WO2017206057A1 - 资源分配方法和装置 - Google Patents

资源分配方法和装置 Download PDF

Info

Publication number
WO2017206057A1
WO2017206057A1 PCT/CN2016/084073 CN2016084073W WO2017206057A1 WO 2017206057 A1 WO2017206057 A1 WO 2017206057A1 CN 2016084073 W CN2016084073 W CN 2016084073W WO 2017206057 A1 WO2017206057 A1 WO 2017206057A1
Authority
WO
WIPO (PCT)
Prior art keywords
small station
ordinary small
information
node
ordinary
Prior art date
Application number
PCT/CN2016/084073
Other languages
English (en)
French (fr)
Inventor
杨常青
伍勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680085065.8A priority Critical patent/CN109076634B/zh
Priority to PCT/CN2016/084073 priority patent/WO2017206057A1/zh
Priority to EP16903442.8A priority patent/EP3445130B1/en
Publication of WO2017206057A1 publication Critical patent/WO2017206057A1/zh
Priority to US16/205,302 priority patent/US10477435B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a resource allocation method and apparatus in a wireless communication system.
  • the wireless communication system includes an access device and a core network device, and the access device refers to a device that provides an access service for its home user.
  • Backhaul communication refers to communication between an access device and a core network device.
  • an access device communicates with a core network device through a relay device, and a link between the access device and the relay device and a link between the relay device and the core network device are referred to as a backhaul link.
  • the backhaul link between the relay device and the core network device is configured with a dedicated backhaul link resource, such as fiber or microwave, and a wireless backhaul technology is used between the access device and the relay device.
  • the access device determines, according to the nearest distance principle, the relay device that is closest to the access device as the backhaul node, and performs backhaul communication with the core network device through the determined backhaul node.
  • the determined backhaul node may not be the most suitable backhaul node, and thus the communication resource allocation between the access device and the core network device may be unreasonable, so that the access device and the core network device are The transmission performance is not high, resulting in system performance degradation. Therefore, there is a need for a new type of backhaul communication resource allocation scheme to achieve better allocation of backhaul communication resources between the access device and the core network device, and improve system performance.
  • the embodiments of the present invention provide a resource allocation method and apparatus to improve transmission performance between an access device and a core network device.
  • an embodiment of the present invention provides a resource allocation method, including:
  • the ordinary small station estimates the pre-occupation information of the respective access link resources, and sends a first message to the central control node, where the first message includes the pre-occupation information of the access link resources of the ordinary small station, and the ordinary small station also measures Link quality information between itself and a plurality of candidate backhaul nodes, wherein the candidate backhaul node refers to a node having a dedicated backhaul link between the core network devices,
  • the central control node sends a second message, where the second message includes link quality information between the ordinary small station and the multiple candidate backhaul nodes, and the central control node pre-occupies information according to the access link resources of the ordinary small station,
  • the communication link resource information between the target backhaul node of the ordinary small station and the ordinary small station and the target backhaul node is pre-occupied information of the access link resource of the central control node by combining the common small station,
  • the small station is determined by the link quality information between the multiple candidate backhaul nodes and the remaining backhaul link resource information sent by the multiple candidate backhaul nodes. Therefore, the determination of the target backhaul node is more reasonable and common.
  • the communication link resource information between the small station and the target backhaul node is also more reasonable, thereby improving system performance.
  • it also includes:
  • the central control node sends a fourth message to the target backhaul node, where the fourth message includes communication link resource information between the ordinary small station and the target backhaul node, so that the target backhaul node knows which resources are used as the ordinary small The resources of the backhaul link of the station.
  • the fourth message also contains the identity of the ordinary small station, so that the target backhaul node knows which ordinary small stations provide the backhaul service.
  • the central control node according to the access link resource pre-occupation information of the ordinary small station, the link quality information between the ordinary small station and the M candidate backhaul nodes, and the M candidate back
  • the remaining backhaul link resource information sent by the transmitting node determines the target backhaul node of the ordinary small station from the M candidate backhaul nodes, including:
  • the central control node according to the pre-occupation information of the access link resources of the ordinary small station according to the central control node, the link quality information between the ordinary small station and the M candidate backhaul nodes, and the M candidate backhaul nodes Remaining backhaul link resource information, calculating the throughput sum of all the home users of the ordinary small station to each candidate backhaul node, and obtaining M throughput sums;
  • the central control node determines M throughput and medium, the maximum throughput and the corresponding candidate backhaul node are target backhaul nodes.
  • the method before the central control node receives the first message sent by the ordinary small station, the method further includes:
  • the central control node sends a first indication message to the normal small station, where the first indication message is used to indicate the pre-occupation information of the access link resource of the ordinary small station, and the first indication message includes: the first report information and/or
  • the first reporting trigger condition is that the first reporting triggering condition includes: a periodic trigger or an event trigger.
  • the method before the central control node sends the first indication message to the ordinary small station, the method further includes:
  • the central control node sends a second indication message to the normal small station, where the second indication message is used to indicate that the ordinary small station measures the access link resource pre-occupation information of the ordinary small station, and the second indication message includes: the first measurement information and/or The first measurement trigger condition, wherein the first measurement trigger condition includes: a periodic trigger or an event trigger.
  • the method before the central control node receives the second message sent by the ordinary small station, the method further includes:
  • the central control node sends a third indication message to the ordinary small station, where the third indication message is used to indicate that the normal small station reports the link quality information between the ordinary small station and the M candidate backhaul nodes, and the third indication message includes: The second reporting information and/or the second reporting triggering condition, wherein the second reporting triggering condition includes: a periodic trigger or an event trigger.
  • the method before the central control node sends the third indication message to the ordinary small station, the method further includes:
  • the central control node sends a fourth indication message to the normal small station, where the fourth indication message is used to indicate that the normal small station measures the link quality information between the ordinary small station and the M candidate backhaul nodes, and the fourth indication message includes:
  • the second measurement trigger condition and the second measurement trigger condition include: a periodic trigger or an event trigger.
  • the second measurement information includes at least one of the following:
  • an embodiment of the present invention provides a resource allocation method, including:
  • the ordinary small station sends a first message to the central control node, and the first message includes the connection of the ordinary small station.
  • Incoming link resource pre-occupation information and sending a second message to the central control node, where the second message includes link quality information between the ordinary small station and the M candidate backhaul nodes, and M is an integer greater than or equal to 2;
  • the determination of the target backhaul node is more reasonable, and the communication link resource information between the ordinary small station and the target backhaul node is more reasonable. Therefore, the communication link resource information between the target and the backhaul node is Sending data to the target backhaul node and/or receiving data from the target backhaul node can improve system performance.
  • the method before the ordinary small station sends the first message to the central control node, the method further includes:
  • the normal small station receives the first indication message sent by the central control section, and the first indication message is used to indicate that the ordinary small station reports the pre-occupation information of the access link resources of the ordinary small station, and the first indication message includes: the first report information and/or Or the first reporting triggering condition, where the first reporting triggering condition includes: a periodic trigger or an event trigger.
  • the method before the normal small station reports the access link resource pre-occupation information of the ordinary small station according to the first indication message, the method further includes:
  • the normal small station receives the second indication message sent by the central control node, and the second indication message is used to indicate that the ordinary small station measures the pre-occupation information of the access link resources of the ordinary small station, and the second indication message includes: the first measurement information and/or Or a first measurement trigger condition, where the first measurement trigger condition includes: a periodic trigger or an event trigger.
  • the ordinary small station measures the access link resource pre-occupation information of the ordinary small station according to the second indication message.
  • the ordinary small station before the ordinary small station sends the second message to the central control node, it also includes:
  • the normal small station receives the third indication message sent by the central control node, and the third indication message is used to indicate that the normal small station reports the link quality information between the ordinary small station and the M candidate backhaul nodes, and the third indication message includes: The second reporting information and/or the second reporting triggering condition, wherein the second reporting triggering condition comprises: a periodic trigger or an event trigger.
  • the ordinary small station before receiving the third indication message sent by the central control node, the ordinary small station further includes:
  • the normal small station receives the fourth indication message sent by the central control node, and the fourth indication message is used to indicate that the normal small station measures the link quality information between the ordinary small station and the M candidate backhaul nodes, and the fourth indication message includes: The second measurement information and/or the second measurement trigger condition, wherein the second measurement trigger condition includes: a periodic trigger or an event trigger.
  • the second measurement information includes at least one of the following:
  • an embodiment of the present invention provides a resource allocation method, including:
  • the target backhaul node receives the second message sent by the central control node, and the second message includes link quality information between the ordinary small station and the target backhaul node;
  • the target backhaul node receives the fourth message sent by the central control node, and the fourth message includes communication link resource information between the ordinary small station and the target backhaul node;
  • the target backhaul node transmits data to the ordinary small station through the communication link resource information between the ordinary small station and/or receives data from the ordinary small station.
  • the determination of the target backhaul node is more reasonable, and the communication link resource information between the ordinary small station and the target backhaul node is more reasonable. Therefore, through the communication link resource information with the ordinary small station, Ordinary small stations send data, and/or receive data from ordinary small stations, which can improve system performance.
  • the fourth message also contains the identity of the ordinary station.
  • an embodiment of the present invention provides a resource allocation apparatus, including:
  • a receiving module configured to receive a first message sent by the ordinary small station, where the first message includes pre-occupation information of the access link resources of the ordinary small station;
  • the receiving module is further configured to receive a second message sent by the ordinary small station, where the second message includes link quality information between the ordinary small station and the M candidate backhaul nodes, where M is an integer greater than or equal to 2;
  • the receiving module is further configured to receive remaining backhaul link resource information sent by the M candidate backhaul nodes;
  • a processing module configured to use pre-occupation information of the access link resources of the ordinary small station, link quality information between the ordinary small station and the M candidate backhaul nodes, and the remaining back sent by the M candidate backhaul nodes Transmitting link resource information, determining a target backhaul node of the ordinary small station from the M candidate backhaul nodes, and communication link resource information between the ordinary small station and the target backhaul node;
  • a sending module configured to send a third message to the ordinary small station, where the third message includes an identifier of the target backhaul node, and communication link resource information between the ordinary small station and the target backhaul node.
  • the sending module is further configured to send a fourth message to the target backhaul node, where the fourth message includes communication link resource information between the ordinary small station and the target backhaul node.
  • the fourth message also contains the identity of the ordinary station.
  • the processing module is specifically configured to: according to the pre-occupation information of the access link resources of the common small station according to the central control node, and the link quality information between the ordinary small station and the M candidate backhaul nodes, And the remaining backhaul link resource information sent by the M candidate backhaul nodes, calculating the throughput sum of all the home users of the ordinary small station to each candidate backhaul node, and obtaining M throughput sums; the central control node determines The M throughput and medium, the maximum throughput and the corresponding candidate backhaul node are target backhaul nodes.
  • the sending module is further configured to send a first indication message to the ordinary small station, where the first indication message is used to indicate that the ordinary small station reports the pre-occupation information of the access link resources of the ordinary small station, first The indication message includes: a first report information and/or a first report trigger condition, where the first report trigger condition includes: a periodic trigger or an event trigger.
  • the sending module is further configured to send a second indication message to the ordinary small station, where the second indication message is used to indicate that the ordinary small station measures the pre-occupation information of the access link resources of the ordinary small station, and the second The indication message includes: first measurement information and/or a first measurement trigger condition, where the first measurement trigger condition includes: a periodic trigger or an event trigger.
  • the sending module is further configured to send a third indication message to the ordinary small station, where the third indication message is used to indicate that the ordinary small station reports the link between the ordinary small station and the M candidate returning nodes respectively.
  • the quality information, the third indication message includes: a second report information and/or a second report trigger condition, where the second report trigger condition includes: a periodic trigger or an event trigger.
  • the sending module further sends a fourth indication message to the ordinary small station, where the fourth indication message is used to indicate that the ordinary small station measures the ordinary small station and the M candidate backhaul nodes respectively.
  • the link quality information, the fourth indication message includes: second measurement information and/or a second measurement trigger condition, where the second measurement trigger condition includes: a periodic trigger or an event trigger.
  • the second measurement information includes at least one of the following:
  • an embodiment of the present invention provides a resource allocation apparatus, including:
  • a sending module configured to send a first message to the central control node, where the first message includes pre-occupation information of access link resources of the ordinary small station;
  • the sending module is further configured to send a second message to the central control node, where the second message includes link quality information between the ordinary small station and the M candidate backhaul nodes, where M is an integer greater than or equal to 2;
  • a receiving module configured to receive a third message sent by the central control node, where the third message includes an identifier of a target backhaul node of the ordinary small station, and communication link resource information between the ordinary small station and the target backhaul node;
  • control module configured to control communication node resource information between the sending module and the target backhaul node, send data to the target backhaul node, and/or control a communication link between the receiving module and the target backhaul node Resource information, receiving data from the target backhaul node.
  • the receiving module is further configured to receive a first indication message sent by the central control section, where the first indication message is used to indicate that the ordinary small station reports the pre-occupation information of the access link resources of the ordinary small station, first.
  • the indication message includes: a first report message and/or a first report trigger condition.
  • the receiving module is further configured to receive a second indication message sent by the central control node, where the second indication message is used to indicate that the ordinary small station measures the pre-occupation information of the access link resources of the ordinary small station, and the second The indication message includes: first measurement information and/or first measurement trigger condition;
  • the control module is further configured to measure the pre-occupation information of the access link resources of the ordinary small station according to the second indication message.
  • the receiving module is further configured to receive a third indication message sent by the central control node, where the third indication message is used to indicate that the ordinary small station reports the chain between the ordinary small station and the M candidate returning nodes respectively.
  • the road quality information, the third indication message includes: a second report message and/or a second report trigger condition.
  • the receiving module is further configured to receive a fourth indication message sent by the central control node, where the fourth indication message is used to indicate that the ordinary small station measures the chain between the ordinary small station and the M candidate backhaul nodes respectively.
  • the road quality information, the fourth indication message includes: second measurement information and/or second measurement trigger condition.
  • the second measurement information includes at least one of the following:
  • the first escalation trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • the first measurement trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • the second escalation trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • the second measurement trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • an embodiment of the present invention provides a resource allocation apparatus, including:
  • a receiving module configured to receive a second message sent by the central control node, where the second message includes link quality information between the ordinary small station and the target backhaul node;
  • the receiving module is further configured to receive a fourth message sent by the central control node, where the fourth message includes communication link resource information between the ordinary small station and the target backhaul node;
  • the control module is configured to control the communication module to transmit data to the ordinary small station through the communication link resource information between the sending module and the ordinary small station, and/or control the receiving module to communicate the resource information with the common small station. , receiving data from ordinary small stations.
  • the fourth message also contains the identity of the ordinary station.
  • an embodiment of the present invention provides a resource allocation apparatus, including:
  • a receiver configured to receive a first message sent by the ordinary small station, where the first message includes pre-occupation information of the access link resources of the ordinary small station;
  • the receiver is further configured to receive a second message sent by the ordinary small station, where the second message includes link quality information between the ordinary small station and the M candidate backhaul nodes, where M is greater than or equal to 2 number;
  • the receiver is further configured to receive remaining backhaul link resource information sent by the M candidate backhaul nodes;
  • a processor configured to pre-occupy information according to access link resources of the ordinary small station, link quality information between the ordinary small station and the M candidate backhaul nodes, and the remaining back sent by the M candidate backhaul nodes Transmitting link resource information, determining a target backhaul node of the ordinary small station from the M candidate backhaul nodes, and communication link resource information between the ordinary small station and the target backhaul node;
  • a transmitter configured to send a third message to the ordinary small station, where the third message includes an identifier of the target backhaul node, and communication link resource information between the ordinary small station and the target backhaul node.
  • an embodiment of the present invention provides a resource allocation apparatus, including:
  • a transmitter configured to send a first message to the central control node, where the first message includes pre-occupation information of access link resources of the ordinary small station;
  • the transmitter is further configured to send a second message to the central control node, where the second message includes link quality information between the ordinary small station and the M candidate backhaul nodes, where M is an integer greater than or equal to 2;
  • a receiver configured to receive a third message sent by the central control node, where the third message includes an identifier of the target backhaul node of the ordinary small station, and communication link resource information between the ordinary small station and the target backhaul node;
  • a controller for controlling communication link resource information between the transmitter and the target backhaul node, transmitting data to the target backhaul node, and/or controlling a communication link between the receiver and the target backhaul node Resource information, receiving data from the target backhaul node.
  • a ninth aspect, the embodiment of the present invention provides a resource allocation apparatus, including:
  • a receiver configured to receive a second message sent by the central control node, where the second message includes link quality information between the ordinary small station and the target backhaul node;
  • the receiver is further configured to receive a fourth message sent by the central control node, where the fourth message includes communication link resource information between the ordinary small station and the target backhaul node;
  • a controller configured to control the communication link resource information between the transmitter and the ordinary small station, send data to the ordinary small station, and/or control the receiver, and communicate the resource information through the communication link with the ordinary small station , receiving data from ordinary small stations.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present invention
  • FIG. 2 is a schematic flowchart of a possible resource allocation method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a possible bit diagram of the present invention.
  • FIG. 4 is a schematic flowchart of another possible resource allocation method according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a central control node according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a common small station according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a target backhaul node according to an embodiment of the present invention.
  • FIG. 8 is another schematic structural diagram of a central control node according to an embodiment of the present disclosure.
  • FIG. 9 is another schematic structural diagram of a common small station according to an embodiment of the present invention.
  • FIG. 10 is another schematic structural diagram of a target backhaul node according to an embodiment of the present invention.
  • first, second, third, etc. may be used to describe XXX in embodiments of the invention, these XXX should not be limited to these terms. These terms are only used to distinguish XXX from each other.
  • first XXX may also be referred to as a second XXX without departing from the scope of the embodiments of the present invention.
  • second XXX may also be referred to as a first XXX.
  • the words “if” and “if” as used herein may be interpreted to mean “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present invention.
  • the application scenario of the present invention is a wireless communication system, and a user equipment (User Equipment, UE for short) accesses a core network (Core Network, referred to as CN) through a macro station, a primary station, or a common small station, where the primary station The ordinary small station belongs to the small station.
  • a user equipment User Equipment, UE for short
  • CN Core Network
  • the primary small station refers to the small station with the backhaul link between the core network equipment and the dedicated backhaul link.
  • the ordinary small station does not have a dedicated back.
  • a small station that transmits the resources of the link needs to communicate with the core network device through the target backhaul node.
  • the technology described in this embodiment of the present invention may be applicable to a Long Term Evolution (LTE) system, or other wireless communication system using various radio access technologies, for example, using code division multiple access, frequency division multiple access, and time division.
  • LTE Long Term Evolution
  • a system of multiple access, orthogonal frequency division multiple access, single carrier frequency division multiple access and other access technologies can also be applied to the subsequent evolution system using the LTE system, such as the fifth generation 5G system and the like.
  • the wireless communication system of FIG. 1 includes a macro station H1, at least one main station (the primary station M1 and the primary station M2 are shown in FIG. 1), and at least one ordinary station (the ordinary station is shown in FIG. 1).
  • the resources of the link, the resources of the dedicated backhaul link may be: optical fiber, microwave, etc., and the ordinary small station needs to be connected to the adjacent macro station or the primary small station by wireless to solve its own backhaul problem. .
  • Three links, an access link, a non-ideal backhaul link, and an ideal backhaul link are shown in FIG.
  • the access link refers to the link between the UE and the access device, wherein the macro station, the primary station, and the ordinary small station can all serve as access devices of the UE, as shown in FIG. 1, between the UE1 and the macro station H1.
  • the link between the UE2 and the macro station H1 is an access link
  • the link between the UE3 and the ordinary small station S1, and between the UE4 and the ordinary small station S1 are all access links
  • the links between M1 and between UE6 and the primary station M1 are all access links
  • the links between UE7 and ordinary small stations S2 and between UE8 and ordinary small stations S2 are access links
  • UE9 The link between the ordinary small station S3 and the UE 10 and the ordinary small station S3 is an access link, between the UE 11 and the ordinary small station S4 and the UE 12 and
  • the links between the ordinary small stations S4 are all access links, and the links between the UE 13 and the primary small station M2 and between the
  • the non-ideal backhaul link refers to the link between the ordinary small station and the target backhaul node, and the target backhaul node may be a macro station or a primary station, as long as there is a dedicated back link with the core network link.
  • the resources of the transmitted link can be used as the target backhaul node.
  • the link between the ordinary small station S1 and the macro station H1 is a non-ideal backhaul link
  • the link between the ordinary small station S2 and the primary station M1 is a non-ideal backhaul link
  • the link between the ordinary small station S3 and the primary small station M2 is a non-ideal backhaul link
  • the link between the ordinary small station S4 and the primary small station M2 is a non-ideal backhaul link.
  • An ideal backhaul link refers to a link to a resource with a dedicated backhaul link between the core network links.
  • the link between the macro station H1 and the core network link is an ideal backhaul link L1
  • the link between the primary station M1 and the core network link is an ideal backhaul link L2.
  • the link between the primary station M2 and the core network link is the ideal backhaul link L3.
  • the present invention combines pre-occupation information by combining access link resources of common small stations, between ordinary small stations and macro stations, or between ordinary small stations and main small stations.
  • the link quality information, the remaining backhaul link resource information of the macro station or the primary station (usually referred to as the resources of the available backhaul link), determine the appropriate target backhaul node for the ordinary station. For example, in Fig. 1, the system determines the primary station M1 as the return node of the ordinary station S2. Thereby, the transmission capability of the user equipment to the core network (including the backhaul link and the access link) is improved, thereby improving system performance.
  • the macro station, the primary station and the ordinary small station in the present invention may be a base station (BS), an access point (AP), a remote radio equipment (RRE), and a remote radio port. (Remote Radio Head, RRH), Remote Radio Unit (RRU), etc., which are not specifically limited in the present invention.
  • the correspondence between the macro station, the main station and the ordinary small station and the cell is not limited, and may be one macro station, the main station or the ordinary station corresponding to one or more cells, also It can be a cell corresponding to multiple macro stations, main stations or ordinary stations.
  • the primary station or the macro station is referred to as a candidate backhaul node
  • the target backhaul node that provides the resource of the backhaul link for the ordinary station is selected from the candidate backhaul nodes.
  • FIG. 2 is a schematic flowchart of a possible resource allocation method according to an embodiment of the present invention. As shown in FIG. 2, the method in this embodiment is as follows:
  • S201 The central control node sends a second indication message to the ordinary small station.
  • the second indication message is used to indicate that the normal small station measures the access link resource pre-occupation information of the ordinary small station, and the second indication message includes: the first measurement information and/or the first measurement trigger condition.
  • the central control node may be deployed independently or in a macro station or a gateway (not shown in FIG. 1), and the gateway is deployed in the core network. For this reason, the present invention is not limited.
  • the central control node When the central control node is deployed in the gateway, the central control node performs information exchange between the macro station and the ordinary small station, which is not limited by the present invention.
  • the central control node is responsible for the backhaul link resource allocation of all ordinary small stations within a certain range (such as a certain sector), including the connection relationship of the backhaul link and the communication link resources between the ordinary small station and the target backhaul node. information.
  • the connection relationship of the backhaul link refers to which candidate backhaul node is used as the backhaul node of the ordinary small station;
  • the communication link resource information between the ordinary small station and the target backhaul node refers to the ordinary small station and the target backhaul.
  • a time-frequency resource used for communication between the nodes specifically: the ordinary small station transmits data to the target backhaul node by using communication link resource information between the node and the target backhaul node, and/or The target backhaul node receives data.
  • the access link resource pre-occupation information includes the time-frequency resource pre-occupancy required by the ordinary small station to meet the service demand of the home subscriber, wherein the home subscriber of the ordinary small station refers to the UE accessing the ordinary small station, for example,
  • the home subscribers of the ordinary small station S1 are UE3 and UE4
  • the access link resource pre-occupation information of the ordinary small station S1 includes the time required for the ordinary small station S1 to meet the service requirements of UE3 and UE4.
  • Frequency resource pre-occupation Since the ordinary small station can control the home user to measure channel state information, interference information, service demand information, and scheduling algorithm, the ordinary small station can accurately estimate the pre-occupied information of the access link resource according to the information. .
  • the central control node can indicate which parameters are measured by the ordinary small station and the accuracy of the measured parameters by the first measurement information. For example, for a normal small station, if the transmission efficiency (k bps/PRB) is estimated according to the average channel state information, the ordinary small rate can be obtained in combination with the total service rate requirement (n bps) of the accessed home subscriber.
  • the access link resource pre-occupation information (n/k) PRBs of the station if for the ordinary small station, according to some finer channel state information, or according to a specific scheduling algorithm, it is possible to obtain the access link resource pre-occupation information of the ordinary small station as a bit map of length N ( Bitmap), as shown in FIG. 3, FIG.
  • each bit represents a physical resource block (Physical Resource Block, PRB), where 1 indicates pre-occupation The location of the PRB, 0 indicates the location of the PRB that is not occupied.
  • PRB Physical Resource Block
  • the central control node indicates, by using the first measurement trigger condition, when the ordinary small station performs the measurement, wherein the first trigger condition may be: a periodic trigger measurement or an event trigger measurement, and the periodic trigger measurement is performed once every fixed time. Measurement, for example: fixed time is 5s, assuming the first measurement is at 0s, then the second measurement is at 5s, the third measurement is at 15s, the fourth measurement is at 20s, etc.; event-triggered measurement is when certain events occur. Or taking measurements after the occurrence, for example, the event may be a change in the number of home users accessed by the ordinary small station, a change in the service of the home subscriber, or any change in the pre-occupancy information of the access link resources that may cause the ordinary small station to change. event.
  • the first trigger condition may be: a periodic trigger measurement or an event trigger measurement, and the periodic trigger measurement is performed once every fixed time. Measurement, for example: fixed time is 5s, assuming the first measurement is at 0s, then the second measurement is at 5s,
  • S202 The central control node sends a first indication message to the ordinary small station.
  • the first indication message is used to indicate that the normal small station reports the access link resource pre-occupation information of the ordinary small station, and the first indication message includes: the first report information and/or the first report trigger condition.
  • the central control node can indicate which parameters are reported by the ordinary small station and the accuracy of the reported parameters by using the first report information.
  • the first report information may be the same as the first measurement information in S201; or may be a parameter further obtained according to the first measurement information in S201, for example, obtained according to channel state information, interference information, service requirement information, and a scheduling algorithm. Access link resource pre-occupation information.
  • the central control node indicates when the normal small station is reported by the first reporting triggering condition, and the first reporting triggering condition may also be a periodic triggering report or an event triggering report, and the first reporting triggering condition period may be combined with the first measurement triggering condition.
  • the periods are the same, and may be different.
  • the report may be reported once per measurement, or may be measured several times, and reported once; the event triggered by the first event may also be the same as the event triggered by the first event, or may be different.
  • the invention is not limited.
  • S203 The ordinary small station acquires access link resource pre-occupation information according to the second indication message.
  • the normal small station may acquire the access link resource pre-occupation information according to the first measurement information and/or the first measurement trigger condition included in the second indication message in S201.
  • S204 The ordinary small station sends the first message to the central control node according to the first indication message.
  • the first message includes the pre-occupation information of the access link resources of the ordinary small station.
  • the normal small station transmits the access link resource pre-occupation information acquired in S203 to the central control node according to the first report information and/or the first report trigger condition included in the first indication message in S202.
  • S205 The central control node sends a fourth indication message to the ordinary small station.
  • the fourth indication message is used to indicate that the normal small station measures the link quality information between the ordinary small station and the M candidate backhaul nodes, and the fourth indication message includes: the second measurement information and/or the second measurement trigger condition. .
  • the second measurement information includes at least one of the following:
  • the number of candidate backhaul nodes measured refers to the number of candidate backhaul nodes that need to be measured by the ordinary small station.
  • the number of candidate backhaul nodes measured in the second measurement information is 3, and the ordinary small station measurement and candidate Returning link quality information between node 1, common station measurement and link quality information between candidate backhaul node 2, link quality information between ordinary small station measurement and candidate backhaul node 3; measurement parameters It refers to the parameter of the link quality information to be measured by the ordinary small station.
  • the measurement parameter may be a Signal to Interference plus Noise Ratio (SINR) or a sub-band SINR.
  • SINR Signal to Interference plus Noise Ratio
  • the measurement method may be based on pilot measurement.
  • the measurement message may indicate that the ordinary small station obtains the received signal strength of each candidate backhaul node to be measured based on the pilot, and obtains the broadband SINR of each candidate backhaul node by using the total received channel strength. .
  • the second measurement information may also indicate that the normal small station performs sub-band SINR measurement on the surrounding N candidate backhaul nodes, and indicates the frequency domain width of the sub-band.
  • the second measurement trigger condition may be a periodic trigger measurement or an event triggered measurement.
  • the invention is not limited in this regard.
  • the second measurement information may not indicate the number of candidate backhaul nodes to be measured, but directly indicate an identifier (ID) of the candidate backhaul node to be measured, and the present invention does not limit the present invention. .
  • the third indication message is used to indicate that the normal small station reports the link quality information between the ordinary small station and the M candidate backhaul nodes, and the third indication message includes: the second report information and/or the second report trigger condition. .
  • the central control node can indicate which parameters are reported by the ordinary small station and the accuracy of the reported parameters by using the second report information.
  • the central control node indicates when the normal small station is reported by the second reporting trigger condition, and the second reporting triggering condition may be a periodic triggering report or an event triggering report, and the second reporting triggering condition period may be compared with the second measuring triggering condition.
  • the event is the same, and the event triggered by the second event may be the same as the event triggered by the second event, or may be different. For this reason, the present invention is not limited.
  • the ordinary small station acquires link quality information between the ordinary small station and the M candidate backhaul nodes according to the fourth indication message.
  • the ordinary small station acquires link quality information between the ordinary small station and the M candidate backhaul nodes according to the second measurement information and the second measurement trigger condition in S205.
  • S208 The ordinary small station sends a second message to the central control node according to the third indication message.
  • the second message includes link quality information between the ordinary small station and the M candidate backhaul nodes.
  • S209 The central control node receives remaining backhaul link resource information sent by the M candidate backhaul nodes.
  • the remaining backhaul link resource information refers to the resources of the backhaul link available to the candidate backhaul node, that is, the candidate backhaul node can use the remaining resources except for the resources used for the access link and the allocated resources.
  • the resources of the backhaul link refers to the resources of the backhaul link available to the candidate backhaul node, that is, the candidate backhaul node can use the remaining resources except for the resources used for the access link and the allocated resources.
  • the central control node obtains the link quality information of the access link resources of the ordinary small station, the link quality information between the ordinary small station and the M candidate backhaul nodes, and the remaining back sent by the M candidate backhaul nodes. Transmitting link resource information, determining common from M candidate backhaul nodes The target backhaul node of the small station, and the communication link resource information between the ordinary small station and the target backhaul node.
  • the central control node according to the access link resource pre-occupation information of the ordinary small station, the link quality information between the ordinary small station and the M candidate backhaul nodes, and the remaining sent by the M candidate backhaul nodes Returning the link resource information, calculating the throughput sum of all the home users of the ordinary small station to each candidate backhaul node, and obtaining M throughput sums; the central control node determines M throughput and medium, maximum throughput and The corresponding candidate backhaul node is the target backhaul node.
  • all candidate backhaul nodes of the ordinary small station S2 are the macro station H1, the primary station M1, and the primary station M2, and if the macro station M1 is used as the target backhaul node of the ordinary station S2, Calculating the home subscriber according to the access link resource pre-occupation information of the ordinary small station S2, the link quality information between the ordinary small station S2 and the macro station H1, and the remaining backhaul link resource information of the macro station H1 (UE7 and UE8) )
  • the throughput sum to the macro station H1 is recorded as "W1"; and the main station M1 is assumed to be the target backhaul node of the ordinary station S2, according to the pre-occupation information of the access link resources of the ordinary station S2, Calculate the link quality information between the small station S2 and the primary station M1 and the remaining backhaul link resource information of the primary station M1, and calculate the throughput sum of the home users (UE7 and UE8) to the primary station M1, as " W2"; again assume that the primary station M2 is the target back
  • the central control node sends a third message to the ordinary small station.
  • the third message includes an identifier of the target backhaul node, and communication link resource information between the ordinary small station and the target backhaul node.
  • the normal small station transmits data to the target backhaul node through the communication link resource information between the target backhaul node and/or receives data from the target backhaul node.
  • it may include:
  • S212 The central control node sends a fourth message to the target backhaul node.
  • the fourth message includes communication link resource information between the ordinary small station and the target backhaul node.
  • the target backhaul node transmits data to the ordinary small station through the communication link resource information between the ordinary small station and/or receives data from the ordinary small station.
  • the fourth message may also include an identifier of a common small station.
  • the central control node obtains the link quality information according to the access link resources of the ordinary small station, the link quality information between the ordinary small station and the M candidate backhaul nodes, and the M candidate backhaul nodes.
  • the remaining backhaul link resource information determines a target backhaul node of the ordinary small station from the M candidate backhaul nodes, and communication link resource information between the ordinary small station and the target backhaul node.
  • the target backhaul node of the ordinary small station and the communication link resource information between the small station and the target backhaul node are the central control node combined with the access link resource pre-occupation information of the ordinary small station, the ordinary small station respectively
  • the link quality information between the M candidate backhaul nodes and the remaining backhaul link resource information sent by the M candidate backhaul nodes are determined. Therefore, the determination of the target backhaul node is more reasonable, and the small station is The communication link resource information between the target and the backhaul node is also more reasonable, thereby improving system performance.
  • FIG. 4 is a schematic flowchart of another possible resource allocation method according to an embodiment of the present invention. The method in this embodiment is as follows:
  • S401 Initialize an intermediate variable and a resource allocation output that need to be used in resource allocation.
  • S402 The central control node acquires system information required for resource allocation.
  • the system information required for resource allocation includes access link resource pre-occupation information of the ordinary small station, link quality information between the ordinary small station and the M candidate backhaul nodes, and the M candidate backhauls.
  • the remaining backhaul link resource information sent by the node includes access link resource pre-occupation information of the ordinary small station, link quality information between the ordinary small station and the M candidate backhaul nodes, and the M candidate backhauls. The remaining backhaul link resource information sent by the node.
  • Each ordinary small station measures the pre-occupation information of its own access link resources and reports it to the central control node.
  • Each ordinary small station measures the link quality information between itself and the M candidate backhaul nodes and reports it to the central control node, and the central control node can obtain the efficiency of each backhaul link.
  • the candidate backhaul node reports the remaining backhaul link resource information to the central control node.
  • the target backhaul node on the kth resource unit it is assumed that it is provided by the nth target backhaul node on the kth resource unit, and the target end-to-end throughput requirement of the ordinary station is R U , the target back The link capacity of the transmitting node to the core network is R C , then the proportion of the access resources required to satisfy the service at this time ⁇ m, n, k and the resource ratio of the backhaul link ⁇ m, n can be obtained according to the following method . , k and perceptible end-to-end throughput R m,n,k .
  • Represents the mth ordinary station, assuming that it is provided by the nth target backhaul node with the end-to-end throughput threshold in the backhaul service connection relationship on the kth resource unit, R min(R U , R C ) Indicates the throughput capability of the non-airlink link, c represents the proportion of remaining resources available on a certain resource unit, SINR A represents the received signal to interference and noise ratio of the access link, and SINR B represents the received signal to interference and noise ratio of the backhaul link. , T represents the ratio of access link resource requirements when the target rate is R.
  • the allocation of the proportion of access resources and the proportion of resources of the backhaul link can be divided into two cases.
  • the target rate is smaller than the throughput threshold.
  • the allocation of the proportion of the access resources and the resource ratio of the backhaul link only needs to consider the target.
  • the effect of the rate, and because the two-hop rate is equal, the end-to-end rate can be maximized, so the ratio of the access resources and the resources of the backhaul link can be obtained inversely proportional to the transmission efficiency of the two-hop link.
  • the target rate is greater than the throughput threshold.
  • the access link throughput is not less than the backhaul link throughput, and the backhaul chain
  • the path throughput is smaller than the target rate, and the resource allocation ratio of the corresponding access resource and the backhaul link can be derived.
  • the access link becomes a bottleneck, similarly, the access link needs to be optimized, and the link is backed up.
  • the throughput is not less than the access link throughput, and the access link throughput is less than the target rate, and the same resource allocation result can be obtained by derivation.
  • target backhaul nodes, and resource units perform the calculations as described above, and then find the combination with the highest end-to-end throughput. For example, suppose the throughput and maximum of the home subscriber of the m'th ordinary station to the nth target backhaul node, n (m') and k (m') respectively represent the target backhaul node of the ordinary station Transmitting the corresponding resource unit, R m,n,k, indicating the end-to-end throughput that the home subscriber of the mth ordinary station can achieve when transmitting back through the nth target backhaul node on the kth resource unit. Then you can get the resource allocation results as follows:
  • the above formula indicates that the common small station, the target backhaul node and the corresponding resource unit with the highest end-to-end throughput are found out from all the connection relationships, and the end-to-end throughput and access link resources of the user are obtained accordingly.
  • the allocation ratio and the return link resource allocation ratio are as follows:
  • S404 Update the quantity of resources of the remaining backhaul links of the mth ordinary small station and its associated target backhaul node.
  • the resource of the remaining backhaul link of the target backhaul node is updated to
  • the link throughput between the target backhaul node and the core network is updated to
  • Steps S402-S405 are repeated until all ordinary stations reach the service requirement or all resources are exhausted.
  • FIG. 5 is a schematic structural diagram of a central control node according to an embodiment of the present invention.
  • the central control node in this embodiment includes: a receiving module 501, a processing module 502, and a sending module 503, where the receiving module 501 is configured to receive an ordinary small station.
  • the first message includes the access link resource pre-occupation information of the ordinary small station;
  • the receiving module 501 is further configured to receive the second message sent by the ordinary small station, where the second message includes the ordinary small station and the M candidate back
  • the link quality information between the transmitting nodes, M is an integer greater than or equal to 2;
  • the receiving module 501 is further configured to receive remaining backhaul link resource information sent by the M candidate backhaul nodes; and the processing module 502 is configured to use the ordinary small station.
  • the sending module 503 is further configured to send a fourth message to the target backhaul node, where the fourth message includes communication link resource information between the ordinary small station and the target backhaul node.
  • the fourth message further includes an identifier of the ordinary small station.
  • the processing module 502 is specifically configured to: according to the pre-occupation information of the access link resources of the common small station, the link quality information between the ordinary small station and the M candidate backhaul nodes, and the M according to the central control node, and The remaining backhaul link resource information sent by the candidate backhaul nodes, calculates the throughput sum of all the home users of the ordinary small station to each candidate backhaul node, and obtains M throughput sums; the central control node determines M throughputs The sum of medium and maximum throughput and the corresponding candidate backhaul node are target backhaul nodes.
  • the sending module 503 is further configured to send a first indication message to the normal small station, where the first indication message is used to indicate that the ordinary small station reports the pre-occupation information of the access link resources of the ordinary small station, where the first indication message includes: The first reporting information and/or the first reporting trigger condition.
  • the sending module 503 is further configured to send a second indication message to the normal small station, where the second indication message is used to indicate that the ordinary small station measures the access link resource pre-occupation information of the ordinary small station, where the second indication message includes: First measurement information and/or first measurement trigger condition.
  • the sending module 503 is further configured to send a third indication message to the normal small station, where the third indication message is used to indicate that the normal small station reports the link quality information between the ordinary small station and the M candidate backhaul nodes,
  • the third indication message includes: a second report message and/or a second report trigger condition.
  • the sending module 503 further sends a fourth indication message to the normal small station, where the fourth indication message is used to indicate that the ordinary small station measures the link quality information between the ordinary small station and the M candidate backhaul nodes respectively.
  • the four indication message includes: second measurement information and/or second measurement trigger condition.
  • the second measurement information includes at least one of the following:
  • the first reporting trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • the first measurement trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • the second reporting trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • the second measurement trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • the apparatus of the embodiment shown in FIG. 5 is correspondingly used to perform the corresponding steps performed by the central control node of the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a common small station according to an embodiment of the present invention.
  • the ordinary small station in this embodiment includes: a sending module 601, a receiving module 602, and a control module 603, where the sending module 601 is configured to send a message to the central control node.
  • the first message contains access to a normal small station
  • the link resource pre-occupation information; the sending module 601 is further configured to send a second message to the central control node, where the second message includes link quality information between the ordinary small station and the M candidate backhaul nodes, where M is greater than or equal to 2
  • the receiving module 602 is configured to receive a third message sent by the central control node, where the third message includes an identifier of the target backhaul node of the ordinary small station, and a communication link resource between the ordinary small station and the target backhaul node.
  • the control module 603 is configured to control the communication module to transmit data to the target backhaul node through the communication link resource information between the sending module and the target backhaul node, and/or control the communication between the receiving module and the target backhaul node. Link resource information, receiving data from the target backhaul node.
  • the receiving module 602 is further configured to receive a first indication message sent by the central control section, where the first indication message is used to indicate that the normal small station reports the pre-occupation information of the access link resource of the ordinary small station, where the first indication message includes: the first report Information and/or first escalation trigger condition.
  • the receiving module 602 is further configured to receive a second indication message sent by the central control node, where the second indication message is used to indicate that the ordinary small station measures the pre-occupation information of the access link resources of the ordinary small station, where the second indication message includes: the first measurement Information and/or first measurement trigger conditions;
  • the control module 603 is further configured to measure access link resource pre-occupation information of the ordinary small station according to the second indication message.
  • the receiving module 602 is further configured to receive a third indication message sent by the central control node, where the third indication message is used to indicate that the normal small station reports the link quality information between the ordinary small station and the M candidate backhaul nodes, and the third indication
  • the message includes: a second reporting message and/or a second reporting trigger condition.
  • the receiving module 602 is further configured to receive a fourth indication message sent by the central control node, where the fourth indication message is used to indicate that the normal small station measures the link quality information between the ordinary small station and the M candidate backhaul nodes, and the fourth indication
  • the message includes: second measurement information and/or second measurement trigger condition.
  • the second measurement information includes at least one of the following:
  • the first escalation trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • the first measurement trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • the second reporting trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • the second measurement trigger condition includes:
  • Periodic trigger or event trigger Periodic trigger or event trigger.
  • the device of the embodiment shown in FIG. 6 is correspondingly used to perform the corresponding steps performed by the ordinary small station in the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a target backhaul node according to an embodiment of the present invention.
  • the target backhaul node in this embodiment includes: a receiving module 701 and a control module 702, where the receiving module 701 is configured to receive a second sent by the central control node.
  • the second message includes link quality information between the ordinary small station and the target backhaul node
  • the receiving module 701 is further configured to receive a fourth message sent by the central control node, where the fourth message includes the ordinary small station and the target backhaul Communication link resource information between the nodes;
  • the control module 702 is configured to control the sending module to send data to the ordinary small station through the communication link resource information between the common small station, and/or control the receiving module, pass and Communication link resource information between small stations, receiving data from ordinary small stations.
  • the fourth message further includes the identifier of the ordinary small station.
  • the apparatus of the embodiment shown in FIG. 7 is correspondingly used to perform the corresponding steps performed by the target backhaul node in the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 8 is a schematic diagram of another structure of a central control node according to an embodiment of the present disclosure.
  • the central control node of this embodiment includes: a receiver 801, a processor 802, and a transmitter 803, where
  • the receiver 801 is configured to receive the first message sent by the ordinary small station, where the first message includes the access link resource pre-occupation information of the ordinary small station; the receiver 801 is further configured to receive the second message sent by the ordinary small station, and the second The message includes link quality information between the ordinary small station and the M candidate backhaul nodes, and M is an integer greater than or equal to 2; the receiver 801 is further configured to receive the remaining backhaul link resources sent by the M candidate backhaul nodes. information;
  • the processor 802 is configured to use the pre-occupation information of the access link resources of the ordinary small station, the link quality information between the ordinary small station and the M candidate backhaul nodes, and the remaining back sent by the M candidate backhaul nodes. Transmitting link resource information, determining a target backhaul node of the ordinary small station from the M candidate backhaul nodes, and communication link resource information between the ordinary small station and the target backhaul node; the transmitter 803 is used to be small The station sends a third message, where the third message includes the identity of the target backhaul node, and the communication link resource information between the ordinary small station and the target backhaul node.
  • the apparatus of the embodiment shown in FIG. 8 is correspondingly used to perform the corresponding steps performed by the central control node of the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 9 is another schematic structural diagram of a common small station according to an embodiment of the present invention.
  • the ordinary small station of this embodiment includes: a transmitter 901, a receiver 902, and a controller 903, where the transmitter 901 is used to send a central control node.
  • the transmitter 901 is further configured to send the second message to the central control node, where the second message includes the ordinary small station and the M candidate back
  • the link quality information between the transmitting nodes, M is an integer greater than or equal to 2
  • the receiver 902 is configured to receive a third message sent by the central control node, and the third message includes an identifier of the target backhaul node of the ordinary small station, and Communication link resource information between the ordinary small station and the target backhaul node
  • the controller 903 is configured to control the communication link resource information between the transmitter and the target backhaul node, and send data to the target backhaul node, and/ Or, the control receiver receives data from the target backhaul node through the communication link resource information between the target and the backhaul node.
  • the device of the embodiment shown in FIG. 9 is correspondingly used to perform the corresponding steps performed by the ordinary small station in the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 10 is a schematic diagram of another structure of a target backhaul node according to an embodiment of the present invention.
  • the target backhaul node in this embodiment includes: a receiver 1001 and a controller 1002, where the receiver 1001 And a second message sent by the central control node, where the second message includes link quality information between the ordinary small station and the target backhaul node, and the receiver 1001 is further configured to receive the fourth message sent by the central control node.
  • the four messages include communication link resource information between the ordinary small station and the target backhaul node; the controller 1002 is configured to control the transmitter to transmit data to the ordinary small station through the communication link resource information between the ordinary small station and the ordinary small station, and Or, the control receiver receives data from the ordinary small station through communication link resource information with the ordinary small station.
  • the apparatus of the embodiment shown in FIG. 10 is correspondingly used to perform the corresponding steps performed by the target backhaul node in the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种资源分配方法和装置,通过中央控制节点根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,从M个候选回传节点中确定普通小站的目标回传节点,以及普通小站和目标回传节点之间的通信链路资源信息。因此,目标回传节点的确定更加合理,并且,通小站和目标回传节点之间的通信链路资源信息也更加合理,从而,提高系统性能。

Description

资源分配方法和装置 技术领域
本发明实施例涉及通信技术,尤其涉及一种无线通信系统中的资源分配方法和装置。
背景技术
无线通信系统包括接入设备和核心网设备,接入设备是指为其归属用户提供接入服务的设备。回传通信是指接入设备和核心网设备之间的通信。通常,接入设备通过中继设备与核心网设备进行通信,接入设备和中继设备之间的链路以及中继设备与核心网设备之间的链路均称为回传链路。中继设备和核心网设备之间的回传链路配置有专用的回传链路的资源,例如:光纤或微波等;而接入设备和中继设备之间采用无线回传技术。
现有技术中,接入设备根据距离最近原则,确定离接入设备最近的中继设备作为回传节点,通过确定的回传节点与核心网设备进行回传通信。
然而,采用上述方案,确定的回传节点可能不是最适合的回传节点,从而,接入设备和核心网设备之间的通信资源分配可能不合理,使接入设备和核心网设备之间的传输性能不高,造成系统性能下降。因此,需要有一种新型的回传通信资源分配的方案,以实现接入设备和核心网设备之间的回传通信资源达到更好的分配,提高系统性能。
发明内容
本发明实施例提供一种资源分配方法和装置,以提高接入设备和核心网设备之间的传输性能。
第一方面,本发明实施例提供一种资源分配方法,包括:
普通小站预估各自的接入链路资源预占用信息,并向中央控制节点发送第一消息,其中,第一消息包含普通小站的接入链路资源预占用信息,普通小站还测量自身与多个候选回传节点之间的链路质量信息,其中,候选回传节点是指与核心网设备之间具有专用的回传链路的资源的节点,向 中央控制节点发送第二消息,第二消息中包含该普通小站和多个候选回传节点之间的链路质量信息,中央控制节点根据普通小站的接入链路资源预占用信息、普通小站分别与多个候选回传节点之间的链路质量信息,以及,多个候选回传节点发送的剩余回传链路资源信息,从多个候选回传节点中确定普通小站的目标回传节点,以及普通小站和目标回传节点之间的通信链路资源信息,中央控制节点向普通小站发送第三消息,第三消息包含目标回传节点的标识,以及,普通小站和目标回传节点之间的通信链路资源信息。
本实施例,由于普通小站的目标回传节点以及普通小站和目标回传节点之间的通信链路资源信息是中央控制节点通过结合普通小站的接入链路资源预占用信息、普通小站分别与多个候选回传节点之间的链路质量信息,以及,多个候选回传节点发送的剩余回传链路资源信息确定的,因此,目标回传节点的确定更加合理,普通小站和目标回传节点之间的通信链路资源信息也更加合理,从而,提高系统性能。
在一种可能的设计中,还包括:
中央控制节点向目标回传节点发送第四消息,第四消息包含普通小站和目标回传节点之间的通信链路资源信息,从而,使得目标回传节点获知哪些资源用于作为该普通小站的回传链路的资源。
在一种可能的设计中,第四消息还包含普通小站的标识,从而,使得目标回传节点获知其为哪些普通小站提供回传服务。
在一种可能的设计中,中央控制节点根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,从M个候选回传节点中确定普通小站的目标回传节点,包括:
中央控制节点根据中央控制节点根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,计算普通小站的所有归属用户到每个候选回传节点对应的吞吐量和,得到M个吞吐量和;
中央控制节点确定M个吞吐量和中,最大吞吐量和所对应的候选回传节点为目标回传节点。
在一种可能的设计中,中央控制节点接收普通小站发送的第一消息之前,还包括:
中央控制节点向普通小站发送第一指示消息,第一指示消息用于指示普通小站上报普通小站的接入链路资源预占用信息,第一指示消息包含:第一上报信息和/或第一上报触发条件其中,第一上报触发条件,包括:周期性触发或者事件触发。
在一种可能的设计中,中央控制节点向普通小站发送第一指示消息之前,还包括:
中央控制节点向普通小站发送第二指示消息,第二指示消息用于指示普通小站测量普通小站的接入链路资源预占用信息,第二指示消息包含:第一测量信息和/或第一测量触发条件,其中,第一测量触发条件,包括:周期性触发或者事件触发。
在一种可能的设计中,中央控制节点接收普通小站发送的第二消息之前,还包括:
中央控制节点向普通小站发送第三指示消息,第三指示消息用于指示普通小站上报普通小站分别与M个候选回传节点之间的链路质量信息,第三指示消息包含:第二上报信息和/或第二上报触发条件,其中,第二上报触发条件,包括:周期性触发或者事件触发。
在一种可能的设计中,中央控制节点向普通小站发送第三指示消息之前,还包括:
中央控制节点向普通小站发送第四指示消息,第四指示消息用于指示普通小站测量普通小站分别与M个候选回传节点之间的链路质量信息,第四指示消息包含:第二测量信息和/或第二测量触发条件其中,第二测量触发条件,包括:周期性触发或者事件触发。
在一种可能的设计中,第二测量信息包含下述至少一种:
测量的候选回传节点的数量;
测量方式;
测量参数的精度。
第二方面,本发明实施例提供一种资源分配方法,包括:
普通小站向中央控制节点发送第一消息,第一消息包含普通小站的接 入链路资源预占用信息;并向中央控制节点发送第二消息,第二消息包含普通小站分别与M个候选回传节点之间的链路质量信息,M为大于等于2的整数;并接收中央控制节点发送的第三消息,第三消息包含普通小站的目标回传节点的标识,以及,普通小站和目标回传节点之间的通信链路资源信息;通过和目标回传节点之间的通信链路资源信息,向目标回传节点发送数据,和/或,从目标回传节点接收数据。
本实施例,目标回传节点的确定更加合理,普通小站和目标回传节点之间的通信链路资源信息也更加合理,因此,通过和目标回传节点之间的通信链路资源信息,向目标回传节点发送数据,和/或,从目标回传节点接收数据,可以提高系统性能。
在一种可能的设计中,普通小站向中央控制节点发送第一消息之前,还包括:
普通小站接收中央控制节发送的第一指示消息,第一指示消息用于指示普通小站上报普通小站的接入链路资源预占用信息,第一指示消息包含:第一上报信息和/或第一上报触发条件,其中,第一上报触发条件,包括:周期性触发或者事件触发。
在一种可能的设计中,普通小站根据第一指示消息上报普通小站的接入链路资源预占用信息之前,还包括:
普通小站接收中央控制节点发送的第二指示消息,第二指示消息用于指示普通小站测量普通小站的接入链路资源预占用信息,第二指示消息包含:第一测量信息和/或第一测量触发条件,其中,第一测量触发条件,包括:周期性触发或者事件触发。
普通小站根据第二指示消息测量普通小站的接入链路资源预占用信息。
在一种可能的设计中,普通小站向中央控制节点发送第二消息之前,还包括:
普通小站接收中央控制节点发送的第三指示消息,第三指示消息用于指示普通小站上报普通小站分别与M个候选回传节点之间的链路质量信息,第三指示消息包含:第二上报信息和/或第二上报触发条件,其中,第二上报触发条件,包括:周期性触发或者事件触发。
在一种可能的设计中,普通小站接收中央控制节点发送的第三指示消息之前,还包括:
普通小站接收中央控制节点发送的第四指示消息,第四指示消息用于指示普通小站测量普通小站分别与M个候选回传节点之间的链路质量信息,第四指示消息包含:第二测量信息和/或第二测量触发条件,其中,第二测量触发条件,包括:周期性触发或者事件触发。
在一种可能的设计中,第二测量信息包含下述至少一种:
测量的候选回传节点的数量;
测量方式;
测量参数的精度。
第三方面,本发明实施例提供一种资源分配方法,包括:
目标回传节点接收中央控制节点发送的第二消息,第二消息包含普通小站分别与目标回传节点之间的链路质量信息;
目标回传节点接收中央控制节点发送的第四消息,第四消息包含普通小站和目标回传节点之间的通信链路资源信息;
目标回传节点通过和普通小站之间的通信链路资源信息,向普通小站发送数据,和/或,从普通小站接收数据。
本实施例,目标回传节点的确定更加合理,普通小站和目标回传节点之间的通信链路资源信息也更加合理,因此,通过和普通小站之间的通信链路资源信息,向普通小站发送数据,和/或,从普通小站接收数据,可以提高系统性能。
在一种可能的设计中,第四消息还包含普通小站的标识。
第四方面,本发明实施例提供一种资源分配装置,包括:
接收模块,用于接收普通小站发送的第一消息,第一消息包含普通小站的接入链路资源预占用信息;
接收模块,还用于接收普通小站发送的第二消息,第二消息包含普通小站分别与M个候选回传节点之间的链路质量信息,M为大于等于2的整数;
接收模块,还用于接收M个候选回传节点发送的剩余回传链路资源信息;
处理模块,用于根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,从M个候选回传节点中确定普通小站的目标回传节点,以及普通小站和目标回传节点之间的通信链路资源信息;
发送模块,用于向普通小站发送第三消息,第三消息包含目标回传节点的标识,以及,普通小站和目标回传节点之间的通信链路资源信息。
在一种可能的设计中,发送模块还用于向目标回传节点发送第四消息,第四消息包含普通小站和目标回传节点之间的通信链路资源信息。
在一种可能的设计中,第四消息还包含普通小站的标识。
在一种可能的设计中,处理模块具体用于根据中央控制节点根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,计算普通小站的所有归属用户到每个候选回传节点对应的吞吐量和,得到M个吞吐量和;中央控制节点确定M个吞吐量和中,最大吞吐量和所对应的候选回传节点为目标回传节点。
在一种可能的设计中,发送模块,还用于向普通小站发送第一指示消息,第一指示消息用于指示普通小站上报普通小站的接入链路资源预占用信息,第一指示消息包含:第一上报信息和/或第一上报触发条件,其中,第一上报触发条件,包括:周期性触发或者事件触发。
在一种可能的设计中,发送模块,还用于向普通小站发送第二指示消息,第二指示消息用于指示普通小站测量普通小站的接入链路资源预占用信息,第二指示消息包含:第一测量信息和/或第一测量触发条件,其中,第一测量触发条件,包括:周期性触发或者事件触发。
在一种可能的设计中,发送模块还用于向普通小站发送第三指示消息,第三指示消息用于指示普通小站上报普通小站分别与M个候选回传节点之间的链路质量信息,第三指示消息包含:第二上报信息和/或第二上报触发条件,其中,第二上报触发条件,包括:周期性触发或者事件触发。
在一种可能的设计中,发送模块还用向普通小站发送第四指示消息,第四指示消息用于指示普通小站测量普通小站分别与M个候选回传节点 之间的链路质量信息,第四指示消息包含:第二测量信息和/或第二测量触发条件,其中,第二测量触发条件,包括:周期性触发或者事件触发。
在一种可能的设计中,第二测量信息包含下述至少一种:
测量的候选回传节点的数量;
测量方式;
测量参数的精度。
第五方面,本发明实施例提供一种资源分配装置,包括:
发送模块,用于向中央控制节点发送第一消息,第一消息包含普通小站的接入链路资源预占用信息;
发送模块,还用于向中央控制节点发送第二消息,第二消息包含普通小站分别与M个候选回传节点之间的链路质量信息,M为大于等于2的整数;
接收模块,用于接收中央控制节点发送的第三消息,第三消息包含普通小站的目标回传节点的标识,以及,普通小站和目标回传节点之间的通信链路资源信息;
控制模块,用于控制发送模块通过和目标回传节点之间的通信链路资源信息,向目标回传节点发送数据,和/或,控制接收模块通过和目标回传节点之间的通信链路资源信息,从目标回传节点接收数据。
在一种可能的设计中,接收模块还用于接收中央控制节发送的第一指示消息,第一指示消息用于指示普通小站上报普通小站的接入链路资源预占用信息,第一指示消息包含:第一上报信息和/或第一上报触发条件。
在一种可能的设计中,接收模块还用于接收中央控制节点发送的第二指示消息,第二指示消息用于指示普通小站测量普通小站的接入链路资源预占用信息,第二指示消息包含:第一测量信息和/或第一测量触发条件;
控制模块,还用于根据第二指示消息测量普通小站的接入链路资源预占用信息。
在一种可能的设计中,接收模块还用于接收中央控制节点发送的第三指示消息,第三指示消息用于指示普通小站上报普通小站分别与M个候选回传节点之间的链路质量信息,第三指示消息包含:第二上报信息和/或第二上报触发条件。
在一种可能的设计中,接收模块还用于接收中央控制节点发送的第四指示消息,第四指示消息用于指示普通小站测量普通小站分别与M个候选回传节点之间的链路质量信息,第四指示消息包含:第二测量信息和/或第二测量触发条件。
在一种可能的设计中,第二测量信息包含下述至少一种:
测量的候选回传节点的数量;
测量方式;
测量参数的精度。
在一种可能的设计中,第一上报触发条件,包括:
周期性触发或者事件触发。
在一种可能的设计中,第一测量触发条件,包括:
周期性触发或者事件触发。
在一种可能的设计中,第二上报触发条件,包括:
周期性触发或者事件触发。
在一种可能的设计中,第二测量触发条件,包括:
周期性触发或者事件触发。
第六方面,本发明实施例提供一种资源分配装置,包括:
接收模块,用于接收中央控制节点发送的第二消息,第二消息包含普通小站分别与目标回传节点之间的链路质量信息;
接收模块,还用于接收中央控制节点发送的第四消息,第四消息包含普通小站和目标回传节点之间的通信链路资源信息;
控制模块,用于控制发送模块通过和普通小站之间的通信链路资源信息,向普通小站发送数据,和/或,控制接收模块,通过和普通小站之间的通信链路资源信息,从普通小站接收数据。
在一种可能的设计中,第四消息还包含普通小站的标识。
第七方面,本发明实施例提供一种资源分配装置,包括:
接收器,用于接收普通小站发送的第一消息,第一消息包含普通小站的接入链路资源预占用信息;
接收器,还用于接收普通小站发送的第二消息,第二消息包含普通小站分别与M个候选回传节点之间的链路质量信息,M为大于等于2的整 数;
接收器,还用于接收M个候选回传节点发送的剩余回传链路资源信息;
处理器,用于根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,从M个候选回传节点中确定普通小站的目标回传节点,以及普通小站和目标回传节点之间的通信链路资源信息;
发射器,用于向普通小站发送第三消息,第三消息包含目标回传节点的标识,以及,普通小站和目标回传节点之间的通信链路资源信息。
第八方面,本发明实施例提供一种资源分配装置,包括:
发射器,用于向中央控制节点发送第一消息,第一消息包含普通小站的接入链路资源预占用信息;
发射器,还用于向中央控制节点发送第二消息,第二消息包含普通小站分别与M个候选回传节点之间的链路质量信息,M为大于等于2的整数;
接收器,用于接收中央控制节点发送的第三消息,第三消息包含普通小站的目标回传节点的标识,以及,普通小站和目标回传节点之间的通信链路资源信息;
控制器,用于控制发射器通过和目标回传节点之间的通信链路资源信息,向目标回传节点发送数据,和/或,控制接收器通过和目标回传节点之间的通信链路资源信息,从目标回传节点接收数据。
第九方面,本发明实施例提供一种资源分配装置,包括:
接收器,用于接收中央控制节点发送的第二消息,第二消息包含普通小站分别与目标回传节点之间的链路质量信息;
接收器,还用于接收中央控制节点发送的第四消息,第四消息包含普通小站和目标回传节点之间的通信链路资源信息;
控制器,用于控制发射器通过和普通小站之间的通信链路资源信息,向普通小站发送数据,和/或,控制接收器,通过和普通小站之间的通信链路资源信息,从普通小站接收数据。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一种可能的应用场景示意图;
图2为本发明实施例提供的一种可能的资源分配方法流程示意图;
图3为本发明所述的一种可能的比特图示意图;
图4为本发明实施例提供的另一种可能的资源分配方法流程示意图;
图5为本发明实施例提供的中央控制节点的结构示意图;
图6为本发明实施例提供的普通小站的结构示意图;
图7为本发明实施例提供的目标回传节点的结构示意图;
图8为本发明实施例提供的中央控制节点的另一结构示意图;
图9为本发明实施例提供的普通小站的另一结构示意图;
图10为本发明实施例提供的目标回传节点的另一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本发明实施例中可能采用术语第一、第二、第三等来描述XXX,但这些XXX不应限于这些术语。这些术语仅用来将XXX彼此区分开。例如,在不脱离本发明实施例范围的情况下,第一XXX也可以被称为第二XXX,类似地,第二XXX也可以被称为第一XXX。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的 限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。如图1所示,图1为本发明一种可能的应用场景示意图。本发明的应用场景为无线通信系统,用户设备(User Equipment,简称:UE)通过宏站、主小站或普通小站接入到核心网(Core Network,简称:CN),其中,主小站和普通小站属于小站,不同的是,主小站是指和核心网设备之间的回传链路配置有专用的回传链路的资源的小站,普通小站不具有专用的回传链路的资源的小站,需要通过目标回传节点与核心网设备之间进行通信。
本发明实施例描述的技术可以适用于长期演进(Long Term Evolution,简称:LTE)系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统。此外,还可以适用于使用LTE系统后续的演进系统,如第五代5G系统等。
图1中的无线通信系统包含宏站H1、至少一个主小站(图1中示出了主小站M1和主小站M2)、至少一个普通小站(图1中示出了普通小站S1~普通小站S4)以及至少一个UE(图1中示出了UE1~UE14),其中,宏站与核心网链路之间、主小站与核心网链路之间具有专用的回传链路的资源,所述专用的回传链路的资源可以为:光纤、微波等资源,而普通小站需要通过无线的方式连接到邻近的宏站或者主小站来解决自身的回传问题。图1中示出了三种链路,接入链路、非理想回传链路和理想回传链路;
其中:
1、接入链路
接入链路是指UE到接入设备之间链路,其中,宏站、主小站和普通小站均可以作为UE的接入设备,如在图1中,UE1与宏站H1之间以及UE2与宏站H1之间的链路均为接入链路,UE3与普通小站S1之间以及UE4与普通小站S1之间的链路均为接入链路,UE5与主小站M1之间以及UE6与主小站M1之间的链路均为接入链路,UE7与普通小站S2之间以及UE8与普通小站S2之间的链路均为接入链路,UE9与普通小站S3之间以及UE10与普通小站S3之间的链路均为接入链路,UE11与普通小站S4之间以及UE12与 普通小站S4之间的链路均为接入链路,UE13与主小站M2之间以及UE14与主小站M2之间的链路均为接入链路。
2、非理想回传链路
非理想回传链路是指普通小站与目标回传节点之间的链路,目标回传节点可以是宏站、也可以是主小站,只要与核心网链路之间具有专用的回传链路的资源都可以作为目标回传节点。
例如,在图1中,普通小站S1与宏站H1之间的链路为非理想回传链路,普通小站S2与主小站M1之间的链路为非理想回传链路,普通小站S3与主小站M2之间的链路为非理想回传链路,普通小站S4与主小站M2之间的链路为非理想回传链路。
3、理想回传链路
理想回传链路是指与核心网链路之间具有专用的回传链路的资源的链路。例如,在图1中,宏站H1到核心网链路之间的链路为理想回传链路L1,主小站M1到核心网链路之间的链路为理想回传链路L2,主小站M2到核心网链路之间的链路为理想回传链路L3。
然而,实际的应用场景中,针对同一普通小站,有多个主小站或者宏站均可以作为该普通小站的目标回传节点,如在图1中,对于普通小站S2来说,主小站M1、主小站M2和宏站H1均可以作为普通小站S2的目标回传节点(在图1中只示出了主小站M1和普通小站S2之间的回传链路),但是,如何从中选择一个最合适的目标回传节点,本发明通过结合普通小站的接入链路资源预占用信息、普通小站与宏站之间或者普通小站与主小站之间的链路质量信息、宏站或主小站的剩余回传链路资源信息(通常指可用的回传链路的资源),为普通小站确定合适的目标回传节点。例如,在图1中系统确定主小站M1作为普通小站S2的回传节点。从而,提升用户设备到核心网(包括回传链路和接入链路)的传输能力,从而,提高系统性能。
本发明中的宏站、主小站和普通小站可以为基站(Base Station,BS)、接入点(Access Point,AP)、远端无线设备(Remote Radio Equipment,RRE)、远端无线端口(Remote Radio Head,RRH)、远端无线单元(Remote Radio Unit,RRU)等,本发明对此不作具体限制。宏站、主小站和普通小站与小区的对应关系不限,可以是一个宏站、主小站或普通小站对应一个或多个小区,也 可以是一个小区对应多个宏站、主小站或普通小站。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
为了便于描述,本发明下述各实施例中,将主小站或宏站称为候选回传节点,从候选回传节点中选择为普通小站提供回传链路的资源的目标回传节点。
图2为本发明实施例提供的一种可能的资源分配方法流程示意图,如图2所示,本实施例的方法如下:
S201:中央控制节点向普通小站发送第二指示消息。
其中,第二指示消息用于指示普通小站测量普通小站的接入链路资源预占用信息,第二指示消息包含:第一测量信息和/或第一测量触发条件。
其中,中央控制节点可以独立部署,也可以部署在宏站或网关(图1中未示出)中,网关部署在核心网中,对此,本发明不作限制。当中央控制节点部署在网关中时,中央控制节点通过宏站和普通小站进行信息交互,本发明对此不作限制。中央控制节点负责一定范围内(比如某个扇区)所有普通小站的回传链路资源分配,包括回传链路的连接关系以及普通小站和目标回传节点之间的通信链路资源信息。其中,回传链路的连接关系是指哪个候选回传节点作为哪个普通小站的回传节点;普通小站和目标回传节点之间的通信链路资源信息指普通小站与目标回传节点之间进行通信所使用的时频资源,具体地:普通小站通过和所述目标回传节点之间的通信链路资源信息,向所述目标回传节点发送数据,和/或,从所述目标回传节点接收数据。
接入链路资源预占用信息中包含普通小站为满足归属用户的业务需求所需的时频资源预占用量,其中,普通小站的归属用户是指接入该普通小站的UE,例如,在图1中,普通小站S1的的归属用户为UE3和UE4,普通小站S1的接入链路资源预占用信息中包含普通小站S1为了满足UE3和UE4的业务需求所需的时频资源预占用量。由于普通小站能够控制归属用户对于信道状态信息、干扰信息、业务需求信息以及调度算法等进行测量,因此,普通小站能够根据这些信息对接入链路资源预占用信息进行较准确的预估。
中央控制节点通过第一测量信息能够指示普通小站测量哪些参数以及测量的参数的精度。例如:对于某个普通小站,如果按照平均信道状态信息来估计其传输效率(k bps/PRB),那么结合接入的归属用户的总业务速率要求(n bps),就可以得到该普通小站的接入链路资源预占用信息(n/k)PRBs。然而,如果对于该普通小站,是按照某种更加精细的信道状态信息,或者按照特定的调度算法,可能得到该普通小站的接入链路资源预占用信息为长度为N的比特图(bitmap),如图3所示,图3为本发明所述的一种可能的比特图示意图;每个比特代表一个物理资源块(Physical Resource Block,简称:PRB),其中1指示的是预占用的PRB的位置,0指示的是不占用的PRB的位置。
中央控制节点通过第一测量触发条件指示普通小站在什么时候进行测量,其中,第一触发条件可以是:周期性的触发测量或事件触发测量,周期性的触发测量即每隔固定时间进行一次测量,例如:固定时间为5s,假设第一次测量在0s、则第二次测量在5s、第三次测量在15s、第四次测量在20s等;事件触发测量即在某种事件发生时或发生后进行测量,例如:所述事件可以是普通小站接入的归属用户数量的变化、归属用户的业务的变化、或者任何可以引起普通小站的接入链路资源预占用信息发生变化的事件。
S202:中央控制节点向普通小站发送第一指示消息。
其中,第一指示消息用于指示普通小站上报普通小站的接入链路资源预占用信息,第一指示消息包含:第一上报信息和/或第一上报触发条件。
中央控制节点通过第一上报信息能够指示普通小站上报哪些参数以及上报的参数的精度。第一上报信息可以与S201中的第一测量信息相同;也可以是根据S201中的第一测量信息进一步获取的参数,例如:根据信道状态信息、干扰信息、业务需求信息以及调度算法求得的接入链路资源预占用信息。
中央控制节点通过第一上报触发条件指示普通小站在什么时候进行上报,第一上报触发条件也可以是周期性触发上报或事件触发上报,第一上报触发条件的周期可以与第一测量触发条件的周期相同,也可以不同,例如,可以是每测量一次上报一次,也可以是测量几次,上报一次;第一事件触发上报的事件也可以与第一事件触发测量的事件相同,也可以不同,对此,本发明不作限制。
S203:普通小站根据第二指示消息,获取接入链路资源预占用信息。
普通小站可以根据S201中的第二指示消息包含的第一测量信息和/或第一测量触发条件,获取接入链路资源预占用信息。
S204:普通小站根据第一指示消息,向中央控制节点发送第一消息。
其中,第一消息包含普通小站的接入链路资源预占用信息。
普通小站根据S202中的第一指示消息包含的第一上报信息和/或第一上报触发条件,向中央控制节点发送S203中获取的的接接入链路资源预占用信息。
S205:中央控制节点向普通小站发送第四指示消息。
其中,第四指示消息用于指示普通小站测量普通小站分别与M个候选回传节点之间的链路质量信息,第四指示消息包含:第二测量信息和/或第二测量触发条件。
其中,第二测量信息包含下述至少一种:
测量的候选回传节点的数量;
测量参数;
测量方式;
测量参数的精度。
其中,测量的候选回传节点的数量是指普通小站需要测量的候选回传节点的数量,例如,第二测量信息中测量的候选回传节点的数量为3,则普通小站测量与候选回传节点1之间的链路质量信息,普通小站测量与候选回传节点2之间的链路质量信息,普通小站测量与候选回传节点3之间的链路质量信息;测量参数是指普通小站要测量的链路质量信息的参数,例如:测量参数可以是宽带信号与干扰加噪声比(Signal to Interference plus Noise Ratio,简称:SINR),也可以是子带SINR。测量方式可以是基于导频测量,例如:测量消息中可以指示普通小站基于导频获得要测量的各候选回传节点的接收信号强度,利用总接收信道强度得到各候选回传节点的宽带SINR。
第二测量信息也可以指示普通小站对周围的N个候选回传节点进行子带SINR测量,并且指示子带的频域宽度。
第二测量触发条件可以是周期性触发测量,也可以是事件触发测量, 对此本发明不作限制。
可选地,第二测量信息中也可以不指示测量的候选回传节点的数量,而是直接指示要测量的候选回传节点的标识(Identification,简称:ID),对此,本发明不作限制。
S206:中央控制节点向普通小站发送第三指示消息。
其中,第三指示消息用于指示普通小站上报普通小站分别与M个候选回传节点之间的链路质量信息,第三指示消息包含:第二上报信息和/或第二上报触发条件。
中央控制节点通过第二上报信息能够指示普通小站上报哪些参数以及上报的参数的精度。
中央控制节点通过第二上报触发条件指示普通小站在什么时候进行上报,第二上报触发条件可以是周期性触发上报或事件触发上报,第二上报触发条件的周期可以与第二测量触发条件的周期相同,第二事件触发上报的事件也可以与第二事件触发测量的事件相同,也可以不同,对此,本发明不作限制。
S207:普通小站根据第四指示消息,获取普通小站分别与M个候选回传节点之间的链路质量信息。
具体地,普通小站根据S205中第二测量信息和第二测量触发条件,获取普通小站分别与M个候选回传节点之间的链路质量信息。
S208:普通小站根据第三指示消息,向中央控制节点发送第二消息。
其中,第二消息包含普通小站分别与M个候选回传节点之间的链路质量信息。
S209:中央控制节点接收M个候选回传节点发送的剩余回传链路资源信息。
剩余回传链路资源信息是指该候选回传节点可用的回传链路的资源,即该候选回传节点除用于接入链路的资源和已经分配的资源外,剩余的资源即可用的回传链路的资源。
S210:中央控制节点根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,从M个候选回传节点中确定普通 小站的目标回传节点,以及普通小站和目标回传节点之间的通信链路资源信息。
具体地,中央控制节点根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,计算普通小站的所有归属用户到每个候选回传节点对应的吞吐量和,得到M个吞吐量和;中央控制节点确定M个吞吐量和中,最大吞吐量和所对应的候选回传节点为目标回传节点。
更具体地,确定普通小站的所有候选回传节点,依次假设每个候选回传节点作为该普通小站的目标回传节点时,普通小站的归属用户到目标回传节点的吞吐量和,例如,在图1中,普通小站S2的所有的候选回传节点为宏站H1、主小站M1和主小站M2,假设宏站M1作为普通小站S2的目标回传节点时,根据普通小站S2的接入链路资源预占用信息、普通小站S2与宏站H1之间的链路质量信息以及宏站H1的剩余回传链路资源信息,计算归属用户(UE7和UE8)到宏站H1的吞吐量和,记为“W1”;再假设主小站M1作为普通小站S2的目标回传节点时,根据普通小站S2的接入链路资源预占用信息、普通小站S2与主小站M1之间的链路质量信息以及主小站M1的剩余回传链路资源信息,计算归属用户(UE7和UE8)到主小站M1的吞吐量和,记为“W2”;再假设主小站M2作为普通小站S2的目标回传节点时,根据普通小站S2的接入链路资源预占用信息、普通小站S2与主小站M2之间的链路质量信息以及主小站M2的剩余回传链路资源信息,计算归属用户(UE7和UE8)到主小站M2的吞吐量和,记为“W3”;假设,W1、W2和W3中,W2最大,则确定主小站M1作为普通小站S2的目标回传节点。其他普通小站确定回传节点的方法类似,不再一一赘述。
S211:中央控制节点向普通小站发送第三消息。
其中,第三消息包含目标回传节点的标识,以及普通小站和目标回传节点之间的通信链路资源信息。普通小站通过和目标回传节点之间的通信链路资源信息,向目标回传节点发送数据,和/或,从目标回传节点接收数据。
可选地,可以包括:
S212:中央控制节点向目标回传节点发送第四消息。
第四消息包含普通小站和目标回传节点之间的通信链路资源信息。目标回传节点通过和普通小站之间的通信链路资源信息,向普通小站发送数据,和/或,从普通小站接收数据。其中,第四消息中还可以包含普通小站的标识。
本实施例,通过中央控制节点根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,从M个候选回传节点中确定普通小站的目标回传节点,以及普通小站和目标回传节点之间的通信链路资源信息。由于普通小站的目标回传节点以及通小站和目标回传节点之间的通信链路资源信息是中央控制节点结合了普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息确定的,因此,目标回传节点的确定更加合理,并且,通小站和目标回传节点之间的通信链路资源信息也更加合理,从而,提高系统性能。
针对S210的具体实现,本发明还提供图4所示实施例,图4为本发明实施例提供的另一种可能的资源分配方法流程示意图,本实施例的方法如下:
S401:对资源分配中需要使用的中间变量以及资源分配输出量进行初始化。
S402:中央控制节点获取资源分配需要的系统信息。
其中,资源分配需要的系统信息包括普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,所述M个候选回传节点发送的剩余回传链路资源信息等。
具体子步骤如下:
各普通小站测量自身接入链路资源预占用信息并上报给中央控制节点。
各普通小站测量自身分别与M个候选回传节点之间的链路质量信息并上报给中央控制节点,中央控制节点能够得到各回传链路效率。
候选回传节点上报剩余回传链路资源信息给中央控制节点。
S403:资源分配流程。
包括如下子步骤:
对于第m个普通小站,假设其在第k个资源单元上被第n个目标回传节点提供回传服务,并且该普通小站的目标端到端吞吐量要求为RU,该目标回传节点到核心网的链路容量为RC,那么可以根据如下的方法得到此时为了满足服务所需要的接入资源比例αm,n,k,回传链路的资源比例βm,n,k和可感知的端到端吞吐量Rm,n,k
Figure PCTCN2016084073-appb-000001
其中,
Figure PCTCN2016084073-appb-000002
表示第m个普通小站,假设其在第k个资源单元上被第n个目标回传节点提供回传服务连接关系下的端到端吞吐量门限,R=min(RU,RC)表示非空口链路的吞吐量能力,c表示某个资源单元上可用的剩余资源比例,SINRA表示接入链路的接收信干噪比,SINRB表示回传链路的接收信干噪比,T表示目标速率为R时的接入链路资源需求比例。
从整个公式来看,接入资源比例和回传链路的资源比例的分配可以分为两种情况。一种情况是目标速率小于吞吐量门限,此时由于端到端吞吐量受限于各跳链路的最小值,所以接入资源比例和回传链路的资源比例的分配就仅需要考虑目标速率的影响,并且由于两跳速率相等的时候能够最大化端到端速率,所以可以得到接入资源比例和回传链路的资源比例分别与两跳链路的传输效率成反比。另一种情况是目标速率大于吞吐量门限, 此时又可以细分为两种情况,即回传链路为传输瓶颈时,重点需要优化回传链路,此时接入链路吞吐量不小于回传链路吞吐量,并且回传链路吞吐量小于目标速率,可以推导得到对应的接入资源和回传链路的资源分配比例;当接入链路成为瓶颈时,类似地需要重点优化接入链路,此时回传链路吞吐量不小于接入链路吞吐量,并且接入链路吞吐量小于目标速率,通过推导可以得到相同的资源分配结果。
对于所有普通小站、目标回传节点和资源单位,按照上述方法进行计算,然后找出端到端吞吐量最大的组合。比如,假设第m’个普通小站的归属用户到第n个目标回传节点的吞吐量和最大,n(m')和k(m')分别表示该普通小站的目标回传节点和传输对应的资源单位,Rm,n,k表示第m个普通小站的归属用户在第k个资源单位上通过第n个目标回传节点进行回传时能够达到的端到端吞吐量,则可以得到资源分配结果如下:
Figure PCTCN2016084073-appb-000003
上式表示从所有的连接关系中找出端到端吞吐量最大的普通小站、目标回传节点和对应的资源单位,并相应地获得该用户的端到端吞吐量、接入链路资源分配比例和回传链路资源分配比例如下:
Figure PCTCN2016084073-appb-000004
Figure PCTCN2016084073-appb-000005
Figure PCTCN2016084073-appb-000006
S404:更新第m’个普通小站及其相关的目标回传节点的剩余回传链路的资源数量。
其中目标回传节点的剩余回传链路的资源更新为
Figure PCTCN2016084073-appb-000007
目标回传节点和核心网之间的链路吞吐量更新为
Figure PCTCN2016084073-appb-000008
普通小站的可用资源比例更新为
Figure PCTCN2016084073-appb-000009
S405:如果Rm'≥RU,m',则第m’个普通小站退出资源分配,否则普通小站需要的数据速率更新为RU,m'=RU,m'-Rm'
S406:重复步骤S402-S405,直到所有的普通小站都达到服务要求或者所有的资源都用尽。
图5为本发明实施例提供的中央控制节点的结构示意图,本实施例的中央控制节点包括:接收模块501、处理模块502和发送模块503,其中,接收模块501用于接收普通小站发送的第一消息,第一消息包含普通小站的接入链路资源预占用信息;接收模块501还用于接收普通小站发送的第二消息,第二消息包含普通小站分别与M个候选回传节点之间的链路质量信息,M为大于等于2的整数;接收模块501还用于接收M个候选回传节点发送的剩余回传链路资源信息;处理模块502用于根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,从M个候选回传节点中确定普通小站的目标回传节点,以及普通小站和目标回传节点之间的通信链路资源信息;发送模块503用于向普通小站发送第三消息,第三消息包含目标回传节点的标识,以及,普通小站和目标回传节点之间的通信链路资源信息。
可选地,发送模块503还用于向目标回传节点发送第四消息,第四消息包含普通小站和目标回传节点之间的通信链路资源信息。
可选地,第四消息还包含普通小站的标识。
可选地,处理模块502具体用于根据中央控制节点根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,计算普通小站的所有归属用户到每个候选回传节点对应的吞吐量和,得到M个吞吐量和;中央控制节点确定M个吞吐量和中,最大吞吐量和所对应的候选回传节点为目标回传节点。
可选地,发送模块503还用于向普通小站发送第一指示消息,第一指示消息用于指示普通小站上报普通小站的接入链路资源预占用信息,第一指示消息包含:第一上报信息和/或第一上报触发条件。
可选地,发送模块503还用于向普通小站发送第二指示消息,第二指示消息用于指示普通小站测量普通小站的接入链路资源预占用信息,第二指示消息包含:第一测量信息和/或第一测量触发条件。
可选地,发送模块503还用于向普通小站发送第三指示消息,第三指示消息用于指示普通小站上报普通小站分别与M个候选回传节点之间的链路质量信息,第三指示消息包含:第二上报信息和/或第二上报触发条件。
可选地,发送模块503还用向普通小站发送第四指示消息,第四指示消息用于指示普通小站测量普通小站分别与M个候选回传节点之间的链路质量信息,第四指示消息包含:第二测量信息和/或第二测量触发条件。
可选地,第二测量信息包含下述至少一种:
测量的候选回传节点的数量;
测量方式;
测量参数的精度。
可选地,第一上报触发条件,包括:
周期性触发或者事件触发。
可选地,第一测量触发条件,包括:
周期性触发或者事件触发。
可选地,第二上报触发条件,包括:
周期性触发或者事件触发。
可选地,第二测量触发条件,包括:
周期性触发或者事件触发。
图5所示实施例的装置,对应地可用于执行图2所示方法实施例中央控制节点执行的相应步骤,其实现原理和技术效果类似,此处不再赘述。
图6为本发明实施例提供的普通小站的结构示意图,本实施例的普通小站包括:发送模块601、接收模块602和控制模块603,其中,发送模块601用于向中央控制节点发送第一消息,第一消息包含普通小站的接入 链路资源预占用信息;发送模块601还用于向中央控制节点发送第二消息,第二消息包含普通小站分别与M个候选回传节点之间的链路质量信息,M为大于等于2的整数;接收模块602用于接收中央控制节点发送的第三消息,第三消息包含普通小站的目标回传节点的标识,以及,普通小站和目标回传节点之间的通信链路资源信息;控制模块603用于控制发送模块通过和目标回传节点之间的通信链路资源信息,向目标回传节点发送数据,和/或,控制接收模块通过和目标回传节点之间的通信链路资源信息,从目标回传节点接收数据。
可选地,
接收模块602还用于接收中央控制节发送的第一指示消息,第一指示消息用于指示普通小站上报普通小站的接入链路资源预占用信息,第一指示消息包含:第一上报信息和/或第一上报触发条件。
可选地,
接收模块602还用于接收中央控制节点发送的第二指示消息,第二指示消息用于指示普通小站测量普通小站的接入链路资源预占用信息,第二指示消息包含:第一测量信息和/或第一测量触发条件;
控制模块603还用于根据第二指示消息测量普通小站的接入链路资源预占用信息。
可选地,
接收模块602还用于接收中央控制节点发送的第三指示消息,第三指示消息用于指示普通小站上报普通小站分别与M个候选回传节点之间的链路质量信息,第三指示消息包含:第二上报信息和/或第二上报触发条件。
可选地,
接收模块602还用于接收中央控制节点发送的第四指示消息,第四指示消息用于指示普通小站测量普通小站分别与M个候选回传节点之间的链路质量信息,第四指示消息包含:第二测量信息和/或第二测量触发条件。
可选地,
第二测量信息包含下述至少一种:
测量的候选回传节点的数量;
测量方式;
测量参数的精度。
可选地,
第一上报触发条件,包括:
周期性触发或者事件触发。
可选地,
第一测量触发条件,包括:
周期性触发或者事件触发。
可选地,
第二上报触发条件,包括:
周期性触发或者事件触发。
可选地,
第二测量触发条件,包括:
周期性触发或者事件触发。
图6所示实施例的装置,对应地可用于执行图2所示方法实施例普通小站执行的相应步骤,其实现原理和技术效果类似,此处不再赘述。
图7为本发明实施例提供的目标回传节点的结构示意图,本实施例的目标回传节点包括:接收模块701和控制模块702,其中,接收模块701用于接收中央控制节点发送的第二消息,第二消息包含普通小站分别与目标回传节点之间的链路质量信息;接收模块701还用于接收中央控制节点发送的第四消息,第四消息包含普通小站和目标回传节点之间的通信链路资源信息;控制模块702用于控制发送模块通过和普通小站之间的通信链路资源信息,向普通小站发送数据,和/或,控制接收模块,通过和普通小站之间的通信链路资源信息,从普通小站接收数据。
其中,第四消息还包含普通小站的标识。
图7所示实施例的装置,对应地可用于执行图2所示方法实施例目标回传节点执行的相应步骤,其实现原理和技术效果类似,此处不再赘述。
图8为本发明实施例提供的中央控制节点的另一结构示意图,本实施例的中央控制节点包括:接收器801、处理器802和发射器803,其中, 接收器801用于接收普通小站发送的第一消息,第一消息包含普通小站的接入链路资源预占用信息;接收器801还用于接收普通小站发送的第二消息,第二消息包含普通小站分别与M个候选回传节点之间的链路质量信息,M为大于等于2的整数;接收器801还用于接收M个候选回传节点发送的剩余回传链路资源信息;
处理器802用于根据普通小站的接入链路资源预占用信息、普通小站分别与M个候选回传节点之间的链路质量信息,以及,M个候选回传节点发送的剩余回传链路资源信息,从M个候选回传节点中确定普通小站的目标回传节点,以及普通小站和目标回传节点之间的通信链路资源信息;发射器803用于向普通小站发送第三消息,第三消息包含目标回传节点的标识,以及,普通小站和目标回传节点之间的通信链路资源信息。
图8所示实施例的装置,对应地可用于执行图2所示方法实施例中央控制节点执行的相应步骤,其实现原理和技术效果类似,此处不再赘述。
图9为本发明实施例提供的普通小站的另一结构示意图,本实施例的普通小站包括:发射器901、接收器902和控制器903,其中,发射器901用于向中央控制节点发送第一消息,第一消息包含普通小站的接入链路资源预占用信息;发射器901还用于向中央控制节点发送第二消息,第二消息包含普通小站分别与M个候选回传节点之间的链路质量信息,M为大于等于2的整数;接收器902用于接收中央控制节点发送的第三消息,第三消息包含普通小站的目标回传节点的标识,以及,普通小站和目标回传节点之间的通信链路资源信息;控制器903用于控制发射器通过和目标回传节点之间的通信链路资源信息,向目标回传节点发送数据,和/或,控制接收器通过和目标回传节点之间的通信链路资源信息,从目标回传节点接收数据。
图9所示实施例的装置,对应地可用于执行图2所示方法实施例普通小站执行的相应步骤,其实现原理和技术效果类似,此处不再赘述。
图10为本发明实施例提供的目标回传节点的另一结构示意图,本实施例的目标回传节点包括:接收器1001和控制器1002,其中,接收器1001 用于接收中央控制节点发送的第二消息,第二消息包含普通小站分别与目标回传节点之间的链路质量信息;接收器1001还用于接收中央控制节点发送的第四消息,第四消息包含普通小站和目标回传节点之间的通信链路资源信息;控制器1002用于控制发射器通过和普通小站之间的通信链路资源信息,向普通小站发送数据,和/或,控制接收器,通过和普通小站之间的通信链路资源信息,从所述普通小站接收数据。
图10所示实施例的装置,对应地可用于执行图2所示方法实施例目标回传节点执行的相应步骤,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (53)

  1. 一种资源分配方法,其特征在于,包括:
    中央控制节点接收普通小站发送的第一消息,所述第一消息包含所述普通小站的接入链路资源预占用信息;
    所述中央控制节点接收所述普通小站发送的第二消息,所述第二消息包含所述普通小站分别与M个候选回传节点之间的链路质量信息,所述M为大于等于2的整数;
    所述中央控制节点接收所述M个候选回传节点发送的剩余回传链路资源信息;
    所述中央控制节点根据所述普通小站的接入链路资源预占用信息、所述普通小站分别与M个候选回传节点之间的链路质量信息,以及,所述M个候选回传节点发送的剩余回传链路资源信息,从所述M个候选回传节点中确定所述普通小站的目标回传节点,以及所述普通小站和所述目标回传节点之间的通信链路资源信息;
    所述中央控制节点向所述普通小站发送第三消息,所述第三消息包含所述目标回传节点的标识,以及,所述普通小站和所述目标回传节点之间的通信链路资源信息。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述中央控制节点向所述目标回传节点发送第四消息,所述第四消息包含所述普通小站和所述目标回传节点之间的通信链路资源信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第四消息还包含所述普通小站的标识。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述中央控制节点根据所述普通小站的接入链路资源预占用信息、所述普通小站分别与M个候选回传节点之间的链路质量信息,以及,所述M个候选回传节点发送的剩余回传链路资源信息,从所述M个候选回传节点中确定所述普通小站的目标回传节点,包括:
    所述中央控制节点根据所述中央控制节点根据所述普通小站的接入链路资源预占用信息、所述普通小站分别与M个候选回传节点之间的链路质量信息,以及,所述M个候选回传节点发送的剩余回传链路资源信 息,计算所述普通小站的所有归属用户到每个所述候选回传节点对应的吞吐量和,得到M个吞吐量和;
    所述中央控制节点确定所述M个吞吐量和中,最大吞吐量和所对应的候选回传节点为所述目标回传节点。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述中央控制节点接收普通小站发送的第一消息之前,还包括:
    所述中央控制节点向所述普通小站发送第一指示消息,所述第一指示消息用于指示所述普通小站上报所述普通小站的接入链路资源预占用信息,所述第一指示消息包含:所述第一上报信息和/或所述第一上报触发条件。
  6. 根据权利要求5所述的方法,其特征在于,所述中央控制节点向所述普通小站发送第一指示消息之前,还包括:
    所述中央控制节点向所述普通小站发送第二指示消息,所述第二指示消息用于指示所述普通小站测量所述普通小站的接入链路资源预占用信息,所述第二指示消息包含:所述第一测量信息和/或所述第一测量触发条件。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述中央控制节点接收所述普通小站发送的第二消息之前,还包括:
    所述中央控制节点向所述普通小站发送第三指示消息,所述第三指示消息用于指示所述普通小站上报所述普通小站分别与M个候选回传节点之间的链路质量信息,所述第三指示消息包含:所述第二上报信息和/或所述第二上报触发条件。
  8. 根据权利要求7所述的方法,其特征在于,所述中央控制节点向所述普通小站发送第三指示消息之前,还包括:
    所述中央控制节点向所述普通小站发送第四指示消息,所述第四指示消息用于指示所述普通小站测量所述普通小站分别与M个候选回传节点之间的链路质量信息,所述第四指示消息包含:所述第二测量信息和/或所述第二测量触发条件。
  9. 根据权利要求8所述的方法,其特征在于,所述第二测量信息包含下述至少一种:
    测量的候选回传节点的数量;
    测量方式;
    测量参数的精度。
  10. 根据权利要求5所述的方法,其特征在于,所述第一上报触发条件,包括:
    周期性触发或者事件触发。
  11. 根据权利要求6所述的方法,其特征在于,所述第一测量触发条件,包括:
    周期性触发或者事件触发。
  12. 根据权利要求7所述的方法,其特征在于,所述第二上报触发条件,包括:
    周期性触发或者事件触发。
  13. 根据权利要求8所述的方法,其特征在于,所述第二测量触发条件,包括:
    周期性触发或者事件触发。
  14. 一种资源分配方法,其特征在于,包括:
    普通小站向中央控制节点发送第一消息,所述第一消息包含所述普通小站的接入链路资源预占用信息;
    所述普通小站向所述中央控制节点发送第二消息,所述第二消息包含所述普通小站分别与M个候选回传节点之间的链路质量信息,所述M为大于等于2的整数;
    所述普通小站接收所述中央控制节点发送的第三消息,所述第三消息包含所述普通小站的目标回传节点的标识,以及,所述普通小站和所述目标回传节点之间的通信链路资源信息;
    所述普通小站通过和所述目标回传节点之间的通信链路资源信息,向所述目标回传节点发送数据,和/或,从所述目标回传节点接收数据。
  15. 根据权利要求14所述的方法,其特征在于,
    所述普通小站向中央控制节点发送第一消息之前,还包括:
    所述普通小站接收所述中央控制节发送的第一指示消息,所述第一指示消息用于指示所述普通小站上报所述普通小站的接入链路资源预占用 信息,所述第一指示消息包含:所述第一上报信息和/或所述第一上报触发条件。
  16. 根据权利要求15所述的方法,其特征在于,所述普通小站根据所述第一指示消息上报所述普通小站的接入链路资源预占用信息之前,还包括:
    所述普通小站接收所述中央控制节点发送的第二指示消息,所述第二指示消息用于指示所述普通小站测量所述普通小站的接入链路资源预占用信息,所述第二指示消息包含:所述第一测量信息和/或所述第一测量触发条件;
    所述普通小站根据所述第二指示消息测量所述普通小站的接入链路资源预占用信息。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述普通小站向所述中央控制节点发送第二消息之前,还包括:
    所述普通小站接收所述中央控制节点发送的第三指示消息,所述第三指示消息用于指示所述普通小站上报所述普通小站分别与M个候选回传节点之间的链路质量信息,所述第三指示消息包含:所述第二上报信息和/或所述第二上报触发条件。
  18. 根据权利要求17所述的方法,其特征在于,所述普通小站接收所述中央控制节点发送的第三指示消息之前,还包括:
    所述普通小站接收所述中央控制节点发送的第四指示消息,所述第四指示消息用于指示所述普通小站测量所述普通小站分别与M个候选回传节点之间的链路质量信息,所述第四指示消息包含:所述第二测量信息和/或所述第二测量触发条件。
  19. 根据权利要求18所述的方法,其特征在于,所述第二测量信息包含下述至少一种:
    测量的候选回传节点的数量;
    测量方式;
    测量参数的精度。
  20. 根据权利要求15所述的方法,其特征在于,所述第一上报触发条件,包括:
    周期性触发或者事件触发。
  21. 根据权利要求16所述的方法,其特征在于,所述第一测量触发条件,包括:
    周期性触发或者事件触发。
  22. 根据权利要求17所述的方法,其特征在于,所述第二上报触发条件,包括:
    周期性触发或者事件触发。
  23. 根据权利要求18所述的方法,其特征在于,所述第二测量触发条件,包括:
    周期性触发或者事件触发。
  24. 一种资源分配方法,其特征在于,包括:
    目标回传节点接收中央控制节点发送的第二消息,所述第二消息包含普通小站分别与所述目标回传节点之间的链路质量信息;
    所述目标回传节点接收所述中央控制节点发送的第四消息,所述第四消息包含所述普通小站和所述目标回传节点之间的通信链路资源信息;
    所述目标回传节点通过和所述普通小站之间的通信链路资源信息,向所述普通小站发送数据,和/或,从所述普通小站接收数据。
  25. 根据权利要求24所述的方法,其特征在于,所述第四消息还包含所述普通小站的标识。
  26. 一种资源分配装置,其特征在于,包括:
    接收模块,用于接收普通小站发送的第一消息,所述第一消息包含所述普通小站的接入链路资源预占用信息;
    所述接收模块,还用于接收所述普通小站发送的第二消息,所述第二消息包含所述普通小站分别与M个候选回传节点之间的链路质量信息,所述M为大于等于2的整数;
    所述接收模块,还用于接收所述M个候选回传节点发送的剩余回传链路资源信息;
    处理模块,用于根据所述普通小站的接入链路资源预占用信息、所述普通小站分别与M个候选回传节点之间的链路质量信息,以及,所述M个候选回传节点发送的剩余回传链路资源信息,从所述M个候选回传节 点中确定所述普通小站的目标回传节点,以及所述普通小站和所述目标回传节点之间的通信链路资源信息;
    发送模块,用于向所述普通小站发送第三消息,所述第三消息包含所述目标回传节点的标识,以及,所述普通小站和所述目标回传节点之间的通信链路资源信息。
  27. 根据权利要求26所述的装置,其特征在于,所述发送模块还用于向所述目标回传节点发送第四消息,所述第四消息包含所述普通小站和所述目标回传节点之间的通信链路资源信息。
  28. 根据权利要求27所述的装置,其特征在于,所述第四消息还包含所述普通小站的标识。
  29. 根据权利要求26~28任一项所述的装置,其特征在于,所述处理模块具体用于根据所述中央控制节点根据所述普通小站的接入链路资源预占用信息、所述普通小站分别与M个候选回传节点之间的链路质量信息,以及,所述M个候选回传节点发送的剩余回传链路资源信息,计算所述普通小站的所有归属用户到每个所述候选回传节点对应的吞吐量和,得到M个吞吐量和;所述中央控制节点确定所述M个吞吐量和中,最大吞吐量和所对应的候选回传节点为所述目标回传节点。
  30. 根据权利要求26~29任一项所述的装置,其特征在于,所述发送模块,还用于向所述普通小站发送第一指示消息,所述第一指示消息用于指示所述普通小站上报所述普通小站的接入链路资源预占用信息,所述第一指示消息包含:所述第一上报信息和/或所述第一上报触发条件。
  31. 根据权利要求30所述的装置,其特征在于,所述发送模块,还用于向所述普通小站发送第二指示消息,所述第二指示消息用于指示所述普通小站测量所述普通小站的接入链路资源预占用信息,所述第二指示消息包含:所述第一测量信息和/或所述第一测量触发条件。
  32. 根据权利要求26-31任一项所述的装置,其特征在于,所述发送模块还用于向所述普通小站发送第三指示消息,所述第三指示消息用于指示所述普通小站上报所述普通小站分别与M个候选回传节点之间的链路质量信息,所述第三指示消息包含:所述第二上报信息和/或所述第二上报触发条件。
  33. 根据权利要求32所述的装置,其特征在于,所述发送模块还用向所述普通小站发送第四指示消息,所述第四指示消息用于指示所述普通小站测量所述普通小站分别与M个候选回传节点之间的链路质量信息,所述第四指示消息包含:所述第二测量信息和/或所述第二测量触发条件。
  34. 根据权利要求33所述的装置,其特征在于,所述第二测量信息包含下述至少一种:
    测量的候选回传节点的数量;
    测量方式;
    测量参数的精度。
  35. 根据权利要求30所述的装置,其特征在于,所述第一上报触发条件,包括:
    周期性触发或者事件触发。
  36. 根据权利要求31所述的装置,其特征在于,所述第一测量触发条件,包括:
    周期性触发或者事件触发。
  37. 根据权利要求32所述的装置,其特征在于,所述第二上报触发条件,包括:
    周期性触发或者事件触发。
  38. 根据权利要求33所述的装置,其特征在于,所述第二测量触发条件,包括:
    周期性触发或者事件触发。
  39. 一种资源分配装置,其特征在于,包括:
    发送模块,用于向中央控制节点发送第一消息,所述第一消息包含普通小站的接入链路资源预占用信息;
    所述发送模块,还用于向所述中央控制节点发送第二消息,所述第二消息包含所述普通小站分别与M个候选回传节点之间的链路质量信息,所述M为大于等于2的整数;
    接收模块,用于接收所述中央控制节点发送的第三消息,所述第三消息包含所述普通小站的目标回传节点的标识,以及,所述普通小站和所述目标回传节点之间的通信链路资源信息;
    控制模块,用于控制所述发送模块通过和所述目标回传节点之间的通信链路资源信息,向所述目标回传节点发送数据,和/或,控制所述接收模块通过和所述目标回传节点之间的通信链路资源信息,从所述目标回传节点接收数据。
  40. 根据权利要求39所述的装置,其特征在于,
    所述接收模块还用于接收所述中央控制节发送的第一指示消息,所述第一指示消息用于指示所述普通小站上报所述普通小站的接入链路资源预占用信息,所述第一指示消息包含:所述第一上报信息和/或所述第一上报触发条件。
  41. 根据权利要求40所述的装置,其特征在于,所述接收模块还用于接收所述中央控制节点发送的第二指示消息,所述第二指示消息用于指示所述普通小站测量所述普通小站的接入链路资源预占用信息,所述第二指示消息包含:所述第一测量信息和/或所述第一测量触发条件;
    所述控制模块,还用于根据所述第二指示消息测量所述普通小站的接入链路资源预占用信息。
  42. 根据权利要求39-41任一项所述的装置,其特征在于,所述接收模块还用于接收所述中央控制节点发送的第三指示消息,所述第三指示消息用于指示所述普通小站上报所述普通小站分别与M个候选回传节点之间的链路质量信息,所述第三指示消息包含:所述第二上报信息和/或所述第二上报触发条件。
  43. 根据权利要求42所述的装置,其特征在于,所述接收模块还用于接收所述中央控制节点发送的第四指示消息,所述第四指示消息用于指示所述普通小站测量所述普通小站分别与M个候选回传节点之间的链路质量信息,所述第四指示消息包含:所述第二测量信息和/或所述第二测量触发条件。
  44. 根据权利要求43所述的装置,其特征在于,所述第二测量信息包含下述至少一种:
    测量的候选回传节点的数量;
    测量方式;
    测量参数的精度。
  45. 根据权利要求40所述的装置,其特征在于,所述第一上报触发条件,包括:
    周期性触发或者事件触发。
  46. 根据权利要求41所述的装置,其特征在于,所述第一测量触发条件,包括:
    周期性触发或者事件触发。
  47. 根据权利要求42所述的装置,其特征在于,所述第二上报触发条件,包括:
    周期性触发或者事件触发。
  48. 根据权利要求43所述的装置,其特征在于,所述第二测量触发条件,包括:
    周期性触发或者事件触发。
  49. 一种资源分配装置,其特征在于,包括:
    接收模块,用于接收中央控制节点发送的第二消息,所述第二消息包含普通小站分别与所述目标回传节点之间的链路质量信息;
    所述接收模块,还用于接收所述中央控制节点发送的第四消息,所述第四消息包含所述普通小站和所述目标回传节点之间的通信链路资源信息;
    控制模块,用于控制发送模块通过和所述普通小站之间的通信链路资源信息,向所述普通小站发送数据,和/或,控制所述接收模块,通过和所述普通小站之间的通信链路资源信息,从所述普通小站接收数据。
  50. 根据权利要求49所述的装置,其特征在于,所述第四消息还包含所述普通小站的标识。
  51. 一种资源分配装置,其特征在于,包括:
    接收器,用于接收普通小站发送的第一消息,所述第一消息包含所述普通小站的接入链路资源预占用信息;
    所述接收器,还用于接收所述普通小站发送的第二消息,所述第二消息包含所述普通小站分别与M个候选回传节点之间的链路质量信息,所述M为大于等于2的整数;
    所述接收器,还用于接收所述M个候选回传节点发送的剩余回传链 路资源信息;
    处理器,用于根据所述普通小站的接入链路资源预占用信息、所述普通小站分别与M个候选回传节点之间的链路质量信息,以及,所述M个候选回传节点发送的剩余回传链路资源信息,从所述M个候选回传节点中确定所述普通小站的目标回传节点,以及所述普通小站和所述目标回传节点之间的通信链路资源信息;
    发射器,用于向所述普通小站发送第三消息,所述第三消息包含所述目标回传节点的标识,以及,所述普通小站和所述目标回传节点之间的通信链路资源信息。
  52. 一种资源分配装置,其特征在于,包括:
    发射器,用于向中央控制节点发送第一消息,所述第一消息包含普通小站的接入链路资源预占用信息;
    所述发射器,还用于向所述中央控制节点发送第二消息,所述第二消息包含所述普通小站分别与M个候选回传节点之间的链路质量信息,所述M为大于等于2的整数;
    接收器,用于接收所述中央控制节点发送的第三消息,所述第三消息包含所述普通小站的目标回传节点的标识,以及,所述普通小站和所述目标回传节点之间的通信链路资源信息;
    控制器,用于控制所述发射器通过和所述目标回传节点之间的通信链路资源信息,向所述目标回传节点发送数据,和/或,控制所述接收器通过和所述目标回传节点之间的通信链路资源信息,从所述目标回传节点接收数据。
  53. 一种资源分配装置,其特征在于,包括:
    接收器,用于接收中央控制节点发送的第二消息,所述第二消息包含普通小站分别与所述目标回传节点之间的链路质量信息;
    所述接收器,还用于接收所述中央控制节点发送的第四消息,所述第四消息包含所述普通小站和所述目标回传节点之间的通信链路资源信息;
    控制器,用于控制发射器通过和所述普通小站之间的通信链路资源信息,向所述普通小站发送数据,和/或,控制所述接收器,通过和所述普通小站之间的通信链路资源信息,从所述普通小站接收数据。
PCT/CN2016/084073 2016-05-31 2016-05-31 资源分配方法和装置 WO2017206057A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680085065.8A CN109076634B (zh) 2016-05-31 2016-05-31 资源分配方法和装置
PCT/CN2016/084073 WO2017206057A1 (zh) 2016-05-31 2016-05-31 资源分配方法和装置
EP16903442.8A EP3445130B1 (en) 2016-05-31 2016-05-31 Resource allocation method and device
US16/205,302 US10477435B2 (en) 2016-05-31 2018-11-30 Resource allocation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/084073 WO2017206057A1 (zh) 2016-05-31 2016-05-31 资源分配方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/205,302 Continuation US10477435B2 (en) 2016-05-31 2018-11-30 Resource allocation method and apparatus

Publications (1)

Publication Number Publication Date
WO2017206057A1 true WO2017206057A1 (zh) 2017-12-07

Family

ID=60478411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084073 WO2017206057A1 (zh) 2016-05-31 2016-05-31 资源分配方法和装置

Country Status (4)

Country Link
US (1) US10477435B2 (zh)
EP (1) EP3445130B1 (zh)
CN (1) CN109076634B (zh)
WO (1) WO2017206057A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11134397B2 (en) * 2018-08-01 2021-09-28 Qualcomm Incorporated Techniques for selecting backhaul nodes for connecting to an integrated access and backhaul network
US11424977B2 (en) * 2018-12-10 2022-08-23 Wipro Limited Method and system for performing effective orchestration of cognitive functions in distributed heterogeneous communication network
CN112566277B (zh) * 2019-09-25 2023-01-31 成都鼎桥通信技术有限公司 数据回传方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883435A (zh) * 2009-05-08 2010-11-10 大唐移动通信设备有限公司 一种资源分配方法及系统
CN102170676A (zh) * 2011-04-20 2011-08-31 上海华为技术有限公司 一种准入控制方法及设备、系统
CN103477698A (zh) * 2011-04-13 2013-12-25 日本电气株式会社 移动通信系统、中继站、基站及其控制方法
EP2914042A1 (en) * 2012-10-23 2015-09-02 NEC Corporation Route control method, wireless communication system, route control device, and non-transient computer-readable medium

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471831A (zh) * 2007-12-28 2009-07-01 三星电子株式会社 动态跳频无线区域网络中基于时分的信道碰撞合作方法
EP2547137B1 (en) * 2010-03-12 2021-04-14 Fujitsu Limited Communication section setting method, relay station and mobile communication system
EP2556709B1 (en) * 2010-04-09 2014-06-18 Telefonaktiebolaget LM Ericsson (publ) Relay node and a controlling node of a lte network
WO2011158297A1 (en) * 2010-06-17 2011-12-22 Nec Corporation Radio communication system and control method of radio resource allocation
EP2499859B1 (en) * 2010-06-30 2016-09-14 Commonwealth Scientific & Industrial Research Organisation ( C.S.I.R.O. ) Dynamic frequency allocation in wireless backhaul networks
US8755324B2 (en) * 2011-08-03 2014-06-17 Blackberry Limited Allocating backhaul resources
US20130142136A1 (en) * 2011-10-21 2013-06-06 Samsung Electronics Co., Ltd. Methods and apparatus for adaptive wireless backhaul and networks
US20150358959A1 (en) * 2012-03-02 2015-12-10 Qualcomm Incorporated Managing perfomance of a wireless network using backhaul metrics
EP3525512A1 (en) * 2012-09-03 2019-08-14 Huawei Technologies Co., Ltd. Method and system for transmitting information through backhaul link, proxy device, and access device
US20150245272A1 (en) * 2012-10-05 2015-08-27 Telefonaktiebolaget L M Ericsson Method, Apparatus and Computer Program for Backhaul Management
US20150119046A1 (en) * 2013-10-29 2015-04-30 Qualcomm Incorporated Backhaul management of a small cell
EP3101950B1 (en) * 2014-02-26 2018-08-22 Huawei Technologies Co., Ltd. Network device and data postback implementation method
US20150312768A1 (en) * 2014-04-29 2015-10-29 Qualcomm Incorporated Small cell access mode control based on demand metrics
US9936393B2 (en) * 2015-02-08 2018-04-03 Industrial Technology Research Institute Method of radio resource scheduling in unlicensed spectrum and related apparatuses using the same
US9622277B1 (en) * 2015-06-22 2017-04-11 X Development Llc Coordinating backhaul links between ground stations and airborne backhaul network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883435A (zh) * 2009-05-08 2010-11-10 大唐移动通信设备有限公司 一种资源分配方法及系统
CN103477698A (zh) * 2011-04-13 2013-12-25 日本电气株式会社 移动通信系统、中继站、基站及其控制方法
CN102170676A (zh) * 2011-04-20 2011-08-31 上海华为技术有限公司 一种准入控制方法及设备、系统
EP2914042A1 (en) * 2012-10-23 2015-09-02 NEC Corporation Route control method, wireless communication system, route control device, and non-transient computer-readable medium

Also Published As

Publication number Publication date
EP3445130A1 (en) 2019-02-20
EP3445130B1 (en) 2020-03-25
US20190104440A1 (en) 2019-04-04
CN109076634B (zh) 2021-09-14
EP3445130A4 (en) 2019-03-13
US10477435B2 (en) 2019-11-12
CN109076634A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
US10951381B2 (en) CSI reference resource definition for CSI report in NR
US9929851B2 (en) System and methods for full duplex communication over a wireless network
US8837320B2 (en) Methods and systems for anchored down-selection in a coordinated multipoint transmission cluster
EP3092842B1 (en) Method and evolved node-b for geographic bin data collection and reporting
US20200145159A1 (en) Method and apparatus for multiple transmit/receive point (trp) operations
CN105075331B (zh) 预测设备到无线网络的可能的未来连接的服务质量
US9706488B2 (en) Apparatus and method for attempting connection to an access point
KR20170138877A (ko) 통신 단말의 릴레이 통신 방법 및 그 통신 단말
US20160249351A1 (en) Data Transmission Scheduling Method, Device and System
US9072018B2 (en) Wireless channel switching using co-located radios
KR20050074296A (ko) 무선 근거리 통신망에서의 채널 통신여부 평가 최적화
US20160037330A1 (en) Methods for Group Management, Scheduling, and Rate Selection for MU-MIMO Using User Location and Other System Parameters
EP3599780B1 (en) Client device grouping for uplink transmission in a wlan
JP2022520466A (ja) 伝送リソース検出方法、伝送リソース決定方法と通信機器
CN103907390A (zh) 用于无线电资源分配的方法和装置
Kouzayha et al. Measurement-based signaling management strategies for cellular IoT
CN104471887A (zh) 用于指派探测资源的方法和接入点
US11265802B2 (en) Wireless communication system and wireless communication method
WO2017206057A1 (zh) 资源分配方法和装置
WO2015106450A1 (en) Load balancing among wireless access points
US20170155482A1 (en) Method and apparatus for resource allocation between multiple cells based on coordinated multipoint
Salam et al. Cooperative MTC data offloading with trust transitivity framework in 5G networks
US20230413186A1 (en) Sidelink Data Transmission Method and Related Apparatus
WO2017028684A1 (zh) 一种节点选择方法及装置
So et al. A Simple and Practical Scheme Using Multiple Channels for Improving System Spectral Efficiency of Highly Dense Wireless LANs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016903442

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016903442

Country of ref document: EP

Effective date: 20181115

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903442

Country of ref document: EP

Kind code of ref document: A1