物と光センサ(受光部1,受光部2,発光素子)との間に、筐体パネルが存在した場合、近距離側(筐体パネル側)にSPAD信号が発生するため、筐体パネルの有無により測定距離に誤差が生じる。特に遠距離側で多大な誤差を発生させるという問題を有する(図10参照)。
なお、特許文献2には、遠距離側で発生する誤差を筐体パネル信号のカウント値で測定後の距離によって補正する方法が開示されている。この補正には、発光素子の発光幅(発光周期)を長く設定し、筐体パネル反射による信号と検知対象物反射による信号の幅が重なる部分(遅延量)を作る必要がある。この場合、発光幅が長くなると信号に偏りが発生しやすく、誤差につながる。しかも、近距離側では遅延量が小さいため、補正に必要な信号の幅が重なる部分を得るためには、発光幅を相対的に長くしなければならず、距離測定値に対する誤差も相対的に大きくなる。特に、遠距離対応で発光幅を長くした場合はこの問題が顕著に出る。
従って、従来の光センサでは、近距離の測定精度の維持と、検知対象物との間に筐体パネルが存在した場合の遠距離の測定精度の維持との両立を図ることができなかった。
本発明は、前記の問題点遠距離に鑑みてなされたものであり、その目的は、近距離の測定精度の維持と、検知対象物との間に筐体パネルが存在した場合の遠距離の測定精度の維持との両立を図ることができる光センサを実現することにある。
上記の課題を解決するために、本発明の一態様に係る光センサは、発光素子と、物体からの反射光によるフォトン入射に対して同期するパルスを出力するフォトンカウント型の第1受光部と、センサパッケージ内部の反射光によるフォトン入射に対して同期するパルスを出力する、前記発光素子近傍に配置されたフォトンカウント型の第2受光部と、前記第1及び第2受光部からのパルス出力と、基準クロックとを用いて空間光路上の距離に相当する時間差を抽出する時間差抽出回路と、前記第1受光部のパルス出力からのパルス数をカウントし、デジタル値を出力する第1デジタル演算部と、前記物体までの測定距離の十分な測定精度を得られるパルス数を基準値としたとき、距離測定期間内に、前記第1デジタル演算部より出力されるデジタル値が、前記基準値を超えたか否かに応じて、前記発光素子の発光周期及び前記基準クロックの周期を変更する周期変更回路と、を備えていることを特徴としている。
本発明の一態様によれば、近距離の測定精度の維持と、検知対象物との間に筐体パネルが存在した場合の遠距離の測定精度の維持との両立を図ることができるという効果を奏する。
〔実施形態1〕
以下、本発明の実施の形態について、詳細に説明する。
以下、本発明の実施の形態について、詳細に説明する。
(光センサの概要)
図1は、本実施形態に係る光センサ101の概略構成を示すブロック図である。
図1は、本実施形態に係る光センサ101の概略構成を示すブロック図である。
光センサ101は、図1に示すように、検知対象物S(物体)からの反射光によるフォトン入射に対して同期するパルスを出力するフォトンカウント型の第1受光部11、センサパッケージ内部の反射光(発光素子18からの直接光を含む)によるフォトン入射に対して同期するパルスを出力する、発光素子18近傍に配置されたフォトンカウント型の第2受光部12、前記第1受光部11のパルス出力からのパルス数をカウントし、デジタル値を出力する第1デジタル演算部13、前記第2受光部12のパルス出力からのパルス数をカウントし、デジタル値を出力する第2デジタル演算部14、前記第1デジタル演算部13より出力されるデジタル値が基準値を超えているかを判定する判定回路部15、ドライバ17(ドライバ回路)に基準パルスを与え、また時間差抽出回路19に基準クロックを与える基準パルス生成回路16、発光素子18をパルス駆動するドライバ(ドライバ回路)17、発光素子18、前記第1受光部11及び第2受光部12からのパルス出力の時間差を抽出する時間差抽出回路19を含んでいる。
上記構成の光センサ101では、以下のようにして、検知対象物S(反射物)までの距離を求める。すなわち、発光素子18からパルス光が照射され、検知対象物Sからの反射光が第1受光部11に、センサパッケージ内部からの反射光(直接光を含む)が第2受光部12に入射されると、光量に応じた頻度で、第1受光部11と第2受光部12からパルスが出力される。このパルス出力は、空間光路上の距離の差分に相当する時間差を持つ2値のパルス出力として時間差抽出回路19に入力される。第2受光部12から出力されるパルス出力は空間光路上の距離がほぼ0とみなすことができるので、時間差抽出回路19は、この2入力(第1受光部11のパルス出力、第2受光部12のパルス出力)と、基準パルス生成回路16から出力される基準クロックとを用いて空間光路上の距離に相当する時間差を抽出し、検知対象物S(反射物)までの距離を求めることができる。また、発光素子18からの受光に対して、第1受光部11、第2受光部12からのパルス出力は発光幅内でランダムに発生するため、時間差抽出回路19にはDelay Locked Loop回路であるDLL1、DLL2を使用し、それぞれ第1受光部11、第2受光部12の受光幅の中心にDLL1、DLL2の出力をロックさせることで時間差を抽出できる。
(第1受光部11、第2受光部12の概要)
図2は、第1受光部11、第2受光部12の概略構成を示す回路図である。ここで、第1受光部11、第2受光部12の構成は同じであるので、第1受光部11を例に説明する。第1受光部11は、図2に示すように、フォトダイオードPD1、アクティブクエンチング抵抗R1(MOSトランジスタの抵抗成分)、バッファーBUF1で構成されたCELLを複数有している。フォトダイオードPD1は、ガイガーモードのアバランシェフォトダイオードであり、アクティブクエンチング抵抗R1、バッファーBUF1により、入射光量を2値のパルス出力として取り出される。第1受光部11の出力パルスは、OR1でOR演算が行われ、第1デジタル演算部13によってパルス数がカウントされ、デジタル値が判定回路部15に出力される。
図2は、第1受光部11、第2受光部12の概略構成を示す回路図である。ここで、第1受光部11、第2受光部12の構成は同じであるので、第1受光部11を例に説明する。第1受光部11は、図2に示すように、フォトダイオードPD1、アクティブクエンチング抵抗R1(MOSトランジスタの抵抗成分)、バッファーBUF1で構成されたCELLを複数有している。フォトダイオードPD1は、ガイガーモードのアバランシェフォトダイオードであり、アクティブクエンチング抵抗R1、バッファーBUF1により、入射光量を2値のパルス出力として取り出される。第1受光部11の出力パルスは、OR1でOR演算が行われ、第1デジタル演算部13によってパルス数がカウントされ、デジタル値が判定回路部15に出力される。
(光センサ101の動作(1))
図3は、図1に示す光センサ101における、第1受光部11、第2受光部12からのパルス取得期間(検知対象物Sまでの距離を測定する期間)の動作を説明するための図である。ここで、発光素子18は、パルス取得期間において、パルス発光を繰り返している第1の状態(発光期間)と、発光していない第2の状態(非発光期間)の2つの状態を持ち、第1の状態と第2の状態が、第1の状態の時間(t1)>第2の状態の時間(t2)となる一定の時間比率(第1の状態の時間:第2の状態の時間 =t1 : t2)で実施される期間を1周期として、発光動作を繰り返す。
図3は、図1に示す光センサ101における、第1受光部11、第2受光部12からのパルス取得期間(検知対象物Sまでの距離を測定する期間)の動作を説明するための図である。ここで、発光素子18は、パルス取得期間において、パルス発光を繰り返している第1の状態(発光期間)と、発光していない第2の状態(非発光期間)の2つの状態を持ち、第1の状態と第2の状態が、第1の状態の時間(t1)>第2の状態の時間(t2)となる一定の時間比率(第1の状態の時間:第2の状態の時間 =t1 : t2)で実施される期間を1周期として、発光動作を繰り返す。
第1受光部11、第2受光部12からの出力パルスには、発光素子18による検知対象物S(物体)からの反射光またはセンサパッケージ内部からの反射光によるパルスだけではなく、外乱光や熱的に発生したキャリアにより発生するノイズパルスも含まれる。第1の状態おいては、反射光によるパルスとノイズパルスが混ざったパルス、第2の状態においては、ノイズパルスのみが第1受光部11及び第2受光部12から出力される。
第1デジタル演算部13、第2デジタル演算部14では、第1の状態において取得したパルス数(C1)を加算し、第2の状態において取得したパルス数(C2)に1周期内での(第1の状態の時間(t1)/第2の状態の時間(t2))の係数を掛けた値を減算する。1周期終了時のデジタル演算部より出力されるデジタル値は、式(1)で示される。
(1):C1 - C2 × (t1/t2)
ここで、第1の状態と第2の状態は外乱光などの外的環境の変化に対して、短い時間に連続的に行うことで、式(1)の第2項は、ノイズパルスが第1の状態の時間内においていくつ発生していたかを導出できており、C1から引くことで、第1の状態における反射光によるパルス数のみを求めることができる。
ここで、第1の状態と第2の状態は外乱光などの外的環境の変化に対して、短い時間に連続的に行うことで、式(1)の第2項は、ノイズパルスが第1の状態の時間内においていくつ発生していたかを導出できており、C1から引くことで、第1の状態における反射光によるパルス数のみを求めることができる。
また、第1の状態の時間(t1)>第2の状態の時間(t2)と設定することで、パルス発光を繰り返している第1の状態の比率を上げ、有効データ(反射光成分によるパルス)の取得を早め、ノイズパルスのみが発生する第2の状態による時間のロスを低減できている。
この演算をn周期繰り返した場合、n周期目における第1の状態において取得したパルス数をC1_n、第2の状態において取得したパルス数をC2_nとすると、第1デジタル演算部13、第2デジタル演算部14より出力されるデジタル値は、式(2)で示される。
(2):C1_n - C2_n × (t1/t2)
このようにして、反射光によるパルス数のみが加算されていく。有効データ(反射光によるパルス)取得により十分な測定精度を得られるパルス数を、パルスの基準値に設定し、n周期(n≧1)終了する毎に、第1デジタル演算部13より出力されるデジタル値が、基準値を超えているか判定し(図3はn=3の場合)、基準値を下回る場合は、パルス取得期間を継続し、基準値を上回った場合は、パルス取得期間を終了する。
このようにして、反射光によるパルス数のみが加算されていく。有効データ(反射光によるパルス)取得により十分な測定精度を得られるパルス数を、パルスの基準値に設定し、n周期(n≧1)終了する毎に、第1デジタル演算部13より出力されるデジタル値が、基準値を超えているか判定し(図3はn=3の場合)、基準値を下回る場合は、パルス取得期間を継続し、基準値を上回った場合は、パルス取得期間を終了する。
具体的には、前記第1デジタル演算部13、第2デジタル演算部14は、前記第1の状態においてパルス数を加算していき、前記第2の状態においてパルス数に1周期内での(第1の状態の時間/第2の状態の時間)の係数を掛けた値を減算し、n周期(n≧1)終了する毎に、第1受光部の第1デジタル演算部より出力されるデジタル値が第1判定回路部(判定回路部15)に入力され、第1基準値を超えているか判定している。
従って、上記構成の光センサ101によれば、n周期(n≧1)終了する毎に、TOFセンサの有効データ数(反射光成分によるパルス数)を知ることができ、必要十分なデータ数を取得次第、パルス取得期間を終了できることで測定時間が最小化されることから、高精度測定を短時間で実施できる。
(DLL1、DLL2の構成)
図4は、時間差抽出回路19のDLL1、DLL2の回路図である。DLL1とDLL2は同じ構成であるので、以下では、DLL1について説明する。DLL1は、図4に示すように、位相検出器(図示せず)、電圧制御遅延回路21、および前記電圧制御遅延回路21の制御電圧を保持する容量素子CDLLを有し、第1の期間に前記容量素子CDLLを一定値にチャージし、第2の期間に前記電圧制御遅延回路21の基準クロックを4分周したクロックと前記電圧制御遅延回路21の4分周出力を前記位相検出器に入力し、第3の期間に前記第1受光部11からのパルスと前記電圧制御遅延回路21出力の2分周したクロックを前記位相検出器に入力するようになっている。
図4は、時間差抽出回路19のDLL1、DLL2の回路図である。DLL1とDLL2は同じ構成であるので、以下では、DLL1について説明する。DLL1は、図4に示すように、位相検出器(図示せず)、電圧制御遅延回路21、および前記電圧制御遅延回路21の制御電圧を保持する容量素子CDLLを有し、第1の期間に前記容量素子CDLLを一定値にチャージし、第2の期間に前記電圧制御遅延回路21の基準クロックを4分周したクロックと前記電圧制御遅延回路21の4分周出力を前記位相検出器に入力し、第3の期間に前記第1受光部11からのパルスと前記電圧制御遅延回路21出力の2分周したクロックを前記位相検出器に入力するようになっている。
具体的には、DLL1は、図4に示すように、容量CDLL、電圧制御遅延回路21、DFF1、INV1、AND1、AND2を含み、AND2による演算により、(E)DLL1_PULSE=1、(D)SPAD_SG1=1の時に(B)=1となり、電流IBが容量CDLLに流れる。AND1とINV1の演算により、(E)DLL1_PULSE=0、(D)SPAD_SG1=1の時に(A)=1となり、電流IAが容量CDLLから流れる。前述の動作によって電圧制御遅延回路21の入力電圧がCDLLの電圧により決まり、tdelay分遅延した(C)CLKがDFF1に入力される。DFF1の負出力がDに入力されることにより、(C)CLK周波数の1/2周波数でDutyが50%の(E)DLL1_PULSEとなる。Dutyが50%になることによって、(D)SPAD_SG1に発光素子18起因の受光以外の外乱光成分が一様に入っている場合、十分な時間積分では電流IA=IBとなるため、外乱光成分を除去できる。なお、時間差抽出回路19内のDLL2についてもDLL1の構成と同様である。
図5は、DLL1のロック状態の波形図である。図5に示すように、第1受光部11,第2受光部12が受光したときの波形(受光波形)に対して、ランダムに発生したSPAD_SG1の波形を積分した波形のDLL1_PULSEの立ち上がりエッジが一致する場合にIBの積分値とIAの積分値が一致するため、この状態がロック状態となる。
(基準パルス生成回路16の概要)
図6は、基準パルス生成回路16を示す回路図である。基準パルス生成回路16は、図6に示すように、リングオシレータ22、レベルシフター23、レベルシフター24、DFF1、DFF3、INV1、ANDを含み、可変定電流入力のリングオシレーよりBASE、DELAY3ノードのパルスを作成する。BASEからレベルシフター23を介したクロックがCLKとして出力され、CLKをDFF1により2分周した信号がTX_CLK(TXの立ち上がりタイミング)として出力される。発光素子18の駆動信号となるTXはBASEから遅延したDELAY3からDFF3により2分周されたSIG3と前記TX_CLKとの演算によりDELAY3の遅延幅と同等のTXを作成する。
図6は、基準パルス生成回路16を示す回路図である。基準パルス生成回路16は、図6に示すように、リングオシレータ22、レベルシフター23、レベルシフター24、DFF1、DFF3、INV1、ANDを含み、可変定電流入力のリングオシレーよりBASE、DELAY3ノードのパルスを作成する。BASEからレベルシフター23を介したクロックがCLKとして出力され、CLKをDFF1により2分周した信号がTX_CLK(TXの立ち上がりタイミング)として出力される。発光素子18の駆動信号となるTXはBASEから遅延したDELAY3からDFF3により2分周されたSIG3と前記TX_CLKとの演算によりDELAY3の遅延幅と同等のTXを作成する。
リングオシレータ22の周波数は前記判定回路部15より出力されるCH_Fにより設定したリングオシレータ入力電流に切り替えることによって周波数を変更できる。
(判定回路部15、基準パルス生成回路16におけるモード判定処理)
図7は、判定回路部15におけるモード判定処理の流れを示すフローチャートである。
図7は、判定回路部15におけるモード判定処理の流れを示すフローチャートである。
図8は、カウント値と検知対象物距離との関係を示すグラフである。
ここで、判定回路部15は、判定結果としてCH_Fを基準パルス生成回路16に出力する。出力CH_Fは、基準パルス生成回路16において、距離測定モードを通常モードまたは高周波モードの何れかを設定するために用いられる。CH_F0は通常モード、CH_F1は高周波モードを示す。ここで、通常モードとは、反射光によるパルス取得により十分な測定精度を得られるパルス数を基準値としたときに、カウント値がこの基準値を下回る遠距離測定を行うモードであり、高周波モードとは、カウント値が上記基準値を上回る近距離測定を行うモードである。従って、高周波モードは、発光素子18の発光周期、時間差抽出回路19のCLK(基準クロック)の周期が、通常モードの場合よりも短く設定されている。具体的には、高周波モードでは、発光素子18の発光周期、および前記時間差抽出回路19の基準クロックの周期を予め設定した倍率の周期に変更している。
基準パルス生成回路16は、出力CH_Fの種類(CH_F0またはCH_F1)によって、時間差抽出回路19に出力するCLKの周期を変更し、発光素子18を駆動するドライバ17に対して、発光素子18の発光周期を変更する内容を含んだ駆動信号TXを出力する。
図7に示すように、判定回路部15は、まず、判定期間(距離測定期間)を設定し(ステップS11)、判定期間内に、カウント値が基準値を超えたか否かを判定する(ステップS12)。ここで、図8に示すように、同一時間のカウント値countと検知対象物距離xとの間に一般的に以下の関係式(3)が成り立つ。
(3):count∝1/x^2
ここで、カウント値countはデジタル演算部1においてSPAD_SG1から外乱光成分を除いた反射成分のみのSPAD信号とする。
ここで、カウント値countはデジタル演算部1においてSPAD_SG1から外乱光成分を除いた反射成分のみのSPAD信号とする。
従って、判定回路部15は、通常モード(CH_F=0)で距離測定中に、ステップS12において、カウント値が基準値を超えたと判定した場合(YES)、検知対象物距離xは近距離であるので、高周波モード(CH_F=1)に切り替える(ステップS14)。一方、ステップS12において、カウント値が基準値を超えていない、すなわち基準値を下回ったと判定した場合(NO)、検知対象物距離xは遠距離(長距離)であるので、通常モード(CH_F=0)のまま(ステップS13)する。その後、基準パルス生成回路16は、判定回路部15からの出力CH_Fの種類(CH_F0またはCH_F1)に応じて周期を変更したCLKを時間差抽出回路19に出力し、DLL1、DLL2による遅延差を測定させる(ステップS15)。
以上のように、判定回路部15及び基準パルス生成回路16によって、検知対象物Sまでの測定距離の十分な測定精度を得られるパルス数を基準値としたとき、距離測定期間内に、前記第1デジタル演算部13より出力されるデジタル値が、前記基準値を超えたか否かに応じて、前記発光素子18の発光周期及び前記時間差抽出回路19の基準クロックの周期を変更する周期変更回路を実現している。
(効果)
図9は、検知対象物と光センサとの間に筐体パネルが配置された場合の光センサの各受光部の受光経路を示す概略を示す図である。
図9は、検知対象物と光センサとの間に筐体パネルが配置された場合の光センサの各受光部の受光経路を示す概略を示す図である。
図10は、図9に示すように、筐体パネルが存在することを想定した場合、筐体パネル反射による測定距離への影響を示すグラフである。
図10に示すグラフにおいて、筐体パネル成分があった場合の特性(a)が特に遠距離側での誤差が大きくなっているのは筐体パネル成分のSPAD_SG1信号の量が検知対象物距離に対して一定であることに対して、検知対象物反射成分のSPAD_SG1信号量は距離が伸びると減少する特性となり、筐体パネル成分のSPAD_SG1信号が相対的に大きくなるためである。DLL1のロック位置は筐体パネル成分のSPAD_SG1の信号量と検知対象物反射成分のSPAD_SG1信号量の加重平均位置にロックすることから、このような場合に測定距離を補正する方法としては以下の(a)~(c)の手順で示す方法がある。
(a)筐体パネル成分によるSPAD_SG1信号のカウント値を事前に測定する。
(b)距離測定中にSPAD_SG1信号のカウント値を取得する。
(a)筐体パネル成分によるSPAD_SG1信号のカウント値を事前に測定する。
(b)距離測定中にSPAD_SG1信号のカウント値を取得する。
ここで、上記のカウント値には筐体パネル反射成分(以下、筐体反射成分と称する)と検知対象物反射成分が含まれる。
なお、本実施形態に係る光センサ101において、外乱光成分はこの段階で除去されている。
(c)遅延差測定回路20より得られた測定遅延値に対して以下の式(4)を用いた演算を行った補正遅延値を距離値に変換する。
(4):補正遅延値 = 測定遅延値*Meas_count/(Meas_count-Xtalk_count)
ここで、Xtalk_countは、筐体反射成分のSPAD_SG1信号カウント値、Meas_countは、筐体反射成分と検知対象物反射成分を含むSPAD_SG1信号カウント値を示す。なお、筐体パネル反射成分のみのDLLロック位置が直接光(0距離)によるDLLロック位置と同等であるものとする。
(c)遅延差測定回路20より得られた測定遅延値に対して以下の式(4)を用いた演算を行った補正遅延値を距離値に変換する。
(4):補正遅延値 = 測定遅延値*Meas_count/(Meas_count-Xtalk_count)
ここで、Xtalk_countは、筐体反射成分のSPAD_SG1信号カウント値、Meas_countは、筐体反射成分と検知対象物反射成分を含むSPAD_SG1信号カウント値を示す。なお、筐体パネル反射成分のみのDLLロック位置が直接光(0距離)によるDLLロック位置と同等であるものとする。
図11は、上記補正方法が適用できる状態を説明する図である。DLL1_PULSE波形のhighとlowの区間に筐体反射成分と検知対象物反射成分がそれぞれ含まれるため正常に加重平均をとることができる。
図12は、上記補正方法が適用できない状態を説明する図である。DLL1_PULSE波形のhighの区間には検知対象物反射成分のみ、lowの区間には筐体反射成分のみが含まれるため、(c)で示した期間に不感帯ができ、安定しない。
図13は、検知対象物が近距離にある状態を示す図である。この場合は筐体反射成分が検知対象物反射成分に比べて十分小さいため、補正無しで十分精度が出る。
従って、図12に示すような補正方法が適用できない状態を避けるためには、tTX(発光素子18の発光幅)とtoc(SPAD_SG1のパルス幅)の合計値を筐体反射成分と検知対象物反射成分が重なる状態を増やすために、tTXをtT(発光周期)の1/2程度に広げる必要がある。しかし、発光幅が広がるとSPAD_SG1信号自体の偏りによる誤差が大きくなる。これは発光幅に対して遅延値が小さい近距離での誤差に大きく影響を与える。遠距離測定を行うためにtTを伸ばす場合はこの誤差が顕著になる。そのため、本発明での前記判定回路部15によって近距離を判定し、近距離ではtTを適切な幅に減少させ、さらにtTXも適切な幅に減少させる。このように、本発明では近距離の精度を保ったまま遠距離化と筐体反射対策を両立することができる。
例えば前記の発光幅の設定方法(tTX+toc=tT/2)では最大2メートルの距離を測定するためには発光周期は影響を受けない場合、光往復速度から算出される遅延約13.3ns分の周期で十分であるが、例えば、筐体反射成分があり、図12に示す場合のように判定できなくなる直前の状態(図14:このときの筐体反射成分と検知対象物反射成分は同じとする)で計算すると、図14に示すtdが13.3nsである必要があるため、発光周期tTは以下の条件を満たす必要がある。
tT > 2*td =26.6ns
tTX+toc>13.3ns
この条件で例えば10cm短距離を測定する場合、光往復速度から算出される遅延約0.667nsに対してtTX+tocが13.3nsであるため、13.3ns無いで発生した信号の偏りは0.667nsに対して大きいため誤差が大きくなる。この状態を避けるため、判定回路により近距離を判定後、tTを1/2に設定すれば、tTX+tocも1/2の6.65nsにすることができ、信号の偏りによる誤差は半減され、また、測定時間を同じに設定すれば同一周期内の信号数は2倍になるため、信号の偏り自体も低減でき、2メートル対応であっても短距離の精度を1メートル設定と同等の精度にできる。
tTX+toc>13.3ns
この条件で例えば10cm短距離を測定する場合、光往復速度から算出される遅延約0.667nsに対してtTX+tocが13.3nsであるため、13.3ns無いで発生した信号の偏りは0.667nsに対して大きいため誤差が大きくなる。この状態を避けるため、判定回路により近距離を判定後、tTを1/2に設定すれば、tTX+tocも1/2の6.65nsにすることができ、信号の偏りによる誤差は半減され、また、測定時間を同じに設定すれば同一周期内の信号数は2倍になるため、信号の偏り自体も低減でき、2メートル対応であっても短距離の精度を1メートル設定と同等の精度にできる。
また、切り替える発光周期は2値である必要はなく、カウント判定値を複数設けて、距離に応じた発光周期を選択することもできる。
〔実施形態2〕
本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(光センサの概要)
図15は、本実施形態に係る光センサ201の概略構成を示すブロック図である。
図15は、本実施形態に係る光センサ201の概略構成を示すブロック図である。
光センサ201は、前記実施形態1に係る光センサ101とほとんど同じ構成であるが、第1デジタル演算部13の入力側にマスク回路30が設けられている点で異なる。また、基準パルス生成回路36の構成も前記実施形態1に係る光センサ101の基準パルス生成回路16と異なる。さらに判定回路部35の構成も前記実施形態1に係る光センサ101の判定回路部15と異なる。
(基準パルス生成回路36)
図16は、基準パルス生成回路36の概略構成を示すブロック図である。
図16は、基準パルス生成回路36の概略構成を示すブロック図である。
基準パルス生成回路36は、前記実施形態1に記載の基準パルス生成回路16に対して、DELAY2ノードに対応するレベルシフター25が追加されている。すなわち、基準パルス生成回路36は、リングオシレータ22よりBASE、DELAY2、DELAY3ノードのパルスを作成する。BASEノードのパルスのポジティブエッジを基準として、DELAY2ノードのパルスポジティブエッジ > DELAY3ノードのパルスポジティブエッジとなるような遅延関係となる。
EN_MASK=1かつREV_MASK=0の場合にDELAY2ノード遅延の時間がMASKのパルス幅になり、DELAY3ノード遅延の時間がTXのパルス幅となる。EN_MASK=1かつREV_MASK=1の場合は前記MASKパルスを反転させる。MASKの周期はSIG1の1/2となり、TXの周期はSIG1と同じ周期となる。EN_MASK、REV_MASKの各条件での波形を、図17,図18,図19にそれぞれ示す。
(マスク回路30)
図20は、マスク回路30の概略構成を示すブロック図である。
図20は、マスク回路30の概略構成を示すブロック図である。
マスク回路30は、DFF4、ワンショットパルス回路31,MUX、DFF5、遅延回路32を含んでいる。すなわち、マスク回路30は、EN_MASK=1かつMASK=0の場合、SPAD_SG1ノードのパルスのポジティブエッジをDFF4により検出し、ワンショットパルス回路31にて一定のパルス幅が出力され、SPAD_SG1_MASKに前記一定パルス幅のパルスが出力される。MASK=1の期間にSPAD_SG1のポジティブエッジが重なる場合はDFF4がリセットされ、SPAD_SG1_MASKは0が出力される。MASK=1の期間にワンショットパルス回路31によるパルスが残っている場合はパルスが0になるまでSPAD_SG1_MASK出力は1に保持される。
(判定回路部35、基準パルス生成回路36におけるモード判定処理)
図21は、判定回路部35における判定処理の流れを示すフローチャートである。
図21は、判定回路部35における判定処理の流れを示すフローチャートである。
判定回路部35は、前記実施形態1に記載の判定回路部15とは異なり判定結果として、REV_MASK、EN_MASKを基準パルス生成回路36に出力する。出力REV_MASK、EN_MASKは、基準パルス生成回路36において、距離測定モードを通常モードまたはマスクモードの何れかに設定するために用いられる。ここで、通常モードとは、反射光によるパルス取得により十分な測定精度を得られるパルス数を基準値としたときに、カウント値がこの基準値を超える近距離測定を行うモードであり、マスクモードとは、カウント値が上記基準値を下回る遠距離測定を行うモードである。従って、マスクモードでは、発光素子18の発光周期、時間差抽出回路19のCLK(基準クロック)の周期が、通常モードの場合よりも長く設定されている。
基準パルス生成回路36は、出力REV_MASK、EN_MASKの値に応じて、時間差抽出回路19に出力するCLKの周期を変更し、発光素子18を駆動するドライバ17に対して、発光素子18の発光周期を変更する内容を含んだ駆動信号TXを出力する。
図21に示すように、判定回路部35は、まず、判定期間(距離測定期間)を設定し(ステップS21)、判定期間において、カウント値が基準値を超えたか否かを判定する(ステップS22)。ここで、判定回路部35は、判定期間の間、EN_MASK=1、REV_MASK=1を出力している。
そして、ステップS22において、判定期間内に、カウント値が基準値を超えていれば(YSE)、EN_MASK=0、REV_MASK=0 or 1を基準パルス生成回路36に出力し、距離測定モードを通常モードとする。一方、ステップS22において、カウント値が基準値を超えていない、すなわち基準値を下回ったと判定した場合(NO)、EN_MASK=1,REV_MASK=0を基準パルス生成回路36に出力し、距離測定モードをマスクモードとする。その後、基準パルス生成回路36は、判定回路部35からの出力REV_MASK、EN_MASKの値に応じて周期を変更したCLKを時間差抽出回路19に出力し、DLL1、DLL2による遅延差を測定させる(ステップS15)。
具体的には、距離測定期間内に、前記発光素子18の発光周期で繰り返す第1のマスク期間以外の期間のみカウントする前記第1デジタル演算部13より出力されるデジタル値が、前記基準値を超えていない場合、発光周期の半周期で繰り返す第2のマスク期間以外の期間の前記第1受光部11からのパルスを前記DLL1(第1のDLL)に入力する状態に切り替え、前記基準値を超えている場合、前記第1受光部11からのパルスを直接前記DLL1(第1のDLL)に入力する状態に切り替えている。
以上のように、判定回路部35及び基準パルス生成回路36によって、検知対象物Sまでの測定距離の十分な測定精度を得られるパルス数を基準値としたとき、距離測定期間内に、前記第1デジタル演算部13より出力されるデジタル値が、前記基準値を超えたか否かに応じて、前記発光素子18の発光周期及び前記時間差抽出回路19の基準クロックの周期を変更する周期変更回路を実現している。
このような判定処理により、通常モードに入る条件での例を図22に示す。対象物距離に応じた光遅延は対象物の距離が近い場合、対象物反射成分のSPAD_SG1ヒストグラムが筐体反射成分のSPAD_SG1ヒストグラムに重なりができる。また、距離が近いことにより信号成分が大きいため、対象物反射成分のSPAD_SG1ヒストグラムは筐体反射成分のSPAD_SG1のヒストグラムより回数が十分多くなる。このことから、図22に示すSPAD_SG1_MASKヒストグラムのようなヒストグラムが出来上がる。基準値を筐体反射によるカウント数より若干高めに設定し、SPAD_SG1_MASKのカウント増加分でカウントが基準値を超えるように設定すればこの条件で通常モードに切り替わる。
通常モードの波形を図23に示す。通常モードではマスクが解除されるため、図23に示すSPAD_SG1_MASKのパルスから生成されるDLL内での電流積分値のようになり、DLL1_PULSEの収束はほぼ対象物反射成分からできる電流積分地の中心に収束する。
また、マスクモードに入る条件での例を図24に示す。対象物距離に応じた光遅延は対象物の距離が遠い場合、対象物反射成分のSPAD_SG1ヒストグラムが筐体反射成分のSPAD_SG1ヒストグラムに重なりができず、ヒストグラムの位置が離れる。このことから、図24に示すSPAD_SG1_MASKヒストグラムのように筐体反射成分のみのヒストグラムが出来上がる。基準値を筐体反射によるカウント数より若干高めに設定することで、カウントが基準値を下回り、マスクモードに切り替わる。
マスクモードの波形を図25に示す。マスクモードでは筐体反射成分の範囲が完全にマスクされるため、図25に示すように、対象物反射成分のみのSPAD_SG1_MASKのパルスから生成されるDLL内での電流積分値のようになり、DLL1_PULSEの収束はほぼ対象物反射成分からできる電流積分地の中心に収束する。また、図25に示すように、MASKパルスをTXおよびDLL1_PULSEの2倍周期にすることによって、DLL1_PULSEのhigh,lowの割合が同一になるため、ダークパルスや非同期光の受光により発生した一様に分布するSPAD_SG1の成分を除去することができる。
(効果)
以上の動作により、図15に示す光センサ201では、筐体反射成分による誤差が大きくなる遠距離では筐体反射成分を完全に除去することができ、また、近距離部分についても測定可能となる。
以上の動作により、図15に示す光センサ201では、筐体反射成分による誤差が大きくなる遠距離では筐体反射成分を完全に除去することができ、また、近距離部分についても測定可能となる。
このように、本発明では近距離の精度を保ったまま遠距離化と筐体反射対策を両立することができる。
また、前記実施形態1に記載の周期変更回路(判定回路部15、基準パルス生成回路16)と、前記実施形態2に記載の周期変更回路(判定回路部35、基準パルス生成回路36)とを備え、これら周期変更回路を切り換え可能にした光センサを実現してもよい。
〔実施形態3〕
本発明の他の実施形態について、説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について、説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本実施形態では、前記実施形態1に係る光センサ101と同じ構成であり、時間差抽出回路19内のDLL1、DLL2の構成、基準パルス生成回路の構成が異なる光センサの例について説明する。
(DLL1、DLL2の構成)
図26は、本実施形態に係る光センサのDLL1、DLL2の回路図である。図26に示すDLL1,DLL2では、(F)=0の時は前記実施形態1に記載のDLL1,DLL2と同様の動作をする。(F)=1の場合は、MUX2により受光部からの信号を遮断し、DFF3、INV2、DFF4により(C)CLKのパルスを4分周したパルスが(J)の波形となる。また、MUX1により通常のDFF1出力(G)を遮断し、(G)をDFF2によって2分周したパルスを(E)DLL_PULSEに出力する。また、(K)=1の場合は電圧制御遅延回路21の電圧VDIがCDLLの電圧となる。
図26は、本実施形態に係る光センサのDLL1、DLL2の回路図である。図26に示すDLL1,DLL2では、(F)=0の時は前記実施形態1に記載のDLL1,DLL2と同様の動作をする。(F)=1の場合は、MUX2により受光部からの信号を遮断し、DFF3、INV2、DFF4により(C)CLKのパルスを4分周したパルスが(J)の波形となる。また、MUX1により通常のDFF1出力(G)を遮断し、(G)をDFF2によって2分周したパルスを(E)DLL_PULSEに出力する。また、(K)=1の場合は電圧制御遅延回路21の電圧VDIがCDLLの電圧となる。
(基準パルス生成回路46の概要)
図27は、基準パルス生成回路46を示す回路図である。基準パルス生成回路46は、図27に示すように、前記実施形態1の図6に示す基準パルス生成回路16に対して、DFF4とAND2を追加し、各DFF1、DFF3、DFF4のQ初期値が0の場合、DFF1がたち下がるタイミングでDFF4が1を出力するようにし、TX_CLKに対して、CLKをTX_CLKの半周期遅らせるパルスとしている。
図27は、基準パルス生成回路46を示す回路図である。基準パルス生成回路46は、図27に示すように、前記実施形態1の図6に示す基準パルス生成回路16に対して、DFF4とAND2を追加し、各DFF1、DFF3、DFF4のQ初期値が0の場合、DFF1がたち下がるタイミングでDFF4が1を出力するようにし、TX_CLKに対して、CLKをTX_CLKの半周期遅らせるパルスとしている。
図26に示すDLL1,DLL2の構成及び図27に示す基準パルス生成回路46の構成により可能となる電圧制御遅延回路21の初期値設定を図28に示す。図28に示すように、電圧制御遅延回路初期値設定期間の初期に(K)=1の期間を作り、電圧制御遅延回路21の遅延時間tdelay=t0とする。その後、TX_CLKのパルスをスタートさせると(C)CLKを(C)CLK1周期分遅らせた(C)CLK4分周信号が(J)に出力され、通常の遅延回路出力を2分周した信号が(E)DLL1_PULSEに出力される。(E)DLL1_PULSEと(J)によるIBとIAの発生時間はtA<tBとなり、tdelayが遅延方向に動作する。電圧制御遅延回路初期値設定期間の終わりではtA=tBの状態となりtdelayはTX_CLKの周期であるtTにロックされる。ロックされた後に距離測定期間に移り、(F)=0にすることでDLL1を通常動作にする。距離測定期間の初期では、(C)CLKがTX_CLKから半周期遅らせた状態であるためtdelay=tTの状態では、TX_CLKの立ち上がりエッジ基準で(E)DLL1_PULSEの立ち上がりエッジは半周期遅れている状態となっている。この状態に対応する初期値の遅延時間tdは、図29に示す波形図から、
td = tT-(tTX + toc)/2 - tad
tTX:TXのパルス幅
toc :SPAD_SG1のパルス幅
tad :TXから発光素子までの遅延時間
と表される。
td = tT-(tTX + toc)/2 - tad
tTX:TXのパルス幅
toc :SPAD_SG1のパルス幅
tad :TXから発光素子までの遅延時間
と表される。
(効果)
本実施形態では、電圧制御遅延回路21が初期値から検知物距離に対応する遅延までどの程度の遅延変化があるか計算できるので、電圧制御遅延回路初期値設定期間がばらついたとしても測定開始時の初期遅延が変わらず、同様に計算できるため、適切な測定時間を設定することができるようになり、測定時間の短縮化が可能になるという効果を奏する。
本実施形態では、電圧制御遅延回路21が初期値から検知物距離に対応する遅延までどの程度の遅延変化があるか計算できるので、電圧制御遅延回路初期値設定期間がばらついたとしても測定開始時の初期遅延が変わらず、同様に計算できるため、適切な測定時間を設定することができるようになり、測定時間の短縮化が可能になるという効果を奏する。
〔実施形態4〕
本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(光センサの概要)
図30は、本実施形態に係る光センサ401の概略構成を示すブロック図である。
図30は、本実施形態に係る光センサ401の概略構成を示すブロック図である。
光センサ401は、基本的に前記実施形態1の光センサ101と同じ構成であるが、図30に示すように、複数の第1受光部11を有し、第1受光部11の数に合わせて、第1デジタル演算部13、判定回路部15及び時間差抽出回路19内のDLL1、遅延差測定回路20も複数有している点で異なる。なお、第2受光部12の信号は、前記実施形態1の光センサ101と同様に、複数の第1受光部11の信号と独立して遅延差を判定するために、時間差抽出回路19内のDLL2が用いられる。
上記構成の光センサ401によれば、検知対象物Sからの反射光を受光する第1受光部11が複数個設けられていることで、当該反射光の入射角別に距離測定を行う場合等に有利である。例えば、入射角別に入る光に対して受光部を複数にすることにより、3次元的な距離情報を同時に測定でき、測定時間が短くなるという効果を奏する。
〔実施形態5〕
本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(光センサの概要)
図33は、本実施形態に係る光センサ501の概略構成を示すブロック図である。
図33は、本実施形態に係る光センサ501の概略構成を示すブロック図である。
光センサ501は、基本的に前記実施形態1の光センサ101と同じ構成であるが、第1受光部11、第2受光部12が、前記実施形態1の図2に示すCELL一つで構成されている点で異なる。
(効果)
このように、第1受光部11、第2受光部12を、図2に示すCELL一つで構成することで、受光部面積を低減し、実施形態4の光センサ401のように、第1受光部11を複数配置を行う場合などにも面積増加を抑えることができる。さらに、第1受光部11、第2受光部12に一つのCELLだけであるため、OR1,OR2が不要となるため、光センサの構成も簡略化できるという効果も奏する。
このように、第1受光部11、第2受光部12を、図2に示すCELL一つで構成することで、受光部面積を低減し、実施形態4の光センサ401のように、第1受光部11を複数配置を行う場合などにも面積増加を抑えることができる。さらに、第1受光部11、第2受光部12に一つのCELLだけであるため、OR1,OR2が不要となるため、光センサの構成も簡略化できるという効果も奏する。
前記実施形態1~5において、第1デジタル演算部13、第2デジタル演算部14について詳細に説明していないが、構成は共通である。以下に第1デジタル演算部13、14の詳細について説明する。
(第1デジタル演算部13、第2デジタル演算部14)
図32の(a)は、第1デジタル演算部13、第2デジタル演算部14内の回路図であり、同図の(b)は、第1デジタル演算部13、第2デジタル演算部14の駆動波形図である。図33は、第1デジタル演算部13、第2デジタル演算部14の光センサの各状態での動作を説明するための回路図である。
図32の(a)は、第1デジタル演算部13、第2デジタル演算部14内の回路図であり、同図の(b)は、第1デジタル演算部13、第2デジタル演算部14の駆動波形図である。図33は、第1デジタル演算部13、第2デジタル演算部14の光センサの各状態での動作を説明するための回路図である。
なお、第1デジタル演算部13、第2デジタル演算部14の構成は同じであるため、以下の説明では、デジタル演算部と称して説明する。また、ここでは、発光素子18がパルス取得期間において、パルス発光を繰り返している第1の状態と、発光していない第2の状態との比が4:1、判定回路部15につながるbit数が5bitの場合について説明する。
デジタル演算部は、Enable端子がHの期間におけるPulse_input端子から入力されたパルス数をカウントする回路である。パルス取得前にReset_signal端子H→L→Hにすることで、デジタル演算出力5bit(out_0, out_1, out_2, out_3, out_4)を0(=L)にリセットし、パルス取得を開始する。
第1の状態において、Enable=H、Signal1=H、Signal2=L、UP/DOWN=HとなりPulse_input端子から入力されたパルス数を加算する回路構成となる(図33の(a))。第1の状態と第2の状態の間には、短いカウント反転期間を要し、期間内においてSignal1、Signal2、UP/DOWNを変化させる。
カウント反転期間は、第1の状態、第2の状態の期間に対して十分短く(1/1000程度)、またカウント反転期間中はEnable=Lとし、パルスがデジタル演算部に入力されない。また発光素子は非発光とする。図33の(b)に示すように、カウント反転期間は各bit間のD_FFは分離され、Signal2 L→H時にすべてのbitが反転する。
第2の状態においてEnable=H、Signal1=H、Signal2=L、UP/DOWN=Lとなり、Pulse_input端子から入力されたパルスの数を減算する。このときの回路構成は、図33の(c)に示すように、入力を3bit目(out_2)から行い、1bit目と2bit目(out_0、out_1)は変化させないことを除くと、図33の(a)と同様の構成であり、動作自体はパルス数を3bit目から加算している。
図32の(b)に示す第1の状態にパルスが28個、第2の状態に5個入力された場合を例にとると、下記のようになる。
out_4、out_3、out_2、out_1、out_0の順で示す。(H電圧を1、L電圧を0)
第1の状態:11100(2進数)(=28(10進数))
↓
カウント反転期間:各bit反転:00011
↓
第2の状態:00011に2bit上位bit方向にずらして5を加算
10111(上位3bit部分が000 (0)→101 (5)に変化)
↓
カウント反転期間:各bit反転:01000 (2進数)(=8(10進数))
(第1の状態でのパルス数)―(第2の状態でのパルス数)×(第1の状態の時間/第2の状態の時間)
=28-5×4 = 8の計算を行っている。
out_4、out_3、out_2、out_1、out_0の順で示す。(H電圧を1、L電圧を0)
第1の状態:11100(2進数)(=28(10進数))
↓
カウント反転期間:各bit反転:00011
↓
第2の状態:00011に2bit上位bit方向にずらして5を加算
10111(上位3bit部分が000 (0)→101 (5)に変化)
↓
カウント反転期間:各bit反転:01000 (2進数)(=8(10進数))
(第1の状態でのパルス数)―(第2の状態でのパルス数)×(第1の状態の時間/第2の状態の時間)
=28-5×4 = 8の計算を行っている。
第2の状態においてbit反転時の加算は、bitを元に戻すと減算していることと等価であり、
またi bit(iは変数)上位bit方向にずらしてパルス入力し加算することは、加算値が2のi乗倍されていることと等価である。実施例では(第1の状態の時間/第2の状態の時間)が4倍の為、第2の状態において2bitずらして加算を行った。
またi bit(iは変数)上位bit方向にずらしてパルス入力し加算することは、加算値が2のi乗倍されていることと等価である。実施例では(第1の状態の時間/第2の状態の時間)が4倍の為、第2の状態において2bitずらして加算を行った。
(電子機器)
前記実施形態1~5に記載の各光センサを電子機器に内蔵してもよい。このような電子機器として、具体的には、カメラ、ロボット掃除機、スマートフォンなどがある。
前記実施形態1~5に記載の各光センサを電子機器に内蔵してもよい。このような電子機器として、具体的には、カメラ、ロボット掃除機、スマートフォンなどがある。
〔まとめ〕
本発明の態様1に係る光センサ(101,201,401,501)は、発光素子18と、物体(検知対象物S)からの反射光によるフォトン入射に対して同期するパルスを出力するフォトンカウント型の第1受光部11と、センサパッケージ内部の反射光によるフォトン入射に対して同期するパルスを出力する、前記発光素子18近傍に配置されたフォトンカウント型の第2受光部12と、前記第1及び第2受光部(11,12)からのパルス出力と、基準クロックとを用いて空間光路上の距離に相当する時間差を抽出する時間差抽出回路19と、前記第1受光部11のパルス出力からのパルス数をカウントし、デジタル値を出力する第1デジタル演算部13と、前記物体(検知対象物S)までの測定距離の十分な測定精度を得られるパルス数を基準値としたとき、距離測定期間(判定期間)内に、前記第1デジタル演算部13より出力されるデジタル値が、前記基準値を超えたか否かに応じて、前記発光素子18の発光周期及び前記基準クロックの周期を変更する周期変更回路(判定回路部15、基準パルス生成回路16、判定回路部35、基準パルス生成回路36)と、を備えていることを特徴としている。
本発明の態様1に係る光センサ(101,201,401,501)は、発光素子18と、物体(検知対象物S)からの反射光によるフォトン入射に対して同期するパルスを出力するフォトンカウント型の第1受光部11と、センサパッケージ内部の反射光によるフォトン入射に対して同期するパルスを出力する、前記発光素子18近傍に配置されたフォトンカウント型の第2受光部12と、前記第1及び第2受光部(11,12)からのパルス出力と、基準クロックとを用いて空間光路上の距離に相当する時間差を抽出する時間差抽出回路19と、前記第1受光部11のパルス出力からのパルス数をカウントし、デジタル値を出力する第1デジタル演算部13と、前記物体(検知対象物S)までの測定距離の十分な測定精度を得られるパルス数を基準値としたとき、距離測定期間(判定期間)内に、前記第1デジタル演算部13より出力されるデジタル値が、前記基準値を超えたか否かに応じて、前記発光素子18の発光周期及び前記基準クロックの周期を変更する周期変更回路(判定回路部15、基準パルス生成回路16、判定回路部35、基準パルス生成回路36)と、を備えていることを特徴としている。
上記構成によれば、物体までの測定距離の十分な測定精度を得られるパルス数を基準値としたとき、距離測定期間内に、前記第1デジタル演算部より出力されるデジタル値が、前記基準値を超えたか否かに応じて、前記発光素子の発光周期及び前記基準クロックの周期を変更することで、測定対象である物体までの距離が近距離である場合、遠距離である場合それぞれにおいて適切な発光素子の発光周期及び基準クロックの周期を設定することが可能となる。特に、検知対象物である物体と光センサとの間に筐体パネルが存在した場合を考慮して、発光素子の発光周期及び基準クロックの周期を設定することが可能となる。
これにより、近距離の測定精度の維持と、物体と光センサとの間に筐体パネルが存在した場合の遠距離の測定精度の維持との両立を図ることができる。
本発明の態様2に係る光センサ101は、上記態様1において、前記周期変更回路(判定回路部15、基準パルス生成回路16)は、距離測定期間(判定期間)内に、前記第1デジタル演算部13より出力されるデジタル値が、前記基準値を超えていると判定した場合、前記発光素子18の発光周期、および前記基準クロックの周期を予め設定した倍率の周期に変更してもよい。
上記構成によれば、距離測定期間(判定期間)内に、前記第1デジタル演算部13より出力されるデジタル値が、前記基準値を超えていると判定した場合、すなわち、物体までの距離が近距離であると判定した場合に、発光素子18の発光周期、および前記基準クロックの周期を予め設定した倍率の周期に変更することで、近距離における測定誤差を低減することできる。
本発明の態様3に係る光センサ201は、上記態様1において、前記時間差抽出回路19は、前記第1受光部11からのパルス出力を入力する第1のDLL(DLL1)と、前記第2受光部12からのパルス出力を入力する第2のDLL(DLL2)とを有し、前記周期変更回路(判定回路部35、基準パルス生成回路36)は、距離測定期間(判定期間)内に、前記発光素子18の発光周期で繰り返す第1のマスク期間以外の期間のみカウントする前記第1デジタル演算部13より出力されるデジタル値が、前記基準値を超えていない場合、発光周期の半周期で繰り返す第2のマスク期間以外の期間の前記第1受光部11からのパルスを前記第1のDLL(DLL1)に入力する状態に切り替え、前記基準値を超えている場合、前記第1受光部11からのパルスを直接前記第1のDLL(DLL1)に入力する状態に切り替えてもよい。
上記構成によれば、物体と光センサとの間に筐体パネルが存在するような場合において、筐体反射成分を完全に除去することができるので、筐体反射成分による誤差が大きくなる遠距離の測定精度を確保することができる。
本発明の態様4に係る光センサ(101、201)は、上記態様3において、前記第1および第2のDLL(DLL1,DLL2)は、位相検出器、電圧制御遅延回路21、および前記電圧制御遅延回路21の制御電圧を保持する容量素子CDLLを有し、第1の期間に前記容量素子CDLLを一定値にチャージし、第2の期間に前記電圧制御遅延回路21の基準クロックを4分周したクロックと前記電圧制御遅延回路21の4分周出力を前記位相検出器に入力し、第3の期間に前記第1受光部11からのパルスと前記電圧制御遅延回路21出力の2分周したクロックを前記位相検出器に入力してもよい。
上記構成によれば、測定値に含まれる外乱光成分を除去できる。
本発明の態様5に係る光センサは、上記態様2に記載の周期変更回路(判定回路部15、基準パルス生成回路16)と、上記態様3に記載の周期変更回路(判定回路部35、基準パルス生成回路36)とを備え、これら周期変更回路を切り換え可能にしたことを特徴としている。
上記構成によれば、近距離の精度を保ったまま遠距離化と筐体反射対策を両立することができる。
本発明の態様6に係る光センサは、上記態様1~5の何れか1態様において、前記発光素子18は、前記第1及び第2受光部(11,12)からのパルス取得期間において、パルス発光を繰り返している第1の状態と、発光していない第2の状態の2つの状態を持ち、前記第1及び第2の状態が、第1の状態の時間>第2の状態の時間となる一定の時間比率で実施される期間を1周期として、動作を繰り返し、前記第1及び第2受光部(11,12)の各々のデジタル演算部(第1デジタル演算部13、第2デジタル演算部14)は、前記第1の状態においてパルス数を加算していき、前記第2の状態においてパルス数に1周期内での(第1の状態の時間/第2の状態の時間)の係数を掛けた値を減算し、n周期(n≧1)終了する毎に、第1受光部11の第1デジタル演算部13より出力されるデジタル値が第1判定回路部(判定回路部15)に入力され、第1基準値を超えているか判定してもよい。
上記構成によれば、n周期(n≧1)終了する毎に、TOFセンサの有効データ数(反射光成分によるパルス数)を知ることができ、必要十分なデータ数を取得次第、パルス取得期間を終了できることで測定時間が最小化されることから、高精度測定を短時間で実施できる。
本発明の態様7に係る電子機器は、上記態様1~5の何れか1態様に記載の光センサを内蔵することを特徴としている。
本発明の態様8に係る光センサは、発光素子と、物体からの反射光によるフォトン入射に対して同期するパルスを出力するフォトンカウント型受光部1と、センサパッケージ内部の反射光によるフォトン入射に対して同期するパルスを出力する、発光素子近傍に配置されたフォトンカウント型の受光部2と、受光部1と受光部2からのパルス出力の時間差を抽出する時間差抽出回路と、受光部1のパルス出力からのパルス数をカウントし、デジタル値を出力するデジタル演算部1と、受光部2のパルス出力からのパルス数をカウントし、デジタル値を出力するデジタル演算部2と、デジタル演算部1より出力されるデジタル値が基準値を超えているかを判定する判定回路部と、発光素子をパルス駆動するためのドライバ回路と、ドライバ回路に基準パルスを与え、また時間差抽出回路に基準クロックを与える、基準パルス生成回路と、を備え、前記判定回路部は前記デジタル演算部1より出力されるデジタル値が、基準値を超えている場合、発光周期、および前記時間差抽出回路の基準パルスの周期を設定倍率の周期に変更する処理回路を備え、前記受光部1と前記デジタル演算部1と前記判定回路部はそれぞれ少なくとも一つ以上であることを特徴としている。
本発明の態様9に係る光センサは、上記態様8において、前記時間差抽出回路は前記受光部1からのパルス出力を入力する第1のDLLと、前記受光部2からのパルス出力を入力する第2のDLLとを有し、前記処理回路は、前記発光素子の発光周期で繰り返す第1のマスク期間以外の期間のみカウントする前記デジタル演算部より出力されるデジタル値が、基準値を超えていない場合、発光周期の半周期で繰り返す第2のマスク期間以外の期間の前記受光部1からのパルスを前記第1のDLLに入力する状態に切り替え、基準値を超えている場合、前記発光素子からのパルスを直接前記第1のDLLに入力する状態に切り替える処理回路であってもよい。
本発明の態様10に係る光センサは、上記態様8または9において、第1、および第2のDLLは位相検出器、電圧制御遅延回路、および前記電圧制御遅延回路の制御電圧を保持する容量素子を有し、第1の期間に容量素子を一定値にチャージし、第2の期間に前記電圧制御遅延回路の基準クロックを4分周したクロックと前記電圧制御遅延回路の4分周出力を前記位相検出器に入力し、第3の期間に前記受光素子からのパルスと前記電圧制御遅延回路出力の2分周したクロックを前記位相検出器に入力してもよい。
本発明の態様11に係る光センサは、上記態様8と上記態様9の処理回路を切り替えてもよい。
本発明の態様12に係る光センサは、上記態様8~11の何れか1態様において、前記発光素子は、前記受光部1と受光部2からのパルス取得期間において、パルス発光を繰り返している第1の状態と、発光していない第2の状態の2つの状態を持ち、第1の状態と第2の状態が、第1の状態の時間>第2の状態の時間となる一定の時間比率(第1の状態の時間:第2の状態の時間 が一定)で実施される期間を1周期として、動作を繰り返すことを特徴とし、(1周期内で各状態を分割して実施する場合も含み、前記時間比率の各状態の時間は1周期内での実施した合計時間とする)前記の受光部1と受光部2の各々のデジタル演算部は、第1の状態においてパルス数を加算していき、第2の状態においてパルス数に1周期内での(第1の状態の時間/第2の状態の時間)の係数を掛けた値を減算し、n周期(n≧1)終了する毎に、受光部1のデジタル演算部1より出力されるデジタル値が判定回路部1に入力され、基準値1を超えているか判定してもよい。
本発明の態様13に係る電子機器は、上記態様8~12の何れか1態様に記載の光センサを内蔵することを特徴としている。
以上のように、本発明の一態様に係る光センサは、発光素子を発光させる期間と発光させない期間の割合から外乱光成分を測定期間中に連続的に除く演算を行うことにより短時間で有効パルス成分を取得する。また、前記有効パルス成分を取得することにより、近距離と遠距離を短期間で判別し、近距離と遠距離に適切な発光周期を選択でき、近距離精度と筐体パネル反射成分の補正ができる長距離測定を両立する。また、筐体パネルからの反射光に対しては、筐体パネルによる反射光が入る領域以外をマスクしたときの有効パルス数を判別し、筐体パネル以外の有効パルスが存在すれば近距離に検知対象物があるものと判別し、筐体パネル反射光のマスクは行わず、近距離を測定し、筐体パネル反射光以外の有効パルスが存在しなければ遠距離に検知対象物があるものと判別し、筐体パネル反射光をマスクし、遠距離を測定することで筐体パネル反射による遠距離測定誤差を無くす。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
11 第1受光部
12 第2受光部
13 第1デジタル演算部
14 第2デジタル演算部
15 判定回路部
16 基準パルス生成回路
17 ドライバ(ドライバ回路)
18 発光素子
19 時間差抽出回路
20 遅延差測定回路
21 電圧制御遅延回路
22 リングオシレータ
23 レベルシフター
24 レベルシフター
25 レベルシフター
30 マスク回路
31 ワンショットパルス回路
32 遅延回路
35 判定回路部
36 基準パルス生成回路
46 基準パルス生成回路
101、201、401、501 光センサ
S 検知対象物(物体)
x 検知対象物距離 1 ・・・
12 第2受光部
13 第1デジタル演算部
14 第2デジタル演算部
15 判定回路部
16 基準パルス生成回路
17 ドライバ(ドライバ回路)
18 発光素子
19 時間差抽出回路
20 遅延差測定回路
21 電圧制御遅延回路
22 リングオシレータ
23 レベルシフター
24 レベルシフター
25 レベルシフター
30 マスク回路
31 ワンショットパルス回路
32 遅延回路
35 判定回路部
36 基準パルス生成回路
46 基準パルス生成回路
101、201、401、501 光センサ
S 検知対象物(物体)
x 検知対象物距離 1 ・・・
Claims (7)
- 発光素子と、
物体からの反射光によるフォトン入射に対して同期するパルスを出力するフォトンカウント型の第1受光部と、
センサパッケージ内部の反射光によるフォトン入射に対して同期するパルスを出力する、前記発光素子近傍に配置されたフォトンカウント型の第2受光部と、
前記第1及び第2受光部からのパルス出力と、基準クロックとを用いて空間光路上の距離に相当する時間差を抽出する時間差抽出回路と、
前記第1受光部のパルス出力からのパルス数をカウントし、デジタル値を出力する第1デジタル演算部と、
前記物体までの測定距離の十分な測定精度を得られるパルス数を基準値としたとき、距離測定期間内に、前記第1デジタル演算部より出力されるデジタル値が、前記基準値を超えたか否かに応じて、前記発光素子の発光周期及び前記基準クロックの周期を変更する周期変更回路と、を備えていることを特徴とする光センサ。 - 前記周期変更回路は、
距離測定期間内に、前記第1デジタル演算部より出力されるデジタル値が、前記基準値を超えていると判定した場合、前記発光素子の発光周期、および前記基準クロックの周期を予め設定した倍率の周期に変更することを特徴とする請求項1に記載の光センサ。 - 前記時間差抽出回路は、
前記第1受光部からのパルス出力を入力する第1のDLLと、前記第2受光部からのパルス出力を入力する第2のDLLとを有し、
前記周期変更回路は、
距離測定期間内に、前記発光素子の発光周期で繰り返す第1のマスク期間以外の期間のみカウントする前記第1デジタル演算部より出力されるデジタル値が、前記基準値を超えていない場合、発光周期の半周期で繰り返す第2のマスク期間以外の期間の前記第1受光部からのパルスを前記第1のDLLに入力する状態に切り替え、前記基準値を超えている場合、前記第1受光部からのパルスを直接前記第1のDLLに入力する状態に切り替えることを特徴とする請求項1に記載の光センサ。 - 前記第1および第2のDLLは、
位相検出器、電圧制御遅延回路、および前記電圧制御遅延回路の制御電圧を保持する容量素子を有し、
第1の期間に前記容量素子を一定値にチャージし、第2の期間に前記電圧制御遅延回路の基準クロックを4分周したクロックと前記電圧制御遅延回路の4分周出力を前記位相検出器に入力し、第3の期間に前記第1受光部からのパルスと前記電圧制御遅延回路出力の2分周したクロックを前記位相検出器に入力することを特徴とする請求項3に記載の光センサ。 - 請求項2に記載の周期変更回路と、
請求項3に記載の周期変更回路と、を備え、
これら周期変更回路を切り換え可能にしたことを特徴とする光センサ。 - 前記発光素子は、
前記第1及び第2受光部からのパルス取得期間において、パルス発光を繰り返している第1の状態と、発光していない第2の状態の2つの状態を持ち、
前記第1及び第2の状態が、第1の状態の時間>第2の状態の時間となる一定の時間比率で実施される期間を1周期として、動作を繰り返し、
前記第1及び第2受光部の各々のデジタル演算部は、
前記第1の状態においてパルス数を加算していき、
前記第2の状態においてパルス数に1周期内での(第1の状態の時間/第2の状態の時間)の係数を掛けた値を減算し、
n周期(n≧1)終了する毎に、
第1受光部の第1デジタル演算部より出力されるデジタル値が第1判定回路部に入力され、第1基準値を超えているか判定することを特徴とする請求項1~5のいずれか1項に記載の光センサ。 - 請求項1~6のいずれか1項に記載の光センサを内蔵することを特徴とする電子機器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/306,514 US11287518B2 (en) | 2016-06-02 | 2017-04-21 | Optical sensor and electronic device |
CN201780034497.0A CN109219758B (zh) | 2016-06-02 | 2017-04-21 | 光传感器、电子设备 |
JP2018520718A JP6657396B2 (ja) | 2016-06-02 | 2017-04-21 | 光センサ、電子機器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-111291 | 2016-06-02 | ||
JP2016111291 | 2016-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017208673A1 true WO2017208673A1 (ja) | 2017-12-07 |
Family
ID=60479522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/016069 WO2017208673A1 (ja) | 2016-06-02 | 2017-04-21 | 光センサ、電子機器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11287518B2 (ja) |
JP (1) | JP6657396B2 (ja) |
CN (1) | CN109219758B (ja) |
WO (1) | WO2017208673A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017208651A1 (ja) * | 2016-06-02 | 2019-03-14 | シャープ株式会社 | 光センサ、および電子機器 |
JPWO2019225224A1 (ja) * | 2018-05-24 | 2021-05-27 | ソニーセミコンダクタソリューションズ株式会社 | 時間計測装置 |
WO2023079830A1 (ja) * | 2021-11-05 | 2023-05-11 | ソニーセミコンダクタソリューションズ株式会社 | 測距装置、および、光検出素子 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7109906B2 (ja) * | 2017-11-14 | 2022-08-01 | シャープ株式会社 | 光センサ及び電子機器 |
TWI704367B (zh) * | 2019-05-09 | 2020-09-11 | 國立交通大學 | 測距裝置及方法 |
JP7425573B2 (ja) * | 2019-10-02 | 2024-01-31 | シャープ株式会社 | 電子機器 |
CN111308487B (zh) * | 2020-02-21 | 2022-03-15 | 南京大学 | 一种适用于远距离测距的spad阵列 |
DE102020109928B3 (de) * | 2020-04-09 | 2020-12-31 | Sick Ag | Kamera und Verfahren zur Erfassung von Bilddaten |
CN111766596A (zh) * | 2020-06-04 | 2020-10-13 | 深圳奥锐达科技有限公司 | 一种距离测量方法、系统及计算机可读存储介质 |
TWI759213B (zh) * | 2020-07-10 | 2022-03-21 | 大陸商廣州印芯半導體技術有限公司 | 光感測器及其感測方法 |
CN114706088A (zh) * | 2021-07-22 | 2022-07-05 | 神盾股份有限公司 | 光学感测装置 |
WO2024130608A1 (zh) * | 2022-12-21 | 2024-06-27 | 深圳市速腾聚创科技有限公司 | 飞行时间测量方法、装置、激光测距装置及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006337302A (ja) * | 2005-06-06 | 2006-12-14 | Topcon Corp | 距離測定装置 |
JP2012215521A (ja) * | 2011-04-01 | 2012-11-08 | Denso Corp | レーザレーダ装置 |
US20140231631A1 (en) * | 2013-02-18 | 2014-08-21 | Stmicroelectronics (Research & Development) Limited | Apparatus for pulse shaping |
JP2015108629A (ja) * | 2014-12-26 | 2015-06-11 | トヨタ自動車株式会社 | 画像取得装置及び方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT307762B (de) * | 1971-04-28 | 1973-06-12 | Eumig | Verfahren und Einrichtung zur Entfernungsmessung |
US6295413B1 (en) * | 1999-02-24 | 2001-09-25 | Nikon Corporation | Digitizing circuit of light amount receiving from strobe and control circuit of light amount emitted from strobe |
US6522395B1 (en) * | 1999-04-30 | 2003-02-18 | Canesta, Inc. | Noise reduction techniques suitable for three-dimensional information acquirable with CMOS-compatible image sensor ICS |
WO2005008271A2 (en) * | 2002-11-26 | 2005-01-27 | Munro James F | An apparatus for high accuracy distance and velocity measurement and methods thereof |
JP4200328B2 (ja) * | 2005-04-18 | 2008-12-24 | パナソニック電工株式会社 | 空間情報検出システム |
WO2007004606A1 (ja) * | 2005-07-04 | 2007-01-11 | Nikon Vision Co., Ltd. | 測距装置 |
US7486386B1 (en) * | 2007-09-21 | 2009-02-03 | Silison Laboratories Inc. | Optical reflectance proximity sensor |
JP4918929B2 (ja) * | 2009-01-30 | 2012-04-18 | 日本テキサス・インスツルメンツ株式会社 | 発光ダイオード制御装置 |
US8692200B2 (en) * | 2010-01-06 | 2014-04-08 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Optical proximity sensor with improved dynamic range and sensitivity |
JP5644294B2 (ja) | 2010-09-10 | 2014-12-24 | 株式会社豊田中央研究所 | 光検出器 |
JP2013137324A (ja) * | 2013-03-07 | 2013-07-11 | Toyota Motor Corp | 画像取得装置及び方法 |
JP6207407B2 (ja) * | 2014-01-17 | 2017-10-04 | オムロンオートモーティブエレクトロニクス株式会社 | レーザレーダ装置、物体検出方法、及び、プログラム |
WO2016013242A1 (ja) * | 2014-07-24 | 2016-01-28 | シャープ株式会社 | 距離測定装置及び距離測定方法 |
GB201413564D0 (en) * | 2014-07-31 | 2014-09-17 | Stmicroelectronics Res & Dev | Time of flight determination |
US9642215B2 (en) * | 2015-07-28 | 2017-05-02 | Intersil Americas LLC | Optical sensors that compensate for ambient light and interference light |
JP6910010B2 (ja) * | 2016-02-17 | 2021-07-28 | パナソニックIpマネジメント株式会社 | 距離測定装置 |
-
2017
- 2017-04-21 WO PCT/JP2017/016069 patent/WO2017208673A1/ja active Application Filing
- 2017-04-21 CN CN201780034497.0A patent/CN109219758B/zh active Active
- 2017-04-21 JP JP2018520718A patent/JP6657396B2/ja active Active
- 2017-04-21 US US16/306,514 patent/US11287518B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006337302A (ja) * | 2005-06-06 | 2006-12-14 | Topcon Corp | 距離測定装置 |
JP2012215521A (ja) * | 2011-04-01 | 2012-11-08 | Denso Corp | レーザレーダ装置 |
US20140231631A1 (en) * | 2013-02-18 | 2014-08-21 | Stmicroelectronics (Research & Development) Limited | Apparatus for pulse shaping |
JP2015108629A (ja) * | 2014-12-26 | 2015-06-11 | トヨタ自動車株式会社 | 画像取得装置及び方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017208651A1 (ja) * | 2016-06-02 | 2019-03-14 | シャープ株式会社 | 光センサ、および電子機器 |
JPWO2019225224A1 (ja) * | 2018-05-24 | 2021-05-27 | ソニーセミコンダクタソリューションズ株式会社 | 時間計測装置 |
JP7290632B2 (ja) | 2018-05-24 | 2023-06-13 | ソニーセミコンダクタソリューションズ株式会社 | 時間計測装置 |
WO2023079830A1 (ja) * | 2021-11-05 | 2023-05-11 | ソニーセミコンダクタソリューションズ株式会社 | 測距装置、および、光検出素子 |
Also Published As
Publication number | Publication date |
---|---|
US20190129015A1 (en) | 2019-05-02 |
CN109219758A (zh) | 2019-01-15 |
JPWO2017208673A1 (ja) | 2019-03-22 |
US11287518B2 (en) | 2022-03-29 |
JP6657396B2 (ja) | 2020-03-04 |
CN109219758B (zh) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017208673A1 (ja) | 光センサ、電子機器 | |
US8963069B2 (en) | Device having SPAD photodiodes for detecting an object with a selection of a number of photodiodes to be reversed biased | |
WO2018211801A1 (ja) | 光センサ及び電子機器 | |
US11644573B2 (en) | Higher pixel density histogram time of flight sensor with higher pixel density | |
US9639063B2 (en) | Time to digital converter and applications thereof | |
JP6709335B2 (ja) | 光センサ、電子機器、演算装置、及び光センサと検知対象物との距離を測定する方法 | |
CN109709531B (zh) | 光传感器、距离测量装置及电子设备 | |
CN109196377B (zh) | 光传感器及电子设备 | |
CN109946706B (zh) | 光传感器及电子设备 | |
US20130077082A1 (en) | Device and Method for Determining the Distance to an Object | |
CN107272010B (zh) | 距离传感器及其距离测量方法、3d图像传感器 | |
CN111033307B (zh) | 传感器装置以及测定方法 | |
JP6728369B2 (ja) | 光センサおよび電子機器 | |
CN110895336B (zh) | 基于雪崩二极管的物体检测装置 | |
JP6657412B2 (ja) | 光センサ及び電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018520718 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17806233 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17806233 Country of ref document: EP Kind code of ref document: A1 |