WO2017207698A1 - Batterie und batterieanordnung - Google Patents

Batterie und batterieanordnung Download PDF

Info

Publication number
WO2017207698A1
WO2017207698A1 PCT/EP2017/063324 EP2017063324W WO2017207698A1 WO 2017207698 A1 WO2017207698 A1 WO 2017207698A1 EP 2017063324 W EP2017063324 W EP 2017063324W WO 2017207698 A1 WO2017207698 A1 WO 2017207698A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cell
arrangement
plates
battery cells
Prior art date
Application number
PCT/EP2017/063324
Other languages
English (en)
French (fr)
Inventor
Thomas Krämer
Original Assignee
E-Seven Systems Technology Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102016112431.1A external-priority patent/DE102016112431A1/de
Application filed by E-Seven Systems Technology Management Ltd filed Critical E-Seven Systems Technology Management Ltd
Publication of WO2017207698A1 publication Critical patent/WO2017207698A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/519Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a battery with a
  • Battery cells which are electrically conductively connected to each other in an electrical series and parallel connection, wherein the cell assembly has a plurality of positive end terminals and a plurality of negative end terminals.
  • the battery cells may be primary or may be primary or
  • Secondary cells act, the battery is often referred to when using secondary cells as a battery pack. From the prior art are different
  • Battery cell types known which differ mainly by the electrode materials used for the battery cells and electrolytes.
  • Rechargeable battery packs with lithium-ion battery cells and nickel-metal hybrid battery cells are used.
  • bipolar battery cells by which the power density of the battery can be further increased.
  • battery cells of a battery cell type are used for a battery. It is also possible and useful battery cells different for some applications
  • the areas of elevated or high temperatures are also referred to as temperature hot spots.
  • Cell arrangement is determined by a variety of factors such as the type of battery cells used, the relative arrangement of the battery cells to each other, the charging or flowing through the battery cells
  • Negative line arrangement are electrically conductively connected to each other, wherein the electrical resistance of the
  • Plus line arrangement and the minus line arrangement is so small that in a battery charging and / or a battery discharging a temperature distribution between the battery cells exclusively by the
  • Temperature distribution within the cell assembly and in particular the occurrence of temperature hot spots is also influenced by the electrical resistance of the contacting of the positive end terminals and the negative end terminals and that even at relatively high charging currents fewer hot spots occur when the
  • electrical resistance of the contact is as low as possible.
  • a sufficiently low electrical resistance can be achieved, for example, by suitably dimensioning the line cross-sections of the positive-line arrangement and the negative-line arrangement.
  • the battery cells are secondary cells, so that the battery can be charged several times.
  • the battery according to the invention can in particular also be electrically operated
  • nickel-metal hybrid nickel-cadmium and lithium-ion cells
  • bipolar battery cells is
  • the temperature distribution within the cell arrangement can be particularly advantageously influenced by the fact that the positive conductor arrangement and / or the negative conductor are formed by electrically conductive plates, which are electrically conductive at the positive end terminals or the negative end terminals.
  • the contact can be achieved by the use of electrically conductive plates very easily and inexpensively.
  • the plates are made of copper.
  • copper has good thermal conductivity, so that when charging or discharging the battery in the cell assembly resulting heat
  • the plates can also be derived via the copper plates. In this way, the temperature distribution within the battery or the cell assembly can be further positively influenced.
  • a sufficiently low electrical resistance is advantageously achieved in that the plates each have a thickness between 0.5 cm and 1 cm, preferably a thickness between 1 cm and 2 cm and especially
  • the appropriate plate thickness also depends on the particular
  • the temperature distribution within the cell assembly can also be positively influenced by the fact that electrical resistances between connection points, in which the
  • Minus line arrangement can be connected to other electrical devices and each positive end or negative end connection under the same
  • the invention provides for the cell arrangement to have a plurality of battery rows with battery cells connected electrically in series, each battery row having a positive end connection or a negative end connection.
  • This battery structure is particularly simple and inexpensive to produce. In order to be able to influence the temperature distribution within the cell arrangement particularly positively when using electrically conductive plates, is
  • the battery at least one battery row with several electrically in series
  • Minus line arrangement can be particularly well influenced.
  • this battery structure has the advantage that a failure of a single battery cell not to a
  • Battery sections and the battery cells of the adjacent battery sections are electrically connected to each other via electrically conductive cell plates, so that the electrical parallel connection of the battery cells of two adjacent battery sections and the electrical
  • the invention provides that the cell plates are made of copper. In this way, additional heat energy can also be dissipated from the cell arrangement via the cell plates.
  • Carrier movements achieved in the battery cells so that the usually resulting AC fields can be significantly reduced. In this way, the influence of the power electronics on the heat development within the cells can be significantly reduced.
  • the cell plates according to the invention can be dimensioned so that the usually resulting
  • the cell plates have a thickness of 0.3 cm to 1 cm and most preferably a thickness of 0.4 cm to 0.6 cm.
  • the cell plates form flat on their sides
  • the cell plates are designed so that they
  • Battery cells are not made over the area of the entire cell plates, but only over the contact surfaces of the contact elements. This results in a well-defined contact resistance between battery cell and cell plate. Surprisingly, it has become
  • Battery cell is particularly advantageous influenced.
  • the contact elements may be formed according to the invention as a circular knobs, consisting of the
  • the contact elements may preferably be introduced by an embossing process in the cell plates. Alternatively, they may be applied to the cell plates by a soldering or welding process. Preferably, the contact elements are arranged so that each battery cell by exactly one contact element
  • nubs are also quite suitable
  • each cell plate is formed by plates stamped on one side with contact elements, which are arranged relative to one another such that the contact elements contact the battery cells.
  • the stamped plates can in this case be fixedly connected to each other or else be connected to one another only by a contact pressure between the battery cells.
  • the battery cells are arranged so that each
  • Battery cell on at least two other battery cells a cell casing area is applied.
  • the individual battery cells are arranged so that the
  • Plus line arrangement and minus line arrangement can be positively influenced, and the battery cells can be arranged at a smaller distance from each other, since less heat must be removed from the arranged inside the cell array battery cells.
  • the invention further relates to a battery assembly with a portable container and the invention
  • Such a battery assembly is portable, so that the battery can be used while traveling.
  • the portable container is designed as a suitcase.
  • a suitcase can be
  • Power supply can be done by the battery assembly.
  • the battery arrangement has an inverter.
  • Inverter in the portable container which is designed as a suitcase, firmly integrated.
  • the portable container which is designed as a suitcase, firmly integrated.
  • Battery assembly contacting points on the portable container on. These contacting points are preferably located on an outside of the portable
  • the contacting points are sockets. These may be according to the invention to sockets for SchuKo plug. Thus, a consumer can easily contact the
  • FIG. 1 a schematically illustrated front view of a battery according to the invention
  • FIG. 1 b a schematically illustrated plan view of the battery illustrated in FIG. 1 a
  • Fig. 2 is a schematically illustrated plan view of a cell plate of the in Fig. La and Fig. Lb shown
  • Fig. 3 is a schematic side view of a preferred embodiment of the battery assembly according to the invention with the battery according to the invention.
  • FIG. 1 schematically a battery 1 with a cell assembly 2 is shown.
  • Figure la shows a Front view
  • Figure lb is a plan view of the battery 1.
  • the battery 1 also has a
  • Battery cell frame and / or a suitable housing are not limited to the particular purpose battery parts.
  • the cell assembly 2 has a plurality of battery cells 3.
  • the battery cells 3 are arranged in a battery row 4 which has a plurality of battery sections 5 connected in series.
  • Each battery section 5 consists of several battery cells 3 connected electrically in parallel, the battery cells 3 being arranged one above the other and next to each other
  • the cell arrangement 2 or the battery row 4 has a plurality of positive end terminals 6 and a plurality of negative end terminals 7.
  • the positive end terminals 6 are connected by a positive lead arrangement 8 and the negative end terminals 7 by a minus lead arrangement 9
  • electrically conductive plates 10 made of copper.
  • a thickness 11 of the plates 10 is in each case dimensioned such that a
  • electrical resistance of the plates 10 is so small that in a battery charging process and / or a
  • Batterieendladevorgang a temperature distribution between the battery cells 3 is specified solely by the cell assembly 2.
  • the battery cells 3 of a battery section 5 and the battery cells 3 of an adjacent battery section 5 are each electrically connected to one another via a cell plate 12.
  • About the cell plates 12 and the electrically conductive series connection of the adjacent battery sections 5 is achieved.
  • the battery cells 3 of a battery cell section 5 rest against each other in cell cladding regions 13. In this way, a particularly compact construction of the battery 1 can be achieved.
  • Fig. 2 shows a cell plate 12 of the in Fig. La and
  • Fig. Lb illustrated battery.
  • the cell plate 12 is formed to have contact elements 14.
  • the contact elements 14 are formed as circular knobs, consisting of the cell plate 12th
  • the contact elements 14 are arranged such that each contact element 14 contacts each battery cell 3 via exactly one contact element 14.
  • the contact surface 15 is of the
  • Fig. 3 shows a schematic side view of a
  • the portable container is designed as a suitcase 18 with a carrying handle 19.
  • Inverter (not shown). On an outer side of the case 18 contacting points 20 are provided in a socket 21. Thus, by means of the battery arrangement 17 AC consumers can be supplied with alternating current.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

Die Erfindung betrifft eine Batterie (1) mit einer Zellanordnung (2). Die Zellanordnung (2) weist mehrere Batteriezellen (3) auf, die in einer elektrischen Reihen- und Parallelschaltung elektrisch leitend miteinander verbunden sind. Die Zellanordnung (2) weist mehrere positive Endanschlüsse (6) und mehrere negative Endanschlüsse (7) auf. Die positiven Endanschlüsse (6) sind durch eine Plusleitungsanordnung (8) und die negativen Endanschlüsse (7) durch eine Minusleitungsanordnung (9) elektrisch leitend miteinander verbunden. Ein elektrischer Widerstand der Plusleitungsanordnung (8) und der Minusleitungsanordnung (9) ist so klein, dass bei einem Batterieladevorgang und/oder einem Batterieentladevorgang eine Temperaturverteilung zwischen den Batteriezellen (3) ausschließlich durch die Zellanordnung (2) vorgegeben ist. Die Erfindung betrifft außerdem eine Batterieanordnung (17) mit der erfindungsgemäßen Batterie (1) und einem tragbaren Behältnis.

Description

E-SEVEN SYSTEMS TECHNOLOGY MANAGEMENT LTD
Batterie und Batterieanordnung
Die Erfindung betrifft eine Batterie mit einer
Zellanordnung, wobei die Zellanordnung mehrere
Batteriezellen aufweist, die in einer elektrischen Reihen- und Parallelschaltung elektrisch leitend miteinander verbunden sind, wobei die Zellanordnung mehrere positive Endanschlüsse und mehrere negative Endanschlüsse aufweist.
Derartige Batterien sind aus dem Stand der Technik
hinreichend bekannt und kommen zu vielen Zwecken zum
Einsatz. Aus dem Stand der Technik sind Batterien in unterschiedlichen Größen mit einer unterschiedlichen Anzahl parallel und in Reihe geschalteter Batteriezellen bekannt, wodurch die von der Batterie bereitgestellte Kapazität und die durch die Batterie bereitgestellte Spannung an den jeweiligen Einsatzzweck angepasst werden kann. Ein
insbesondere auch für die vorliegende Erfindung wichtiger Einsatzzweck ist die Verwendung von Batterien bei
elektrisch betriebenen Kraftfahrzeugen.
Bei den Batteriezellen kann es sich um Primär- oder
Sekundärzellen handeln, wobei die Batterie bei Verwendung von Sekundärzellen häufig auch als Akku-Pack bezeichnet wird. Aus dem Stand der Technik sind unterschiedliche
Batteriezellenarten bekannt, die sich vor allem durch die für die Batteriezellen verwendeten Elektrodenmaterialien und Elektrolyten unterscheiden. Derzeit kommen in vielen Anwendungen Akku-Packs mit Lithium-Ionen-Batteriezellen und Nickel-Metallhybrid-Batteriezellen zum Einsatz. Darüber hinaus ist es auch bekannt, bipolare Batteriezellen zu verwenden, durch die die Leistungsdichte der Batterie weiter gesteigert werden kann. Üblicherweise werden für eine Batterie Batteriezellen eines Batteriezellentyps verwendet. Es ist für einige Anwendungen aber auch möglich und zweckmäßig Batteriezellen unterschiedlicher
Batteriezellentypen einzusetzen.
Insbesondere bei großen Batterien, beispielsweise zum
Betrieb elektrisch angetriebener Kraftfahrzeuge, bei denen eine Vielzahl von Batteriezellen eingesetzt wird, treten innerhalb der Batterie unter anderem beim Laden mit
vergleichsweise hohen Stromstärken Bereiche mit hohen
Temperaturen auf, durch die der Lade- beziehungsweise
Entladevorgang der in dem Bereich hoher Temperatur
angeordneten Batteriezellen sowie deren Lebensdauer beeinflusst wird. Die Bereiche erhöhter beziehungsweise hoher Temperaturen werden auch als Temperatur-Hot-Spots bezeichnet. Die Temperaturverteilung innerhalb der
Zellanordnung wird durch eine Vielzahl von Faktoren wie beispielsweise die Art der verwendeten Batteriezellen, die relative Anordnung der Batteriezellen zueinander, der durch die Batteriezellen fließende Lade- beziehungsweise
Entladestrom und den Alterungszustand der jeweiligen
Batteriezelle beeinflusst.
Als Aufgabe der Erfindung wird es angesehen, eine Batterie bereitzustellen, bei der das Auftreten von Temperatur-Hot- Spots auch bei hohen Ladeströmen möglichst vermieden wird. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die positiven Endanschlüsse durch eine Plusleitungsanordnung und die negativen Endanschlüsse durch eine
Minusleitungsanordnung elektrisch leitend miteinander verbunden sind, wobei der elektrische Widerstand der
Plusleitungsanordnung und der Minusleitungsanordnung so klein ist, dass bei einem Batterieladevorgang und/oder einem Batterieentladevorgang eine Temperaturverteilung zwischen den Batteriezellen ausschließlich durch die
Zellanordnung vorgegeben ist. Bei Versuchen hat sich überraschenderweise herausgestellt, dass die
Temperaturverteilung innerhalb der Zellanordnung und insbesondere das Auftreten von Temperatur-Hot-Spots auch durch den elektrischen Widerstand der Kontaktierung der positiven Endanschlüsse und der negativen Endanschlüsse beeinflusst wird und dass auch bei vergleichsweise hohen Ladeströmen weniger Hot-Spots auftreten, wenn der
elektrische Widerstand der Kontaktierung möglichst gering ist. Ein ausreichend niedriger elektrischer Widerstand kann beispielsweise durch eine geeignete Dimensionierung der Leitungsquerschnitte der Plusleitungsanordnung und der Minusleitungsanordnung erreicht werden. Dabei sind
Querschnitte erforderlich, die deutlich größer als die üblicherweise verwendeten und beispielsweise in den
entsprechenden Normen bei gegebenen Stromstärken als geeignet bezeichneten Querschnitten sind. Ebenso ist es erforderlich, dass die elektrischen Widerstände der
Leitungsanordnungen deutlich niedriger als die
üblicherweise als ausreichend angesehenen elektrischen Widerstände sind. Vorteilhafterweise handelt es sich bei den Batteriezellen um Sekundärzellen, sodass die Batterie mehrfach geladen werden kann. Auf diese Weise kann die erfindungsgemäße Batterie insbesondere auch bei elektrisch betriebenen
Kraftfahrzeugen eingesetzt werden. Selbstverständlich kann die erfindungsgemäße Batterie zu sämtlichen denkbaren
Einsatzzwecken verwendet werden. Als Batteriezellen können vorteilhafterweise unter anderem Nickel-Metallhybrid-, Nickel-Cadmium- und Lithium-Ionen-Zellen verwendet werden. Auch der Einsatz bipolarer Batteriezellen ist
erfindungsgemäß vorgesehen.
Bei weiteren Untersuchungen hat sich herausgestellt, dass die Temperaturverteilung innerhalb der Zellanordnung besonders vorteilhaft dadurch beeinflusst werden kann, dass die Plusleitungsanordnung und/oder die Minusleitung durch elektrisch leitende Platten gebildet werden, die an den positiven Endanschlüssen beziehungsweise den negativen Endanschlüssen elektrisch leitend anliegen. Zudem kann die Kontaktierung durch die Verwendung elektrisch leitender Platten sehr einfach und kostengünstig erreicht werden.
Um einen ausreichend niedrigen elektrischen Widerstand der elektrisch leitenden Platten zu erreichen, ist
erfindungsgemäß vorgesehen, dass die Platten aus Kupfer hergestellt sind. Darüber hinaus weist Kupfer eine gute Wärmeleitfähigkeit auf, so dass beim Laden oder Entladen der Batterie in der Zellanordnung entstehende Wärme
zusätzlich auch über die Platten aus Kupfer abgeleitet werden kann. Auf diese Weise kann die Temperaturverteilung innerhalb der Batterie beziehungsweise der Zellanordnung weiter positiv beeinflusst werden. Ein ausreichend niedriger elektrischer Widerstand wird vorteilhafterweise dadurch erreicht, dass die Platten jeweils eine Dicke zwischen 0,5 cm und 1 cm, vorzugsweise eine Dicke zwischen 1 cm und 2 cm und besonders
vorzugsweise eine Dicke von größer als 2 cm aufweisen. Die geeignete Plattenstärke hängt auch von der jeweiligen
Entlade- beziehungsweise Ladestromstärke ab. Die Temperaturverteilung innerhalb der Zellanordnung kann auch dadurch positiv beeinflusst werden, dass elektrische Widerstände zwischen Anschlusspunkten, in denen die
Plusleitungsanordnung beziehungsweise die
Minusleitungsanordnung mit weiteren elektrischen Geräten verbunden werden kann und jedem positiven Endanschluss beziehungsweise negativen Endanschluss unter gleichen
Umgebungsbedingungen gleich sind. Um dies zu erreichen sollten beispielsweise bei Verwendung mehrerer
Anschlusskabel, die von den positiven Endanschlüssen beziehungsweise den negativen Endanschlüssen zu den
jeweiligen Anschlusspunkten führen, sämtliche
Anschlusskabel die gleiche Länge und den gleichen
Leitungsquerschnitt aufweisen. Vorteilhafterweise ist erfindungsgemäß vorgesehen, dass die Zellanordnung mehrere Batteriereihen mit elektrisch in Reihe geschalteten Batteriezellen aufweist, wobei jede Batteriereihe einen positiven Endanschluss oder einen negativen Endanschluss aufweist. Dieser Batterieaufbau ist besonders einfach und kostengünstig herstellbar. Um die Temperaturverteilung innerhalb der Zellanordnung insbesondere bei Verwendung elektrisch leitender Platten besonders positiv beeinflussen zu können, ist
erfindungsgemäß vorgesehen, dass die Batterie mindestens eine Batteriereihe mit mehreren elektrisch in Reihe
geschalteten Batterieabschnitten aufweist, wobei jeder Batterieabschnitt aus mehreren elektrisch parallel
geschalteten Batteriezellen besteht und wobei jede
Batteriereihe mehrere positive und negative Endanschlüsse aufweist, deren Anzahl der Anzahl in einem
Batterieabschnitt parallel geschalteter Batteriezellen entspricht. Bei Versuchen hat sich überraschenderweise herausgestellt, dass durch die Verwendung eines solchen Batterieaufbaus die Temperaturverteilung innerhalb der Zellanordnung durch die erfindungsgemäße Ausgestaltung der Plusleitungsanordnung beziehungsweise der
Minusleitungsanordnung besonders gut beeinflusst werden kann. Zudem hat dieser Batterieaufbau den Vorteil, dass ein Ausfall einer einzelnen Batteriezelle nicht zu einem
Ausfall der gesamten Batteriereihe führt, da der Strom durch die weiterhin betriebsbereiten und zu der defekten Batteriezelle parallel geschalteten Batteriezellen geführt werden kann.
Um eine möglichst einfache Parallelschaltung der
Batteriezellen eines Batterieabschnitts und gleichzeitig eine möglichst einfache Kontaktierung benachbarter
Batterieabschnitte miteinander zu ermöglichen, ist
erfindungsgemäß vorgesehen, dass benachbarte
Batterieabschnitte und die Batteriezellen der benachbarten Batterieabschnitte über elektrisch leitende Zellenplatten elektrisch leitend miteinander verbunden sind, so dass die elektrische Parallelschaltung der Batteriezellen zweier benachbarter Batterieabschnitte und die elektrische
Reihenschaltung der beiden benachbarten Batterieabschnitte über eine Zellenplatte erfolgt. Vorzugsweise sind
mindestens drei hintereinanderliegende Batterieabschnitte durch Zellenplatten miteinander verbunden.
Vorteilhafterweise ist erfindungsgemäß vorgesehen, dass auch die Zellenplatten aus Kupfer hergestellt sind. Auf diese Weise kann zusätzlich auch weitere Wärmeenergie aus der Zellanordnung über die Zellenplatten abgeführt werden.
Batterien werden heutzutage üblicherweise über
elektronische Schaltnetzteile beziehungsweise
Wechselrichter geladen und stellen ebenfalls über
entsprechende Leistungselektronik die gespeicherte
elektrische Energie Verbrauchern zur Verfügung. Moderne Batterien werden also grundsätzlich mit hochfrequenten Lade- und Entladeströmen belastet. Durch die hochfrequenten Schaltvorgänge in der Leistungselektronik bewegen sich die Ladungsträger durch die in Reihe miteinander geschalteten Batteriezellen in einer Art Wellenbewegung. Durch die hochfrequente Bewegung der Ladungsträger in den einzelnen Batteriezellen werden in den Batteriezellen
Wechselstromfelder induziert, die Einfluss auf benachbarte und insbesondere auf die in Reihe unmittelbar vorausgehend und nachfolgend geschalteten Batteriezellen nehmen. Durch diese Wechselstromfelder entstehen in den benachbarten Batteriezellen zusätzliche Ladungsträgerverschiebungen, wodurch zum einen eine ungleichmäßige Verteilung der
Ladungsträgerströme zwischen den Batteriezellen und zum anderen eine Temperaturerhöhung einzelner Batteriezellen hervorgerufen werden. Durch die Verwendung der Platine werden diese Wechselfelder nahezu vollständig von den in Reihe vorausgehenden oder nachfolgenden Batteriezellen abgeschirmt. Zudem wird durch die Verwendung der
Leiterschleifen eine Dämpfung der hochfrequenten
Ladungsträgerbewegungen in den Batteriezellen erreicht, sodass die üblicherweise entstehenden Wechselstromfelder deutlich reduziert werden können. Auf diese Weise kann der Einfluss der Leistungselektronik auf die Wärmeentwicklung innerhalb der Zellen deutlich verringert werden.
Die Zellenplatten können erfindungsgemäß so dimensioniert werden, dass die üblicherweise entstehenden
Wechselstromfelder ausreichend stark gedämpft werden, ohne dass die Batterie durch das zusätzlich notwendige Material in unnötiger Weise vergrößert oder zu schwer wird.
Vorzugsweise haben die Zellenplatten eine Dicke von 0,3 cm bis 1 cm und ganz besonders bevorzugt eine Dicke von 0,4 cm bis 0,6 cm. Die Zellenplatten bilden auf ihren Seiten flächige
Zellplattenebenen. Ganz besonders vorteilhaft sind die Zellenplatten solchermaßen ausgeführt, dass sie die
Batteriezellen über Kontaktelemente kontaktieren, deren Kontaktflächen von den Zellplattenebenen beabstandet sind. Somit wird der Kontakt zwischen Zellenplatten und
Batteriezellen nicht über das flächige Areal der kompletten Zellenplatten, sondern lediglich über die Kontaktflächen der Kontaktelemente hergestellt. Es ergibt sich somit ein wohldefinierter Übergangswiderstand zwischen Batteriezelle und Zellenplatte. Überraschenderweise hat sich
herausgestellt, dass bei dieser Ausführungsform der Zellenplatten die Temperaturverteilung innerhalb der
Batteriezellen ganz besonders vorteilhaft beeinflusst wird.
Die Kontaktelemente können dabei erfindungsgemäß als kreisförmige Noppen ausgebildet sein, die aus den
Zellenplatten hervorragen. Die Kontaktelemente können vorzugsweise durch ein Prägeverfahren in die Zellenplatten eingebracht sein. Sie können alternativ durch ein Löt- oder Schweißverfahren auf den Zellenplatten aufgebracht sein. Vorzugsweise sind die Kontaktelemente so angeordnet, dass jede Batteriezelle durch genau ein Kontaktelement
kontaktiert wird. Die Noppen eignen sich auch ganz
besonders gut, um Elemente bereitzustellen, an die die Batteriezellen angeklemmt werden können.
Gemäß einer möglichen Ausführungsform sind die
Kontaktelemente einseitig auf den Zellenplatten vorgesehen. Gemäß einer alternativen Ausführungsform sind die
Kontaktelemente beidseitig auf den Zellenplatten
vorgesehen. Gemäß einer weiteren, besonders bevorzugten Ausführungsform wird jede Zellenplatte durch einseitig mit Kontaktelementen beprägte Platten gebildet, die zueinander solchermaßen angeordnet sind, dass die Kontaktelemente die Batteriezellen kontaktieren. Die beprägten Platten können hierbei miteinander fest verbunden sein oder auch lediglich durch einen Anpressdruck zwischen den Batteriezellen miteinander verbunden sein.
Um einen möglichst kompakten Aufbau der erfindungsgemäßen Batterie zu erreichen, ist vorteilhafterweise vorgesehen, dass die Batteriezellen so angeordnet sind, dass jede
Batteriezelle an mindestens zwei weiteren Batteriezellen einem Zellenmantelbereich anliegt. Vorteilhafterweise sind die einzelnen Batteriezellen so angeordnet, dass die
Batteriezellen einen möglichst geringen Raum umschließen. Dadurch, dass die Temperaturverteilung innerhalb der
Zellanordnung durch die erfindungsgemäße
Plusleitungsanordnung und Minusleitungsanordnung positiv beeinflusst werden kann, können auch die Batteriezellen in geringerem Abstand zueinander angeordnet werden, da weniger Wärme von den innerhalb der Zellanordnung angeordneten Batteriezellen abgeführt werden muss.
Die Erfindung betrifft ferner eine Batterieanordnung mit einem tragbaren Behältnis und der erfindungsgemäßen
Batterie. Eine solche Batterieanordnung ist transportabel, sodass die Batterie unterwegs eingesetzt werden kann.
Besonders bevorzugt ist das tragbare Behältnis als Koffer ausgebildet. Ein solcher Koffer lässt sich an
unterschiedliche Orte verbringen, wo direkt eine
Energieversorgung durch die Batterieanordnung erfolgen kann. Vorteilhafterweise weist die Batterieanordnung einen Wechselrichter auf. Somit lässt sich der durch die
erfindungsgemäße Batterie abgegebene Gleichstrom in
Wechselstrom wandeln. Damit lassen sich mobil
verschiedenste Verbraucher betreiben, denen Wechselstrom zur Verfügung gestellt werden muss, beispielsweise
Musikanlagen. Da sich der Wechselrichter in der
Batterieanordnung befindet, ist kein zusätzlicher externer Wechselrichter notwendig. Vorzugsweise ist der
Wechselrichter in das tragbare Behältnis, das als Koffer ausgebildet ist, fest integriert. Gemäß einer besonderen Ausführungsform weist die
Batterieanordnung Kontaktierungsstellen an dem tragbaren Behältnis auf. Diese Kontaktierungsstellen befinden sich vorzugsweise an einer Außenseite des tragbaren
Behältnisses. Ganz besonders bevorzugt handelt es sich bei den Kontaktierungsstellen um Steckdosen. Dabei kann es sich erfindungsgemäß um Steckdosen für SchuKo-Stecker handeln. Somit kann ein Verbraucher sehr einfach an die
Batterieanordnung angeschlossen werden.
Weitere vorteilhafte Ausgestaltungen der Batterie werden anhand eines in der Zeichnung dargestellten
Ausführungsbeispiels näher erläutert: Es zeigt:
Fig. la eine schematisch dargestellte Vorderansicht einer erfindungsgemäßen Batterie, Fig. lb eine schematisch dargestellte Draufsicht auf die in Figur la dargestellte Batterie,
Fig. 2 eine schematisch dargestellte Draufsicht auf eine Zellenplatte der in Fig. la und Fig. lb dargestellten
Batterie und
Fig. 3 eine schematische Seitenansicht einer bevorzugten Ausführungsform der erfindungsgemäßen Batterieanordnung mit der erfindungsgemäßen Batterie.
In den Figuren la und lb ist schematisch eine Batterie 1 mit einer Zellanordnung 2 dargestellt. Figur la zeigt eine Vorderansicht und Figur lb eine Draufsicht der Batterie 1. Üblicherweise weist die Batterie 1 auch einen
Batteriezellenrahmen und/oder ein geeignetes Gehäuse auf. Diese und weitere übliche zusätzliche und an den jeweiligen Einsatzzweck anpassbaren Batterieteile sind nicht
dargestellt .
Die Zellanordnung 2 weist mehrere Batteriezellen 3 auf. Die Batteriezellen 3 sind in einer Batteriereihe 4 angeordnet, die mehrere in Reihe geschaltete Batterieabschnitte 5 aufweist. Jeder Batterieabschnitt 5 besteht aus mehreren elektrisch parallel geschalteten Batteriezellen 3, wobei die Batteriezellen 3 übereinander und nebeneinander
angeordnet sind.
Die Zellanordnung 2 beziehungsweise die Batteriereihe 4 weist mehrere positive Endanschlüsse 6 sowie mehrere negative Endanschlüsse 7 auf. Die positiven Endanschlüsse 6 sind durch eine Plusleitungsanordnung 8 und die negativen Endanschlüsse 7 durch eine Minusleitungsanordnung 9
elektrisch leitend miteinander verbunden.
Bei der Plusleitungsanordnung 8 und der
Minusleitungsanordnung 9 handelt es sich jeweils um
elektrisch leitende Platten 10 aus Kupfer. Eine Dicke 11 der Platten 10 ist jeweils so bemessen, dass ein
elektrischer Widerstand der Platten 10 so klein ist, dass bei einem Batterieladevorgang und/oder einem
Batterieendladevorgang eine Temperaturverteilung zwischen den Batteriezellen 3 ausschließlich durch die Zellanordnung 2 vorgegeben ist. Die Batteriezellen 3 eines Batterieabschnitts 5 sowie die Batteriezellen 3 eines benachbarten Batterieabschnitts 5 sind jeweils über eine Zellenplatte 12 elektrisch leitend miteinander verbunden. Über die Zellenplatten 12 wird auch die elektrisch leitende Reihenschaltung der benachbart zueinander angeordneten Batterieabschnitte 5 erreicht.
Die Batteriezellen 3 eines Batteriezellenabschnitts 5 liegen in Zellmantelbereichen 13 aneinander an. Auf diese Weise kann ein besonders kompakter Aufbau der Batterie 1 erreicht werden. In der Zeichnung ist exemplarisch ein Zellmantelbereich 13 einer Batteriezelle 3 mit einem
Bezugszeichen gekennzeichnet. Fig. 2 zeigt eine Zellenplatte 12 der in Fig. la und
Fig. lb dargestellten Batterie. Die Zellenplatte 12 ist so ausgebildet, dass sie über Kontaktelemente 14 verfügt.
Vorliegend sind die Kontaktelemente 14 als kreisförmige Noppen ausgebildet, die aus der Zellenplatte 12
herausragen. Die Kontaktelemente 14 sind solchermaßen angeordnet, dass jedes Kontaktelement 14 jede Batteriezelle 3 über genau ein Kontaktelement 14 kontaktiert. Die
Kontaktierung erfolgt über eine Kontaktfläche 15 jedes Kontaktelements 14. Die Kontaktfläche 15 ist von der
Zellplattenebene 16 der Zellenplatte 12 beabstandet.
Maßgeblich ist hierbei, dass der Stromfluss zwischen den Batteriezellen 3 und den Zellenplatten 3 nur über die
Kontaktelemente 14 stattfindet.
Fig. 3 zeigt eine schematische Seitenansicht einer
bevorzugten Ausführungsform der erfindungsgemäßen
Batterieanordnung 17 mit der erfindungsgemäßen Batterie. Dabei ist das tragbare Behältnis als ein Koffer 18 mit einem Tragegriff 19 ausgebildet. Innerhalb des Koffers 18 befinden sich die erfindungsgemäße Batterie 1 und ein
Wechselrichter (nicht gezeigt) . An einer Außenseite des Koffers 18 sind Kontaktierungsstellen 20 in einer Steckdose 21 vorgesehen. Somit können mittels der Batterieanordnung 17 Wechselstromverbraucher mit Wechselstrom versorgt werden .
B E Z U G S Z E I C H E N L I S T E
1. Batterie
2. Zellanordnung
3. Batteriezelle
4. Batteriereihe
5. Batterieabschnitt
6. Positiver Endanschluss
7. Negativer Endanschluss
8. Plusleitungsanordnung
9. Minusleitungsanordnung
10. Elektrisch leitende Platte
11. Dicke der Platten
12. Zellenplatte
13. Zellmantelbereich
14. Kontaktelement
15. Kontaktfläche
16. Zellplattenebene
17. Batterieanordnung
18. Koffer
19. Tragegriff
20. Kontaktierungssteile
21. Steckdose

Claims

P A T E N T A N S P R Ü C H E
1. Batterie (1) mit einer Zellanordnung (2), wobei die Zellanordnung (2) mehrere Batteriezellen (3) aufweist, die in einer elektrischen Reihen- und Parallelschaltung
elektrisch leitend miteinander verbunden sind, wobei die Zellanordnung (2) mehrere positive Endanschlüsse (6) und mehrere negative Endanschlüsse (7) aufweist, dadurch gekennzeichnet, dass die positiven Endanschlüsse (6) durch eine Plusleitungsanordnung (8) und die negativen
Endanschlüsse (7) durch eine Minusleitungsanordnung (9) elektrisch leitend miteinander verbunden sind, wobei ein elektrischer Widerstand der Plusleitungsanordnung (8) und der Minusleitungsanordnung (9) so klein ist, dass bei einem Batterieladevorgang und/oder einem Batterieentladevorgang eine Temperaturverteilung zwischen den Batteriezellen (3) ausschließlich durch die Zellanordnung (2) vorgegeben ist.
2. Batterie (1) gemäß Anspruch 1, dadurch gekennzeichnet, dass die Plusleitungsanordnung (8) und/oder die
Minusleitungsanordnung (9) durch elektrisch leitende
Platten (10) gebildet werden, die an den positiven
Endanschlüssen (6) beziehungsweise negativen Endanschlüssen (7) elektrisch leitend anliegen.
3. Batterie (1) gemäß Anspruch 2, dadurch gekennzeichnet, dass die Platten (10) aus Kupfer hergestellt sind.
4. Batterie (1) gemäß Anspruch 3, dadurch gekennzeichnet, dass die Platten (10) jeweils eine Dicke (11) zwischen 0,5cm und lern, vorzugsweise eine Dicke (11) zwischen lern und 2cm und besonders vorzugsweise eine Dicke (11) von größer als 2cm aufweisen.
5. Batterie (1) gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass elektrische Widerstände zwischen Anschlusspunkten, in denen die
Plusleitungsanordnung (8) beziehungsweise die
Minusleitungsanordnung (9) mit weiteren elektrischen
Geräten verbunden werden kann, und jedem positiven
Endanschluss (6) beziehungsweise negativen Endanschluss (7) bei gleichen Umgebungsbedingungen gleich sind.
6. Batterie (1) gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Zellanordnung (2) mehrere Batteriereihen (4) mit elektrisch in Reihe geschalteten Batteriezellen (3) aufweist, wobei jede Batteriereihe (4) einen positiven Endanschluss (6) und einen negativen
Endanschluss (7) aufweist.
7. Batterie (1) gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Batterie (1) mindestens eine
Batteriereihe (4) mit mehreren elektrisch in Reihe
geschalteten Batterieabschnitten (5) aufweist, wobei jeder Batterieabschnitt (5) aus mehreren elektrisch parallel geschalteten Batteriezellen (3) besteht, und wobei jede Batteriereihe (4) mehrere positive und negative
Endanschlüsse (7) aufweist, deren Anzahl der Anzahl in einem Batterieabschnitt (5) parallel geschalteter
Batteriezellen (3) entspricht.
8. Batterie (1) gemäß Anspruch 7, dadurch gekennzeichnet, dass benachbarte Batterieabschnitte (5) und die Batteriezellen (3) der benachbarten Batterieabschnitte (5) über elektrisch leitende Zellenplatten (12) elektrisch leitend miteinander verbunden sind, sodass die elektrische Parallelschaltung der Batteriezellen (3) zweier
benachbarter Batterieabschnitte (5) und die elektrische Reihenschaltung der beiden benachbarten Batterieabschnitte (5) über eine Zellenplatte (12) erfolgt.
9. Batterie (1) gemäß Anspruch 8, dadurch gekennzeichnet, dass die Zellenplatten (12) die Batteriezellen (3) über Kontaktelemente (14) kontaktieren, deren
Kontaktflächen (15) von Zellplattenebenen (16) der
Zellenplatten (12) beabstandet sind.
10. Batterie (1) gemäß Anspruch 9, dadurch gekennzeichnet, dass die Kontaktelemente (14) als kreisförmige Noppen ausgebildet sind, die aus den Zellplattenebenen (16) hervorragen .
11. Batterie (1) gemäß einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass die Zellenplatten (12)
beidseitig Kontaktelemente (14) aufweisen.
12. Batterie (1) gemäß Anspruch 11, dadurch gekennzeichnet, die Zellenplatten (12) durch jeweils zwei mit
Kontaktelementen (14) beprägte Platten gebildet werden.
13. Batterie (1) gemäß einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Kontaktelemente (14) solchermaßen auf den Zellenplatten (12) angeordnet sind, dass jede Batteriezelle (3) mit jeder Zellenplatte (12) durch genau ein Kontaktelement (14) kontaktiert ist.
14. Batterie (1) gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Batteriezellen (3) so angeordnet sind, dass jede Batteriezelle (3) an mindestens zwei weiteren Batteriezellen (3) in einem Zellmantelbereich (13) anliegt.
15. Batterieanordnung (17) mit einem tragbaren Behältnis und der Batterie nach einem der Ansprüche 1 bis 14.
16. Batterieanordnung (17) gemäß Anspruch 15, dadurch gekennzeichnet, dass das tragbare Behältnis als Koffer (18) ausgebildet ist.
17. Batterieanordnung (17) gemäß Anspruch 15 oder 16, dadurch gekennzeichnet, dass sie einen mit der Batterie (1) verbundenen Wechselrichter aufweist.
18. Batterieanordnung (17) gemäß einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass sie
Kontaktierungsstellen (20) an dem tragbaren Behältnis aufweist .
PCT/EP2017/063324 2016-06-03 2017-06-01 Batterie und batterieanordnung WO2017207698A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102016110348 2016-06-03
DE102016110348.9 2016-06-03
DE102016112431.1A DE102016112431A1 (de) 2016-06-03 2016-07-06 Batterie und Batterieanordnung
DE102016112431.1 2016-07-06

Publications (1)

Publication Number Publication Date
WO2017207698A1 true WO2017207698A1 (de) 2017-12-07

Family

ID=60478081

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2017/063321 WO2017207697A1 (de) 2016-06-03 2017-06-01 Platine, batterie und batterieanordnung
PCT/EP2017/063325 WO2017207699A1 (de) 2016-06-03 2017-06-01 Batterie und verbindungsplatte für eine batterie
PCT/EP2017/063324 WO2017207698A1 (de) 2016-06-03 2017-06-01 Batterie und batterieanordnung

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/EP2017/063321 WO2017207697A1 (de) 2016-06-03 2017-06-01 Platine, batterie und batterieanordnung
PCT/EP2017/063325 WO2017207699A1 (de) 2016-06-03 2017-06-01 Batterie und verbindungsplatte für eine batterie

Country Status (7)

Country Link
US (1) US20190198953A1 (de)
EP (1) EP3465796A1 (de)
CN (1) CN109792097B (de)
BR (1) BR112019003931A2 (de)
DE (2) DE102016116581A1 (de)
EA (1) EA201990574A1 (de)
WO (3) WO2017207697A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3573127A1 (de) 2018-05-25 2019-11-27 E-Seven Systems Technology Management Ltd Anordnung für zellen zur speicherung elektrischer energie mit federkontaktelement
DE102018213828A1 (de) * 2018-08-16 2020-02-20 Robert Bosch Gmbh Batteriemodul sowie Verwendung eines solchen Batteriemoduls
JP7074085B2 (ja) * 2019-01-23 2022-05-24 トヨタ自動車株式会社 電池装置
GB2581501B (en) * 2019-02-19 2021-03-03 Oxis Energy Ltd Interconnection for a battery
DE102019217766B4 (de) * 2019-11-19 2022-03-24 Volkswagen Aktiengesellschaft Hochvoltbatterie für ein elektrisch betriebenes Fahrzeug
DE102019132709A1 (de) * 2019-12-02 2021-06-02 Viessmann Werke Gmbh & Co Kg Sammelschiene für eine batterie
DE102020110774A1 (de) 2020-04-21 2021-10-21 Volkswagen Aktiengesellschaft Batteriezelle und Batteriesystem mit Kühlvorrichtung
DE102020206983A1 (de) 2020-06-04 2021-12-09 Robert Bosch Gesellschaft mit beschränkter Haftung Batteriemodul mit einer Mehrzahl an Batteriezellen und Verfahren zur Herstellung eines solchen
WO2023106996A1 (en) * 2021-12-06 2023-06-15 Jnbk Corporation Pte Ltd A lithium battery
DE102022112233A1 (de) 2022-05-16 2023-11-16 Lisa Dräxlmaier GmbH Batteriezellenanordnung für eine batterie eines kraftfahrzeugs mit einer thermischen isolation zur hemmung von wärmeübertragung durch wärmestrahlung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068732A1 (en) * 2010-11-25 2012-05-31 Kenneth Hamilton Norton A battery pack assembly
EP2509134A1 (de) * 2010-11-30 2012-10-10 Panasonic Corporation Batteriemodul und batteriepack
US20130032443A1 (en) * 2011-08-04 2013-02-07 Soedomo Darmanto S Electronically Equipped Suitcase Device
EP2834864A1 (de) * 2012-04-06 2015-02-11 Ferrari S.p.A. System zur speicherung der elektrischen energie für ein fahrzeug mit elektroantrieb und mit zylindrischen chemischen batterien in paralleler und serieller verbindung mittels u-förmiger starrer verbindungselemente

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3777748B2 (ja) * 1997-09-30 2006-05-24 株式会社ジーエス・ユアサコーポレーション 組電池
AU2001273596A1 (en) * 2000-06-19 2002-01-02 Robinson Nugent, Inc. Printed circuit board having inductive vias
US20070009787A1 (en) * 2005-05-12 2007-01-11 Straubel Jeffrey B Method and apparatus for mounting, cooling, connecting and protecting batteries
DE102007063195B4 (de) * 2007-12-20 2013-08-29 Daimler Ag Batterie mit einem Gehäuse und einer Wärmeleitplatte
EP2351119B1 (de) * 2008-11-12 2015-09-23 Johnson Controls Saft Advanced Power Solutions LLC Batteriesystem mit wärmetauscher
JP4815016B2 (ja) * 2009-07-17 2011-11-16 パナソニック株式会社 電池接続部材とそれを用いた電池モジュール
FR2963485B1 (fr) * 2010-07-29 2013-03-22 Commissariat Energie Atomique Batterie d'accumulateurs a conception et montage facilites
DE102010034686A1 (de) * 2010-08-18 2012-02-23 Volkswagen Ag Kontaktelement und Batterieeinheit
WO2012035683A1 (ja) * 2010-09-17 2012-03-22 パナソニック株式会社 電池ブロック及び電池モジュール
JP5108169B1 (ja) * 2011-05-30 2012-12-26 パナソニック株式会社 電池ブロックおよびその製造方法
CN102916158B (zh) * 2011-08-05 2016-03-02 深圳市沃特玛电池有限公司 一种动力电池组的安全结构
CN103022578B (zh) * 2011-09-22 2016-05-18 深圳市沃特玛电池有限公司 一种动力电池组的安全结构
JP2013179042A (ja) * 2012-02-02 2013-09-09 Captex Co Ltd 筒形電池用の接続タブ及びその接続構造
DE102013100545B4 (de) * 2013-01-18 2022-12-01 Cayago Tec Gmbh Wasserfahrzeug mit einer Akkumulatoreinheit
JP6149550B2 (ja) * 2013-07-02 2017-06-21 ソニー株式会社 蓄電装置、蓄電システム、電子機器、電動車両および電力システム
US20160014878A1 (en) * 2014-04-25 2016-01-14 Rogers Corporation Thermal management circuit materials, method of manufacture thereof, and articles formed therefrom
CN106165191B (zh) * 2014-04-25 2019-06-18 松下知识产权经营株式会社 电池块
CN204651380U (zh) * 2015-06-05 2015-09-16 北京科易动力科技有限公司 电芯连接结构
CN105552289A (zh) * 2016-01-29 2016-05-04 苏州安靠电源有限公司 具有安全保护功能的并联网和使用该并联网的大容量电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068732A1 (en) * 2010-11-25 2012-05-31 Kenneth Hamilton Norton A battery pack assembly
EP2509134A1 (de) * 2010-11-30 2012-10-10 Panasonic Corporation Batteriemodul und batteriepack
US20130032443A1 (en) * 2011-08-04 2013-02-07 Soedomo Darmanto S Electronically Equipped Suitcase Device
EP2834864A1 (de) * 2012-04-06 2015-02-11 Ferrari S.p.A. System zur speicherung der elektrischen energie für ein fahrzeug mit elektroantrieb und mit zylindrischen chemischen batterien in paralleler und serieller verbindung mittels u-förmiger starrer verbindungselemente

Also Published As

Publication number Publication date
US20190198953A1 (en) 2019-06-27
CN109792097A (zh) 2019-05-21
DE102016120841A1 (de) 2018-03-01
EP3465796A1 (de) 2019-04-10
EA201990574A1 (ru) 2019-09-30
WO2017207697A1 (de) 2017-12-07
BR112019003931A2 (pt) 2019-05-21
CN109792097B (zh) 2022-06-24
WO2017207699A1 (de) 2017-12-07
DE102016116581A1 (de) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2017207698A1 (de) Batterie und batterieanordnung
DE102006061270B4 (de) Batteriepack und Batteriemodul
EP3154106B1 (de) Elektrohandwerkzeuggerät
DE102009004543A1 (de) Vorrichtung zur Spannungsversorgung eines Kraftfahrzeugs mit optimierter Wärmeabführung
DE102010002289A1 (de) Kühlsystem für Akkumulatorsatz
DE202016104759U1 (de) Batterie und Verbindungsplatte für eine Batterie
DE102015200451A1 (de) Flexibler Sammelschienenhalter für geschweißte Zellen
DE112021004495T5 (de) Komponenten für Batterien
DE102009000675A1 (de) Wiederaufladbare Batterie
DE102016203129B3 (de) Batterie für ein Kraftfahrzeug und Kraftfahrzeug
DE102008050437B4 (de) Skalierbare Kraftfahrzeugbatterie und Verfahren zur Herstellung dafür
EP4352815A2 (de) Modulares batteriesystem
WO2015121118A1 (de) Elektrische energiespeichereinrichtung und verfahren zum entwärmen einer elektrischen energiespeichereinrichtung
DE102016112431A1 (de) Batterie und Batterieanordnung
DE102013021255A1 (de) Beheizbare Batteriezelle und beheizbare Batterie
EP2494630B1 (de) Elektrochemische zelle
DE102013021258A1 (de) Beheizbare Batteriezelle und beheizbare Batterie
EP3465797B1 (de) Batterie mit batterieabschnitten und kontaktierungsabschnittselement
WO2015121117A1 (de) Elektrische energiespeicherzelle und verfahren zum entwärmen einer elektrischen energiespeicherzelle
DE102011120237A1 (de) Verbindungselement zum elektrischen Verbinden vonparallel geschalteten Batteriezellen, Batterie undVerfahren zum Fertigen eines Verbindungselements
EP2735040B1 (de) Hochvoltspeicher
DE102022003440A1 (de) Batteriemodul mit Pol-Kontaktfläche
WO2023233012A1 (de) Batterie mit elektronikmodulen
DE102021213580A1 (de) Batteriesystem
DE102021112397A1 (de) Flexibler Modulverbinder

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17732762

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17732762

Country of ref document: EP

Kind code of ref document: A1