WO2017208663A1 - 生タイヤの異物付着判別方法 - Google Patents

生タイヤの異物付着判別方法 Download PDF

Info

Publication number
WO2017208663A1
WO2017208663A1 PCT/JP2017/015962 JP2017015962W WO2017208663A1 WO 2017208663 A1 WO2017208663 A1 WO 2017208663A1 JP 2017015962 W JP2017015962 W JP 2017015962W WO 2017208663 A1 WO2017208663 A1 WO 2017208663A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
dimensional
inspection target
raw
foreign matter
Prior art date
Application number
PCT/JP2017/015962
Other languages
English (en)
French (fr)
Inventor
博幸 鬼松
永井 健一
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to EP17806223.8A priority Critical patent/EP3454005B1/en
Priority to CN201780033356.7A priority patent/CN109219731B/zh
Priority to US16/301,845 priority patent/US10870246B2/en
Publication of WO2017208663A1 publication Critical patent/WO2017208663A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/0061Accessories, details or auxiliary operations not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/52Unvulcanised treads, e.g. on used tyres; Retreading
    • B29D30/58Applying bands of rubber treads, i.e. applying camel backs
    • B29D30/60Applying bands of rubber treads, i.e. applying camel backs by winding narrow strips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/0061Accessories, details or auxiliary operations not otherwise provided for
    • B29D2030/0066Tyre quality control during manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Definitions

  • the present invention relates to a discriminating method for discriminating adhesion of foreign matters on a green tire formed by a strip wind method.
  • the rubber strip tends to be rounded into a dumpling-like lump at the start and end of winding of the rubber strip.
  • the outer surface of the green tire is highly sticky. For this reason, there is a tendency that the cut pieces of the rubber strip cut during the formation of the green tire tend to adhere to the outer surface. If the raw tire is vulcanized and molded with foreign matters such as rubber strip lumps and cut pieces attached thereto, the tire quality may be degraded.
  • the outer surface of the green tire has fine stepped irregularities due to the spiral winding of the rubber strip. Therefore, it is difficult to determine the foreign matter using a displacement sensor. Therefore, conventionally, foreign matter is determined by visual confirmation by an inspector. Therefore, the reliability is inferior and the inspection work efficiency is lowered.
  • JP 2008-284815 A Japanese Patent Laying-Open No. 2015-229438
  • the present invention is a discrimination method for discriminating adhesion of foreign matter on the outer surface of a green tire on which the outer surface is formed by spirally winding a rubber strip,
  • Raw data acquisition step of scanning the inspection target surface of the outer surface of the raw tire in the circumferential direction by a two-dimensional displacement sensor and creating three-dimensional raw data D0 of the inspection target surface;
  • An averaging process step for obtaining three-dimensional processed data D1 obtained by averaging the distance data z in the three-dimensional raw data D0;
  • a discrimination step for discriminating the adhesion of foreign matter based on the imaged image data,
  • the green tire is rotated about its axis;
  • the two-dimensional displacement sensor irradiates the inspection target surface of the rotating raw tire with linear sensor light that is long in the X direction perpendicular to the circumferential direction, Thereby, the three-dimensional raw
  • each of the distance data z is averaged in a range where the width in the X direction is Wx and the width in the circumferential direction is Wy, thereby obtaining three-dimensional processing data D1.
  • the width Wx and the width Wy are respectively larger than the helical pitch of the rubber strip and smaller than the width of the rubber strip.
  • the three-dimensional raw data D0 of the surface to be inspected obtained by the rotation of the raw tire and the two-dimensional displacement sensor is averaged.
  • the width Wx in the X direction and the width Wy in the circumferential direction in this averaging process range are larger than the spiral pitch of the rubber strip and smaller than the width of the rubber strip. Thereby, it is possible to smooth the surface by eliminating the fine step-like unevenness caused by the spiral winding of the rubber strip. In addition, the surface to be inspected can be planarized.
  • the distance data z in the averaged three-dimensional processing data D1 is binarized with a threshold value, and the binarized three-dimensional processing data D2 is imaged. Therefore, the size of the foreign matter can be visualized and caught, and the adhesion of the foreign matter can be easily determined.
  • FIG. 1 It is a flowchart which shows the foreign material adhesion determination method of the raw tire of this invention.
  • A is a perspective view conceptually showing a raw data acquisition step
  • B is a perspective view conceptually showing a rubber strip. It is a figure which shows the averaging process step notionally.
  • A) is a figure which shows notionally the effect by an averaging process step. It is the image of the three-dimensional process data D2 by the imaging step. It is sectional drawing which shows the example of a division of the outer surface of a green tire.
  • the foreign matter adhesion determination method of the raw tire of the present invention includes a raw data acquisition step Sa, an averaging processing step Sb, an imaging step Sc, and a determination step Sd. As shown in FIG. 2A, the foreign matter adhesion determination method determines whether foreign matter J is attached to the outer surface Ts of the raw tire T.
  • At least one of rubber constituent members forming a tire outer shell such as tread rubber or sidewall rubber is wound around an unvulcanized rubber strip G (shown in FIG. 2B) in a spiral shape. Formed by. Therefore, fine step-shaped irregularities 10 (shown in FIG. 4A) are formed on the outer surface of the tire made of the rubber strip G.
  • the two-dimensional displacement sensor 2 in the raw data acquisition step Sa, is used to scan the inspection target surface 3 in the outer surface Ts of the raw tire T in the circumferential direction Y. Specifically, the raw tire T is rotated around its axis. The two-dimensional displacement sensor 2 irradiates the inspection target surface 3 of the rotating raw tire T with a linear sensor light 2 ⁇ / b> L that is long in the X direction perpendicular to the circumferential direction Y.
  • the two-dimensional displacement sensor 2 is a so-called laser displacement sensor that irradiates the line-shaped sensor light 2L, and various commercially available ones can be adopted.
  • a two-dimensional displacement sensor 2 having an irradiation width 2Lw of, for example, 60 to 80 mm is used.
  • each distance data z is in the range K in which the width in the X direction is Wx and the width in the circumferential direction is Wy with respect to the three-dimensional raw data D0. Are averaged to obtain three-dimensional processing data D1.
  • the three-dimensional raw data D0 is configured as a group of data d shown as dots in FIG.
  • the width 3W in the X direction of the surface 3 to be inspected is 70 mm
  • the length 3L in the circumferential direction Y is 2000 mm
  • the surface 3 to be inspected is spaced at intervals of 0.0875 mm in the X direction. Shows a case where data is acquired at intervals of 0.125 mm.
  • the three-dimensional raw data D0 of this example is configured as a group of 800 ⁇ 16000 data d.
  • the distance data z of each data d appears as a dot height (not shown).
  • the distance data z of all data d (including data d0) located within the range K centered on one data d0 of the plurality of data d is averaged.
  • the average distance data z1 is replaced with the distance data z of the data d0 before the averaging process. This is performed for all data d of the three-dimensional raw data D0. Thereby, the three-dimensional processing data D1 is obtained.
  • the data d0 located at both ends in the X direction is obtained.
  • the width Wx in the X direction and the width Wy in the circumferential direction of the range K are larger than the spiral pitch P of the rubber strip G (shown in FIG. 4A) and the width Gw of the rubber strip G (FIG. 2). (Shown in (B)).
  • the spiral pitch P changes, the minimum spiral pitch P is applied.
  • FIG. 4A the unevenness 10 on the surface 3 to be inspected by the spiral winding of the rubber strip G can be eliminated and smoothed.
  • the smoothed inspection object surface 3 can be further planarized. For this flattening, as shown in FIG.
  • the outer surface Ts of the raw tire T is inspected, for example, the inspection target surface 3A on the tread center side, the inspection target surfaces 3B and 3B on the tread shoulder side, and the inspection on the sidewall upper side. It is preferable that the target surfaces 3C and 3C and the inspection target surfaces 3D and 3D below the side walls are divided into seven sections, and the three-dimensional raw data D0 of the respective inspection target surfaces 3A to 3D is acquired by separate two-dimensional displacement sensors 2. . That is, it is preferable to divide the outer surface Ts of the raw tire T into a plurality of inspection target surfaces 3 with little profile change. The number of sections is preferably 7 or more.
  • each distance data z of the three-dimensional processing data D1 is binarized with a threshold value.
  • the binarized three-dimensional processing data D2 is imaged. Thereby, for example, the image data 11 shown in FIG. 5 can be obtained. Imaging can be performed by converting binarized three-dimensional processing data D2 into pixel data.
  • the foreign matter J is expressed by a difference in color elements including, for example, saturation, hue, and brightness, and the size thereof is visualized while concealing the unevenness 10 by the rubber strip G. Can be caught.
  • the threshold is preferably at least 200% of the thickness of the rubber strip G.
  • the size of the foreign matter J that can be expressed can be adjusted by adjusting the width Wx and the width Wy.
  • the adhesion of the foreign matter J is determined based on the image data 11. This determination may be visual confirmation by an inspector. However, it is preferable to automatically determine by image analysis based on the pixel area of the exposed portion of the foreign matter J.
  • the tire skin of the raw tire T was formed using the rubber strip G. Then, on the surface 3B to be inspected on the tread shoulder side of the raw tire T, foreign matter J1 (10 mm ⁇ 10 mm ⁇ 2.0 mm), foreign matter J2 (20 mm ⁇ 20 mm ⁇ 2.0 mm), foreign matter J3 (30 mm ⁇ 30 mm ⁇ 2.0 mm) A sample tire with affixed was prepared. And the image data 11 shown in FIG. 5 was calculated
  • Two-dimensional displacement sensor Keyence Corporation (LJ-V7200)
  • Laser beam irradiation width 70 mm
  • Resolution X direction 0.0875mm (70mm / 800 points), circumferential direction Y0.125mm (2000mm / 16000 points)
  • Averaging range K: width Wx 5 mm
  • width Wy 5 mm
  • the image data 11 identifying the foreign matters J1 to J3 could be obtained.
  • Two-dimensional displacement sensor 2L Sensor light 3 Inspection target surface G Rubber strip J Foreign matter K Range P Spiral pitch Sa Raw data acquisition step Sb Averaging step Sc Imaging step Sd Discrimination step T Raw tire

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mechanical Engineering (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Tyre Moulding (AREA)
  • Tires In General (AREA)

Abstract

ストリップワインド法によって形成された生タイヤへの異物の付着を、確実性かつ効率良く行う。 生タイヤTの回転と、2次元変位センサー2によるセンサ光2LのX方向への照射により、検査対象表面3の3次元生データD0を作成する生データ取得ステップSa、3次元生データD0を平均化処理して3次元処理データD1をうる平均化処理ステップSb、及び3次元処理データD1の各距離データzを閾値により2値化し、かつ2値化した3次元処理データD2を画像化する画像化ステップScを具える。平均化処理の範囲Kの幅Wx、Wyを、ゴムストリップGの螺旋ピッチPよりも大かつゴムストリップGの幅Gwより小とする。

Description

生タイヤの異物付着判別方法
 本発明は、ストリップワインド法により形成された生タイヤにおける異物の付着を判別する判別方法に関する。
 近年、例えばトレッドゴム、サイドウォールゴムなどのタイヤ外皮をなすゴム構成部材を、未加硫のゴムストリップを螺旋状に巻回することにより形成する所謂ストリップワインド法が提案されている(特許文献1、2参照)。
 このストリップワインド法では、ゴムストリップの巻き始め端や巻き終わり端において、ゴムストリップが丸まって団子状の塊になりやすい傾向にある。又生タイヤの外表面は粘着性が高い。そのため、生タイヤ形成中に切断されたゴムストリップの切断片が、外表面に付着しやすい傾向にもある。このようなゴムストリップの塊や切断片である異物が付着したまま生タイヤを加硫成形した場合には、タイヤ品質を低下させる恐れを招く。
 しかし生タイヤの外表面は、ゴムストリップの螺旋状の巻回による細かい段差状の凹凸を有する。そのため、変位センサーを用いての前記異物の判別は難しい。従って、従来においては、検査者による目視確認によって異物の判別を行っている。そのため、確実性に劣り、かつ検査作業効率の低下を招く。
特開2008-284815号公報 特開2015-229438号公報
 本発明は、ストリップワインド法によって形成された生タイヤにおいて、ゴムストリップの塊や切断片である異物の付着の判別を、確実性かつ効率良く行いうる生タイヤの異物付着判別方法を提供することを課題としている。
本発明は、ゴムストリップを螺旋状に巻回することにより外表面が形成された生タイヤの前記外表面における異物の付着を判別する判別方法であって、
2次元変位センサーにより、前記生タイヤの外表面のうちの検査対象表面を周方向にスキャンし、前記検査対象表面の3次元生データD0を作成する生データ取得ステップと、
前記3次元生データD0における距離データzを平均化処理した3次元処理データD1をうる平均化処理ステップと、
前記3次元処理データD1の各前記距離データzを、閾値により2値化して画像化する画像化ステップと、
前記画像化した画像データに基づいて、異物の付着を判別する判別ステップとを具え、
前記生データ取得ステップでは、
前記生タイヤが、その軸心回りで回転され、
前記2次元変位センサーは、周方向と直角なX方向に長いライン状のセンサ光を、回転する前記生タイヤの前記検査対象表面に照射し、
これにより、X方向の位置データxと、周方向の位置データyと、2次元変位センサーから検査対象表面までの前記距離データzとから構成される前記3次元生データD0が作成され、
 前記平均化処理ステップでは、
前記3次元生データD0に対して、各前記距離データzが、X方向の幅がWxかつ周方向の幅がWyの範囲で平均化処理され、これにより、3次元処理データD1が得られ、
  前記幅Wx及び幅Wyは、それぞれ、前記ゴムストリップの螺旋ピッチよりも大、かつ前記ゴムストリップの幅よりも小である。
 本発明は叙上の如く、生タイヤの回転と2次元変位センサーとによって得た検査対象表面の3次元生データD0を平均化処理している。
 この平均化処理の範囲のX方向の幅Wx及び周方向の幅Wyをゴムストリップの螺旋ピッチよりも大かつゴムストリップの幅より小としている。これにより、ゴムストリップの螺旋状の巻回による細かい段差状の凹凸をなくして平滑化しうる。又、検査対象表面を平面化することができる。
 又平均化処理した3次元処理データD1における距離データzを閾値により2値化し、かつ2値化した3次元処理データD2を画像化している。そのため、異物の大きさを視覚化して捉えることができ、異物の付着を容易に判別することが可能になる。
本発明の生タイヤの異物付着判別方法を示すフローチャトである。 (A)は生データ取得ステップを概念的に示す斜視図、(B)はゴムストリップを概念的に示す斜視図である。 平均化処理ステップを概念的に示す図である。 (A)、(B)は、平均化処理ステップによる効果を概念的に示す図である。 画像化ステップによる3次元処理データD2の画像である。 生タイヤの外表面の区分例を示す断面図である。
 以下、本発明の実施の形態について、詳細に説明する。
 図1に示すように、本発明の生タイヤの異物付着判別方法は、生データ取得ステップSaと、平均化処理ステップSbと、画像化ステップScと、判別ステップSdとを具える。図2(A)に示すように、前記異物付着判別方法は、生タイヤTの外表面Tsにおける異物Jの付着の有無を判別する。
 前記生タイヤTは、例えばトレッドゴム、サイドウォールゴムなどのタイヤ外皮をなすゴム構成部材の少なくとも一つが、未加硫のゴムストリップG(図2(B)に示す)を螺旋状に巻回することによって形成される。従って、ゴムストリップGからなるタイヤの外表面には、細かい段差状の凹凸10(図4(A)に示す)が形成されている。
 図2(A)に示すように、生データ取得ステップSaでは、2次元変位センサー2を用い、生タイヤTの外表面Tsのうちの検査対象表面3を周方向Yにスキャンする。具体的には、生タイヤTが、その軸心回りで回転される。2次元変位センサー2は、周方向Yと直角なX方向に長いライン状のセンサ光2Lを、回転する生タイヤTの検査対象表面3に照射する。
 これにより、X方向の位置データxと、周方向Yの位置データyと、2次元変位センサー2から検査対象表面3までの距離データzとから構成される検査対象表面3の3次元生データD0が作成される。なお2次元変位センサー2は、ライン状のセンサ光2Lを照射する所謂レーザ変位センサーであって、市販の種々のものが採用しうる。本例では、照射幅2Lwが例えば60~80mmの2次元変位センサー2が使用される。
 次に、平均化処理ステップSbでは、図3に概念的に示すように、3次元生データD0に対して、X方向の幅がWxかつ周方向の幅がWyの範囲Kで各距離データzを平均化処理し、これにより3次元処理データD1を求める。
 なお3次元生データD0は、図3にドットとして示されるデータdの群として構成される。本例では、検査対象表面3のX方向の幅3Wが70mm、周方向Yの長さ3Lが2000mmであって、この検査対象表面3が、X方向に0.0875mm間隔で、又周方向Yに0.125mm間隔でデータ取得された場合が示される。従って、本例の3次元生データD0は、800×16000個のデータdの群として構成される。図3では、各データdの距離データzは、ドットの高さ(図示されない)として現れる。
 そして前記平均化処理では、複数のデータdのうちの一つのデータd0を中心とした範囲K内に位置する全てのデータd(データd0を含む)の距離データzを平均する。その平均距離データz1を、平均化処理前のデータd0の距離データzと置き換える。これを3次元生データD0の全データdに対して行う。これにより、3次元処理データD1が求められる。なお、X方向両端側に位置するデータd0に対しても、同様である。
 このとき、前記範囲KのX方向の幅Wx及び周方向の幅Wyは、ゴムストリップGの螺旋ピッチP(図4(A)に示す)よりも大、かつゴムストリップGの幅Gw(図2(B)に示す)より小に設定される。螺旋ピッチPが変化する場合には、最小の螺旋ピッチPが適用される。これにより、図4(A)に示すように、ゴムストリップGの螺旋状の巻回による検査対象表面3の凹凸10をなくして平滑化することができる。又図4(B)に示すように、平滑化された検査対象表面3を、より平面化することができる。この平面化のためには、図6に示すように、生タイヤTの外表面Tsを、例えばトレッド中央側の検査対象表面3A、トレッドショルダ側の検査対象表面3B、3B、サイドウォール上側の検査対象表面3C、3C、サイドウォール下側の検査対象表面3D、3Dに7区分し、各検査対象表面3A~3Dの3次元生データD0を、別々の2次元変位センサー2によって取得するのが好ましい。即ち、生タイヤTの外表面Tsを、プロファイル変化が少ない複数の検査対象表面3に区分しておくのが好ましい。なお区分数は7以上が好ましい。
 次に、画像化ステップScでは、前記3次元処理データD1の各距離データzを閾値により2値化する。又2値化した3次元処理データD2を画像化する。これにより、例えば図5に示す画像データ11を得ることができる。画像化は、2値化した3次元処理データD2を、画素データに変換することで行いうる。
 前記画像データ11では、ゴムストリップGによる前記凹凸10を目隠ししながら、異物Jを、例えば、彩度、色相、及び明度を含む色要素の差によって表出させ、かつその大きさを視覚化して捉えることができる。閾値としては、ゴムストリップGの厚さの少なくとも200%以上が好ましい。なお前記幅Wx及び幅Wyの調整により、表出可能な異物Jの大きさを調整しうる。
 次に、前記判別ステップSdでは、前記画像データ11に基づいて異物Jの付着を判別する。この判定としては、検査者による目視確認であっても良い。しかし、画像解析により、異物Jの表出部分の画素面積等に基づいて自動で判定することが好ましい。
 以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
 ゴムストリップGを用いて生タイヤTのタイヤ外皮が形成された。そして生タイヤTのトレッドショルダ側の検査対象表面3Bに、異物J1(10mm×10mm×2.0mm)、異物J2(20mm×20mm×2.0mm)、異物J3(30mm×30mm×2.0mm)を貼り付けたサンプルタイヤを準備した。そして本発明の異物付着判別方法を用いて、図5に示す画像データ11を求めた。
 ゴムストリップG: 幅Gw=23mm、厚さ=1.0mm
 2次元変位センサー :株式会社キーエンス製(LJ-V7200)
 レーザ光の照射幅:70mm
 分解能:X方向0.0875mm(70mm/800点)、周方向Y0.125mm(2000mm/16000点)
 平均化処理の範囲K:幅Wx=5mm、幅Wy=5mm
 図5のように、異物J1~J3を識別した画像データ11を得ることができた。
2 次元変位センサー
2L センサ光
3 検査対象表面
G ゴムストリップ
J 異物
K 範囲
P 螺旋ピッチ
Sa 生データ取得ステップ
Sb 平均化処理ステップ
Sc 画像化ステップ
Sd 判別ステップ
T 生タイヤ

Claims (5)

  1. ゴムストリップを螺旋状に巻回することにより外表面が形成された生タイヤの前記外表面における異物の付着を判別する判別方法であって、
    2次元変位センサーにより、前記生タイヤの外表面のうちの検査対象表面を周方向にスキャンし、前記検査対象表面の3次元生データD0を作成する生データ取得ステップと、
    前記3次元生データD0における距離データzを平均化処理した3次元処理データD1をうる平均化処理ステップと、
    前記3次元処理データD1の各前記距離データzを、閾値により2値化して画像化する画像化ステップと、
    前記画像化した画像データに基づいて、異物の付着を判別する判別ステップとを具え、
    前記生データ取得ステップでは、
    前記生タイヤが、その軸心回りで回転され、
    前記2次元変位センサーは、周方向と直角なX方向に長いライン状のセンサ光を、回転する前記生タイヤの前記検査対象表面に照射し、
    これにより、X方向の位置データxと、周方向の位置データyと、2次元変位センサーから検査対象表面までの前記距離データzとから構成される前記3次元生データD0が作成され、
     前記平均化処理ステップでは、
    前記3次元生データD0に対して、各前記距離データzが、X方向の幅がWxかつ周方向の幅がWyの範囲で平均化処理され、これにより、3次元処理データD1が得られ、
      前記幅Wx及び幅Wyは、それぞれ、前記ゴムストリップの螺旋ピッチよりも大、かつ前記ゴムストリップの幅よりも小である生タイヤの異物付着判別方法。
  2. 前記生タイヤの外表面は、複数の検査対象表面に区分される請求項1記載の生タイヤの異物付着判別方法。
  3. 前記複数の検査対象表面は、トレッド中央側の検査対象表面、トレッドショルダ側の一対の検査対象表面、サイドウォール上側の一対の検査対象表面、サイドウォール下側の一対の検査対象表面からなる請求項2記載の生タイヤの異物付着判別方法。
  4. 前記複数の検査対象表面は、各検査対象表面のための別々の2次元変位センサーにより、それぞれ周方向にスキャンされる請求項2又は3記載の生タイヤの異物付着判別方法。
  5. 前記閾値は、前記ゴムストリップの厚さの200%以上である請求項1~3の何れかに記載の生タイヤの異物付着判別方法。
PCT/JP2017/015962 2016-06-01 2017-04-21 生タイヤの異物付着判別方法 WO2017208663A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17806223.8A EP3454005B1 (en) 2016-06-01 2017-04-21 Method for determining accumulation of foreign matter on green tire
CN201780033356.7A CN109219731B (zh) 2016-06-01 2017-04-21 生胎的异物附着判别方法
US16/301,845 US10870246B2 (en) 2016-06-01 2017-04-21 Method for determining adhesion of foreign matter on green tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016110285A JP6743492B2 (ja) 2016-06-01 2016-06-01 生タイヤの異物付着判別方法
JP2016-110285 2016-06-01

Publications (1)

Publication Number Publication Date
WO2017208663A1 true WO2017208663A1 (ja) 2017-12-07

Family

ID=60478328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015962 WO2017208663A1 (ja) 2016-06-01 2017-04-21 生タイヤの異物付着判別方法

Country Status (5)

Country Link
US (1) US10870246B2 (ja)
EP (1) EP3454005B1 (ja)
JP (1) JP6743492B2 (ja)
CN (1) CN109219731B (ja)
WO (1) WO2017208663A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6802225B2 (ja) * 2018-08-31 2020-12-16 ファナック株式会社 情報処理装置および情報処理方法
CN112102469B (zh) * 2020-08-10 2023-07-25 上海联影医疗科技股份有限公司 三维建模系统、扫描系统及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220772A (ja) * 1996-02-16 1997-08-26 Yokohama Rubber Co Ltd:The グリーンタイヤの搬送装置におけるパレット清掃装置
JP2005148049A (ja) * 2003-10-23 2005-06-09 Yokohama Rubber Co Ltd:The タイヤ内の異物検出方法及びその装置並びにタイヤ検査装置、タイヤ成形機、タイヤユニフォーミティーマシン
JP2008284815A (ja) 2007-05-18 2008-11-27 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びその製造方法
JP2010181320A (ja) * 2009-02-06 2010-08-19 Kobe Steel Ltd タイヤ形状検査方法,タイヤ形状検査装置
JP2014074590A (ja) * 2012-10-02 2014-04-24 Sumitomo Rubber Ind Ltd 中子組立体の輪郭形状を測定する装置、及び、それを用いた生タイヤの検査方法
US20150022634A1 (en) * 2013-07-16 2015-01-22 The Steelastic Co., Llc Object inspection system
JP2015229438A (ja) 2014-06-05 2015-12-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016099287A (ja) * 2014-11-25 2016-05-30 住友ゴム工業株式会社 トレッド形状測定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849793C1 (de) * 1998-10-28 2000-03-16 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur berührungslosen Erfassung von Unebenheiten in einer gewölbten Oberfläche
JP2004082692A (ja) * 2002-06-28 2004-03-18 Ngk Insulators Ltd フラップベントピース設置組立体、フラップベントピースの設置構造及び設置方法、並びにタイヤ成形用金型
CN1587903A (zh) * 2004-08-19 2005-03-02 上海交通大学 采用激光扫描三角法检测砂轮表面形貌的方法
JP4716365B2 (ja) 2005-10-17 2011-07-06 東洋ゴム工業株式会社 製造途中の空気入りタイヤの検査方法および検査装置
JP4560564B2 (ja) * 2008-03-28 2010-10-13 シャープ株式会社 画像処理装置、画像形成装置、画像処理方法、プログラムおよびその記録媒体
EP2295930B1 (en) * 2008-06-04 2014-01-01 Kabushiki Kaisha Kobe Seiko Sho Tire shape inspection method and tire shape inspection device
CN102099672B (zh) * 2008-07-18 2013-01-30 旭硝子株式会社 用于缺陷检查的图像数据的处理装置及方法、使用它们的缺陷检查装置及方法、使用它们的板状体的制造方法
KR101209857B1 (ko) * 2009-02-20 2012-12-10 삼성코닝정밀소재 주식회사 유리 표면 이물 검사 장치 및 방법
JP5373676B2 (ja) * 2010-03-18 2013-12-18 株式会社ブリヂストン タイヤの形状測定方法および形状測定装置
CN104509102B (zh) * 2012-07-27 2017-12-29 日产自动车株式会社 三维物体检测装置和异物检测装置
JP6253230B2 (ja) * 2012-12-25 2017-12-27 オリンパス株式会社 画像処理装置、プログラム及び画像処理装置の作動方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220772A (ja) * 1996-02-16 1997-08-26 Yokohama Rubber Co Ltd:The グリーンタイヤの搬送装置におけるパレット清掃装置
JP2005148049A (ja) * 2003-10-23 2005-06-09 Yokohama Rubber Co Ltd:The タイヤ内の異物検出方法及びその装置並びにタイヤ検査装置、タイヤ成形機、タイヤユニフォーミティーマシン
JP2008284815A (ja) 2007-05-18 2008-11-27 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びその製造方法
JP2010181320A (ja) * 2009-02-06 2010-08-19 Kobe Steel Ltd タイヤ形状検査方法,タイヤ形状検査装置
JP2014074590A (ja) * 2012-10-02 2014-04-24 Sumitomo Rubber Ind Ltd 中子組立体の輪郭形状を測定する装置、及び、それを用いた生タイヤの検査方法
US20150022634A1 (en) * 2013-07-16 2015-01-22 The Steelastic Co., Llc Object inspection system
JP2015229438A (ja) 2014-06-05 2015-12-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016099287A (ja) * 2014-11-25 2016-05-30 住友ゴム工業株式会社 トレッド形状測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3454005A4

Also Published As

Publication number Publication date
JP6743492B2 (ja) 2020-08-19
JP2017215246A (ja) 2017-12-07
CN109219731A (zh) 2019-01-15
EP3454005A1 (en) 2019-03-13
US10870246B2 (en) 2020-12-22
EP3454005B1 (en) 2021-02-24
CN109219731B (zh) 2021-01-08
US20190283350A1 (en) 2019-09-19
EP3454005A4 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
US11820178B2 (en) Tread depth measurement
CN110035885B (zh) 用于检查轮胎的胎圈的形成的方法和相关站
US20120242824A1 (en) Device and method for inspecting tyre shape
US9384541B2 (en) Bead filler inspection apparatus, bead filler inspection program and bead filler inspection method
WO2017208663A1 (ja) 生タイヤの異物付着判別方法
US10379006B2 (en) Data generation method and data generation apparatus
US20170015075A1 (en) Joining state determination method and molding device
US20200164562A1 (en) Rubber sheet monitoring apparatus and rubber sheet monitoring method
KR101902068B1 (ko) 타이어 완제품의 트레드 프로파일 편차 분석방법
JP5952005B2 (ja) トレッド長さ測定方法及びトレッド長さ測定装置
US10408711B2 (en) Data processing method and data processing apparatus
KR101562988B1 (ko) 열간소재의 표면결함 검출 장치 및 표면 검출 방법
JP2017161485A (ja) 渦巻きばねの形状を測定する装置、方法、及びプログラム
US20190039287A1 (en) Three-Dimensional Shaping Method
JP2009292351A (ja) 摩耗測定装置及び摩耗測定方法
JP4915798B2 (ja) 波状コードの検査方法及び検査装置
CN110857919A (zh) 一种卷装长丝的尾丝缺陷检测方法
KR102178712B1 (ko) 에지 플레어 측정 장치 및 측정 방법
JP2007198762A (ja) 欠陥検出方法および欠陥検出装置
JP6507680B2 (ja) タイヤのビード部の検査方法及び検査装置
KR102115369B1 (ko) 타이어 트레드 결함 검출장치
Yeong et al. Measurement of nose radii of multiple cutting tool inserts from scanned images using sub-pixel edge detection
JPH06288934A (ja) 熱延板のエッジ欠陥の検出方法
JP2008309708A (ja) 長尺物の外観検査方法及びその装置
JP5978338B1 (ja) 製品を生産する方法及び立体形状を測定する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806223

Country of ref document: EP

Effective date: 20181204