WO2017206681A1 - 混合发光器件、显示面板和显示装置 - Google Patents

混合发光器件、显示面板和显示装置 Download PDF

Info

Publication number
WO2017206681A1
WO2017206681A1 PCT/CN2017/083726 CN2017083726W WO2017206681A1 WO 2017206681 A1 WO2017206681 A1 WO 2017206681A1 CN 2017083726 W CN2017083726 W CN 2017083726W WO 2017206681 A1 WO2017206681 A1 WO 2017206681A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hybrid
luminescent material
electrode
emitting device
Prior art date
Application number
PCT/CN2017/083726
Other languages
English (en)
French (fr)
Inventor
吴长晏
宋莹莹
胡春静
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/736,688 priority Critical patent/US10236468B2/en
Publication of WO2017206681A1 publication Critical patent/WO2017206681A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/167Electron transporting layers between the light-emitting layer and the anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a hybrid light emitting device, a display panel, and a display device.
  • hybrid light-emitting devices are considered to have great application prospects in flat panel display due to their advantages of self-luminescence, all solid state, and fast response.
  • two processes are mainly involved, which are a solution process and an evaporation process, respectively, and different layers of luminescent material layers (EML) are separately produced by using two processes.
  • EML luminescent material layers
  • the interface characteristics between the two layers of the luminescent material layer obtained by the two processes are affected, thereby reducing the luminous efficiency, lifetime and the like of the hybrid light-emitting device.
  • Embodiments of the present disclosure provide a hybrid light emitting device, a display panel, and a display device that improve display effects of the display device.
  • an embodiment of the present disclosure provides a hybrid light emitting device including a first electrode, a luminescent material combination layer, a hybrid connection combination layer, a first luminescent material layer, and a second electrode, which are sequentially stacked, wherein the first illuminating At least a portion of the projection of the material layer on the first electrode does not coincide with a projection of the luminescent material combination layer on the first electrode; wherein the first electrode and the second electrode are configured to operate Providing a first carrier and a second carrier, respectively; and wherein the hybrid connection combination layer comprises at least two layers of a hybrid connection layer, in the direction from the first electrode to the second electrode, the at least The first carrier mobility of the two-layer hybrid connection layer is increased and the second carrier mobility is decreased.
  • the hybrid connection combination layer includes at least two layers of the hybrid connection layer, and at least two layers of the first connection layer are mixed in a direction from the first electrode to the second electrode
  • the carrier mobility increases and the second carrier mobility decreases.
  • the mixed connection combination layer has a total thickness of about 1 nm to 10 nm.
  • the hybrid connection combination layer includes two layers of hybrid connection layers, and each of the mixed connection layers has a thickness of less than 3 nm.
  • the hybrid connection combination layer includes more than two layers of hybrid connection layers.
  • each of the at least two layers of hybrid connection layers has a triplet energy level greater than 2.1 eV.
  • the hybrid light emitting device further includes a first carrier transport layer disposed between the first electrode and the luminescent material combination layer.
  • the hybrid light emitting device further includes a first carrier injection layer disposed between the first electrode and the first carrier transport layer.
  • the hybrid light emitting device further includes a second carrier transport layer disposed between the first luminescent material layer and the second electrode.
  • the hybrid light emitting device further includes a second carrier injection layer disposed between the second carrier transport layer and the second electrode.
  • the luminescent material combination layer includes a second luminescent material layer and a third luminescent material layer disposed in the same layer.
  • the first luminescent material layer is a luminescent material layer for emitting blue light
  • the second luminescent material layer is a luminescent material layer for emitting green light
  • the third luminescent material layer is used for redness A layer of light luminescent material.
  • the mixed connection layer of the hybrid connection combination layer adjacent to the first electrode is a second carrier type hybrid connection layer
  • the mixed connection layer of the hybrid connection combination layer adjacent to the second electrode is A carrier type hybrid connection layer
  • the mixed connection combination layer is a layer structure obtained by a vacuum thermal evaporation process.
  • the luminescent material combination layer on one side of the hybrid connection combination layer is a layer structure obtained by a solution process
  • the first luminescent material layer is a layer structure obtained by a vacuum thermal evaporation process.
  • the first carrier is a hole
  • the second carrier is an electron
  • the first electrode is an anode
  • the second electrode is a cathode.
  • the first load The carrier transport layer is a hole transport layer
  • the second carrier transport layer is an electron transport layer.
  • the first carrier injection layer is a hole injection layer
  • the second carrier transport layer is an electron injection layer.
  • the first carrier type hybrid connection layer is a hole type hybrid connection layer, that is, a p type hybrid connection layer
  • the second carrier type hybrid connection layer is an electron type hybrid connection layer, that is, an n type Mix the connection layer.
  • an embodiment of the present disclosure provides a display panel comprising the hybrid light emitting device of the above first aspect.
  • an embodiment of the present disclosure provides a display device, including the display panel of the second aspect described above.
  • the display panel and the display device according to the embodiments of the present disclosure have the same or similar embodiments as the above-described hybrid light emitting device, and have the same or similar technical effects, and are not described herein again.
  • FIG. 1 is a schematic structural view of a hybrid light emitting device according to an embodiment of the present disclosure
  • 2 is a spectrum diagram of light emission of a hybrid light emitting device
  • FIG. 3 is a schematic structural diagram of a hybrid light emitting device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural view of a hybrid light emitting device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a hybrid light emitting device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural view of a hybrid light emitting device according to an embodiment of the present disclosure.
  • a layer of mixed connection is usually added between the two luminescent material layers.
  • Layer HCL, Hybrid Connecting Layer
  • the carriers transported by the HCL for the luminescent material layer prepared by the solution process are holes, and the carriers transported by the luminescent material layer obtained by the evaporation process are electrons.
  • the inventors have found that this makes it difficult to balance the different carriers transported by the luminescent material layers produced by the two processes, so that the overlapping portions of the plurality of luminescent material layers located in different layers simultaneously emit light, thereby causing mixed illumination in the display device.
  • the plurality of sub-pixel units corresponding to the device cannot emit light of a desired color, which reduces the display effect of the display device.
  • the hybrid light emitting device includes a first electrode, a light emitting material combination layer, a hybrid connection combination layer, a first light emitting material layer, and a second electrode which are sequentially stacked. At least a portion of the projection of the first luminescent material layer on the first electrode does not coincide with the projection of the luminescent material combination layer on the first electrode.
  • the first electrode and the second electrode are configured to provide first and second carriers, respectively, during operation.
  • one of the first electrode and the second electrode is an anode, and the other is a cathode, that is, when the second electrode is an anode, the first electrode is a cathode, and when the second electrode is a cathode, the first electrode is anode.
  • the first carrier transport layer adjacent to the first electrode is a hole transport layer
  • the second carrier transport layer adjacent to the second electrode is an electron transport layer.
  • the first electrode is used as an anode
  • the second electrode is a cathode
  • the first carrier transport layer is a hole transport layer
  • the second carrier transport layer is an electron transport layer, for example, the mixed light emission in the embodiment of the present disclosure. The device is described.
  • a hybrid light emitting device provided by an embodiment of the present disclosure includes a stacked anode 10 , a hole transport layer (HTL) 11 , a luminescent material combination layer 12 , a hybrid connection combined layer 13 , a first luminescent material layer 14 , and an electron transport. Layer (ETL) 15 and cathode 16.
  • the luminescent material combination layer 12 includes a second luminescent material layer 121 and a third luminescent material layer 122 disposed in the same layer. At least a portion of the projection of the first luminescent material layer 14 on the anode 10 does not coincide with the projection of the luminescent material combination layer 12 on the anode 10.
  • the hybrid connection combination layer 13 includes at least two layers of the hybrid connection layer 131 laminated.
  • the mixed connection layer 131 in the hybrid connection combination layer 13 close to the cathode 16 is a p-type hybrid connection layer.
  • the p-type hybrid tie layer is made of a p-type host material, and the p-type host material has a hole mobility greater than an electron mobility.
  • the mixed connection layer 131 in the hybrid connection combination layer 13 close to the anode 10 is an n-type hybrid connection layer.
  • the n-type hybrid connection layer is made of an n-type host material, and the n-type host material has an electron mobility greater than a hole mobility.
  • the material from which the mixed connection layer 131 is obtained is, for example, biphenyldiamine derivatives, cross-linked bonded diamine biphenyl derivatives, amorphous non-crystalline derivatives, and ruthenium.
  • the projection on the first electrode refers to a projection on the plane of the surface of the first electrode.
  • the hybrid light emitting device includes the anode 10, the hole transport layer 11, the luminescent material combination layer 12, the hybrid connection combined layer 13, the first luminescent material layer 14, and the electron transport layer. 15 and cathode 16.
  • the hole transport layer and the electron transport layer in this structure are optional.
  • the structure of the hybrid light emitting device protected by the embodiment of the present disclosure is not limited to the above embodiment.
  • the hybrid light emitting device includes a hybrid light comprising a cathode, an electron transport layer, a light emitting material combination layer, a hybrid connection combination layer, a first light emitting material layer, a hole transport layer, and an anode which are sequentially stacked. Device.
  • the hybrid light-emitting device obtained by the modification or simple replacement of the structure of the hybrid light-emitting device in the above embodiments is within the protection scope of the embodiment of the present disclosure, and details are not described herein again.
  • the hybrid tie layer HCL was a single layer.
  • the experimental data is shown in Table 1.
  • the hybrid light-emitting device without the hybrid connection layer has a high operating voltage and low luminous efficiency and quantum efficiency.
  • the hybrid connection layer is thin to thick, the luminous efficiency and quantum efficiency of the hybrid light-emitting device provided with the hybrid connection layer are improved.
  • the overlapping portions of the plurality of luminescent material layers will simultaneously emit light, and the sub-pixel unit emits light of an unexpected color.
  • FIG. 2 shows an emission spectrum of the hybrid light emitting device.
  • a curve 1 is a spectrum curve of light emitted from a hybrid light-emitting device provided with a mixed connection layer having a thickness of 5 nm
  • a curve 2 is a spectrum curve of light emitted from a hybrid light-emitting device not provided with a mixed connection layer
  • curve 3 is the light of the light emitted by the hybrid light-emitting device provided with a layer of mixed connection layer having a thickness of 1 nm. Spectrum curve.
  • the hybrid light-emitting device When a mixed connection layer (curve 2) is not provided, the hybrid light-emitting device exhibits a blue light peak in the wavelength range of 450 to 480 nm in addition to the green light peak in the wavelength range of 500 to 560 nm, which is not desirable.
  • a mixed connection layer (curve 1) having a thickness of 5 nm When a mixed connection layer (curve 1) having a thickness of 5 nm is provided, the relative intensity of the blue peak is more remarkable than that of the curve 2. It can be seen that when a thicker hybrid connection layer is provided or a mixed connection layer is not provided, the hybrid light-emitting device emits an undesired blue light.
  • the inventors have found from the above experimental results that the single-layer HCL cannot meet the requirements of the hybrid light-emitting device, and in view of this, a multi-layer HCL scheme has been proposed.
  • the hybrid light emitting device provided by the embodiment of the present disclosure is provided with at least two layers (ie, two or more layers) mixed between the luminescent material combination layer 12 prepared by the solution process and the first luminescent material layer 14 prepared by the evaporation process.
  • the at least two layers of the hybrid connection layer 131 are p-type hybrid connection layers close to the cathode 16, and are close to the anode 10 as an n-type hybrid connection layer.
  • the hybrid connection layer 131 adjacent to the electron transport layer 15 in the hybrid light-emitting device of the embodiment of the present disclosure can smoothly transmit electrons to the corresponding hybrid light-emitting device in which a layer of HCL is added between the layer structures alternately fabricated between the two process transitions.
  • the luminescent material layer, the mixed connection layer 131 close to the hole transport layer 11 can smoothly transport holes to the corresponding luminescent material layer, thereby ensuring that the overlapping portions of the plurality of luminescent material layers do not emit light at the same time, ensuring that the sub-pixel unit emits the desired color.
  • the light improves the display of the display device.
  • the total thickness of the hybrid connection combined layer 13 is about 1 nm to 10 nm. That is, the sum of the thicknesses of the multilayer hybrid connection layers 131 is greater than or equal to 1 nm and less than or equal to 10 nm. It should be noted that if the thickness of the hybrid connection combining layer 13 is less than 1 nm, the electrons generated by the cathode 16 and the holes generated by the anode 10 may pass through each of the mixed connection layers 131 in the mixed connection layer 13, so that the light is emitted.
  • the material combination layer 12 emits light at a portion of the first luminescent material layer 14 corresponding to the projection of the anode 10 and the overlapping portion of the projection of the first luminescent material layer 14 at the anode 10, and the second luminescent material layer 121 and the third luminescent material in the display device.
  • the sub-pixel unit corresponding to the layer 122 emits light of an unexpected color, which reduces the display effect of the display device.
  • the thickness of the hybrid connection combination layer 13 is larger than 10 nm, the electrons generated by the cathode 16 and the holes generated by the anode 10 may hardly pass through the hybrid connection combination layer 13, and it is difficult to stay in each of the luminescent material layers (first luminescence)
  • the material layer 14, the second luminescent material layer 121, and the third luminescent material layer 122) cause a problem that the luminescent material layers are unevenly illuminated or partially illuminate.
  • the sum of the thicknesses of the multilayer hybrid connection layers 131 in the hybrid connection combination layer 13 ranges from about 1 nm to 10 nm, and the mixed connection layer of electrons generated by the cathode 16 through the p-type host material can be ensured.
  • each luminescent material layer is transmitted to each luminescent material layer, and anode 10 is generated
  • the holes are transported to the respective luminescent material layers through the hybrid connection layer 131 made of the n-type host material, so that the portions of the luminescent material layers that do not overlap normally emit light, thereby further ensuring that the corresponding sub-pixel units of the respective luminescent material layers emit the desired color.
  • the light improves the display of the display device.
  • the anode 10, the hole transport layer 11 and the luminescent material combination layer 12 in the hybrid light-emitting device are prepared by a solution process, and the mixed connection layer 13, the first luminescent material layer 14, and the electron transport layer are mixed. 15 and cathode 16 are produced by a vacuum thermal evaporation process. It should be noted that, in other embodiments, the positions of the luminescent material combination layer and the first luminescent material layer are interchanged, wherein the luminescent material combination layer is prepared by a vacuum thermal evaporation process, and the first luminescent material layer is formed by a solution process. Got it.
  • the hybrid connection layer 13a is an n-type hybrid connection layer
  • the hybrid connection layer 13b is a p-type hybrid connection layer.
  • the thickness of each of the hybrid connection layer 13a and the hybrid connection layer 13b is less than 3 nm. If the thickness of each of the mixed connection layers is too thick, the electrons generated by the cathode 16 and the holes generated by the anode 10 may hardly pass through the mixed connection combination layer 13.
  • the transmission efficiency of electrons and holes transported by the hybrid connection layer can be improved, thereby improving the luminous efficiency of the hybrid light-emitting device.
  • the hybrid connection combination layer 13 includes more than two layers of the hybrid connection layer 131, the hole mobility of the multilayer hybrid connection layer 131 arranged in the anode-to-cathode direction gradually increases, and the electron mobility gradually decreases.
  • the hybrid connection assembly layer 13 includes three layers of the hybrid connection layers 13c, 13d, and 13e
  • the hybrid connection layer 13c is an n-type hybrid connection layer
  • the hybrid connection layer 13e is a p-type hybrid connection layer.
  • the hybrid connection layer 13d is located between the hybrid connection layer 13c and the hybrid connection layer 13e.
  • the electron mobility of the hybrid connection layer 13d is smaller than that of the hybrid connection layer 13c, and is larger than the electron mobility of the hybrid connection layer 13e.
  • the hole mobility of the mixed connection layer 13d is larger than the hole mobility of the mixed connection layer 13c and smaller than the hole mobility of the mixed connection layer 13e.
  • the triplet energy level of each layer of the hybrid connection layer 131 in the above embodiment is greater than 2.1 eV. Since the hybrid connection layer is adjacent to the luminescent material layer (such as the first luminescent material layer 14, the second luminescent material layer 121, and the third luminescent material layer 122 in this embodiment), the luminescent material layer is, for example, a phosphorescent luminescent material layer or other material. Layer of luminescent material.
  • the triplet energy level of each layer of the hybrid connection layer 131 is greater than 2.1 eV, which can further improve the luminous efficiency of each of the light-emitting material layers in the hybrid light-emitting device.
  • a hole injection layer 17 (HIL, Hole Inject Layer) is provided between the anode 10 and the hole transport layer 11, and/or at the cathode 16 and electron transport.
  • An electron injection layer 18 (EIL, Electro Transport Layer) is disposed between the layers 15.
  • the hole injection layer 17 further introduces holes generated by the anode 10 into the hole transport layer 11 and transports them to the corresponding layers of the luminescent material layer through the hole transport layer 11.
  • the electron injection layer 18 further introduces electrons generated by the cathode 16 into the electron transport layer 15 and transmits them to the corresponding respective light-emitting layers through the electron transport layer 15.
  • the hole injection layer 17 is obtained by the same process as the anode 10, the hole transport layer 11 and the luminescent material combination layer 12, for example, by a solution process, and the electron injection layer 18 is combined with the mixed layer. 13.
  • the first luminescent material layer 14, the electron transport layer 15 and the cathode 16 are produced by the same process, for example, by an evaporation process.
  • the specific structure of the first luminescent material layer 14, the second luminescent material layer 121, and the third luminescent material layer 122 will be specifically described below.
  • one layer is a luminescent material layer for emitting red light, and one layer is used for emitting The green light luminescent material layer and the other layer is a luminescent material layer for emitting blue light.
  • the colors of the light that the first luminescent material layer 14, the second luminescent material layer 121, and the third luminescent material layer 122 can emit are different, but the first luminescent material layer 14, the second luminescent material layer 121, and the first
  • the correspondence between the three luminescent material layers 122 and the luminescent material layer for emitting red light, the luminescent material layer for emitting green light, and the luminescent material layer for emitting blue light is not limited.
  • the first luminescent material layer 14 is a luminescent material layer for emitting red light
  • the second luminescent material layer 121 is a luminescent material layer for emitting green light
  • the third luminescent material layer 122 is A layer of luminescent material for emitting blue light.
  • the first luminescent material layer 14 is a luminescent material layer for emitting blue light
  • the second luminescent material layer 121 is a luminescent material layer for emitting red light
  • the third luminescent material layer 122 is A layer of luminescent material for emitting green light.
  • the first luminescent material layer 14 is a luminescent material layer for emitting blue light
  • the second luminescent material layer 121 is a luminescent material layer for emitting green light
  • the third luminescent material layer 122 is A layer of luminescent material for red light.
  • the first luminescent material layer 14, the second luminescent material layer 121 and the third luminescent material layer 122 and the luminescent material layer for emitting red light, the luminescent material layer for emitting green light, and the luminescent material layer for emitting blue light The correspondence between the two includes, but is not limited to, the above combinations.
  • the first luminescent material layer 14 is a luminescent material layer for emitting blue light, and the quality of the film layer is improved by a mature vacuum thermal evaporation process, thereby improving luminescent properties.
  • the film forming process of the first luminescent material layer 14 is not limited to vacuum thermal evaporation.
  • the first luminescent material layer 14 can be formed using any film forming process known in the art such as spin coating, spray coating, ink jetting, and the like.
  • each of the luminescent material layers can correspond to the sub-pixel unit, and the sub-pixel unit can correspondingly emit the color light emitted by each luminescent material layer
  • at least a portion of the projection of the first luminescent material layer 14 at the anode 10 is not combined with the luminescent material combination layer 12 .
  • the projections at the anode 10 coincide.
  • the first luminescent material layer 14 that does not overlap with the projection of the luminescent material combination layer 12 at the anode 10 is transmitted to the corresponding sub-pixel unit, the anode, at the first luminescent material layer 14 corresponding to the projection of the anode 10.
  • the generated holes can also be transferred to the first luminescent material layer 14.
  • This portion of the hybrid connection layer on the hole transport layer 11 is on the right side of the third luminescent material layer 122.
  • the holes generated by the anode 10 are transported to the portion of the first luminescent material layer 14 corresponding to the A region through the hole transport layer 11 and the hybrid connection combining layer 13, and electrons generated by the cathode 16 are transmitted through the electron transport layer to the region corresponding to the A region.
  • a portion of the first luminescent material layer 14 a portion of the first luminescent material layer 14 corresponding to the A region is normally illuminated, and a portion of the first luminescent material layer 14 corresponding to the A region is capable of being transmitted to the corresponding sub-pixel unit. Not occluded by a layer of luminescent material used to emit light of other colors.
  • a portion of the hybrid connection combining layer 13 is on the light-emitting composite material layer 12, and another portion is on the hole transport layer 11, a hybrid connection combination layer on the hole transport layer 11. 13 is located between the second luminescent material layer 121 and the third luminescent material layer 122, and the light emitted by the portion of the first luminescent material layer 14 corresponding to the A region can be transmitted to the corresponding sub-pixel unit without being used to emit other colors. Light of light The material layer is occluded.
  • the specific arrangement of the hybrid connection combining layer 13, the first luminescent material layer 14, the electron transport layer 15, and the cathode 16 includes, but is not limited to, the positions shown in FIGS. 1 to 6, which will not be described again.
  • the embodiment of the present disclosure further provides a display panel, which includes the hybrid light emitting device in the above embodiment, and the display panel is specifically an OLED (Organic Light-Emitting Diode) panel, and the display panel is mixed.
  • the light-emitting device has the same advantages as the hybrid light-emitting device in the above embodiment, and details are not described herein again.
  • the embodiment of the present disclosure further provides a display device including the display panel in the above embodiment.
  • the display device is, for example, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, or the like, and any product or component having a display function.
  • the display panel in the display device has the same advantages as the display panel in the above embodiment, and details are not described herein again.
  • the hybrid light emitting device is provided with at least two layers of mixing between the light emitting material combination layer prepared by the solution process and the first light emitting material layer obtained by the evaporation process.
  • the connecting layer, the mixed connecting layer close to the cathode is a p-type mixed connecting layer, and the mixed connecting layer close to the anode is an n-type mixed connecting layer.
  • the hybrid connection layer near the electron transport layer in the hybrid light-emitting device of the embodiment of the present disclosure can smoothly transmit electrons to the corresponding light emission compared with the hybrid light-emitting device in which a layer of HCL is added between the layer structures alternately fabricated by the two process conversions.
  • the material layer, the mixed connection layer close to the hole transport layer can smoothly transport holes to the corresponding luminescent material layer, thereby ensuring that the overlapping portions of the plurality of luminescent material layers do not emit light at the same time, ensuring that the sub-pixel unit emits light of a desired color, thereby improving Display the display effect of the device.
  • the luminescent material combination layer and the first luminescent material layer on both sides of the HCL are produced by different processes. It should be noted, however, that the concept of the above-described embodiments of the present disclosure is also applicable to the case where the luminescent material combining layer and the first luminescent material layer located on both sides of the HCL are made by the same process, so that the first carrier provided by the first electrode The first luminescent material layer is efficiently transferred to the second electrode, and the second carrier provided by the second electrode is efficiently transmitted to the luminescent material combining layer adjacent to the first electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种混合发光器件,包括依次层叠的第一电极(10)、发光材料组合层(12)、混合连接组合层(13)、第一发光材料层(14)和第二电极(16),其中第一发光材料层(14)在第一电极(10)上的投影至少有一部分不与发光材料组合层(12)在第一电极(10)上的投影重合;其中第一电极(10)和第二电极(16)配置成在工作时分别提供第一载流子和第二载流子;以及其中混合连接组合层(13)包括至少两层混合连接层(13a,13b),在从第一电极(10)到第二电极(16)的方向上,至少两层混合连接层(13a,13b)的第一载流子迁移率增大并且第二载流子迁移率减小。

Description

混合发光器件、显示面板和显示装置
相关申请的交叉引用
本申请主张于2016年6月2日提交的中国专利申请No.201610379291.9的优先权,其全部内容通过引用结合于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种混合发光器件、显示面板和显示装置。
背景技术
随着显示技术的发展,混合发光器件由于具有自发光、全固态、响应快等优点,被认为在平板显示中具有巨大的应用前景。在制作混合发光器件的过程中主要涉及两种工艺,这两种工艺分别为溶液工艺和蒸镀工艺,利用两种工艺分别制得不同层的发光材料层(EML)。两种工艺分别制得的发光材料层接触时二者之间的界面特性会受到影响,从而降低了混合发光器件的发光效率、寿命等性能。本领域中存在改善混合发光器件的发光效率、寿命等性能的需求。
发明内容
本公开实施例提供一种混合发光器件、显示面板和显示装置,其提高显示装置的显示效果。
第一方面,本公开实施例提供了一种混合发光器件,包括依次层叠的第一电极、发光材料组合层、混合连接组合层、第一发光材料层和第二电极,其中所述第一发光材料层在所述第一电极上的投影至少有一部分不与所述发光材料组合层在所述第一电极上的投影重合;其中所述第一电极和所述第二电极配置成在工作时分别提供第一载流子和第二载流子;以及其中所述混合连接组合层包括至少两层混合连接层,在从所述第一电极到所述第二电极的方向上,所述至少两层混合连接层的第一载流子迁移率增大并且第二载流子迁移率减小。在此实施例的混合发光器件中,混合连接组合层包括至少两层混合连接层,并且在从第一电极到第二电极的方向上,至少两层混合连接层的第一 载流子迁移率增大并且第二载流子迁移率减小。藉此,第一电极提供的第一载流子有效地传输到靠近第二电极的第一发光材料层,并且第二电极提供的第二载流子有效地传输到靠近第一电极的发光材料组合层。这保证了第一发光材料层和发光材料组合层重叠的部分不会同时发光,确保子像素单元发出预期颜色的光,提高显示装置的显示效果。
例如,所述混合连接组合层的总厚度为约1nm~10nm。
例如,所述混合连接组合层包括两层混合连接层,并且每层所述混合连接层的厚度均小于3nm。
例如,所述混合连接组合层包括多于两层的混合连接层。
例如,每个所述至少两层混合连接层的三线态能级大于2.1eV。
例如,所述混合发光器件还包括设置在所述第一电极和所述发光材料组合层之间的第一载流子传输层。
例如,所述混合发光器件还包括设置在所述第一电极和所述第一载流子传输层之间的第一载流子注入层。
例如,所述混合发光器件还包括设置在所述第一发光材料层和所述第二电极之间的第二载流子传输层。
例如,所述混合发光器件还包括设置在所述第二载流子传输层和所述第二电极之间的第二载流子注入层。
例如,所述发光材料组合层包括同层设置的第二发光材料层和第三发光材料层。
例如,所述第一发光材料层为用于发蓝光的发光材料层,所述第二发光材料层为用于发绿光的发光材料层,并且所述第三发光材料层为用于发红光的发光材料层。
例如,所述混合连接组合层中靠近所述第一电极的混合连接层为第二载流子类型混合连接层,并且所述混合连接组合层中靠近所述第二电极的混合连接层为第一载流子类型混合连接层。
例如,所述混合连接组合层为使用真空热蒸镀工艺得到的层结构。
例如,所述混合连接组合层一侧的所述发光材料组合层为使用溶液工艺得到的层结构,并且所述第一发光材料层为使用真空热蒸镀工艺得到的层结构。
例如,所述第一载流子为空穴,所述第二载流子为电子,所述第一电极为阳极,并且所述第二电极为阴极。这种情况下,所述第一载 流子传输层为空穴传输层,并且所述第二载流子传输层为电子传输层。所述第一载流子注入层为空穴注入层,并且所述第二载流子传输层为电子注入层。此外,所述第一载流子类型混合连接层为空穴类型混合连接层,即p型混合连接层;并且所述第二载流子类型混合连接层为电子类型混合连接层,即n型混合连接层。
第二方面,本公开实施例提供了一种显示面板,包括上述第一方面所述的混合发光器件。
第三方面,本公开实施例提供了一种显示装置,包括上述第二方面所述的显示面板。
根据本公开实施例的显示面板和显示装置具有与上文所述的混合发光器件相同或相似的实施例,并且具有相同或相似的技术效果,在此不再赘述。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例中混合发光器件的结构示意图;
图2为一种混合发光器件发光的光谱图;
图3为本公开实施例中混合发光器件的结构示意图
图4为本公开实施例中混合发光器件的结构示意图;
图5为本公开实施例中混合发光器件的结构示意图;以及
图6为本公开实施例中混合发光器件的结构示意图。
具体实施方式
为了进一步说明本公开实施例提供的混合发光器件、显示面板和显示装置,下面结合说明书附图进行详细描述。
附图标记:10-阳极,11-空穴传输层,12-发光材料组合层,13-混合连接组合层,14-第一发光材料层,15-电子传输层,16-阴极,17-空穴注入层,18-电子注入层,131-混合连接层,121-第二发光材料层,122-第三发光材料层。
为了防止混合发光器件两种工艺分别制得的发光材料层接触时的界面特性受到影响,通常在这两种发光材料层之间增加一层混合连接 层(HCL,Hybrid Connecting Layer),以改善混合发光器件的性能。该HCL为溶液工艺制得的发光材料层传输的载流子为空穴,并且为蒸镀工艺制得的发光材料层传输的载流子为电子。发明人发现,这导致很难平衡为两种工艺制得的发光材料层传输的不同载流子,使得位于不同层的多个发光材料层的重合部分同时发光,从而使显示装置中与混合发光器件对应的多个子像素单元不能发出预期颜色的光,降低了显示装置的显示效果。
本公开实施例提供的混合发光器件包括依次层叠的第一电极、发光材料组合层、混合连接组合层、第一发光材料层和第二电极。第一发光材料层在第一电极上的投影至少有一部分不与发光材料组合层在第一电极上的投影重合。第一电极和第二电极配置成在工作时分别提供第一载流子和第二载流子。例如,第一电极和第二电极中一个为阳极,另一个为阴极,也就是说,当第二电极为阳极时,第一电极为阴极,而当第二电极为阴极时,第一电极为阳极。靠近第一电极的第一载流子传输层为空穴传输层,并且靠近第二电极的第二载流子传输层为电子传输层。
下面将以第一电极为阳极,第二电极为阴极,第一载流子传输层为空穴传输层,第二载流子传输层为电子传输层为例,对本公开实施例中的混合发光器件进行说明。
请参阅图1,本公开实施例提供的混合发光器件包括层叠的阳极10、空穴传输层(HTL)11、发光材料组合层12、混合连接组合层13、第一发光材料层14、电子传输层(ETL)15和阴极16。发光材料组合层12包括同层设置的第二发光材料层121和第三发光材料层122。第一发光材料层14在阳极10上的投影至少有一部分不与发光材料组合层12在阳极10上的投影重合。混合连接组合层13包括层叠的至少两层混合连接层131。混合连接组合层13中靠近阴极16的混合连接层131为p型混合连接层。该p型混合连接层由p型主体材料制成,并且该p型主体材料的空穴迁移率大于电子迁移率。混合连接组合层13中靠近阳极10的混合连接层131为n型混合连接层。该n型混合连接层由n型主体材料制成,并且该n型主体材料的电子迁移率大于空穴迁移率。制得混合连接层131的材料例如为联苯二胺衍生物(biphenyldiamine derivatives)、交叉结构键结二胺联苯衍生物、形状非结晶型衍生物、咔 唑基团的衍生物、包含氧化膦(phosphine oxide)的衍生物或包含四(芳基)硅烷(tetra(aryl)silane)的衍生物等等。
需要注意的是,在本公开实施例中,在第一电极上的投影是指在第一电极的表面所在平面上的投影。
需要注意的是,在上述实施例中,混合发光器件包括由依次层叠的阳极10、空穴传输层11、发光材料组合层12、混合连接组合层13、第一发光材料层14、电子传输层15和阴极16。此结构中的空穴传输层和电子传输层是可选的。此外,本公开实施例保护的混合发光器件的结构不限于上述实施例。例如,在另一种结构中,该混合发光器件包括由依次层叠的阴极、电子传输层、发光材料组合层、混合连接组合层、第一发光材料层、空穴传输层和阳极组成的混合发光器件。根据上述实施例中的混合发光器件的结构进行变形或简单替换所得到的混合发光器件均属于本公开实施例的保护范围内,在此不再赘述。
发明人进行了有关设计成发射蓝光的混合发光器件的实验。在这些实验中,混合连接层HCL为单层。实验数据示于表一。如所示,没有设置混合连接层的混合发光器件不仅工作电压高,而且发光效率和量子效率都低。随着混合连接层由薄至厚,设置有混合连接层的混合发光器件发光效率以及量子效率均有提高。然而,这几种混合发光器件中多个发光材料层重叠的部分还是会同时发光,子像素单元发出非预期颜色的光。
表一
Figure PCTCN2017083726-appb-000001
发明人还进行了有关设计成发射绿光的混合发光器件的实验。在这些实验中,混合连接层HCL为单层。实验数据示于图2,其示出该混合发光器件的发射光谱图。如图2所示,曲线1为设置有一层厚度为5nm的混合连接层的混合发光器件发出的光的光谱曲线,曲线2为未设置有混合连接层的混合发光器件发出的光的光谱曲线,并且曲线3为设置有一层厚度为1nm的混合连接层的混合发光器件发出的光的光 谱曲线。当未设置有混合连接层(曲线2)时,混合发光器件除了在500-560nm波长范围出现绿光峰之外,还在450-480nm波长范围出现了蓝光峰,这是不期望的。当设置有一层厚度为5nm的混合连接层(曲线1)时,蓝光峰的相对强度比曲线2的情形更显著。由此看出,设置有较厚的混合连接层或未设置有混合连接层时,混合发光器件发出了不期望的蓝光。发明人从上述实验结果发现,单层HCL无法满足混合发光器件的需求,并且鉴于此提出了多层HCL的方案。
本公开实施例提供的混合发光器件在溶液工艺制得的发光材料组合层12与蒸镀工艺制得的第一发光材料层14之间设有至少两层(即两层或更多层)混合连接层131。这至少两层混合连接层131中靠近阴极16的为p型混合连接层,并且靠近阳极10的为n型混合连接层。与在两种工艺转换交替制作的层结构之间增加了一层HCL的混合发光器件相比,本公开实施例的混合发光器件中靠近电子传输层15的混合连接层131能够顺利传输电子到对应的发光材料层,靠近空穴传输层11的混合连接层131能够顺利传输空穴到对应的发光材料层,从而保证多个发光材料层重叠的部分不会同时发光,保证子像素单元发出预期颜色的光,提高显示装置的显示效果。
进一步的,混合连接组合层13的总厚度为约1nm~10nm。即,多层混合连接层131的厚度之和大于或等于1nm,并且小于或等于10nm。需要说明的是,如果混合连接组合层13的厚度小于1nm,则阴极16产生的电子和阳极10产生的空穴可能会穿过混合连接组合层13中的每一层混合连接层131,使得发光材料组合层12在阳极10的投影和第一发光材料层14在阳极10的投影的重合部分对应的部分第一发光材料层14发光,显示装置中与第二发光材料层121和第三发光材料层122对应的子像素单元发出非预期颜色的光,降低了显示装置的显示效果。如果混合连接组合层13的厚度大于10nm,则阴极16产生的电子和阳极10产生的空穴可能会很难穿过混合连接组合层13,也就很难停留在各个发光材料层(第一发光材料层14、第二发光材料层121和第三发光材料层122),会引起各个发光材料层发光不均或部分不发光的问题。在本公开实施例中,混合连接组合层13中的多层混合连接层131的厚度之和的范围为约1nm~10nm,能够保证阴极16产生的电子通过p型主体材料制得的混合连接层131传输至各个发光材料层,阳极10产生 的空穴通过n型主体材料制得的混合连接层131传输至各个发光材料层,进一步使得各个发光材料层不重叠的部分正常发光,从而进一步保证各个发光材料层对应的子像素单元发出预期颜色的光,提高显示装置的显示效果。
值得一提的是,混合发光器件中的阳极10、空穴传输层11以及发光材料组合层12是通过溶液工艺制得的,而混合连接组合层13、第一发光材料层14、电子传输层15以及阴极16是通过真空热蒸镀工艺制得的。需要说明的是,在其它实施例中,发光材料组合层和第一发光材料层的位置互换,其中发光材料组合层通过真空热蒸镀工艺制得,并且第一发光材料层通过溶液工艺制得。
当混合连接组合层13包括两层混合连接层131时,如图3所示,混合连接层13a为n型混合连接层,混合连接层13b为p型混合连接层。混合连接层13a与混合连接层13b各自的厚度均小于3nm。如果各个混合连接层的厚度过厚,阴极16产生的电子和阳极10产生的空穴可能会很难穿过混合连接组合层13。通过将各混合连接层的厚度设置小于3nm,能够提升混合连接层传输电子和空穴的传输效率,从而提高混合发光器件的发光效率。
当混合连接组合层13包括多于两层的混合连接层131时,在沿阳极到阴极的方向排列的多层混合连接层131的空穴迁移率逐渐增大,电子迁移率逐渐减小。比如,如图4所示,混合连接组合层13包括三层混合连接层13c、13d、13e时,混合连接层13c为n型混合连接层,并且混合连接层13e为p型混合连接层。混合连接层13d位于混合连接层13c和混合连接层13e之间。混合连接层13d的电子迁移率小于混合连接层13c的电子迁移率,并且大于混合连接层13e的电子迁移率。混合连接层13d的空穴迁移率大于混合连接层13c的空穴迁移率,并且小于混合连接层13e的空穴迁移率。
需要说明的是,上述实施例中的每层混合连接层131的三线态(triplet)能级均大于2.1eV。由于混合连接层邻近发光材料层(比如本实施例中的第一发光材料层14、第二发光材料层121和第三发光材料层122),这些发光材料层例如为磷光发光材料层或者其他材料的发光材料层。每层混合连接层131的三线态能级大于2.1eV,能够进一步提升混合发光器件中各个发光材料层的发光效率。
请参阅图5,在上述实施例的基础上,例如还在阳极10和空穴传输层11之间设有空穴注入层17(HIL,Hole Inject Layer),和/或在阴极16和电子传输层15之间设有电子注入层18(EIL,Electron Transport Layer)。空穴注入层17进一步地将阳极10产生的空穴引入到空穴传输层11,再通过空穴传输层11传输给对应的各层发光材料层。电子注入层18进一步地将阴极16产生的电子引入到电子传输层15,再通过电子传输层15传输给对应的各层发光层。需要说明的是,空穴注入层17利用与阳极10、空穴传输层11和发光材料组合层12相同的工艺制得,例如通过溶液工艺制得,而电子注入层18利用与混合连接组合层13、第一发光材料层14、电子传输层15和阴极16相同的工艺制得,例如通过蒸镀工艺制得。
下面将具体说明第一发光材料层14、第二发光材料层121和第三发光材料层122的具体结构。
首先,在各个发光材料层(第一发光材料层14、第二发光材料层121和第三发光材料层122)中,一层为用于发红光的发光材料层,一层为用于发绿光的发光材料层,另一层为用于发蓝光的发光材料层。也就是说,第一发光材料层14、第二发光材料层121和第三发光材料层122能够发出的光的颜色各不相同,但第一发光材料层14、第二发光材料层121和第三发光材料层122与用于发红光的发光材料层、用于发绿光的发光材料层和用于发蓝光的发光材料层之间的对应关系并不限定。例如,在一实施例中,第一发光材料层14为用于发红光的发光材料层,第二发光材料层121为用于发绿光的发光材料层,并且第三发光材料层122为用于发蓝光的发光材料层。例如,在另一实施例中,第一发光材料层14为用于发蓝光的发光材料层,第二发光材料层121为用于发红光的发光材料层,并且第三发光材料层122为用于发绿光的发光材料层。例如,在又一实施例中,第一发光材料层14为用于发蓝光的发光材料层,第二发光材料层121为用于发绿光的发光材料层,并且第三发光材料层122为用于发红光的发光材料层。第一发光材料层14、第二发光材料层121和第三发光材料层122与用于发红光的发光材料层、用于发绿光的发光材料层和用于发蓝光的发光材料层之间的对应关系包括但并不限于上述组合。
在实践中,相对于发红光的发光材料层和发绿光的发光材料层而 言,发蓝光的发光材料层的性能存在提升空间。因此,在一示例中,第一发光材料层14为用于发蓝光的发光材料层,并且利用成熟的真空热蒸镀工艺制得以提升膜层质量,进而提升发光性能。需要注意的是,第一发光材料层14的成膜工艺不限于真空热蒸镀。原则上,第一发光材料层14可以利用诸如旋涂、喷涂、喷墨等任何本领域已知的成膜工艺形成。
为了保证各个发光材料层都能够对应有子像素单元,并且子像素单元能够对应发出各个发光材料层发出的色光,第一发光材料层14在阳极10的投影至少有一部分不与发光材料组合层12在阳极10的投影重合。具体的,不与发光材料组合层12在阳极10的投影重合的第一发光材料层14在阳极10的投影所对应的第一发光材料层14,发出的光传输给对应的子像素单元,阳极产生的空穴也能够传输至第一发光材料层14。
比如,如图1所示,“-”表示阴极16产生的电子,“+”表示阳极10产生的空穴。阳极10产生的空穴通过空穴传输层11传输至第二发光材料层121和第三发光材料层122。阴极16产生的电子通过电子传输层15、第一发光材料层14以及混合连接组合层13传输至第二发光材料层121和第三发光材料层122。这样,第二发光材料层121和第三发光材料层122均正常发光。混合连接组合层13的一部分位于发光组合材料层12上,并且另一部分位于空穴传输层11上。位于空穴传输层11上的这部分混合连接层在第三发光材料层122的右侧。阳极10产生的空穴通过空穴传输层11以及混合连接组合层13传输至与A区域对应的第一发光材料层14的部分,阴极16产生的电子通过电子传输层传输至与A区域对应的第一发光材料层14的部分,与A区域对应的第一发光材料层14的部分正常发光,与A区域对应的第一发光材料层14的部分发出的光能够传输至对应的子像素单元而不被用于发出其他颜色的光的发光材料层遮挡。
在可替换实施例中,如图6所示,混合连接组合层13的一部分位于发光组合材料层12上,另一部分位于空穴传输层11上,位于空穴传输层11上的混合连接组合层13位于第二发光材料层121和第三发光材料层122之间,与A区域对应的第一发光材料层14的部分发出的光能够传输至对应的子像素单元而不被用于发出其他颜色的光的发光 材料层遮挡。
混合连接组合层13、第一发光材料层14、电子传输层15以及阴极16的具体设置包括但不限于图1至图6所示的位置,这里不再赘述。
本公开实施例还提供了一种显示面板,显示面板包括上述实施例中的混合发光器件,显示面板具体例如为OLED(Organic Light-Emitting Diode,有机发光二极管)面板,所述显示面板中的混合发光器件与上述实施例中的混合发光器件具有的优势相同,此处不再赘述。
本公开实施例还提供了一种显示装置,显示装置中包括上述实施例中的显示面板。具体的,显示装置例如为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。所述显示装置中的显示面板与上述实施例中的显示面板具有的优势相同,此处不再赘述。
本公开实施例提供的混合发光器件、显示面板和显示装置中,混合发光器件在溶液工艺制得的发光材料组合层与蒸镀工艺制得的第一发光材料层之间设有至少两层混合连接层,靠近阴极的混合连接层为p型混合连接层,靠近阳极的混合连接层为n型混合连接层。与在两种工艺转换交替制作的层结构之间增加了一层HCL的混合发光器件相比,本公开实施例的混合发光器件中靠近电子传输层的混合连接层能够顺利传输电子到对应的发光材料层,靠近空穴传输层的混合连接层能够顺利传输空穴到对应的发光材料层,从而保证多个发光材料层重合的部分不会同时发光,保证子像素单元发出预期颜色的光,提高显示装置的显示效果。
在上述各实施例中,位于HCL两侧的发光材料组合层和第一发光材料层由不同工艺制得。然而需要注意的是,本公开上述实施例的构思也适用于位于HCL两侧的发光材料组合层和第一发光材料层由相同工艺制得的情形,使得第一电极提供的第一载流子有效地传输到靠近第二电极的第一发光材料层,并且第二电极提供的第二载流子有效地传输到靠近第一电极的发光材料组合层。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于显示面板和显示装置的实施例而言,由于其基本相似于混合发光器件的实施例,所以描述得比较简单,相 关之处参见方法实施例的部分说明即可。
除非另作定义,本公开使用的技术术语或者科学术语应当为本公开所属领域普通技术人员所理解的通常意义。本公开的上下文中使用的措辞“第一”、“第二”以及类似词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的层或部件。在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种混合发光器件,包括依次层叠的第一电极、发光材料组合层、混合连接组合层、第一发光材料层和第二电极,
    其中所述第一发光材料层在所述第一电极上的投影至少有一部分不与所述发光材料组合层在所述第一电极上的投影重合;
    其中所述第一电极和所述第二电极配置成在工作时分别提供第一载流子和第二载流子;以及
    其中所述混合连接组合层包括至少两层混合连接层,在从所述第一电极到所述第二电极的方向上,所述至少两层混合连接层的第一载流子迁移率增大并且第二载流子迁移率减小。
  2. 根据权利要求1所述的混合发光器件,其中所述混合连接组合层的总厚度为约1nm~10nm。
  3. 根据权利要求1所述的混合发光器件,其中所述混合连接组合层包括至少两层混合连接层。
  4. 根据权利要求1所述的混合发光器件,其中每层所述混合连接层的厚度均小于3nm。
  5. 根据权利要求1所述的混合发光器件,其中每个所述至少两层混合连接层的三线态能级大于2.1eV。
  6. 根据权利要求1所述的混合发光器件,还包括设置在所述第一电极和所述发光材料组合层之间的第一载流子传输层。
  7. 根据权利要求6所述的混合发光器件,还包括设置在所述第一电极和所述第一载流子传输层之间的第一载流子注入层。
  8. 根据权利要求1所述的混合发光器件,还包括设置在所述第一发光材料层和所述第二电极之间的第二载流子传输层。
  9. 根据权利要求1所述的混合发光器件,还包括设置在所述第二载流子传输层和所述第二电极之间的第二载流子注入层。
  10. 根据权利要求1所述的混合发光器件,其中所述发光材料组合层包括同层设置的第二发光材料层和第三发光材料层。
  11. 根据权利要求10所述的混合发光器件,其中所述第一发光材料层为用于发蓝光的发光材料层,所述第二发光材料层为用于发绿光的发光材料层,并且所述第三发光材料层为用于发红光的发光材料层。
  12. 根据权利要求1所述的混合发光器件,其中所述混合连接组合层中靠近所述第一电极的混合连接层为第二载流子类型混合连接层,并且所述混合连接组合层中靠近所述第二电极的混合连接层为第一载流子类型混合连接层。
  13. 根据权利要求1所述的混合发光器件,其中所述混合连接组合层为使用真空热蒸镀工艺得到的层结构。
  14. 根据权利要求1所述的混合发光器件,其中所述混合连接组合层一侧的所述发光材料组合层为使用溶液工艺得到的层结构,并且所述第一发光材料层为使用真空热蒸镀工艺得到的层结构。
  15. 根据权利要求1-14中任意一项所述的混合发光器件,其中所述第一载流子为空穴,所述第二载流子为电子,所述第一电极为阳极,并且所述第二电极为阴极。
  16. 一种显示面板,包括权利要求1-15任意一项所述的混合发光器件。
  17. 一种显示装置,包括权利要求16中所述的显示面板。
PCT/CN2017/083726 2016-05-31 2017-05-10 混合发光器件、显示面板和显示装置 WO2017206681A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/736,688 US10236468B2 (en) 2016-05-31 2017-05-10 Hybrid light emitting device, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610379291.9A CN106058062B (zh) 2016-05-31 2016-05-31 一种混合发光器件、显示面板和显示装置
CN201610379291.9 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017206681A1 true WO2017206681A1 (zh) 2017-12-07

Family

ID=57173029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083726 WO2017206681A1 (zh) 2016-05-31 2017-05-10 混合发光器件、显示面板和显示装置

Country Status (3)

Country Link
US (1) US10236468B2 (zh)
CN (1) CN106058062B (zh)
WO (1) WO2017206681A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058062B (zh) 2016-05-31 2018-12-11 京东方科技集团股份有限公司 一种混合发光器件、显示面板和显示装置
CN107068886B (zh) * 2017-05-12 2019-01-25 京东方科技集团股份有限公司 有机电致发光器件及其制作方法、发光装置
KR102484644B1 (ko) * 2017-12-07 2023-01-03 엘지디스플레이 주식회사 전계 발광 표시장치
CN112331785B (zh) * 2019-12-27 2022-08-30 广东聚华印刷显示技术有限公司 发光器件及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181556A1 (en) * 2008-11-18 2010-07-22 Ying Wang Organic electronic device with low-reflectance electrode
CN103682116A (zh) * 2013-12-02 2014-03-26 京东方科技集团股份有限公司 一种oled器件及显示装置
CN104576950A (zh) * 2013-10-23 2015-04-29 乐金显示有限公司 有机发光器件
CN105185917A (zh) * 2015-08-07 2015-12-23 京东方科技集团股份有限公司 一种有机电致发光显示器件及显示装置
CN106058062A (zh) * 2016-05-31 2016-10-26 京东方科技集团股份有限公司 一种混合发光器件、显示面板和显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101666781B1 (ko) * 2013-06-28 2016-10-17 엘지디스플레이 주식회사 유기 발광 소자
CN105161628B (zh) * 2015-06-29 2017-02-15 京东方科技集团股份有限公司 一种串联式有机发光二极管、阵列基板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181556A1 (en) * 2008-11-18 2010-07-22 Ying Wang Organic electronic device with low-reflectance electrode
CN104576950A (zh) * 2013-10-23 2015-04-29 乐金显示有限公司 有机发光器件
CN103682116A (zh) * 2013-12-02 2014-03-26 京东方科技集团股份有限公司 一种oled器件及显示装置
CN105185917A (zh) * 2015-08-07 2015-12-23 京东方科技集团股份有限公司 一种有机电致发光显示器件及显示装置
CN106058062A (zh) * 2016-05-31 2016-10-26 京东方科技集团股份有限公司 一种混合发光器件、显示面板和显示装置

Also Published As

Publication number Publication date
US20180190930A1 (en) 2018-07-05
CN106058062B (zh) 2018-12-11
US10236468B2 (en) 2019-03-19
CN106058062A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
KR102609089B1 (ko) 유기전계발광소자
KR102108524B1 (ko) 유기전계발광소자
KR101135541B1 (ko) 유기 발광 장치
US10446612B2 (en) Organic light-emitting device and display device
US9159957B2 (en) White organic light emitting device
CN102097456B (zh) 有机发光二极管装置
CN108807493B (zh) 有机发光显示器件及其制造方法、以及有机发光显示装置
US9893309B2 (en) Organic electroluminescent display device and display apparatus
WO2017206681A1 (zh) 混合发光器件、显示面板和显示装置
WO2016015422A1 (zh) 有机发光二极管阵列基板及显示装置
WO2015158085A1 (zh) 一种发光二极管及电子设备
JP2007179933A (ja) 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
WO2018040686A1 (zh) 一种有机电致发光器件及显示装置
CN109560175B (zh) 发光显示装置
JP2003187977A (ja) 有機el素子
TW201349618A (zh) 有機電致發光單元、製造有機電致發光單元之方法,及電子裝置
KR101715857B1 (ko) 백색 유기 발광 소자
US20200373360A1 (en) Oled display panel with unpatterned emissive stack
KR102009804B1 (ko) 유기 발광 다이오드 표시 장치 및 이의 제조 방법
US20170218500A1 (en) Vapor deposition device, vapor deposition method, and organic el element
JP4578215B2 (ja) 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
KR20220044179A (ko) 유기전계발광 표시소자
JP4434872B2 (ja) 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
CN111944518A (zh) 主体材料、发光层材料、发光器件、显示基板、显示装置
CN115802784A (zh) 有机发光二极管显示装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805626

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17805626

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17805626

Country of ref document: EP

Kind code of ref document: A1