WO2017204077A1 - 電池用電極、該電極を備えた電池および前記電極の製造方法 - Google Patents

電池用電極、該電極を備えた電池および前記電極の製造方法 Download PDF

Info

Publication number
WO2017204077A1
WO2017204077A1 PCT/JP2017/018650 JP2017018650W WO2017204077A1 WO 2017204077 A1 WO2017204077 A1 WO 2017204077A1 JP 2017018650 W JP2017018650 W JP 2017018650W WO 2017204077 A1 WO2017204077 A1 WO 2017204077A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
insulating layer
electrode
mixture
Prior art date
Application number
PCT/JP2017/018650
Other languages
English (en)
French (fr)
Inventor
登 吉田
乙幡 牧宏
信也 須藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018519226A priority Critical patent/JP7006590B2/ja
Priority to CN201780028890.9A priority patent/CN109075311B/zh
Priority to US16/086,188 priority patent/US20200303743A1/en
Publication of WO2017204077A1 publication Critical patent/WO2017204077A1/ja
Priority to US18/126,123 priority patent/US20230253566A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a battery and an electrode manufacturing method, and more particularly to an electrode having an insulating layer on an active material layer.
  • Secondary batteries are widely used as power sources for portable electronic devices such as smartphones, tablet computers, notebook computers, digital cameras, and the like, and their uses as power sources for electric vehicles and household power sources are also expanding. Among them, high energy density and light weight lithium ion secondary batteries have become energy storage devices indispensable for today's life.
  • General batteries including secondary batteries, have a structure in which a positive electrode and a negative electrode, which are electrodes, are opposed to each other with a separator interposed therebetween.
  • the positive electrode and the negative electrode have a sheet-like current collector and active material layers formed on both surfaces thereof.
  • the separator serves to prevent a short circuit between the positive electrode and the negative electrode and to effectively move ions between the positive electrode and the negative electrode.
  • polyolefin-based microporous separators made of polypropylene or polyethylene materials are mainly used as separators.
  • the melting point of polypropylene and polyethylene materials is generally 110 ° C. to 160 ° C. For this reason, when a polyolefin-based separator is used for a battery having a high energy density, the separator melts at a high temperature of the battery, and a short circuit between the electrodes may occur over a wide area.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-43641
  • a porous layer is formed on the surface of the negative electrode active material layer.
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2009-301765
  • Patent Document 3 Japanese Patent No. 5454295
  • two or more paste layers are applied to a positive electrode or negative electrode core material (current collector), and then the paste layer is dried to form a positive electrode plate or a negative electrode. It is described as a board.
  • the formation of the active material layer on the current collector is performed as follows. First, a long current collector foil wound around a roll is prepared as a current collector, and a slurry for forming an active material layer is prepared.
  • the slurry for forming an active material layer is a slurry in which fine particles of an active material and a binder are dispersed in a solvent. Then, the slurry for forming the active material layer is applied to the surface of the current collector foil using a die coater or the like while feeding the current collector foil from the roll. After the application of the active material layer forming slurry, the active material layer forming slurry is dried and compression molded, whereby an active material layer is formed on the surface of the current collector.
  • the formation of the insulating layer on the surface of the active material layer can be performed in the same manner as the formation of the active material layer. That is, a slurry for forming an insulating layer in which fine particles of an insulating material and a binder are dispersed in a solvent is applied to the surface of the active material layer, dried, and compression molded. Thereby, an insulating layer is formed on the surface of the active material layer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-43641
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-301765
  • Patent Document 3 Japanese Patent No. 5454295
  • the insulating layer may be dragged by the separator and peeled off from the active material layer, thereby exposing the active material layer. It was. When the active material layer is exposed, a short circuit occurs between the positive electrode and the negative electrode. In addition, the shrinkage force in the in-plane direction acts on the active material layer itself and the insulating layer itself at a high temperature. Therefore, when the adhesion between the current collector and the active material layer is weak, the active material layer peels off from the surface of the current collector and contracts, and a part of the surface of the current collector is exposed.
  • the adhesion between the active material layer and the insulating layer is weaker than the adhesion between the active material layer and the current collector, the adhesion between the active material layer and the current collector is maintained and the active material layer shrinks.
  • the insulating layer peeled off from the surface of the active material layer and contracted, and a part of the active material layer might be exposed.
  • the present invention relates to an electrode in which an active material layer and an insulating layer are provided on a current collector, and an electrode capable of suppressing the occurrence of a short circuit even when the temperature is high when assembled and used as a battery. It aims at providing the manufacturing method.
  • An electrode for a battery A current collector, An active material layer formed on at least one side of the current collector; An insulating layer formed on the surface of the active material layer; Have Provided is an electrode in which peeling occurs between the current collector and the active material layer when the 90 ° peeling test is performed at a peeling speed of 100 mm / min, and the peeling strength is 10 mN / mm or more. .
  • the present invention further provides a method for producing an electrode for a battery, the method comprising: Forming an active material layer on at least one side of the current collector; Forming an insulating layer so as to be finally laminated on the surface of the active material layer; Including When the 90 ° peel test at a peel rate of 100 mm / min was performed on the obtained electrode, peeling occurred between the current collector and the active material layer, and the peel strength was 10 mN / mm or more. Thus, at least one of the material of the active material layer, the formation conditions of the active material layer, the material of the insulating layer, and the formation conditions of the insulating layer is determined.
  • the “90 ° peel test” is a sample prepared from an electrode having an active material layer and an insulating layer formed on the surface of a current collector, fixed to the surface of the sample stage, and holding the one end of the fixed sample to the peel angle The sample is peeled at a peeling speed of 100 mm / min while maintaining the angle 90 °, and the peel strength is determined from the maximum load applied to the sample until the sample peels.
  • the “90 ° peel test” in the present invention is performed in a normal temperature environment (15 ° C. to 25 ° C.). Moreover, what cut
  • the sample is fixed to the sample table by fixing the surface on which the active material layer and the insulating layer are formed to the sample table. At this time, the sample is fixed only at a portion from one end in the length direction to 80 mm, and the unfixed portion is used as a grip by a chuck or the like when peeling the sample.
  • the method for fixing the sample to the sample stage is not particularly limited as long as the sample can be fixed so that the insulating layer does not peel from the sample stage when the sample is peeled off. For example, a double-sided tape can be used.
  • “Peel strength” is a value obtained by dividing the maximum load measured in the “90 ° peel test” by 20 mm, which is the width of the sample, and converting it to a force per 1 mm of the sample width.
  • a short circuit between the positive electrode and the negative electrode at a high temperature can be effectively suppressed.
  • FIG. 1 is an exploded perspective view of a battery according to an embodiment of the present invention. It is sectional drawing of the electrode assembly shown in FIG. It is typical sectional drawing explaining the structure of the positive electrode shown in FIG. 2, and a negative electrode. It is sectional drawing which shows the example of arrangement
  • FIG. 6 is an exploded perspective view of a battery according to another embodiment of the present invention. It is a schematic diagram of one Embodiment of the electrode manufacturing apparatus by this invention.
  • FIG. 1 there is shown an exploded perspective view of a battery 1 according to an embodiment of the present invention having an electrode assembly 10 and an exterior body that encloses the electrode assembly 10 together with an electrolytic solution.
  • the exterior body includes exterior materials 21 and 22 that enclose and surround the electrode assembly 10 from both sides in the thickness direction and seal the electrode assembly 10 by joining the outer peripheral portions to each other.
  • a positive electrode terminal 31 and a negative electrode terminal 32 are connected to the electrode assembly 10 such that a part protrudes from the exterior body.
  • the electrode assembly 10 has a configuration in which a plurality of positive electrodes 11 and a plurality of negative electrodes 12 are arranged to face each other alternately. Further, between the positive electrode 11 and the negative electrode 12, a separator 13 that prevents short circuit between the positive electrode 11 and the negative electrode 12 while ensuring ionic conduction between the positive electrode 11 and the negative electrode 12 is provided as the positive electrode 11 and the negative electrode 11 described below. Depending on the structure of the negative electrode 12, it is arranged as necessary.
  • the structure of the positive electrode 11 and the negative electrode 12 will be described with further reference to FIG. 3 is a structure that can be applied to both the positive electrode 11 and the negative electrode 12 although the positive electrode 11 and the negative electrode 12 are not particularly distinguished.
  • the positive electrode 11 and the negative electrode 12 (also collectively referred to as “electrode” if they are not distinguished) are a current collector 110 that can be formed of a metal foil and an active material formed on one or both surfaces of the current collector 110. And a material layer 111.
  • the active material layer 111 is preferably formed in a rectangular shape in plan view, and the current collector 110 has a shape having an extension 110a extending from a region where the active material layer 111 is formed.
  • the extension part 110a of the positive electrode 11 and the extension part 110a of the negative electrode 12 are formed at positions where they do not overlap with each other when the positive electrode 11 and the negative electrode 12 are laminated. However, the extended portions 110a of the positive electrodes 11 and the extended portions 110a of the negative electrode 12 are positioned to overlap each other. With such an arrangement of the extension portions 110a, the plurality of positive electrodes 11 form the positive electrode tab 10a by collecting and extending the respective extension portions 110a together. Similarly, the plurality of negative electrodes 11 form the negative electrode tab 10b by collecting and extending the extended portions 110a together.
  • the positive electrode terminal 31 is electrically connected to the positive electrode tab 10a
  • the negative electrode terminal 32 is electrically connected to the negative electrode tab 10b.
  • At least one of the positive electrode 11 and the negative electrode 12 further includes an insulating layer 112 formed on the active material layer 111.
  • the insulating layer 112 is formed in a region where the active material layer 111 is not exposed in plan view.
  • the insulating layer 112 may be formed on both the active materials 111, or may be formed only on one of the active materials 111. .
  • peeling occurs between the current collector 110 and the active material layer 111, and the peeling strength is 10 mN / mm or more.
  • the fact that peeling occurs between the current collector 110 and the active material layer 111 when the 90 ° peel test is performed means that the active material layer 111 is more than the peel strength between the current collector 110 and the active material layer 111. This also means that the peel strength between the insulating layer 112 and the insulating layer 112 is higher.
  • FIGS. 4A to 4C Some examples of the arrangement of the positive electrode 11 and the negative electrode 12 having such a structure are shown in FIGS. 4A to 4C.
  • positive electrodes 11 having insulating layers 112 on both sides and negative electrodes 12 having no insulating layers are alternately stacked.
  • the positive electrode 11 and the negative electrode 12 having the insulating layer 112 only on one side are arranged alternately so that the respective insulating layers 112 are not opposed to each other.
  • the separator 13 since the insulating layer 112 exists between the positive electrode 11 and the negative electrode 12, the separator 13 (see FIG. 2) can be dispensed with.
  • the positive electrode 11 having the insulating layer 112 only on one surface and the negative electrode 12 having no insulating layer are alternately stacked.
  • the separator 13 is required between the positive electrode 11 and the negative electrode 12 facing the surface that does not have the insulating layer 112.
  • the separator 13 can be omitted between the positive electrode 11 and the negative electrode 12 facing the surface having the insulating layer 112, the number of separators 13 can be reduced by that amount.
  • the structure and arrangement of the positive electrode 11 and the negative electrode 12 are not limited to the above example, and various modifications are possible as long as the insulating layer 112 is provided on at least one surface of at least one of the positive electrode 11 and the negative electrode 12. .
  • the relationship between the positive electrode 11 and the negative electrode 12 can be reversed.
  • the electrode assembly 10 having a planar laminated structure as shown does not have a portion with a small radius of curvature (a region close to the core of the winding structure), and therefore is charged / discharged compared to an electrode assembly having a winding structure.
  • the positive electrode terminal 31 and the negative electrode terminal 32 are drawn out in opposite directions, but the drawing direction of the positive electrode terminal 31 and the negative electrode terminal 32 may be arbitrary.
  • the positive electrode terminal 31 and the negative electrode terminal 32 may be drawn from the same side of the electrode assembly 10, and although not shown, the positive electrode terminal 31 and the negative electrode terminal 2 from adjacent two sides of the electrode assembly 10. The terminal 32 may be pulled out.
  • the positive electrode tab 10a and the negative electrode tab 10b can be formed at positions corresponding to the direction in which the positive electrode terminal 31 and the negative electrode terminal 32 are drawn.
  • the electrode assembly 10 having a laminated structure having a plurality of positive electrodes 11 and a plurality of negative electrodes 12 is shown.
  • the number of the positive electrodes 11 and the number of the negative electrodes 12 may be one each.
  • each element and electrolyte solution constituting the electrode assembly 10 will be described in detail. In the following description, although not particularly limited, each element in the lithium ion secondary battery will be described.
  • Negative electrode The negative electrode has, for example, a structure in which a negative electrode active material is bound to a negative electrode current collector by a negative electrode binder, and the negative electrode active material is laminated on the negative electrode current collector as a negative electrode active material layer.
  • the negative electrode active material in the present embodiment any material can be used as long as the effect of the present invention is not significantly impaired as long as it is a material capable of reversibly occluding and releasing lithium ions with charge and discharge.
  • a negative electrode having a negative electrode active material layer provided on a current collector is used.
  • the negative electrode may include other layers as appropriate.
  • the negative electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium ions, and a known negative electrode active material can be arbitrarily used.
  • carbonaceous materials such as coke, acetylene black, mesophase microbeads, and graphite; lithium metal; lithium alloys such as lithium-silicon and lithium-tin, and lithium titanate are preferably used.
  • a carbonaceous material in terms of good cycle characteristics and safety and excellent continuous charge characteristics.
  • a negative electrode active material may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the particle diameter of the negative electrode active material is arbitrary as long as the effects of the present invention are not significantly impaired.
  • it is usually 1 ⁇ m or more, preferably 15 ⁇ m. These are usually 50 ⁇ m or less, preferably about 30 ⁇ m or less.
  • organic substances used for coating include coal tar pitch from soft pitch to hard pitch; coal heavy oil such as dry distillation liquefied oil; straight heavy oil such as atmospheric residual oil and vacuum residual oil; crude oil And petroleum heavy oils such as cracked heavy oil (for example, ethylene heavy end) produced as a by-product during thermal decomposition of naphtha and the like.
  • coal heavy oil such as dry distillation liquefied oil
  • straight heavy oil such as atmospheric residual oil and vacuum residual oil
  • crude oil And petroleum heavy oils such as cracked heavy oil (for example, ethylene heavy end) produced as a by-product during thermal decomposition of naphtha and the like.
  • a solid residue obtained by distilling these heavy oils at 200 to 400 ° C. and pulverized to 1 to 100 ⁇ m can be used.
  • a vinyl chloride resin, a phenol resin, an imide resin, etc. can also be used.
  • the negative electrode contains metal and / or metal oxide and carbon as a negative electrode active material.
  • the metal include Li, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. . Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
  • the metal oxide examples include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • tin oxide or silicon oxide is included as the negative electrode active material, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • 0.1 to 5% by mass of one or more elements selected from nitrogen, boron and sulfur can be added to the metal oxide.
  • the electrical conductivity of a metal oxide can be improved.
  • the electrical conductivity can be similarly improved by coating a metal or metal oxide with a conductive material such as carbon by a method such as vapor deposition.
  • Examples of carbon include graphite, amorphous carbon, diamond-like carbon, carbon nanotubes, and composites thereof.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • Metals and metal oxides are characterized by a lithium acceptability that is much greater than that of carbon. Therefore, the energy density of the battery can be improved by using a large amount of metal and metal oxide as the negative electrode active material.
  • the content ratio of the metal and / or metal oxide in the negative electrode active material is high.
  • a larger amount of metal and / or metal oxide is preferable because the capacity of the whole negative electrode increases.
  • the metal and / or metal oxide is preferably contained in the negative electrode in an amount of 0.01% by mass or more of the negative electrode active material, more preferably 0.1% by mass or more, and still more preferably 1% by mass or more.
  • the metal and / or metal oxide has a large volume change when lithium is occluded / released compared to carbon, and the electrical connection may be lost. It is not more than mass%, more preferably not more than 80 mass%.
  • the negative electrode active material is a material capable of reversibly receiving and releasing lithium ions in accordance with charge and discharge in the negative electrode, and does not include other binders.
  • the negative electrode active material layer can be formed into a sheet electrode by roll molding the negative electrode active material described above, or a pellet electrode by compression molding.
  • the negative electrode active material, the binder, and, if necessary, various auxiliary agents and the like can be produced by applying a coating solution obtained by slurrying with a solvent onto a current collector and drying it. it can.
  • the binder for the negative electrode is not particularly limited.
  • polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer Rubber, polytetrafluoroethylene, polypropylene, polyethylene, acrylic, polyimide, polyamideimide and the like can be used.
  • SBR styrene butadiene rubber
  • a thickener such as carboxymethyl cellulose (CMC) can also be used.
  • the amount of the binder for the negative electrode used is 0.5 to 20 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. Is preferred.
  • the above binder for negative electrode can also be used as a mixture.
  • the material of the negative electrode current collector known materials can be arbitrarily used. However, from the electrochemical stability, for example, metal materials such as copper, nickel, stainless steel, aluminum, chromium, silver and alloys thereof. Is preferably used. Among these, copper is particularly preferable from the viewpoint of ease of processing and cost.
  • the negative electrode current collector is also preferably subjected to a roughening treatment in advance.
  • the shape of the current collector is also arbitrary, and examples thereof include a foil shape, a flat plate shape, and a mesh shape. Also, a perforated current collector such as expanded metal or punching metal can be used.
  • the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • a conductive auxiliary material may be added to the coating layer containing the negative electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include flaky carbonaceous fine particles such as graphite, carbon black, acetylene black, and vapor grown carbon fiber (VGCF (registered trademark) manufactured by Showa Denko).
  • the positive electrode refers to an electrode on the high potential side in the battery.
  • the positive electrode includes a positive electrode active material capable of reversibly occluding and releasing lithium ions with charge and discharge, and the positive electrode active material is a positive electrode.
  • the positive electrode active material layer integrated with the binder has a structure laminated on the current collector.
  • the positive electrode has a charge capacity per unit area of 3 mAh / cm 2 or more, preferably 3.5 mAh / cm 2 or more.
  • the charging capacity of the positive electrode per unit area is 15 mAh / cm 2 or less from the viewpoint of safety.
  • the charge capacity per unit area is calculated from the theoretical capacity of the active material.
  • the charge capacity of the positive electrode per unit area is calculated by (theoretical capacity of the positive electrode active material used for the positive electrode) / (area of the positive electrode).
  • the area of a positive electrode means the area of one side instead of both surfaces of a positive electrode.
  • the positive electrode active material in the present embodiment is not particularly limited as long as it is a material capable of occluding and releasing lithium, and can be selected from several viewpoints. From the viewpoint of increasing the energy density, a high-capacity compound is preferable.
  • the high-capacity compound include lithium-nickel composite oxide in which a part of Ni in lithium nickelate (LiNiO 2 ) is substituted with another metal element, and a layered lithium-nickel composite oxide represented by the following formula (A) Things are preferred.
  • the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less.
  • x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • two or more compounds represented by the formula (A) may be used as a mixture.
  • NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 .
  • any of the positive electrode active materials described above can be used alone or in combination of two or more.
  • the same negative electrode binder can be used.
  • polyvinylidene fluoride or polytetrafluoroethylene is preferable, and polyvinylidene fluoride is more preferable.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
  • a conductive auxiliary material may be added to the coating layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include flaky carbonaceous fine particles such as graphite, carbon black, acetylene black, vapor grown carbon fiber (for example, VGCF manufactured by Showa Denko).
  • the positive electrode current collector the same as the negative electrode current collector can be used.
  • the positive electrode is preferably a current collector using aluminum, an aluminum alloy, or iron / nickel / chromium / molybdenum stainless steel.
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • the insulating layer can be formed by applying a slurry composition for an insulating layer so as to cover a part of the active material layer of the positive electrode or the negative electrode, and drying and removing the solvent.
  • the insulating layer may be formed only on one side of the active material layer, but when the insulating layer is formed on both sides (especially as a symmetrical structure), there is an advantage that the warpage of the electrode can be reduced.
  • the insulating layer slurry is a slurry composition for forming a porous insulating layer. Therefore, the “insulating layer” can also be referred to as a “porous insulating layer”.
  • the insulating layer slurry is composed of non-conductive particles and a binder (binder) having a specific composition, and the non-conductive particles, the binder and optional components are uniformly dispersed in a solvent as a solid content.
  • the non-conductive particles exist stably in an environment where the lithium ion secondary battery is used and are electrochemically stable.
  • various inorganic particles, organic particles, and other particles can be used.
  • inorganic oxide particles or organic particles are preferable, and in particular, it is more preferable to use inorganic oxide particles because of high thermal stability of the particles.
  • the metal ions in the particles may form a salt in the vicinity of the electrode, which may cause an increase in the internal resistance of the electrode and a decrease in the cycle characteristics of the secondary battery.
  • the surface of conductive metal such as carbon black, graphite, SnO 2 , ITO, metal powder and fine powder of conductive compound or oxide is surface-treated with a non-electrically conductive substance.
  • conductive metal such as carbon black, graphite, SnO 2 , ITO, metal powder and fine powder of conductive compound or oxide is surface-treated with a non-electrically conductive substance.
  • particles having electrical insulation properties can be mentioned. Two or more of the above particles may be used in combination as non-conductive particles.
  • inorganic particles include inorganic oxide particles such as aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, BaTiO 2 , ZrO, and alumina-silica composite oxide; inorganic nitride particles such as aluminum nitride and boron nitride; silicone and diamond Covalent crystal particles such as barium sulfate, calcium fluoride, barium fluoride and the like, and sparingly soluble ion crystal particles such as talc and montmorillonite. These particles may be subjected to element substitution, surface treatment, solid solution, or the like, if necessary, or may be a single or a combination of two or more. Among these, inorganic oxide particles are preferable from the viewpoints of stability in an electrolytic solution and potential stability.
  • the shape of the inorganic particles is not particularly limited, and may be spherical, needle-like, rod-like, spindle-like, plate-like, etc., but is particularly plate-like from the viewpoint of effectively preventing needle-like objects from penetrating. Can be.
  • the inorganic particles are plate-like, it is preferable to orient the inorganic particles in the porous film so that the flat plate surface is substantially parallel to the surface of the porous film.
  • occurrence of a short circuit of the battery can be suppressed more favorably.
  • the inorganic particles are oriented as described above so that the inorganic particles are arranged so as to overlap each other on a part of the flat plate surface. Therefore, the voids (through holes) from one side of the porous film to the other side are linear. It is thought that it is formed in a bent shape (that is, the curvature is increased) instead of being able to prevent lithium dendrite from penetrating the porous film, and the occurrence of a short circuit is suppressed better. It is guessed.
  • Examples of the plate-like inorganic particles preferably used include various commercially available products.
  • SiO 2 , Al 2 O 3 , and ZrO can be produced by the method disclosed in Japanese Patent Laid-Open No. 2003-206475.
  • the average particle size of the inorganic particles is preferably 0.005 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and particularly preferably 0.3 to 2 ⁇ m.
  • the dispersion state of the porous film slurry can be easily controlled, and thus the production of a porous film having a uniform predetermined thickness is facilitated.
  • the adhesiveness with the binder is improved, and even when the porous film is wound, the inorganic particles are prevented from peeling off, and sufficient safety can be achieved even if the porous film is thinned.
  • it can suppress that the particle filling rate in a porous film becomes high, it can suppress that the ionic conductivity in a porous film falls.
  • the porous film can be formed thin.
  • the average particle diameter of the inorganic particles is determined as an average value of the equivalent circle diameter of each particle by arbitrarily selecting 50 primary particles in an arbitrary field of view from an SEM (scanning electron microscope) image and performing image analysis. be able to.
  • the particle size distribution (CV value) of the inorganic particles is preferably 0.5 to 40%, more preferably 0.5 to 30%, and particularly preferably 0.5 to 20%. By setting the particle size distribution of the inorganic particles within the above range, it is possible to maintain a predetermined gap between the non-conductive particles, so that the movement of lithium is inhibited and the resistance is increased in the secondary battery of the present invention. Can be suppressed.
  • the particle size distribution (CV value) of the inorganic particles is obtained by observing the inorganic particles with an electron microscope, measuring the particle size of 200 or more particles, and obtaining the average particle size and the standard deviation of the particle size. Standard deviation) / (average particle diameter). It means that the larger the CV value, the larger the variation in particle diameter.
  • a polymer dispersed or dissolved in the non-aqueous solvent can be used as the binder.
  • Polymers dispersed or dissolved in non-aqueous solvents include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP), polytrifluoroethylene chloride (PCTFE), polyperfluoroalkoxyfluoroethylene , Polyimide, polyamideimide and the like can be used as the binder, but are not limited thereto.
  • a binder used for binding the active material layer can be used.
  • the solvent contained in the insulating layer slurry is an aqueous solvent (a solution using water or a mixed solvent containing water as a main component as a binder dispersion medium)
  • a polymer dispersed or dissolved in the aqueous solvent is used as a binder.
  • the polymer that is dispersed or dissolved in the aqueous solvent include acrylic resins.
  • acrylic resin a homopolymer obtained by polymerizing monomers such as acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, methyl methacrylate, ethylhexyl acrylate and butyl acrylate.
  • the acrylic resin may be a copolymer obtained by polymerizing two or more of the above monomers. Further, a mixture of two or more of the above homopolymers and copolymers may be used.
  • polyolefin resins such as styrene butadiene rubber (SBR) and polyethylene (PE), polytetrafluoroethylene (PTFE), and the like can be used. These polymers can be used alone or in combination of two or more. Among these, it is preferable to use an acrylic resin.
  • the form of the binder is not particularly limited, and a particulate (powdered) form may be used as it is, or a solution prepared in the form of a solution or an emulsion may be used. Two or more kinds of binders may be used in different forms.
  • the insulating layer can contain materials other than the above-described inorganic filler and binder as necessary.
  • materials include various polymer materials that can function as a thickening agent for the insulating layer slurry described below.
  • a polymer that functions as the thickener it is preferable to contain a polymer that functions as the thickener.
  • the polymer that functions as the thickener carboxymethyl cellulose (CMC) and methyl cellulose (MC) are preferably used.
  • the proportion of the inorganic filler in the entire insulating layer is suitably about 70% by mass or more (eg, 70% by mass to 99% by mass), preferably 80% by mass or more (eg, 80% by mass to 80% by mass). 99 mass%), particularly preferably about 90 mass% to 95 mass%.
  • the binder ratio in the insulating layer is suitably about 1 to 30% by mass or less, preferably 5 to 20% by mass or less.
  • the content of the thickener is preferably about 10% by mass or less, and is preferably about 7% by mass or less. preferable.
  • the ratio of the binder is too small, the strength (shape retention) of the insulating layer itself and the adhesion with the active material layer are lowered, and problems such as cracks and peeling off may occur.
  • the ratio of the binder is too large, the gap between the particles of the insulating layer may be insufficient, and the ion permeability of the insulating layer may be reduced.
  • the porosity (porosity) of the insulating layer is preferably 20% or more, more preferably 30% or more in order to maintain the conductivity of ions. is there. However, if the porosity is too high, the insulating layer may fall off or crack due to friction or impact, so 80% or less is preferable, and 70% or less is more preferable.
  • the porosity can be calculated from the ratio of the material constituting the insulating layer, the true specific gravity, and the coating thickness.
  • a paste-like material (including a slurry-like or ink-like material; the same applies hereinafter) in which an inorganic filler, a binder and a solvent are mixed and dispersed is used.
  • the solvent used for the insulating layer slurry examples include water or a mixed solvent mainly composed of water.
  • a solvent other than water constituting such a mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • it may be an organic solvent such as N-methylpyrrolidone (NMP), pyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, dimethylformamide, dimethylacetamide, or a combination of two or more thereof.
  • NMP N-methylpyrrolidone
  • pyrrolidone pyrrolidone
  • methyl ethyl ketone methyl isobutyl ketone
  • cyclohexanone toluene
  • dimethylformamide dimethylacetamide
  • or a combination of two or more thereof The content of the solvent in the insul
  • the operation of mixing the inorganic filler and binder with a solvent is performed by using a suitable kneader such as a ball mill, homodisper, dispermill (registered trademark), Claremix (registered trademark), fillmix (registered trademark), or an ultrasonic disperser. Can be used.
  • a suitable kneader such as a ball mill, homodisper, dispermill (registered trademark), Claremix (registered trademark), fillmix (registered trademark), or an ultrasonic disperser.
  • a suitable kneader such as a ball mill, homodisper, dispermill (registered trademark), Claremix (registered trademark), fillmix (registered trademark), or an ultrasonic disperser.
  • the operation of applying the insulating layer slurry can be performed without any particular limitation on conventional general application means.
  • it can be applied by coating a predetermined amount of the insulating layer slurry to a uniform thickness using a suitable coating device (gravure coater, slit coater, die coater, comma coater, dip coat, etc.).
  • the solvent in the slurry for the insulating layer may be removed by drying the coated material by an appropriate drying means.
  • the thickness of the insulating layer is preferably 1 ⁇ m or more and 30 ⁇ m or less, and more preferably 2 ⁇ m or more and 15 ⁇ m or less.
  • the electrolyte solution is not particularly limited, but is preferably a nonaqueous electrolyte solution that is stable at the operating potential of the battery.
  • the non-aqueous electrolyte include propylene carbonate (PC), ethylene carbonate (EC), fluoroethylene carbonate (FEC), t-difluoroethylene carbonate (t-DFEC), butylene carbonate (BC), vinylene carbonate (VC) ), Cyclic carbonates such as vinyl ethylene carbonate (VEC); chain forms such as allyl methyl carbonate (AMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC) Carbonic acids; Propylene carbonate derivatives; Aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; Cyclic esters such as ⁇ -butyrolactone (GBL), etc.
  • PC propylene carbonate
  • a non-aqueous electrolyte can be used individually by 1 type or in combination of 2 or more types.
  • sulfur-containing cyclic compounds such as sulfolane, fluorinated sulfolane, propane sultone, propene sultone, and the like can be used.
  • the supporting salt contained in the electrolytic solution is not particularly limited to, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiC 4
  • lithium salts such as F 9 SO 3 , Li (CF 3 SO 2 ) 2 , and LiN (CF 3 SO 2 ) 2 .
  • the supporting salt can be used alone or in combination of two or more.
  • the separator is not particularly limited, and a porous film or nonwoven fabric such as polypropylene, polyethylene, fluorine-based resin, polyamide, polyimide, polyester, polyphenylene sulfide, or silica based on these.
  • a porous film or nonwoven fabric such as polypropylene, polyethylene, fluorine-based resin, polyamide, polyimide, polyester, polyphenylene sulfide, or silica based on these.
  • an inorganic material such as alumina, glass, or the like adhered or bonded, or a single material processed as a nonwoven fabric or cloth can be used.
  • stacked them can also be used as a separator.
  • the present invention is not limited to the above lithium ion secondary battery, and can be applied to any battery. However, since the problem of heat often becomes a problem in a battery with an increased capacity, the present invention is preferably applied to a battery with an increased capacity, particularly a lithium ion secondary battery.
  • the positive electrode 11 and the negative electrode 12 are described as “electrodes” without any particular distinction, but the positive electrode 11 and the negative electrode are different only in the materials, shapes, etc. It is applicable to both.
  • the electrode has a structure in which an active material layer 111 and an insulating layer 112 are finally stacked on the current collector 110 in this order, and when the 90 ° peel test is performed at a peel rate of 100 mm / min.
  • the manufacturing method is not particularly limited as long as peeling occurs between the current collector 110 and the active material layer 111 and the peeling strength is 10 mN / mm or more.
  • At least one of the material of the active material layer 111, the formation conditions of the active material layer 111, the material of the insulating layer 112, and the formation conditions of the insulating layer 112 can be determined so as to satisfy the above conditions.
  • the active material layer 111 can be formed by applying a mixture for active material in a slurry form by dispersing an active material and a binder in a solvent and drying the applied mixture for active material layer. After the active material layer mixture is dried, it may further include a step of compression molding the dried active material layer mixture.
  • the insulating layer 12 can also be formed by a procedure similar to that for the active material layer 111. That is, the insulating layer 112 can be formed by applying a mixture for an insulating layer in which an insulating material and a binder are dispersed in a solvent to form a slurry, and drying the applied mixture for an insulating layer. After drying the insulating layer mixture, it may further include a step of compression molding the dried insulating layer mixture.
  • the above-described procedure for forming the active material layer 111 and the procedure for forming the insulating layer 112 may be performed separately or may be combined as appropriate.
  • the insulating layer 112 is formed after the active material layer 111 is formed, the thickness of each layer can be easily managed.
  • the compression molding process of the mixture for active material layers and the compression molding process of the mixture for insulating layers can be omitted.
  • the manufacturing process of the electrode is (A1) applying a mixture for active material on the current collector 110; (A2) drying the applied active material mixture; (A3) applying an insulating layer mixture on the dried active material mixture; (A4) drying the applied insulating layer mixture; (A5) simultaneously compressing and molding the entire dried active material layer mixture and the dried insulating layer mixture; including.
  • the compression molding process only needs to be performed once, and the manufacturing process is simplified accordingly.
  • said compression molding process can also be skipped.
  • the manufacturing process of the electrode is (B1) applying a mixture for active material on the current collector 110; (B2) applying the insulating layer mixture on the applied active material mixture; (B3) simultaneously drying the applied active material mixture and the applied insulating layer mixture; (B4) a step of simultaneously compression-molding the whole of the dried active material mixture and the insulating layer mixture; including.
  • the drying process and the compression process are each performed once, the manufacturing process is further simplified.
  • said compression molding process can also be skipped.
  • the manufacturing apparatus illustrated in FIG. 6 includes a backup roller 201, a die coater 210, and a drying furnace 203.
  • the backup roller 201 rotates in a state where the long current collector 110 is wound on the outer peripheral surface thereof, thereby supporting the back surface of the current collector 110 and moving the current collector 110 in the rotation direction of the backup roller 201. send.
  • the die coater 210 includes a first die head 211 and a second die head 212 that are arranged at intervals in the radial direction and the circumferential direction of the backup roller 201 with respect to the outer peripheral surface of the backup roller 201, respectively.
  • the first die head 211 is for coating the active material layer 111 on the surface of the current collector 110, and is located upstream of the second die head 212 with respect to the feeding direction of the current collector 110. ing.
  • a discharge port 211a having a width corresponding to the coating width of the active material layer 111 is opened at the tip of the first die head 211 facing the backup roller 201, and the slurry for the active material layer is formed from the discharge port 211a. Discharged.
  • the slurry for active material layer is obtained by dispersing particles of an active material and a binder (binder) in a solvent. A slurry in which these active material and binder are dispersed in a solvent is prepared. Supplied to the die head 211.
  • the second die head 212 is for applying the insulating layer 112 on the surface of the active material layer 111, and is positioned downstream of the first die head 211 with respect to the feeding direction of the current collector 110. Yes.
  • a discharge port 212a having a width corresponding to the coating width of the insulating layer 112 is opened at the tip of the second die head 212 facing the backup roller 201, and the insulating layer slurry is discharged from the discharge port 212a.
  • the insulating layer slurry is obtained by dispersing insulating particles and a binder (binder) in a solvent.
  • a slurry in which these insulating particles and a binder are dispersed in a solvent is prepared and is provided in the second die head 212. Supplied.
  • a solvent is used for the preparation of the slurry for the active material layer and the slurry for the insulating layer.
  • NMP N-methyl-2-pyrrolidone
  • the solvent is used in comparison with the case where an aqueous solvent is used.
  • the peel strength of the layer obtained by evaporation of the solvent can be increased.
  • N-methyl-2-pyrrolidone was used as the solvent, even if the solvent was evaporated in the subsequent step, the solvent was not completely evaporated, and the resulting layer was slightly N-methyl- Contains 2-pyrrolidone.
  • the drying furnace 203 is for evaporating the solvent from the active material layer slurry and the insulating layer slurry discharged from the first die head 211 and the second die head 212, respectively.
  • the slurry is dried by evaporation of the solvent.
  • the active material layer 111 and the insulating layer 112 are formed.
  • the slurry for active material layer and the active material layer obtained from the slurry are described as “active material layer 111”, but actually, “active material layer 111”
  • the thing before drying means the slurry for active material layers.
  • insulating layer 112 means a slurry for insulating layer before drying.
  • the active material layer 111 made into a slurry by a solvent is intermittently applied from the first die head 211 to the surface of the long current collector 110 supported and sent on the backup roller 201.
  • the slurry-like active material layer 111 is applied on the current collector 110 with an interval in the feed direction A of the current collector 110.
  • the active material layer 111 is intermittently coated by the first die head 211, so that the active material layer 111 has a longitudinal length parallel to the feeding direction A of the current collector 110 and a lateral length along a direction perpendicular thereto. It is applied in a rectangular shape having
  • the tip of the coated active material layer 111 in the feeding direction of the current collector 110 is sent to a position facing the discharge port 212a of the second die head 212, on the active material layer 111, From the second die head 212, the insulating layer 112 made into a slurry by a solvent is intermittently applied. At this time, the insulating layer 112 is applied so that a part of the current collector 110 is exposed at the end portion of the active material layer 111 when viewed from the thickness direction. The insulating layer 112 is applied before the active material layer 111 is dried, that is, before the solvent of the active material layer 111 is evaporated.
  • the insulating layer 112 Since the insulating layer 112 is intermittently applied by the second die head 212, the insulating layer 112 has a rectangular shape having a longitudinal length parallel to the feeding direction A of the current collector 110 and a lateral length along a direction orthogonal thereto. Painted on.
  • the first die head 211 and the second die head 212 have the same width of the protrusions 211a and 212a (the dimension in the direction perpendicular to the feeding direction A of the current collector 110), and the active material layer 111 and The insulating layer 112 has the same coating width.
  • the current collector 110 is sent to the drying furnace 203, and the solvent of the slurry for the active material layer and the slurry for the insulating layer is evaporated in the drying furnace 203. After evaporation of the solvent, the current collector 110 is sent to a roll press machine, where the active material layer 111 and the insulating layer 112 are compression molded. Accordingly, the formation of the active material layer 111 is performed simultaneously with the formation of the insulating layer 112.
  • the current collector 110 is a rectangular portion in which the active material layer 111 and the insulating layer 112 are formed on the entire surface of the current collector 110 as shown by a broken line in FIG. And an extended portion 110a made of the current collector 110 extending from the rectangular portion. As a result, an electrode is obtained.
  • This cutting step may be performed so that a desired shape is obtained by one processing, or may be performed so that a desired shape is obtained by a plurality of processing.
  • the current collector 110 on which the active material layer 111 and the insulating layer 112 are formed is often wound around a roll again and stored and / or transferred until the next step.
  • the laminated structure of the current collector 110, the active material layer 111, and the insulating layer 112 is peeled between the current collector 110 and the active material layer 111 when the 90 ° peel test is performed.
  • the peeling strength is 10 mN / mm or more. Therefore, the active material layer 111 can be prevented from peeling from the current collector 110 or the insulating layer 112 can be peeled from the active material layer 111 even when wound on a roll.
  • a die coater provided with two die heads 211 and 212 each having an opening 211a and 212a as shown in FIG. 6 for applying the active material layer 111 and the insulating layer 112. 210 was used.
  • the active material layer 111 and the insulating layer 112 are coated on the current collector 110 using a die coater 220 including a single die head 221 having two discharge ports 221 a and 221 b opened. It can also be crafted.
  • the two discharge ports 221a and 221b are arranged at intervals in the rotation direction of the backup roller 201, that is, the feeding direction of the current collector 110.
  • the active material layer slurry is applied by the discharge port 221a located on the upstream side in the feed direction of the current collector 110, and the insulating layer slurry is applied by the discharge port 221b located on the downstream side. Therefore, the active material layer 111 and the insulating layer slurry are discharged from the two discharge ports 221a and 221b, respectively, whereby the active material layer 111 is intermittently applied to the surface of the current collector 110, and the active material layer 111 A structure in which a part of the active material layer 111 is exposed and an insulating layer 112 is applied to the surface can be obtained.
  • the case where the active material layer 111 and the insulating layer 112 are applied to one side of the current collector 110 has been described.
  • the active material layer and the insulating layer 112 are also applied to the other surface. It is also possible to manufacture an electrode having the active material layer 111 and the insulating layer 112 on both sides of the current collector 110 by coating.
  • the battery obtained according to the present invention can be used in various usage forms. Some examples will be described below.
  • a plurality of batteries can be combined to form an assembled battery.
  • the assembled battery may have a configuration in which two or more batteries according to the present embodiment are connected in series and / or in parallel.
  • the number of batteries in series and the number in parallel can be appropriately selected according to the target voltage and capacity of the assembled battery.
  • the above-described battery or its assembled battery can be used for a vehicle.
  • Vehicles that can use batteries or battery packs include hybrid vehicles, fuel cell vehicles, and electric vehicles (all are four-wheeled vehicles (passenger cars, trucks, buses and other commercial vehicles, light vehicles, etc.), motorcycles, and tricycles. Are included).
  • the vehicle according to the present embodiment is not limited to an automobile, and may be used as various power sources for other vehicles, for example, moving bodies such as trains.
  • FIG. 8 shows a schematic diagram of an electric vehicle.
  • An electric vehicle 200 shown in FIG. 8 includes an assembled battery 210 configured to connect a plurality of the above-described batteries in series and in parallel to satisfy a required voltage and capacity.
  • the above-described battery or its assembled battery can be used for a power storage device.
  • a power storage device using a secondary battery or an assembled battery for example, it is connected between a commercial power source supplied to a general household and a load such as a home appliance, and is used as a backup power source or an auxiliary power source at the time of a power failure, etc.
  • An example of such a power storage device is schematically shown in FIG.
  • a power storage device 300 illustrated in FIG. 9 includes an assembled battery 310 configured to connect a plurality of the above-described batteries in series and in parallel to satisfy a required voltage and capacity.
  • the above-described battery or its assembled battery can be used as a power source for mobile devices such as a mobile phone and a notebook computer.
  • Example 1 (Preparation of insulation coated positive electrode) LiNi 0.8 Mn 0.15 Co 0.05 , a carbon conductive agent (acetylene black), and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 90: 5: 5, N-methyl-2-pyrrolidone
  • the slurry for positive electrode active material layer was produced by dispersing in the above. This was coated on the surface of a positive electrode current collector foil made of aluminum and dried to form a positive electrode active material layer (PAM1). A positive electrode active material layer was similarly formed on the back surface of the positive electrode current collector foil.
  • alumina and polyvinylidene fluoride (PVdF) as a binder were dispersed in N-methyl-2-pyrrolidone at a weight ratio of 90:10 to prepare an insulating layer slurry. This was coated on the positive electrode active material layer and dried to form an insulating layer (INS1). An insulating layer was similarly formed on the positive electrode active material layer on the back side of the positive electrode current collector foil. Next, the entire positive electrode current collector foil, positive electrode active material layer, and insulating layer were compression molded, and further cut into a predetermined shape to produce a plurality of positive electrodes.
  • PVdF polyvinylidene fluoride
  • One of the obtained positive electrodes was cut out as a sample having a width of 20 mm and a length of 100 mm, and a 90 ° peel test was performed using this sample in a normal temperature environment (15 ° C. to 25 ° C.).
  • the 90 ° peel test was performed as follows. First, the sample was fixed to the upper surface of a flat sample stand using a double-sided tape (NWBB-20 manufactured by Nichiban Co., Ltd.) having the same width as the sample so that the double-sided tape was not peeled off. At that time, only the part from the length direction one end to 80 mm was fixed to the sample stage, and the remaining 20 mm length part was not fixed as a grip allowance.
  • NWBB-20 double-sided tape
  • the holding amount of the sample is held by the chuck, and in this state, the chuck is moved away from the sample table in a direction perpendicular to the upper surface of the sample table at a speed of 100 mm / min, and the sample is peeled off from the sample table.
  • the maximum load was measured.
  • a tensile / compression tester manufactured by Nidec Sympo Corporation, model number FGS-20TV was used. Further, in the 90 ° peel test, the peel strength was measured, and the layer where the peel occurred was confirmed.
  • the peel strength was expressed in units of Nm / mm using a value obtained by dividing the maximum load measured when the sample was peeled off as described above by dividing the maximum load by 20 mm, which is the width of the sample, and converting the force per 1 mm of the sample width. .
  • Natural graphite, sodium carboxymethylmethylcellulose as a thickener, and styrene butadiene rubber as a binder were mixed in an aqueous solution at a weight ratio of 97: 1: 2 to prepare a slurry for a negative electrode active material layer.
  • This was coated on the surface of a negative electrode current collector foil made of copper and dried to form a negative electrode active material layer (NAM1).
  • a negative electrode active material layer was similarly formed on the back surface of the negative electrode current collector foil.
  • the whole of the negative electrode current collector foil and the negative electrode active material layer was compression-molded, and further cut into a predetermined shape to produce a plurality of negative electrodes.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the positive electrode and the negative electrode were laminated via a separator base material to produce an electrode assembly.
  • a separator a microporous separator made of polypropylene and having a thickness of 25 ⁇ m was used.
  • the size of the electrode assembly was adjusted so that the initial charge capacity of the cell was 1 Ah.
  • a current extraction terminal was connected to each of the laminated positive electrode and negative electrode, and housed in an exterior body that was a laminate film of aluminum and resin. After injecting the electrolyte into the exterior body, the exterior body was sealed under reduced pressure.
  • a battery was fabricated through the above steps.
  • the manufactured battery was charged to 4.2 V, and then a 160 ° C. heating test was performed.
  • the temperature rising rate was 10 ° C./min, and the temperature was maintained for 30 minutes after reaching 160 ° C.
  • Example 2 The positive electrode active material used in Example 1 was changed from LiNi 0.8 Mn 0.15 Co 0.05 to LiNi 0.8 Co 0.15 Alo 0.05 , and using this positive electrode active material, a positive electrode active material layer A positive electrode having an insulating layer was produced in the same procedure as in Example 1 except that (PAM2) was formed. Further, a battery was fabricated in the same manner as in Example 1 except that this positive electrode was used. The peel test of the produced positive electrode and the 160 ° C. heating test of the produced battery were also conducted in the same manner as in Example 1.
  • Example 3 The positive electrode active material used in Example 1 was changed from LiNi 0.8 Mn 0.15 Co 0.05 to LiNi 0.5 Mn 0.3 Coo .
  • a positive electrode having an insulating layer was produced in the same procedure as in Example 1, except that the positive electrode active material layer (PAM3) was formed using this positive electrode active material. Further, a battery was fabricated in the same manner as in Example 1 except that this positive electrode was used. The peel test of the produced positive electrode and the 160 ° C. heating test of the produced battery were also conducted in the same manner as in Example 1.
  • Example 4 (Preparation of insulation coated negative electrode) Graphite, sodium carboxymethylmethylcellulose as a thickener, and styrene butadiene rubber as a binder were mixed in an aqueous solution at a weight ratio of 97: 1: 2 to prepare a slurry for a negative electrode active material layer. This was coated on the surface of a negative electrode current collector foil made of copper and dried to form a negative electrode active material layer (NAM1). A negative electrode active material layer was similarly formed on the back surface of the negative electrode current collector foil. Next, the negative electrode active material layers formed on both surfaces of the negative electrode current collector foil were compression molded.
  • NAM1 negative electrode active material layer
  • alumina and polyvinylidene fluoride (PVdF) as a binder were dispersed in N-methyl-2-pyrrolidone at a weight ratio of 90:10 to prepare an insulating layer slurry. This was coated on the negative electrode active material layer and dried to form an insulating layer (INS1). An insulating layer was similarly formed on the negative electrode active material layer on the back side of the negative electrode current collector foil. Next, the insulating layers formed on both surfaces of the negative electrode current collector foil were compression-molded and further cut into a predetermined shape to produce a plurality of negative electrodes. About the produced negative electrode, the peeling test was done like Example 1. FIG.
  • Example 5 Graphite and polyacrylic acid as a binder were mixed in an aqueous solution at a weight ratio of 95: 5 to prepare a slurry for a negative electrode active material layer.
  • a negative electrode was produced in the same procedure as in Example 4 except that the negative electrode active material layer (NAM2) was formed using this, and a peel test of the negative electrode was performed.
  • a battery was prepared in the same procedure as in Example 4 except that the negative electrode prepared here was used, and a 160 ° C. heating test was performed.
  • Example 6 Graphite, Si, and polyacrylic acid as a binder were mixed in an aqueous solution at a weight ratio of 92: 3: 5 to prepare a slurry for a negative electrode active material layer.
  • a negative electrode was produced in the same procedure as in Example 4 except that the negative electrode active material layer (NAM3) was formed using this, and a peel test was performed.
  • a battery was prepared in the same procedure as in Example 4 except that the negative electrode prepared here was used, and a 160 ° C. heating test was performed.
  • Example 7 Alumina and polyacrylic acid (PAA) as a binder were mixed in an aqueous solution at a weight ratio of 93: 7 to prepare an insulating layer slurry.
  • a negative electrode was produced in the same procedure as in Example 4 except that the negative electrode insulating layer (INS2) was formed using this, and a peel test was performed.
  • a battery was prepared in the same procedure as in Example 4 except that the negative electrode prepared here was used, and a 160 ° C. heating test was performed.
  • Example 8 Graphite and polyvinylidene fluoride (PVdF) as a binder were dispersed in N-methyl-2-pyrrolidone at a weight ratio of 95: 5 to prepare a slurry for negative electrode active material. This was coated on the surface of a negative electrode current collector foil made of copper and dried to form a negative electrode active material layer (NAM4). A negative electrode active material layer was similarly formed on the back surface of the negative electrode current collector foil.
  • PVdF polyvinylidene fluoride
  • alumina and polyimide as a binder were dispersed in N-methyl-2-pyrrolidone at a weight ratio of 90:10 to prepare an insulating layer slurry. This was coated and dried on the negative electrode active material layer to form an insulating layer (INS3). An insulating layer was similarly formed on the negative electrode active material layer on the back side of the negative electrode current collector foil. Next, the whole of the negative electrode current collector foil, the negative electrode active material layer, and the insulating layer was compression molded, and further cut into a predetermined shape to produce a plurality of negative electrodes. About the produced negative electrode, it carried out similarly to Example 4, and performed the peeling test. A battery was prepared in the same procedure as in Example 4 except that the negative electrode thus prepared was used, and a 160 ° C. heating test was performed.
  • Example 9 Graphite, SiO, and polyacrylic acid as a binder were mixed in an aqueous solution at a weight ratio of 28: 67: 5 to prepare a slurry for a negative electrode active material layer.
  • a negative electrode was produced in the same procedure as in Example 4 except that a negative electrode active material layer (NAM4) was formed using this, and a peel test was performed.
  • a battery was prepared in the same procedure as in Example 4 except that the negative electrode prepared here was used, and a 160 ° C. heating test was performed.
  • a negative electrode was produced in the same procedure as in Example 4 except that the negative electrode active material layer (NAM5) was formed using this, and a peel test of the negative electrode was performed.
  • a battery was prepared in the same procedure as in Example 4 except that the negative electrode prepared here was used, and a 160 ° C. heating test was performed.
  • Example 2 Alumina and polyvinylidene fluoride (PVdF) as a binder were dispersed in N-methyl-2-pyrrolidone at a weight ratio of 97: 3 to prepare an insulating layer slurry.
  • a positive electrode was produced in the same procedure as in Example 1 except that the positive electrode insulating layer (INS4) was formed using this, and a peel test was performed.
  • a battery was prepared in the same procedure as in Example 1 except that the positive electrode prepared here was used, and a 160 ° C. heating test was performed.
  • Example 3 a positive electrode insulating layer (INS5) was prepared using an insulating layer slurry in which alumina and polyvinylidene fluoride (PVdF) as a binder were dispersed in N-methyl-2-pyrrolidone at a weight ratio of 92: 8. And a positive electrode active material slurry was applied to both sides of the positive electrode current collector foil, and then a drying and compression molding process was added, and then a positive electrode was produced in the same procedure as in Example 1. A peel test was performed. A battery was prepared in the same procedure as in Example 1 except that the positive electrode prepared here was used, and a 160 ° C. heating test was performed.
  • PVdF polyvinylidene fluoride
  • Table 1 shows the positive electrode and negative electrode layer configurations, peel test results, and 160 ° C. heat test results for Examples 1 to 8 and Comparative Examples 1 to 3.
  • the column of the positive electrode represents the material of “positive electrode current collector foil / positive electrode active material layer / insulating layer”.
  • the negative electrode column represents a material of “negative electrode current collector foil / negative electrode active material layer / insulating layer”.
  • the insulating layer is peeled off from the active material layer so as to be pulled by the separator, and the active material layer is partially exposed. This is considered to have caused a short circuit between the positive electrode and the negative electrode, resulting in smoke generation.
  • An electrode for a battery A current collector (110); An active material layer (111) formed on at least one side of the current collector (110); An insulating layer (112) formed on the surface of the active material layer (111); Have When a 90 ° peel test was performed at a peel rate of 100 mm / min, peeling occurred between the current collector (110) and the active material layer (111), and the peel strength was 10 mN / mm or more. An electrode.
  • appendix 9 The ionization according to appendix 7 or 8, further comprising a separator (13) disposed between the positive electrode (11) and the negative electrode (12).
  • a method for producing an electrode for a battery comprising: Forming an active material layer (111) on at least one surface of the current collector (110); Forming an insulating layer (112) to be finally laminated on the surface of the active material layer (111); Including When the obtained electrode was subjected to a 90 ° peel test at a peel rate of 100 mm / min, peeling occurred between the current collector (110) and the active material layer (111), and the peel strength thereof.
  • the material of the active material layer (111) the formation conditions of the active material layer (111), the material of the insulating layer (112), and the formation conditions of the insulating layer (112) so as to be 10 mN / mm or more.
  • An electrode manufacturing method wherein at least one is defined.
  • the step of forming the active material layer (111) includes: Applying an active material layer mixture in which an active material and a binder are dispersed in a solvent; Drying the applied active material layer mixture; A step of compression-molding the active material mixture after drying; Including The step of forming the insulating layer (112) includes: Applying an insulating layer mixture in which an insulating material and a binder are dispersed in a solvent; and Drying the applied mixture for the insulating layer; A step of compression molding the insulating layer mixture after drying; including, The method for manufacturing the electrode according to attachment 12.
  • the active material layer mixture includes polyvinylidene fluoride as the binder, The method for producing an electrode according to any one of appendices 13 to 16.
  • Electrode assembly 10a Positive electrode tab 10b Negative electrode tab 11 Positive electrode 12 Negative electrode 13 Separator 21, 22 Exterior material 31 Positive electrode terminal 32 Negative electrode terminal 110 Current collector 110a Extension part 111 Active material layer 112 Insulating layer 201 Backup roller 210, 220 Die coater 211, 212, 221 Die head 211a, 212a, 221a Discharge port

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】電池の高温時における正極と負極との短絡を効果的に抑制する。 【解決手段】電極は、集電体110と、集電体110の少なくとも片面に形成された活物質層111と、活物質層111の表面に形成された絶縁層112とを有する。電極は、剥離速度100/minで90°剥離試験を行ったときに、集電体110と活物質層111との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上であるように構成される。

Description

電池用電極、該電極を備えた電池および前記電極の製造方法
 本発明は、電池用の電極および電極の製造方法に関し、特に、活物質層の上に絶縁層を有する電極等に関する。
 二次電池は、スマートフォン、タブレットコンピュータ、ノート型コンピュータ、デジタルカメラ等のポータブル電子機器の電源として広く普及しており、さらには電気自動車の電源や家庭用の電源としての用途も拡大してきている。中でも、高エネルギー密度で軽量なリチウムイオン二次電池は、現在の生活に欠かせないエネルギー蓄積デバイスとなっている。
 二次電池も含め、一般的な電池は、セパレータを間において電極である正極と負極とを対向させた構造を有している。正極および負極は、シート状の集電体と、その両面に形成された活物質層とを有している。セパレータは、正極と負極との短絡を防ぎ、かつ、正極と負極との間でイオンを効果的に移動させる役割を果たす。従来、セパレータとして、ポリプロピレンやポリエチレン材料からなるポリオレフィン系の微多孔質セパレータが主として用いられている。しかし、ポリプロピレンやポリエチレン材料の融点は一般に110℃~160℃である。そのため、ポリオレフィン系のセパレータを高エネルギー密度の電池に用いた場合、電池の高温時にセパレータが溶融し、広い面積で電極間の短絡が発生するおそれがある。
 そこで、電池の安全性を向上させるために、正極および負極の少なくとも一方に、セパレータの代替となる絶縁層を形成することが提案されている。例えば特許文献1(特開2009-43641号公報)には、負極集電体の表面に負極活物質層が形成された電池用負極において、負極活物質層の表面に多孔質層が形成された電池用負極が記載されている。また、特許文献2(特開2009-301765号公報)にも同様に、集電体に形成された活物質層の表面に多孔性保護膜が設けられた電極が記載されている。特許文献3(特許第5454295号公報)には、正極または負極の芯材(集電体)に2層以上のペースト層を重ねて塗工し、その後、ペースト層を乾燥させて正極板または負極板とすることが記載されている。
 一般に、集電体上への活物質層の形成は、以下のようにして行われる。まず、集電体として、ロールに巻かれた長尺の集電箔を用意するとともに、活物質層形成用スラリーを用意する。活物質層形成用スラリーは、活物質材料の微粒子とバインダーとを溶媒に分散させてスラリー状としたものである。そして、ロールから集電箔を繰り出しながら、ダイコーターなどを用いて、集電箔の表面に活物質層形成用スラリーを塗工する。活物質層形成用スラリーの塗工後、活物質層形成用スラリーを乾燥および圧縮成形し、これによって集電体の表面に活物質層が形成される。
 活物質層の表面への絶縁層の形成も、活物質層の形成と同様に行うことができる。すなわち、絶縁性材料の微粒子とバインダーとを溶媒に分散させた絶縁層形成用スラリーを活物質層の表面に塗工し、乾燥し、圧縮成形する。これによって、活物質層の表面に絶縁層が形成される。
 特許文献1:特開2009-43641号公報
 特許文献2:特開2009-301765号公報
 特許文献3:特許第5454295号公報
 しかしながら、上述した従来の電極においては、電池が高温となりセパレータが面内方向に収縮したとき、絶縁層がセパレータに引きずられて活物質層から剥離し、活物質層が露出してしまうおそれがあった。活物質層が露出すると、正極と負極との間で短絡が発生する原因となる。また、高温時には活物質層自身および絶縁層自身にも面内方向での収縮力が働く。そのため、集電体と活物質層との密着力が弱いと活物質層が集電体の表面から剥離して収縮し、集電体の表面の一部が露出する。あるいは、活物質層と絶縁層との密着力が活物質層と集電体との密着力よりも弱いと、活物質層と集電体との密着は維持されて活物質層の収縮は生じないものの、絶縁層が活物質層の表面から剥離して収縮し、活物質層の一部が露出するおそれがあった。
 本発明は、集電体上に活物質層および絶縁層が設けられた電極において、電池として組み立てられて使用されたとき、高温となった場合であっても短絡の発生を抑制し得る電極およびその製造方法を提供することを目的とする。
 本発明の一態様によれば、
 電池用の電極であって、
 集電体と、
 前記集電体の少なくとも片面に形成された活物質層と、
 前記活物質層の表面に形成された絶縁層と、
 を有し、
 剥離速度100mm/minで90°剥離試験を行ったときに、前記集電体と前記活物質層との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上である電極が提供される。
 本発明の他の態様によれば、
 少なくとも1つの正極と、
 前記正極と対向して配置された少なくとも1つの負極と、
 を有し、
 前記正極および前記負極の少なくとも一方は、集電体と、前記集電体の少なくとも片面に形成された活物質層と、前記活物質層の表面に形成された絶縁層と、を有し、剥離速度100mm/minで90°剥離試験を行ったときに、前記集電体と前記活物質層との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上である電池が提供される。
 本発明は、電池用の電極の製造方法をさらに提供し、その方法は、
 集電体の少なくとも片面に活物質層を形成する工程と、
 最終的に前記活物質層の表面に積層されるように絶縁層を形成する工程と、
 を含み、
 得られた電極について剥離速度100mm/minでの90°剥離試験を行ったときに、前記集電体と前記活物質層との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上となるように、前記活物質層の材料、前記活物質層の形成条件、前記絶縁層の材料および前記絶縁層の形成条件の少なくとも1つが定められている。
 (本発明で用いる用語の定義)
 「90°剥離試験」とは、集電体の表面に活物質層および絶縁層が形成された電極から作製した試料を試料台の表面に固定し、固定した試料の一端部を持って剥離角度を90°に保ちながら試料を剥離速度100mm/minで剥離させ、試料が剥離するまでの間に試料に加えた最大荷重から剥離強度を求める試験をいう。本発明における「90°剥離試験」は、常温環境下(15℃~25℃)で行うものとする。また、試料として、電極を幅20mm、長さ100mmに切り出したものを用いる。試料台への試料の固定は、活物質層および絶縁層が形成された面を試料台に固定する。このとき、試料はその長さ方向一端から80mmまでの部分のみを固定し、固定しない部分は試料を剥離する際のチャック等による掴み代とする。試料台への試料の固定方法は、試料を剥離したときに絶縁層が試料台から剥離しないように試料を固定することができれば特に限定されず、例えば両面テープを用いることができる。
 「剥離強度」は、「90°剥離試験」で測定された最大荷重を試料の幅である20mmで除算して試料幅1mm当たりの力に換算した値で表す。
 本発明によれば、高温時の正極と負極との短絡を効果的に抑制することができる。
本発明の一実施形態による電池の分解斜視図である。 図1に示す電極アセンブリの断面図である。 図2に示す正極および負極の構造を説明する模式的断面図である。 電極アセンブリにおける正極および負極の配置の例を示す断面図である。 電極アセンブリにおける正極および負極の配置の他の例を示す断面図である。 電極アセンブリにおける正極および負極の配置のさらに他の例を示す断面図である。 本発明の他の実施形態による電池の分解斜視図である。 本発明による電極製造装置の一実施形態の模式図である。 本発明の一形態による電極の製造工程を説明する図であり、集電体上に活物質層を間欠塗工した段階での集電体の平面図である。 本発明の一形態による電極の製造工程を説明する図であり、集電体上に活物質層を塗工した上にさらに絶縁層を塗工した段階での集電体の平面図である。 本発明の一形態による電極の製造工程を説明する図であり、活物質層および絶縁層が塗工された集電体を所望の形状に切断する段階での、切断形状を表す平面図である。 本発明による電極製造装置の他の形態の模式図である。 電池を備えた電気自動車の一例を示す模式図である。 電池を備えた蓄電装置の一例を示す模式図である。
 図1を参照すると、電極アセンブリ10と、電極アセンブリ10を電解液とともに内包する外装体と、を有する、本発明の一実施形態による電池1の分解斜視図が示されている。外装体は、電極アセンブリ10をその厚さ方向両側から挟んで包囲し、外周部が互いに接合されることで電極アセンブリ10を封止する外装材21、22を有する。電極アセンブリ10には、正極端子31および負極端子32がそれぞれ外装体から一部を突出させて接続されている。
 電極アセンブリ10は、図2に示すように、複数の正極11と複数の負極12とが交互に位置するように対向配置された構成を有する。また、正極11と負極12との間には、正極11と負極12との間でのイオン伝導を確保しつつ正極11と負極12との短絡を防止するセパレータ13が、以下に述べる正極11および負極12の構造により必要に応じて配置されている。
 正極11および負極12の構造について、図3をさらに参照して説明する。なお、図3に示す構造は、正極11および負極12を特に区別していないが、正極11および負極12のどちらにも適用し得る構造である。正極11および負極12(これらを区別しない場合は総称して「電極」ともいう)は、金属箔で形成することができる集電体110と、集電体110の片面または両面に形成された活物質層111と、を有している。活物質層111は、好ましくは平面視矩形状に形成されており、集電体110は、活物質層111が形成された領域から延びる延長部110aを有する形状とされている。
 正極11の延長部110aと負極12の延長部110aとは、正極11と負極12とが積層された状態において互いに重ならない位置に形成されている。ただし、正極11の延長部110a同士および負極12の延長部110a同士は、それぞれ互いに重なる位置とされる。このような延長部110aの配置により、複数の正極11は、それぞれの延長部110aが一つに集められて溶接されることによって正極タブ10aを形成する。同様に、複数の負極11は、それぞれの延長部110aが一つに集められて溶接されることによって負極タブ10bを形成する。正極端子31は正極タブ10aに電気的に接続され、負極端子32は負極タブ10bに電気的に接続される。
 正極11および負極12の少なくとも一方は、活物質層111上に形成された絶縁層112をさらに有する。絶縁層112は、平面視において活物質層111が露出しない領域に形成されている。活物質層111が集電体110の両面に形成されている場合、絶縁層112は、両方の活物質111上に形成されてもよいし、片方の活物質111上のみに形成されてもよい。
 ここで重要なのは、集電体110上に活物質層111および絶縁層112が形成された電極を20mm幅で切り出した試料にて、剥離速度100mm/minで90°剥離試験を行った際に、集電体110と活物質層111との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上である、ということである。90°剥離試験を行った際に集電体110と活物質層111との間で剥離が生じるということは、集電体110と活物質層111との間の剥離強度よりも活物質層111と絶縁層112との間の剥離強度のほうが高いということでもある。このように集電体110と活物質層111と絶縁層112との間の剥離強度を特定することで、電池に使用されたときに電池が高温になった場合であっても、正極と負極との短絡を効果的に抑制することができる。
 このような構造を有する正極11および負極12の配置のいくつかの例を図4A~図4Cに示す。図4Aに示す配置では、両面に絶縁層112を有する正極11と、絶縁層を有していない負極12とが交互に積層されている。図4Bに示す配置では、片面のみに絶縁層112を有する正極11および負極12が、それぞれの絶縁層112同士が対向しない向きで配置されて交互に積層されている。これら図4Aおよび図4Bに示す構造では、正極11と負極12との間に絶縁層112が存在しているので、セパレータ13(図2参照)を不要とすることができる。
 一方、図4Cに示す配置では、片面のみに絶縁層112を有する正極11と、絶縁層を有していない負極12とが交互に積層されている。この場合は、正極11と、その絶縁層112を有していない面と対向する負極12との間にセパレータ13が必要となる。しかし、正極11と、その絶縁層112を有する面と対向する負極12との間にはセパレータ13を不要とすることができるため、その分だけセパレータ13の数を削減することができる。
 正極11および負極12の構造および配置は上記の例に限定されるものではなく、正極11および負極12の少なくとも一方の少なくとも片面に絶縁層112を有している限り、種々の変更が可能である。例えば、図4A~図4Cに示した構造において、正極11と負極12との関係を逆にすることも可能である。
 図示したような平面的な積層構造を有する電極アセンブリ10は、曲率半径の小さい部部分(巻回構造の巻き芯に近い領域)がないため、巻回構造を持つ電極アセンブリに比べて、充放電に伴う電極の体積変化に対する影響を受けにくいという利点がある。すなわち、体積膨張を起こしやすい活物質を用いた電極アセンブリに有効である。
 なお、図1および2に示した形態では、正極端子31および負極端子32が互いに反対方向に引き出されているが、正極端子31および負極端子32の引き出し方向は任意であってよい。例えば、図5に示すように、電極アセンブリ10の同じ辺から正極端子31および負極端子32が引き出されていてもよいし、図示しないが、電極アセンブリ10の隣り合う2辺から正極端子31および負極端子32が引き出されていてもよい。いずれの場合でも、正極タブ10aおよび負極タブ10bは、正極端子31および負極端子32が引き出される方向に対応した位置に形成することができる。
 また、図示した形態では、複数の正極11および複数の負極12を有する積層構造の電極アセンブリ10を示した。しかし、巻回構造を有する電極アセンブリにおいては、正極11の数および負極12の数はそれぞれ1つずつであってもよい。
 ここで、電極アセンブリ10を構成する各要素および電解液について詳細に説明する。なお、以下の説明では、特に限定されるものではないが、リチウムイオン二次電池における各要素について説明する。
 [1]負極
 負極は、例えば、負極活物質が負極用結着剤によって負極集電体に結着され、負極活物質が負極活物質層として負極集電体上に積層された構造を有する。本実施形態における負極活物質は、充放電に伴いリチウムイオンを可逆的に吸蔵及び放出が可能な材料であれば、本発明の効果を著しく損なわない限り任意のものを用いることができる。通常は、正極の場合と同様に、負極も集電体上に負極活物質層を設けて構成されたものを用いる。なお、正極と同様に、負極も適宜その他の層を備えていてもよい。
 負極活物質としては、リチウムイオンの吸蔵放出が可能な材料であれば他に制限は無く、公知の負極活物質を任意に用いることができる。例えば、コークス、アセチレンブラック、メゾフェーズマイクロビーズ、グラファイト等の炭素質材料;リチウム金属;リチウム-シリコン、リチウム-スズ等のリチウム合金、チタン酸リチウムなどを使用することが好ましい。これらの中でもサイクル特性及び安全性が良好でさらに連続充電特性も優れている点で、炭素質材料を使用するのが最も好ましい。なお、負極活物質は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 さらに、負極活物質の粒径は、本発明の効果を著しく損なわない限り任意であるが、初期効率、レ-ト特性、サイクル特性等の電池特性が優れる点で、通常1μm以上、好ましくは15μm以上であり、通常50μm以下、好ましくは30μm以下程度である。また、例えば、上記の炭素質材料をピッチ等の有機物で被覆した後で焼成したもの、CVD法等を用いて表面に上記炭素質材料よりも非晶質の炭素を形成したものなども、炭素質材料として好適に使用することができる。ここで、被覆に用いる有機物としては、軟ピッチから硬ピッチまでのコールタールピッチ;乾留液化油等の石炭系重質油;常圧残油、減圧残油等の直留系重質油;原油、ナフサ等の熱分解時に副生する分解系重質油(例えばエチレンヘビーエンド)等の石油系重質油が挙げられる。また、これらの重質油を200~400℃で蒸留して得られた固体状残渣物を、1~100μmに粉砕したものも使用することができる。さらに塩化ビニル樹脂、フェノール樹脂、イミド樹脂なども使用することができる。
 本発明の一形態において、負極は、金属および/または金属酸化物ならびに炭素を負極活物質として含む。金属としては、例えば、Li、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属又は合金は2種以上混合して用いてもよい。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。
 金属酸化物としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。本実施形態では、負極活物質として酸化スズもしくは酸化シリコンを含むことが好ましく、酸化シリコンを含むことがより好ましい。これは、酸化シリコンが、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物に、窒素、ホウ素および硫黄の中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物の電気伝導性を向上させることができる。また、金属や金属酸化物を、たとえば蒸着などの方法で、炭素等の導電物質を用いて被覆することでも、同様に電気伝導度を向上させることができる。
 炭素としては、例えば、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。
 金属および金属酸化物は、リチウムの受容能力が炭素に比べて遥かに大きいことが特徴である。したがって、負極活物質として金属および金属酸化物を多く使用することで電池のエネルギー密度を改善することができる。高エネルギー密度を達成するため、負極活物質中の金属および/または金属酸化物の含有比率が高い方が好ましい。金属および/または金属酸化物は、多いほど負極全体としての容量が増加するので好ましい。金属および/または金属酸化物は、負極活物質の0.01質量%以上の量で負極に含まれることが好ましく、0.1質量%以上がより好ましく、1質量%以上が更に好ましい。しかしながら、金属および/または金属酸化物は、炭素にくらべてリチウムを吸蔵・放出した際の体積変化が大きくなり、電気的な接合が失われる場合があることから、99質量%以下、好ましくは90質量%以下、更に好ましくは80質量%以下である。上述した通り、負極活物質は、負極中の充放電に伴いリチウムイオンを可逆的に受容、放出可能な材料であり、それ以外の結着剤などは含まない。
 負極活物質層は、例えば、上述の負極活物質をロール成形してシート電極としたり、圧縮成形によりペレット電極としたりすることも可能であるが、通常は、正極活物質層の場合と同様に、上述の負極活物質と、結着剤と、必要に応じて各種の助剤等とを、溶媒でスラリー化してなる塗布液を、集電体に塗布し、乾燥することにより製造することができる。
 負極用結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、アクリル、ポリイミド、ポリアミドイミド等を用いることができる。前記のもの以外にも、スチレンブタジエンゴム(SBR)等が挙げられる。SBR系エマルジョンのような水系の結着剤を用いる場合、カルボキシメチルセルロース(CMC)等の増粘剤を用いることもできる。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、0.5~20質量部が好ましい。上記の負極用結着剤は、混合して用いることもできる。
 負極集電体の材質としては、公知のものを任意に用いることができるが、電気化学的な安定性から、例えば、銅、ニッケル、ステンレス、アルミニウム、クロム、銀およびそれらの合金等の金属材料が好ましく用いられる。中でも加工し易さとコストの点から特に銅が好ましい。また、負極集電体も、予め粗面化処理しておくのが好ましい。さらに、集電体の形状も任意であり、箔状、平板状、メッシュ状等が挙げられる。また、エキスパンドメタルやパンチングメタルのような穴あきタイプの集電体を使用することもできる。
 負極の作製方法としては、例えば、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。負極活物質層の形成方法としては、例えば、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。
 負極活物質を含む塗工層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、鱗片状、煤状、繊維状の炭素質微粒子等、例えば、グラファイト、カーボンブラック、アセチレンブラック、気相法炭素繊維(昭和電工製VGCF(登録商標))等が挙げられる。
 [2]正極
 正極とは、電池内における高電位側の電極のことをいい、一例として、充放電に伴いリチウムイオンを可逆的に吸蔵、放出可能な正極活物質を含み、正極活物質が正極結着剤により一体化された正極活物質層として集電体上に積層された構造を有する。本発明の一形態において、正極は、単位面積当たりの充電容量を3mAh/cm以上有し、好ましくは3.5mAh/cm以上有する。また、安全性の観点などから単位面積当たりの正極の充電容量が、15mAh/cm以下であることが好ましい。ここで、単位面積当たり充電容量とは、活物質の理論容量から計算される。すなわち、単位面積当たりの正極の充電容量は、(正極に用いられる正極活物質の理論容量)/(正極の面積)によって計算される。なお、正極の面積とは、正極両面ではなく片面の面積のことを言う。
 本実施形態における正極活物質としては、リチウムを吸蔵放出し得る材料であれば特に限定されず、いくつかの観点から選ぶことができる。高エネルギー密度化の観点からは、高容量の化合物であることが好ましい。高容量の化合物としては、ニッケル酸リチウム(LiNiO)のNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(A)で表される層状リチウムニッケル複合酸化物が好ましい。
 LiNi(1-x)   (A)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
 高容量の観点では、Niの含有量が高いこと、即ち式(A)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(A)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。
 また、式(A)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(A)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;及びLiFePOなどのオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。
 正極用結着剤としては、負極用結着剤と同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンまたはポリテトラフルオロエチレンが好ましく、ポリフッ化ビニリデンがより好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。
 正極活物質を含む塗工層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、鱗片状、煤状、線維状の炭素質微粒子等、例えば、グラファイト、カーボンブラック、アセチレンブラック、気相法炭素繊維(例えば、昭和電工製VGCF)等が挙げられる。
 正極集電体としては、負極集電体と同様のものを用いることができる。特に正極としては、アルミニウム、アルミニウム合金、鉄・ニッケル・クロム・モリブデン系のステンレスを用いた集電体が好ましい。
正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
 [3]絶縁層
(材質および作製方法等)
 絶縁層は、正極または負極の活物質層の一部を被覆するように絶縁層用スラリー組成物を塗布し、溶媒を乾燥除去することにより形成することができる。絶縁層は活物質層の片面のみに形成してもよいが、両面に絶縁層を形成した場合(特に対称構造として)、電極のソリを低減できるという利点がある。
 絶縁層用スラリーは、多孔性の絶縁層を形成するためのスラリー組成物である。したがって、「絶縁層」は、「多孔質絶縁層」ということもできる。絶縁層用スラリーは、非導電性粒子と特定組成のバインダ(結着剤)とからなり、固形分として該非導電性粒子、該バインダ及び任意の成分を、溶媒に均一に分散したものである。
 非導電性粒子は、リチウムイオン二次電池の使用環境下で安定に存在し、電気化学的にも安定であることが望まれる。非導電性粒子としては、例えば各種の無機粒子、有機粒子やその他の粒子を使用することができる。中でも、無機酸化物粒子または有機粒子が好ましく、特に、粒子の熱安定性の高さから、無機酸化物粒子を使用することがより好ましい。粒子中の金属イオンは、電極付近で塩を形成することがあり、電極の内部抵抗の増大や二次電池のサイクル特性の低下の原因となるおそれがある。また、その他の粒子としては、カーボンブラック、グラファイト、SnO、ITO、金属粉末などの導電性金属及び導電性を有する化合物や酸化物の微粉末の表面を、非電気伝導性の物質で表面処理することによって、電気絶縁性を持たせた粒子が挙げられる。非導電性粒子として、上記粒子を2種以上併用して用いてもよい。
 無機粒子としては、酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化チタン、BaTiO、ZrO、アルミナ-シリカ複合酸化物等の無機酸化物粒子;窒化アルミニウム、窒化硼素等の無機窒化物粒子;シリコーン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイトなどの粘土微粒子等が用いられる。これらの粒子は必要に応じて元素置換、表面処理、固溶体化等されていてもよく、また単独でも2種以上の組合せからなるものでもよい。これらの中でも電解液中での安定性と電位安定性の観点から無機酸化物粒子が好ましい。
 無機粒子の形状は、特に限定はされず、球状、針状、棒状、紡錘状、板状等であってもよいが、特に針状物の貫通を有効に防止しうる観点からは板状であることができる。
 無機粒子が板状である場合には、多孔膜中において、無機粒子を、その平板面が多孔膜の面にほぼ平行となるように配向させることが好ましく、このような多孔膜を使用することで、電池の短絡の発生をより良好に抑制できる。これは、無機粒子を上記のように配向させることで、無機粒子同士が平板面の一部で重なるように配置されるため、多孔膜の片面から他面に向かう空隙(貫通孔)が、直線ではなく曲折した形で形成される(すなわち、曲路率が大きくなる)と考えられ、これにより、リチウムデンドライトが多孔膜を貫通することを防止でき、短絡の発生がより良好に抑制されるものと推測される。
 好ましく用いられる板状の無機粒子としては、各種市販品が挙げられ、例えば、旭硝子エスアイテック社製「サンラブリー」(SiO)、石原産業社製「NST-B1」の粉砕品(TiO)、堺化学工業社製の板状硫酸バリウム「Hシリーズ」、「HLシリーズ」、林化成社製「ミクロンホワイト」(タルク)、林化成社製「ベンゲル」(ベントナイト)、河合石灰社製「BMM」や「BMT」(ベーマイト)、河合石灰社製「セラシュールBMT-B」[アルミナ(Al)]、キンセイマテック社製「セラフ」(アルミナ)、住友化学社製「AKPシリーズ」(アルミナ)、斐川鉱業社製「斐川マイカ Z-20」(セリサイト)などが入手可能である。この他、SiO、Al、ZrOについては、特開2003-206475号公報に開示の方法により作製することができる。
 無機粒子の平均粒子径は、好ましくは0.005~10μm、より好ましくは0.1~5μm、特に好ましくは0.3~2μmの範囲にある。無機粒子の平均粒子径が上記範囲にあることで、多孔膜スラリーの分散状態の制御がしやすくなるため、均質な所定厚みの多孔膜の製造が容易になる。さらに、バインダとの接着性が向上し、多孔膜を巻回した場合であっても無機粒子の剥落が防止され、多孔膜を薄膜化しても十分な安全性を達成しうる。また、多孔膜中の粒子充填率が高くなることを抑制することができるため、多孔膜中のイオン伝導性が低下することを抑制することができる。さらにまた、多孔膜を薄く形成することができる。
 なお、無機粒子の平均粒子径は、SEM(走査電子顕微鏡)画像から、任意の視野において50個の一次粒子を任意に選択し、画像解析を行い、各粒子の円相当径の平均値として求めることができる。  
 無機粒子の粒子径分布(CV値)は、好ましくは0.5~40%、より好ましくは0.5~30%、特に好ましくは0.5~20%である。無機粒子の粒子径分布を上記範囲とすることにより、非導電性粒子間において所定の空隙を保つことができるため、本発明の二次電池中においてリチウムの移動を阻害し抵抗が増大することを抑制することができる。なお、無機粒子の粒子径分布(CV値)は、無機粒子の電子顕微鏡観察を行い、200個以上の粒子について粒子径を測定し、平均粒子径および粒子径の標準偏差を求め、(粒子径の標準偏差)/(平均粒子径)を算出して求めることができる。CV値が大きいほど、粒子径のバラツキが大きいことを意味する。
 絶縁層用スラリーに含まれる溶媒が非水系の溶媒の場合には、非水系の溶媒に分散または溶解するポリマーをバインダとして用いることができる。非水系溶媒に分散または溶解するポリマーとしてはポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン(PHFP)、ポリ3フッ化塩化エチレン(PCTFE)、ポリパーフルオロアルコキシフルオロエチレン、ポリイミド、ポリアミドイミドなどが、バインダとして使用することができるが挙げられるがこれらに限定されない。
 この他にも活物質層の結着に用いるバインダを使用することができる。
絶縁層用スラリーに含まれる溶媒が水系の溶媒(バインダの分散媒として水または水を主成分とする混合溶媒を用いた溶液)の場合には、水系の溶媒に分散または溶解するポリマーをバインダとして用いることができる。水系溶媒に分散または溶解するポリマーとしては、例えば、アクリル系樹脂が挙げられる。アクリル系樹脂としては、アクリル酸、メタクリル酸、アクリルアミド、メタクリルアミド、2‐ヒドロキシエチルアクリレート、2‐ヒドロキシエチルメタクリレート、メチルメタアクリレート、エチルヘキシルアクリレート、ブチルアクリレート等のモノマーを1種類で重合した単独重合体が好ましく用いられる。また、アクリル系樹脂は、2種以上の上記モノマーを重合した共重合体であってもよい。さらに、上記単独重合体及び共重合体の2種類以上を混合したものであってもよい。上述したアクリル系樹脂のほかに、スチレンブタジエンゴム(SBR)、ポリエチレン(PE)等のポリオレフィン系樹脂、ポリテトラフルオロエチレン(PTFE)等を用いることができる。これらポリマーは、一種のみを単独で、あるいは二種以上を組み合わせて用いることができる。中でも、アクリル系樹脂を用いることが好ましい。バインダの形態は特に制限されず、粒子状(粉末状)のものをそのまま用いてもよく、溶液状あるいはエマルション状に調製したものを用いてもよい。二種以上のバインダを、それぞれ異なる形態で用いてもよい。
 絶縁層は、上述した無機フィラーおよびバインダ以外の材料を必要に応じて含有することができる。そのような材料の例として、後述する絶縁層用スラリーの増粘剤として機能し得る各種のポリマー材料が挙げられる。特に水系溶媒を使用する場合、上記増粘剤として機能するポリマーを含有することが好ましい。該増粘剤として機能するポリマーとしてはカルボキシメチルセルロース(CMC)やメチルセルロース(MC)が好ましく用いられる。
 特に限定するものではないが、絶縁層全体に占める無機フィラーの割合はおよそ70質量%以上(例えば70質量%~99質量%)が適当であり、好ましくは80質量%以上(例えば80質量%~99質量%)であり、特に好ましくはおよそ90質量%~95質量%である。
 また、絶縁層中のバインダの割合はおよそ1~30質量%以下が適当であり、好ましくは5~20質量%以下である。また、無機フィラー及びバインダ以外の絶縁層形成成分、例えば増粘剤を含有する場合は、該増粘剤の含有割合をおよそ10質量%以下とすることが好ましく、およそ7質量%以下することが好ましい。上記バインダの割合が少なすぎると、絶縁層自体の強度(保形性)、及び活物質層との密着性が低下して、ヒビや剥落等の不具合が生じうる。上記バインダの割合が多すぎると、絶縁層の粒子間の隙間が不足し、絶縁層のイオン透過性が低下する場合がある。
 絶縁層の空孔率(空隙率)(見かけ体積に対する空孔体積の割合)は、イオンの電導性を維持するために、好ましくは20%以上、更に好ましくは30%以上確保することが必要である。しかしながら、空孔率が高すぎると絶縁層の摩擦や衝撃などによる脱落や亀裂が生じることから、80%以下が好ましく、70%以下であれば更に好ましい。
 なお、空孔率は、絶縁層を構成する材料の比率と真比重および塗工厚みから計算することができる。
(絶縁層の形成)
 次に、絶縁層の形成方法について説明する。絶縁層を形成するための材料としては、無機フィラー、バインダおよび溶媒を混合分散したペースト状(スラリー状またはインク状を含む。以下同じ。)のものが用いられる。
 絶縁層用スラリーに用いられる溶媒としては、水または水を主体とする混合溶媒が挙げられる。かかる混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。あるいは、N‐メチルピロリドン(NMP)、ピロリドン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、トルエン、ジメチルホルムアミド、ジメチルアセトアミド、等の有機系溶媒またはこれらの2種以上の組み合わせであってもよい。絶縁層用スラリーにおける溶媒の含有率は特に限定されないが、塗料全体の40~90質量%、特には50~70質量%程度が好ましい。  
 上記無機フィラー及びバインダを溶媒に混合させる操作は、ボールミル、ホモディスパー、ディスパーミル(登録商標)、クレアミックス(登録商標)、フィルミックス(登録商標)、超音波分散機などの適当な混練機を用いて行うことができる。
絶縁層用スラリーを塗布する操作は、従来の一般的な塗布手段を特に限定することなく使用することができる。例えば、適当な塗布装置(グラビアコーター、スリットコーター、ダイコーター、コンマコーター、ディップコート等)を使用して、所定量の絶縁層用スラリーを均一な厚さにコーティングすることにより塗布され得る。
 その後、適当な乾燥手段で塗布物を乾燥することによって、絶縁層用スラリー中の溶媒を除去するとよい。
(厚み)
 絶縁層の厚みは、1μm以上30μm以下であることが好ましく、2μm以上15μm以下であることがより好ましい。
 [4]電解液
 電解液は、特に限定されないが、電池の動作電位において安定な非水電解液が好ましい。非水電解液の具体例としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、フルオロエチレンカーボネート(FEC)、t-ジフルオロエチレンカーボネート(t-DFEC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)等の環状カーボネート類;アリルメチルカーボネート(AMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体;ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ―ブチロラクトン(GBL)等の環状エステル類、などの非プロトン性有機溶媒が挙げられる。非水電解液は、一種を単独で、または二種以上を組み合わせて使用することができる。また、スルホラン、フッ素化スルホラン、プロパンスルトン、プロペンスルトン等の含硫黄環状化合物を用いることが出来る。
 電解液中に含まれる支持塩の具体例としては、特にこれらに制限されるものではないが、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、Li(CFSO、LiN(CFSO等のリチウム塩が挙げられる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。
 [5]セパレータ
 セパレータを有する場合、セパレータとしては、特に制限されず、ポリプロピレン、ポリエチレン、フッ素系樹脂、ポリアミド、ポリイミド、ポリエステル、ポリフェニレンサルファイド等の多孔質フィルムや不織布、また、これらを基材としてシリカやアルミナ、ガラスなどの無機物を、付着もしくは接合したものや、単独で不織布や布として加工したものを用いることができる。また、セパレータとしては、それらを積層したものを用いることもできる。
 本発明は、以上のリチウムイオン二次電池に限られず、どのような電池にも適用可能である。但し、熱の問題は、多くの場合、高容量化した電池において問題になることが多いため、本発明は、高容量化した電池、特にリチウムイオン二次電池に適用することが好ましい。
 次に、図3に示した電極の製造方法の一例を説明する。以下の説明では正極11と負極12とを特に区別せず「電極」として説明するが、正極11と負極とは使用する材料や形状等が異なるだけであり、以下の説明は正極11および負極12のどちらにも適用可能である。
 電極は、最終的に集電体110上に活物質層111および絶縁層112がこの順番で積層された構造を有しており、かつ、剥離速度100mm/minで90°剥離試験を行った際に、集電体110と活物質層111との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上となるように構成されていれば、製造方法は特に限定されず、この条件を満たすように、活物質層111の材料、活物質層111の形成条件、絶縁層112の材料および絶縁層112の形成条件の少なくとも1つを定めることができる。
 活物質層111は、活物質材料と結着剤とを溶媒に分散させてスラリー状とした活物質用混合物を塗布し、塗布した活物質層用混合物を乾燥させることによって形成することができる。活物質層用混合物の乾燥後、乾燥した活物質層用混合物を圧縮成形する工程をさらに含むこともできる。絶縁層12も、活物質層111と同様の手順で形成することができる。すなわち、絶縁層112は、絶縁性材料と結着剤とを溶媒に分散させてスラリー状とした絶縁層用混合物を塗布し、塗布した絶縁層用混合物を乾燥させることによって形成することができる。絶縁層用混合物の乾燥後、乾燥した絶縁層用混合物を圧縮成形する工程をさらに含むこともできる。
 上述した活物質層111の形成手順および絶縁層112の形成手順は、それぞれ別々に実施してもよいし、適宜組み合わせてもよい。活物質層111の形成手順と絶縁層112の形成手順を別々に実施する場合、電極の製造工程は、
(1)集電体110上に活物質用混合物を塗布する工程と、
(2)塗布した活物質用混合物を乾燥させる工程と、
(3)乾燥した活物質用混合物を圧縮成形して活物質層111を形成する工程と、
(4)形成された活物質層111の上に絶縁層用混合物を塗布する工程と、
(5)塗布した絶縁層用混合物を乾燥させる工程と、
(6)乾燥した絶縁層用混合物を圧縮成形して絶縁層112を形成する工程と、
を含む。この場合は、活物質層111の形成後に絶縁層112が形成されるので、各層の厚さの管理等を容易に行うことができる。なお、活物質層用混合物の圧縮成形工程および絶縁層用混合物の圧縮成形工程は省略することもできる。
 活物質層111の形成手順と絶縁層112の形成手順とを組み合わせる場合、その組み合わせ方にはいくつかの例がある。その中の2つの例を以下に述べる。
 (組み合わせ例A)
 組み合わせ例Aでは、電極の製造工程は、
(A1)集電体110上に活物質用混合物を塗布する工程と、
(A2)塗布した活物質用混合物を乾燥させる工程と、
(A3)乾燥させた活物質用混合物の上に絶縁層用混合物を塗布する工程と、
(A4)塗布した絶縁層用混合物を乾燥させる工程と、
(A5)乾燥した活物質層用混合物および乾燥した絶縁層用混合物の全体を同時に圧縮成形する工程と、
を含む。この場合は、圧縮成形工程が1回で済み、その分だけ製造工程が簡略化される。なお、上記の圧縮成形工程は省略することもできる。
 (組み合わせ例B)
 組み合わせ例Bでは、電極の製造工程は、
(B1)集電体110上に活物質用混合物を塗布する工程と、
(B2)塗布した活物質用混合物の上に絶縁層用混合物を塗布する工程と、
(B3)塗布した活物質用混合物および塗布した絶縁層用混合物の全体を同時に乾燥させる工程と、
(B4)乾燥した活物質用混合物および絶縁層用混合物の全体を同時に圧縮成形する工程と、
を含む。この場合は、乾燥工程および圧縮工程がそれぞれ1回で済むので、製造工程がさらに簡略化される。なお、上記の圧縮成形工程は省略することもできる。
 電極の製造には、例えば図6に示す製造装置を用いることができる。図6に示す製造装置は、バックアップローラー201と、ダイコーター210と、乾燥炉203とを有する。
 バックアップローラー201は、その外周面上に長尺の集電体110を巻いた状態で回転することによって、集電体110の裏面を支持しながら、集電体110をバックアップローラー201の回転方向に送る。ダイコーター210は、それぞれバックアップローラー201の外周面に対してバックアップローラー201の半径方向および周方向に間隔をあけて配置された、第1のダイヘッド211および第2のダイヘッド212を有する。
 第1のダイヘッド211は、集電体110の表面に活物質層111を塗工するためのものであり、集電体110の送り方向に対して第2のダイヘッド212よりも上流側に位置している。第1のダイヘッド211のバックアップローラー201に対向する先端には、活物質層111の塗工幅に対応した幅を有する吐出口211aが開口しており、この吐出口211aから活物質層用スラリーが吐出される。活物質層用スラリーは、活物質材料の粒子とバインダー(結着剤)とを溶媒に分散させたものであり、これら活物質材料およびバインダーを溶媒に分散させたものが用意されて第1のダイヘッド211に供給される。
 第2のダイヘッド212は、活物質層111の表面に絶縁層112を塗工するためのものであり、集電体110の送り方向に対して第1のダイヘッド211よりも下流側に位置している。第2のダイヘッド212のバックアップローラー201に対向する先端には、絶縁層112の塗工幅に対応した幅を有する吐出口212aが開口しており、この吐出口212aから絶縁層用スラリーが吐出される。絶縁層用スラリーは、絶縁性粒子とバインダー(結着剤)とを溶媒に分散させたものであり、これら絶縁性粒子およびバインダーを溶媒に分散させたものが用意されて第2のダイヘッド212に供給される。
 活物質層用スラリーの作製および絶縁層用スラリーの作製には溶媒が用いられるが、その溶媒としてN-メチル-2-ピロリドン(NMP)を用いると、水系の溶媒を用いた場合と比較して、溶媒の蒸発により得られた層の剥離強度を高くすることができる。溶媒としてN-メチル-2-ピロリドンを用いた場合は、その後の工程で溶媒を蒸発させても、溶媒は完全には蒸発せず、得られた層は、わずかではあるが、N-メチル-2-ピロリドンを含有している。
 乾燥炉203は、第1のダイヘッド211および第2のダイヘッド212からそれぞれ吐出された活物質層用スラリーおよび絶縁層用スラリーから溶媒を蒸発させるためのものであり、溶媒の蒸発によってスラリーは乾燥し、活物質層111および絶縁層112となる。
 次に、図6に示した製造装置による、電極の製造手順を説明する。なお、説明の便宜上、活物質層用スラリーとそれから得られた活物質層とを区別せず、「活物質層111」として説明しているが、実際には、「活物質層111」は、乾燥前のものは活物質層用スラリーを意味する。「絶縁層112」についても同様、乾燥前のものは絶縁層用スラリーを意味する。
 まず、バックアップローラー201上に支持されて送られている長尺の集電体110の表面に、第1のダイヘッド211から、溶媒によってスラリーとされた活物質層111を間欠塗工する。これにより、図6Aに示すように、集電体110上には、集電体110の送り方向Aに間隔をあけて、スラリー状の活物質層111が塗工される。また、活物質層111が第1のダイヘッド211により間欠塗工されることで、活物質層111は、集電体110の送り方向Aと平行な縦長さおよびそれと直交する方向に沿った横長さを有する矩形状に塗工される。
 次に、塗工された活物質層111の、集電体110の送り方向での先端が第2のダイヘッド212の吐出口212aと対向する位置まで送られたら、その活物質層111上に、第2のダイヘッド212から、溶媒によってスラリーとされた絶縁層112を間欠塗工する。このとき、集電体110をその厚さ方向から見たときに、活物質層111の端部において一部が露出するように絶縁層112が塗工される。絶縁層112が塗工されるのは、活物質層111が乾燥する前、すなわち、活物質層111の溶媒が蒸発する前である。絶縁層112が第2のダイヘッド212により間欠塗工されることで、絶縁層112は、集電体110の送り方向Aと平行な縦長さおよびそれと直交する方向に沿った横長さを有する矩形状に塗工される。
 本形態では、第1のダイヘッド211と第2のダイヘッド212とは、突出口211a、212aの幅(集電体110の送り方向Aに直交する方向での寸法)が等しく、活物質層111および絶縁層112は同じ塗工幅とされる。
 活物質層111および絶縁層112の塗工後、集電体110は乾燥炉203に送られ、乾燥炉203で、活物質層用スラリーおよび絶縁層用スラリーの溶媒を蒸発させる。溶媒の蒸発後、集電体110はロールプレス機に送られ、ここで活物質層111および絶縁層112が圧縮成形される。これにより、活物質層111の形成は絶縁層112の形成と同時に行われる。
 最後に、集電体110は、打ち抜きなど適宜の方法によって、例えば図6Cに破線で示すような、集電体110の表面全体に活物質層111および絶縁層112が形成された矩形状の部分と、この矩形状の部分から延びた、集電体110からなる延長部110aとを有する所望の形状に切断される。これによって電極が得られる。この切断工程は、1回の加工で所望の形状が得られるように行ってもよいし、複数回の加工で所望の形状が得られるように行ってもよい。
 なお、活物質層111および絶縁層112が形成された集電体110は、再びロールに巻かれて次の工程まで保管および/または移送されることが多い。前述したように、集電体110、活物質層111および絶縁層112の積層構造は、90°剥離試験を行ったときに、集電体110と活物質層111との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上である。よって、ロールに巻かれた場合であっても、活物質層111が集電体110から剥離したり、絶縁層112が活物質層111から剥離したりすることを抑制することができる。
 以上、本発明を一形態により説明したが、本発明は上述した形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更することが可能である。
 例えば、上述した形態では、活物質層111および絶縁層112を塗工するのに、図6に示したような、それぞれ吐出口211a、212aが開口した2つのダイヘッド211、212を備えたダイコーター210を用いた。しかし、図7に示すように、2つの吐出口221a、221bが開口した単一のダイヘッド221を備えたダイコーター220を用いて、集電体110上に活物質層111および絶縁層112を塗工することもできる。
 2つの吐出口221a、221bは、バックアップローラー201の回転方向、すなわち集電体110の送り方向に間隔をあけて配置されている。集電体110の送り方向について上流側に位置する吐出口221aによっては活物質層用スラリーが塗工され、下流側に位置する吐出口221bによって絶縁層用スラリーが塗工される。したがって、2つの吐出口221a、221bからそれぞれ活物質層用スラリーおよび絶縁層用スラリーを吐出することで、集電体110の表面に活物質層111が間欠塗工され、かつ、活物質層111の表面に、活物質層111の一部を露出させて絶縁層112が塗工された構造を得ることができる。
 さらに、上述した形態では、集電体110の片面側に活物質層111および絶縁層112を塗工する場合を説明したが、同様にしてもう一方の面にも活物質層および絶縁層112を塗工し、集電体110の両面に活物質層111および絶縁層112を有する電極を製造することもできる。
 また、本発明により得られた電池は、種々の使用形態で使用されることができる。以下に、そのいくつかの例を説明する。
 [組電池]
 複数の電池を組み合わせて組電池とすることができる。組電池は、例えば、本実施形態に係る2以上の電池を、直列および/または並列に接続した構成とすることができる。電池の直列数および並列数はそれぞれ、組電池の目的とする電圧および容量に応じて適宜選択することができる。
 [車両]
 上述した電池またはその組電池は、車両に用いることができる。電池または組電池を利用できる車両としては、ハイブリッド車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バス等の商用車、軽自動車等)のほか、二輪車(バイク)や三輪車を含む)が挙げられる。なお、本実施形態に係る車両は自動車に限定されるわけではなく、他の車両、例えば電車等の移動体の各種電源として用いることもできる。このような車両の一例として、図8に電気自動車の模式図を示す。図8に示す電気自動車200は、上述した電池を複数、直列および並列に接続し、必要とされる電圧および容量を満たすように構成された組電池210を有する。
 [蓄電装置]
 上述した電池またはその組電池は、蓄電装置に用いることができる。二次電池または組電池を利用した蓄電装置としては、例えば、一般家庭に供給される商用電源と家電製品等の負荷との間に接続され、停電時等のバックアップ電源や補助電源として使用されるものや、太陽光発電等の、再生可能エネルギーによる時間変動の大きい電力出力を安定化するための、大規模電力貯蔵用としても使用されるものが挙げられる。このような蓄電装置の一例を、図9に模式的に示す。図9に示す蓄電装置300は、上述した電池を複数、直列および並列に接続し、必要とされる電圧および容量を満たすように構成された組電池310を有する。
 [その他]
 さらに、上述した電池またはその組電池は、携帯電話、ノートパソコンなどのモバイル機器の電源などとしてもとして利用できる。
 次に、本発明を具体的な実施例により説明する。ただし、本発明は以下の実施例に限定されるものではない。
 [実施例1]
 (絶縁コート正極の作製)
 LiNi0.8Mn0.15Co0.05と、炭素導電剤(アセチレンブラック)と、結着剤としてポリフッ化ビニリデン(PVdF)とを重量比90:5:5でN-メチル-2-ピロリドンに分散させて正極活物質層用スラリーを作製した。これをアルミニウムからなる正極集電箔の表面に塗工および乾燥して正極活物質層(PAM1)を形成した。正極集電箔の裏面にも同様にして正極活物質層を形成した。
 続いて、アルミナと、結着剤としてポリフッ化ビニリデン(PVdF)とを重量比90:10でN-メチル-2-ピロリドンに分散させて絶縁層用スラリーを作製した。これを正極活物質層の上に塗工および乾燥して絶縁層(INS1)を形成した。正極集電箔の裏面側の正極活物質層の上にも同様にして絶縁層を形成した。次いで、正極集電箔、正極活物質層および絶縁層の全体を圧縮成形し、さらに所定の形状に切断し、複数の正極を作製した。
 (剥離強度の測定)
 得られた複数の正極のうち一つを幅20mm、長さ100mmの試料として切り出し、この試料を用いて常温環境下(15℃~25℃)にて90°剥離試験を行った。90°剥離試験は次のように行った。まず、試料を、試料と同じ幅の両面テープ(ニチバン株式会社製NWBB-20)を用いて平坦な試料台の上面に、両面テープが剥がれないように固定した。その際、試料をその長さ方向一端から80mmまでの部分のみを試料台に固定し、残りの20mmの長さの部分は掴み代として固定しなかった。次いで、試料の掴み代をチャックで保持し、その状態でチャックを100mm/minの速度で試料台の上面と垂直な方向へ試料台から離れるように移動させ、試料を試料台から引き剥がし、その際の最大荷重を測定した。90°剥離試験には、引張圧縮試験機(日本電産シンポ株式会社製、型番FGS-20TV)を用いた。また、90°剥離試験では、剥離強度の測定、およびどの層で剥離したか剥離個所の確認を行なった。剥離強度は、上記のとおり試料を引き剥がした際に測定した最大荷重を試料の幅である20mmで除算して試料幅1mm当たりの力に換算した値を用い、単位をNm/mmで表した。
 (負極の作製)
 天然黒鉛と、増粘剤のカルボキシメチルメチルセルロースナトリウムと、結着剤のスチレンブタジエンゴムとを、重量比97:1:2で水溶液中に混合して負極活物質層用スラリーを作製した。これを銅からなる負極集電箔の表面に塗工および乾燥して負極活物質層(NAM1)を形成した。負極集電箔の裏面にも同様にして負極活物質層を形成した。次いで、負極集電箔および負極活物質層の全体を圧縮成形し、さらに所定の形状に切断し、複数の負極を作製した。
 (電解液の調製)
 電解液の非水溶媒には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比30:70で混合した非水溶媒を用いた。支持塩として、1Mの濃度になるようにLiPFを溶解した。
 (電池の作製)
 正極と負極とを、セパレータの基材を介して積層し、電極アセンブリを作製した。セパレータとしては、ポリプロピレン製で厚さ25μmの微多孔質セパレータを用いた。電極アセンブリのサイズは、セルの初回充電容量が1Ahになるように調整した。積層した正極および負極のそれぞれに電流取り出し用の端子を接続し、アルミニウムと樹脂のラミネートフィルムである外装体に収容した。電解液を外装体内に注入した後、外装体を減圧封止した。以上の工程により電池を作製した。
 (160℃加熱試験)
 作製した電池を4.2Vに充電した後、160℃加熱試験を行った。昇温速度は10℃/分とし、160℃に到達後30分間温度を保持した。
 [実施例2]
 実施例1で用いた正極活物質をLiNi0.8Mn0.15Co0.05からLiNi0.8Co0.15Alo0.05に変更し、この正極活物質を用いて正極活物質層(PAM2)を形成したこと以外は実施例1と同様の手順で、絶縁層を有する正極を作製した。さらに、この正極を用いたこと以外は実施例1と同様にして電池を作製した。作製された正極の剥離試験、および作製された電池の160℃加熱試験も実施例1と同様に行った。
 [実施例3]
 実施例1で用いた正極活物質をLiNi0.8Mn0.15Co0.05からLiNi0.5Mn0.3Coo.2に変更し、この正極活物質を用いて正極活物質層(PAM3)を形成したこと以外は実施例1と同様の手順で、絶縁層を有する正極を作製した。さらに、この正極を用いたこと以外は実施例1と同様にして電池を作製した。作製された正極の剥離試験、および作製された電池の160℃加熱試験も実施例1と同様に行った。
 [実施例4]
 (絶縁コート負極の作製)
 黒鉛と、増粘剤のカルボキシメチルメチルセルロースナトリウムと、結着剤のスチレンブタジエンゴムとを、重量比97:1:2で水溶液中に混合して負極活物質層用スラリーを作製した。これを銅からなる負極集電箔の表面に塗工および乾燥して負極活物質層(NAM1)を形成した。負極集電箔の裏面にも同様にして負極活物質層を形成した。次いで、負極集電箔の両面に形成された負極活物質層を圧縮成形した。
 続いて、アルミナと、結着剤としてポリフッ化ビニリデン(PVdF)とを重量比90:10でN-メチル-2-ピロリドンに分散させて絶縁層用スラリーを作製した。これを負極活物質層の上に塗工および乾燥して絶縁層(INS1)を形成した。負極集電箔の裏面側の負極活物質層の上にも同様にして絶縁層を形成した。次いで、負極集電箔の両面に形成された絶縁層を圧縮成形し、さらに所定の形状に切断して、複数の負極を作製した。作製された負極について、実施例1と同様に剥離試験を行った。
 (正極の作製)
LiNi0.8Mn0.15Co0.05と、炭素導電剤(アセチレンブラック)と、結着剤としてポリフッ化ビニリデン(PVdF)とを重量比90:5:5でN-メチル-2-ピロリドンに分散させて正極活物質層用スラリーを作製した。これをアルミニウムからなる正極集電箔の表面に塗工および乾燥して正極活物質層(PAM1)を形成した。正極集電箔の裏面にも同様にして正極活物質層を形成した。次いで、正極集電箔および正極活物質層の全体を圧縮成形し、さらに所定の形状に切断して、複数の正極を作製した。
 (電池の作製)
 負極および正極の作製後、実施例1と同様にして電解液の調製および電池の作製を行った。作製した電池を用い、実施例1と同様の条件で160℃加熱試験を行った。
 [実施例5]
 黒鉛と、結着剤のポリアクリル酸とを、重量比95:5で水溶液中に混合して負極活物質層用スラリーを作製した。これを用いて負極活物質層(NAM2)を形成したこと以外は実施例4と同様の手順で負極を作製し、その負極の剥離試験を行った。また、ここで作製した負極を用いたこと以外は実施例4と同様の手順で電池を作製し、160℃加熱試験を行った。
 [実施例6]
 黒鉛と、Siと、結着剤のポリアクリル酸とを、重量比92:3:5で水溶液中に混合して負極活物質層用スラリーを作製した。これを用いて負極活物質層(NAM3)を形成したこと以外は実施例4と同様の手順で負極を作製し、剥離試験を行った。また、ここで作製した負極を用いたこと以外は実施例4と同様の手順で電池を作製し、160℃加熱試験を行った。
 [実施例7]
 アルミナと、結着剤としてポリアクリル酸(PAA)とを重量比93:7で水溶液中に混合して絶縁層用スラリーを作製した。これを用いて負極の絶縁層(INS2)を形成したこと以外は実施例4と同様の手順で負極を作製し、剥離試験を行った。また、ここで作製した負極を用いたこと以外は実施例4と同様の手順で電池を作製し、160℃加熱試験を行った。
 [実施例8]
 黒鉛と、結着剤としてポリフッ化ビニリデン(PVdF)とを重量比95:5でN-メチル-2-ピロリドンに分散させて負極活物質用スラリーを作製した。これを銅からなる負極集電箔の表面に塗工および乾燥して負極活物質層(NAM4)を形成した。負極集電箔の裏面にも同様にして負極活物質層を形成した。
 続いて、アルミナと、結着剤としてポリイミドとを重量比90:10でN-メチル-2-ピロリドンに分散させて絶縁層用スラリーを作製した。これを負極活物質層の上に塗工おおび乾燥して絶縁層(INS3)を形成した。負極集電箔の裏面側の負極活物質層の上にも同様にして絶縁層を形成した。次いで、負極集電箔、負極活物質層および絶縁層の全体を圧縮成形し、さらに所定の形状に切断して、複数の負極を作製した。作製された負極について、実施例4と同様にして剥離試験を行った。また、このようにして作成された負極を用いたこと以外は実施例4と同様の手順で電池を作製し、160℃加熱試験を行った。
 [実施例9]
 黒鉛と、SiOと、結着剤のポリアクリル酸とを、重量比28:67:5で水溶液中に混合して負極活物質層用スラリーを作製した。これを用いて負極活物質層(NAM4)を形成したこと以外は実施例4と同様の手順で負極を作製し、剥離試験を行った。また、ここで作製した負極を用いたこと以外は実施例4と同様の手順で電池を作製し、160℃加熱試験を行った。
 [比較例1]
 黒鉛と、増粘剤のカルボキシメチルメチルセルロースナトリウムと、結着剤のスチレンブタジエンゴムとを、重量比97.6:1.2:1.2で水溶液中に混合して負極活物質層用スラリーを作製した。これを用いて負極活物質層(NAM5)を形成したこと以外は実施例4と同様の手順で負極を作製し、その負極の剥離試験を行った。また、ここで作成した負極を用いたこと以外は実施例4と同様の手順で電池を作製し、160℃加熱試験を行った。
 [比較例2]
 アルミナと、結着剤としてポリフッ化ビニリデン(PVdF)とを重量比97:3でN-メチル-2-ピロリドンに分散させて絶縁層用スラリーを作製した。これを用いて正極の絶縁層(INS4)を形成したこと以外は実施例1と同様の手順で正極を作製し、剥離試験を行った。また、ここで作製した正極を用いたこと以外は実施例1と同様の手順で電池を作製し、160℃加熱試験を行った。
 [比較例3]
 実施例1において、アルミナと、結着剤としてポリフッ化ビニリデン(PVdF)とを重量比92:8でN-メチル-2-ピロリドンに分散させた絶縁層用スラリーを用いて正極の絶縁層(INS5)を形成し、かつ、正極集電箔の両面に正極活物質用スラリーを塗工した後に乾燥および圧縮成形工程を追加したこと以外は実施例1と同様の手順で正極を作製し、その正極の剥離試験を行った。また、ここで作製した正極を用いたこと以外は実施例1と同様の手順で電池を作製し、160℃加熱試験を行った。
 実施例1~8および比較例1~3について、正極および負極の層構成、剥離試験結果および160℃加熱試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、正極の欄は、「正極集電箔/正極活物質層/絶縁層」の材料を表している。同様に、負極の欄は「負極集電箔/負極活物質層/絶縁層」の材料を表している。なお、PAM1~PAM3、NAM1~NAM5およびINS1~INS5の詳細は、上述した実施例1~9、比較例1~3で述べたとおりである。
 実施例1~9はいずれも、剥離試験において集電箔と活物質層との間で剥離が生じ、また、その剥離強度は10mN/mm以上であった。さらに、160℃加熱試験においては電池からの発煙および発火は確認されなかった。一方、比較例2、3では、剥離強度はいずれも10mN/mm以上であったが、活物質層と絶縁層との間で剥離が生じ、160℃加熱試験において電池から発煙が生じた。また、比較例1では、実施例1~8と同様、集電箔と活物質層との間で剥離が生じたが、剥離強度は9.2mN/mmと比較的小さく、加熱試験で発煙が生じている。以上のことから、活物質層の上にさらに絶縁層を有する電極に対して90°剥離試験を行った際に、集電箔と活物質層との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上であるように電極を構成することで、電池が高温になった場合であっても発煙や発熱を効果的に抑制することができる。
 ここで、比較例2、3において加熱試験で発煙が生じたメカニズムを考察する。比較例2、3では、活物質層と絶縁層との間で剥離が生じており、このことは、活物質層と絶縁層との密着力は、活物質層と集電箔との密着力よりも弱いことを意味する。加熱試験では、正極、負極およびセパレータが加熱され、セパレータは、加熱により面内方向への収縮力が働く。このとき、セパレータと接している正極および負極にも、セパレータに引っ張られるかたちで収縮力が働く。この収縮力によって、負極では、セパレータに引っ張られるようにして絶縁層が活物質層から剥離し、活物質層が一部で露出する。これにより正極と負極との間で短絡が生じ、発煙に至ったものと考えられる。
 上記実施形態の一部または全部は、以下の付記のようにも記載され得るが、本出願の開示事項は以下の付記に限定されない。
 (付記1)
 電池用の電極であって、
 集電体(110)と、
 前記集電体(110)の少なくとも片面に形成された活物質層(111)と、
 前記活物質層(111)の表面に形成された絶縁層(112)と、
 を有し、
 剥離速度100mm/minで90°剥離試験を行ったときに、前記集電体(110)と前記活物質層(111)との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上である電極。
 (付記2)
 前記集電体(110)および前記活物質層(111)はそれぞれ正極用の集電体(110)および活物質層(111)である付記1に記載の電極。
 (付記3)
 前記正極用の活物質層(111)は、結着剤としてポリフッ化ビニリデンを含む付記2に記載の電極。
 (付記4)
 前記集電体(110)および前記活物質層(111)はそれぞれ負極用の集電体(110)および活物質層(111)である付記1に記載の電極。
 (付記5)
 前記負極用の活物質層(111)は、結着剤として、スチレンブタジエンゴム、ポリアクリル酸およびポリフッ化ビニリデンの少なくとも1種を含む付記4に記載の電極。
 (付記6)
 前記活物質層(111)は、N-メチル-2-ピロリドンを含む付記1から5のいずれかに記載の電極。
 (付記7)
 少なくとも1つの正極(11)と、
 前記正極(11)と対向して配置された少なくとも1つの負極(12)と、
 を有し、
 前記正極(11)および前記負極(12)の少なくとも一方は、集電体(110)と、前記集電体(110)の少なくとも片面に形成された活物質層(111)と、前記活物質層(111)の表面に形成された絶縁層(112)と、を有し、剥離速度100mm/minで90°剥離試験を行ったときに、前記集電体(110)と前記活物質層(111)との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上である電池。
 (付記8)
 前記正極(11)および前記負極(12)は、前記絶縁層(112)を介して対向するように配置されている付記7に記載の電池。
 (付記9)
 前記正極(11)と前記負極(12)との間に配置されたセパレータ(13)をさらに有する付記7または8に記載の電離。
 (付記10)
 前記活物質層(111)は、結着剤としてポリフッ化ビニリデンを含む付記7から9のいずれかに記載の電池。
 (付記11)
 前記活物質層(111)は、N-メチル-2-ピロリドンを含む付記7から10のいずれかに記載の電池。
 (付記12)
 電池用の電極の製造方法であって、
 集電体(110)の少なくとも片面に活物質層(111)を形成する工程と、
 最終的に前記活物質層(111)の表面に積層されるように絶縁層(112)を形成する工程と、
 を含み、
 得られた電極について剥離速度100mm/minでの90°剥離試験を行ったときに、前記集電体(110)と前記活物質層(111)との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上となるように、前記活物質層(111)の材料、前記活物質層(111)の形成条件、前記絶縁層(112)の材料および前記絶縁層(112)の形成条件の少なくとも1つが定められている、電極の製造方法。
 (付記13)
 前記活物質層(111)を形成する工程は、
 活物質材料と結着剤とを溶媒に分散させた活物質層用混合物を塗布する工程と、
 塗布した前記活物質層用混合物を乾燥させる工程と、
 乾燥後の前記活物質用混合物を圧縮成形する工程と、
 を含み、
 前記絶縁層(112)を形成する工程は、
 絶縁性材料と結着剤とを溶媒に分散させた絶縁層用混合物を塗布する工程と、
 塗布した前記絶縁層用混合物を乾燥させる工程と、
 乾燥後の前記絶縁層用混合物を圧縮成形する工程と、
 を含む、
付記12に記載の電極の製造方法。
 (付記14)
 前記活物質用混合物を塗布する工程と、
 前記活物質用混合物を乾燥させる工程と、
 前記活物質用混合物を圧縮成形する工程と、
 前記絶縁層用混合物を塗布する工程と、
 前記絶縁層用混合物を乾燥させる工程と、
 前記絶縁層用混合物を圧縮成形する工程と、
 をこの順番に実施する付記13に記載の電極の製造方法。
 (付記15)
 前記活物質用混合物を塗布する工程と、
 前記活物質用混合物を乾燥させる工程と、
 前記絶縁層用混合物を塗布する工程と、
 前記絶縁層用混合物を乾燥する工程と、
 をこの順番に実施し、
 その後、前記活物質層用混合物を圧縮成形する工程および前記絶縁層用混合物を圧縮成形する工程を同時に実施する、付記13に記載の電極の製造方法。
 (付記16)
 前記活物質層用混合物を塗布する工程と、
 前記絶縁層用混合物を塗布する工程と、
 をこの順番に実施し、
 その後、前記活物質用混合物を乾燥させる工程および前記絶縁層用混合物を乾燥させる工程を同時に実施し、
 その後、前記活物質層用混合物を圧縮成形する工程および前記絶縁層用混合物を圧縮成形する工程を同時に実施する、付記13に記載の電極の製造方法。
 (付記17)
 前記活物質層用混合物は、前記結着剤としてポリフッ化ビニリデンを含む、
付記13から16のいずれかに記載の電極の製造方法。
 (付記18)
 前記活物質用混合物は、前記溶媒としてN-メチル-2-ピロリドンを含む、付記13から17のいずれかに記載の電極の製造方法。
 1  電池
 10  電極アセンブリ
 10a  正極タブ
 10b  負極タブ
 11  正極
 12  負極
 13  セパレータ
 21、22  外装材
 31  正極端子
 32  負極端子
 110  集電体
 110a  延長部
 111  活物質層
 112  絶縁層
 201  バックアップローラー
 210、220  ダイコーター
 211、212、221  ダイヘッド
 211a、212a、221a  吐出口

Claims (18)

  1.  電池用の電極であって、
     集電体と、
     前記集電体の少なくとも片面に形成された活物質層と、
     前記活物質層の表面に形成された絶縁層と、
     を有し、
     剥離速度100mm/minで90°剥離試験を行ったときに、前記集電体と前記活物質層との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上である電極。
  2.  前記集電体および前記活物質層はそれぞれ正極用の集電体および活物質層である請求項1に記載の電極。
  3.  前記正極用の活物質層は、結着剤としてポリフッ化ビニリデンを含む請求項2に記載の電極。
  4.  前記集電体および前記活物質層はそれぞれ負極用の集電体および活物質層である請求項1に記載の電極。
  5.  前記負極用の活物質層は、結着剤として、スチレンブタジエンゴム、ポリアクリル酸およびポリフッ化ビニリデンの少なくとも1種を含む請求項4に記載の電極。
  6.  前記活物質層は、N-メチル-2-ピロリドンを含む請求項1から5のいずれか一項に記載の電極。
  7.  少なくとも1つの正極と、
     前記正極と対向して配置された少なくとも1つの負極と、
     を有し、
     前記正極および前記負極の少なくとも一方は、集電体と、前記集電体の少なくとも片面に形成された活物質層と、前記活物質層の表面に形成された絶縁層と、を有し、剥離速度100mm/minで90°剥離試験を行ったときに、前記集電体と前記活物質層との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上である電池。
  8.  前記正極および前記負極は、前記絶縁層を介して対向するように配置されている請求項7に記載の電池。
  9.  前記正極と前記負極との間に配置されたセパレータをさらに有する請求項7または8に記載の電離。
  10.  前記活物質層は、結着剤としてポリフッ化ビニリデンを含む請求項7から9のいずれか一項に記載の電池。
  11.  前記活物質層は、N-メチル-2-ピロリドンを含む請求項7から10のいずれか一項に記載の電池。
  12.  電池用の電極の製造方法であって、
     集電体の少なくとも片面に活物質層を形成する工程と、
     最終的に前記活物質層の表面に積層されるように絶縁層を形成する工程と、
     を含み、
     得られた電極について剥離速度100mm/minでの90°剥離試験を行ったときに、前記集電体と前記活物質層との間で剥離が生じ、かつ、その剥離強度が10mN/mm以上となるように、前記活物質層の材料、前記活物質層の形成条件、前記絶縁層の材料および前記絶縁層の形成条件の少なくとも1つが定められている、電極の製造方法。
  13.  前記活物質層を形成する工程は、
     活物質材料と結着剤とを溶媒に分散させた活物質層用混合物を塗布する工程と、
     塗布した前記活物質層用混合物を乾燥させる工程と、
     乾燥後の前記活物質用混合物を圧縮成形する工程と、
     を含み、
     前記絶縁層を形成する工程は、
     絶縁性材料と結着剤とを溶媒に分散させた絶縁層用混合物を塗布する工程と、
     塗布した前記絶縁層用混合物を乾燥させる工程と、
     乾燥後の前記絶縁層用混合物を圧縮成形する工程と、
     を含む、請求項12に記載の電極の製造方法。
  14.  前記活物質用混合物を塗布する工程と、
     前記活物質用混合物を乾燥させる工程と、
     前記活物質用混合物を圧縮成形する工程と、
     前記絶縁層用混合物を塗布する工程と、
     前記絶縁層用混合物を乾燥させる工程と、
     前記絶縁層用混合物を圧縮成形する工程と、
     をこの順番に実施する請求項13に記載の電極の製造方法。
  15.  前記活物質用混合物を塗布する工程と、
     前記活物質用混合物を乾燥させる工程と、
     前記絶縁層用混合物を塗布する工程と、
     前記絶縁層用混合物を乾燥する工程と、
     をこの順番に実施し、
     その後、前記活物質層用混合物を圧縮成形する工程および前記絶縁層用混合物を圧縮成形する工程を同時に実施する、請求項13に記載の電極の製造方法。
  16.  前記活物質層用混合物を塗布する工程と、
     前記絶縁層用混合物を塗布する工程と、
     をこの順番に実施し、
     その後、前記活物質用混合物を乾燥させる工程および前記絶縁層用混合物を乾燥させる工程を同時に実施し、
     その後、前記活物質層用混合物を圧縮成形する工程および前記絶縁層用混合物を圧縮成形する工程を同時に実施する、請求項13に記載の電極の製造方法。
  17.  前記活物質層用混合物は、前記結着剤としてポリフッ化ビニリデンを含む、請求項13から16のいずれか一項に記載の電極の製造方法。
  18.  前記活物質用混合物は、前記溶媒としてN-メチル-2-ピロリドンを含む、請求項13から17のいずれか一項に記載の電極の製造方法。
PCT/JP2017/018650 2016-05-25 2017-05-18 電池用電極、該電極を備えた電池および前記電極の製造方法 WO2017204077A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018519226A JP7006590B2 (ja) 2016-05-25 2017-05-18 電池用電極、該電極を備えた電池および前記電極の製造方法
CN201780028890.9A CN109075311B (zh) 2016-05-25 2017-05-18 电池用电极、设置有该电极的电池以及制造该电极的方法
US16/086,188 US20200303743A1 (en) 2016-05-25 2017-05-18 Electrode for battery, battery having electrode and method for manufacturing electrode and battery having electrode
US18/126,123 US20230253566A1 (en) 2016-05-25 2023-03-24 Electrode for battery, battery having electrode and method for manufacturing electrode and battery having electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016104345 2016-05-25
JP2016-104345 2016-05-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/086,188 A-371-Of-International US20200303743A1 (en) 2016-05-25 2017-05-18 Electrode for battery, battery having electrode and method for manufacturing electrode and battery having electrode
US18/126,123 Continuation US20230253566A1 (en) 2016-05-25 2023-03-24 Electrode for battery, battery having electrode and method for manufacturing electrode and battery having electrode

Publications (1)

Publication Number Publication Date
WO2017204077A1 true WO2017204077A1 (ja) 2017-11-30

Family

ID=60412312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018650 WO2017204077A1 (ja) 2016-05-25 2017-05-18 電池用電極、該電極を備えた電池および前記電極の製造方法

Country Status (4)

Country Link
US (2) US20200303743A1 (ja)
JP (1) JP7006590B2 (ja)
CN (1) CN109075311B (ja)
WO (1) WO2017204077A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868971A (zh) * 2018-03-12 2020-10-30 日本电气株式会社 用于二次电池的电极、使用所述电极的二次电池及其制造方法
WO2024033741A1 (ja) * 2022-08-10 2024-02-15 株式会社半導体エネルギー研究所 電池および二次電池の作製方法
US12021241B2 (en) 2018-03-12 2024-06-25 Nec Corporation Electrode for secondary battery, secondary battery using the electrode and method for manufacturing thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288741A (ja) * 1998-02-05 1999-10-19 Denso Corp リチウム二次電池及びリチウム二次電池用電極の製造方法
JP2000348776A (ja) * 1999-03-30 2000-12-15 Toshiba Corp 二次電池
JP2007188868A (ja) * 2005-12-12 2007-07-26 Toray Ind Inc 電池用電極およびその製造方法、ならびに二次電池
JP2008159410A (ja) * 2006-12-25 2008-07-10 Matsushita Electric Ind Co Ltd 非水系二次電池用正極板およびこれを用いた非水系二次電池
JP2014203676A (ja) * 2013-04-05 2014-10-27 株式会社ダイセル 電極一体型セパレータ及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3225864B2 (ja) * 1996-12-04 2001-11-05 三菱電機株式会社 リチウムイオン二次電池及びその製造方法
JP3303694B2 (ja) * 1996-12-17 2002-07-22 三菱電機株式会社 リチウムイオン二次電池及びその製造方法
US6589690B1 (en) * 1999-03-30 2003-07-08 Kabushiki Kaisha Toshiba Secondary battery
US20050130042A1 (en) * 2003-12-11 2005-06-16 Byd America Corporation Materials for positive electrodes of lithium ion batteries and their methods of fabrication
JP4661843B2 (ja) * 2007-08-28 2011-03-30 ソニー株式会社 非水電解質二次電池
JP4883025B2 (ja) * 2007-10-31 2012-02-22 ソニー株式会社 二次電池
JP5416128B2 (ja) * 2008-10-31 2014-02-12 日立マクセル株式会社 非水二次電池
JP4524713B2 (ja) * 2008-11-06 2010-08-18 トヨタ自動車株式会社 リチウム二次電池とその利用
US8734988B2 (en) * 2010-07-23 2014-05-27 University Of Delaware Lithium batteries having anodes based on polythiocyanogen
KR20140071951A (ko) * 2011-10-03 2014-06-12 히다치 막셀 가부시키가이샤 내열성 다공질막, 비수전지용 세퍼레이터 및 비수전지
JP6003041B2 (ja) * 2011-11-10 2016-10-05 日産自動車株式会社 耐熱絶縁層付セパレータ
JP6057137B2 (ja) * 2014-04-18 2017-01-11 トヨタ自動車株式会社 非水電解質二次電池用の正極とその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288741A (ja) * 1998-02-05 1999-10-19 Denso Corp リチウム二次電池及びリチウム二次電池用電極の製造方法
JP2000348776A (ja) * 1999-03-30 2000-12-15 Toshiba Corp 二次電池
JP2007188868A (ja) * 2005-12-12 2007-07-26 Toray Ind Inc 電池用電極およびその製造方法、ならびに二次電池
JP2008159410A (ja) * 2006-12-25 2008-07-10 Matsushita Electric Ind Co Ltd 非水系二次電池用正極板およびこれを用いた非水系二次電池
JP2014203676A (ja) * 2013-04-05 2014-10-27 株式会社ダイセル 電極一体型セパレータ及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868971A (zh) * 2018-03-12 2020-10-30 日本电气株式会社 用于二次电池的电极、使用所述电极的二次电池及其制造方法
JPWO2019176393A1 (ja) * 2018-03-12 2021-02-18 日本電気株式会社 二次電池用電極、該電極を用いた二次電池およびそれらの製造方法
JP7156363B2 (ja) 2018-03-12 2022-10-19 日本電気株式会社 二次電池用電極、該電極を用いた二次電池およびそれらの製造方法
CN111868971B (zh) * 2018-03-12 2023-07-25 日本电气株式会社 用于二次电池的电极、使用所述电极的二次电池及其制造方法
US12021241B2 (en) 2018-03-12 2024-06-25 Nec Corporation Electrode for secondary battery, secondary battery using the electrode and method for manufacturing thereof
WO2024033741A1 (ja) * 2022-08-10 2024-02-15 株式会社半導体エネルギー研究所 電池および二次電池の作製方法

Also Published As

Publication number Publication date
US20230253566A1 (en) 2023-08-10
CN109075311A (zh) 2018-12-21
JPWO2017204077A1 (ja) 2019-03-22
US20200303743A1 (en) 2020-09-24
JP7006590B2 (ja) 2022-01-24
CN109075311B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
US10910635B2 (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
CN110495024B (zh) 制造二次电池用电极的方法和制造二次电池的方法
WO2018155207A1 (ja) 二次電池およびその製造方法
US20210408608A1 (en) Electrode assembly and manufacturing method therefor
JP7014164B2 (ja) 電極アセンブリおよびその製造方法
US20230253566A1 (en) Electrode for battery, battery having electrode and method for manufacturing electrode and battery having electrode
CN111386616B (zh) 制造二次电池用电极的方法和制造二次电池的方法
WO2018180372A1 (ja) 二次電池およびその製造方法
US20240047692A1 (en) Secondary battery and method for manufacturing the same
JP6699351B2 (ja) 電極の製造方法および電極の検査方法
JP7156363B2 (ja) 二次電池用電極、該電極を用いた二次電池およびそれらの製造方法
US12021241B2 (en) Electrode for secondary battery, secondary battery using the electrode and method for manufacturing thereof
JP7164201B2 (ja) 電極体およびそれを備えた二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018519226

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802669

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802669

Country of ref document: EP

Kind code of ref document: A1