WO2017204019A1 - Electrolytic copper plating liquid evaluation system, electrolytic copper plating liquid evaluation method, and electrolytic copper plating liquid evaluation chip - Google Patents
Electrolytic copper plating liquid evaluation system, electrolytic copper plating liquid evaluation method, and electrolytic copper plating liquid evaluation chip Download PDFInfo
- Publication number
- WO2017204019A1 WO2017204019A1 PCT/JP2017/018217 JP2017018217W WO2017204019A1 WO 2017204019 A1 WO2017204019 A1 WO 2017204019A1 JP 2017018217 W JP2017018217 W JP 2017018217W WO 2017204019 A1 WO2017204019 A1 WO 2017204019A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- copper plating
- electrolytic copper
- hole
- plating solution
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/12—Process control or regulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
Definitions
- the present invention relates to an electrolytic copper plating solution evaluation system, an electrolytic copper plating solution evaluation method, and an electrolytic copper plating solution evaluation chip.
- a via fill plating process is used in which vias for interlayer connection are filled with copper by an electrolytic copper plating process.
- a copper damascene process is used in which wiring trenches and interlayer connection vias are filled with copper by an electrolytic copper plating process.
- TSV silicon through electrodes
- the following reaction proceeds.
- the deposition rate at the upper end of the hole is larger than the deposition rate inside the hole, and the inside of the hole may not be completely filled.
- Cu + hereinafter referred to as monovalent copper
- an inhibitor that adsorbs to the upper end portion of the hole and suppresses plating at the upper end portion of the hole and an accelerator that stabilizes the monovalent copper complex existing inside the hole are usually used as an additive for the plating solution.
- the rotating ring disk method is known as a method for measuring the concentration of monovalent copper in the plating solution of the plating tank.
- CVS cyclic voltammetry stripping
- an object of the present invention is to provide an electrolytic copper plating solution evaluation system, an electrolytic copper plating solution evaluation method, and an electrolytic copper plating solution evaluation chip capable of measuring the concentration distribution of monovalent copper inside the hole. It was.
- the electrolytic copper plating solution evaluation system of the present invention is: An electrolytic copper plating solution evaluation chip having a hole, one or more first electrodes formed on the side wall in the hole, and a second electrode formed on the side wall in the hole; A reference electrode; An anode, A current potential setting measuring device connecting the first electrode, the second electrode, the anode, and the reference electrode; A copper plating reaction is caused by the second electrode, and the concentration of monovalent copper is measured by the first electrode.
- An electrolytic copper plating solution evaluation method of the present invention is an electrolytic copper plating solution evaluation method using the electrolytic copper plating solution evaluation system, wherein the electrolytic copper plating solution evaluation chip is immersed in the electrolytic copper plating solution, The divalent copper is reduced with two electrodes, the potential of the first electrode is maintained at a potential capable of oxidizing the monovalent copper, and the concentration of the monovalent copper is measured.
- the electrolytic copper plating solution evaluation chip of the present invention includes a hole, one or a plurality of first electrodes formed on the side wall in the hole, and a second electrode formed on the side wall in the hole. It is characterized by having.
- the electrolytic copper plating solution evaluation system of the present invention has a hole, one or a plurality of first electrodes formed on the side wall in the hole, and a second electrode formed on the side wall in the hole.
- the concentration distribution of monovalent copper inside the hole can be directly measured. Since the plating solution inside the via can be regarded as being in the same state as the plating solution inside the hole of the evaluation chip, the plating solution inside the via is appropriately managed by using the measurement result of the evaluation chip described above. And generation of voids during electrolytic copper plating can be prevented.
- the evaluation chip of the present invention can produce a hole having a minute opening diameter on the order of nm by using a semiconductor microfabrication process, the concentration distribution of monovalent copper inside the minute via is reduced. It can be suitably used for measurement.
- the concentration distribution of monovalent copper in the present invention is the concentration distribution of monovalent copper in the depth direction of the hole, using the concentration of monovalent copper at a depth distance of one point or more from the upper end of the hole. Can be represented.
- FIG. 3 is a longitudinal sectional view taken along line XX ′ in FIG. 2.
- FIG. 3 is a schematic diagram illustrating an example of a manufacturing process of the evaluation chip in FIG. 2.
- FIG. 3 is a schematic diagram illustrating an example of a manufacturing process of the evaluation chip in FIG. 2.
- FIG. 3 is a schematic diagram illustrating an example of a manufacturing process of the evaluation chip in FIG. 2.
- FIG. 3 is a schematic diagram illustrating an example of a manufacturing process of the evaluation chip in FIG. 2.
- an electrolytic copper plating solution evaluation system includes an electrolytic copper plating solution evaluation chip 21, a reference electrode 22, an anode 23, a first electrode, a second electrode, an anode, and a reference electrode.
- a current potential setting measuring device 24 for connecting the electrode, and an electrolytic copper plating solution evaluation chip 21, a reference electrode 22, and an anode 23 are immersed in a plating solution 26 in a plating tank 25 and used. .
- An evaluation chip used in the evaluation system of the present invention includes a hole, one or more first electrodes formed on the side wall in the hole, and a second electrode formed on the side wall in the hole.
- the hole is preferably formed by bonding a second substrate having a groove on one main surface to the upper surface of the first substrate with the one main surface facing each other via an insulating layer.
- the one or more first electrodes are formed on an upper surface of the first substrate facing the groove, and the second electrode is formed on an inner surface of the groove.
- the hole may be a bottomless through hole or a bottomed hole.
- FIG. 2 is a schematic perspective view showing an example of the structure of the evaluation chip of the present invention
- FIG. 3 is a longitudinal sectional view taken along the line XX ′.
- the evaluation chip A has a first substrate 1 and a second substrate 7.
- the second substrate 7 has a groove 8 having one end closed on one main surface and the other end opened.
- One bottomed hole 9 extending on the first substrate 1 is formed on the upper surface of the first substrate 1 by facing the one main surface of the second substrate 7 and bonding it via the insulating layer 11. is doing.
- the side wall in the bottomed hole 9 has a first side wall 91 made of the first substrate 1 exposed in the bottomed hole 9 and a second side wall 92 made of the second substrate 7 exposed in the bottomed hole 9. ing.
- the second side wall 92 includes a groove bottom surface 921 and a groove inner side surface 922 of the groove 8 of the second substrate 7.
- a plurality of first electrodes 3 a, 3 b, 3 c, 3 d, 3 e are formed on the first side wall 91 along the depth direction of the bottomed hole 9.
- a second electrode 10 is formed on the second side wall 92.
- side electrodes 101 are formed on the entire four side surfaces of the second substrate 7 and are electrically connected to the second electrode 10.
- the first electrodes 3 a, 3 b, 3 c, 3 d, 3 e are drawn out by the wiring 6 and are connected to electrode pads 2 a, 2 b, 2 c, 2 d, 2 e formed at one end of the first substrate 1.
- An electrode pad 13 is formed on the side electrode 101 of the second substrate 7. 2 and 3 show examples in which five first electrodes are used. However, the number of first electrodes is not particularly limited as long as it is one or more.
- the evaluation chip of the present invention includes, for example, a step of forming one or a plurality of first electrodes on the upper surface of the first substrate, and a groove on one main surface and a second electrode on the inner surface of the groove. Forming a second substrate and bonding the first main surface of the second substrate to the upper surface of the first substrate through an insulating layer so as to oppose the first electrode and the first electrode on the inner surface. And a step of forming a hole having two electrodes.
- FIG. 4A, FIG. 4B, FIG. 4C, and FIG. 5 are schematic diagrams showing an example of the manufacturing process of the evaluation chip A, and show an example of manufacturing two evaluation chips.
- FIG. 4A shows a first pattern formed by forming a metal film on the entire surface of the first substrate 1 by sputtering or vacuum deposition, and using a photolithography method that performs resist coating, exposure, development, and etching.
- One electrode, an electrode pad, and wiring for connecting the first electrode and the electrode pad are shown.
- the electrode pads 2a, 2b, 2c, 2d, and 2e are arranged substantially linearly along one end surface of the first substrate 1, and the first electrodes 3a, 3b, 3c, and 3d are arranged.
- 3e are arranged linearly in the direction substantially orthogonal to the one end face near the center of the first substrate 1, and the plurality of wirings 6 are connected to the electrode pads 2a by the first electrodes 3a, 3b, 3c, 3d, 3e. , 2b, 2c, 2d, 2e.
- the electrode pads 4a, 4b, 4c, 4d, and 4e are arranged substantially linearly along one end surface of the first substrate 1, and the first electrodes 5a, 5b, 5c, 5d, and 5e are linearly arranged near the center of the first substrate 1 in a direction substantially orthogonal to the one end face, and the plurality of wirings 6 are formed of the first electrodes 5a, 5b, 5c, 5d, and 5e. Is drawn out to the electrode pads 4a, 4b, 4c, 4d and 4e.
- FIG. 5 is a schematic perspective view showing the structure of the second substrate 7.
- the second substrate 7 has a rectangular parallelepiped shape having a pair of opposing main surfaces and four side surfaces connecting the pair of main surfaces, and one main surface has one end closed and the other end opened.
- the upper surface of the groove 8 is open.
- a second electrode 10 is formed on the groove bottom surface and the groove inner side wall of the groove 8.
- side electrodes 101 are formed on the entire four side surfaces of the second substrate 7 and are electrically connected to the second electrode 10.
- the second substrate 7 can be produced, for example, by cutting a substrate similar to the substrate 1 into a rectangular parallelepiped shape and forming the grooves 8.
- the groove 8 has a groove width of 10 cm to 2 nm, preferably 1000 ⁇ m to 2 nm, more preferably 10 ⁇ m to 2 nm, a groove depth of 1 cm to 10 nm, preferably 100 ⁇ m to 10 nm, and a groove length of 20 cm. Is 1 ⁇ m, preferably 100 ⁇ m to 1 ⁇ m.
- the groove width, groove depth, groove length is formed on the order of micrometers or even on the order of nanometers.
- FIG. 4B shows a process of bonding the manufactured second substrate 7 to the first substrate 1 on which the first electrode, the electrode pad, and the wiring are formed.
- An insulating layer 11 is formed on the surface of the first substrate 1 excluding the first electrode and the electrode pad.
- the second substrate 7 is aligned so that the groove 8 faces the first electrodes 5a, 5b, 5c, 5d, and 5e, and the one main surface of the second substrate 7 other than the groove 8 is bonded using an adhesive.
- the first substrate 1 is bonded to the insulating layer 11 by bonding.
- the evaluation chip A shown in FIG. 4C can be obtained by dividing the first substrate 1 bonded with the second substrate 7 in the step of FIG. 4B into two parts.
- a second electrode pad 13 is formed on the side surface of the second substrate 7, and the second electrode pad 13 is drawn out by a second electrode lead 14 and connected to a current potential setting measurement device.
- the electrode pads 2a, 2b, 2c, 2d, and 2e are drawn out by the first electrode leads 12a, 12b, 12c, 12d, and 12e, and are connected to the current potential setting measuring device.
- a semiconductor substrate microfabrication process is used to produce a second substrate having a minute groove having a groove width, groove depth, and groove length on the order of micrometers, and further on the order of nanometers.
- a minute hole having a minute opening diameter on the order of micrometers or even nanometers can be easily produced.
- FIGS. 4A, 4B, and 4C show an example in which two evaluation chips are manufactured, a larger number of evaluation chips can be manufactured using the same first substrate.
- a silicon substrate, a quartz substrate, an alumina substrate, a resin substrate, or the like can be used as the first substrate and the second substrate used in the present invention.
- a silicon substrate is preferable from the viewpoint of productivity.
- a SiO 2 film can be used for the insulating layer 10.
- the SiO 2 film can be produced by, for example, plasma CVD.
- the shape and size of the hole 9 can be set by the shape and size of the groove formed in the second substrate.
- the opening area of the holes is 10 cm 2 to 20 nm 2 , preferably 10 5 ⁇ m 2 to 20 nm 2 , more preferably 10 2 ⁇ m 2 to 20 nm 2 .
- the depth of the hole is 20 cm to 1 ⁇ m, preferably 500 ⁇ m to 1 ⁇ m, more preferably 100 ⁇ m to 1 ⁇ m.
- the cross-sectional shape of the hole is circular or rectangular.
- the thickness of the first electrode is 10 ⁇ m to 0.01 nm, preferably 1 ⁇ m to 1 nm.
- the surface area of the first electrode is 25 cm 2 to 1 ⁇ 10 ⁇ 16 cm 2 , preferably 100 to 1 ⁇ m 2 .
- the surface area of the first electrode refers to the area of the upper surface of the first electrode.
- various shapes such as a rectangle, a circle, and an indefinite shape can be used for the first electrode.
- the number of first electrodes is one or more, and in the case of a plurality of first electrodes, it is preferable to arrange them along the depth direction of the hole. Further, the first electrode can be formed by a sputtering method and a photolithography method as described above.
- the second electrode can be made of a metal material to be plated, such as copper, or a base metal such as nickel, but is preferably copper.
- the 2nd electrode should just be formed in a part of groove
- a copper layer can be used as the second electrode.
- the thickness of the copper layer is 100 to 0.01 ⁇ m, preferably 1 to 0.01 ⁇ m.
- a vacuum evaporation method can be used for formation of a copper layer.
- noble metals such as gold, platinum and ruthenium can be used for the electrode pads and wiring. Gold or platinum is preferable.
- the size of the electrode pad can be set as appropriate.
- the electrode pads and wiring from the electrolytic copper plating solution can be covered with an insulating protective film as necessary.
- a resin film such as a polyimide resin film, a metal oxide film, or a metal nitride film can be used.
- copper or platinum electrodes which are metal materials to be plated, can be used for the anode used in the evaluation system of the present invention.
- a silver / silver chloride electrode or a saturated caramel electrode can be used as the reference electrode.
- the current potential setting measurement device used in the evaluation system of the present invention connects the first electrode, the second electrode, the anode and the reference electrode, and independently controls the potential of the first electrode and the potential of the second electrode,
- it is a device capable of measuring a current based on a reaction occurring between the first electrode and the second electrode, and examples thereof include a dual potentio galvanostat or two potentio galvanostats.
- the evaluation chip of the present invention is immersed in an electrolytic copper plating solution in a plating tank, and an anode and a reference electrode are also arranged in the plating tank.
- an anode and a reference electrode are also arranged in the plating tank.
- a plating reaction is caused on the second electrode by setting the potential of the second electrode to a potential at which Cu 2+ (bivalent copper) can be reduced.
- the potential of the first electrode is set to a potential capable of oxidizing monovalent copper. Since the monovalent copper produced on the second electrode diffuses to the first electrode and is oxidized, the concentration of monovalent copper at the position where the first electrode is disposed in the hole is measured by measuring the oxidation current. Can be detected. As shown in FIG. 3, since the plurality of first electrodes are arranged along the depth direction of the hole, by connecting each first electrode to a dual potentiostat using a switching device, The concentration of monovalent copper in the depth direction of the hole can be calculated.
- the evaluation apparatus of the present invention not only the concentration of monovalent copper in the hole, but also the concentration distribution of monovalent copper in the depth direction in the hole can be monitored on the spot. Using this monitoring result, it is possible to manage the plating solution inside the via that can be regarded as the plating solution inside the hole of the evaluation chip, for example, by controlling the additive.
- the potential of the second electrode is, for example, ⁇ 2800 mV to +240 mV, preferably ⁇ 560 to +230 mV with respect to a saturated calomel electrode in order to reduce divalent copper.
- the potential of the first electrode is a potential capable of oxidizing monovalent copper, and is, for example, +3050 mV to +40 mV, preferably +650 to +50 mV, based on a saturated calomel electrode. These potentials are values at 25 ° C.
- the hole By controlling the concentration distribution of monovalent copper in the obtained hole to a desired range set in advance, the hole can be completely filled.
- Specific examples include a method of changing the replenishment amount of the inhibitor and / or accelerator to the plating solution and bubbling oxygen gas or nitrogen gas.
- the electrolytic copper plating solution which is the object of the present invention contains a divalent copper salt, an acid, and an electrically conductive salt as basic components, and contains an inhibitor, an accelerator, a smoothing agent, and the like as additives.
- the basic component divalent copper salt include copper sulfate.
- the concentration of copper sulfate (pentahydrate) is 2 to 300 g / L.
- the basic component acid include sulfuric acid.
- the concentration is 1 to 300 g / L of sulfuric acid.
- sodium chloride can be mentioned, for example.
- the concentration is 1 to 1000 mg / L of chloride ion.
- a polyether compound can be used as the inhibitor.
- Polyethylene glycol molecular weight 200 to 10000
- a copolymer of polyethylene glycol and polypropylene glycol molecular weight 400 to 10000
- the amount added is 10 to 1000 mg / L.
- SPS can be used as an accelerator.
- the addition amount is 0.01 to 50 mg / L.
- Example 1 (Production of evaluation chip)
- the first electrode, the electrode pad, and the wiring formed in the pattern shown in FIG. 2 were formed by performing platinum sputtering on the entire surface of the silicon substrate and using a photolithography method in which resist coating, exposure, development, and etching were performed.
- the size of the first electrode was 5 ⁇ 5 ⁇ m, and the distance between the first electrodes was 5 ⁇ m.
- the size of the electrode pad was 5 ⁇ 5 mm, and the interval was 5 mm.
- the wiring width was 3 to 5 ⁇ m.
- a SiO 2 layer was formed on the substrate excluding the first electrode and the electrode pad by using plasma CVD.
- a silicon substrate cut into an 8-inch rectangular parallelepiped shape was used as the second substrate.
- a groove having one end closed by etching and the other end opened was formed.
- the resist layer was removed.
- the size of the groove is 10 ⁇ m wide, 50 ⁇ m long, and 10 ⁇ m deep.
- the opening area of the hole formed by bonding to the substrate is 10 ⁇ m ⁇ 10 ⁇ m and 100 ⁇ m 2 .
- the formed copper layer has a thickness of 0.1 ⁇ m.
- An evaluation chip was fabricated by bonding the second substrate having the groove formed thereon to the substrate using an adhesive.
- the evaluation chip has a size of 20 ⁇ 20 mm and a thickness of 2 mm.
- an electrochemical measurement system HZ-7000 manufactured by Hokuto Denko was used.
- the prepared evaluation chip size: 20 ⁇ 20 mm, thickness: 2 mm
- a copper electrode was used as the counter electrode
- a saturated calomel electrode hereinafter abbreviated as SCE
- An evaluation chip, a counter electrode, and a reference electrode were immersed in a plating tank containing a plating solution, and measurement was performed while stirring the plating solution using a magnetic rotor. The temperature of the plating solution was kept at 25 ° C.
- composition of the plating solution used is as follows.
- SPS bis- (sulfopropyl) disulfide): 2 mg / L
- the five first electrodes of the evaluation chip were connected to the switching device.
- the switching device was connected to the ring electrode terminal of HZ-7000, and the potential of the first electrode was set to 500 mV (SCE standard).
- the second electrode of the evaluation chip was connected to a disk electrode terminal of HZ-7000.
- the potential of the second electrode was maintained at ⁇ 50 mV (SCE standard) for 30 seconds to precipitate copper, and then maintained at 100 mV (SCE standard) for 45 milliseconds to dissolve the copper.
- FIG. 6 shows oxidation current values of monovalent copper (hereinafter also referred to as oxidation current values) measured at three different first electrodes.
- “1”, “2”, and “3” in FIG. 6 correspond to the measured currents at the first electrodes 3e, 3c, and 3a in FIG. 3, respectively, and oxidation at the bottom, middle, and inlet portions of the holes, respectively.
- the oxidation current value is given by the peak value indicated by the arrow in FIG. 6, and the scale is over at the place of “1”, and the oxidation current value increases from the entrance to the bottom of the hole, that is, monovalent copper.
- the concentration is high. This indicates that it is possible to monitor the concentration distribution of monovalent copper in a hole such as a via by using the evaluation chip of the present invention.
- the electrolytic copper plating solution evaluation system of the present invention it becomes possible to monitor the concentration distribution of monovalent copper in holes such as vias. Therefore, such as via fill plating process, copper damascene process, TSV plating process, etc. Management of the plating solution is facilitated and occurrence of defects can be suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
Abstract
Provided are an electrolytic copper plating liquid evaluation system, an electrolytic copper plating liquid evaluation method, and an electrolytic copper plating liquid evaluation chip that are able to measure a concentration distribution of monovalent copper inside a pore. The electrolytic copper plating liquid evaluation system according to the present invention is provided with: an electrolytic copper plating liquid evaluation chip which has a pore, at least one first electrode formed in the lateral wall within the pore, and a second electrode formed in the lateral wall within the pore; a reference electrode; an anode; and a current/potential settings measurement device to which the first electrode, the second electrode, the anode, and the reference electrode are connected, wherein a copper plating reaction is induced by the second electrode, and measurement of monovalent copper concentration is conducted by the first electrode.
Description
本発明は、電気銅めっき液評価システム、電気銅めっき液評価方法および電気銅めっき液評価用チップに関する。
The present invention relates to an electrolytic copper plating solution evaluation system, an electrolytic copper plating solution evaluation method, and an electrolytic copper plating solution evaluation chip.
近年、携帯電話やノートパソコン等の電子機器の小型化・高性能化が急速に進んでいる。これに伴い、配線の微細化や配線の多層化も進められ、配線材料としては導電性や放熱性に優れた銅が用いられている。銅配線の形成には、電気銅めっきプロセスが広く用いられている。
In recent years, electronic devices such as mobile phones and notebook computers are rapidly becoming smaller and higher performance. Along with this, miniaturization of wiring and multilayering of wiring have been promoted, and copper having excellent conductivity and heat dissipation is used as a wiring material. An electrolytic copper plating process is widely used for forming copper wiring.
例えば、コア材の上下に配線層を積層するビルドアップ基板では、層間接続用のビアを電気銅めっきプロセスにより銅で充填する、ビアフィルめっきプロセスが用いられている。また、LSIチップの銅配線には、配線用溝や層間接続用ビアを電気銅めっきプロセスにより銅で充填する銅ダマシンプロセスが用いられている。また、LSIチップを多数積層して一つのパッケージにする三次元実装においては、LSIチップを積層し、このLSIチップを貫通する縦配線となるシリコン貫通電極(以下、TSVと略す)を用いてLSIチップ相互間の回路接続を行うが、LSIチップを貫通するビアを電気銅めっきプロセスにより銅で充填してTSVを形成している(例えば、特許文献1)。
For example, in a build-up board in which wiring layers are stacked on the top and bottom of a core material, a via fill plating process is used in which vias for interlayer connection are filled with copper by an electrolytic copper plating process. For copper wiring of LSI chips, a copper damascene process is used in which wiring trenches and interlayer connection vias are filled with copper by an electrolytic copper plating process. In three-dimensional mounting in which a large number of LSI chips are stacked to form a single package, LSI chips are stacked, and LSIs are formed using silicon through electrodes (hereinafter abbreviated as TSV) that serve as vertical wirings penetrating the LSI chips. A circuit connection is made between chips, and a TSV is formed by filling a via penetrating an LSI chip with copper by an electrolytic copper plating process (for example, Patent Document 1).
電気銅めっきでは、以下の反応が進行する。
電気めっきプロセスによりビア等の孔の内部に銅を充填する場合、孔の上端部の析出速度が孔の内部の析出速度より大きくなり、孔内を完全に充填できない場合がある。孔内部を完全に充填するためには、孔内底にめっき反応の中間体であるCu+(以下、一価銅という)が存在することが必要であることが知られている。そのため、通常、孔上端部に吸着して孔上端部におけるめっきを抑制する抑制剤や、孔内部に存在する一価銅錯体を安定化させる促進剤をめっき液の添加剤として用いている。これら抑制剤と促進剤の効果を十分に発揮させることで孔内への銅の完全充填が可能となるが、そのためには孔内部における一価銅の濃度分布をモニターすることが重要である。従来、めっき槽のめっき液中の一価銅の濃度の測定方法としては、回転リングディスク法が知られている。まためっき液の管理にはサイクリックボルタモメトリーストリッピング(CVS)法がある。しかし、孔内部のめっき液中の一価銅の濃度分布を直接測定する方法は知られていない。孔内部の一価銅の濃度分布を直接測定することができれば、より直接的なめっき液の管理が可能となる。 In electrolytic copper plating, the following reaction proceeds.
When copper is filled into a hole such as a via by an electroplating process, the deposition rate at the upper end of the hole is larger than the deposition rate inside the hole, and the inside of the hole may not be completely filled. In order to completely fill the inside of the hole, it is known that Cu + (hereinafter referred to as monovalent copper) that is an intermediate of the plating reaction needs to be present at the bottom of the hole. For this reason, an inhibitor that adsorbs to the upper end portion of the hole and suppresses plating at the upper end portion of the hole and an accelerator that stabilizes the monovalent copper complex existing inside the hole are usually used as an additive for the plating solution. By fully exhibiting the effects of these inhibitors and accelerators, it becomes possible to completely fill the hole with copper. For this purpose, it is important to monitor the concentration distribution of monovalent copper inside the hole. Conventionally, the rotating ring disk method is known as a method for measuring the concentration of monovalent copper in the plating solution of the plating tank. There is a cyclic voltammetry stripping (CVS) method for managing the plating solution. However, there is no known method for directly measuring the concentration distribution of monovalent copper in the plating solution inside the hole. If the concentration distribution of monovalent copper in the hole can be directly measured, the plating solution can be managed more directly.
電気めっきプロセスによりビア等の孔の内部に銅を充填する場合、孔の上端部の析出速度が孔の内部の析出速度より大きくなり、孔内を完全に充填できない場合がある。孔内部を完全に充填するためには、孔内底にめっき反応の中間体であるCu+(以下、一価銅という)が存在することが必要であることが知られている。そのため、通常、孔上端部に吸着して孔上端部におけるめっきを抑制する抑制剤や、孔内部に存在する一価銅錯体を安定化させる促進剤をめっき液の添加剤として用いている。これら抑制剤と促進剤の効果を十分に発揮させることで孔内への銅の完全充填が可能となるが、そのためには孔内部における一価銅の濃度分布をモニターすることが重要である。従来、めっき槽のめっき液中の一価銅の濃度の測定方法としては、回転リングディスク法が知られている。まためっき液の管理にはサイクリックボルタモメトリーストリッピング(CVS)法がある。しかし、孔内部のめっき液中の一価銅の濃度分布を直接測定する方法は知られていない。孔内部の一価銅の濃度分布を直接測定することができれば、より直接的なめっき液の管理が可能となる。 In electrolytic copper plating, the following reaction proceeds.
When copper is filled into a hole such as a via by an electroplating process, the deposition rate at the upper end of the hole is larger than the deposition rate inside the hole, and the inside of the hole may not be completely filled. In order to completely fill the inside of the hole, it is known that Cu + (hereinafter referred to as monovalent copper) that is an intermediate of the plating reaction needs to be present at the bottom of the hole. For this reason, an inhibitor that adsorbs to the upper end portion of the hole and suppresses plating at the upper end portion of the hole and an accelerator that stabilizes the monovalent copper complex existing inside the hole are usually used as an additive for the plating solution. By fully exhibiting the effects of these inhibitors and accelerators, it becomes possible to completely fill the hole with copper. For this purpose, it is important to monitor the concentration distribution of monovalent copper inside the hole. Conventionally, the rotating ring disk method is known as a method for measuring the concentration of monovalent copper in the plating solution of the plating tank. There is a cyclic voltammetry stripping (CVS) method for managing the plating solution. However, there is no known method for directly measuring the concentration distribution of monovalent copper in the plating solution inside the hole. If the concentration distribution of monovalent copper in the hole can be directly measured, the plating solution can be managed more directly.
そこで、本発明は、孔内部の一価銅の濃度分布を測定することの可能な、電気銅めっき液評価システム、電気銅めっき液評価方法および電気銅めっき液評価用チップを提供することを目的とした。
Accordingly, an object of the present invention is to provide an electrolytic copper plating solution evaluation system, an electrolytic copper plating solution evaluation method, and an electrolytic copper plating solution evaluation chip capable of measuring the concentration distribution of monovalent copper inside the hole. It was.
上記の課題を解決するため、本発明の電気銅めっき液評価システムは、
孔と、前記孔内の側壁に形成された1個または複数個の第1電極と、前記孔内の側壁に形成された第2電極と、を有する電気銅めっき液評価用チップと、
参照電極と、
アノードと、
前記第1電極、前記第2電極、前記アノードおよび前記参照電極を接続した電流電位設定測定装置と、を備え、
前記第2電極により銅めっき反応を生起させ、前記第1電極により一価銅の濃度を測定する、ことを特徴とする。 In order to solve the above problems, the electrolytic copper plating solution evaluation system of the present invention is:
An electrolytic copper plating solution evaluation chip having a hole, one or more first electrodes formed on the side wall in the hole, and a second electrode formed on the side wall in the hole;
A reference electrode;
An anode,
A current potential setting measuring device connecting the first electrode, the second electrode, the anode, and the reference electrode;
A copper plating reaction is caused by the second electrode, and the concentration of monovalent copper is measured by the first electrode.
孔と、前記孔内の側壁に形成された1個または複数個の第1電極と、前記孔内の側壁に形成された第2電極と、を有する電気銅めっき液評価用チップと、
参照電極と、
アノードと、
前記第1電極、前記第2電極、前記アノードおよび前記参照電極を接続した電流電位設定測定装置と、を備え、
前記第2電極により銅めっき反応を生起させ、前記第1電極により一価銅の濃度を測定する、ことを特徴とする。 In order to solve the above problems, the electrolytic copper plating solution evaluation system of the present invention is:
An electrolytic copper plating solution evaluation chip having a hole, one or more first electrodes formed on the side wall in the hole, and a second electrode formed on the side wall in the hole;
A reference electrode;
An anode,
A current potential setting measuring device connecting the first electrode, the second electrode, the anode, and the reference electrode;
A copper plating reaction is caused by the second electrode, and the concentration of monovalent copper is measured by the first electrode.
また、本発明の電気銅めっき液評価方法は、前記の電気銅めっき液評価システムを用いる電気銅めっき液評価方法であって、電気銅めっき液評価用チップを電気銅めっき液に浸漬し、第2電極で二価銅を還元し、第1電極の電位を、一価銅を酸化可能な電位に保持して、一価銅の濃度を測定する、ことを特徴とする。
An electrolytic copper plating solution evaluation method of the present invention is an electrolytic copper plating solution evaluation method using the electrolytic copper plating solution evaluation system, wherein the electrolytic copper plating solution evaluation chip is immersed in the electrolytic copper plating solution, The divalent copper is reduced with two electrodes, the potential of the first electrode is maintained at a potential capable of oxidizing the monovalent copper, and the concentration of the monovalent copper is measured.
また、本発明の電気銅めっき液評価用チップは、孔と、前記孔内の側壁に形成された1個または複数個の第1電極と、前記孔内の側壁に形成された第2電極と、を有することを特徴とする。
The electrolytic copper plating solution evaluation chip of the present invention includes a hole, one or a plurality of first electrodes formed on the side wall in the hole, and a second electrode formed on the side wall in the hole. It is characterized by having.
本発明の電気銅めっき液評価システムは、孔と、その孔内の側壁に形成された1個または複数個の第1電極と、その孔内の側壁に形成された第2電極と、を有する電気銅めっき液評価用チップを用いることで、孔内部の一価銅の濃度分布を直接測定することができる。ビア内部のめっき液は評価用チップの孔の内部のめっき液と同じ状態にあると見なすことができるので、上記の評価用チップの測定結果を用いることでビア内部のめっき液を適切に管理することが可能となり、電気銅めっき時のボイドの発生を防止することができる。特に、本発明の評価用チップは、半導体微細加工プロセスを用いることで、nmオーダーの微小な開口直径を有する孔を作製することができるので、微小なビアの内部における一価銅の濃度分布の測定に好適に用いることができる。なお、本発明における一価銅の濃度分布とは、孔の深さ方向における一価銅の濃度分布であり、孔上端からの、1点以上の深さ距離における一価銅の濃度を用いて表すことができる。
The electrolytic copper plating solution evaluation system of the present invention has a hole, one or a plurality of first electrodes formed on the side wall in the hole, and a second electrode formed on the side wall in the hole. By using the electrolytic copper plating solution evaluation chip, the concentration distribution of monovalent copper inside the hole can be directly measured. Since the plating solution inside the via can be regarded as being in the same state as the plating solution inside the hole of the evaluation chip, the plating solution inside the via is appropriately managed by using the measurement result of the evaluation chip described above. And generation of voids during electrolytic copper plating can be prevented. In particular, since the evaluation chip of the present invention can produce a hole having a minute opening diameter on the order of nm by using a semiconductor microfabrication process, the concentration distribution of monovalent copper inside the minute via is reduced. It can be suitably used for measurement. The concentration distribution of monovalent copper in the present invention is the concentration distribution of monovalent copper in the depth direction of the hole, using the concentration of monovalent copper at a depth distance of one point or more from the upper end of the hole. Can be represented.
以下、図面を参照して本発明の実施の形態について詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1に示すように、本発明の電気銅めっき液の評価システムは、電気銅めっき液評価用チップ21と、参照電極22と、アノード23と、第1電極、第2電極、アノードおよび参照電極を接続する電流電位設定測定装置24と、を有しており、電気銅めっき液評価用チップ21と、参照電極22と、アノード23とを、めっき槽25中のめっき液26に浸漬して用いる。
As shown in FIG. 1, an electrolytic copper plating solution evaluation system according to the present invention includes an electrolytic copper plating solution evaluation chip 21, a reference electrode 22, an anode 23, a first electrode, a second electrode, an anode, and a reference electrode. A current potential setting measuring device 24 for connecting the electrode, and an electrolytic copper plating solution evaluation chip 21, a reference electrode 22, and an anode 23 are immersed in a plating solution 26 in a plating tank 25 and used. .
本発明の評価システムに用いる評価用チップは、孔と、前記孔内の側壁に形成された1個または複数個の第1電極と、前記孔内の側壁に形成された第2電極と、を有している。前記孔は、一方の主面に溝を有する第2基板を、第1基板の上面に、前記一方の主面を対向させ絶縁層を介して接合することにより形成されていることが好ましい。また、前記1個または複数個の第1電極が前記溝に対向する前記第1基板の上面に形成され、前記第2電極が前記溝の内面に形成されていることが好ましい。なお、本発明において、孔は、無底の貫通孔でも、有底孔でもよい。
An evaluation chip used in the evaluation system of the present invention includes a hole, one or more first electrodes formed on the side wall in the hole, and a second electrode formed on the side wall in the hole. Have. The hole is preferably formed by bonding a second substrate having a groove on one main surface to the upper surface of the first substrate with the one main surface facing each other via an insulating layer. Preferably, the one or more first electrodes are formed on an upper surface of the first substrate facing the groove, and the second electrode is formed on an inner surface of the groove. In the present invention, the hole may be a bottomless through hole or a bottomed hole.
図2は、本発明の評価用チップの構造の一例を示す模式斜視図、図3はそのX-X‘線縦断面図である。評価用チップAは、第1基板1と、第2基板7を有している。第2基板7は、一方の主面に一端が閉口し他端が開口した溝8を有している。第1基板1の上面に、第2基板7の前記一方の主面を対向させ、絶縁層11を介して接合することで、第1基板1上に延在する1つの有底孔9を形成している。有底孔9内の側壁は、有底孔9内に露出する第1基板1からなる第1側壁91と、有底孔9内に露出する第2基板7からなる第2側壁92を有している。さらに、第2側壁92は、第2基板7の溝8の溝底面921と溝内側面922とから構成されている。第1側壁91には、複数の第1電極3a,3b,3c,3d,3eが有底孔9の深さ方向に沿って形成されている。また、第2側壁92には、第2電極10が形成されている。また、第2基板7の4つの側面全面には側面電極101が形成され、第2電極10と電気的に接続している。第1電極3a,3b,3c,3d,3eは、配線6により引き出され、第1基板1の一端部に形成された電極パッド2a,2b,2c,2d,2eに接続されている。また、第2基板7の側面電極101上には、電極パッド13が形成されている。なお図2、図3では、5個の第1電極を用いた例を示したが、第1電極の数は1個以上であれば特に限定されない。
FIG. 2 is a schematic perspective view showing an example of the structure of the evaluation chip of the present invention, and FIG. 3 is a longitudinal sectional view taken along the line XX ′. The evaluation chip A has a first substrate 1 and a second substrate 7. The second substrate 7 has a groove 8 having one end closed on one main surface and the other end opened. One bottomed hole 9 extending on the first substrate 1 is formed on the upper surface of the first substrate 1 by facing the one main surface of the second substrate 7 and bonding it via the insulating layer 11. is doing. The side wall in the bottomed hole 9 has a first side wall 91 made of the first substrate 1 exposed in the bottomed hole 9 and a second side wall 92 made of the second substrate 7 exposed in the bottomed hole 9. ing. Further, the second side wall 92 includes a groove bottom surface 921 and a groove inner side surface 922 of the groove 8 of the second substrate 7. A plurality of first electrodes 3 a, 3 b, 3 c, 3 d, 3 e are formed on the first side wall 91 along the depth direction of the bottomed hole 9. A second electrode 10 is formed on the second side wall 92. In addition, side electrodes 101 are formed on the entire four side surfaces of the second substrate 7 and are electrically connected to the second electrode 10. The first electrodes 3 a, 3 b, 3 c, 3 d, 3 e are drawn out by the wiring 6 and are connected to electrode pads 2 a, 2 b, 2 c, 2 d, 2 e formed at one end of the first substrate 1. An electrode pad 13 is formed on the side electrode 101 of the second substrate 7. 2 and 3 show examples in which five first electrodes are used. However, the number of first electrodes is not particularly limited as long as it is one or more.
本発明の評価用チップは、例えば、第1基板の上面に1個または複数個の第1電極を形成する工程と、一方の主面に溝を有し前記溝の内面に第2電極を有する第2基板を作製する工程と、前記第1基板の前記上面に、前記第2基板の前記一方の主面を対向させ絶縁層を介して接合することで、内面に前記第1電極と前記第2電極を有する孔を形成する工程と、を含む製造方法を用いて製造することができる。
The evaluation chip of the present invention includes, for example, a step of forming one or a plurality of first electrodes on the upper surface of the first substrate, and a groove on one main surface and a second electrode on the inner surface of the groove. Forming a second substrate and bonding the first main surface of the second substrate to the upper surface of the first substrate through an insulating layer so as to oppose the first electrode and the first electrode on the inner surface. And a step of forming a hole having two electrodes.
図4A、図4B、図4Cおよび図5は、評価用チップAの製造工程の一例を示す模式図であり、2個の評価用チップを製造する例を示している。
FIG. 4A, FIG. 4B, FIG. 4C, and FIG. 5 are schematic diagrams showing an example of the manufacturing process of the evaluation chip A, and show an example of manufacturing two evaluation chips.
図4Aは、第1基板1の全面にスパッタリング法や真空蒸着法により金属膜を形成し、レジスト塗布、露光、現像、エッチングを行うフォトリソグラフィ法を用いることで所定のパターンに形成された、第1電極、電極パッド、および第1電極と電極パッドとを接続する配線を示している。紙面奥側の第1基板1では、電極パッド2a,2b,2c,2d,2eは、第1基板1の一端面に沿って概ね直線状に配置され、第1電極3a,3b,3c,3d,3eは、第1基板1の中央付近に前記の一端面と概ね直交する方向に直線状に配置され、複数の配線6は、第1電極3a,3b,3c,3d,3eを電極パッド2a,2b,2c,2d,2eへと引き出すように形成されている。また、紙面手前の第1基板1でも同様に、電極パッド4a,4b,4c,4d,4eは、第1基板1の一端面に沿って概ね直線状に配置され、第1電極5a,5b,5c,5d,5eは、第1基板1の中央付近に、前記の一端面と概ね直交する方向に直線状に配置され、複数の配線6は、第1電極5a,5b,5c,5d,5eを電極パッド4a,4b,4c,4d,4eへと引き出すように形成されている。
FIG. 4A shows a first pattern formed by forming a metal film on the entire surface of the first substrate 1 by sputtering or vacuum deposition, and using a photolithography method that performs resist coating, exposure, development, and etching. One electrode, an electrode pad, and wiring for connecting the first electrode and the electrode pad are shown. In the first substrate 1 on the back side of the drawing, the electrode pads 2a, 2b, 2c, 2d, and 2e are arranged substantially linearly along one end surface of the first substrate 1, and the first electrodes 3a, 3b, 3c, and 3d are arranged. , 3e are arranged linearly in the direction substantially orthogonal to the one end face near the center of the first substrate 1, and the plurality of wirings 6 are connected to the electrode pads 2a by the first electrodes 3a, 3b, 3c, 3d, 3e. , 2b, 2c, 2d, 2e. Similarly, in the first substrate 1 in front of the paper surface, the electrode pads 4a, 4b, 4c, 4d, and 4e are arranged substantially linearly along one end surface of the first substrate 1, and the first electrodes 5a, 5b, 5c, 5d, and 5e are linearly arranged near the center of the first substrate 1 in a direction substantially orthogonal to the one end face, and the plurality of wirings 6 are formed of the first electrodes 5a, 5b, 5c, 5d, and 5e. Is drawn out to the electrode pads 4a, 4b, 4c, 4d and 4e.
ここで、図5は、第2基板7の構造を示す模式斜視図である。第2基板7は、対向する一対の主面と、該一対の主面を連結する4つの側面を有する直方体形状を有し、その一方の主面には、一端が閉口する一方他端が開口し、上面が開放した溝8を有している。また、溝8の溝底面および溝内側壁には第2電極10が形成されている。また、第2基板7の4つの側面全面には側面電極101が形成され、第2電極10と電気的に接続している。第2基板7は、例えば、基板1と同様の基板を直方体形状にカットし、溝8を形成することで作製できる。溝8の大きさは、溝幅が10cm~2nm、好ましくは1000μm~2nm、より好ましくは10μm~2nmであり、溝深さが1cm~10nm、好ましくは100μm~10nmであり、溝長さが20cm~1μm、好ましくは100μm~1μmである。特に、半導体微細加工プロセスを用い、レジストパターン形成後、エッチングにより溝8を形成し、蒸着等により第2電極を形成後、レジスト層を除去することで、溝幅、溝深さ、溝長さがマイクロメータオーダー、さらにはナノメータオーダーの微小な溝を形成することができる。
Here, FIG. 5 is a schematic perspective view showing the structure of the second substrate 7. The second substrate 7 has a rectangular parallelepiped shape having a pair of opposing main surfaces and four side surfaces connecting the pair of main surfaces, and one main surface has one end closed and the other end opened. The upper surface of the groove 8 is open. A second electrode 10 is formed on the groove bottom surface and the groove inner side wall of the groove 8. In addition, side electrodes 101 are formed on the entire four side surfaces of the second substrate 7 and are electrically connected to the second electrode 10. The second substrate 7 can be produced, for example, by cutting a substrate similar to the substrate 1 into a rectangular parallelepiped shape and forming the grooves 8. The groove 8 has a groove width of 10 cm to 2 nm, preferably 1000 μm to 2 nm, more preferably 10 μm to 2 nm, a groove depth of 1 cm to 10 nm, preferably 100 μm to 10 nm, and a groove length of 20 cm. Is 1 μm, preferably 100 μm to 1 μm. In particular, by using a semiconductor microfabrication process, after forming a resist pattern, forming a groove 8 by etching, forming a second electrode by vapor deposition, etc., and then removing the resist layer, the groove width, groove depth, groove length. However, it is possible to form minute grooves on the order of micrometers or even on the order of nanometers.
図4Bは、作製した第2基板7を、第1電極、電極パッドおよび配線を形成した第1基板1に接合する工程を示している。第1電極と電極パッドを除く第1基板1の表面には絶縁層11が形成されている。溝8が第1電極5a,5b,5c,5d,5eと対向するように第2基板7を位置合わせし、溝8以外の第2基板7の前記一方の主面を、接着剤を用いて第1基板1の絶縁層11上に張り合わせることで接合する。
FIG. 4B shows a process of bonding the manufactured second substrate 7 to the first substrate 1 on which the first electrode, the electrode pad, and the wiring are formed. An insulating layer 11 is formed on the surface of the first substrate 1 excluding the first electrode and the electrode pad. The second substrate 7 is aligned so that the groove 8 faces the first electrodes 5a, 5b, 5c, 5d, and 5e, and the one main surface of the second substrate 7 other than the groove 8 is bonded using an adhesive. The first substrate 1 is bonded to the insulating layer 11 by bonding.
次いで、図4Bの工程で第2基板7を張り合わせた第1基板1を2分割することで、図4Cに示す評価用チップAを得ることができる。第2基板7の側面には第2電極用パッド13が形成され、第2電極用パッド13は第2電極用リード14により引き出され、電流電位設定測定装置に接続される。また、電極パッド2a,2b,2c,2d,2eは第1電極用リード12a,12b,12c,12d,12eにより引き出され、電流電位設定測定装置に接続される。
Next, the evaluation chip A shown in FIG. 4C can be obtained by dividing the first substrate 1 bonded with the second substrate 7 in the step of FIG. 4B into two parts. A second electrode pad 13 is formed on the side surface of the second substrate 7, and the second electrode pad 13 is drawn out by a second electrode lead 14 and connected to a current potential setting measurement device. The electrode pads 2a, 2b, 2c, 2d, and 2e are drawn out by the first electrode leads 12a, 12b, 12c, 12d, and 12e, and are connected to the current potential setting measuring device.
本発明の製造方法によれば、半導体微細加工プロセスを用いて、溝幅、溝深さ、溝長さがマイクロメータオーダー、さらにはナノメータオーダーの微小な溝を有する第2基板を作製し、さらにその第2基板と第1基板とを絶縁層を介して貼り合わせることで、マイクロメータオーダー、さらにはナノメータオーダーの微小な開口直径を有する微小孔を容易に作製することができる。
According to the manufacturing method of the present invention, a semiconductor substrate microfabrication process is used to produce a second substrate having a minute groove having a groove width, groove depth, and groove length on the order of micrometers, and further on the order of nanometers. By bonding the second substrate and the first substrate through an insulating layer, a minute hole having a minute opening diameter on the order of micrometers or even nanometers can be easily produced.
なお、図4A、図4B、図4Cでは、2個の評価用チップを作製する例を示したが、同一の第1基板を用いてさらに多数の評価用チップを作製することも可能である。
Although FIGS. 4A, 4B, and 4C show an example in which two evaluation chips are manufactured, a larger number of evaluation chips can be manufactured using the same first substrate.
本発明に用いる第1基板と第2基板には、シリコン基板、石英基板、アルミナ基板、樹脂製基板等を用いることができる。好ましくは、生産性の観点からシリコン基板である。また、シリコン基板を用いる場合、絶縁層10にはSiO2膜を用いることができる。SiO2膜は、例えば、プラズマCVDで作製することができる。
As the first substrate and the second substrate used in the present invention, a silicon substrate, a quartz substrate, an alumina substrate, a resin substrate, or the like can be used. A silicon substrate is preferable from the viewpoint of productivity. When a silicon substrate is used, a SiO 2 film can be used for the insulating layer 10. The SiO 2 film can be produced by, for example, plasma CVD.
また、孔9の形状および大きさは、第2基板に形成した溝の形状および大きさにより設定できる。孔の開口面積は10cm2~20nm2、好ましくは105μm2~20nm2、より好ましくは102μm2~20nm2である。また、孔の深さは、20cm~1μm、好ましくは500μm~1μm、より好ましくは100μm~1μm、である。また、孔の横断面形状は、円形または矩形である。
Further, the shape and size of the hole 9 can be set by the shape and size of the groove formed in the second substrate. The opening area of the holes is 10 cm 2 to 20 nm 2 , preferably 10 5 μm 2 to 20 nm 2 , more preferably 10 2 μm 2 to 20 nm 2 . The depth of the hole is 20 cm to 1 μm, preferably 500 μm to 1 μm, more preferably 100 μm to 1 μm. Moreover, the cross-sectional shape of the hole is circular or rectangular.
また、第1電極には、金、白金、ルテニウム等の貴金属を用いることができる。好ましくは、金または白金である。第1電極の厚さは、10μm~0.01nm、好ましくは1μm~1nmである。また、第1電極の表面積は、25cm2~1×10-16cm2、好ましくは100~1μm2である。ここで、第1電極の表面積とは第1電極の上面の面積をいう。また、第1電極の形状は、矩形、円形、不定形等の種々の形状を用いることができる。また、第1電極の個数は1つまたは複数であり、複数の場合、孔の深さ方向に沿って配置することが好ましい。また、第1電極は、上記のように、スパッタリング法とフォトリソグラフィ法により形成することができる。
Moreover, noble metals, such as gold | metal | money, platinum, and ruthenium, can be used for a 1st electrode. Gold or platinum is preferable. The thickness of the first electrode is 10 μm to 0.01 nm, preferably 1 μm to 1 nm. The surface area of the first electrode is 25 cm 2 to 1 × 10 −16 cm 2 , preferably 100 to 1 μm 2 . Here, the surface area of the first electrode refers to the area of the upper surface of the first electrode. In addition, various shapes such as a rectangle, a circle, and an indefinite shape can be used for the first electrode. The number of first electrodes is one or more, and in the case of a plurality of first electrodes, it is preferable to arrange them along the depth direction of the hole. Further, the first electrode can be formed by a sputtering method and a photolithography method as described above.
また、第2電極には、めっきすべき金属材料である銅、あるいはニッケル等の卑金属を用いることができるが、好ましくは銅である。第2電極は溝の少なくとも溝底面の一部に形成されていればよく、その面積は特に限定されない。第2電極としては銅層を用いることができる。銅層の厚さは、100~0.01μm、好ましくは1~0.01μmである。また、銅層の形成には、真空蒸着法を用いることができる。
The second electrode can be made of a metal material to be plated, such as copper, or a base metal such as nickel, but is preferably copper. The 2nd electrode should just be formed in a part of groove | channel bottom of a groove | channel, and the area is not specifically limited. A copper layer can be used as the second electrode. The thickness of the copper layer is 100 to 0.01 μm, preferably 1 to 0.01 μm. Moreover, a vacuum evaporation method can be used for formation of a copper layer.
また、電極パッドと配線には、金、白金、ルテニウム等の貴金属を用いることができる。好ましくは、金または白金である。電極パッドの大きさは適宜設定することができる。
Also, noble metals such as gold, platinum and ruthenium can be used for the electrode pads and wiring. Gold or platinum is preferable. The size of the electrode pad can be set as appropriate.
また、電極パッドや配線を電気銅めっき液から保護するために、必要に応じて、絶縁性の保護膜で被覆することもできる。その保護膜としては、ポリイミド樹脂膜等の樹脂膜、酸化金属膜、または窒化金属膜を用いることができる。
Also, in order to protect the electrode pads and wiring from the electrolytic copper plating solution, it can be covered with an insulating protective film as necessary. As the protective film, a resin film such as a polyimide resin film, a metal oxide film, or a metal nitride film can be used.
また、本発明の評価システムに用いるアノードには、めっきすべき金属材料である銅、または白金電極を用いることができる。また、基準電極には、銀塩化銀電極や飽和カラメル電極を用いることができる。
Further, copper or platinum electrodes, which are metal materials to be plated, can be used for the anode used in the evaluation system of the present invention. Further, a silver / silver chloride electrode or a saturated caramel electrode can be used as the reference electrode.
また、本発明の評価システムに用いる電流電位設定測定装置は、第1電極、第2電極、アノードおよび基準電極を接続し、第1電極の電位と第2電極の電位を独立して制御し、かつ第1電極と第2電極で生起する反応に基づく電流を測定可能な装置であり、デュアルポテンショガルバノスタットまたは2台のポテンショガルバノスタットを挙げることができる。
Further, the current potential setting measurement device used in the evaluation system of the present invention connects the first electrode, the second electrode, the anode and the reference electrode, and independently controls the potential of the first electrode and the potential of the second electrode, In addition, it is a device capable of measuring a current based on a reaction occurring between the first electrode and the second electrode, and examples thereof include a dual potentio galvanostat or two potentio galvanostats.
次に、本発明の評価システムを用いる電気銅めっき液の評価方法について説明する。
本発明の評価用チップを、めっき槽内の電気銅めっき液に浸漬するとともに、アノードと基準電極もめっき槽内に配置する。第1電極と第2電極からのリードをデュアルポテンショスタットに接続することで、単一の基準電極に対して、第1電極と第2電極の電位を独立に制御することができる。ここで、複数の第1電極は、スイッチング装置を介してデュアルポテンショスタットに電気的に接続される。スイッチング装置は、所定のスイッチング信号に基づいて、特定の第1電極をデュアルポテンショスタットに接続する。第2電極の電位をCu2+(二価銅)を還元可能な電位に設定することで、第2電極上でめっき反応を生起させる。一方、第1電極の電位を、一価銅を酸化可能な電位に設定する。第2電極上で生成した一価銅は拡散して第1電極に至り酸化されるので、その酸化電流を測定することで、孔内の第1電極の配置された位置における一価銅の濃度を検出することができる。なお、図3に示すように、複数の第1電極は、孔の深さ方向に沿って配置されているので、スイッチング装置を用いて、各第1電極をデュアルポテンショスタットに接続することで、孔の深さ方向における一価銅の濃度を算出することが可能となる。すなわち、本発明の評価装置を用いることで、孔内の一価銅の濃度だけでなく、孔内の深さ方向における一価銅の濃度分布をその場でモニターすることが可能となる。このモニター結果を用いて、評価用チップの孔の内部のめっき液と同視し得るビア内部のめっき液を、例えば、添加剤の制御により管理することが可能となる。 Next, a method for evaluating an electrolytic copper plating solution using the evaluation system of the present invention will be described.
The evaluation chip of the present invention is immersed in an electrolytic copper plating solution in a plating tank, and an anode and a reference electrode are also arranged in the plating tank. By connecting the leads from the first electrode and the second electrode to a dual potentiostat, the potentials of the first electrode and the second electrode can be independently controlled with respect to a single reference electrode. Here, the plurality of first electrodes are electrically connected to the dual potentiostat through the switching device. The switching device connects the specific first electrode to the dual potentiostat based on a predetermined switching signal. A plating reaction is caused on the second electrode by setting the potential of the second electrode to a potential at which Cu 2+ (bivalent copper) can be reduced. On the other hand, the potential of the first electrode is set to a potential capable of oxidizing monovalent copper. Since the monovalent copper produced on the second electrode diffuses to the first electrode and is oxidized, the concentration of monovalent copper at the position where the first electrode is disposed in the hole is measured by measuring the oxidation current. Can be detected. As shown in FIG. 3, since the plurality of first electrodes are arranged along the depth direction of the hole, by connecting each first electrode to a dual potentiostat using a switching device, The concentration of monovalent copper in the depth direction of the hole can be calculated. That is, by using the evaluation apparatus of the present invention, not only the concentration of monovalent copper in the hole, but also the concentration distribution of monovalent copper in the depth direction in the hole can be monitored on the spot. Using this monitoring result, it is possible to manage the plating solution inside the via that can be regarded as the plating solution inside the hole of the evaluation chip, for example, by controlling the additive.
本発明の評価用チップを、めっき槽内の電気銅めっき液に浸漬するとともに、アノードと基準電極もめっき槽内に配置する。第1電極と第2電極からのリードをデュアルポテンショスタットに接続することで、単一の基準電極に対して、第1電極と第2電極の電位を独立に制御することができる。ここで、複数の第1電極は、スイッチング装置を介してデュアルポテンショスタットに電気的に接続される。スイッチング装置は、所定のスイッチング信号に基づいて、特定の第1電極をデュアルポテンショスタットに接続する。第2電極の電位をCu2+(二価銅)を還元可能な電位に設定することで、第2電極上でめっき反応を生起させる。一方、第1電極の電位を、一価銅を酸化可能な電位に設定する。第2電極上で生成した一価銅は拡散して第1電極に至り酸化されるので、その酸化電流を測定することで、孔内の第1電極の配置された位置における一価銅の濃度を検出することができる。なお、図3に示すように、複数の第1電極は、孔の深さ方向に沿って配置されているので、スイッチング装置を用いて、各第1電極をデュアルポテンショスタットに接続することで、孔の深さ方向における一価銅の濃度を算出することが可能となる。すなわち、本発明の評価装置を用いることで、孔内の一価銅の濃度だけでなく、孔内の深さ方向における一価銅の濃度分布をその場でモニターすることが可能となる。このモニター結果を用いて、評価用チップの孔の内部のめっき液と同視し得るビア内部のめっき液を、例えば、添加剤の制御により管理することが可能となる。 Next, a method for evaluating an electrolytic copper plating solution using the evaluation system of the present invention will be described.
The evaluation chip of the present invention is immersed in an electrolytic copper plating solution in a plating tank, and an anode and a reference electrode are also arranged in the plating tank. By connecting the leads from the first electrode and the second electrode to a dual potentiostat, the potentials of the first electrode and the second electrode can be independently controlled with respect to a single reference electrode. Here, the plurality of first electrodes are electrically connected to the dual potentiostat through the switching device. The switching device connects the specific first electrode to the dual potentiostat based on a predetermined switching signal. A plating reaction is caused on the second electrode by setting the potential of the second electrode to a potential at which Cu 2+ (bivalent copper) can be reduced. On the other hand, the potential of the first electrode is set to a potential capable of oxidizing monovalent copper. Since the monovalent copper produced on the second electrode diffuses to the first electrode and is oxidized, the concentration of monovalent copper at the position where the first electrode is disposed in the hole is measured by measuring the oxidation current. Can be detected. As shown in FIG. 3, since the plurality of first electrodes are arranged along the depth direction of the hole, by connecting each first electrode to a dual potentiostat using a switching device, The concentration of monovalent copper in the depth direction of the hole can be calculated. That is, by using the evaluation apparatus of the present invention, not only the concentration of monovalent copper in the hole, but also the concentration distribution of monovalent copper in the depth direction in the hole can be monitored on the spot. Using this monitoring result, it is possible to manage the plating solution inside the via that can be regarded as the plating solution inside the hole of the evaluation chip, for example, by controlling the additive.
第2電極の電位は、二価銅を還元するために、例えば、飽和カロメル電極基準で、-2800mV~+240mV、好ましくは-560~+230mVである。また、第1電極の電位は、一価銅を酸化可能な電位であり、例えば、飽和カロメル電極基準で、+3050mV~+40mV、好ましくは+650~+50mVである。なお、これらの電位は、25℃での値である。
The potential of the second electrode is, for example, −2800 mV to +240 mV, preferably −560 to +230 mV with respect to a saturated calomel electrode in order to reduce divalent copper. The potential of the first electrode is a potential capable of oxidizing monovalent copper, and is, for example, +3050 mV to +40 mV, preferably +650 to +50 mV, based on a saturated calomel electrode. These potentials are values at 25 ° C.
得られた孔内の一価銅の濃度分布を、予め設定された望ましい範囲に制御することで、孔内への完全充填が可能となる。具体的には、めっき液への抑制剤および/または促進剤の補給量の変更や、酸素ガスまたは窒素ガスのバブリング等の方法を挙げることができる。
By controlling the concentration distribution of monovalent copper in the obtained hole to a desired range set in advance, the hole can be completely filled. Specific examples include a method of changing the replenishment amount of the inhibitor and / or accelerator to the plating solution and bubbling oxygen gas or nitrogen gas.
また、本発明の対象とする電気銅めっき液は、基本成分として二価銅塩と、酸と、電気伝導性塩を含み、添加剤として抑制剤や促進剤や平滑剤等を含むものである。基本成分の二価銅塩としては、例えば硫酸銅を挙げることができる。濃度としては、硫酸銅(5水和物)が2~300g/Lである。また、基本成分の酸としては、例えば硫酸を挙げることができる。濃度としては、硫酸が1~300g/Lである。また、基本成分の電気伝導性塩としては、例えば塩化ナトリウムを挙げることができる。濃度としては、塩化物イオンが1~1000mg/Lである。
Moreover, the electrolytic copper plating solution which is the object of the present invention contains a divalent copper salt, an acid, and an electrically conductive salt as basic components, and contains an inhibitor, an accelerator, a smoothing agent, and the like as additives. Examples of the basic component divalent copper salt include copper sulfate. The concentration of copper sulfate (pentahydrate) is 2 to 300 g / L. Examples of the basic component acid include sulfuric acid. The concentration is 1 to 300 g / L of sulfuric acid. Moreover, as an electroconductive salt of a basic component, sodium chloride can be mentioned, for example. The concentration is 1 to 1000 mg / L of chloride ion.
また、抑制剤としては、ポリエーテル化合物を用いることができる。好ましくは、ポリエチレングリコール(分子量200~10000)、またはポリエチレングリコールとポリプロピレングリコールの共重合体(分子量400~10000)である。添加量は、10~1000mg/Lである。また、促進剤としては、SPSを用いることができる。添加量は、0.01~50mg/Lである。
Moreover, a polyether compound can be used as the inhibitor. Polyethylene glycol (molecular weight 200 to 10000) or a copolymer of polyethylene glycol and polypropylene glycol (molecular weight 400 to 10000) is preferable. The amount added is 10 to 1000 mg / L. Moreover, SPS can be used as an accelerator. The addition amount is 0.01 to 50 mg / L.
以下、実施例を参照して本発明をさらに詳しく説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.
実施例1
(評価用チップの作製)
シリコン基板の全面に白金スパッタリングを行い、レジスト塗布、露光、現像、エッチングを行うフォトリソグラフィ法を用いることで図2に示すパターンに形成された、第1電極、電極パッド、および配線を形成した。第1電極の大きさは5×5μm、第1電極の間の距離は5μmとした。また、電極パッドの大きさは5×5mm、間隔は5mmとした。また、配線の幅は3~5μmとした。また、第1電極および電極パッドを除く基板上に、プラズマCVDを用いてSiO2層を形成した。 Example 1
(Production of evaluation chip)
The first electrode, the electrode pad, and the wiring formed in the pattern shown in FIG. 2 were formed by performing platinum sputtering on the entire surface of the silicon substrate and using a photolithography method in which resist coating, exposure, development, and etching were performed. The size of the first electrode was 5 × 5 μm, and the distance between the first electrodes was 5 μm. The size of the electrode pad was 5 × 5 mm, and the interval was 5 mm. The wiring width was 3 to 5 μm. In addition, a SiO 2 layer was formed on the substrate excluding the first electrode and the electrode pad by using plasma CVD.
(評価用チップの作製)
シリコン基板の全面に白金スパッタリングを行い、レジスト塗布、露光、現像、エッチングを行うフォトリソグラフィ法を用いることで図2に示すパターンに形成された、第1電極、電極パッド、および配線を形成した。第1電極の大きさは5×5μm、第1電極の間の距離は5μmとした。また、電極パッドの大きさは5×5mm、間隔は5mmとした。また、配線の幅は3~5μmとした。また、第1電極および電極パッドを除く基板上に、プラズマCVDを用いてSiO2層を形成した。 Example 1
(Production of evaluation chip)
The first electrode, the electrode pad, and the wiring formed in the pattern shown in FIG. 2 were formed by performing platinum sputtering on the entire surface of the silicon substrate and using a photolithography method in which resist coating, exposure, development, and etching were performed. The size of the first electrode was 5 × 5 μm, and the distance between the first electrodes was 5 μm. The size of the electrode pad was 5 × 5 mm, and the interval was 5 mm. The wiring width was 3 to 5 μm. In addition, a SiO 2 layer was formed on the substrate excluding the first electrode and the electrode pad by using plasma CVD.
第2基板には、シリコン基板を8インチの直方体形状にカットしたものを用いた。レジストパターン形成後、エッチングにより一端が閉口し他端が開口した溝を形成し、溝の溝底面と溝側面に真空蒸着により銅層を形成後、レジスト層を除去した。溝の大きさは、幅10μm、長さ50μm、深さ10μmである。基板に張り合わせてできる孔の開口面積は、10μm×10μmで、100μm2である。また、形成した銅層の厚さは0.1μmである。
As the second substrate, a silicon substrate cut into an 8-inch rectangular parallelepiped shape was used. After forming the resist pattern, a groove having one end closed by etching and the other end opened was formed. After forming a copper layer by vacuum deposition on the groove bottom surface and groove side surface, the resist layer was removed. The size of the groove is 10 μm wide, 50 μm long, and 10 μm deep. The opening area of the hole formed by bonding to the substrate is 10 μm × 10 μm and 100 μm 2 . The formed copper layer has a thickness of 0.1 μm.
溝を形成した第2基板を接着剤を用いて基板に張り合わせて評価用チップを作製した。評価用チップの大きさは、20×20mm、厚さは2mmである。
An evaluation chip was fabricated by bonding the second substrate having the groove formed thereon to the substrate using an adhesive. The evaluation chip has a size of 20 × 20 mm and a thickness of 2 mm.
(評価方法)
電気化学測定には、北斗電工社製の電気化学測定システムHZ-7000を用いた。作用極には、上記の作製した評価用チップ(大きさ20×20mm、厚さ2mm)を用いた。また、対極には銅電極、基準電極には飽和カロメル電極(以下、SCEと略す)を用いた。めっき液を含むめっき槽中に、評価用チップ、対極、および基準電極を浸漬し、磁気回転子を用いてめっき液を攪拌しながら測定を行った。めっき液の温度は25℃に保った。 (Evaluation methods)
For electrochemical measurement, an electrochemical measurement system HZ-7000 manufactured by Hokuto Denko was used. As the working electrode, the prepared evaluation chip (size: 20 × 20 mm, thickness: 2 mm) was used. Further, a copper electrode was used as the counter electrode, and a saturated calomel electrode (hereinafter abbreviated as SCE) was used as the reference electrode. An evaluation chip, a counter electrode, and a reference electrode were immersed in a plating tank containing a plating solution, and measurement was performed while stirring the plating solution using a magnetic rotor. The temperature of the plating solution was kept at 25 ° C.
電気化学測定には、北斗電工社製の電気化学測定システムHZ-7000を用いた。作用極には、上記の作製した評価用チップ(大きさ20×20mm、厚さ2mm)を用いた。また、対極には銅電極、基準電極には飽和カロメル電極(以下、SCEと略す)を用いた。めっき液を含むめっき槽中に、評価用チップ、対極、および基準電極を浸漬し、磁気回転子を用いてめっき液を攪拌しながら測定を行った。めっき液の温度は25℃に保った。 (Evaluation methods)
For electrochemical measurement, an electrochemical measurement system HZ-7000 manufactured by Hokuto Denko was used. As the working electrode, the prepared evaluation chip (size: 20 × 20 mm, thickness: 2 mm) was used. Further, a copper electrode was used as the counter electrode, and a saturated calomel electrode (hereinafter abbreviated as SCE) was used as the reference electrode. An evaluation chip, a counter electrode, and a reference electrode were immersed in a plating tank containing a plating solution, and measurement was performed while stirring the plating solution using a magnetic rotor. The temperature of the plating solution was kept at 25 ° C.
用いためっき液の組成は以下の通りである。
CuSO4・5H2O :200g/L
H2SO4 :25g/L
Cl- :70mg/L
SPS(ビス-(スルホプロピル)ジスルフィド) :2mg/L The composition of the plating solution used is as follows.
CuSO 4 · 5H 2 O: 200g / L
H 2 SO 4 : 25 g / L
Cl − : 70 mg / L
SPS (bis- (sulfopropyl) disulfide): 2 mg / L
CuSO4・5H2O :200g/L
H2SO4 :25g/L
Cl- :70mg/L
SPS(ビス-(スルホプロピル)ジスルフィド) :2mg/L The composition of the plating solution used is as follows.
CuSO 4 · 5H 2 O: 200g / L
H 2 SO 4 : 25 g / L
Cl − : 70 mg / L
SPS (bis- (sulfopropyl) disulfide): 2 mg / L
評価用チップの5つの第1電極をスイッチング装置に接続した。スイッチング装置はHZ-7000のリング電極用端子に接続し、第1電極の電位を500mV(SCE基準)に設定した。評価用チップの第2電極は、HZ-7000のディスク電極用端子に接続した。第2電極の電位を-50mV(SCE基準)で30秒保持して銅を析出させ、次いで100mV(SCE基準)で45ミリ秒保持することで銅を溶解させた。スイッチング装置により5つの第1電極を切り替えることで、各第1電極を用いて一価銅の酸化電流を測定した。
The five first electrodes of the evaluation chip were connected to the switching device. The switching device was connected to the ring electrode terminal of HZ-7000, and the potential of the first electrode was set to 500 mV (SCE standard). The second electrode of the evaluation chip was connected to a disk electrode terminal of HZ-7000. The potential of the second electrode was maintained at −50 mV (SCE standard) for 30 seconds to precipitate copper, and then maintained at 100 mV (SCE standard) for 45 milliseconds to dissolve the copper. By switching the five first electrodes with the switching device, the oxidation current of monovalent copper was measured using each first electrode.
(結果)
図6は、異なる3つの第1電極で測定された一価銅の酸化電流値(以下、酸化電流値ともいう)を示す。図6中の「1」、「2」、「3」は、それぞれ、図3の第1電極3e、3c、3aでの測定電流に対応し、それぞれ孔の底部、中間部、入口部における酸化電流値を示す。酸化電流値は、図6中の矢印で示すピーク値で与えられ、「1」の場所ではスケールオーバーしており、孔の入口から底部に行くほど酸化電流値が大きいこと、すなわち一価銅の濃度が高いことを示している。このことは、本発明の評価用チップを用いることで、ビア等の孔内の一価銅の濃度分布をモニターすることが可能であることを示している。 (result)
FIG. 6 shows oxidation current values of monovalent copper (hereinafter also referred to as oxidation current values) measured at three different first electrodes. “1”, “2”, and “3” in FIG. 6 correspond to the measured currents at the first electrodes 3e, 3c, and 3a in FIG. 3, respectively, and oxidation at the bottom, middle, and inlet portions of the holes, respectively. Indicates the current value. The oxidation current value is given by the peak value indicated by the arrow in FIG. 6, and the scale is over at the place of “1”, and the oxidation current value increases from the entrance to the bottom of the hole, that is, monovalent copper. The concentration is high. This indicates that it is possible to monitor the concentration distribution of monovalent copper in a hole such as a via by using the evaluation chip of the present invention.
図6は、異なる3つの第1電極で測定された一価銅の酸化電流値(以下、酸化電流値ともいう)を示す。図6中の「1」、「2」、「3」は、それぞれ、図3の第1電極3e、3c、3aでの測定電流に対応し、それぞれ孔の底部、中間部、入口部における酸化電流値を示す。酸化電流値は、図6中の矢印で示すピーク値で与えられ、「1」の場所ではスケールオーバーしており、孔の入口から底部に行くほど酸化電流値が大きいこと、すなわち一価銅の濃度が高いことを示している。このことは、本発明の評価用チップを用いることで、ビア等の孔内の一価銅の濃度分布をモニターすることが可能であることを示している。 (result)
FIG. 6 shows oxidation current values of monovalent copper (hereinafter also referred to as oxidation current values) measured at three different first electrodes. “1”, “2”, and “3” in FIG. 6 correspond to the measured currents at the
本発明の電気銅めっき液の評価システムを用いることで、ビア等の孔内の一価銅の濃度分布をモニターすることが可能となるので、ビアフィルめっきプロセス、銅ダマシンプロセス、TSVめっきプロセス等のめっき液の管理が容易となり不良発生を抑制できる。
By using the electrolytic copper plating solution evaluation system of the present invention, it becomes possible to monitor the concentration distribution of monovalent copper in holes such as vias. Therefore, such as via fill plating process, copper damascene process, TSV plating process, etc. Management of the plating solution is facilitated and occurrence of defects can be suppressed.
1 基板
2a,2b,2c,2d,2e 第1電極用パッド
3a,3b,3c,3d,3e 第1電極
4a,4b,4c,4d,4e 第1電極用パッド
5a,5b,5c,5d,5e 第1電極
6 配線
7 第2基板
8 溝
81 溝底面
82 溝側面
9 有底孔
91 第1側壁
92 第2側壁
921 溝底面
922 溝側面
10 第2電極
101 側面電極
11 絶縁層
12a,12b,12c,12d,12e 第2電極用リード
13 第1電極用パッド
14 第1電極用リード
21 電気銅めっき液評価用チップ
22 参照電極
23 アノード
24 電流電位設定測定装置
25 めっき槽
26 めっき液 1 Substrate 2a, 2b, 2c, 2d, 2e First electrode pad 3a, 3b, 3c, 3d, 3e First electrode 4a, 4b, 4c, 4d, 4e First electrode pad 5a, 5b, 5c, 5d, 5e First electrode 6 Wiring 7 Second substrate 8 Groove 81 Groove bottom 82 Groove side 9 Bottomed hole 91 First side wall 92 Second side wall 921 Groove bottom 922 Groove side 10 Second electrode 101 Side electrode 11 Insulating layer 12a, 12b, 12c, 12d, 12e Second electrode lead 13 First electrode pad 14 First electrode lead 21 Chip for electrolytic copper plating solution 22 Reference electrode 23 Anode 24 Current potential setting measuring device 25 Plating tank 26 Plating solution
2a,2b,2c,2d,2e 第1電極用パッド
3a,3b,3c,3d,3e 第1電極
4a,4b,4c,4d,4e 第1電極用パッド
5a,5b,5c,5d,5e 第1電極
6 配線
7 第2基板
8 溝
81 溝底面
82 溝側面
9 有底孔
91 第1側壁
92 第2側壁
921 溝底面
922 溝側面
10 第2電極
101 側面電極
11 絶縁層
12a,12b,12c,12d,12e 第2電極用リード
13 第1電極用パッド
14 第1電極用リード
21 電気銅めっき液評価用チップ
22 参照電極
23 アノード
24 電流電位設定測定装置
25 めっき槽
26 めっき液 1
Claims (8)
- 孔と、前記孔内の側壁に形成された1個または複数個の第1電極と、前記孔内の側壁に形成された第2電極と、を有する電気銅めっき液評価用チップと、
参照電極と、
アノードと、
前記第1電極、前記第2電極、前記アノードおよび前記参照電極を接続した電流電位設定測定装置と、を備え、
前記第2電極により銅めっき反応を生起させ、前記第1電極により一価銅の濃度を測定する、電気銅めっき液評価システム。 An electrolytic copper plating solution evaluation chip having a hole, one or more first electrodes formed on the side wall in the hole, and a second electrode formed on the side wall in the hole;
A reference electrode;
An anode,
A current potential setting measuring device connecting the first electrode, the second electrode, the anode, and the reference electrode;
An electrolytic copper plating solution evaluation system in which a copper plating reaction is caused by the second electrode and the concentration of monovalent copper is measured by the first electrode. - 請求項1記載の電気銅めっき液評価システムを用いる電気銅めっき液評価方法であって、
電気銅めっき液評価用チップを電気銅めっき液に浸漬し、
第2電極で二価銅を還元し、
第1電極の電位を、一価銅を酸化可能な電位に保持して、一価銅の濃度を測定する、該評価方法。 An electrolytic copper plating solution evaluation method using the electrolytic copper plating solution evaluation system according to claim 1,
Immerse the tip for electrolytic copper plating solution in electrolytic copper plating solution,
Divalent copper is reduced at the second electrode,
The evaluation method of measuring the concentration of monovalent copper while maintaining the potential of the first electrode at a potential capable of oxidizing monovalent copper. - 孔と、前記孔内の側壁に形成された1個または複数個の第1電極と、前記孔内の側壁に形成された第2電極と、を有する電気銅めっき液評価用チップ。 An electrolytic copper plating solution evaluation chip having a hole, one or more first electrodes formed on the side wall in the hole, and a second electrode formed on the side wall in the hole.
- 前記第1電極の1個の表面積が、25cm2~1×10-16cm2である請求項3記載の評価用チップ。 4. The evaluation chip according to claim 3, wherein the surface area of one of the first electrodes is 25 cm 2 to 1 × 10 −16 cm 2 .
- 前記第1電極が、貴金属からなる請求項3または請求項4に記載の評価用チップ。 The evaluation chip according to claim 3 or 4, wherein the first electrode is made of a noble metal.
- 前記第2電極が、銅からなる、請求項3~5のいずれか1項に記載の評価用チップ。 The evaluation chip according to any one of claims 3 to 5, wherein the second electrode is made of copper.
- 前記孔は、一方の主面に溝を有する第2基板を、第1基板の上面に、前記一方の主面を対向させ絶縁層を介して接合することにより形成されている、請求項3~6のいずれか1項に記載の評価用チップ。 The hole is formed by joining a second substrate having a groove on one main surface to an upper surface of the first substrate with the one main surface facing each other via an insulating layer. 7. The evaluation chip according to any one of 6 above.
- 前記1個または複数個の第1電極が前記溝に対向する前記第1基板の上面に形成され、前記第2電極が前記溝の内面に形成されている、請求項7記載の評価用チップ。 8. The evaluation chip according to claim 7, wherein the one or more first electrodes are formed on an upper surface of the first substrate facing the groove, and the second electrode is formed on an inner surface of the groove.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-106549 | 2016-05-27 | ||
JP2016106549 | 2016-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017204019A1 true WO2017204019A1 (en) | 2017-11-30 |
Family
ID=60412192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/018217 WO2017204019A1 (en) | 2016-05-27 | 2017-05-15 | Electrolytic copper plating liquid evaluation system, electrolytic copper plating liquid evaluation method, and electrolytic copper plating liquid evaluation chip |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017204019A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003302375A (en) * | 2002-04-08 | 2003-10-24 | Ebara Corp | Electrode system and method for evaluating electrochemical state of solution by using the same |
JP2005290413A (en) * | 2004-03-31 | 2005-10-20 | Toppan Printing Co Ltd | Analysis method for electrolytic copper-plating solution, and analysis device therefor |
JP2015001523A (en) * | 2013-06-14 | 2015-01-05 | ラム リサーチ コーポレーションLam Research Corporation | Tsv bath evaluation using field versus feature contrast |
JP2015092162A (en) * | 2009-12-03 | 2015-05-14 | 日立化成株式会社 | Device for evaluating filling property of plating liquid, substrate for evaluating filling property of plating liquid, electrode group for evaluating filling property of plating liquid, and recycling method of the same |
-
2017
- 2017-05-15 WO PCT/JP2017/018217 patent/WO2017204019A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003302375A (en) * | 2002-04-08 | 2003-10-24 | Ebara Corp | Electrode system and method for evaluating electrochemical state of solution by using the same |
JP2005290413A (en) * | 2004-03-31 | 2005-10-20 | Toppan Printing Co Ltd | Analysis method for electrolytic copper-plating solution, and analysis device therefor |
JP2015092162A (en) * | 2009-12-03 | 2015-05-14 | 日立化成株式会社 | Device for evaluating filling property of plating liquid, substrate for evaluating filling property of plating liquid, electrode group for evaluating filling property of plating liquid, and recycling method of the same |
JP2015001523A (en) * | 2013-06-14 | 2015-01-05 | ラム リサーチ コーポレーションLam Research Corporation | Tsv bath evaluation using field versus feature contrast |
Non-Patent Citations (2)
Title |
---|
HOANG VAN-HA ET AL.: "KINETIC ON COPPER DAMASCENE AND CUPROUS CONCENTRATION COMPUTATION IN COPPER ELECTRODEPOSITION WITH CL- AND SPS", DAI 47 KAI AUTUMN MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS, 2015 * |
TOSHIKAZU OKUBO ET AL.: "Electrochemical Monitoring Method for Filling Capability of Copper Electroplating Solution for Via Filling", JOURNAL OF JAPAN INSTITUTE OF ELECTRONICS PACKAGING, vol. 8, no. 4, 2005, pages 318 - 324 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4472157B2 (en) | Via filling method | |
JP4973829B2 (en) | Electro copper plating bath and electro copper plating method | |
CN103687275B (en) | Multi-layer sheet and semiconductor packages | |
JP5743907B2 (en) | Process for electrodeposition of chip-to-chip, chip-wafer and wafer-wafer copper interconnects in through-silicon vias (TSV) | |
JP5578697B2 (en) | Copper filling method | |
JP6021441B2 (en) | Semiconductor device | |
JP6347744B2 (en) | Method for forming longitudinal electrical connections in stacked semiconductor structures | |
JP2010010500A (en) | Copper circuit component and its production method | |
TW200530435A (en) | Chemical structure and compositions of ecp additives to reduce pit defects | |
JP6217465B2 (en) | Wiring structure manufacturing method, wiring structure, and electronic device using the same | |
WO2017204019A1 (en) | Electrolytic copper plating liquid evaluation system, electrolytic copper plating liquid evaluation method, and electrolytic copper plating liquid evaluation chip | |
CN103003473B (en) | Method for etching of copper and copper alloys | |
JP5942867B2 (en) | Manufacturing method of semiconductor device | |
JP4354139B2 (en) | Wiring board manufacturing method | |
JP2009167506A (en) | Acid copper electroplating solution and method for producing fine wiring circuit using the same | |
KR100803004B1 (en) | Method for filling through hole | |
JP4672189B2 (en) | Manufacturing method of wiring board or semiconductor circuit | |
JP5502967B2 (en) | Acid electrolytic copper plating solution | |
TWI298751B (en) | Composition for copper electroplating solution | |
JP7021781B2 (en) | Electrolytic nickel (alloy) plating solution | |
KR20110028330A (en) | Core substrate and method for fabricating the same | |
JP4472673B2 (en) | Manufacturing method of copper wiring and electrolytic solution for copper plating | |
US9780032B2 (en) | Wiring substrate | |
JP2006339483A (en) | Wiring board and manufacturing method thereof | |
JP6216522B2 (en) | A method for manufacturing an interposer substrate. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17802612 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17802612 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |