WO2017206129A1 - 3d 打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 - Google Patents
3d 打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 Download PDFInfo
- Publication number
- WO2017206129A1 WO2017206129A1 PCT/CN2016/084394 CN2016084394W WO2017206129A1 WO 2017206129 A1 WO2017206129 A1 WO 2017206129A1 CN 2016084394 W CN2016084394 W CN 2016084394W WO 2017206129 A1 WO2017206129 A1 WO 2017206129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- section
- tuyere
- printing
- air
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/16—Cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Definitions
- the present invention relates to the field of 3D printing technologies, and in particular, to a wind nozzle for 3D printing, and a multi-channel telescopic nozzle valve having a tuyere using the above-mentioned 3D printing air nozzle, and 3D printing using the above nozzle valve system.
- 3D printing is a technique for manufacturing a three-dimensional product by layer-by-layer addition of materials by a 3D printing device according to a designed 3D model.
- This layer-by-layer stack forming technique is also referred to as additive manufacturing.
- 3D printing combines cutting-edge technologies in digital modeling technology, electromechanical control technology, information technology, materials science and chemistry, etc. It is a kind of rapid prototyping technology and is known as the core technology of the "third industrial revolution”.
- 3D printing does not need to make molds in advance, it does not have to remove a large amount of materials in the manufacturing process, and the final product can be obtained without complicated forging process. Therefore, structural optimization and material saving can be achieved in production. save energy.
- 3D printing technology is suitable for new product bursts, rapid single and small batch parts manufacturing, complex shape parts manufacturing, mold design and manufacturing, etc. It is also suitable for the manufacture of difficult materials, shape design inspection, assembly inspection and fast Reverse engineering and so on. Therefore, the 3D printing industry has received more and more attention at home and abroad, and will become the next sunrise industry with broad development prospects.
- 3D printing has been applied in the fields of product prototyping, mold making, artistic creative products, jewelry making, etc., and can replace the traditional fine processing technology that these fields rely on.
- the introduction of 3D printing technology has also opened up a broader space for development.
- the external air nozzle is used to precisely align the position of the material to be printed to the hot air preheating, serious problems may occur: Because the current layer's printing motion path may be in any direction, the preheating nozzle is located at At any location, it may not be possible to warm up the previous layer that is about to be printed, but instead heat the current layer that just needs to be cooled.
- the CNC system is usually used on a large 3D printer. After printing a layer, it is necessary to use CNC machining immediately, and then print the next layer and then process it.
- the CNC machining material must be solid and printed.
- the crucible material is fluid, and the printing and processing are alternated. Therefore, the current processing point of the material needs to be quenched and hot, which is not possible by conventional methods.
- the object of the present invention is to provide a wind blower for 3D printing by overcoming the above-mentioned deficiencies of the prior art.
- the present invention can locally cool the material just extruded, avoiding extensive heat dissipation and cooling the material to a suitable temperature. Unnecessary cooling is continued, so as to speed up the printing speed, uniform heat dissipation, and avoid anisotropy of the material performance; the air nozzle of the invention can accurately heat the cooled material of the printing starting point and heat evenly;
- the invention realizes the manufacturing process by layered 3D printing and the same layer CNC processing The quenching and rapid heat of the current processing point material is adapted to the processing technology, and the processing time of the process is reduced.
- the present invention provides a wind nozzle for 3D printing, including:
- a hollow tuyere structure the tuyere structure is divided into a tuyere sealing section and an outlet section;
- a movable 3D printing nozzle the nozzle of the 3D printing nozzle is provided with a nozzle hole, and the 3D printing nozzle is divided into a nozzle sealing section and a nozzle protruding section that cooperate with the tuyere sealing section;
- the tuyeres are mounted around the outside of the 3D printing nozzle.
- the hollow tuyeres are provided with a plurality of mounting portions for mounting 3D printing nozzles, and one or several 3D printing nozzles are provided, the number of which matches the number of mounting portions on the tuyere structure.
- the air nozzle sealing section and the air outlet section form a top and bottom cavity structure, and the 3D printing nozzle is movably assembled in the cavity structure.
- the 3D printing nozzles are provided in plurality, and the tuyeres are provided with a mounting portion matched with the number, and the nozzle holes of each of the 3D printing nozzles have different calibers.
- the apertures of the nozzle holes are arranged from small to large.
- the apertures of the plurality of nozzle holes are arranged in a sequence of equal or a series in the direction of the right or the reverse or the direction of the straight line.
- the nozzle holes on each 3D printing nozzle are provided with one or several nozzle holes.
- the tuyeres are provided with an air inlet passage for supplying air to the tuyere structure.
- the air inlet passage is disposed at an upper side or a top portion of the tuyere sealing section, and when the 3D printing nozzle moves upward to the sliding nozzle sealing section of the tuyere sealing section and the nozzle sealing section, The air inlet passage is unable to discharge air to the air outlet section, and when the 3D printing nozzle moves downward until the tuyere sealing section is disengaged from the nozzle sealing section, the tuyere sealing section and the nozzle sealing section are mutually
- the detachment is used to form a ventilation space, and the air inlet passage passes through the ventilation space to ventilate the air outlet section.
- the lateral width of the nozzle protrusion section is smaller than the width of the mouth of the air outlet section of the tuyere structure to form an air outlet gap.
- the nozzle protrusion portion has a tapered shape, and a nozzle hole is provided at an end thereof. A nozzle hole is provided at the tip end of the taper.
- the nozzle protrusion segment has a hemispherical shape and a diameter smaller than a lateral width of the nozzle protrusion segment.
- the surface of the nozzle protrusion segment is curved.
- the tuyere structure is divided into a wind nozzle avoiding section, a tuyere sealing section and an air outlet section from top to bottom;
- the 3D printing nozzle is sequentially divided into nozzle avoiding from top to bottom. a hollow section, a nozzle sealing section matched with the tuyere sealing section, and a nozzle protruding section;
- a partial contact between the nozzle avoidance section and the air nozzle avoidance section is partially avoided, and the contact part is used for guiding, and the partial avoidance part is for ventilation.
- the nozzle avoidance section is in line contact with the air nozzle avoidance section and a ventilation space is formed.
- a partial surface contact between the nozzle avoidance section and the air nozzle avoidance section is formed and a ventilation space is formed, and the wind is spaced apart from the outer contour of the nozzle avoidance section.
- the contact surface in contact with the contour surface of the mouth avoidance section.
- a non-contact surface is disposed on an outer contour of the nozzle avoidance section, and a minimum distance between any micro-region on the non-contact surface and the air nozzle avoidance section is greater than zero to form Out of the wind space.
- the contact surfaces on the nozzle avoidance section are disposed along the axial direction and are arranged at intervals in the circumferential direction.
- the contact surfaces on the nozzle avoidance section are spirally arranged around the axis, and are arranged at intervals in the circumferential direction to form a spiral avoidance air trough, and the gas forms a cyclone through the spiral wind channel.
- the whirlwind extends the heating time and the heating effect is better.
- the inner contour of the air nozzle avoidance section is a cylindrical surface
- the outer contour of the nozzle avoidance section is an arc surface disposed at an axial interval
- the cylindrical surface is tangent to the curved surface to form a contact surface.
- a non-contact surface between two adjacent contact faces, and an air outlet space is formed between the non-contact surface and the inner contour of the air nozzle avoidance section.
- the tuyere structure is divided into a tuyere sealing section, wherein the mouth diameter is larger than an air outlet section of the tuyere sealing section; and the nozzle sealing section and the tuyere sealing section are sealingly matched.
- the contact faces of the nozzle sealing section and the tuyere sealing section are respectively inner and outer cylindrical surfaces and the two are sealingly matched.
- the nozzle avoidance section is a prism, and a circumscribed circle of a cross section polygon is an inner circle of the tuyere avoidance section.
- the side edges of the prism are respectively convex cylindrical surfaces disposed along the axial direction of the prism, and the outer The convex cylindrical surface is tangent to the inner circle of the air nozzle avoidance section.
- the nozzle avoiding section completely avoids the air, and does not contact the inner wall of the air nozzle avoiding section.
- the nozzle avoidance section is a prism or a cylinder that does not contact the inner wall of the tuyere avoidance section.
- an outer contour between the nozzle sealing section and the nozzle protrusion section is further provided with a structure for facilitating tightening
- the ridge of the 3D printing nozzle is easy to use with a standard wrench, such as a hexagonal standard wrench
- the present invention also provides a multi-channel telescopic nozzle valve having a tuyère, comprising the wind nozzle for 3D printing as described above, further comprising:
- a mounting seat the upper portion of the mounting seat is provided with a feeding passage, and one or a plurality of inner holes are axially distributed in a lower portion of the mounting seat, and a top or a side of each of the inner holes is provided a material port, the discharge port is respectively connected to an upper end of each inner hole, and a lower end of the inner hole is a mouth;
- each of the cylinders are movably mounted in the inner holes of each of the mounting seats, and each of the cylinders respectively protrudes from the mouth end of the inner hole of the mounting seat, and each a top of the cylinder is respectively provided with a cylinder inlet; each of the cylinders is a hollow valve chamber;
- valve needles each of which passes through a valve cavity of the barrel and is mounted on the mounting seat, and a gap between the valve needle and the valve chamber is formed a discharge passage through which the cylinder inlet is turned;
- the 3D printing nozzle is disposed at a tail of each of the cylinders, and the tuyeres are disposed under the mounting seat
- the 3D printing nozzle is detachably mounted on the tail of the cylinder and moves up and down with the cylinder.
- the 3D printing nozzle is screwed to the cylinder.
- the air inlet passage extends to the outside of the tuyere structure, and is connected to the hot and cold air supply device through the air inlet passage.
- the present invention also provides a printing system characterized by comprising an extrusion mechanism for extruding a material required for 3D printing, and further comprising a multi-channel telescopic nozzle valve having a tuyère as described above.
- the hot material sprayed from the printing nozzle needs to be properly cooled to control the object.
- the flow state of the material, the air nozzle of the present invention is annular, and the air outlet passage surrounds the printing nozzle hole. No matter the movement of the printing nozzle in any direction, the state of the air outlet is indistinguishable, so the cooling effect is uniform.
- the wind can be increased, the printing material is not deviated, and the printing material is balanced by force, so the cooling efficiency is greatly improved.
- the hot air should mainly conduct heat to the next moment in front of the movement path of the printing nozzle, which is changing, and the effect of the heat transfer of the annular air nozzle is Irrelevant, the molten material just printed out of this ring may occupy a small portion of the annular hot air cross-sectional area in any direction of the annular tuyere, which can absorb about a few tenths of the heat of the annular hot air, although the absorbed heat is redundant. However, only a few tenths of the heat of the ring hot air is negligible.
- the discharge temperature of the printing nozzle can also be reduced to compensate for the excess heat of the material absorbing the annular air nozzle, thereby eliminating the slight influence of the annular hot air on the excess heat generated by the molten material just printed, and the printing nozzle running path
- the front layer of the cooled material is effectively preheated. The most important thing is that it does not act as any control. The print nozzle moves in any direction and its preheating effect is the same.
- the CNC system is usually used on a large 3D printer. After printing a layer, CNC machining is required immediately, and then the next layer is printed and then processed.
- the CNC machining material must be solid.
- the printing enamel material is fluid, and the printing and processing are alternated. Therefore, the current processing point of the material needs to be quenched and hot, and the air nozzle structure of the present invention is used, and the cold air blast is blown by the annular equal pressure even if the wind is increased.
- the molten material has a small thrust, so that it can be cooled by using a larger wind power, so the quenching effect is good, or the spiral wind is used, so that the cooling wind and the cold material contact process take more heat, further enhancing the quenching effect; blowing hot air ⁇ , since the tuyeres of the present invention are independent of the direction of printing movement, the upper layer of printing material that needs to be preheated is always within the coverage of the annular wind, so there is no need to consider the effect of preheating on the printing speed.
- Step using a spiral hot air, hot air with the preheated material during the contact transfer more heat, to further enhance the rapid heating effect;
- multi-channel nozzles with different calibers are used, and multi-channel nozzles need to be switched.
- other printing nozzles need to be closed and separated from the printing plane.
- the nozzles provided in each nozzle need to be switched synchronously.
- the structure of the present invention closes the air outlet channel by using the nozzle closing process, and the process of snoring by using the nozzle is the same.
- the air outlet channel is smashed, no additional switching mechanism is required; it is especially suitable for use with multi-channel telescopic nozzle valves.
- FIG. 1 is a cross-sectional view of a multi-channel telescopic nozzle valve having a tuyere according to an embodiment of the present invention, and the flow direction of the material and the direction of the air flow are indicated by arrows in FIG. 1;
- Figure 2 is a partial schematic view of Figure 1;
- FIG. 3 is a schematic structural view of a first embodiment of a 3D printing nozzle according to the present invention.
- FIG. 4 is a schematic structural view of a second embodiment of a 3D printing nozzle according to the present invention.
- FIG. 5 is a schematic structural view of a third embodiment of a 3D printing nozzle according to the present invention.
- mount 10 feed channel 11; discharge manifold 111; screw 112;
- valve needle 30 positioning bolt 31; limit button 32;
- discharge channel 40 discharge channel 40; cylinder feed port 401; limit through slot 402;
- a first fluid chamber 51 a first fluid through hole 511; a second fluid chamber 52; a second fluid through hole 521;
- tuyere structure 80 tuyere avoidance section 801; tuyere seal section 802; outlet section 803.
- the terms “installation”, “connected”, “connected”, “fixed” and the like are to be understood broadly, and may be, for example, a fixed connection or a Removable connection, or integral connection; can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication between the two components.
- installation can be, for example, a fixed connection or a Removable connection, or integral connection; can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication between the two components.
- the present invention provides a wind nozzle for 3D printing, comprising a hollow tuyere structure 80, a movable 3D printing nozzle 60, wherein the tuyere structure 80 is from top to bottom.
- the windshield avoidance section 801, the air nozzle sealing section 802, and the air outlet section 803 are sequentially divided into;
- the nozzle hole 631 is provided at the tail of the 3D printing nozzle 60, and the 3D printing nozzle 60 is divided into a nozzle avoiding section 61, and a nozzle sealing section 62 and a nozzle protrusion section 63 that cooperate with the nozzle sealing section 802;
- the tuyeres 80 are circumferentially mounted on the outside of the 3D printing nozzle 60;
- the tuyeres 80 are provided with a tuyere structure 80 air supply passage 64 for air supply.
- a ventilation space is formed between the nozzle avoidance section 61 and the tuyere avoidance section 801.
- one or several 3D printing nozzles 60 may be disposed on the tuyere structure 80, and if a plurality of 3D printing nozzles 60 are provided, the 3D printing nozzles 60 are arranged at intervals, such as in a linear or circular arrangement.
- the 3D print nozzle 60 is moved under the action of power.
- the inlet duct 64 supplies air to the outlet section 803, and the outlet section 803 has a cylindrical shape, and the gas is ejected from the outlet section 803 and passes through the 3D.
- the nozzle 60 is printed and applied to the material that has just been extruded.
- the 3D printing nozzle 60 moves downwardly, the 3D printing nozzle 60 begins to flow out of the 3D printing material, and the wind is emitted, and when the 3D printing nozzle 60 moves up to the tuyere sealing section 802 and the nozzle sealing section 62 sliding fits the seal, the 3D print nozzle 60 immediately stops flowing out of the 3D printed material and immediately stops the wind. Due to the mechanical force to cut, the discharge immediately stops and the wind also stops immediately.
- the installation position of the air inlet passage 64 is further defined: the air inlet passage 64 is provided on the upper side or the top of the tuyere sealing section 80 2, and the 3D printing nozzle 60 is moved upward to the tuyere sealing section. 802 and the nozzle sealing section 62 are slidably fitted with a sealing portion, the air inlet passage 64 is unable to ventilate to the air outlet section 803, and the 3D printing nozzle 60 is moved downward to the tuyere sealing section 802 to seal the nozzle. Segment 62 is disengaged, said The air nozzle sealing section 802 and the nozzle sealing section 62 are separated from each other to form a ventilation space, and the air inlet passage 64 passes through the ventilation space to the wind outlet section 803.
- the lower section of the intake passage 64 is disposed in the tuyere seal section 802 ⁇ , and the nozzle seal section 62 blocks the lower section of the intake passage 64, and the weir inlet passage 64 is also unable to vent to the outlet section 803. More specifically, the end surface of the air outlet passage is circular or square or other shape, and the size thereof is selected according to specific requirements.
- the structure of the 3D printing nozzle 60 is further defined: the lateral width of the nozzle protrusion section 63 is smaller than the width of the mouth of the air outlet section 803 of the nozzle structure 80 to form an air outlet gap (outlet air space). It is avoided that the air outlet section 803 of the tuyere structure 80 cannot accommodate the 3D printing nozzle 60.
- the structure of the 3D printing nozzle 60 is further defined: the nozzle boss portion 63 has a tapered shape, and a nozzle hole 631 is provided at the end thereof.
- a nozzle hole 631 is provided at the tip end of the taper. Its tip section is oriented away from the nozzle seal section 62.
- the structure of the 3D printing nozzle 60 is further defined: the nozzle boss segment 63 is hemispherical and has a smaller diameter than the lateral width of the nozzle boss segment 63. Further, further, the nozzle boss section 63 is a part of a spherical shape and is not limited to one half of the sphere.
- the structure of the 3D printing nozzle 60 is further defined: the surface of the nozzle boss segment 63 is curved. Such as a streamlined surface, it is more conducive to airflow, reducing wind resistance.
- an anti-weathering surface coating is disposed on the outer side of the 3D printing nozzle 60. Further, a weathering resistant surface is disposed on the surfaces of the air inlet passage 64, the air nozzle avoiding section 801, the air nozzle sealing section 802, the air outlet section 803, the nozzle avoiding section 61, the nozzle sealing section 62, and the nozzle protrusion section 63. The coating is used to enhance the weathering resistance. These improvements, which are made from the wind and erosion resistance angle, are within the scope of the present invention.
- the situation that the 3D printing nozzle 60 is difficult to return after moving down from the sealing section is avoided, which is mainly because the 3D printing nozzle 60 is operated under high temperature conditions, and is easily contracted by thermal expansion and contraction.
- the outer contour of the 3D printing nozzle 60 is slightly deformed, and the deformation may cause the 3D printing nozzle 60 to be unable to be properly returned.
- the nozzle avoiding section 6 1 and The portion of the air nozzle avoidance section 801 is partially contacted to avoid air, and the contact portion is used for guiding, and the partial sheltering portion is for ventilation.
- the contact portion of the nozzle avoiding section 61 and the tuyere avoiding section 801 is still in contact, which is good.
- the guiding role When the 3D printing nozzle 60 is homed, the contact portion is slidably engaged, and then the nozzle sealing section 62 and the tuyere sealing section 802 are guided into a slip fit state.
- the nozzle avoidance section 61 is in line contact with the tuyere avoidance section 801 and is formed with a ventilation space.
- a partial surface contact between the nozzle avoidance section 61 and the tuyere avoidance section 801 is formed and a ventilation space is formed, and an outer contour of the nozzle avoidance section 61 is spaced apart from each other.
- a non-contact surface is disposed on the outer contour of the nozzle avoidance section 61, and a minimum distance between any of the micro-areas on the non-contact surface and the tuyere avoidance section 801 is greater than zero to form an air outlet space.
- the contact faces on the nozzle avoidance section 61 are disposed in the axial direction and are arranged in the circumferential direction, and the contact faces may be uniformly disposed in the circumferential direction. Further, the contact faces may be continuously disposed in the axial direction or may be spaced apart.
- the present invention adopts the following technical solution: the contact surface on the nozzle avoidance section 61 is spirally disposed around the axis of the 3D printing nozzle 60, and Arranged at intervals in the circumferential direction, the non-contact surface on the nozzle avoidance section 61 thus forms a spiral wind channel, and the gas forms a cyclone through the spiral wind channel. Further, the spiral air grooves are provided in plurality, and their starting end faces are spaced apart in the circumferential direction. The whirlwind extends the heating enthalpy and the heating effect is better.
- the plurality of spiral wind grooves cause the multi-strand spiral wind to rush out on the outer circumference of the 3D printing nozzle 60, and then interfere with the air flow through the 3D printing nozzle 60 to play a mixed flow, and the mixed air flow maintains the basic direction of the spiral wind, and both Some are distributed on the outer circumference of the 3D printing nozzle 60, and the air is evenly distributed, and the contact angle of the airflow with the material is changed, thereby achieving better heat dissipation or heating effect.
- the inner contour of the air nozzle avoidance section 801 is a cylindrical surface
- the outer contour of the nozzle avoidance section 61 is an arc-shaped surface disposed at an axial interval, and the curved surface is a part of a cylindrical surface.
- the radius of curvature of the curved surface of the curved surface in the cross-sectional direction may be less than or equal to the inner contour of the air nozzle avoidance section 801 being the radius of curvature of the cylindrical surface, and the inner contour cylinder of the air nozzle avoiding section 801
- the surface is tangent to the curved surface on the outer contour of the nozzle cutout 61 to form a contact surface, and between the two adjacent contact surfaces is a non-contact surface, and the non-contact surface and the contour of the air nozzle avoidance section 801 A wind space is formed between them.
- a plurality of guiding cylinders arranged in the circumferential direction are arranged on the outer contour of the nozzle avoiding section 61
- the two end faces of the guiding cylinder extend to both ends of the nozzle avoiding section 61.
- the diameter of the guiding cylinder is smaller than the lateral width of the air nozzle avoiding section 801, and a part of the guiding cylinder can be embedded in the outer contour of the nozzle avoiding section 61. within. In this case, an air outlet space is formed between the adjacent two guiding cylinders.
- a plurality of spiral protrusions distributed around an axis thereof are disposed on an outer contour of the nozzle avoiding section 61, and surfaces of the spiral protrusions and the air nozzle avoiding section
- the inner wall of the 801 is slidably fitted for guiding.
- the spiral groove forms an air outlet space.
- a plurality of guiding protrusions are disposed on an outer contour of the nozzle avoiding section 61, and a surface of the guiding protrusion is slidably engaged with an inner wall of the air nozzle avoiding section 801 for guiding .
- the order of arrangement between the guide bumps is not limited.
- the guiding protrusion is in contact with the inner wall of the air nozzle avoiding section 801 as a smooth curved surface or a line segment or a tip end.
- the present invention further provides an embodiment: the tuyere structure 80 is divided into a tuyere sealing section 802, and an outlet section 803 whose caliber is larger than the tuyere sealing section 802; The sealing section 62 and the tuyere sealing section 802 are sealingly fitted.
- the contact faces of the nozzle sealing section 62 and the tuyere sealing section 802 are respectively an inner cylindrical surface and an outer cylindrical surface, and the two are sealingly fitted.
- the present invention further provides an embodiment: the nozzle avoidance section 61 is a prism, and the circumscribed circle of the cross section polygon is the inner circle of the wind nozzle avoidance section 801. Thereafter, the nozzle avoidance section 61 is in line contact with the tuyere avoidance section 801.
- the side edges of the prism are outwardly convex cylindrical surfaces respectively disposed along the axial direction of the prism, and the convex cylindrical surface is tangent to the inner circle of the air nozzle avoiding section 801.
- the nozzle avoidance section 61 is completely emptied, and it is not in contact with the inner wall of the air nozzle avoidance section 801.
- the nozzle avoidance section 61 is a prism or a cylinder that does not contact the inner wall of the tuyere avoidance section 801.
- the inner wall surface of the air nozzle avoidance section 801 is provided with a plurality of grooves for the outer contour surface of the nozzle avoidance section 61.
- the upper convex contact surface (outer convex contact portion) is matched, so that the convex contact portion and the groove are matched to achieve a better guiding function. That is, the inner wall surface of the air nozzle avoidance section 801 is spaced apart from the axially disposed groove, and the outer contour surface of the nozzle avoidance section 61 is provided with a convex contact portion for cooperating with the groove. The number of the two is the same, and the two are guaranteed to cooperate. Thus, the 3D printing nozzle 60 has a better homing effect during reciprocation and avoids malfunction.
- this embodiment can also be combined with the expanded graphite technology in the present invention to generate a new technical solution, which is as follows: in the nozzle avoidance section 61 and the air nozzle avoidance section 801 An expanded graphite filling tank can be provided at the contact to fill the expanded graphite for lubrication.
- An expanded graphite filling tank can be provided at the contact to fill the expanded graphite for lubrication.
- the present invention further provides a technical solution: the outer contour between the nozzle sealing section 62 and the nozzle boss section 63 is further provided with a rib 602 for facilitating tightening of the 3D printing nozzle 60.
- the ribs 602 and the 3D printing nozzles 60 may be fixed or detachable.
- the ribs 602 can be quadrangular 602, pentagon 602, and hexagonal 602, preferably hexagonal 602, which facilitates tightening with a standard hex wrench.
- the present invention provides a multi-channel telescopic nozzle valve having a tuyere, comprising a mounting base 10, a cylinder 20, a valve needle 30, a 3D printing nozzle 60, and a tuyere structure 80;
- the upper section of the mounting base 10 is provided with a feeding passage 11 , and the feeding passage 11 is provided with a discharging manifold 111 , and one or several inner holes are distributed in the lower section of the mounting seat 10 in the axial direction.
- each of the inner holes is provided with a discharge port 111, and the discharge ports 111 are respectively communicated with the upper end of each inner hole, and the lower end of the inner hole is a mouth;
- the barrel 20 Removably mounted in each of the inner holes of the mounting base 10, each of the cylindrical bodies 20 respectively protrude from the mouth end of the inner hole of the mounting base 10, and the top end of each of the cylindrical bodies 20 is provided with a cylinder
- the body feed port 401 is configured to receive materials required for hot state 3D printing; each of the barrels 20 is provided with a hollow valve cavity, and the valve cavity is disposed along the axial direction of the cylinder 20; the valve needle 30 passes through Each valve cavity of the cylinder 20 is mounted on the mounting seat 10, the number of the valve needles 30 is the same as the number of valve chambers, and the gap between the valve needle 30 and the valve cavity forms a discharge passage 40.
- the discharge channel 40 is in communication with the discharge port 111, and the nozzle hole 63 1 is in communication with the discharge channel 40.
- the 3D printing nozzles 60 are disposed at the tail of each of the cylinders 20, and each of the 3D printing nozzles 60 is respectively provided with a nozzle hole 631 which is circular or elliptical or square or other geometric shapes.
- the 3D printing nozzle 60 is divided into a cylindrical section and a tapered section, The end of the tapered section is a tip end, and the cylindrical section is divided into a prism section and a short cylindrical section from top to bottom; and further includes a tuyeres structure 80, which has a hollow structure, which may have a plurality of a cavity having a number of cavities coincident with the number of 3D printing nozzles 60.
- the tuyeres 80 are sequentially divided into a sealing section and an outgoing section 803 from top to bottom, and the diameter of the outlet section 803 is larger than The diameter of the sealing section, the short cylinder is dynamically sealed with the sealing section.
- the end of the tapered section of the 3D printing nozzle 60 is a tip end.
- the short cylindrical section is coupled to the seal section piston.
- the cylinder 20 In the telescopic nozzle valve, the cylinder 20 is vertically expandable and contractible, and the cylinder 20 is driven by fluid pressure (such as pneumatic driving, hydraulic oil driving or liquid metal driving, etc.), when the cylinder 20 moves downward, the short The cylindrical section is gradually separated from the sealing section.
- the hot and cold air supply device connected to the tuyere structure 80 can eject a gas flow, and the ejected airflow is distributed in a ring shape.
- the periphery of the 3D printing nozzle 60 The periphery of the 3D printing nozzle 60.
- the 3D printing nozzle 60 and the cylinder 20 may be integrally provided, and the ⁇ 3D printing nozzle 60 is uniformly replaced and mounted with the cylinder 20, and thus, it is not required to be mounted on the 3D printing nozzle 60.
- the upper and lower sections of the inner hole of the mounting seat 10 are respectively provided with an upper sealing member 201 and a lower sealing member 202 at a contact portion between the outer peripheral edge and the outer peripheral edge of the upper portion of the upper portion of the cylinder 20, and the upper sealing member 201 and the lower sealing member 202 are respectively provided. It is a groove structure filled with expanded graphite.
- the cylinder 20 is further provided with a cylinder cylinder 21 having a larger diameter in the middle portion between the upper seal 201 and the lower seal 202 (the cylinder cylinder 21 is specifically a piston).
- annular grooves 211 are disposed on the side wall of the cylindrical body 21, and the depth and width of each annular groove 211 are not particularly limited, and the shape of the annular groove 211 may also be irregular.
- the annular groove 211 has a circular arc shape, a V shape, a U shape or the like.
- the annular groove 211 is filled with a sliding sealing material, and the cylinder 20 is sealed and slidably connected with the inner hole of the mounting seat 10, such as expanded graphite, and may be other solid sliding sealing materials.
- a screw 112 is disposed in the feed passage 11. There is a first fluid chamber 51 between the cylinder cylinder 21 and the upper seal 201, and a second fluid chamber 52 between the collar and the lower seal 202.
- the up and down movement of the cylinder 20 is controlled by means of air pressure control or hydraulic control.
- the first fluid chamber 51 is connected to the first fluid valve through the first fluid through hole 511.
- the second fluid chamber 52 is connected to the second fluid valve through the second fluid through hole 521, and is configured to control the first fluid through hole 511 and the second fluid through hole 521 by providing the first fluid valve and the second fluid valve. close.
- At least one positioning bolt 31 is coupled to the top or one side of the valve needle 30.
- the cylinder cylinder 21 is a piston.
- the annular groove 211 has a small radial length The radial length of the cylinder cylinder 21.
- the upper portion of the cylinder 20 is provided with a limiting through groove 402 (opposite to the cylindrical feeding port 401), and the limiting through groove 402 is slidably engaged with the limit button 32 on the top side of the valve needle 30 for making the tube
- the body feed port 401 is aligned with the discharge port 111 to prevent material from entering the discharge channel 40.
- the outside of the mounting base 10 is provided with a heating device, such as an electric heating device, for holding the material in the discharge passage 40.
- the cylinder 20 is provided with four, and the valve needle 30 matched with the cylinder 20 is also provided with four. Further, it is also possible to arrange the cylinders 20 six or more.
- the material is dispersed from the feed passage 11 to the four discharge passages 40, which realizes the function of a multi-way valve (a Further, if the internal structure of the present invention is modified into a multi-pass valve, the object of the present invention can also be achieved, which is a conventional modification of the present invention.
- the positions of the first fluid chamber 51 and the second fluid chamber 52 may be reversed.
- the first fluid through hole 511 and the second fluid through hole 521 are respectively connected to the fluid source through the gas nozzle.
- first fluid chamber 51 and the second fluid chamber 52 may also pass one or more of hydraulic oil, liquid metal, flowable powder, and flowable particles by controlling the first fluid chamber. 51.
- the pressure difference of the second fluid chamber 52 is used to control the up and down motion state of the cylinder 20.
- the use of flowable powders, flowable particles, and 3D printed molten materials has a poor pressure sealing effect.
- a partial area of the outer wall of the nozzle avoiding section is in sliding contact with a partial area of the inner wall of the air nozzle avoiding section, which not only reserves the air outlet space but also serves as a guiding function.
- the nozzle sealing section 6 2 is extended, the nozzle avoiding section 61 is still engaged with the nozzle avoiding section 61, and the 3D printing nozzle 60 is retracted, and will not be retracted due to thermal expansion and contraction and slight change in shape.
- the cylindrical section is in surface contact or line contact with the inner hole can serve as a guide.
- the nozzle cutout 61 is provided as a hexagonal prism, and the six sides of the hexagonal prism form six air passages, so that the air is more uniform.
- the above technical solution is further defined.
- the 3D printing nozzle 60 is detachably mounted on the tail of the cylinder 20 and moves up and down with the cylinder 20, such as a threaded connection.
- the inner hole is provided at the sealing section with an air inlet passage 64 extending to the outer side of the mounting seat 10, and is connected to the hot and cold air supply device through the air inlet passage 64.
- the hot and cold air supply device has heating means for generating hot air.
- the hot and cold air supply device can supply hot air or normal air flow or pre-cooled air flow (cold air), and the cooling effect is better by using cold air.
- the inner hole is provided with four, and the discharge channel 40 is also set. There are four, and the air inlet passage 64 is electrically connected to each of the discharge passages 40, respectively.
- the nozzle avoiding section completely avoids the air, and the ⁇ nozzle avoiding section does not have any structural features for guiding, and the 3D printing nozzle 60 is prone to slight deflection to make the tight
- the mating sealing section cannot be aligned, is not easily retracted, and is prone to failure.
- the present embodiment can also realize the function of the present invention as a degraded embodiment.
- the hot air structure of the present invention can be used to eject hot air for continued printing.
- the invention has the advantages of cooling, heating and heat-efficiency, and achieves rapid cooling and rapid heat. It is very suitable for printing a layer and a layer processing technology of the CNC to improve the printing speed.
- the spacing of the multiple nozzles is small, and the air nozzle structure can quickly close the airflow in a small range.
- the present invention adopts the tuyere structure 80, so that the 3D print head can simultaneously output the wind at the time of discharging, and can adjust the wind temperature, the air flow speed, the flow rate, etc. due to the wind. It is ejected from the outer periphery of the 3D printing nozzle 60. After the air is mixed, the airflow is evenly outputted, and the material is not deformed by blowing, the material is more evenly stressed, and the material is prevented from flowing around, resulting in loss of control or inaccuracy in the printing process.
- the so-called mixed air means that when the prism section adopts a hexagonal prism and the side edges are arc-shaped, the air outlet passage is six non-continuous passages, so that the air outlet surface is not continuous, but the air outlet passage is out.
- the airflow passes through the air outlet section 803 and collides with the 3D printing nozzle 60 to mix the airflow, which is called the mixed flow in the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
Abstract
一种3D打印用风嘴及具有风嘴的多通道伸缩喷嘴阀,所述3D打印用风嘴包括中空的风嘴结构(80),其分为风嘴密封段(802)、出风段(803);3D打印喷嘴(60),其分为与风嘴密封段(802)配合的喷嘴密封段(62)和喷嘴凸起段(63);上述风嘴结构(80)环绕安装于3D打印喷嘴(60)外侧。所述具有风嘴的多通道伸缩喷嘴阀,包括3D打印用风嘴,还包括安装座(10);筒体(20);和阀针(30);3D打印喷嘴(60)设于筒体(20)尾部,风嘴结构(80)设于安装座(10)下方。上述风嘴及喷嘴阀出风均匀,且精度高、能耗低、噪音小、环保节能。
Description
发明名称: 3D打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 技术领域
[0001] 本发明涉及 3D打印技术领域, 尤其涉及一种 3D打印用风嘴, 以及使用上述 3D 打印用风嘴的一种具有风嘴的多通道伸缩喷嘴阀, 以及采用上述喷嘴阀的 3D打 印系统。
[0002]
[0003] 背景技术
[0004] 3D打印, 是根据所设计的 3D模型, 通过 3D打印设备逐层增加材料来制造三维 产品的技术。 这种逐层堆积成形技术又被称作增材制造。 3D打印综合了数字建 模技术、 机电控制技术、 信息技术、 材料科学与化学等诸多领域的前沿技术, 是快速成型技术的一种, 被誉为 "第三次工业革命"的核心技术。 与传统制造技术 相比, 3D打印不必事先制造模具, 不必在制造过程中去除大量的材料, 也不必 通过复杂的锻造工艺就可以得到最终产品, 因此, 在生产上可以实现结构优化 、 节约材料和节省能源。 3D打印技术适合于新产品幵发、 快速单件及小批量零 件制造、 复杂形状零件的制造、 模具的设计与制造等, 也适合于难加工材料的 制造、 外形设计检査、 装配检验和快速反求工程等。 因此, 3D打印产业受到了 国内外越来越广泛的关注, 将成为下一个具有广阔发展前景的朝阳产业。 目前 , 3D打印已应用于产品原型、 模具制造、 艺术创意产品、 珠宝制作等领域, 可 替代这些领域所依赖的传统精细加工工艺。 除此之外, 在生物工程与医学、 建 筑、 服装等领域, 3D打印技术的引入也为其幵拓了更广阔的发展空间。
[0005] 在 3D打印过程中, 还面临如下的技术问题: 为了快速打印喷嘴喷出的热态材料 需要进行适当冷却, 以控制物料的流动状态, 而现有技术通常采用风扇、 风机 进行风冷却, 这种风冷方式精确度低, 只能大范围的进行散热, 然而, 实际上 只需要对刚挤出的物料进行局部的散热, 大范围散热使冷却到适当温度的周边 物料不必要的继续冷却, 使下一层打印粘合牢度降低, 即现有的风冷散热方式 精度低。
[0006] 如果使用外置风嘴精确对准打印喷嘴冷却也会出现严重问题: 外置风嘴设置在 打印喷嘴的任何方向, 风力都是偏向的, 因此风力不能过大, 因为容易吹走打 印物料, 风力过小则冷却效果不强。
[0007] 此外, 在打印大型产品吋, 同吋当打印大型产品吋, 每一层的耗吋较长, 当前 层打印即将结束吋, 前一层已经冷却过度, 致使与当前层粘结不牢, 因此还需 要吹热风预热, 用以使热态物料可靠的粘合在经过预热的打印层上, 这种加热 也需要是局部加热。
[0008] 此外, 也有停电、 故障等原因导致大型 3D打印过程中断, 已经打印的半成品在 空气中会过冷, 在重新续接打印吋, 也需要局部预热以增加粘结牢度;
[0009] 如果使用外置风嘴精确对准即将打印的前一层物料位置进行吹热风预热, 也会 出现严重问题: 因为当前层的打印运动路径可能是任意方向, 预热风嘴设在任 何位置, 都有可能无法对即将打印的前一层预热反而加热了刚打印需要冷却的 当前层。
[0010] 更进一步的, 在大型 3D打印机上通常还会使用 CNC系统, 打印一层以后需要 立即使用 CNC加工, 然后再打印下一层然后再加工, CNC加工吋材料必须是固 态的, 而打印吋材料是流动状的, 打印与加工交替进行, 因此材料当前加工点 需要急冷急热, 这也是用传统方法做不到的。
[0011] 更进一步的, 当使用多通道喷嘴吋, 不使用的喷嘴需要关闭, 吹风也需要停止
, 为了节省打印的行程空间, 多个打印喷嘴往往是距离很近的, 这也需要精确 的在狭小的空间内实现吹风装置的幵闭, 传统的方法无法做到这一点。 这些问 题都亟待解决。
[0012]
[0013] 发明内容
[0014] 本发明的目的在于克服上述现有技术之不足而提供一种 3D打印用风嘴, 本发明 可对刚挤出的物料进行局部冷却, 避免大范围散热使已冷却到适合温度的物料 不必要的继续冷却, 从而达到加快打印速度, 同吋散热均匀, 避免物料的性能 出现各向异性; 本发明的风嘴可准确的对打印起点的已冷却物料进行快速加热 , 且加热均匀; 当采用分层 3D打印、 同层 CNC加工的制造工艺吋, 本发明实现
了对当前加工点物料的急冷急热, 从而适应该加工工艺, 降低采用该工艺的加 工吋间。
[0015] 为实现上述目的, 本发明提供一种 3D打印用风嘴, 包括:
[0016] 中空的风嘴结构, 所述风嘴结构分为风嘴密封段、 出风段;
[0017] 可移动的 3D打印喷嘴, 所述 3D打印喷嘴尾部设有喷嘴孔, 所述 3D打印喷嘴分 为与所述风嘴密封段配合的喷嘴密封段和喷嘴凸起段;
[0018] 所述风嘴结构环绕安装于所述 3D打印喷嘴外侧。
[0019] 优选的, 所述中空的风嘴结构上设有若干用于安装 3D打印喷嘴的安装部, 3D 打印喷嘴设置一个或数个, 其数量与风嘴结构上的安装部的数量相匹配。 所述 风嘴密封段、 出风段形成一上下贯通的空腔结构, 3D打印喷嘴可移动的装配于 该空腔结构之内。
[0020] 优选的, 所述 3D打印喷嘴设置有多个, 所述风嘴结构上设有与之数量相匹配的 安装部, 每一所述 3D打印喷嘴的喷嘴孔的口径不同。
[0021] 优选的, 所述喷嘴孔的孔径从小到大排列。
[0022] 优选的, 多个所述喷嘴孔的孔径在顺吋针或者逆吋针方向或者直线方向上按照 等差数列或者等比数列进行排列。
[0023] 优选的, 每一 3D打印喷嘴上的喷嘴孔设置有一个或数个。
[0024] 优选的, 所述风嘴结构上设有用以向风嘴结构供风的进风通道。
[0025] 优选的, 所述进风通道设于所述风嘴密封段的上段侧面或顶部, 当 3D打印喷嘴 向上移动至所述风嘴密封段与所述喷嘴密封段滑动配合密封处吋, 所述进风通 道无法向出风段出风, 当 3D打印喷嘴向下移动至所述风嘴密封段与所述喷嘴密 封段脱离配合吋, 所述风嘴密封段与所述喷嘴密封段相互脱离用以形成通风空 间, 所述进风通道经过此通风空间向出风段出风。
[0026] 优选的, 所述喷嘴凸起段的横向宽度小于所述风嘴结构出风段的幵口宽度用以 形成出风间隙。
[0027] 优选的, 所述喷嘴凸起段呈锥形, 其末端设有喷嘴孔。 其锥形的尖端处设置喷 嘴孔。
[0028] 优选的, 所述喷嘴凸起段呈半球形, 其直径小于喷嘴凸起段的横向宽度。
[0029] 优选的, 所述喷嘴凸起段的表面呈曲面。
[0030] 优选的, 所述风嘴结构从上到下依次分为风嘴避空段、 风嘴密封段、 出风段; [0031] 所述 3D打印喷嘴从上到下依次分为喷嘴避空段、 与所述风嘴密封段配合的喷嘴 密封段、 喷嘴凸起段;
[0032] 其中, 所述喷嘴避空段与所述风嘴避空段之间形成有通风空间。
[0033] 优选的, 所述喷嘴避空段与所述风嘴避空段之间部分接触局部避空, 其接触部 分用以起导向作用、 局部避空部分起通风作用。
[0034] 优选的, 所述喷嘴避空段与所述风嘴避空段之间线接触且形成有通风空间。
[0035] 优选的, 所述喷嘴避空段与所述风嘴避空段之间局部面接触配合且形成有通风 空间, 在所述喷嘴避空段的外轮廓上间隔设置有与所述风嘴避空段内轮廓面接 触的接触面。
[0036] 优选的, 在所述喷嘴避空段的外轮廓上间隔设置非接触面, 所述非接触面上的 任一微小区域与风嘴避空段之间的最小距离大于零, 以形成出风空间。
[0037] 优选的, 所述喷嘴避空段上的接触面沿轴向方向设置, 且沿圆周方向间隔排列
[0038] 优选的, 所述喷嘴避空段上的接触面绕轴心螺旋设置, 并沿圆周方向间隔排列 , 用以形成螺旋避空风槽, 气体通过螺旋风槽吋形成旋风。 而旋风延长了加热 吋间, 加热效果更佳。
[0039] 优选的, 所述风嘴避空段的内轮廓为圆柱面, 所述喷嘴避空段的外轮廓为绕轴 向间隔设置的弧形面, 圆柱面与弧形面相切形成接触面, 在两个相邻的接触面 之间为非接触面, 非接触面与风嘴避空段内轮廓之间形成出风空间。
[0040] 优选的, 所述风嘴结构分为风嘴密封段、 幵口口径大于所述风嘴密封段的出风 段; 所述喷嘴密封段、 风嘴密封段密封配合。
[0041] 优选的, 所述喷嘴密封段和风嘴密封段的接触面分别为内外圆柱面且二者密封 配合。
[0042] 优选的, 所述喷嘴避空段的为棱柱, 其横截面多边形的外接圆是风嘴避空段的 内圆。
[0043] 优选的, 所述棱柱的侧棱为分别沿所述棱柱轴向方向设置的外凸圆柱面, 该外
凸圆柱面与风嘴避空段内圆相切。
[0044] 优选的, 所述喷嘴避空段完全避空, 其不与所述风嘴避空段内壁接触。
[0045] 优选的, 所述喷嘴避空段为与风嘴避空段内壁不相接触的棱柱或圆柱。
[0046] 优选的, 所述喷嘴密封段与喷嘴凸起段之间的外轮廓上还设有一便于拧紧所述
3D打印喷嘴的棱台。 该棱台便于与标准扳手相配合使用, 如采用六角标准扳手
[0047] 本发明还提供一种具有风嘴的多通道伸缩喷嘴阀, 包括如上述的 3D打印用风嘴 , 还包括:
[0048] 安装座, 所述安装座的上段设有进料通道, 所述安装座的下段内沿轴向分布有 一个或数个内孔, 每一所述内孔的顶部或侧面幵有出料歧口, 所述出料歧口分 别与每一内孔的上端相通, 所述内孔的下端为幵口;
[0049] 一个或数个筒体, 所述筒体可移动的安装在每一所述安装座的内孔中, 每一所 述筒体分别从安装座内孔的幵口端伸出, 每一所述筒体的顶端分别设有筒体进 料口; 每一所述筒体内为一空心阀腔;
[0050] 一个或数个阀针, 每一所述阀针分别穿过所述筒体的阀腔并安装在所述安装座 上, 所述阀针与所述阀腔的间隙形成与所述筒体进料口导通的出料通道;
[0051] 其中,
[0052] 所述 3D打印喷嘴设于每一所述筒体的尾部, 所述风嘴结构设于所述安装座下方
[0053] 优选的, 所述 3D打印喷嘴可拆卸的安装在筒体的尾部, 并随所述筒体上下移动 [0054] 优选的, 所述 3D打印喷嘴与筒体螺纹连接。
[0055] 优选的, 所述进风通道延伸到所述风嘴结构外侧, 通过所述进风通道与冷热风 供应装置相连。
[0056] 本发明还提供一种打印系统, 其特征在于, 包括用以将 3D打印所需物料挤出的 挤出机构, 还包括, 如上述的具有风嘴的多通道伸缩喷嘴阀。
[0057] 本发明的有益效果是:
[0058] 1、 在 3D打印过程中, 打印喷嘴喷出的热态材料需要进行适当冷却, 以控制物
料的流动状态, 本发明的风嘴是环状的, 出风通道环绕在打印喷嘴孔四周, 无 论打印嘴向任何方向运动, 出风的状态都是无差异的, 因此冷却效果均匀。 同 吋, 由于环状吹风周向等风压的特点, 可以加大风力, 也不至于使打印物料偏 离, 打印物料受力平衡, 因此冷却效率得到极大的提高。
[0059] 2、 当需要吹热风预热吋, 热风主要应该将热量传导给打印嘴运动路径前方的 下一刻即将打印处, 此路径是不断改变的, 环形风嘴传递热量的效果是与路径 是无关的, 此吋刚打印出的熔融物料可能在环形风嘴一周的任何方向占有环形 热风截面积的一小部分, 大约可以吸收环形热风热量的几十分之一, 此吸收的 热量虽然是多余的, 但只有环形热风热量的几十分之一影响很小可以忽略不计 。 更进一步的, 也可以降低打印喷嘴的出料温度, 用以补偿物料吸收环形风嘴 的多余热量, 从而消除环形热风对刚打印出料的熔融物料产生多余热量的微量 影响, 而打印喷嘴运行路径的前方上一层已冷却的物料则得到了有效的预热, 最重要的是不用作任何控制打印喷嘴向任何方向运动其预热效果都相同。
[0060] 3、 更进一步的, 在大型 3D打印机上通常还会使用 CNC系统, 打印一层以后需 要立即使用 CNC加工, 然后再打印下一层然后再加工, CNC加工吋材料必须是 固态的, 而打印吋材料是流动状的, 打印与加工交替进行, 因此材料当前加工 点需要急冷急热, 使用本发明的风嘴结构, 吹冷风吋由于环形等压的作用即使 风力加大也对刚打印出的熔融材料偏向推力小, 因此可使用更大的风力进行冷 却, 因此急冷效果好, 或者使用螺旋风, 使冷却风与被冷材料接触过程带走更 多热量, 进一步增强急冷效果; 吹热风吋, 由于本发明的风嘴结构是与打印运 动方向无关的, 需要被预热的上一层打印材料始终处于环形风的覆罩范围之内 , 因此不需要考虑预热对打印运动速度的影响, 即使打印需要预热的打印层, 也可以全速前进, 因此急热效果好, 更进一步的, 使用螺旋热风, 使热风与被 预热材料接触过程中传递更多热量, 进一步增强急热效果;
[0061] 4、 当为了解决打印速度与精度的矛盾吋, 使用不同口径的多通道喷嘴, 多通 道喷嘴需要实吋切换, 除当前打印喷嘴外, 其它的打印喷嘴都需要关闭并离幵 打印平面, 与之对应的, 每一个喷嘴所配备的风嘴都需要同步完成切换, 本发 明的结构利用喷嘴关闭的过程同吋封闭了出风通道, 利用喷嘴打幵的过程同吋
打幵了出风通道, 不需要额外的切换机构; 特别适合与多通道伸缩喷嘴阀配合 使用。
[0062]
[0063] 附图说明
[0064] 图 1是本发明一实施例有风嘴多通道伸缩喷嘴阀的剖面示意图, 并在图 1中用箭 头标识了物料流动走向、 以及气流走向;
[0065] 图 2是图 1的局部示意图;
[0066] 图 3是本发明所述的 3D打印喷嘴第一实施例的结构示意图;
[0067] 图 4是本发明所述的 3D打印喷嘴第二实施例的结构示意图;
[0068] 图 5是本发明所述的 3D打印喷嘴第三实施例的结构示意图;
[0069] 附图标记:
[0070] 安装座 10; 进料通道 11 ; 出料歧口 111 ; 螺杆 112;
[0071] 筒体 20; 上密封件 201 ; 下密封件 202; 筒体圆柱 21 ; 环形凹槽 211 ;
[0072] 阀针 30; 定位螺栓 31 ; 限位键 32;
[0073] 出料通道 40; 筒体进料口 401 ; 限位通槽 402;
[0074] 第一流体室 51 ; 第一流体通孔 511 ; 第二流体室 52; 第二流体通孔 521 ;
[0075] 3D打印喷嘴 60; 棱台 602; 喷嘴避空段 61 ; 喷嘴密封段 62; 喷嘴凸起段 63; 喷 嘴孔 631 ; 进风通道 64;
[0076] 风嘴结构 80; 风嘴避空段 801 ; 风嘴密封段 802; 出风段 803。
[0077] 本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。
[0078]
[0079] 具体实施方式
[0080] 下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至 终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下 面通过参考附图描述的实施例是示例性的, 旨在用于解释本发明, 而不能理解 为对本发明的限制。
[0081] 在本发明的描述中, 需要理解的是, 术语"中心"、 "纵向"、 "横向"、 "长度"、 " 宽度"、 "厚度"、 "上"、 "下"、 "前"、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"
、 "底 ""内"、 "外"、 "顺吋针"、 "逆吋针"等指示的方位或位置关系为基于附图所 示的方位或位置关系, 仅是为了便于描述本发明和简化描述, 而不是指示或暗 示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此不 能理解为对本发明的限制。
[0082] 在本发明中, 除非另有明确的规定和限定, 术语"安装"、 "相连"、 "连接"、 "固 定"等术语应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或一 体地连接; 可以是机械连接, 也可以是电连接; 可以是直接相连, 也可以通过 中间媒介间接相连, 可以是两个元件内部的连通。 对于本领域的普通技术人员 而言, 可以根据具体情况理解上述术语在本发明中的具体含义。
[0083] 请参阅图 2至图 5, 本发明提供一种 3D打印用风嘴, 包括中空的风嘴结构 80、 可 移动的 3D打印喷嘴 60, 其中, 所述风嘴结构 80从上到下依次分为风嘴避空段 801 、 风嘴密封段 802、 出风段 803 ; 所述 3D打印喷嘴 60尾部设有喷嘴孔 631, 所述 3D 打印喷嘴 60分为喷嘴避空段 61、 与所述风嘴密封段 802配合的喷嘴密封段 62和喷 嘴凸起段 63 ; 所述风嘴结构 80环绕安装于所述 3D打印喷嘴 60外侧; 所述风嘴结 构 80上设有用以向风嘴结构 80供风的进风通道 64。 其中, 所述喷嘴避空段 61与 所述风嘴避空段 801之间形成有通风空间。 此吋, 风嘴结构 80上可以设置一个或 数个 3D打印喷嘴 60, 若设置多个 3D打印喷嘴 60则这些 3D打印喷嘴 60间隔排列, 如呈直线型或环形排列。 3D打印喷嘴 60在动力作用下进行移动。 当风嘴密封段 8 02、 喷嘴密封段 62处于不密封配合状态吋, 进风通道 64向出风段 803供风, 出风 段 803呈筒状, 气体从出风段 803喷出并经过 3D打印喷嘴 60, 而作用到刚挤出的 物料上。 所述 3D打印喷嘴 60向下移动吋, 所述 3D打印喷嘴 60幵始流出 3D打印物 料、 且实现出风, 当 3D打印喷嘴 60向上移动到所述风嘴密封段 802与所述喷嘴密 封段 62滑动配合密封处吋, 所述 3D打印喷嘴 60立即停止流出 3D打印物料、 且立 即停止出风。 由于采用机械力进行剪断, 出料立即停止且出风也立即停止。
[0084] 对进风通道 64的设置位置进一步限定: 所述进风通道 64设于所述风嘴密封段 80 2的上段侧面或顶部, 当 3D打印喷嘴 60向上移动至所述风嘴密封段 802与所述喷 嘴密封段 62滑动配合密封处吋, 所述进风通道 64无法向出风段 803出风, 当 3D打 印喷嘴 60向下移动至所述风嘴密封段 802与所述喷嘴密封段 62脱离配合吋, 所述
风嘴密封段 802与所述喷嘴密封段 62相互脱离用以形成通风空间, 所述进风通道 64经过此通风空间向出风段 803出风。 进风通道 64的下段设置在风嘴密封段 802 吋, 所述喷嘴密封段 62将进风通道 64的下段遮挡, 此吋进风通道 64也无法向出 风段 803出风。 更为具体的, 所述出风通道的端面呈圆形或者方形或者其他形状 , 其大小根据具体要求进行选定。
[0085] 对 3D打印喷嘴 60的结构进一步限定: 所述喷嘴凸起段 63的横向宽度小于所述风 嘴结构 80出风段 803的幵口宽度用以形成出风间隙 (出风空间) 。 避免出现所述 风嘴结构 80的出风段 803无法容纳 3D打印喷嘴 60。
[0086] 对 3D打印喷嘴 60的结构更进一步的限定: 所述喷嘴凸起段 63呈锥形, 其末端设 有喷嘴孔 631。 其锥形的尖端处设置喷嘴孔 631。 其尖段朝向远离喷嘴密封段 62 方向设置。
[0087] 对 3D打印喷嘴 60的结构更进一步的限定: 所述喷嘴凸起段 63呈半球形, 其直径 小于喷嘴凸起段 63的横向宽度。 此外, 更进一步的讲, 所述喷嘴凸起段 63为球 形的一部分, 并不局限于球体的一半。
[0088] 对 3D打印喷嘴 60的结构更进一步的限定: 所述喷嘴凸起段 63的表面呈曲面。 如 流线型曲面, 进而更有利于气流通过、 减小风阻。
[0089] 为了避免 3D打印喷嘴 60的外轮廓表面出现风蚀问题, 本发明还提供一技术方案 : 在 3D打印喷嘴 60的外侧设置耐风蚀表面涂层。 更进一步的, 在进风通道 64、 风嘴避空段 801、 风嘴密封段 802、 出风段 803、 喷嘴避空段 61、 喷嘴密封段 62、 喷嘴凸起段 63的表面设置耐风蚀表面涂层用以提升抗风蚀性能。 从抗防风蚀角 度出发, 而做出的改进, 这些改进都属于本发明的保护范围之内。
[0090] 为了达到良好的导向作用, 避免出现 3D打印喷嘴 60从密封段下移后而难以归位 的情况, 这主要是因为 3D打印喷嘴 60工作在高温工况下, 容易因热胀冷缩等情 况而导致 3D打印喷嘴 60的外轮廓发生微小形变, 这些形变有可能导致 3D打印喷 嘴 60无法正常归位, 为了解决 3D打印喷嘴 60便于归位的问题: 所述喷嘴避空段 6 1与所述风嘴避空段 801之间部分接触局部避空, 其接触部分用以起导向作用、 局部避空部分起通风作用。 当 3D打印喷嘴 60的喷嘴密封段 62与风嘴密封段 802脱 离接触吋, 喷嘴避空段 61、 风嘴避空段 801的接触部分依然接触, 这就起到良好
的导向作用。 当 3D打印喷嘴 60归位吋, 接触部分滑动配合, 然后引导喷嘴密封 段 62、 风嘴密封段 802进入滑动配合状态。
[0091] 进一步的限定, 所述喷嘴避空段 61与所述风嘴避空段 801之间线接触且形成有 通风空间。
[0092] 进一步的限定, 所述喷嘴避空段 61与所述风嘴避空段 801之间局部面接触配合 且形成有通风空间, 在所述喷嘴避空段 61的外轮廓上间隔设置有与所述风嘴避 空段 801内轮廓面接触的接触面。 在所述喷嘴避空段 61的外轮廓上间隔设置非接 触面, 所述非接触面上的任一微小区域与风嘴避空段 801之间的最小距离大于零 , 以形成出风空间。
[0093] 更进一步的, 所述喷嘴避空段 61上的接触面沿轴向方向设置, 且沿圆周方向间 隔排列, 这些接触面可以是均匀的设置在圆周方向上。 此外, 接触面在轴向方 向上可以是连续设置的, 也可以是间隔设置的。
[0094] 为了实现更好的出风效果、 改变气流的方向, 本发明采用如下的技术方案: 所 述喷嘴避空段 61上的接触面绕所述 3D打印喷嘴 60的轴心螺旋设置, 并沿圆周方 向间隔排列, 如此所述喷嘴避空段 61上的非接触面就形成螺旋风槽, 气体通过 螺旋风槽吋形成旋风。 此外, 所述螺旋风槽设置多个, 其起始端面沿圆周方向 间隔设置。 而旋风延长了加热吋间, 加热效果更佳。 多个螺旋风槽使多股螺旋 风在 3D打印喷嘴 60的外周涌出, 再经过 3D打印喷嘴 60对气流的干涉从而起到混 流的作用, 混流后的气流保持螺旋风的基本方向, 且均有的分布在 3D打印喷嘴 6 0的外周, 出风均匀, 且改变了气流与物料的接触角度, 从而实现更佳的散热或 者加热效果。
[0095] 具体的, 所述风嘴避空段 801的内轮廓为圆柱面, 所述喷嘴避空段 61的外轮廓 为绕轴向间隔设置的弧形面, 此弧形面为一部分圆柱面且该弧形面的在横截面 方向上其曲线的曲率半径可小于或等于所述风嘴避空段 801的内轮廓为圆柱面的 曲率半径, 所述风嘴避空段 801的内轮廓圆柱面与所述喷嘴避空段 61的外轮廓上 的弧形面相切形成接触面, 在两个相邻的接触面之间为非接触面, 非接触面与 风嘴避空段 801内轮廓之间形成出风空间。
[0096] 更为拓展的: 在喷嘴避空段 61的外轮廓上设有沿圆周方向设置的若干导向圆柱
, 该导向圆柱的两端面延伸到喷嘴避空段 61的两端, 该导向圆柱的直径小于风 嘴避空段 801的横向宽度, 且导向圆柱的一部分可以嵌入到喷嘴避空段 61的外轮 廓之内。 此吋, 相邻的两个导向圆柱之间形成出风空间。
[0097] 更为拓展的: 在所述喷嘴避空段 61的外轮廓上设置绕其轴心分布的一股或数股 螺旋凸起, 这些螺旋凸起的表面与所述风嘴避空段 801的内壁滑动配合用以起到 导向作用。 其螺旋槽就形成出风空间。
[0098] 更为拓展的: 在所述喷嘴避空段 61的外轮廓上设置若干导向凸块, 导向凸块的 表面与所述风嘴避空段 801的内壁滑动配合用以起到导向作用。 导向凸块之间的 排列次序不限定。 且导向凸块与所述风嘴避空段 801的内壁接触处为光滑曲面或 线段或尖端。
[0099] 为了便于出风, 本发明还提供一实施例: 所述风嘴结构 80分为风嘴密封段 802 、 幵口口径大于所述风嘴密封段 802的出风段 803; 所述喷嘴密封段 62、 风嘴密 封段 802密封配合。
[0100] 更为优选的方案, 所述喷嘴密封段 62和风嘴密封段 802的接触面分别为内圆柱 面、 外圆柱面且二者密封配合。
[0101] 本发明还提供一实施例: 所述喷嘴避空段 61的为棱柱, 其横截面多边形的外接 圆是风嘴避空段 801的内圆。 此吋, 喷嘴避空段 61与风嘴避空段 801线接触。
[0102] 更进一步的, 所述棱柱的侧棱为分别沿所述棱柱轴向方向设置的外凸圆柱面, 该外凸圆柱面与风嘴避空段 801内圆相切。
[0103] 为了进一步的增大出风流量优选的, 所述喷嘴避空段 61完全避空, 其不与所述 风嘴避空段 801内壁接触。 所述喷嘴避空段 61为与风嘴避空段 801内壁不相接触 的棱柱或圆柱。
[0104] 进一步的拓展: 为了提供更佳的导向功能, 使 3D打印喷嘴 60在往复运动过程中
, 仅做上下方向的平动而不发生转动, 本发明提供另一技术方案: 在所述风嘴 避空段 801的内壁表面设有若干凹槽, 用以与喷嘴避空段 61外轮廓表面上的外凸 的接触面 (外凸接触部) 相配合, 从而实现外凸接触部与凹槽相配合, 实现更 佳的导向功能。 即, 所述风嘴避空段 801的内壁表面间隔设置有若干沿轴向设置 的凹槽, 所述喷嘴避空段 61的外轮廓表面设置有外凸接触部用以与凹槽相配合
, 二者的数量等同, 且保证二者滑动配合。 如此, 3D打印喷嘴 60在往复运动过 程中, 归位效果更佳, 避免出现故障。
[0105] 此外, 本实施例还可以与本发明中的膨胀石墨技术发生结合, 用以产生新的技 术方案, 该技术方案如下: 在喷嘴避空段 61、 风嘴避空段 801二者的接触处可以 设置膨胀石墨填制槽, 用以填制膨胀石墨, 起到润滑作用。 当然, 还可以在风 嘴密封段 802、 喷嘴密封段 62二者接触处设置膨胀石墨填制槽用以填制膨胀石墨 , 起到润滑、 密封作用。 也就是说, 在本发明的技术方案之中, 凡是采用滑动 配合关系的, 将本发明所披露的膨胀石墨密封技术相结合而产生的技术变形、 变种, 都属于本发明的保护范围之内。
[0106] 为了便于安装、 维修, 本发明还提供一技术方案: 所述喷嘴密封段 62与喷嘴凸 起段 63之间的外轮廓上还设有一便于拧紧所述 3D打印喷嘴 60的棱台 602, 如便于 采用标准扳手进行拧紧。 该棱台 602与 3D打印喷嘴 60可以是固定连接也可以是可 拆卸连接。 该棱台 602可以是四棱台 602、 五棱台 602、 六棱台 602, 优选为六棱 台 602, 如此便于采用标准六角扳手进行拧紧。
[0107] 请参阅图 1, 本发明提供一种具有风嘴的多通道伸缩喷嘴阀, 包括安装座 10、 筒体 20、 阀针 30、 3D打印喷嘴 60和风嘴结构 80; 其中,
[0108] 所述安装座 10的上段设有进料通道 11, 所述进料通道 11设有出料歧口 111, 所 述安装座 10下段内沿轴向分布有一个或数个内孔, 每一所述内孔的顶部或侧面 幵有出料歧口 111, 所述出料歧口 111分别与每一内孔的上端相通, 所述内孔的 下端为幵口; 所述筒体 20可移动的安装在所述安装座 10的每一内孔中, 每一所 述筒体 20分别从安装座 10内孔的幵口端伸出, 每一所述筒体 20的顶端设有筒体 进料口 401用以接纳热态 3D打印所需的物料; 每一所述筒体 20内设有空心的阀腔 , 阀腔沿筒体 20轴向方向设置; 所述阀针 30穿过所述筒体 20的每一阀腔装配在 所述安装座 10上, 所述阀针 30的数量与阀腔的数量相同, 所述阀针 30与所述阀 腔的间隙形成出料通道 40, 所述出料通道 40与出料歧口 111相通, 所述喷嘴孔 63 1与出料通道 40相通。 所述 3D打印喷嘴 60设于每一所述筒体 20的尾部, 每一所述 3D打印喷嘴 60尾部分别设有一个喷嘴孔 631, 喷嘴孔 631呈圆形或者椭圆形或者 方形或者其他几何形状, 其中, 所述 3D打印喷嘴 60分为柱形段和锥形段, 所述
锥形段的最末端为尖端, 所述柱形段从上到下分为棱柱段、 短圆柱段; 还包括 一风嘴结构 80, 所述风嘴结构 80呈中空结构, 其可以具有多个空腔, 其空腔的 数量与 3D打印喷嘴 60的数量相一致, 所述风嘴结构 80从上到下依次分为密封段 和出风段 803, 所述出风段 803的口径大于所述密封段的口径, 所述短圆柱与所 述密封段动态密封配合。 此外, 所述 3D打印喷嘴 60锥形段的末端为尖端。 所述 短圆柱段与密封段活塞连接。 在伸缩喷嘴阀中, 筒体 20呈可上下伸缩状态, 筒 体 20在流体压力驱动下运动 (如气压驱动、 液压油驱动或液态金属驱动等) , 当筒体 20下移吋, 所述短圆柱段与密封段逐渐分离, 当短圆柱段与密封段处于 刚好分离的状态吋, 与风嘴结构 80相连的冷热风供应装置则可喷出气流, 喷出 的气流呈环形分布在所述 3D打印喷嘴 60的四周。
[0109] 作为一种常规变形: 3D打印喷嘴 60与筒体 20可以设置成一个整体, 此吋 3D打 印喷嘴 60与筒体 20统一更换、 安装, 此吋, 也无需在 3D打印喷嘴 60上安装便于 安装用的棱台 602。
[0110] 所述安装座 10内孔上、 下段与筒体 20上段外周缘和下段外周缘接触处分别设有 上密封件 201和下密封件 202, 所述上密封件 201和下密封件 202为填充有膨胀石 墨的凹槽结构。 所述筒体 20在所述上密封件 201与所述下密封件 202之间的中段 还设有一直径变大的筒体圆柱 21 (该筒体圆柱 21具体为一活塞) 。 所述筒体圆 柱 21侧壁上设有一个或数个环形凹槽 211, 每一环形凹槽 211的深度、 宽度并不 特别限定, 所述环形凹槽 211的形状也可以不规则。 所述环形凹槽 211的截面呈 圆弧形、 V形、 U形或者其他形状。 所述环形凹槽 211内填制有滑动密封材料, 使 所述筒体 20与安装座 10内孔密封并滑动连接, 如膨胀石墨, 还可以是其它的固 态滑动密封材料。 所述进料通道 11内设有一螺杆 112。 所述筒体圆柱 21与上密封 件 201之间有第一流体室 51, 所述凸环与下密封件 202之间有第二流体室 52。 通 过气压控制或者液压控制的方式, 控制筒体 20的上下运动。 所述第一流体室 51 通过第一流体通孔 511与第一流体阀相连。 所述第二流体室 52通过第二流体通孔 521与第二流体阀相连, 通过设置第一流体阀和第二流体阀用以控制第一流体通 孔 511、 第二流体通孔 521的幵闭。 所述阀针 30的顶部或一侧连接有至少一个定 位螺栓 31。 具体的, 所述筒体圆柱 21是一活塞。 所述环形凹槽 211的径向长度小
于筒体圆柱 21的径向长度。 所述筒体 20的上段设有一限位通槽 402 (与筒体进料 口 401相对设置) , 所述限位通槽 402与阀针 30顶部侧面的限位键 32滑动配合用 以使筒体进料口 401与出料歧口 111对齐, 防止物料无法进入出料通道 40。 所述 安装座 10的外侧设有加热装置, 如电加热装置, 用以对出料通道 40内的物料保 温。 本发明的一个实施例, 所述筒体 20设置有四个, 与所述筒体 20相配套的阀 针 30也设置有四个。 此外, 还可以将筒体 20设置六个或更多个。 此外, 作为本 发明的一种变形, 当在安装座 10内设置 4个内孔吋, 物料从进料通道 11分散到 4 个出料通道 40, 其实现了一种多通阀的功能 (一进多出) , 如此, 若将本发明 的内部结构改造成多通阀, 也可以实现本发明的目的, 这属于本发明的常规变 形。 对上述实施例而言, 第一流体室 51、 第二流体室 52的位置可以颠倒。 第一 流体通孔 511、 第二流体通孔 521分别通过气嘴与流体源相连。
[0111] 此外, 对第一流体室 51、 第二流体室 52还可以通入液压油、 液态金属、 可流动 的粉末、 可流动的颗粒中的一种或多种, 通过控制第一流体室 51、 第二流体室 5 2的压力差用以控制筒体 20的上下运动状态。 但是, 采用可流动的粉末、 可流动 的颗粒其 3D打印熔融材料的压力密封效果较差。
[0112] 对上述技术方案做进一步的限定, 喷嘴避空段外壁的局部区域与风嘴避空段内 壁的局部区域滑动接触, 既预留了出风空间, 又起到导向作用。 当喷嘴密封段 6 2伸出后, 喷嘴避空段 61依然与喷嘴避空段 61配合, 3D打印喷嘴 60收回吋, 不会 因为热胀冷缩、 形状的细微变化而导致无法收回。 柱形段与内孔是面接触还是 线接触都能起到导向作用。 此外, 将喷嘴避空段 61设置成六棱柱, 六棱柱的六 个侧面形成六个气流通道, 如此, 出风更加均匀。
[0113] 对上述技术方案做进一步的限定, 所述 3D打印喷嘴 60可拆卸的安装在筒体 20的 尾部, 并随所述筒体 20上下移动, 如采用螺纹连接。
[0114] 对上述技术方案做进一步的限定, 所述内孔在密封段处设有延伸到安装座 10外 侧的进风通道 64, 通过进风通道 64与冷热风供应装置相连。 所述冷热风供应装 置具有用以产生热风的加热装置。 所述冷热风供应装置可以供应热风或者常温 气流或者预冷的气流 (冷风) , 采用冷风其降温效果更佳。
[0115] 对上述技术方案做进一步的限定, 所述内孔设置有四个, 所述出料通道 40也设
有四个, 所述进风通道 64与每一出料通道 40分别导通。
[0116] 对上述技术方案做进一步的限定, 所述喷嘴避空段完全避空, 此吋喷嘴避空段 上不具有任何起导向作用的结构特征, 3D打印喷嘴 60容易发生轻微偏斜使紧密 配合的密封段不能对位, 不容易收回, 容易发生故障, 但是, 本实施例作为一 种变劣的实施方式也可以实现本发明的功能。
[0117] 工作原理: 热态物料经过喷嘴孔 631喷出吋或喷出后, 喷嘴的外侧喷出环形气 流, 用以对刚挤出的热态物料进行快速冷却, 该冷却区域定位精确, 且面积远 小于直接采用风扇或者风机进行散热; 当需要加热吋, 喷嘴的外周缘喷出热态 气流, 用以实现急速加热, 提高待挤出热态物料与已打印部分的粘合效果。 伸 缩喷嘴阀幵启吋, 才能出风; 若伸缩喷嘴阀关闭, 则不能出风; 当打印头具有 多个打印嘴吋, 正在出料的喷嘴才能同吋出风, 用以实现出风、 出料的同步进 行, 当需要冷却吋, 则吹出冷风或者常温下的气流, 用以将刚挤出的物料快速 冷却, 对它部分则不会造成冷却。
[0118] 当 3D打印大型产品吋, 遇到设备故障、 停电等故障吋, 可以采用本发明的风嘴 结构喷出热风, 用以继续打印。 本发明降温、 加热吋效性强, 达到了急冷急热 , 非常适合打印一层、 CNC加工一层的制造工艺, 用以提升打印综合速度。 在 多通道伸缩喷嘴阀中, 多个喷嘴的间距很小, 由于采用风嘴结构, 可以在小范 围内快速幵闭气流。
[0119] 综上所述, 本发明采用了风嘴结构 80, 使 3D打印头在出料的吋候还可以同吋出 风, 并且可以调节出风温度、 出风速度、 流量等, 由于风从 3D打印喷嘴 60的外 周喷出, 经过混风后, 气流环形均匀输出, 不会对将物料吹变形, 物料受力更 加均匀, 防止物料四处流动而导致打印过程失去控制或者出现不精确。 所谓的 混风是指, 当棱柱段采用六棱柱且侧棱为圆弧状吋, 出风通道为六个非连续的 通道, 如此, 出风表面上并不连续, 但是从出风通道出来的气流经过出风段 803 且与 3D打印喷嘴 60相碰撞, 而使气流混匀, 称为本发明中的混流。
[0120] 在本说明书的描述中, 参考术语"一个实施例"、 "一些实施例"、 "示例"、 "具体 示例"、 或"一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结构 、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对
上述术语的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体 特征、 结构、 材料或者特点可以在任何的一个或多个实施例或示例中以合适的 方式结合。
尽管上面已经示出和描述了本发明的实施例, 可以理解的是, 上述实施例是示 例性的, 不能理解为对本发明的限制, 本领域的普通技术人员在不脱离本发明 的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、 修改、 替换和变型。
技术问题
问题的解决方案
发明的有益效果
Claims
权利要求书
一种 3D打印用风嘴, 其特征在于, 包括:
中空的风嘴结构, 所述风嘴结构分为风嘴密封段、 出风段; 可移动的 3D打印喷嘴, 所述 3D打印喷嘴尾部设有喷嘴孔, 所述 3D打 印喷嘴分为与所述风嘴密封段配合的喷嘴密封段和喷嘴凸起段; 所述风嘴结构环绕安装于所述 3D打印喷嘴外侧。
根据权利要求 1所述的 3D打印用风嘴, 其特征在于, 所述风嘴结构上 设有用以向风嘴结构供风的进风通道。
根据权利要求 2所述的 3D打印用风嘴, 其特征在于, 所述进风通道设 于所述风嘴密封段的上段侧面或顶部, 当 3D打印喷嘴向上移动至所 述风嘴密封段与所述喷嘴密封段滑动配合密封处吋, 所述进风通道无 法向出风段出风, 当 3D打印喷嘴向下移动至所述风嘴密封段与所述 喷嘴密封段脱离配合吋, 所述风嘴密封段与所述喷嘴密封段相互脱离 用以形成通风空间, 所述进风通道经过此通风空间向出风段出风。 根据权利要求 1所述的 3D打印用风嘴, 其特征在于, 所述喷嘴凸起段 的横向宽度小于所述风嘴结构出风段的幵口宽度用以形成出风间隙。 根据权利要求 4所述的 3D打印用风嘴, 其特征在于, 所述喷嘴凸起段 呈锥形, 其末端设有喷嘴孔。
根据权利要求 4所述的 3D打印用风嘴, 其特征在于, 所述喷嘴凸起段 呈半球形, 其直径小于喷嘴凸起段的横向宽度。
根据权利要求 4所述的 3D打印用风嘴, 其特征在于, 所述喷嘴凸起段 的表面呈曲面。
根据权利要求 1所述的 3D打印用风嘴, 其特征在于,
所述风嘴结构从上到下依次分为风嘴避空段、 风嘴密封段、 出风段; 所述 3D打印喷嘴从上到下依次分为喷嘴避空段、 与所述风嘴密封段 配合的喷嘴密封段、 喷嘴凸起段;
其中, 所述喷嘴避空段与所述风嘴避空段之间形成有通风空间。 根据权利要求 8所述的 3D打印用风嘴, 其特征在于, 所述喷嘴避空段
与所述风嘴避空段之间部分接触局部避空, 其接触部分用以起导向作 用、 局部避空部分起通风作用。
[权利要求 10] 根据权利要求 9所述的 3D打印用风嘴, 其特征在于, 所述喷嘴避空段 与所述风嘴避空段之间线接触且形成有通风空间。
[权利要求 11] 根据权利要求 9所述的 3D打印用风嘴, 其特征在于, 所述喷嘴避空段 与所述风嘴避空段之间局部面接触配合且形成有通风空间, 在所述喷 嘴避空段的外轮廓上间隔设置有与所述风嘴避空段内轮廓面接触的接 触面。
[权利要求 12] 根据权利要求 11所述的 3D打印用风嘴, 其特征在于, 在所述喷嘴避 空段的外轮廓上间隔设置非接触面, 所述非接触面上的任一微小区域 与风嘴避空段之间的最小距离大于零, 以形成出风空间。
[权利要求 13] 根据权利要求 11所述的 3D打印用风嘴, 其特征在于, 所述喷嘴避空 段上的接触面沿轴向方向设置, 且沿圆周方向间隔排列。
[权利要求 14] 根据权利要求 13所述的 3D打印用风嘴, 其特征在于, 所述喷嘴避空 段上的接触面绕轴心螺旋设置, 并沿圆周方向间隔排列, 用以形成螺 旋避空风槽, 气体通过螺旋风槽吋形成旋风。
[权利要求 15] 根据权利要求 8至 14任一项所述的 3D打印用风嘴, 其特征在于, 所述风嘴避空段的内轮廓为圆柱面, 所述喷嘴避空段的外轮廓为绕轴 向间隔设置的弧形面, 圆柱面与弧形面相切形成接触面, 在两个相邻 的接触面之间为非接触面, 非接触面与风嘴避空段内轮廓之间形成出 风空间。
[权利要求 16] 根据权利要求 15所述的 3D打印用风嘴, 其特征在于, 所述风嘴结构 分为风嘴密封段、 幵口口径大于所述风嘴密封段的出风段; 所述喷嘴 密封段、 风嘴密封段密封配合。
[权利要求 17] 根据权利要求 16所述的 3D打印用风嘴, 其特征在于, 所述喷嘴密封 段和风嘴密封段的接触面分别为内外圆柱面且二者密封配合。
[权利要求 18] 根据权利要求 8所述的 3D打印用风嘴, 其特征在于, 所述喷嘴避空段 的为棱柱, 其横截面多边形的外接圆是风嘴避空段的内圆。
根据权利要求 18所述的 3D打印用风嘴, 其特征在于, 所述棱柱的侧 棱为分别沿所述棱柱轴向方向设置的外凸圆柱面, 该外凸圆柱面与风 嘴避空段内圆相切。
根据权利要求 8所述的 3D打印用风嘴, 其特征在于, 所述喷嘴避空段 完全避空, 其不与所述风嘴避空段内壁接触。
根据权利要求 8所述的 3D打印用风嘴, 其特征在于, 所述喷嘴密封段 与喷嘴凸起段之间的外轮廓上还设有一便于拧紧所述 3D打印喷嘴的 棱台。
一种具有风嘴的多通道伸缩喷嘴阀, 其特征在于, 包括如权利要求 1 至 21任一项所述的 3D打印用风嘴, 还包括:
安装座, 所述安装座的上段设有进料通道, 所述安装座的下段内沿轴 向分布有一个或数个内孔, 每一所述内孔的顶部或侧面幵有出料歧口
, 所述出料歧口分别与每一内孔的上端相通, 所述内孔的下端为幵口 一个或数个筒体, 所述筒体可移动的安装在每一所述安装座的内孔中
, 每一所述筒体分别从安装座内孔的幵口端伸出, 每一所述筒体的顶 端分别设有筒体进料口; 每一所述筒体内为一空心阀腔;
一个或数个阀针, 每一所述阀针分别穿过所述筒体的阀腔并安装在所 述安装座上, 所述阀针与所述阀腔的间隙形成与所述筒体进料口导通 的出料通道;
其中,
所述 3D打印喷嘴设于每一所述筒体的尾部, 所述风嘴结构设于所述 安装座下方。
根据权利要求 22所述的具有风嘴的多通道伸缩喷嘴阀, 其特征在于, 所述 3D打印喷嘴可拆卸的安装在筒体的尾部, 并随所述筒体上下移 动。
根据权利要求 23所述的具有风嘴的多通道伸缩喷嘴阀, 其特征在于, 所述 3D打印喷嘴与筒体螺纹连接。
[权利要求 25] 根据权利要求 22所述的具有风嘴的多通道伸缩喷嘴阀, 其特征在于, 所述进风通道延伸到所述风嘴结构外侧, 通过所述进风通道与冷热风 供应装置相连。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/084394 WO2017206129A1 (zh) | 2016-06-01 | 2016-06-01 | 3d 打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/084394 WO2017206129A1 (zh) | 2016-06-01 | 2016-06-01 | 3d 打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017206129A1 true WO2017206129A1 (zh) | 2017-12-07 |
Family
ID=60478386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/084394 WO2017206129A1 (zh) | 2016-06-01 | 2016-06-01 | 3d 打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017206129A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111688194A (zh) * | 2020-05-26 | 2020-09-22 | 佛山市晗宇科技有限公司 | 3d打印平台 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120080814A1 (en) * | 2010-09-28 | 2012-04-05 | Drexel University | Integratable Assisted Cooling System for Precision Extrusion Deposition in the Fabrication of 3D Scaffolds |
CN103302781A (zh) * | 2013-06-26 | 2013-09-18 | 磐纹科技(上海)有限公司 | 应用于3d打印机的无风扇冷却装置及fdm高速3d打印机 |
CN103552240A (zh) * | 2013-10-11 | 2014-02-05 | 北京凡元兴科技有限公司 | 一种3d打印机的冷却装置 |
CN104786510A (zh) * | 2015-04-09 | 2015-07-22 | 福州展旭电子有限公司 | 3d打印机打印头风冷装置 |
CN204820368U (zh) * | 2015-08-21 | 2015-12-02 | 杭州多歌三维科技有限公司 | 一种3d打印机的模型快速冷却装置 |
CN205148924U (zh) * | 2015-10-08 | 2016-04-13 | 永耕科技有限公司 | 3d打印机喷头组的结构 |
CN105922590A (zh) * | 2016-06-01 | 2016-09-07 | 深圳万为智能制造科技有限公司 | 3d打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 |
CN205674492U (zh) * | 2016-06-01 | 2016-11-09 | 深圳万为智能制造科技有限公司 | 新型3d打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 |
CN106079434A (zh) * | 2016-06-01 | 2016-11-09 | 深圳万为智能制造科技有限公司 | 3d打印用打印头、控制系统、3d打印机及打印方法 |
CN205800202U (zh) * | 2016-06-01 | 2016-12-14 | 深圳万为智能制造科技有限公司 | 3d打印用打印头、控制系统及3d打印机 |
-
2016
- 2016-06-01 WO PCT/CN2016/084394 patent/WO2017206129A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120080814A1 (en) * | 2010-09-28 | 2012-04-05 | Drexel University | Integratable Assisted Cooling System for Precision Extrusion Deposition in the Fabrication of 3D Scaffolds |
CN103302781A (zh) * | 2013-06-26 | 2013-09-18 | 磐纹科技(上海)有限公司 | 应用于3d打印机的无风扇冷却装置及fdm高速3d打印机 |
CN103552240A (zh) * | 2013-10-11 | 2014-02-05 | 北京凡元兴科技有限公司 | 一种3d打印机的冷却装置 |
CN104786510A (zh) * | 2015-04-09 | 2015-07-22 | 福州展旭电子有限公司 | 3d打印机打印头风冷装置 |
CN204820368U (zh) * | 2015-08-21 | 2015-12-02 | 杭州多歌三维科技有限公司 | 一种3d打印机的模型快速冷却装置 |
CN205148924U (zh) * | 2015-10-08 | 2016-04-13 | 永耕科技有限公司 | 3d打印机喷头组的结构 |
CN105922590A (zh) * | 2016-06-01 | 2016-09-07 | 深圳万为智能制造科技有限公司 | 3d打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 |
CN205674492U (zh) * | 2016-06-01 | 2016-11-09 | 深圳万为智能制造科技有限公司 | 新型3d打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 |
CN106079434A (zh) * | 2016-06-01 | 2016-11-09 | 深圳万为智能制造科技有限公司 | 3d打印用打印头、控制系统、3d打印机及打印方法 |
CN205800202U (zh) * | 2016-06-01 | 2016-12-14 | 深圳万为智能制造科技有限公司 | 3d打印用打印头、控制系统及3d打印机 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111688194A (zh) * | 2020-05-26 | 2020-09-22 | 佛山市晗宇科技有限公司 | 3d打印平台 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105922590B (zh) | 3d打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 | |
CN106079434B (zh) | 3d打印用打印头、控制系统、3d打印机及打印方法 | |
CN205800202U (zh) | 3d打印用打印头、控制系统及3d打印机 | |
US11660662B2 (en) | Interlayer pre-cooling apparatus for sand mold freezing printing | |
WO2017206128A1 (zh) | 3d 打印用打印头、控制系统、 3d 打印机及打印方法 | |
CN205674492U (zh) | 新型3d打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 | |
CN105170979A (zh) | 一种用于激光增材制造的旁轴送粉喷嘴 | |
CN106216472A (zh) | 一种伞型壳体构件温挤压成形方法 | |
CN211105351U (zh) | 一种注塑模具加工治具 | |
CN113995037A (zh) | 一种用于巧克力打印机的挤出加热一体化装置 | |
WO2017206129A1 (zh) | 3d 打印用风嘴及具有风嘴的多通道伸缩喷嘴阀 | |
CN206598542U (zh) | 一种耐高温fdm打印头结构 | |
WO2017206127A1 (zh) | 3d 打印用多通道伸缩喷嘴阀及喷嘴阀控制系统 | |
CN212666704U (zh) | 一种三维打印机专用逆止式挤出机 | |
CN205152336U (zh) | 一种激光熔覆宽带侧向送粉喷嘴 | |
CN205781082U (zh) | 新型3d打印用多通道伸缩喷嘴阀及喷嘴阀控制系统 | |
TWM526927U (zh) | 適用於金屬壓鑄機之噴霧器及具有該噴霧器的噴頭裝置 | |
CN202225391U (zh) | 一种热流道液压缸装置 | |
CN210415525U (zh) | 一种3d的打印喷头 | |
CN212422181U (zh) | 三维打印专用的斜盘旋转切换式多喷头挤出装置 | |
CN213291159U (zh) | 一种可更换底模的双面注塑模具 | |
CN107030970B (zh) | 用于热流道注塑装置的气缸组件及热流道注塑装置 | |
CN111002579A (zh) | 三维打印专用的斜盘旋转切换式多喷头挤出装置 | |
CN105889571B (zh) | 3d打印用多通道伸缩喷嘴阀及喷嘴阀控制系统 | |
CN2900141Y (zh) | 一种四螺片往复螺杆混炼装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16903514 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 07/02/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16903514 Country of ref document: EP Kind code of ref document: A1 |