WO2017028684A1 - 一种节点选择方法及装置 - Google Patents

一种节点选择方法及装置 Download PDF

Info

Publication number
WO2017028684A1
WO2017028684A1 PCT/CN2016/093251 CN2016093251W WO2017028684A1 WO 2017028684 A1 WO2017028684 A1 WO 2017028684A1 CN 2016093251 W CN2016093251 W CN 2016093251W WO 2017028684 A1 WO2017028684 A1 WO 2017028684A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
user terminal
configuration set
configuration
reference signal
Prior art date
Application number
PCT/CN2016/093251
Other languages
English (en)
French (fr)
Inventor
任敏
郝鹏
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017028684A1 publication Critical patent/WO2017028684A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/10Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on available power or energy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This document relates to, but is not limited to, the field of mobile communication technologies, and in particular, to a node selection method and apparatus.
  • the ultra-dense network improves the network capacity by increasing the network node's deployment density by improving the network coverage, that is, increasing the network capacity by increasing the deployment density of LPN (Low Power Node).
  • LPN Low Power Node
  • SINR Signal to Interference plus Noise Ratio
  • the network side determines the transmission set according to the measurement report of the RSRP (Reference Signal Receiving Power) fed back by the user terminal, and then according to the CSI of the channel in the transmission set fed back by the user terminal (channel state) Information, channel state information), selecting a node from the transmission set as the transmitting signal node of the user terminal.
  • the network side needs to notify the user terminal of the index information of the transmitting signal node.
  • the processing overhead of the user terminal is increased on the one hand, because the user terminal needs to feed back the channel state information of all nodes in the transmission set, and on the other hand, the network side signaling overhead is also increased, because the network side needs to notify the user terminal of the transmitting signal node. Index information.
  • the network side determines that the transmitting signal node is based on all sub-band resources for the user terminal, but the RB (Resource Block) located in different sub-bands has different fast fading characteristics, so related technologies
  • This coarse granularity selection node technique can limit the increase in throughput of edge user terminals.
  • the embodiment of the invention provides a method and a device for selecting a node, which can avoid the problem that the user terminal has large feedback overhead and large signaling overhead caused by the service node.
  • a node selection method includes:
  • the user terminal determines a node configuration set according to one or more network configuration standards, where the node configuration set is used to indicate that the corresponding node is in an on state or a closed state;
  • the user terminal transmits the determined set of node configurations.
  • the network configuration standard includes signal quality and/or signal strength.
  • the network configuration standard is notified by the base station to the user terminal.
  • the node comprises a low power node LPN and/or a device providing measurement reference resources.
  • the set of node configurations determined by the user terminal is one or more.
  • determining, by the user terminal, the node configuration set according to one or more network configuration standards includes:
  • the user terminal periodically determines the node configuration set according to one or more network configuration standards And/or, after the user terminal is triggered, determining the node configuration set according to one or more network configuration standards.
  • the method before the determining, by the user terminal, the node configuration set according to one or more network configuration standards, the method further includes:
  • the user terminal measures the received power of the downlink reference signal of the multiple nodes, and acquires the reference signal received power RSRP or the reference signal received quality information RSRQ;
  • the user terminal selects a primary service node and a candidate node configuration set according to the reference signal received power or reference signal reception quality information.
  • the selecting the primary service node includes:
  • the node with the largest RSRP or RSRQ value is selected as the primary serving node.
  • the selecting a candidate node configuration set includes:
  • determining, by the user terminal, the node configuration set according to one or more network configuration standards includes:
  • the user terminal selects, according to the downlink channel quality indicator of each node in the candidate node configuration set to the user terminal, a node combination that meets the network configuration standard, and uses each of the selected node combinations as one Node configuration collection.
  • the node configuration set refers to a set of one or more service nodes and one or more shutdown nodes that send signals to the user terminal on corresponding subbands;
  • the service node is an open state node.
  • the closed node is a node in a closed state.
  • each of the sub-bands corresponds to one or more of the node configuration sets; or a plurality of the sub-bands correspond to one or more of the node configuration sets.
  • the set of node configurations includes an LPN configuration set and/or a device configuration set that provides measurement reference resources.
  • the user terminal determines a node configuration set according to one or more network configuration standards.
  • a node configuration set according to one or more network configuration standards.
  • the sending, by the user terminal, the determined node configuration set includes:
  • the user terminal sends the determined precoding information corresponding to the node configuration set.
  • the precoding information is used to indicate precoding that can be used by the corresponding node configuration set to reach the network configuration standard.
  • the method further includes:
  • the user terminal demodulates the data sent by the serving node for the user terminal by using a demodulation reference signal DMRS, and the DMRS used by the user terminal to demodulate is generated according to the identifier of the primary service node, or according to the identifier of the service node.
  • Generating; the service node is a node in an open state.
  • the method when generating the DMRS according to the identifier of the service node, the method further includes:
  • the user terminal determines an identifier of a serving node used to generate the DMRS according to an indication of a carrier indication bit CIF field in the downlink control information DCI.
  • the sending, by the user terminal, the determined node configuration set includes:
  • the method further includes:
  • the user terminal receives, from the central control node, index information of a node configuration set determined by the central control node to use.
  • the receiving, by the user terminal, the index information of the node configuration set determined by the central control node from the central control node includes:
  • the user terminal receives the index information of the node configuration set determined by the central control node by using the DCI carried on the physical downlink control channel PDCCH.
  • the index information is carried in a CIF domain in the DCI, and different CIF values represent different node configuration sets.
  • the central control node is a node configured by the primary serving node or a high layer.
  • the sending, by the user terminal, the determined node configuration set includes:
  • the user terminal selects a node configuration set to be used in the determined node configuration set, and sends a selected node configuration set to each of the primary service node or the selected node configuration set.
  • a node selection device is disposed in a user terminal, and the device includes:
  • a determining module configured to determine a node configuration set according to one or more network configuration standards, the node configuration set is used to indicate that the corresponding node is in an on state or an off state;
  • the transceiver module is configured to send the determined set of node configurations.
  • the network configuration standard includes signal quality and/or signal strength.
  • the network configuration standard is notified by the base station to the user terminal.
  • the node comprises a low power node LPN and/or a device providing measurement reference resources.
  • the determining module determines the set of node configurations to be one or more.
  • determining, by the determining module, the node configuration set according to one or more network configuration standards includes:
  • the determining module periodically determines the set of node configurations according to one or more network configuration criteria, and/or, after being triggered, determines the set of node configurations according to one or more network configuration criteria.
  • the device further includes:
  • the measuring module is configured to measure the received power of the downlink reference signal of the multiple nodes, and obtain the reference signal received power RSRP or the reference signal received quality information RSRQ;
  • a selection module configured to select a primary service node and a candidate node configuration set according to the reference signal received power or reference signal reception quality information.
  • the selecting the module to select the primary service node includes:
  • the selection module selects a node that selects the largest RSRP or RSRQ value as the primary serving node.
  • the selecting module selecting the candidate node configuration set includes:
  • the selecting module compares a difference between a reference signal received power and a reference signal received power of the primary serving node, or a difference between reference signal received quality information and reference signal received quality information of the primary serving node is less than a threshold value.
  • the neighbor node selects the candidate node configuration set.
  • determining, by the determining module, the node configuration set according to one or more network configuration standards includes:
  • the determining module filters, according to the downlink channel quality indicator of each node in the candidate node configuration set to the user terminal, a node combination that meets the network configuration standard, and each of the selected node combinations is separately described as one Node configuration collection.
  • the node configuration set refers to a set of one or more service nodes and one or more shutdown nodes that send signals to the user terminal on corresponding subbands;
  • the service node is an open state node.
  • the closed node is a node in a closed state.
  • each of the sub-bands corresponds to one or more of the node configuration sets; or a plurality of the sub-bands correspond to one or more of the node configuration sets.
  • the set of node configurations includes an LPN configuration set and/or a device configuration set that provides measurement reference resources.
  • determining, by the determining module, the node configuration set according to one or more network configuration standards includes:
  • the sending, by the transceiver module, the determined set of node configurations includes:
  • the transceiver module sends the determined precoding information corresponding to the node configuration set.
  • the precoding information is used to indicate precoding that can be used by the corresponding node configuration set to reach the network configuration standard.
  • the device further includes:
  • a demodulation module configured to use a demodulation reference signal DMRS demodulation service node for the user end
  • the data sent by the terminal, the DMRS used for demodulation is generated according to the identity of the primary serving node, or generated according to the identifier of the serving node; the node of the serving node is an open state.
  • the demodulation module is further configured to: when the DMRS is generated according to the identifier of the serving node, determine an identifier of the serving node used to generate the DMRS according to the indication of the CIF field of the carrier indicator bit in the downlink control information DCI.
  • the sending, by the transceiver module, the determined set of node configurations includes:
  • the transceiver module is further configured to, after transmitting the determined set of node configurations, receive, from the central control node, index information of a node configuration set determined by the central control node to use.
  • the receiving, by the transceiver module, the index information of the node configuration set determined by the central control node to be used by the central control node includes:
  • the transceiver module receives the index information of the node configuration set determined by the central control node by using the DCI carried on the physical downlink control channel PDCCH.
  • the index information is carried in a CIF domain in the DCI, and different CIF values represent different node configuration sets.
  • the central control node is a node configured by the primary serving node or a high layer.
  • the sending, by the transceiver module, the determined set of node configurations includes:
  • the transceiver module selects a node configuration set to be used in the determined node configuration set, and sends a selected node configuration set to each of the primary service node or the selected node configuration set.
  • the node configuration set is determined by the user terminal, where the node configuration set is used to indicate that the corresponding node is in an open state (ie, as a service node) or a closed state (ie, as a closed node), and is overcome by the network side.
  • the optional solution of the embodiment of the present invention may perform frequency selective node selection according to the subband CSI information; for the same subband resource, the channel quality of different nodes to the user terminal is good or bad, and the node with the best channel quality may be selected.
  • FIG. 1 is a schematic flow chart of a node selection method of Embodiment 1;
  • FIG. 2 is a schematic diagram of a node selection process of the example of Embodiment 1;
  • FIG. 3 is a schematic diagram showing a node position distribution of Embodiment 1;
  • FIG. 4 is a schematic diagram of a set of determined node configurations of Embodiment 1;
  • FIG. 5 is a schematic diagram of a process of determining a node configuration set corresponding to Embodiment 3;
  • FIG. 8 is a block diagram showing a node selection device of Embodiment 2.
  • Embodiment 1 a node selection method, as shown in FIG. 1, includes S110 to S120:
  • the user terminal determines a node configuration set according to one or more network configuration standards.
  • the node configuration set is used to indicate that the corresponding node is in an open state or a closed state.
  • the user terminal sends the determined node configuration set.
  • the network configuration standard is notified by the base station to the user terminal.
  • the node may comprise a low power node and/or a device providing measurement reference resources.
  • the node may also include, but is not limited to, any one or more of the following: an RRH (Remote Radio Head), a Hotzone (hotspot area), a Femto (Home Base Station), and a Relay (Relay);
  • RRH Remote Radio Head
  • Hotzone hotspot area
  • Femto Home Base Station
  • Relay Relay
  • the determined set of node configurations may be one or more.
  • the method further includes:
  • the user terminal measures the received power of the downlink reference signal of the multiple nodes, and acquires RSRP or RSRQ (Reference Signal Receiving Quality);
  • the user terminal selects a primary service node and a candidate node configuration set according to the reference signal received power or reference signal reception quality information.
  • the selecting, by the user terminal, the primary serving node may include:
  • the user terminal selects a node with the largest RSRP or RSRQ value as the primary serving node.
  • the selecting, by the user terminal, the candidate node configuration set may include:
  • the neighbor node that the difference between the neighbor RSRP and the primary serving node RSRP or the difference between the neighbor RSRQ and the primary serving node RSRQ is less than the threshold is selected into the candidate node configuration set.
  • the threshold value may be configured by a high layer and notified by the base station to the terminal.
  • step S110 includes:
  • the user terminal selects, according to the downlink channel quality indicator of each node in the candidate node configuration set to the user terminal, a node combination that meets the network configuration standard, and uses each of the selected node combinations as one Node configuration collection.
  • the network configuration standard includes signal quality and/or signal strength.
  • the network configuration standard may include one or more target thresholds, such as may include one or more signal quality thresholds and/or signal strength thresholds.
  • the target threshold may include thresholds such as RSRP, RSRQ, SINR, CQI (channel quality indication). The target threshold may be notified by the base station to the terminal.
  • step S110 may include:
  • the user terminal traverses all node combinations in the candidate node configuration set, and calculates downlink channel state information of the user terminal when different node combinations are used.
  • the service nodes in different node combinations are different and/or the shutdown nodes are different; the service node/closed node in one node combination may be one node or some nodes in the candidate node configuration set; the interference node is in the candidate node configuration set. Service node and other nodes except the shutdown node.
  • the user terminal may determine a node combination whose node downlink channel state information is greater than a network configuration criterion as a node configuration set. And the user terminal knows the downlink traffic load of the node, and jointly determines the node configuration set according to the network configuration standard and the service load size.
  • the corresponding node configuration set may be separately determined according to different network configuration standards; one network configuration standard may correspond to one or more node configuration sets, and the node configuration sets corresponding to different network configuration standards may be different or may be the same.
  • the step of the user terminal calculating downlink channel state information includes:
  • the user terminal estimates, according to a CSI-RS (channel state information reference signal), a downlink channel of each node in the candidate node configuration set on each subband to the user terminal, and traverses all the codebook sets. And obtaining, by the codeword, a transmission weight corresponding to the downlink channel, so that the user terminal obtains a ratio of a useful signal power, a total interference power, and a noise under the candidate node configuration set, to obtain each candidate node configuration set.
  • CSI-RS channel state information reference signal
  • step S110 includes: the user terminal periodically determines the node configuration set according to one or more network configuration standards, and/or, after being triggered, determines the node configuration set according to one or more network configuration standards.
  • the periodic determination of the node configuration set is a semi-static configuration manner. For example, the base station notifies the user terminal to report a new node configuration set at regular intervals.
  • the triggered situation includes at least a signaling release mode and an event trigger mode.
  • the signaling release manner may be notified by the base station to the user terminal to report a new node configuration set by signaling.
  • the event triggering mode is to notify the user terminal that the new node configuration set needs to be reported again when the base station determines that the previously configured node configuration set cannot meet the corresponding target SINR.
  • the user terminal sending the determined node configuration set may be a centralized or distributed feedback process.
  • the centralized feedback process means that the user terminal feeds back one or more node configuration sets to the central control node, and the central control node determines which node configuration set corresponding to the SINR threshold is used, and then notifies each of the instructions in the determined node configuration set.
  • the nodes are open (ie: send data) or closed; the central control node can be the primary service node or configured by the upper layer.
  • step S120 may include: the user terminal feeding back the determined node configuration set to the central control node;
  • the central control node may select a node configuration set selected from the node configuration set fed back by the user terminal, and notify the corresponding node to be turned on or off according to the selected node configuration set; the user terminal is from the central
  • the control node receives index information of the node configuration set that the central control node decides to use.
  • the distributed feedback process means that the user terminal decides which node configuration set to use, feeds back the corresponding result to the main service node, and the main service node notifies each node to turn it on or off. It is also possible that the terminal directly feeds back the corresponding transmission result to each node, and suggests that the node be turned on or off. Alternatively, the user terminal directly transmits the determined node configuration set to each node in the selected node configuration set, and the node refers to the node configuration set fed back by the user terminal, and finally determines whether the node state is the on state or the off state.
  • step S120 may include: the node configuration set selected by the user terminal in the determined node configuration set, and sending the selected node configuration set to each node in the selected node configuration set. .
  • the node is turned on here is the node sends data for the user as a service node (also called a transit node). In the off state, the node remains silent. As the shutdown node, there is no data transmission, but the pilot information is periodically transmitted.
  • the central control node when the centralized feedback mode is adopted, sends DCI (Downlink Control Information) to the user terminal to indicate which node configuration set is used.
  • the central control node may be a primary service node or a node configured by a high layer, and the central control node sends a PDCCH (Physical Downlink Control Channel) to the user terminal.
  • PDCCH Physical Downlink Control Channel
  • the central control node In the DCI carried on the PDCCH, there is a 3-bit CIF (Carrier Indicator Field) field, which may be, but is not limited to, index information of a node configuration set determined by the CIF domain to be used by the central control node; different CIF values are indicated. Different node configuration collections.
  • the CIF is notified to the user terminal, and the central control node finally selects the index information of the node configuration set. Among them, the CIF can indicate up to eight node configuration sets.
  • the user terminal receives the index information of the node configuration set determined by the central control node by using the DCI carried on the physical downlink control channel PDCCH.
  • step S120 includes:
  • the user terminal sends the determined precoding information corresponding to the node configuration set.
  • the method may further include:
  • the user terminal calculates precoding information for one or more node configuration sets, respectively.
  • the precoding information is used to indicate which precoding matrix the node uses to enable the corresponding node configuration set to reach the network configuration standard.
  • the node configuration set refers to one or more service nodes and one or more closed node combinations that send signals to the user terminal on their corresponding sub-bands;
  • the service node is a node in an open state,
  • the shutdown node is a node in a closed state.
  • each node configuration set may correspond to one or more sub-bands.
  • each sub-band may correspond to one or more node configuration sets, or multiple sub-bands may correspond to one or more node configuration sets.
  • the node may comprise an LPN and/or a device providing a CSI reference resource.
  • the node configuration set can include an LPN configuration set and/or a device configuration set that provides measurement reference resources.
  • step S110 may include:
  • the device that serves is the device that transmits the measurement reference resource to the user terminal, and the device that is turned off refers to stopping transmission of the measurement to the user terminal.
  • a device that references a resource is the device that references a resource.
  • the method may further include:
  • the user terminal uses a DMRS (Demodulation Reference Signal) to demodulate data sent by the service node for the user terminal;
  • DMRS Demodulation Reference Signal
  • the user terminal may generate the DMRS to demodulate the received data according to the identifier of the primary serving node.
  • the user terminal does not need to notify the user terminal of the node id (identification) used to generate the DMRS, thereby saving signaling overhead.
  • the primary service node needs to generate information about the id of the DMRS sequence through the air interface interaction, and notifies the different service nodes of each subband, and the DMRS sequence initialization node id is the primary service node.
  • the node processing adds complexity, the user terminal knows the primary service node id, so the transmission data can be demodulated without signaling.
  • the user terminal generates a DMRS according to the id of the serving node to demodulate the received data. Therefore, the CIF field in the DCI signaling is used to indicate the node id of the generated DMRS, and the 3-bit signaling overhead is added.
  • This method does not require the service node to exchange information of the DMRS sequence id, but increases the user terminal demodulation data complexity and increases the 3-bit signaling overhead.
  • the CIF field indicating the node id and the CIF field in the centralized feedback mode in which the central control node sends the DCI to the user terminal are the same.
  • the node selection process includes steps S1 to S6:
  • the user terminal determines, according to the RSRP, index information of the primary serving node and index information of the candidate node configuration set.
  • the user terminal calculates an SINR of each node combination in the candidate node configuration set, and compares with a network configuration standard (which may be, but is not limited to, an SINR threshold) to determine a node configuration set.
  • a network configuration standard which may be, but is not limited to, an SINR threshold
  • the user terminal feeds back a node configuration set and corresponding precoding information to the primary serving node.
  • the primary serving node notifies the serving node to send data on the corresponding resource through the air interface, and instructs the closed node to remain silent;
  • Each sub-band service node sends data to the user terminal according to the allocated resource, but the DMRS sequence uses a DMRS generated according to the identifier of the primary service node;
  • the primary serving node sends a PDCCH to the user terminal.
  • the UDN scene is a 2,500 square meter large office scene without an interior wall barrier.
  • a total of 100 LPN sites were deployed.
  • the site deployment location can be seen in Figure 3, which shows the site deployment location in each of the 100 square meters of the large office.
  • the system bandwidth is 10 MHz
  • a total of 50 RBs are divided into 8 sub-bands
  • the first 7 sub-bands correspond to 6 RBs
  • the 8th sub-band corresponds to 8 RBs.
  • the node selection process is as shown in FIG. 4, and includes the following steps 401-406:
  • the user equipment measures the received power of the downlink reference signal sent by the network side, and obtains the RSRP of all nodes.
  • the user terminal determines a primary service node and a candidate node configuration set according to the RSRP.
  • the user terminal selects the node with the largest RSRP value as the primary serving node.
  • the user terminal determines the candidate node configuration set TPset_candidate method as shown in the formula (1), and the node that satisfies the following condition is selected into the TPset_candidate of the user terminal:
  • the threshold threshold is a high-level configuration, and the base station notifies the user terminal. Then, the neighboring node whose RSRP value RSRP UE K.Cell i(i ⁇ v) is smaller than the RSRP value RSRP UE k.servine cell v of the primary serving node is less than the neighbor of the threshold is selected to be TPset_candidate.
  • the neighboring node RSRP of 99 LPNs is sequentially compared with the RSRP of the primary serving node according to the formula (1), and then the candidate node configuration set is determined for the user terminal User.
  • TPset_candidate ⁇ node 24,25,47,48,57,73,74,98 ⁇
  • the node id is used to indicate the node selected to TPset_candidate, and the ids of 100 LPN nodes are node1 ⁇ 100 respectively;
  • the id of the service node is node 57.
  • the user terminal periodically calculates the SINR of each node in the TPset_candidate to the user terminal, calculates the SINR corresponding to the different node combination, and compares with the SINR threshold, and determines the node combination whose SINR is greater than the SINR threshold as the node configuration set; wherein, different nodes In a combination, the combination of a service node and a shutdown node is different, that is, the service node is different and/or the node is closed; The difference is also different. For example, in a node combination, the shutdown node is node24, 48, and the other node combination is the node 24 or node 24, 48, 57 or node 57, 74. Turn off the different conditions of the node.
  • the user terminal estimates the downlink channel of each node in the TPset_candidate to the user terminal according to the CSI-RS, and traverses all the codewords in the codebook set to obtain the transmission weight corresponding to the channel, and obtains the SINR of each node in the TPset_candidate. .
  • the transmitting node is the node 57 of the main service node, and it is assumed that the id of the closed node is node 24, 48, 74, and other nodes are all acting as interference nodes. That is, 96 nodes other than the node 57, 24, 48, 74 are used as the interference node I.
  • P node57 power service node 57 is transmitting to the user terminal
  • H node57 serving node is a downlink channel to the user terminal 57 matrix
  • I is the interfering node other than the node serving node and closing
  • N is the white Gaussian noise.
  • TPset1 and TPset2 are the set of node configurations on subband 1.
  • the user terminal sends the two types of node configuration sets Tpset1 and TPset2 and the precoding information corresponding to each node configuration set to the central control node.
  • the central control node selects TPset2 as the node configuration set at the current time. It also informs TPset2 that the node whose id is node 48 is ON, and the node whose id is node 57, 74 is OFF.
  • the implementation example central control node is the primary serving node.
  • the node of node48 acts as the transmitting node Node configuration collection.
  • the node selection method of the implementation example 2 is different from the implementation example 1.
  • the difference is that, in step 403, when the user terminal is triggered, the SINR of each node of the TPset_candidate is calculated to the user terminal, and the SINR corresponding to the different node combination is calculated and respectively correlated with the SINR.
  • a node combination with a SINR greater than the SINR threshold is determined as a node configuration set; wherein, in different node combinations, the combination of the service node and the shutdown node is different.
  • the triggering of the user terminal may be: after a period of communication, the base station increases according to the retransmission probability, and determines that the SINR of the node combination in the node configuration set reported by the current frame user terminal is smaller than the SINR threshold, and the absolute value of the difference is greater than a preset.
  • the threshold informs the user that the terminal needs to re-report the new node configuration set.
  • the user terminal is triggered when it receives a notification that the base station needs to re-report the new node configuration set.
  • the node selection method of the implementation example 3 is as shown in FIG. 5, and includes steps 501 to 505.
  • Steps 501 to 503 are the same as steps 401 to 403, respectively, except that in step 504, the user terminal does not feed back the node configuration set and the precoding information corresponding to each node configuration set to the central control node. Instead, the user terminal itself determines the set of node configurations used on the corresponding subband, and the user terminal also selects TPset2 as the final set of node configurations. The user terminal notifies that the node whose id is node 48 in the TPset2 is in the ON state, and the node whose id is node57, 74 is in the OFF state.
  • the node configuration set directly used by the user terminal does not need to be sent through the main service node.
  • the CIF domain information in the DCI on the PDCCH is sent to notify the node to configure the index information of the set, that is, the CIF domain is equal to 0 bit.
  • Step 405 can be omitted compared to the implementation example 1.
  • the step 505 of the implementation example is different from the step 406 of the implementation example 1 in that the node whose id is node 48 transmits the data weighted by the precoding matrix on the resource indicated by the corresponding resource allocation information, and the user terminal uses the service according to the main service.
  • the data transmission is completely transparent, equivalent to receiving data from the primary service node.
  • the UDN scene is a 2,500 square meter large office scene with no interior wall barriers. 13, 25, 50, and 100 LPN sites are deployed in each of the four scenarios.
  • the site deployment locations in the four scenarios are shown in Figure 6(a), (b), (c), and Figure 3, respectively.
  • Figure 7 is a schematic diagram of the spectrum efficiency of the service area in the above four scenarios. It is apparent from Figure 7 that as the station increases, the average throughput also increases.
  • the node selection method of the present embodiment is an effective method for coping with an increase in interference.
  • the nodes mentioned in all of the above embodiments may be LPNs or devices that provide measurement reference resources.
  • the measurement reference resource is introduced by the 3GPP (the 3rd Generation Partnership Project) protocol R11, which is clearly defined in the 3GPP protocol 36.213.
  • the measurement reference resource is defined in the frequency domain as a group of downlink physical resource blocks corresponding to corresponding CQIs in one frequency band.
  • the measurement reference resource is defined as a downlink subframe corresponding to the n-n_CQI feedback delay time in the time domain; where n is the time when the CQI is used, and the n_CQI feedback delay duration is a fixed value, such as 6 ms.
  • Embodiment 2 A node selection device, as shown in FIG. 8, is disposed in a user terminal, and the device includes:
  • the determining module 81 is configured to determine a node configuration set according to one or more network configuration standards, where the node configuration set is used to indicate that the corresponding node is in an open state or a closed state;
  • the transceiver module 82 is configured to transmit the determined set of node configurations.
  • the network configuration standard includes signal quality and/or signal strength.
  • the network configuration standard is notified by the base station to the user terminal.
  • the node comprises a low power node LPN and/or a device providing measurement reference resources.
  • the node configuration set determined by the determining module 81 is one or more.
  • the determining module 81 determines, according to one or more network configuration standards, that the node configuration set refers to:
  • the determining module 81 periodically determines the set of node configurations according to one or more network configuration criteria, and/or, after being triggered, determines the set of node configurations according to one or more network configuration criteria.
  • the device further includes:
  • a measuring module configured to measure received power of a downlink reference signal of multiple nodes, and obtain reference signal received power or reference signal received quality information
  • a selection module configured to select a primary service node and a candidate node configuration set according to the reference signal received power or reference signal reception quality information.
  • the selecting the module to select the primary service node includes:
  • the selection module selects a node that selects the largest RSRP or RSRQ value as the primary serving node.
  • the selecting module selecting the candidate node configuration set includes:
  • the selecting module compares a difference between a reference signal received power and a reference signal received power of the primary serving node, or a difference between reference signal received quality information and reference signal received quality information of the primary serving node is less than a threshold value.
  • the neighbor node selects the candidate node configuration set.
  • the determining module 81 determines a node configuration set according to one or more network configuration standards. Includes:
  • the determining module 81 filters, according to the downlink channel quality indicator of each node in the candidate node configuration set to the user terminal, a node combination that meets the network configuration standard, and uses each selected node combination as a The node configuration set.
  • the node configuration set refers to a set of one or more service nodes and one or more shutdown nodes that send signals to the user terminal on corresponding subbands;
  • the service node is an open state node.
  • the closed node is a node in a closed state.
  • each of the sub-bands corresponds to one or more of the node configuration sets; or a plurality of the sub-bands correspond to one or more of the node configuration sets.
  • the set of node configurations includes an LPN configuration set and/or a device configuration set that provides measurement reference resources.
  • determining, by the determining module 81, the node configuration set according to the one or more network configuration standards includes:
  • the determining module 81 determines a service LPN and a closed LPN in the LPN configuration set according to one or more network configuration standards, and/or determines the device and the closed device of the service in the device configuration set that provides the measurement reference resource. device.
  • the sending, by the transceiver module 82, the determined set of node configurations includes:
  • the transceiver module 82 sends the determined precoding information corresponding to the node configuration set.
  • the precoding information is used to indicate precoding that can be used by the corresponding node configuration set to reach the network configuration standard.
  • the device further includes:
  • the demodulation module is configured to use the demodulation reference signal DMRS to demodulate the data sent by the serving node for the user terminal, and the DMRS used for demodulation is generated according to the primary service node identifier, or generated according to the identifier of the service node.
  • the demodulation module is further configured to: when the DMRS is generated according to the identifier of the serving node, determine an identifier of the serving node used to generate the DMRS according to the indication of the carrier indication bit CIF field in the downlink control information DCI; The node that is in the open state.
  • the sending, by the transceiver module 82, the determined set of node configurations includes:
  • the transceiver module 82 sends the determined one or more node configuration sets to the central control node;
  • the transceiver module 82 is further configured to, after transmitting the determined set of node configurations, receive index information of the node configuration set determined by the central control node from the central control node.
  • the receiving, by the transceiver module 82, the index information of the node configuration set determined by the central control node to be used by the central control node includes:
  • the transceiver module 82 receives the index information of the node configuration set determined by the central control node by using the DCI carried on the physical downlink control channel PDCCH.
  • the index information is carried in a CIF domain in the DCI, and different CIF values represent different node configuration sets.
  • the central control node is a node configured by the primary serving node or a high layer.
  • the sending, by the transceiver module 82, the determined set of node configurations includes:
  • the transceiver module 82 selects a node configuration set selected by the user terminal in the determined node configuration set, and sends the selected node configuration set to the primary service node or each node in the selected node configuration set. .
  • Embodiment 3 A computer readable storage medium storing computer executable instructions for performing the method of Embodiment 1 above.
  • the node configuration set is determined by the user terminal, where the node configuration set is used to indicate that the corresponding node is in an open state (ie, as a service node) or a closed state (ie, as a closed node), and is overcome by the network side.

Abstract

一种节点选择方法及装置;所述方法包括:用户终端根据一个或多个网络配置标准确定节点配置集合,所述节点配置集合用于指示相应节点为开启状态或关闭状态;所述用户终端发送所确定的节点配置集合。

Description

一种节点选择方法及装置 技术领域
本文涉及但不限于移动通信技术领域,尤其涉及一种节点选择方法及装置。
背景技术
随着近年来智能手机等设备的大量普及,对系统的吞吐量提出了越来越高的需求。根据预测,在未来10年里,无线移动业务量预计出现上千倍的增长,而当前基于eNB(Evolved Node Base station,宏基站)的蜂窝无线接入网络显然无法提供足够大的容量以满足如此巨大的移动业务需求。并且在5G(the fifth-generation,第五代)通信中,未来数据业务将主要分布在室内和热点地区,比如人口密集的居民区,写字楼。购物中心,体育场,大型露天集会场所,机场,交通枢纽等。在这种背景下,UDN(ultra dense network,超密集网络)的概念应运而生。
超密集网络通过增加网络节点的部署密度改善网络覆盖实现网络容量的增长,即通过增加LPN(Low Power Node,低功率节点)的部署密度实现网络容量的增长。随着低功率节点密度增加,不可能所有节点都发送数据,否则干扰急剧增加并且能源消耗剧增。那么选择哪些低功率节点为用户终端发送信号,哪些低功率节点关闭就是一个急迫解决的问题。并且随着低功率节点密度增加,节点边缘的用户终端将受到更多相邻节点信号的干扰,那么如何保证边缘用户终端能够保持一个恒定SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比),从而改善边缘用户终端的服务质量,也是一个随之而来的问题。
节点选择的相关技术中,网络侧根据用户终端反馈的RSRP(Reference Signal Receiving Power,参考信号接收功率)的测量报告,确定传输集合,然后根据用户终端反馈的传输集合内所有节点的CSI(channel state information,信道状态信息),从传输集合中选择一个节点作为用户终端的发射信号节点。 网络侧需要向用户终端通知该发射信号节点的索引信息。这样处理一方面增大用户终端的反馈开销,因为用户终端需要反馈传输集合内所有节点的信道状态信息,另一方面也会增加网络侧信令开销,因为网络侧需要向用户终端通知发射信号节点的索引信息。
另外,节点选择的相关技术中,网络侧为用户终端确定发射信号节点是基于所有子带资源,而其实位于不同子带的RB(Resource Block,资源块)具备不同的快衰落特性,所以相关技术中的这种粗糙颗粒度选择节点技术会限制边缘用户终端吞吐量的提高幅度。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种节点选择方法及装置,可以避免由网络侧来确定服务节点带来的用户终端反馈开销大、信令开销大的问题。
本发明实施例采用如下技术方案。
一种节点选择方法,包括:
用户终端根据一个或多个网络配置标准确定节点配置集合,所述节点配置集合用于指示相应节点为开启状态或关闭状态;
所述用户终端发送所确定的节点配置集合。
可选地,所述网络配置标准包括信号质量和/或信号强度。
可选地,所述网络配置标准由基站通知所述用户终端。
可选地,所述节点包括低功率节点LPN和/或提供测量参考资源的设备。
可选地,所述用户终端所确定的节点配置集合为一个或多个。
可选地,所述用户终端根据一个或多个网络配置标准确定节点配置集合包括:
所述用户终端周期性根据一个或多个网络配置标准确定所述节点配置集 合,和/或,所述用户终端被触发后根据一个或多个网络配置标准确定所述节点配置集合。
可选地,所述用户终端根据一个或多个网络配置标准确定节点配置集合之前还包括:
所述用户终端测量多个节点的下行参考信号的接收功率,获取参考信号接收功率RSRP或参考信号接收质量信息RSRQ;
所述用户终端根据所述参考信号接收功率或参考信号接收质量信息,选择主服务节点和候选节点配置集合。
可选地,所述选择主服务节点包括:
选择RSRP或RSRQ值最大的节点为所述主服务节点。
可选地,所述选择候选节点配置集合包括:
将参考信号接收功率与所述主服务节点的参考信号接收功率的差值、或参考信号接收质量信息与所述主服务节点的参考信号接收质量信息的差值小于门限值的邻节点选入所述候选节点配置集合。
可选地,所述用户终端根据一个或多个网络配置标准确定节点配置集合包括:
所述用户终端根据所述候选节点配置集合内每个节点到所述用户终端的下行信道质量指示,筛选符合所述网络配置标准的节点组合,将筛选出的每种节点组合分别作为一个所述节点配置集合。
可选地,所述节点配置集合是指在相应的子带上为所述用户终端发送信号的一个或多个服务节点和一个或多个关闭节点的集合;所述服务节点为开启状态的节点,所述关闭节点为关闭状态的节点。
可选地,每个所述子带对应一个或多个所述节点配置集合;或多个所述子带对应一个或多个所述节点配置集合。
可选地,所述节点配置集合包括LPN配置集合和/或提供测量参考资源的设备配置集合。
可选地,所述用户终端根据一个或多个网络配置标准确定节点配置集合 包括:
所述用户终端根据一个或多个网络配置标准确定所述LPN配置集合中的服务LPN和关闭LPN,和/或,确定所述提供测量参考资源的设备配置集合中的服务的设备和关闭的设备。
可选地,所述用户终端发送所确定的节点配置集合包括:
所述用户终端发送所确定的所述节点配置集合对应的预编码信息。
可选地,所述预编码信息用于指示能使对应的所述节点配置集合达到所述网络配置标准所使用的预编码。
可选地,所述用户终端发送所确定的节点配置集合后还包括:
所述用户终端使用解调参考信号DMRS解调服务节点为所述用户终端发送的数据,所述用户终端解调所使用的DMRS根据所述主服务节点标识生成,或根据所述服务节点的标识生成;所述服务节点为开启状态的节点。
可选地,当根据服务节点的标识生成DMRS时还包括:
所述用户终端根据下行控制信息DCI中载波指示位CIF域的指示确定用于生成DMRS的服务节点的标识。
可选地,所述用户终端发送所确定的节点配置集合包括:
所述用户终端发送所确定的一个或多个节点配置集合给中央控制节点;
所述用户终端发送所确定的节点配置集合后还包括:
所述用户终端从所述中央控制节点接收所述中央控制节点决定使用的节点配置集合的索引信息。
可选地,所述用户终端从所述中央控制节点接收所述中央控制节点决定使用的节点配置集合的索引信息包括:
所述用户终端通过物理下行控制信道PDCCH上承载的DCI接收所述中央控制节点决定使用的节点配置集合的索引信息。
可选地,所述索引信息承载在所述DCI中的CIF域,不同CIF值表示不同节点配置集合。
可选地,所述中央控制节点为所述主服务节点或高层配置的节点。
可选地,所述用户终端发送所确定的节点配置集合包括:
所述用户终端在所确定的节点配置集合中选择使用的节点配置集合,发送选择使用的节点配置集合给所述主服务节点或者所选择使用的节点配置集合中的每个节点。
一种节点选择装置,设置于用户终端中,所述装置包括:
确定模块,设置成根据一个或多个网络配置标准确定节点配置集合,所述节点配置集合用于指示相应节点为开启状态或关闭状态;
收发模块,设置成发送所确定的节点配置集合。
可选地,所述网络配置标准包括信号质量和/或信号强度。
可选地,所述网络配置标准由基站通知所述用户终端。
可选地,所述节点包括低功率节点LPN和/或提供测量参考资源的设备。
可选地,所述确定模块所确定的节点配置集合为一个或多个。
可选地,所述确定模块根据一个或多个网络配置标准确定节点配置集合包括:
所述确定模块周期性根据一个或多个网络配置标准确定所述节点配置集合,和/或,被触发后根据一个或多个网络配置标准确定所述节点配置集合。
可选地,所述的装置还包括:
测量模块,设置成测量多个节点的下行参考信号的接收功率,获取参考信号接收功率RSRP或参考信号接收质量信息RSRQ;
选择模块,设置成根据所述参考信号接收功率或参考信号接收质量信息,选择主服务节点和候选节点配置集合。
可选地,所述选择模块选择主服务节点包括:
所述选择模块选择选择RSRP或RSRQ值最大的节点为所述主服务节点。
可选地,所述选择模块选择候选节点配置集合包括:
所述选择模块将参考信号接收功率与所述主服务节点的参考信号接收功率的差值、或参考信号接收质量信息与所述主服务节点的参考信号接收质量信息的差值小于门限值的邻节点选入所述候选节点配置集合。
可选地,所述确定模块根据一个或多个网络配置标准确定节点配置集合包括:
所述确定模块根据所述候选节点配置集合内每个节点到所述用户终端的下行信道质量指示,筛选符合所述网络配置标准的节点组合,将筛选出的每种节点组合分别作为一个所述节点配置集合。
可选地,所述节点配置集合是指在相应的子带上为所述用户终端发送信号的一个或多个服务节点和一个或多个关闭节点的集合;所述服务节点为开启状态的节点,所述关闭节点为关闭状态的节点。
可选地,每个所述子带对应一个或多个所述节点配置集合;或多个所述子带对应一个或多个所述节点配置集合。
可选地,所述节点配置集合包括LPN配置集合和/或提供测量参考资源的设备配置集合。
可选地,所述确定模块根据一个或多个网络配置标准确定节点配置集合包括:
所述确定模块根据一个或多个网络配置标准确定所述LPN配置集合中的服务LPN和关闭LPN,和/或,确定所述提供测量参考资源的设备配置集合中的服务的设备和关闭的设备。
可选地,所述收发模块发送所确定的节点配置集合包括:
所述收发模块发送所确定的所述节点配置集合对应的预编码信息。
可选地,所述预编码信息用于指示能使对应的所述节点配置集合达到所述网络配置标准所使用的预编码。
可选地,所述的装置还包括:
解调模块,设置成使用解调参考信号DMRS解调服务节点为所述用户终 端发送的数据,解调所使用的DMRS根据所述主服务节点标识生成,或根据服务节点的标识生成;所述服务节点为开启状态的节点。
可选地,所述解调模块还设置成当根据服务节点的标识生成DMRS时,根据下行控制信息DCI中载波指示位CIF域的指示确定用于生成DMRS的服务节点的标识。
可选地,所述收发模块发送所确定的节点配置集合包括:
所述收发模块发送所确定的一个或多个节点配置集合给中央控制节点;
所述收发模块还设置成在发送所确定的节点配置集合后,从所述中央控制节点接收所述中央控制节点决定使用的节点配置集合的索引信息。
可选地,所述收发模块从所述中央控制节点接收所述中央控制节点决定使用的节点配置集合的索引信息包括:
所述收发模块通过物理下行控制信道PDCCH上承载的DCI接收所述中央控制节点决定使用的节点配置集合的索引信息。
可选地,所述索引信息承载在所述DCI中的CIF域,不同CIF值表示不同节点配置集合。
可选地,所述中央控制节点为所述主服务节点或高层配置的节点。
可选地,所述收发模块发送所确定的节点配置集合包括:
所述收发模块在所确定的节点配置集合中选择使用的节点配置集合,发送选择使用的节点配置集合给所述主服务节点或者所选择使用的节点配置集合中的每个节点。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。本发明实施例由用户终端确定节点配置集合,所述节点配置集合用于指示相应节点为开启状态(即:作为服务节点)或关闭状态(即:作为关闭节点),克服了由网络侧来确定服务节点带来的用户终端反馈开销大、信令开销大的问题。边缘用户终端采用本发明实施例后,通过确定节点配置集合来选择节点的开启和关闭,使得边缘用户终端保持恒定 SINR,从而有效改善边缘用户终端干扰大的问题;后续在实施方式中有系统仿真结果作为该效果的有力证明。本发明实施例的可选方案可以根据子带CSI信息进行频率选择性的节点选择;对于相同的子带资源,不同节点到用户终端的信道质量有好有差,可以选择信道质量最好的节点为用户终端提供服务,以最大化每个子带资源的频谱利用率。
在阅读并理解了附图和详细描述后,可以明白其它方面。
附图概述
图1为实施例1的节点选择方法的流程示意图;
图2是实施例1的例子的节点选择过程示意图;
图3为实施示例1的节点位置分布示意图;
图4为实施示例1的确定节点配置集合示意图;
图5为实施示例3所对应的确定节点配置集合过程示意图;
图6(a)~(c)为实施示例4所对应的节点位置分布示意图;
图7为实施示例4所对应的仿真结果示意图;
图8为实施例2的节点选择装置的模块示意图。
本发明的实施方式
需要说明的是,如果不冲突,本发明实施例以及实施例中的特征可以相互结合。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例1、一种节点选择方法,如图1所示,包括S110~S120:
S110、用户终端根据一个或多个网络配置标准确定节点配置集合;所述节点配置集合用于指示相应节点为开启状态或关闭状态;
S120、所述用户终端发送所确定的节点配置集合。
可选地,所述网络配置标准由基站通知所述用户终端。
可选地,所述节点可以包括低功率节点和/或提供测量参考资源的设备。
其中,所述节点还可以包括但不限于以下任一种或任几种:RRH(Remote radio head,射频拉远单元)、Hotzone(热点区域)、Femto(家庭基站)、Relay(中继);本文中,所述用户终端和基站不属于所述节点。
可选地,所确定的节点配置集合可以是一个或多个。
可选地,所述步骤S110之前还包括:
所述用户终端测量多个节点的下行参考信号的接收功率,获取RSRP或RSRQ(Reference Signal Receiving Quality,参考信号接收质量信息);
所述用户终端根据所述参考信号接收功率或参考信号接收质量信息,选择主服务节点和候选节点配置集合。
可选地,所述用户终端选择主服务节点可以包括:
所述用户终端选择RSRP或RSRQ值最大的节点作为主服务节点。
可选地,所述用户终端选择候选节点配置集合可以包括:
将邻节点RSRP与主服务节点RSRP的差值、或邻节点RSRQ与主服务节点RSRQ的差值小于门限值的邻节点选入候选节点配置集合。
其中,门限值可以由高层配置,由基站通知给终端。
可选地,所述步骤S110包括:
所述用户终端根据所述候选节点配置集合内每个节点到所述用户终端的下行信道质量指示,筛选符合所述网络配置标准的节点组合,将筛选出的每种节点组合分别作为一个所述节点配置集合。
可选地,所述网络配置标准包括信号质量和/或信号强度。
可选地,所述网络配置标准可以包括一个或多个目标门限,比如可以包括一个或多个信号质量门限和/或信号强度门限。所述目标门限可以包括RSRP、RSRQ、SINR、CQI(channel quality indication,信道质量指示)等门限。所述目标门限可以由基站通知终端。
本可选方案中,步骤S110可以包括:
所述用户终端遍历候选节点配置集合内所有节点组合,计算采用不同节点组合时该用户终端的下行信道状态信息。
不同节点组合中的服务节点不同和/或关闭节点不同;一个节点组合中的服务节点/关闭节点可以是候选节点配置集合内某一个节点或某几个节点;干扰节点是候选节点配置集合内除服务节点及关闭节点以外的其他节点。
所述用户终端可以将节点下行信道状态信息大于网络配置标准的节点组合确定为节点配置集合。并且用户终端已知节点下行业务负载情况,结合网络配置标准和业务负载大小来共同确定节点配置集合。可以根据不同的网络配置标准分别确定对应的节点配置集合;一个网络配置标准可能对应一个或多个节点配置集合,不同网络配置标准所对应的节点配置集合有可能不同,也有可能相同。
可选地,所述用户终端计算下行信道状态信息的步骤包括:
所述用户终端根据CSI-RS(channel state information reference signal,信道状态信息参考信号),估计出每个子带上候选节点配置集合内每个节点到本用户终端的下行信道,遍历码本集合中所有码字得到所述下行信道对应的发射权值,从而所述用户终端得到所述候选节点配置集合下有用信号功率、与总干扰功率和噪声之和的比值,得到所述候选节点配置集合内每个节点到终端的SINR。
可选地,步骤S110包括:用户终端周期性根据一个或多个网络配置标准确定所述节点配置集合,和/或,被触发后根据一个或多个网络配置标准确定所述节点配置集合。
其中,周期性确定节点配置集合,是半静态配置方式,比如由基站通知用户终端每隔一定时间上报新的节点配置集合。
被触发的情况至少包括信令下达方式和事件触发方式。
信令下达方式可以由基站通过信令方式通知用户终端上报新的节点配置集合。
事件触发方式是基站判断之前上报的节点配置集合已不能满足对应的目标SINR时,通知用户终端需要重新上报新的节点配置集合。
可选地,用户终端发送所确定的节点配置集合可以是集中式也可以是分布式的反馈过程。
集中式反馈过程指,用户终端反馈一个或多个节点配置集合给中央控制节点,由中央控制节点决定使用哪个SINR门限对应的节点配置集合,再按照确定的节点配置集合内的指示,分别通知每个节点开启(即:进行数据发送)或关闭;中央控制节点可以是主服务节点或由高层配置。
集中式反馈过程中,步骤S120可以包括:所述用户终端反馈所确定的节点配置集合给中央控制节点;
步骤S120后还可以包括:所述中央控制节点从用户终端反馈的节点配置集合中选择使用的节点配置集合,根据选择使用的节点配置集合通知相应节点开启或关闭;所述用户终端从所述中央控制节点接收所述中央控制节点决定使用的节点配置集合的索引信息。
分布式反馈过程指,由用户终端决定使用哪个节点配置集合,反馈相应的结果给主服务节点,由主服务节点通知每个节点进行开启或关闭。也可以是终端直接反馈相应的传输结果给每个节点,建议节点进行开启或关闭。或者,由用户终端直接发送决定使用的节点配置集合给所选择使用的节点配置集合中的每个节点,节点参考用户终端反馈的节点配置集合,最终决定节点状态是开启状态还是关闭状态。
分布式反馈过程中,步骤S120可以包括:所述用户终端在所确定的节点配置集合中选择使用的节点配置集合,发送选择使用的节点配置集合给所选择使用的节点配置集合中的每个节点。
其中,在这里节点开启状态就是节点为用户发送数据,作为服务节点(也可称为传输节点)。而关闭状态是节点保持静默,作为关闭节点,没有数据发送,但会周期发送导频信息。
可选地,采用集中式反馈方式时,中央控制节点向用户终端发送DCI(Downlink Control Information,下行控制信息)来指示使用了哪个节点配置集合。中央控制节点可以是主服务节点或高层配置的节点,中央控制节点向用户终端发送PDCCH(Physical Downlink Control Channel,物理下行控制信 道),该PDCCH上承载的DCI中有3bit的CIF(Carrier Indicator Field,载波指示位)域,可以但不限于通过CIF域承载中央控制节点决定使用的节点配置集合的索引信息;不同CIF值表示不同节点配置集合。通过CIF通知用户终端,中央控制节点最终选择的节点配置集合的索引信息。其中,CIF可以最多指示八种节点配置集合。
相应地,所述用户终端通过物理下行控制信道PDCCH上承载的DCI接收所述中央控制节点决定使用的节点配置集合的索引信息。
可选地,所述步骤S120包括:
所述用户终端发送所确定的所述节点配置集合对应的预编码信息。
本可选方案中,步骤S120前还可以包括:
所述用户终端分别为一个或多个节点配置集合计算预编码信息,。
所述预编码信息用于指示节点使用哪种预编码矩阵才能使相应的节点配置集合达到所述网络配置标准。
可选地,节点配置集合是指在其对应的子带上为所述用户终端发送信号的一个或多个服务节点和一个或多个关闭的节点组合;所述服务节点为开启状态的节点,所述关闭节点为关闭状态的节点。
其中,可以是每个节点配置集合对应一个或多个子带。同样地,可以每个子带对应一个或多个节点配置集合,也可以多个子带对应一个或多个节点配置集合。
可选地,所述节点可以包括LPN和/或提供测量参考资源(CSI reference resource)的设备。所以节点配置集合可以包括LPN配置集合和/或提供测量参考资源的设备配置集合。
相应地,所述步骤S110可以包括:
所述用户终端根据一个或多个网络配置标准确定所述LPN配置集合中的服务LPN和关闭LPN,和/或,确定所述提供测量参考资源的设备配置集合中的服务的设备和关闭的设备。其中,服务的设备是指向所述用户终端传输所述测量参考资源的设备,关闭的设备是指停止向所述用户终端传输所述测 量参考资源的设备。
可选地,步骤S120后还可以包括:
所述用户终端使用DMRS(Demodulation Reference Signal,解调参考信号)解调服务节点为该用户终端发送的数据;
所述用户终端可以根据主服务节点的标识生成DMRS解调接收的数据,此时不需要向用户终端通知用来生成DMRS的节点id(标识),节省信令开销。这种方式需要主服务节点通过空口交互生成DMRS序列的id的信息,通知给每个子带的不同服务节点,DMRS序列初始化节点id为主服务节点。虽然节点处理增加了复杂度,但用户终端已知主服务节点id,所以不需要信令通知就可以解调传输数据。
还可以是,所述用户终端根据服务节点的id生成DMRS来解调接收的数据,所以需要通过DCI信令中CIF域来指示生成DMRS的节点id,增加了3比特信令开销。这种方式不需要服务节点交互DMRS序列id的信息,但增加了用户终端解调数据复杂度,并且增加了3比特信令开销。
指示所述节点id的CIF域和上述集中式反馈方式中所述中央控制节点向用户终端发送DCI的CIF域是相同的。
一个例子如图2所示,节点选择过程包括步骤S1~S6:
S1、用户终端根据RSRP,确定主服务节点的索引信息和候选节点配置集合的索引信息;
S2、用户终端计算候选节点配置集合内每个节点组合的SINR,与网络配置标准(可以但不限于为SINR门限)比较,确定节点配置集合;
S3、用户终端反馈节点配置集合和对应的预编码信息给主服务节点;
S4、主服务节点通过空口通知服务节点在相应资源上发送数据,并指示关闭节点保持静默;
S5、每个子带服务节点按照分配的资源向用户终端发送数据,但DMRS序列采用根据主服务节点的标识生成的DMRS;
S6、主服务节点向用户终端发送PDCCH。
下面用四个实施示例说明本实施例。在下面的实施示例的说明中,假设UDN场景是一个2500平米的没有内墙阻隔的大办公室场景。一共部署100个LPN站点。站点部署位置可以参看图3,图3所示是所述大办公室中每个100平米区域中的站点部署位置。
下面的实施示例中,假定系统带宽为10MHz,一共50个RB分成8个子带,前7个子带分别对应6个RB,第8个子带对应8个RB。
实施示例1
节点选择过程如图4所示,包括以下步骤401~406:
401、用户终端测量网络侧发送的下行参考信号的接收功率,获取所有节点的RSRP。
402、用户终端根据RSRP确定主服务节点和候选节点配置集合。
本实施示例中,用户终端选择RSRP值最大的节点为主服务节点。
用户终端确定候选节点配置集合TPset_candidate方法如式(1)所示,满足下面条件的节点就选入该用户终端的TPset_candidate:
RSRPUE k.servine cell v-RSRPUEK.Cell i(i≠v)<threshold    (1)
上式中门限值threshold为高层配置,由基站通知用户终端。那么邻节点的RSRP值RSRPUE K.Cell i(i≠v)与主服务节点的RSRP值RSRPUE k.servine cell v的差值小于threshold的邻节点选入TPset_candidate。
将99个LPN的邻节点RSRP依次与主服务节点的RSRP按照式(1)比较后,为用户终端User确定候选节点配置集合。
假定User的TPset_candidate={node 24,25,47,48,57,73,74,98},这里用节点的id表示选入TPset_candidate的节点,100个LPN节点的id分别为node1~100;其中主服务节点的id为node 57。
403、用户终端周期性计算TPset_candidate中每个节点到用户终端的SINR,计算不同节点组合对应的SINR并与SINR门限比较,将SINR大于SINR门限的节点组合确定为节点配置集合;其中,不同的节点组合中,服务节点和关闭节点的组合不同,即:服务节点不同和/或关闭节点不同;这里所 说的不同也包括不完全相同的情况,比如一个节点组合中,关闭节点为node24,48,另一个节点组合中,关闭节点为node 24或node 24,48,57或node 57,74,都属于关闭节点不同的情况。
用户终端根据CSI-RS估计出每个子带上TPset_candidate内每个节点到用户终端的下行信道,遍历码本集合中所有码字得到所述信道对应的发射权值,得到TPset_candidate内每个节点的SINR。
如式(2)所示,以子带1为例,发射节点为主服务节点node 57,假定关闭节点的id为node 24,48,74,其他节点都作为干扰节点。即除id为node 57,24,48,74以外的96个节点作为干扰节点I。
Figure PCTCN2016093251-appb-000001
其中,Pnode57是服务节点57到用户终端的发射功率,Hnode57是服务节点57到用户终端的下行信道矩阵,I是除服务节点和关闭节点以外的干扰节点,N是高斯白噪声。
Figure PCTCN2016093251-appb-000002
指遍历R8码本集合C中所有码字,得到服务节点57到用户终端的加权信道增益。
假定,按照式(2)计算方法,与给定的SINR门限比较,大于该门限的节点开启和关闭组合一共有两种,
一种是TPset1={ON_node=57,OFF_node=24,48,74};
另一种是TPset2={ON_node=48,OFF_node=57,74}。
TPset1和TPset2就是子带1上的节点配置集合。
404、用户终端向中央控制节点发送这两种节点配置集合Tpset1、TPset2和每种节点配置集合对应的预编码信息。中央控制节点选择TPset2为当前时刻的节点配置集合。并通知TPset2中id为node 48的节点为ON状态,id为node 57,74的节点为OFF状态。该实施示例中央控制节点为主服务节点。
405、主服务节点向用户终端发送PDCCH信息,通过PDCCH上承载的DCI信息的CIF域指示当前时刻的节点配置集合的索引信息,其中,CIF域=011,表示当前时刻节点配置集合是以id为node48的节点作为发射节点的 节点配置集合。
406、id为node 48的节点在相应资源分配信息指示的资源上发送经过预编码矩阵加权后的数据,并且用户终端使用根据node 48生成的DMRS解调。因为用户终端不知道DMRS序列是由节点node 48发送的,所以通过405中主服务节点发送的PDCCH信息的DCI中CIF域=011来通知用户终端DMRS序列根据node 48的节点id生成。
实施示例2
实施示例2的节点选择方法与实施示例1相比,其区别在于,步骤403中,用户终端被触发时计算TPset_candidate的每个节点到用户终端的SINR,计算不同节点组合对应的SINR并分别与SINR门限比较,将SINR大于SINR门限的节点组合确定为节点配置集合;其中,不同的节点组合中,服务节点和关闭节点的组合不同。
用户终端被触发可以是:经过一段时间通信,基站端根据重传概率增大,并且判断当前帧用户终端上报的节点配置集合中节点组合的SINR比SINR门限小,且差值绝对值大于预设阈值,就通知用户终端需要重新上报新的节点配置集合。用户终端收到基站需要重新上报新的节点配置集合的通知时被触发。
实施示例3
实施示例3的节点选择方法如图5所示,包括步骤501~505。与实施示例1相比,步骤501~503分别与步骤401~403相同,其区别在于,步骤504中,用户终端不会向中央控制节点反馈节点配置集合和每种节点配置集合对应的预编码信息,而是用户终端自己决定相应子带上使用的节点配置集合,用户终端也选择TPset2为最终使用的节点配置集合。并由用户终端通知TPset2中id为node 48的节点为ON状态,id为node57,74的节点为OFF状态。
由用户终端直接决定使用的节点配置集合,则不需要通过主服务节点发 送PDCCH上DCI中的CIF域信息来通知节点配置集合的索引信息,即CIF域等于0bit。相比实施示例1可省略步骤405。
并且该实施示例的步骤505与实施示例1的步骤406的区别在于,id为node 48的节点在相应资源分配信息指示的资源上发送经过预编码矩阵加权后的数据,并且用户终端使用根据主服务节点id(node 57)生成的DMRS解调,这样减少了DCI中需通知用户终端用于生成DMRS的节点标识的信令过程。对于用户终端来说,数据发送是完全透明的,等同于从主服务节点接收数据。
实施示例4
基于本实施例节点的选择方法,进行了相应仿真,仿真参数描述如下:
UDN场景是一个2500平米的没有内墙阻隔的大办公室场景。四个场景下分别部署13、25、50、100个LPN站点。四个场景下站点部署位置分别如图6(a)、(b)、(c)及图3所示。
随着节点站点密度增加,通过节点配置集合选择,可以使得用户终端保持恒定SINR,从而有效抑制干扰。图7为上述四个场景下服务区域频谱效率示意图,从图7明显看到,随着站点增加,平均吞吐量也在逐渐增大。说明本实施例的节点选择方法是应对干扰增大的有效方法。
上述所有实施示例提及的节点可以是LPN也可以是提供测量参考资源的设备。其中,测量参考资源是3GPP(the 3rd Generation Partnership Project,第三代合作伙伴项目)协议R11引入,在3GPP协议36.213中有明确定义。测量参考资源频域上定义为一个频带上相应CQI所对应的一组下行物理资源块。测量参考资源时域上定义为n-n_CQI反馈延迟时刻所对应的一个下行子帧;其中,n为使用CQI的时刻,n_CQI反馈延迟时长为固定值,比如6ms。例如第1ms测量CQI,那么在第7ms才会使用该CQI。所以这个CQI应该是7-6=1ms(n-n_CQI反馈延迟)这个时刻测量的CQI。其中n=7。
实施例2、一种节点选择装置,如图8所示,设置于用户终端中,所述装置包括:
确定模块81,设置成根据一个或多个网络配置标准确定节点配置集合,所述节点配置集合用于指示相应节点为开启状态或关闭状态;
收发模块82,设置成发送所确定的节点配置集合。
可选地,所述网络配置标准包括信号质量和/或信号强度。
可选地,所述网络配置标准由基站通知所述用户终端。
可选地,所述节点包括低功率节点LPN和/或提供测量参考资源的设备。
可选地,所述确定模块81所确定的节点配置集合为一个或多个。
可选地,所述确定模块81根据一个或多个网络配置标准确定节点配置集合是指:
所述确定模块81周期性根据一个或多个网络配置标准确定所述节点配置集合,和/或,被触发后根据一个或多个网络配置标准确定所述节点配置集合。
可选地,所述的装置还包括:
测量模块,设置成测量多个节点的下行参考信号的接收功率,获取参考信号接收功率或参考信号接收质量信息;
选择模块,设置成根据所述参考信号接收功率或参考信号接收质量信息,选择主服务节点和候选节点配置集合。
可选地,所述选择模块选择主服务节点包括:
所述选择模块选择选择RSRP或RSRQ值最大的节点为所述主服务节点。
可选地,所述选择模块选择候选节点配置集合包括:
所述选择模块将参考信号接收功率与所述主服务节点的参考信号接收功率的差值、或参考信号接收质量信息与所述主服务节点的参考信号接收质量信息的差值小于门限值的邻节点选入所述候选节点配置集合。
可选地,所述确定模块81根据一个或多个网络配置标准确定节点配置集 合包括:
所述确定模块81根据所述候选节点配置集合内每个节点到所述用户终端的下行信道质量指示,筛选符合所述网络配置标准的节点组合,将筛选出的每种节点组合分别作为一个所述节点配置集合。
可选地,所述节点配置集合是指在相应的子带上为所述用户终端发送信号的一个或多个服务节点和一个或多个关闭节点的集合;所述服务节点为开启状态的节点,所述关闭节点为关闭状态的节点。
可选地,每个所述子带对应一个或多个所述节点配置集合;或多个所述子带对应一个或多个所述节点配置集合。
可选地,所述节点配置集合包括LPN配置集合和/或提供测量参考资源的设备配置集合。
可选地,所述确定模块81根据一个或多个网络配置标准确定节点配置集合包括:
所述确定模块81根据一个或多个网络配置标准确定所述LPN配置集合中的服务LPN和关闭LPN,和/或,确定所述提供测量参考资源的设备配置集合中的服务的设备和关闭的设备。
可选地,所述收发模块82发送所确定的节点配置集合包括:
所述收发模块82发送所确定的所述节点配置集合对应的预编码信息。
可选地,所述预编码信息用于指示能使对应的所述节点配置集合达到所述网络配置标准所使用的预编码。
可选地,所述的装置还包括:
解调模块,设置成使用解调参考信号DMRS解调服务节点为所述用户终端发送的数据,解调所使用的DMRS根据所述主服务节点标识生成,或根据所述服务节点的标识生成。
可选地,所述解调模块还设置成当根据服务节点的标识生成DMRS时,根据下行控制信息DCI中载波指示位CIF域的指示确定用于生成DMRS的服务节点的标识;所述服务节点为开启状态的节点。
可选地,所述收发模块82发送所确定的节点配置集合包括:
所述收发模块82发送所确定的一个或多个节点配置集合给中央控制节点;
所述收发模块82还设置成在发送所确定的节点配置集合后,从所述中央控制节点接收所述中央控制节点决定使用的节点配置集合的索引信息。
可选地,所述收发模块82从所述中央控制节点接收所述中央控制节点决定使用的节点配置集合的索引信息包括:
所述收发模块82通过物理下行控制信道PDCCH上承载的DCI接收所述中央控制节点决定使用的节点配置集合的索引信息。
可选地,所述索引信息承载在所述DCI中的CIF域,不同CIF值表示不同节点配置集合。
可选地,所述中央控制节点为所述主服务节点或高层配置的节点。
可选地,所述收发模块82发送所确定的节点配置集合包括:
所述收发模块82所述用户终端在所确定的节点配置集合中选择使用的节点配置集合,发送选择使用的节点配置集合给所述主服务节点或者所选择使用的节点配置集合中的每个节点。
实施例3、一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述实施例1的方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明实施例不限制于任何特定形式的硬件和软件的结合。
工业实用性
本发明实施例由用户终端确定节点配置集合,所述节点配置集合用于指示相应节点为开启状态(即:作为服务节点)或关闭状态(即:作为关闭节点),克服了由网络侧来确定服务节点带来的用户终端反馈开销大、信令开销大的问题。

Claims (25)

  1. 一种节点选择方法,包括:
    用户终端根据一个或多个网络配置标准确定节点配置集合,所述节点配置集合用于指示相应节点为开启状态或关闭状态;
    所述用户终端发送所确定的节点配置集合。
  2. 如权利要求1所述的方法,其中:
    所述网络配置标准包括信号质量和/或信号强度。
  3. 如权利要求1所述的方法,其中:
    所述网络配置标准由基站通知所述用户终端。
  4. 如权利要求1所述的方法,其中:
    所述节点包括低功率节点LPN和/或提供测量参考资源的设备。
  5. 如权利要求1所述的方法,其中:
    所述用户终端所确定的节点配置集合为一个或多个。
  6. 如权利要求1所述的方法,其中,所述用户终端根据一个或多个网络配置标准确定节点配置集合包括:
    所述用户终端周期性根据一个或多个网络配置标准确定所述节点配置集合,和/或,所述用户终端被触发后根据一个或多个网络配置标准确定所述节点配置集合。
  7. 如权利要求1所述的方法,其中,所述用户终端根据一个或多个网络配置标准确定节点配置集合之前还包括:
    所述用户终端测量多个节点的下行参考信号的接收功率,获取参考信号接收功率RSRP或参考信号接收质量信息RSRQ;
    所述用户终端根据所述参考信号接收功率或参考信号接收质量信息,选 择主服务节点和候选节点配置集合。
  8. 如权利要求7所述的方法,其中,所述选择主服务节点包括:
    选择RSRP或RSRQ值最大的节点为所述主服务节点。
  9. 如权利要求7所述的方法,其中,所述选择候选节点配置集合包括:
    将参考信号接收功率与所述主服务节点的参考信号接收功率的差值、或参考信号接收质量信息与所述主服务节点的参考信号接收质量信息的差值小于门限值的邻节点选入所述候选节点配置集合。
  10. 如权利要求7~9中任一项所述的方法,其中,所述用户终端根据一个或多个网络配置标准确定节点配置集合包括:
    所述用户终端根据所述候选节点配置集合内每个节点到所述用户终端的下行信道质量指示,筛选符合所述网络配置标准的节点组合,将筛选出的每种节点组合分别作为一个所述节点配置集合。
  11. 如权利要求1所述的方法,其中:
    所述节点配置集合是指在相应的子带上为所述用户终端发送信号的一个或多个服务节点和一个或多个关闭节点的集合;所述服务节点为开启状态的节点,所述关闭节点为关闭状态的节点。
  12. 如权利要求11所述的方法,其中:
    每个所述子带对应一个或多个所述节点配置集合;或多个所述子带对应一个或多个所述节点配置集合。
  13. 如权利要求1或11所述的方法,其中:
    所述节点配置集合包括LPN配置集合和/或提供测量参考资源的设备配置集合。
  14. 如权利要求13所述的方法,其中,所述用户终端根据一个或多个网络配置标准确定节点配置集合包括:
    所述用户终端根据一个或多个网络配置标准确定所述LPN配置集合中的服务LPN和关闭LPN,和/或,确定所述提供测量参考资源的设备配置集合中的服务的设备和关闭的设备。
  15. 如权利要求1所述的方法,其中,所述用户终端发送所确定的节点配置集合包括:
    所述用户终端发送所确定的所述节点配置集合对应的预编码信息。
  16. 如权利要求15所述的方法,其中:
    所述预编码信息用于指示能使对应的所述节点配置集合达到所述网络配置标准所使用的预编码。
  17. 如权利要求7所述的方法,其中,所述用户终端发送所确定的节点配置集合后还包括:
    所述用户终端使用解调参考信号DMRS解调服务节点为所述用户终端发送的数据,所述用户终端解调所使用的DMRS根据所述主服务节点标识生成,或根据所述服务节点的标识生成;所述服务节点为开启状态的节点。
  18. 如权利要求17所述的方法,其中,当根据服务节点的标识生成DMRS时还包括:
    所述用户终端根据下行控制信息DCI中载波指示位CIF域的指示确定用于生成DMRS的服务节点的标识。
  19. 如权利要求7所述的方法,其中,所述用户终端发送所确定的节点配置集合包括:
    所述用户终端发送所确定的一个或多个节点配置集合给中央控制节点;
    所述用户终端发送所确定的节点配置集合后还包括:
    所述用户终端从所述中央控制节点接收所述中央控制节点决定使用的节点配置集合的索引信息。
  20. 如权利要求19所述的方法,其中,所述用户终端从所述中央控制节点接收所述中央控制节点决定使用的节点配置集合的索引信息包括:
    所述用户终端通过物理下行控制信道PDCCH上承载的DCI接收所述中央控制节点决定使用的节点配置集合的索引信息。
  21. 如权利要求20所述的方法,其中:
    所述索引信息承载在所述DCI中的CIF域,不同CIF值表示不同节点配置集合。
  22. 如权利要求19所述的方法,其中:
    所述中央控制节点为所述主服务节点或高层配置的节点。
  23. 如权利要求7所述的方法,其中,所述用户终端发送所确定的节点配置集合包括:
    所述用户终端在所确定的节点配置集合中选择使用的节点配置集合,发送选择使用的节点配置集合给所述主服务节点或者所选择使用的节点配置集合中的每个节点。
  24. 一种节点选择装置,设置于用户终端中,所述装置包括:
    确定模块,设置成根据一个或多个网络配置标准确定节点配置集合,所述节点配置集合用于指示相应节点为开启状态或关闭状态;
    收发模块,设置成发送所确定的节点配置集合。
  25. 如权利要求24所述的装置,还包括:
    测量模块,设置成测量多个节点的下行参考信号的接收功率,获取参考信号接收功率RSRP或参考信号接收质量信息RSRQ;
    选择模块,设置成根据所述参考信号接收功率或参考信号接收质量信息,选择主服务节点和候选节点配置集合。
PCT/CN2016/093251 2015-08-20 2016-08-04 一种节点选择方法及装置 WO2017028684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510514512.4A CN106470438A (zh) 2015-08-20 2015-08-20 一种节点选择方法及装置
CN201510514512.4 2015-08-20

Publications (1)

Publication Number Publication Date
WO2017028684A1 true WO2017028684A1 (zh) 2017-02-23

Family

ID=58051906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093251 WO2017028684A1 (zh) 2015-08-20 2016-08-04 一种节点选择方法及装置

Country Status (2)

Country Link
CN (1) CN106470438A (zh)
WO (1) WO2017028684A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953784B (zh) * 2017-03-17 2021-09-10 智科达(厦门)科技有限公司 一种智能家居中室内环境入侵检测方法
US20220046609A1 (en) * 2018-09-21 2022-02-10 Lg Electronics Inc. Method for transmitting and receiving signals in wireless communication system and apparatus for supporting same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102369746A (zh) * 2009-05-21 2012-03-07 华为技术有限公司 一种家庭基站功能配置方法、家庭基站及通信系统
CN102883330A (zh) * 2011-07-13 2013-01-16 株式会社Ntt都科摩 一种异构网络中小区间干扰协调的方法以及异构网络
JP2013150301A (ja) * 2011-12-01 2013-08-01 Ntt Docomo Inc 通信システムにおけるセルのカバー範囲を調整する方法、基地局および低電力ノード
CN104125560A (zh) * 2014-08-07 2014-10-29 宇龙计算机通信科技(深圳)有限公司 基于多终端协同通信的方法及系统、终端和通信基站
CN104184548A (zh) * 2014-04-17 2014-12-03 中兴通讯股份有限公司 随机接入序列传输方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102369746A (zh) * 2009-05-21 2012-03-07 华为技术有限公司 一种家庭基站功能配置方法、家庭基站及通信系统
CN102883330A (zh) * 2011-07-13 2013-01-16 株式会社Ntt都科摩 一种异构网络中小区间干扰协调的方法以及异构网络
JP2013150301A (ja) * 2011-12-01 2013-08-01 Ntt Docomo Inc 通信システムにおけるセルのカバー範囲を調整する方法、基地局および低電力ノード
CN104184548A (zh) * 2014-04-17 2014-12-03 中兴通讯股份有限公司 随机接入序列传输方法和装置
CN104125560A (zh) * 2014-08-07 2014-10-29 宇龙计算机通信科技(深圳)有限公司 基于多终端协同通信的方法及系统、终端和通信基站

Also Published As

Publication number Publication date
CN106470438A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
US10644777B2 (en) Channel state information reference signal (CSI-RS) for layer-3 (L3) mobility
US9973944B2 (en) User equipment and methods for operation in coverage enhancement mode with physical random access channel preamble
US9479306B2 (en) Method and device for reporting reference signal received power
RU2431927C2 (ru) Динамические пороговые величины обнаружения несущей
KR101597409B1 (ko) 무선 통신 시스템에서의 상향링크 무선 주파수 신호 수신 방법, 그의 마스터 유닛 및 슬레이브 유닛
US11172489B2 (en) Method and device for relay in UE and base station
US9426818B2 (en) Method and apparatus for performing coordinated multi-point transmission and reception in wireless communication system
KR101682266B1 (ko) 다수의 무선 네트워크들의 공존
KR101908951B1 (ko) 디바이스간 직접 통신 네트워크의 전송전력 제어 방법 및 장치
KR20170138877A (ko) 통신 단말의 릴레이 통신 방법 및 그 통신 단말
TW201238277A (en) Method and apparatus for signalling measurement signalling
CN104685917A (zh) 动态频谱管理系统中的信道质量测量和发射功率分配
KR20160074545A (ko) 3-d mimo에 대한 csi-rs의 구성을 위한 방법 및 장치
JP6367716B2 (ja) 無線通信カバー方法及びシステム
US10172174B2 (en) Selection between cellular communication link and device-to-device (D2D) communication link using reference signals
WO2015184884A1 (zh) 基于小区间协作的异构网服务小区选择方法及装置
TW201642681A (zh) 用於多使用者上行鏈路回應規則的方法和裝置
US20170155482A1 (en) Method and apparatus for resource allocation between multiple cells based on coordinated multipoint
EP2918130A1 (en) Method and base station for a cell selection
WO2017028684A1 (zh) 一种节点选择方法及装置
US9893933B2 (en) Configuration of channel estimation related parameters
EP4311336A1 (en) Method and device for transmitting and receiving inter-ue adjustment information in sidelink communication
CN113905385B (zh) 无线电资源参数配置
WO2018198446A1 (ja) 無線端末装置及びその方法
Muraoka et al. Scheduling for device-to-device communication considering spatial reuse and user fairness in public safety LTE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836548

Country of ref document: EP

Kind code of ref document: A1