WO2017206838A1 - 一种血压测量仪 - Google Patents

一种血压测量仪 Download PDF

Info

Publication number
WO2017206838A1
WO2017206838A1 PCT/CN2017/086341 CN2017086341W WO2017206838A1 WO 2017206838 A1 WO2017206838 A1 WO 2017206838A1 CN 2017086341 W CN2017086341 W CN 2017086341W WO 2017206838 A1 WO2017206838 A1 WO 2017206838A1
Authority
WO
WIPO (PCT)
Prior art keywords
cuff
pressure
blood pressure
module
valve
Prior art date
Application number
PCT/CN2017/086341
Other languages
English (en)
French (fr)
Inventor
刘嘉
庞志强
张攀登
张�杰
邱全利
Original Assignee
广州中科新知科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州中科新知科技有限公司 filed Critical 广州中科新知科技有限公司
Publication of WO2017206838A1 publication Critical patent/WO2017206838A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • A61B5/02241Occluders specially adapted therefor of small dimensions, e.g. adapted to fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0235Valves specially adapted therefor

Definitions

  • the invention relates to a blood pressure measuring device, in particular to a blood pressure measuring instrument.
  • Cardiovascular disease is the most important disease in the developed countries today. It is also the most deadly disease in China.
  • the World Health Organization has listed it as the number one killer of human health in the 21st century. It has become a major public health issue in China and the world. Serious impact on people's health and quality of life, therefore, early prediction of cardiovascular disease and mid-term diagnosis and treatment, is extremely important.
  • Blood pressure is an important indicator reflecting physiological functions such as blood pumping function, vascular resistance, blood viscosity and systemic blood volume, and has been widely used in clinical practice. Blood pressure has significant time-varying characteristics, and single or fewer blood pressure measurements at the clinic do not reliably reflect fluctuations in blood pressure and activity. Ambulatory blood pressure monitoring is a diagnostic technique for measuring the blood pressure in daily life with automatic intermittent timing within 24 hours. Because the dynamic blood pressure overcomes the limitations of the clinic's blood pressure measurement, observation error and white coat effect, it can objectively reflect the actual level and fluctuation of blood pressure, so it is diagnosed and judged in the clinically suspected hypertension patients.
  • Ambulatory blood pressure monitoring generally uses oscillometric method, which is a non-invasive blood pressure measurement technology, which can adopt two modes of step-down measurement and step-up measurement.
  • the blood pressure measurement is to first pressurize the cuff to the artery to close, and then collect the pressure oscillation wave signal in the cuff generated by the arterial pulsation during the deflation; and the pressure measurement is simultaneously collected during the cuff pressurization process.
  • the oscillometric method usually uses the curve fitting algorithm and calculates the blood pressure value with the amplitude coefficient.
  • the specific process is: firstly, the curve is fitted by the peak sequence of the oscillating wave, and the static pressure corresponding to the maximum value of the curve is fitted (the pressure inside the cuff) DC component) value, that is The average pressure; the maximum amplitude and amplitude coefficient are used to obtain the systolic pressure amplitude and the diastolic pressure amplitude, and then the corresponding static pressure values are obtained by fitting the curve, that is, systolic blood pressure and diastolic blood pressure.
  • the traditional dynamic blood pressure meter adds timing measurement based on the electronic sphygmomanometer and reduces the volume of the sphygmomanometer to achieve convenient 24-hour blood pressure change information.
  • the limitation is that measuring brachial blood pressure has a great influence on sleep, and the accuracy of nighttime blood pressure measurement is easily affected, and the measurement frequency is low. If the effective measurement frequency is less than 70% of the total measurement, the measurement data is invalid.
  • the existing pressure oscillation waves use the upper arm cuff measurement method, which takes a period of time to completely block the brachial artery blood flow. Multiple measurements will cause numbness and measurement of the entire upper arm, and the noise generated during rapid pumping of the pump is higher. Large, easy to affect the user's sleep, affecting the accuracy of night measurements.
  • the existing pressure oscillation waves mostly adopt the step-down measurement method, resulting in a single measurement time is too long (45-60s), and the user experience is poor.
  • Patent document CN101612039A discloses an adaptive blood pressure detecting device capable of adaptively adjusting a linear inflation speed according to a heart rate of a subject, eliminating the influence of individual differences on the detection result, the detection time is short, and the detection result is accurate.
  • the device mainly adjusts the speed of the linear inflation according to the heart rate of the subject, and the accuracy of the detection result needs to be improved.
  • the object of the present invention is to provide a blood pressure measuring instrument which can improve user comfort and ensure the accuracy of detection results.
  • the present invention adopts the following technical solutions:
  • a blood pressure measuring instrument including
  • a finger sleeve having an airbag surrounding the first measuring portion for obtaining an initial pressure oscillation wave signal of the first measuring portion
  • a finger pressure sensor module for converting a pressure oscillation wave signal obtained by the finger sleeve into a voltage signal No., including finger cot pressure sensor;
  • a cuff pressure sensor module for converting a pressure oscillation wave signal obtained by the cuff into a voltage signal, including a cuff pressure sensor;
  • the air source module is connected to the finger sleeve and the cuff through the main air path to provide a gas source for the air bag and the cuff, including the air pump;
  • the AD acquisition module is configured to collect a voltage signal of the cuff pressure sensor module or the finger pressure sensor module, and convert the voltage signal into a digital signal;
  • a processor module configured to process a signal collected by the AD acquisition module
  • the processor module includes a linear airing control unit, an oscillating wave extraction unit, and a blood pressure parameter calculation unit;
  • the linear airing control unit controls the air source module to realize different working modes of the finger sleeve or the cuff;
  • An oscillating wave extraction unit configured to extract a digital signal generated by the AD acquisition module, to obtain a final pressure oscillation wave signal
  • the blood pressure parameter calculation unit calculates a blood pressure parameter value based on the final pressure oscillation wave signal obtained by the oscillation wave extraction unit.
  • the linear airing control unit is configured to control the air source module to implement the first linear airing mode and the second linear airing mode of the finger sleeve or the cuff, and to set the pressure change rate in the airbag or the cuff in the first linear airing mode.
  • Said first linear pump mode after balloon or cuff inflation, real time acquisition balloon or cuff pressure P is calculated in real time and the pressure change rate K, P is smaller than in the prior P. 1, real-time adjustment to the pump voltage by PID U Track the pressure change rate k 1 until the pressure in the airbag or cuff is linearly increased from 0 to P 1 ;
  • the second mode is a linear cheer: P is greater than P in. 1 and less than P 2 before, real-time adjustment by PID U pump voltage to track pressure change rate k 2, or until a balloon cuff pressure was raised linearly from P. 1 P 2 ; When P is greater than P 2 , the balloon or cuff stops inflating.
  • the air pump voltage U is obtained by the following relationship:
  • Kp is the proportional unit coefficient
  • Ki is the integral unit coefficient
  • kd is the differential unit coefficient
  • ⁇ e is the differential of the error, which is equal to the difference between the current error and the previous error
  • P i is the current collection point pressure value
  • P (i-1) is the pressure value of the previous collection point of the current collection point.
  • the oscillating wave extraction unit is configured to extract a digital signal generated by the AD acquisition module to analyze and obtain a final pressure oscillation wave signal, and the specific process is:
  • the pressure waveform data above P 1 is selected, filtered by 3 Hz low-pass software, and then the actual slope signal is obtained by least squares fitting, and the original pressure signal above P 1 is subtracted from the fitted slope signal. Finally, after 0.5 Hz software high-pass filtering, the final pressure oscillation wave signal is obtained.
  • the processor module further includes a heart rate variation analysis unit configured to calculate a heart rate variability parameter value according to the final pressure oscillating wave signal obtained by the oscillating wave extraction unit, and calculate the calculated heart rate variability parameter value and a preset value The heart rate variability parameter values are compared; if the calculated heart rate variability parameter value is greater than the set heart rate variability parameter value, the blood pressure parameter calculation unit is started, and the calculated blood pressure value is measured; if the calculated heart rate variability parameter value is less than the set value The heart rate variability parameter value is measured continuously to calculate the heart rate variability parameter value.
  • a heart rate variation analysis unit configured to calculate a heart rate variability parameter value according to the final pressure oscillating wave signal obtained by the oscillating wave extraction unit, and calculate the calculated heart rate variability parameter value and a preset value The heart rate variability parameter values are compared; if the calculated heart rate variability parameter value is greater than the set heart rate variability parameter value, the blood pressure parameter calculation unit is started, and the calculated blood pressure value is measured; if the calculated heart rate variability parameter value is less than the set
  • the above blood pressure measuring instrument further includes:
  • a finger valve module for controlling the connection between the finger sleeve and the main air passage to control the air supply and discharge of the air source module, including the finger sleeve valve;
  • a cuff valve module for controlling the connection of the cuff to the main air path to control the air supply module to charge and deflate the cuff, including the cuff valve;
  • Uniform valve module for uniform pressure relief of the air bag and the air in the cuff, including a constant speed valve;
  • Quick bleed valve module for quick relief of air bags and cuffs, including quick bleed valves.
  • the finger sleeve valve, the cuff valve, the quick release valve and the air pump are respectively connected with the four interfaces of the first four-way valve; the finger sleeve valve is also connected with one interface of the three-way valve, and the three-way valve is additionally The two interfaces are respectively connected to the finger sleeve and the finger pressure sensor; the cuff valve is also connected to one interface of the second four-way valve, and the other three interfaces of the second four-way valve are respectively connected with the constant speed valve, the cuff and The cuff pressure sensor is connected.
  • the AD acquisition module includes a 24-bit 50 Hz A/D converter.
  • the blood pressure measuring instrument further includes a user interaction module for displaying the detection information and receiving the user instruction in real time;
  • the data transmission module is configured to perform data transmission with the mobile terminal to implement remote control.
  • the blood pressure meter described above also includes an acceleration sensor module for providing a three-axis acceleration signal required to position the user's posture and sleep state.
  • the blood pressure measuring instrument of the invention measures blood pressure by means of finger finger pressure, without blocking the blood flow of the brachial artery, and the effect of the patient is most likely to be reduced, especially in the sleep; the blood pressure is measured by the rapid measurement technique of the boosting
  • the single measurement takes only 15s, and the user experience is good.
  • the pulse wave blood pressure calibration technology (cuff + finger sleeve) is used to calibrate the blood pressure, which improves the measurement accuracy.
  • Figure 1 is a block diagram showing the structure of a blood pressure measuring instrument of the present invention
  • Figure 2 is a flow chart of linear pumping
  • Figure 3 is a flow chart of oscillation wave extraction
  • FIG. 4 is a block diagram of PID control
  • Figure 5 is a diagram of a linear pumping effect
  • Figure 6 is a linear rise phase and a fitted ramp signal
  • Figure 8 is an effect diagram of removing the ramp signal and the oscillating wave signal after the high pass
  • Figure 9 is a block diagram showing the connection of the pneumatic components of the blood pressure measuring instrument of the present invention.
  • finger sleeve 2, finger pressure sensor module; 21, finger pressure sensor; 3, cuff; 4, cuff pressure sensor module; 41, cuff pressure sensor; 5, air source module; , air pump; 6, processor module; 61, linear pumping control unit; 62, oscillating wave extraction unit; 63, blood pressure parameter calculation unit; 64, heart rate variability analysis unit; 7, finger valve module; 71, finger valve; 8, cuff valve module; 81, cuff valve; 9, uniform valve module; 91, average speed valve; 10, rapid deflation valve module; 101, fast deflation valve; 11, power conversion module; Four-way valve; 13, three-way valve; 14, second four-way valve; 15, household interaction module; 16, acceleration sensor module; 17, data transmission module;
  • the blood pressure measuring instrument of the present invention comprises a finger cuff 1 having an airbag which surrounds the first measuring portion for obtaining an initial pressure oscillation wave signal of the first measuring portion; a finger pressure sensor Module 2, for converting the initial pressure oscillation wave signal obtained by the finger sleeve into a voltage signal, including a pressure sensor 21; a cuff 3 surrounding the measuring portion for obtaining an initial pressure oscillation wave signal of the second measuring portion; a cuff pressure sensor module 4 for initial pressure oscillation wave signal obtained by the cuff 3 Converted into a voltage signal, including a cuff pressure sensor 41; the air source module 5 is connected to the finger cuff 1 and the cuff 3 through the main air path to provide a gas source for the air bag and the cuff, including the air pump 51; the AD acquisition module 18 Using a single chip microcomputer, FPGA, ARM, etc., is used to collect the voltage signal on the finger pressure sensor module 2 and the cuff pressure sensor module 4, as well
  • the blood pressure measuring instrument of the present invention has the following working modes:
  • the air pump 51 is activated to simultaneously pump the cuff 3 and the finger cuff 1 , and the finger cuff 1 only needs to maintain a low pressure (50 mmHg) to measure the pulse wave, so when the finger cuff 1 reaches a set pressure value, such as 45-55 mmHg
  • the air pump 51 suspends the airing of the finger sleeve 1 and saves the pressure inside the finger sleeve 1; the air pump 51 continues to pump the cuff 3 until the pressure in the cuff exceeds the systolic pressure (the normal person's systolic pressure value is about 110-130 mmHg).
  • the cuff 31 is uniformly linearly deflated until the pressure in the cuff is lower than the systolic pressure, and the first pulse wave peak detected in the finger pressure signal collected by the finger pressure sensor is calibrated. After the systolic pressure, the cuff and the airbag are quickly deflated through the deflation valve to complete the calibration work.
  • the device needs to be initialized, and then the finger sleeve 1 is wrapped around the user's finger; then the working mode of the finger sleeve 1 is set to the first linear airing mode and the first The two-linear airing mode, and setting the pressure change rate K 1 (such as 40/fs) and the maximum pressure P 1 (such as 40 mmHg) in the airbag of the finger sleeve 1 in the first linear airing mode, and the airbag in the airbag 1 in the second linear airing mode
  • the pressure change rate K 2 (such as 120 / (14 * fs)) and the maximum pressure P 2 (such as 160mmHg);
  • the first linear airing mode can be set to a fast airing phase (pressure from 0 to 40 mmHg, about 1 s), and the second linear airing mode is slow air pumping. Stage (pressure from 40 to 160 mmHg, approximately 14 s). That is to say, by adopting the blood pressure measuring instrument of the invention to realize the linear airing method, the time of a single measurement is only about 15S or even shorter, and the existing step-down measuring method (the time required for a single measurement needs 45-60s). Unequal) greatly shortens the measurement time, which can significantly improve user comfort.
  • the measurement time of the first linear airing mode and the second linear airing mode described above may be set to different values according to the requirements of different users.
  • the pressure sensor 21 and the cuff AD collection module 18 refers to the real-time acquisition of the pressure P within the pressure bladder and calculating the rate of change K, P is smaller than in the prior P 1, real-time adjustment to the pump voltage by PID U track a target pressure change rate k 1 , until the pressure in the airbag of the finger sleeve 1 is linearly increased from 0 to P 1 in the first linear airing mode;
  • the air pump voltage U is adjusted in real time by PID to track the target pressure change rate k 2 until the pressure in the airbag of the finger sleeve 1 is linearly increased from P 1 in the second linear airing mode.
  • PID the air pump voltage U is adjusted in real time by PID to track the target pressure change rate k 2 until the pressure in the airbag of the finger sleeve 1 is linearly increased from P 1 in the second linear airing mode.
  • the linear airing of the finger sleeve 1 is realized by PID real-time control of the air pump.
  • the real-time rate of change k of the air pressure inside the finger sleeve 1 is used as the PID control amount, and the pressure change rate is set by the pressure.
  • the target value (K 1 and K 2 ) is compared with the current real-time pressure change rate k obtained by feedback, and the control error is obtained as the input amount of the PID control, and the output is calculated by the incremental PID, and the air pump 1 is controlled to output.
  • the air volume Q to the airbag (the air volume Q of the air pump output to the airbag is mainly realized by controlling the voltage of the air pump), and finally the pressure of the airbag is detected by the finger pressure sensor to perform the next PID adjustment.
  • the accuracy of the measured pressure can be accurately ensured, thereby ensuring the stability and accuracy of the air pressure oscillation wave signal.
  • Kp is the proportional unit coefficient
  • Ki is the integral unit coefficient
  • kd is the differential unit coefficient
  • ⁇ e is the differential of the error, which is equal to the difference between the current error and the previous error
  • P i is the current collection point pressure value
  • P (i-1) is the pressure value of the previous collection point of the current collection point.
  • the voltage U of the air pump can be accurately controlled, and the air volume Q of the air pump to be adjusted to the airbag can be accurately controlled.
  • the oscillating wave extraction unit 62 extracts the digital signal generated by the AD acquisition module 18 to obtain a final pressure swash wave signal.
  • the extraction process of the final pressure oscillating wave is: first, select P 1 or more.
  • the pressure waveform data is filtered by a 3 Hz low-pass software, and then the actual slope signal is obtained by least squares fitting, and the original pressure signal above P 1 is subtracted from the fitted ramp signal, as shown in FIG. 6 .
  • the envelope effect of the oscillating wave is good, and the algorithm is simple, which is beneficial to realize on the single-chip microcomputer.
  • the software high-pass filtering of 0.5Hz the final pressure oscillation wave signal can be obtained.
  • the effect is shown in Fig. 8.
  • the oscillating wave effect obtained by the blood pressure measuring instrument of the invention is obviously better than the oscillating wave effect obtained by the conventional blood pressure measuring instrument using the band pass filter, and the effect is specifically shown in FIG. 7.
  • the blood pressure parameter calculation unit 63 calculates a blood pressure parameter value such as an average pressure, a diastolic pressure, a systolic pressure, and the like based on the final pressure oscillation wave signal obtained by the oscillation wave extraction unit 62.
  • the work of the cuff alone is consistent with the working process of measuring the blood pressure by the finger sleeve alone, and will not be described here.
  • the blood pressure measuring instrument of the present invention has the following technical advantages:
  • the blood pressure meter of the present invention measures blood pressure by means of finger finger pressure, without blocking the blood flow of the brachial artery, and may greatly reduce the influence on the patient, especially the sleep;
  • the blood pressure measuring instrument of the invention adopts a scheme without a photoelectric sensor, and the finger sleeve is easy to wear and use, and is convenient for household use;
  • the blood pressure measuring instrument of the invention has a smaller volume and power consumption than the conventional dynamic blood pressure meter because of the small pump and the small airbag of the finger sleeve;
  • the blood pressure measuring instrument of the invention adopts the rapid pressure measuring technology to measure the blood pressure, and the single measurement only takes 15s, and the user experience is good;
  • the blood pressure measuring instrument of the present invention uses a pulse wave blood pressure calibration technique (cuff + finger sleeve) to calibrate blood pressure, thereby improving measurement accuracy.
  • a pulse wave blood pressure calibration technique cuff + finger sleeve
  • a heart rate variation analyzing unit 64 is further provided in the processor module 6 for calculating a heart rate variability parameter based on the pressure oscillation wave signal obtained by the oscillating wave extracting unit 62. a value, and comparing the calculated heart rate variability parameter value with a preset heart rate variability parameter value; if the calculated heart rate variability parameter value is greater than the set heart rate The variogram parameter value starts the blood pressure parameter calculation unit to measure and calculate the blood pressure value; if the calculated heart rate variability parameter value is less than the set heart rate variability parameter value, the heart rate variability parameter value is always measured and calculated.
  • the blood pressure measuring instrument of the present invention further has an operating mode for measuring the heart rate, which can measure the heart rate of the user, and at the same time, can determine whether the blood pressure of the user is measured according to the result of the measurement to ensure the effective blood pressure measurement. frequency. It has been verified that the blood pressure measuring instrument of the invention has an effective measurement times of more than 99% of the total number of measurements, thereby ensuring the validity of the measurement data, thereby solving the problem that the blood pressure measurement accuracy of the existing blood pressure measuring instrument is susceptible to being affected. Technical problem.
  • a finger valve module 7 is further included for controlling the connection between the finger sleeve and the main air path to control the air source module 5 to charge the air bag.
  • Deflating including the finger valve 71; the cuff valve module 8 for controlling the connection of the cuff 3 to the main air path to control the air supply and discharge of the cuff 3 by the air source module 5, including the cuff valve 81 a uniform valve module 9 for achieving uniform pressure relief of the air bag and the air in the cuff 3, including a constant speed valve 91; a quick deflation valve module 10 for rapid pressure relief of the air bag and the cuff 3, including rapid release
  • the gas valve 101 further includes a power conversion module 11 for supplying power to each of the above modules to realize conversion of the battery voltage to each target voltage.
  • the finger sleeve valve 72, the cuff valve 81, the quick release valve 101, and the air pump 51 are respectively connected to the four interfaces of the first four-way valve 12; the finger sleeve valve 72 is also connected to the three-way valve. An interface of 13 is connected, and the other two interfaces of the three-way valve 13 are respectively connected to the finger sleeve 1 and the finger pressure sensor 21; the cuff valve 81 is also connected to an interface of the second four-way valve 14, which The other three ports of the second four-way valve 14 are connected to the constant velocity valve 91, the cuff 3, and the cuff pressure sensor 41, respectively.
  • the present invention connects the various valves, the air pump, and the finger pressure sensor and the cuff pressure sensor of the present invention by clever use of two four-way valves and one three-way valve, so that the blood pressure measuring instrument can have Different working modes ensure the comfort of the blood pressure meter and The accuracy of the test results.
  • the AD acquisition module 18 includes a 24-bit 50 Hz A/D converter and an auxiliary circuit.
  • the 24-bit A/D converter does not require dynamic gain and related conditioning circuits and hardware, thereby reducing circuit complexity and Waveform distortion caused by circuit filtering, user adaptability, can effectively avoid noise generated by the air pump.
  • the blood pressure measuring device further includes a user interaction module 15 for displaying the detection information in real time and receiving the user instruction, so that the blood pressure measuring device is more user-friendly.
  • the blood pressure meter further includes an acceleration sensor module 16 for providing a three-axis acceleration signal, including an acceleration sensor, required to position the user's posture and sleep state.
  • an acceleration sensor for providing a three-axis acceleration signal, including an acceleration sensor, required to position the user's posture and sleep state.
  • the acceleration sensor can be used as one of the factors predicting blood pressure change, thereby changing the frequency of blood pressure measurement.
  • the blood pressure measuring instrument further comprises a data transmission module 17 for performing data transmission with the mobile terminal for realizing remote control, and adopting a wireless and wired method, including wireless such as Bluetooth, wired such as serial port, USB, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dentistry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种血压测量仪,包括指套(1)、袖带(3)、指套压力传感器模块(2)、袖带压力传感器模块(4)、气源模块(5)、AD采集模块(18),处理器模块(6)等,其中,处理器模块(6)包括线性打气控制部(61),振荡波提取部(62)以及血压参数计算部(63);线性打气控制部(61),用于控制指套(1)或袖带(3)实现不同的工作模式;振荡波提取部(62),用于提取线性打气控制部(61)所获得的压力振荡波信号。血压测量仪采用手指指套(1)加压的方法测量血压,无需阻断肱动脉血流,最大可能降低对病人的影响,尤其是睡眠中的影响;采用脉搏波血压校准技术(袖带(3)+指套(1))对血压进行校准,提高了测量精准度。

Description

一种血压测量仪 技术领域
本发明涉及血压测量设备,具体涉及一种血压测量仪。
背景技术
心血管疾病(Cardiovascular disease,CVD)是当今发达国家死亡率占第一位的重要疾病,在我国也是死亡率最高的一类疾病,世界卫生组织已将其列为21世纪危害人类健康的头号杀手,它已经成为中国和世界的主要公共卫生问题。严重的影响人们的健康和生活质量,因此,对心血管疾病的早期预测和中期诊断治疗,有着极其重要的意义。
血压是反映心脏泵血功能、血管阻力、血液粘滞性和全身血容量等生理参数的重要指标,在临床上得到了广泛应用。血压具有明显的随时间变化特性,在诊所进行的单次或少次血压测量不能可靠地反映血压的波动和活动状态下的情况。动态血压监测是在24小时内自动间断性定时测量日常生活状态下血压的一种诊断技术。由于动态血压克服了诊所血压测量次数较少、观察误差和白大衣效应等的局限性,能客观地反映血压的实际水平与波动状况,因此在临床疑似高血压患者确诊、判断“白大衣高血压”和顽固性高血压、评价抗高血压药物的疗效及指导治疗等方面得到了越来越广泛的应用。动态血压监测一般采用示波法,它是一种无创血压测量技术,可以采用降压测量和升压测量两种模式。降压测量是先给袖带打气加压至动脉闭合,然后在放气过程中,采集由动脉脉动产生的袖带内压力振荡波信号;而升压测量是在袖带加压过程中同时采集袖带内的压力振荡波信号。示波法测量通常采用曲线拟合算法并配合幅值系数计算血压值,具体过程是:首先使用振荡波的峰值序列进行曲线拟合,拟合曲线最大值所对应的静压(袖带内压力的直流成分)值,即为 平均压;利用最大幅值与幅值系数得到收缩压振幅和舒张压振幅,然后通过拟合曲线求出对应的静压值,即为收缩压和舒张压。
传统动态血压仪是在电子血压计的基础上增加了定时测量,并减小血压计的体积,以达到便于携带获取24小时血压变化信息。其局限性在于,测量肱动脉血压对睡眠影响较大,夜间血压测量准确性易受到影响,同时测量频率较低,有效测量次数若不足测量总数的70%,测量数据则无效。
现有的压力振荡波大多采用上臂袖带测量方法,需要一段时间完全阻断肱动脉血流,多次测量将导致整个上臂的麻木和测量位置的淤血,且泵快速打气过程中发出的噪声较大,容易对用户睡眠造成影响,影响夜间测量的准确性。同时,现有的压力振荡波大多采用降压测量方法,导致单次测量时间过长(45-60s不等),用户体验较差。
专利文献CN101612039A公开了一种自适应血压检测装置,该装置能够根据被测者的心率自适应调节线性充气速度,消除个体差异对检测结果的影响,检测时间短、检测结果准确。但是该装置主要是通过根据被测者的心率来调整线性充气的速度,检测结果的准确性有待提高。
发明内容
针对现有技术的不足,本发明的目的旨在提供一种既可以提高用户舒适度又可以保证检测结果准确性的血压测量仪。
为实现上述目的,本发明采用如下技术方案:
一种血压测量仪,包括
具有气囊的指套,其环绕在第一测定部上,用于获得第一测定部的初始压力振荡波信号;
指套压力传感器模块,用于将指套获得的压力振荡波信号转换为电压信 号,包括指套压力传感器;
袖带,其环绕在测定部上,用于获得第二测定部的初始压力振荡波信号;
袖带压力传感器模块,用于将袖带获得的压力振荡波信号转换为电压信号,包括袖带压力传感器;
气源模块,通过主气路与指套以及袖带连通,为气囊以及袖带提供气源,包括气泵;
AD采集模块,用于收集袖带压力传感器模块或指套压力传感器模块的电压信号,并将电压信号转换为数字信号;
处理器模块,用于处理AD采集模块所采集的信号;
处理器模块包括线性打气控制部,振荡波提取部以及血压参数计算部;
线性打气控制部,通过控制气源模块来使指套或袖带实现不同的工作模式;
振荡波提取部,用于对AD采集模块所产生的数字信号进行提取,以分析获得最终压力振荡波信号;
血压参数计算部,用于根据振荡波提取部所获得的最终压力振荡波信号而计算得出血压参数值。
上述线性打气控制部用于控制气源模块使指套或袖带实现第一线性打气模式和第二线性打气模式,以及用于设定第一线性打气模式中气囊或袖带内的压强变化率K1和最大压强P1以及第二线性打气模式中气囊或袖带内的压强变化率K2和最大压强P2的值;其中P1小于P2
所述第一线性打气模式为:气囊或袖带充气后,实时采集气囊或袖带内的实时压强P并计算实时压强变化率K,在P小于P1之前,通过PID实时调节气泵电压U以跟踪压强变化率k1,直至实现气囊或袖带内的压强从0线性 升至P1
所述第二线性打气模式为:在P大于P1而小于P2之前,通过PID实时调节气泵电压U以跟踪压强变化率k2,直至实现气囊或袖带内的压强从P1线性升至P2;当P大于P2后,气囊或袖带停止充气。
所述气泵电压U由如下的关系式求得:
U=Kp*e+Ki*∑e+kd*Δe
其中:Kp为比例单元系数;Ki为积分单元系数;kd为微分单元系数;Δe为误差的微分,等于当前误差与前一次误差的差值;
e为控制误差:e=k-kn;kn为k1或k2
k=Pi-P(i-1);Pi为当前采集点压力值,P(i-1)为当前采集点的前一个采集点的压力值。
所述振荡波提取部用于对AD采集模块所产生的数字信号进行提取,以分析获得最终压力振荡波信号,具体的过程为:
首先选取P1以上的压力波形数据,将其经过3Hz的低通软件滤波,再通过最小二乘法拟合得到实际的斜坡信号,将P1以上的原始压力信号减去拟合得到的斜坡信号,最后再经过0.5Hz的软件高通滤波,得到最终压力振荡波信号。
所述处理器模块还包括心率变异分析部,用于根据振荡波提取部所获得的最终压力振荡波信号计算得出心率变异参数值,并将计算得出的心率变异参数值与预先设定的心率变异参数值进行比较;若计算得出的心率变异参数值大于设定的心率变异参数值,则启动血压参数计算部,测量计算血压值;若计算得出的心率变异参数值小于设定的心率变异参数值,则一直测量计算心率变异参数值。
上述的血压测量仪还包括:
指套阀模块,用于控制指套与主气路的连接与否,来控制气源模块对气囊的充放气,包括指套阀;
袖带阀模块,用于控制袖带与主气路的连接与否,来控制气源模块对袖带的充放气,包括袖带阀;
均匀阀模块,用于对气囊以及袖带中的气实现均匀泄压,包括匀速阀;
快速放气阀模块,用于对气囊以及袖带实现快速泄压,包括快速放气阀。
所述指套阀、袖带阀、快速放气阀以及气泵分别与第一四通阀的四个接口相连接;指套阀还与三通阀的一个接口相连接,该三通阀的另外两个接口分别与指套和指套压力传感器相连接;袖带阀还与第二四通阀的一个接口相连接,该第二四通阀的另外三个接口分别与匀速阀、袖带以及袖带压力传感器相连接。
所述AD采集模块包括一24位50Hz的A/D转换器。
上述的血压测量仪还包括用户交互模块,用于实时地显示检测信息以及接收用户指令;
数据传输模块,用于与移动终端进行数据传送,实现远程控制。
上述的血压测量仪还包括加速度传感器模块,用于提供定位用户姿态和睡眠状态所需要的三轴加速度信号。
本发明的有益效果在于:
本发明的血压测量仪采用手指指套加压的方法测量血压,无需阻断肱动脉血流,最大可能降低对病人的影响,尤其是睡眠中的影响;采用升压快速测量技术对血压进行测量,单次测量仅需要15s,用户体验好;采用脉搏波血压校准技术(袖带+指套)对血压进行校准,提高了测量精准度。
附图说明
图1为本发明血压测量仪的结构框图;
图2为线性打气的流程图;
图3为振荡波提取的流程图;
图4为PID控制框图;
图5为线性打气效果图;
图6为线性上升阶段及拟合的斜坡信号;
图7为直接高通后的振荡波信号的效果图;
图8为去掉斜坡信号和高通后的振荡波信号的效果图;
图9为本发明血压测量仪气路部件的连接框图;
图中:1、指套;2、指套压力传感器模块;21、指套压力传感器;3、袖带;4、袖带压力传感器模块;41、袖带压力传感器;5、气源模块;51、气泵;6、处理器模块;61、线性打气控制部;62、振荡波提取部;63、血压参数计算部;64、心率变异分析部;7、指套阀模块;71、指套阀;8、袖带阀模块;81、袖带阀;9、均匀阀模块;91、均速阀;10、快速放气阀模块;101、快速放气阀;11、电源转换模块;12、第一四通阀;13、三通阀;14、第二四通阀;15、户交互模块;16、加速度传感器模块;17、数据传输模块;18、AD采集模块。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述:
如图1和图9所示,本发明的血压测量仪包括具有气囊的指套1,其环绕在第一测定部上,用于获得第一测定部的初始压力振荡波信号;指套压力传感器模块2,用于将指套获得的初始压力振荡波信号转换为电压信号,包括指 套压力传感器21;袖带3,其环绕在测定部上,用于获得第二测定部的初始压力振荡波信号;袖带压力传感器模块4,用于将袖带3获得的初始压力振荡波信号转换为电压信号,包括袖带压力传感器41;气源模块5,通过主气路与指套1以及袖带3连通,为气囊以及袖带提供气源,包括气泵51;AD采集模块18,可采用单片机、FPGA、ARM等,用于采集指套压力传感器模块2以及袖带压力传感器模块4上的电压信号以及本血压测量仪的电池电量以及温度等其他信号,并将相应的电压信号转换为数字信号;处理器模块6,用于处理AD采集模块18采集的信号;处理器模块6包括线性打气控制部61,振荡波提取部62以及血压参数计算部63;线性打气控制部61,用于控制指套1或袖带3实现不同的工作模式;振荡波提取部62,用于对AD采集模块18所产生的数字信号进行提取,以分析获得最终压力振荡波信号;血压参数计算部63,用于根据振荡波提取部62所获得的最终压力振荡波信号而计算得出血压参数值。
本发明的血压测量仪具有如下的几种工作模式:
1、校正模式
启动气泵51,对袖带3和指套1同时打气,指套1仅需要维持较低压力(50mmHg)来测量脉搏波,所以当指套1到达设定的压力值时,比如45-55mmHg时,气泵51则暂停对指套1打气,并保存指套1内压力;气泵51则继续对袖带3打气,直到袖带内的压力超过收缩压(正常人的收缩压值大概是110-130mmHg),然后对袖带31进行均匀线性放气,直到袖带内的压力低于收缩压,由指套压力传感器采所集到的指套压力信号中的检测到第一个脉搏波峰值为校准后的收缩压,再通过放气阀对袖带和气囊进行快速放气,完成校正工作。
2、指套单独工作进行测量血压
本发明的血压测量仪校准完成后,如图2所示,需要初始化设备,然后将指套1环绕在用户的手指上;再将指套1的工作模式设定为第一线性打气模式和第二线性打气模式,并设定第一线性打气模式中指套1气囊内的压强变化率K1(如40/fs)和最大压强P1(如40mmHg)以及第二线性打气模式中指套1气囊内的压强变化率K2(如120/(14*fs))和最大压强P2(如160mmHg);
此外,为了能最大程度地缩短测量时间,如图5所示,可将第一线性打气模式设定为快速打气阶段(压力从0至40mmHg,大约1s),第二线性打气模式为慢速打气阶段(压力从40至160mmHg,大约14s)。也就是说,采用本发明血压测量仪的来实现线性打气的方式,单次测量的时间只需15S左右,甚至更短,与现有的降压测量方法(单次测量的时间需要45-60s不等)大大地缩短了测量时间,从而可以明显地提高用户的舒适度。当然,上述的第一线性打气模式以及第二线性打气模式的测量时间,可以根据不同用户的需求设定不同的值。
气泵51启动,指套压力传感器21以及AD采集模块18实时采集指气囊内的压强P并计算压强变化率K,在P小于P1之前,通过PID实时调节气泵电压U以跟踪目标压强变化率k1,直至实现第一线性打气模式中指套1气囊内的压强从0线性升至P1
同理,在P大于P1而小于P2之前,通过PID实时调节气泵电压U以跟踪目标压强变化率k2,直至实现第二线性打气模式中指套1气囊内的压强从P1线性升至P2
如P大于P2,则气泵51停止打气。
也就是说,指套1的线性打气是通过PID实时控制气泵来实现的,具体如图4所示,将指套1气囊内压强的实时变化率k作为PID控制量,通过给压强变化率设定目标值(K1和K2),跟反馈得到的当前实时压强变化率k相比较,得到控制误差作为PID控制的输入量,再通过增量式PID计算得到输出量,控制气泵1调节输出到气囊的气量Q(气泵输出到气囊的气量Q主要是通过控制气泵的电压来实现),最后通过指套压力传感器检测气囊内的压强来进行下一次PID调整。如此,通过对实时测量到的变化率k进行反馈调整,能够精确地保证所测量到的压强的准确性,从而可以保证气压振荡波信号的稳定性和准确性。
其中,上述气泵电压U由如下的关系式求得:
U=Kp*e+Ki*∑e+kd*Δe
其中:Kp为比例单元系数;Ki为积分单元系数;kd为微分单元系数;Δe为误差的微分,等于当前误差与前一次误差的差值;
e为控制误差:e=k-kn;kn为k1或k2
k=Pi-P(i-1);Pi为当前采集点压力值,P(i-1)为当前采集点的前一个采集点的压力值。
通过上述的关系式,能够精确地控制气泵的电压U,进而可以精确地控制气泵调节输出到气囊的气量Q。
同时,振荡波提取部62会对AD采集模块18所产生的数字信号进行提取以获得最终压力荡波信号,如图3所示,该最终压力振荡波的提取流程为:首先选取P1以上的压力波形数据,将其经过3Hz的低通软件滤波,再通过最小二乘法拟合得到实际的斜坡信号,将P1以上的原始压力信号减去拟合得到的斜坡信号,如图6所示,振荡波的包络效果好,且算法简单,利于在单片 机上实现;最后再经过0.5Hz的软件高通滤波,即可得到最终压力振荡波信号,效果如图8所示。采用本发明血压测量仪得到的振荡波效果明显好于采用传统血压测量仪采用带通滤波器操得到的振荡波效果,效果具体如图7所示。
最后,血压参数计算部63会根据振荡波提取部62所获得的最终压力振荡波信号计算得出血压参数值,如平均压、舒张压、收缩压等等。
3、袖带单独工作进行测量血压
袖带单独工作与指套单独工作测血压的工作过程一致,在此就不在赘述。
由上述可知,本发明的血压测量仪具有如下的技术优势:
1、本发明的血压仪,采用手指指套加压的方法测量血压,无需阻断肱动脉血流,最大可能降低对病人的影响,尤其是睡眠中的影响;
2、本发明的血压测量仪,指套采用无光电传感器的方案,指套佩戴和使用方便,利于家庭使用;
3、本发明的血压测量仪,由于采用了小泵和指套小气囊,体积和功耗较传统的动态血压仪降低;
4、本发明的血压测量仪,采用升压快速测量技术对血压进行测量,单次测量仅需要15s,用户体验好;
5、本发明的血压测量仪,采用脉搏波血压校准技术(袖带+指套)对血压进行校准,提高了测量精准度。
此外,为了提高本血压测量仪的有效测量次数,在上述处理器模块6中还设置有心率变异分析部64,用于根据振荡波提取部62所获得的压力振荡波信号计算得出心率变异参数值,并将计算得出的心率变异参数值与预先设定的心率变异参数值进行比较;若计算得出的心率变异参数值大于设定的心率 变异参数值,则启动血压参数计算部,测量计算血压值;若计算得出的心率变异参数值小于设定的心率变异参数值,则一直测量计算心率变异参数值。也就是说,本发明的血压测量仪还有一测量心率的工作模式,能够对用户的心率进行测量,同时,可根据测量的结果来判断是否对用户的血压进行血压测量,以保证血压测量的有效次数。经验证,采用本发明的血压测量仪,其有效的测量次数达到总测量次数的99%以上,保证了测量数据的有效性,从从而解决了现有血压测量仪夜间血压测量准确性易受到影响的技术问题。
其中,返回图1和图9所示,在本血压测量仪中,还包括指套阀模块7,用于控制指套与主气路的连接与否,来控制气源模块5对气囊的充放气,包括指套阀71;袖带阀模块8,用于控制袖带3与主气路的连接与否,来控制气源模块5对袖带3的充放气,包括袖带阀81;均匀阀模块9,用于对气囊以及袖带3中的气实现均匀泄压,包括匀速阀91;快速放气阀模块10,用于对气囊以及袖带3实现快速泄压,包括快速放气阀101;当然,还包括一电源转换模块11,以为上述的各个模块提供电量,实现电池电压到各目标电压的转换。
如图9所示,上述的指套阀72、袖带阀81、快速放气阀101以及气泵51分别与第一四通阀12的四个接口相连接;指套阀72还与三通阀13的一个接口相连接,该三通阀13的另外两个接口分别与指套1和指套压力传感器21相连接;袖带阀81还与第二四通阀14的一个接口相连接,该第二四通阀14的另外三个接口分别与匀速阀91、袖带3以及袖带压力传感器41相连接。也就是说,本发明通过巧妙地利用两个四通阀和一个三通阀将本发明的各个阀、气泵以及指套压力传感器、袖带压力传感器连接在一起,以使得本血压测量仪可以具有不同的工作模式,保进一步证了本血压测量仪使用的舒适性以及 检测结果的准确性。
其中,上述的AD采集模块18包括一是24位50Hz的A/D转换器以及配套辅助电路,采用24位A/D转换器无需动态增益及相关调理电路、硬件,可以减少电路的复杂性和电路滤波引起的波形畸变,用户适应性好,可以有效地避免气泵产生噪音。
其中,再返回图1所示,本血压测量仪还包括用户交互模块15,用于实时地显示检测信息以及接收用户指令,使得本血压测量仪更具人性化
本血压测量仪还包括加速度传感器模块16,用于提供定位用户姿态和睡眠状态所需要的三轴加速度信号,包括加速度传感器。以获得用户的姿态,从而决定是否需要重新测量血压,减少测量错误的可能性,同时通过加速度传感器可以获得睡眠的深浅,可以作为预测血压改变的因素之一,从而改变血压测量的频率。
本血压测量仪还包括数据传输模块17,用于与移动终端进行数据传送,实现远程控制,可采用无线及有线的方法,包括无线如蓝牙等,有线如串口、USB等。
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (10)

  1. 一种血压测量仪,其特征在于,包括
    具有气囊的指套,其环绕在第一测定部上,用于获得第一测定部的初始压力振荡波信号;
    指套压力传感器模块,用于将指套获得的压力振荡波信号转换为电压信号,包括指套压力传感器;
    袖带,其环绕在测定部上,用于获得第二测定部的初始压力振荡波信号;
    袖带压力传感器模块,用于将袖带获得的压力振荡波信号转换为电压信号,包括袖带压力传感器;
    气源模块,通过主气路与指套以及袖带连通,为气囊以及袖带提供气源,包括气泵;
    AD采集模块,用于收集袖带压力传感器模块或指套压力传感器模块的电压信号,并将电压信号转换为数字信号;
    处理器模块,用于处理AD采集模块所采集的信号;
    处理器模块包括线性打气控制部,振荡波提取部以及血压参数计算部;
    线性打气控制部,通过控制气源模块来使指套或袖带实现不同的工作模式;
    振荡波提取部,用于对AD采集模块所产生的数字信号进行提取,以分析获得最终压力振荡波信号;
    血压参数计算部,用于根据振荡波提取部所获得的最终压力振荡波信号而计算得出血压参数值。
  2. 如权利要求1所述的血压测量仪,其特征在于,线性打气控制部用于控制气源模块使指套或袖带实现第一线性打气模式和第二线性打气模式,以 及用于设定第一线性打气模式中气囊或袖带内的压强变化率K1和最大压强P1以及第二线性打气模式中气囊或袖带内的压强变化率K2和最大压强P2的值;其中P1小于P2
    所述第一线性打气模式为:气囊或袖带充气后,实时采集气囊或袖带内的实时压强P并计算实时压强变化率K,在P小于P1之前,通过PID实时调节气泵电压U以跟踪压强变化率k1,直至实现气囊或袖带内的压强从0线性升至P1
    所述第二线性打气模式为:在P大于P1而小于P2之前,通过PID实时调节气泵电压U以跟踪压强变化率k2,直至实现气囊或袖带内的压强从P1线性升至P2;当P大于P2后,气囊或袖带停止充气。
  3. 如权利要求2所述的血压测量仪,其特征在于,所述气泵电压U由如下的关系式求得:
    U=Kp*e+Ki*∑e+kd*Δe
    其中:Kp为比例单元系数;Ki为积分单元系数;kd为微分单元系数;Δe为误差的微分,等于当前误差与前一次误差的差值;
    e为控制误差:e=k-kn;kn为k1或k2
    k=Pi-P(i-1);Pi为当前采集点压力值,P(i-1)为当前采集点的前一个采集点的压力值。
  4. 如权利要求2所述的血压测量仪,其特征在于,所述振荡波提取部用于对AD采集模块所产生的数字信号进行提取,以分析获得最终压力振荡波信号,具体的过程为:
    首先选取P1以上的压力波形数据,将其经过3Hz的低通软件滤波,再通过最小二乘法拟合得到实际的斜坡信号,将P1以上的原始压力信号减去拟合 得到的斜坡信号,最后再经过0.5Hz的软件高通滤波,得到最终压力振荡波信号。
  5. 如权利要求1所述的血压测量仪,其特征在于,所述处理器模块还包括心率变异分析部,用于根据振荡波提取部所获得的最终压力振荡波信号计算得出心率变异参数值,并将计算得出的心率变异参数值与预先设定的心率变异参数值进行比较;若计算得出的心率变异参数值大于设定的心率变异参数值,则启动血压参数计算部,测量计算血压值;若计算得出的心率变异参数值小于设定的心率变异参数值,则一直测量计算心率变异参数值。
  6. 如权利要求1所述的血压测量仪,其特征在于,还包括:
    指套阀模块,用于控制指套与主气路的连接与否,来控制气源模块对气囊的充放气,包括指套阀;
    袖带阀模块,用于控制袖带与主气路的连接与否,来控制气源模块对袖带的充放气,包括袖带阀;
    均匀阀模块,用于对气囊以及袖带中的气实现均匀泄压,包括匀速阀;
    快速放气阀模块,用于对气囊以及袖带实现快速泄压,包括快速放气阀。
  7. 如权利要求6所述的血压测量仪,其特征在于,所述指套阀、袖带阀、快速放气阀以及气泵分别与第一四通阀的四个接口相连接;指套阀还与三通阀的一个接口相连接,该三通阀的另外两个接口分别与指套和指套压力传感器相连接;袖带阀还与第二四通阀的一个接口相连接,该第二四通阀的另外三个接口分别与匀速阀、袖带以及袖带压力传感器相连接。
  8. 如权利要求1或6所述的血压测量仪,其特征在于,所述AD采集模块包括一24位50Hz的A/D转换器。
  9. 如权利要求1或6所述的血压测量仪,其特征在于,还包括用户交互 模块,用于实时地显示检测信息以及接收用户指令;
    数据传输模块,用于与移动终端进行数据传送,实现远程控制。
  10. 如权利要求1或6所述的血压测量仪,其特征在于,还包括加速度传感器模块,用于提供定位用户姿态和睡眠状态所需要的三轴加速度信号。
PCT/CN2017/086341 2016-06-03 2017-05-27 一种血压测量仪 WO2017206838A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610389439.7A CN106108877B (zh) 2016-06-03 2016-06-03 一种血压测量仪
CN201610389439.7 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017206838A1 true WO2017206838A1 (zh) 2017-12-07

Family

ID=57270563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086341 WO2017206838A1 (zh) 2016-06-03 2017-05-27 一种血压测量仪

Country Status (2)

Country Link
CN (1) CN106108877B (zh)
WO (1) WO2017206838A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110025303A (zh) * 2019-04-17 2019-07-19 深圳大学 一种人体血压测量装置、方法及系统
CN113080910A (zh) * 2021-03-31 2021-07-09 广东乐心医疗电子股份有限公司 血压测量装置和血压计
CN113116322A (zh) * 2020-01-10 2021-07-16 深圳市理邦精密仪器股份有限公司 血压测量方法及血压测量设备
CN113520358A (zh) * 2020-04-21 2021-10-22 华为技术有限公司 一种血压检测方法及可穿戴设备
TWI813432B (zh) * 2022-08-30 2023-08-21 豪展醫療科技股份有限公司 血壓量測的加壓控制方法與使用該加壓控制方法的血壓機
CN117942447A (zh) * 2024-03-27 2024-04-30 赤峰学院附属医院 一种排便清肠器

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106108877B (zh) * 2016-06-03 2017-09-26 广州中科新知科技有限公司 一种血压测量仪
DE112018001373T5 (de) * 2017-03-15 2019-11-28 Omron Corporation Blutdruckmessgerät und blutdruckmessverfahren
CN107115110A (zh) * 2017-06-14 2017-09-01 陈畅 一种振弦式血压测量仪
CN107692994A (zh) * 2017-09-04 2018-02-16 深圳市保身欣科技电子有限公司 基于智能移动终端的手自一体双气路血压测量装置
CN108703773B (zh) * 2018-06-07 2024-03-12 深圳市德力凯医疗设备股份有限公司 一种脑血流自动调节监测装置
CN108784742B (zh) * 2018-06-07 2024-03-12 深圳市德力凯医疗设备股份有限公司 一种脑血流自动调节监测设备
CN108742574B (zh) * 2018-06-07 2024-05-10 深圳市德力凯医疗设备股份有限公司 一种无创连续血压测量仪
CN112826468B (zh) * 2019-11-05 2023-12-01 深圳市大富智慧健康科技有限公司 血压检测装置、血压检测系统及血压监测方法
CN113520307B (zh) * 2020-04-20 2023-04-18 华为技术有限公司 一种可穿戴设备
CN112914530B (zh) * 2021-01-19 2024-06-04 深圳市迈泰生物医疗有限公司 一种自动校准式智能血压计
CN113143238B (zh) * 2021-04-19 2022-07-12 研和智能科技(杭州)有限公司 一种基于压力信号和ppg信号的血压测量装置
CN113712523B (zh) * 2021-09-01 2023-11-14 南京润楠医疗电子研究院有限公司 快速精准确定容积补偿法伺服参考值的系统及方法
CN113729637A (zh) * 2021-09-29 2021-12-03 天津工业大学 一种气压实时追踪的指套装置及气压追踪方法
CN114259394B (zh) * 2021-12-13 2024-04-09 重庆邮电大学 一种具有综合康复训练策略的预适应训练系统
CN116649938B (zh) * 2023-07-31 2023-10-20 深圳市长坤科技有限公司 一种基于蓝牙通信的血压测量系统
CN117297571B (zh) * 2023-11-01 2024-04-05 广州逆熵电子科技有限公司 一种血压手表的血压测量方法及血压手表

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830131A (en) * 1994-04-15 1998-11-03 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physical condition of the human arterial system
CN101612039A (zh) * 2009-07-28 2009-12-30 中国人民解放军第三军医大学野战外科研究所 自适应血压检测装置
CN103349546A (zh) * 2013-07-16 2013-10-16 吕品 测量脉搏波和血压的装置及方法
CN203736185U (zh) * 2014-03-11 2014-07-30 天创聚合科技(上海)有限公司 一种带心血管功能检测的血压检测装置
CN106108877A (zh) * 2016-06-03 2016-11-16 广州中科新知科技有限公司 一种血压测量仪
CN205964031U (zh) * 2016-06-03 2017-02-22 广州中科新知科技有限公司 一种血压测量仪

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2979933B2 (ja) * 1993-08-03 1999-11-22 セイコーエプソン株式会社 脈波解析装置
US20120238887A1 (en) * 2001-02-26 2012-09-20 Gerdt David W Hydrostatic finger cuff for blood wave form analysis and diagnostic support
JP2003250770A (ja) * 2002-02-28 2003-09-09 Omron Corp 電子血圧計
CN1507833A (zh) * 2002-12-16 2004-06-30 中国人民解放军空军航空医学研究所 一体化动态生理参数检测记录方法及装置
CN100361625C (zh) * 2004-03-26 2008-01-16 香港中文大学 非侵入式血压测量装置及方法
US20060195035A1 (en) * 2005-02-28 2006-08-31 Dehchuan Sun Non-invasive radial artery blood pressure waveform measuring apparatus system and uses thereof
US20110152650A1 (en) * 2009-12-21 2011-06-23 General Electric Company Adaptive pump control during non-invasive blood pressure measurement
JP5811766B2 (ja) * 2011-10-26 2015-11-11 オムロンヘルスケア株式会社 電子血圧計
CN202505340U (zh) * 2012-01-20 2012-10-31 亚弘电科技股份有限公司 多气囊式血压计
CN104055499B (zh) * 2014-06-16 2016-06-22 朱宇东 连续监控人体生理体征的可穿戴式智能手环及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830131A (en) * 1994-04-15 1998-11-03 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physical condition of the human arterial system
CN101612039A (zh) * 2009-07-28 2009-12-30 中国人民解放军第三军医大学野战外科研究所 自适应血压检测装置
CN103349546A (zh) * 2013-07-16 2013-10-16 吕品 测量脉搏波和血压的装置及方法
CN203736185U (zh) * 2014-03-11 2014-07-30 天创聚合科技(上海)有限公司 一种带心血管功能检测的血压检测装置
CN106108877A (zh) * 2016-06-03 2016-11-16 广州中科新知科技有限公司 一种血压测量仪
CN205964031U (zh) * 2016-06-03 2017-02-22 广州中科新知科技有限公司 一种血压测量仪

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BLOCK, FRANK E. ET AL.: "A Clinical Evaluation of Rapid Automatic Noninvasive Blood Pressure Determination with the Ohmeda 2120 '' Return to Flow'' Method", JOURNAL OF CLINICAL MONITORING, vol. 7, no. 3, 31 December 1991 (1991-12-31), pages 241 and 242 *
CHENG, MING.: "Research for Fuzzy PID Control System Applied for Non-invasive Continuous Blood Pressure Measurement", CHINA MASTER'S THESES FULL-TEXT DATABASE, INFORMATION TECHNOLOGY, 15 March 2013 (2013-03-15), pages 33 and 34, ISSN: 1674-0246 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110025303A (zh) * 2019-04-17 2019-07-19 深圳大学 一种人体血压测量装置、方法及系统
CN113116322A (zh) * 2020-01-10 2021-07-16 深圳市理邦精密仪器股份有限公司 血压测量方法及血压测量设备
CN113520358A (zh) * 2020-04-21 2021-10-22 华为技术有限公司 一种血压检测方法及可穿戴设备
CN113080910A (zh) * 2021-03-31 2021-07-09 广东乐心医疗电子股份有限公司 血压测量装置和血压计
CN113080910B (zh) * 2021-03-31 2024-05-17 广东乐心医疗电子股份有限公司 血压测量装置和血压计
TWI813432B (zh) * 2022-08-30 2023-08-21 豪展醫療科技股份有限公司 血壓量測的加壓控制方法與使用該加壓控制方法的血壓機
CN117942447A (zh) * 2024-03-27 2024-04-30 赤峰学院附属医院 一种排便清肠器

Also Published As

Publication number Publication date
CN106108877A (zh) 2016-11-16
CN106108877B (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2017206838A1 (zh) 一种血压测量仪
RU2502463C2 (ru) Устройство измерения информации о кровяном давлении, способное получать показатель для определения степени артериосклероза
FI103760B (fi) Menetelmä ja järjestely verenpaineen mittauksessa
US20090312652A1 (en) Electronic manometer for appropriately adjusting internal pressure of cuff and method for controlling the same
US20120157791A1 (en) Adaptive time domain filtering for improved blood pressure estimation
US8282567B2 (en) Method and system for determination of pulse rate
CN106388789B (zh) 一种脉搏波测量装置及方法
CN201088579Y (zh) 一种动脉硬化检测和评估装置
CN105212915B (zh) 无创血压检测装置
CN112890790B (zh) 一种穿戴式无创血压动态跟踪监测方法
CN110477890A (zh) 血压计算方法及血压测量装置
CN110840429A (zh) 基于柯氏音的血压测量方法及血压测量和心血管系统评估系统
WO2008156377A1 (en) Method and apparatus for obtaining electronic oscillotory pressure signals from an inflatable blood pressure cuff
CN111513752B (zh) 一种基于脉搏声信号的脉诊仪
CN205964032U (zh) 血压测量系统
CN205964031U (zh) 一种血压测量仪
CN210095711U (zh) 一种无创连续血压测量设备
CN111436997A (zh) 一种用于血管内皮功能无创检测的自适应安全阻断装置
US20150032012A1 (en) Non-invasive Blood Pressure Measurement System and Methods of Use
CN105852834A (zh) 血压测量系统及其操作方法
US10251567B2 (en) Method for an accurate automated non-invasive measurement of blood pressure waveform and apparatus to carry out the same
JP2011234876A (ja) 血圧計測装置
CN212465979U (zh) 一种基于ppg的袖带血压监测系统
JP6494669B2 (ja) 分節プレスチモグラフィを用いて反応性充血を検出および評価する方法および装置
Jin-ling et al. Design of electronic blood pressure monitoring system based on mobile telemedicine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17805783

Country of ref document: EP

Kind code of ref document: A1