JP4472673B2 - Manufacturing method of copper wiring and electrolytic solution for copper plating - Google Patents

Manufacturing method of copper wiring and electrolytic solution for copper plating Download PDF

Info

Publication number
JP4472673B2
JP4472673B2 JP2006233373A JP2006233373A JP4472673B2 JP 4472673 B2 JP4472673 B2 JP 4472673B2 JP 2006233373 A JP2006233373 A JP 2006233373A JP 2006233373 A JP2006233373 A JP 2006233373A JP 4472673 B2 JP4472673 B2 JP 4472673B2
Authority
JP
Japan
Prior art keywords
copper
wiring
electrolytic solution
acetonitrile
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006233373A
Other languages
Japanese (ja)
Other versions
JP2008056968A (en
Inventor
俊昭 小野
康夫 薦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006233373A priority Critical patent/JP4472673B2/en
Priority to KR1020070064357A priority patent/KR20080020460A/en
Priority to TW096124258A priority patent/TW200811998A/en
Publication of JP2008056968A publication Critical patent/JP2008056968A/en
Application granted granted Critical
Publication of JP4472673B2 publication Critical patent/JP4472673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method

Description

本発明は、配線接続孔(ビアホール或いはコンタクトホール)や配線溝(トレンチ)内に、電気めっきによって銅を埋め込んで銅配線を製造する方法、並びに、これに用いる銅めっき用電解液に関する。   The present invention relates to a method of manufacturing copper wiring by embedding copper in a wiring connection hole (via hole or contact hole) or wiring groove (trench) by electroplating, and an electrolytic solution for copper plating used therefor.

半導体デバイスには、素子間を接続する配線溝(トレンチ)や、多層配線間を電気的に接続する配線接続孔(ビアホール或いはコンタクトホール)が多数形成される。
これら配線溝や配線接続孔内に埋め込む導電性材料としては、従来、アルミニウムが使用されてきたが、半導体デバイスの高集積化、微細化に伴い、これまでのアルミニウムに代わり、電気抵抗率が低く(低抵抗ともいう)、エレクトロマイグレーション耐性にも優れた銅が注目され、実用化が進められている。
In a semiconductor device, a large number of wiring grooves (trench) for connecting elements and wiring connection holes (via holes or contact holes) for electrically connecting multilayer wirings are formed.
Conventionally, aluminum has been used as a conductive material embedded in these wiring grooves and wiring connection holes. However, as semiconductor devices are highly integrated and miniaturized, their electrical resistivity is low instead of conventional aluminum. Copper (also referred to as low resistance), which has excellent electromigration resistance, has attracted attention and is being put to practical use.

銅の配線は、アルミニウム配線とは異なり、ドライエッチングで微細な配線パターンを形成することが困難であるため、シリコンウエハ等からなる基板上に形成された絶縁膜における配線パターン形成予定箇所に溝や孔を形成しておき、その上にバリアメタル(拡散防止膜)及びCu膜(導通を得るための下地導電膜)を順次形成した後、電気めっきによって前記溝や孔内に銅を埋め込みつつ表面に銅層を形成し、そして、化学機械研磨(CMP)等によって余分な銅層を研磨して銅配線を露出させて銅配線を形成するという、いわゆるダマシン法が採用されている。
このような電気めっき(電解めっきともいう)によって形成された銅配線は、膜中の不純物濃度が低く、電気抵抗が低いため、半導体デバイスの高速化に有利である。
Copper wiring, unlike aluminum wiring, is difficult to form a fine wiring pattern by dry etching. Therefore, a trench or a wiring pattern is to be formed in an insulating film formed on a substrate made of a silicon wafer or the like. A hole is formed, a barrier metal (diffusion prevention film) and a Cu film (underlying conductive film for obtaining conduction) are sequentially formed thereon, and then the surface is filled with copper in the grooves and holes by electroplating. A so-called damascene method is employed in which a copper layer is formed on the surface, and then the excess copper layer is polished by chemical mechanical polishing (CMP) or the like to expose the copper wiring to form a copper wiring.
Copper wiring formed by such electroplating (also referred to as electroplating) has a low impurity concentration in the film and a low electrical resistance, which is advantageous for increasing the speed of semiconductor devices.

従来、このような銅配線の形成に用いられる銅めっき用電解液として、硫酸銅溶液に3種類の有機系添加剤、すなわちポリエチレングリコール(PEG)等のキャリア、ビス(3-スルホプロピル)ジスルフィド2ナトリウム(SPS)等のブライトナ、ヤーヌスグリーンB(JGB)等のレベラといわれる3種類の有機系添加剤と、塩化物イオンとを添加した電解液が用いられてきた。   Conventionally, as an electrolytic solution for copper plating used in the formation of such copper wiring, three types of organic additives in a copper sulfate solution, that is, a carrier such as polyethylene glycol (PEG), bis (3-sulfopropyl) disulfide 2 An electrolytic solution in which three types of organic additives called brighteners such as sodium (SPS) and levelers such as Janus green B (JGB) and chloride ions have been added has been used.

ところが、このように3種類の有機系添加剤と塩化物イオンとを含有する電解液は、添加物の濃度をそれぞれ厳密に管理する必要があり、その濃度管理が非常に難しいという課題を抱えていた。特に有機系添加剤は、電極上で反応して分解しやすく、濃度が低下しやすいため、濃度管理が極めて難しいばかりか、有機系添加剤の分解生成物により、微細孔への埋め込みが不良になったり、膜厚の均一性が悪化するなどの問題を抱えていた。さらに、有機系添加剤に含まれるカーボン(C)がめっき膜中に不純物として取り込まれることで、銅膜の純度が低下してエレクトロマイグレーション耐性が悪化するという問題も指摘されていた。
そこで最近は、このような課題に鑑みて、有機系添加剤や塩化物イオンなどの添加剤をなるべく使用せず、できるだけ単純な組成の銅めっき用電解液の開発が進められている。
However, the electrolytic solution containing three kinds of organic additives and chloride ions as described above needs to strictly control the concentration of each additive, and has a problem that the concentration management is very difficult. It was. In particular, organic additives react easily on the electrode and decompose easily, and the concentration tends to decrease. Therefore, concentration control is extremely difficult, and the decomposition product of the organic additive makes it difficult to fill the micropores. And problems such as deterioration of film thickness uniformity. Further, it has been pointed out that carbon (C) contained in the organic additive is incorporated as an impurity in the plating film, so that the purity of the copper film is lowered and the electromigration resistance is deteriorated.
Therefore, recently, in view of such problems, development of an electrolytic solution for copper plating having a composition as simple as possible without using organic additives and additives such as chloride ions as much as possible has been promoted.

例えば特許文献1には、単一の有機化合物のみで微細孔へ銅を埋め込む技術が開示されている。しかし、この電解液は、アルカリ性のピロリン酸系、シアン系、スルファミン系であるため、pH調整剤(リン酸または水酸化カリウムなど)が加えられており、実施例を見ても、アンモニアが添加されているなど、実質的には数種類の添加剤が必要とされるものであった。   For example, Patent Document 1 discloses a technique for embedding copper into a micropore with only a single organic compound. However, since this electrolyte is an alkaline pyrophosphate, cyan, or sulfamine system, a pH adjuster (such as phosphoric acid or potassium hydroxide) is added. In practice, several types of additives are required.

また、特許文献2には、硫酸銅水溶液に適量の塩酸を添加することにより、微細孔への良好な埋め込み特性を実現する方法が開示されている。しかし、この方法においても、塩素濃度が低いと埋込みを達成することができず、塩酸濃度が濃過ぎると銅が溶けやすくなり、成膜性が低下することから、特に不溶性のアノードを用いた場合、塩化物イオンの消耗が激しく、塩化物イオンの管理が難しいという問題があった。   Patent Document 2 discloses a method of realizing good embedding characteristics in micropores by adding an appropriate amount of hydrochloric acid to a copper sulfate aqueous solution. However, even in this method, if the chlorine concentration is low, embedding cannot be achieved, and if the hydrochloric acid concentration is too high, copper is easily dissolved and the film formability is lowered. However, there is a problem that chloride ions are exhausted and management of chloride ions is difficult.

さらにまた、特許文献3には、添加剤を含まないめっき液を用いて、パルス電流におけるデューティー比を適当に制御することにより、緻密なめっき膜が配線溝や配線孔内に均一に形成する方法が開示されている。しかし、この方法は、設備費が高価であるばかりか、電流コントロールが非常に難しいという課題を抱えていた。さらに、パルス電流を用いて拡散層を薄くするため、微細孔への均一な析出は期待できるものの、均一に析出するためのボイドやシームが発生するおそれがあった。   Furthermore, Patent Document 3 discloses a method in which a dense plating film is uniformly formed in a wiring groove or a wiring hole by appropriately controlling a duty ratio in a pulse current using a plating solution containing no additive. Is disclosed. However, this method has a problem that not only the equipment cost is high, but also current control is very difficult. Furthermore, since the diffusion layer is thinned using a pulse current, uniform precipitation in the micropores can be expected, but there is a possibility that voids and seams for uniform deposition may occur.

特表2003−533867号公報Special table 2003-533867 gazette 特開2002−332589号公報JP 2002-332589 A 特開平11−97391号公報JP-A-11-97391

本発明は、かかる課題に鑑みて、有機系添加剤や塩化物イオンなどのハロゲン系添加剤を添加しないでも、極めて微細な孔又は溝(例えば径0.15μm〜0.2μmで深さ0.7μm)内にボイドやシームを発生させることなく銅を埋め込むことができる新たな組成の銅めっき用電解液を提供すると共に、かかる銅めっき用電解液を用いた新たな銅配線の製造方法を提供せんとするものである。   In view of such a problem, the present invention has an extremely fine pore or groove (for example, a diameter of 0.15 μm to 0.2 μm and a depth of 0.1 mm without adding an organic additive or a halogen additive such as chloride ion). In addition to providing copper plating electrolytes with a new composition that can embed copper without generating voids or seams within 7 μm), and providing new copper wiring manufacturing methods using such copper plating electrolytes It is something to be done.

本発明は、配線接続孔又は配線溝内に電気めっきによって銅を埋め込む際に用いる銅めっき用電解液として、1vol%以上のアセトニトリルと、1vol%以上の水を含むことを特徴とする銅めっき用電解液を提案すると共に、このような銅めっき用電解液を用いて、配線接続孔又は配線溝内に銅を電気めっきすることにより、銅配線を形成することを特徴とする銅配線の製造方法を提案する。   The present invention relates to an electrolytic solution for copper plating used for embedding copper in a wiring connection hole or a wiring groove by electroplating, and contains 1 vol% or more of acetonitrile and 1 vol% or more of water. A method for manufacturing a copper wiring, which proposes an electrolytic solution and forms a copper wiring by electroplating copper in a wiring connection hole or a wiring groove using the electrolytic solution for copper plating. Propose.

水とアセトニトリルの混合溶媒を用いた銅めっき用電解液を使用することにより、有機系添加剤および塩化物イオンなどのハロゲン添加剤を加えない単純な組成の電解液であっても、極めて微細な孔や溝(例えば径0.15μm〜0.2μm、深さ0.7μm)内にも、ボイドやシームなどの欠陥を発生させることなく銅を埋め込むことができる。よって、電解液成分の厳密な濃度管理をしなくても、極めて微細な銅配線を形成することができる。   By using an electrolytic solution for copper plating using a mixed solvent of water and acetonitrile, even an electrolytic solution with a simple composition that does not contain organic additives and halogen additives such as chloride ions is extremely fine. Copper can be embedded in holes and grooves (for example, a diameter of 0.15 μm to 0.2 μm and a depth of 0.7 μm) without generating defects such as voids and seams. Therefore, extremely fine copper wiring can be formed without strictly controlling the concentration of the electrolyte component.

また、有機添加剤などを含む電解液を用いて電気めっきにより形成した銅膜は、有機添加剤に含まれるカーボン(C)がめっき膜中に不純物として取り込まれることで銅膜の純度が低下し、電気抵抗の増大や信頼性の低下をもたらすと言われるが、本発明の銅めっき用電解液によれば、有機系添加剤やハロゲン添加剤を含まない組成とすることができる上、アセトニトリルは銅膜中に残らないため、特に銅配線の不純物濃度が低く、電気抵抗をより低くすることが期待できる。さらに、本発明の銅めっき用電解液を用いて埋め込みした銅配線の配向性は、(111)面が優先配向となるため、エレクトロマイグレーション耐性に優れた配線となることも期待できる。
よって、本発明により形成した銅配線は、集積回路や、プリント基板等の電子回路基板で特に好適に利用することができる。
In addition, the copper film formed by electroplating using an electrolytic solution containing an organic additive or the like decreases the purity of the copper film by incorporating carbon (C) contained in the organic additive into the plating film as an impurity. According to the electrolytic solution for copper plating of the present invention, it is possible to make the composition free from organic additives and halogen additives, and acetonitrile is used. Since it does not remain in the copper film, it can be expected that the impurity concentration of the copper wiring is particularly low and the electric resistance is further reduced. Furthermore, the orientation of the copper wiring embedded using the electrolytic solution for copper plating of the present invention can be expected to be a wiring excellent in electromigration resistance because the (111) plane is preferentially oriented.
Therefore, the copper wiring formed according to the present invention can be particularly suitably used in an integrated circuit or an electronic circuit board such as a printed board.

なお、本発明において「電気めっき」とは、イオン化した金属を含む電解液に通電し、陰極の表面にめっき金属を析出させる方法を全て包含する。
また、本発明において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意であり、「好ましくはXより大きく、Yより小さい」の意を包含するものである。
In the present invention, “electroplating” includes all methods in which an electrolytic solution containing an ionized metal is energized to deposit the plated metal on the surface of the cathode.
In addition, in the present invention, when “X to Y” (X and Y are arbitrary numbers) is described, it means “X or more and Y or less” unless otherwise specified. It includes the meaning of “small”.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態の好ましい一例として、銅配線の製造方法について説明するが、本発明が、以下に説明する実施形態に限定されるものではない。   Hereinafter, although the manufacturing method of a copper wiring is demonstrated as a preferable example of embodiment of this invention, this invention is not limited to embodiment described below.

ここでは、本発明の実施形態の一例として、1vol%以上のアセトニトリルと、1vol%以上の水と、銅イオンを含む電解液を用いて電気めっきすることにより、配線接続孔又は配線溝内に銅を埋め込んで銅配線を形成する銅配線の製造方法について説明する。
より具体的には、図1に示すように、シリコンウエハ等からなる基板1A上に、絶縁物質からなる酸化膜等の絶縁膜1Bを形成し、絶縁膜1Bにおける配線パターンを形成する予定箇所に溝又は孔2を設け(図中の(A)参照)、次に、Ti、Ta、W或いはこれらの窒化物等からなるバリアメタル膜(拡散防止膜)3、及びCu下地導電膜(導通を得るための下地導電膜)4を順次形成し(図中の(B)参照)、その上で、上記の電解液を用いて電気めっきすることにより、前記溝又は孔2内に銅を埋め込みつつ基板1表面に銅層5を形成し(図中の(C)参照)、次いで、例えば化学機械研磨(CMP)等によって余分な銅層5を除去して銅配線6を露出させて銅配線を形成する(図中の(D)参照)という製法である。さらに、耐マイグレーション性を向上させるために、露出した銅配線6上に金属や酸化物、有機物を積層する場合もある。
Here, as an example of an embodiment of the present invention, copper in the wiring connection hole or wiring groove is obtained by electroplating using 1 vol% or more of acetonitrile, 1 vol% or more of water, and an electrolytic solution containing copper ions. A method of manufacturing a copper wiring in which copper wiring is formed by embedding copper will be described.
More specifically, as shown in FIG. 1, an insulating film 1B such as an oxide film made of an insulating material is formed on a substrate 1A made of a silicon wafer or the like, and a wiring pattern in the insulating film 1B is to be formed. Grooves or holes 2 are provided (see (A) in the figure), and then a barrier metal film (diffusion prevention film) 3 made of Ti, Ta, W, or a nitride thereof, and a Cu base conductive film (conducting) (Underlying conductive film for obtaining) 4 (see (B) in the figure), and then electroplating using the above-mentioned electrolytic solution, while copper is embedded in the groove or hole 2 A copper layer 5 is formed on the surface of the substrate 1 (see (C) in the figure), and then the extra copper layer 5 is removed by, for example, chemical mechanical polishing (CMP) to expose the copper wiring 6 to form the copper wiring. It is a manufacturing method of forming (see (D) in the figure). Furthermore, in order to improve migration resistance, a metal, an oxide, or an organic substance may be stacked on the exposed copper wiring 6.

配線接続孔(ビア)又は配線溝(トレンチ)の大きさは特に限定するものではないが、本発明の製造方法は、例えば孔径或いは溝幅が0.15μm〜0.2μmで深さ0.7μmという極めて微細な孔或いは溝に対しても、十分に埋め込みが可能である。よって、少なくともそれ以上に径が大きいか、或いは深さの浅い孔や溝に対しては十分に埋め込み可能である。例えば孔径或いは溝幅が100μmで深さが200μmのようなSoC (システム オン チップ)やSiP (システム イン パッケージ)、MEMS (メムス、機械電気マイクロシステム)などの貫通電極用の孔或いは溝に対しても十分に埋め込み可能である。また、例えば孔径或いは溝幅が200μmで深さが50μmのような、プリント配線板のビアフィリングめっきの孔或いは溝に対しても十分に埋め込み可能である。逆に、本発明の限界が、前記の孔径或いは溝幅0.15μm〜0.2μm、深さ0.7μmであるという意味ではない。
配線接続孔(ビア)又は配線溝(トレンチ)の形状についても特に限定するものではない。ちなみに、孔径或いは溝幅が0.15μm〜0.2μmの極めて微細な孔或いは溝になると、開口部から奥まで同径の孔や溝を設けること自体が困難であるため、通常は、図1に示すように開口部から底部に向って窄まった断面形状になる。
The size of the wiring connection hole (via) or the wiring groove (trench) is not particularly limited, but the manufacturing method of the present invention has a hole diameter or groove width of 0.15 μm to 0.2 μm and a depth of 0.7 μm, for example. Even such extremely fine holes or grooves can be sufficiently embedded. Therefore, it can be sufficiently embedded in a hole or groove having a diameter that is at least larger than that or a shallow depth. For example, for holes or grooves for through-electrodes such as SoC (system on chip), SiP (system in package), MEMS (mems, mechano-electric microsystem), etc., whose hole diameter or groove width is 100 μm and depth is 200 μm Can also be embedded sufficiently. Further, for example, it can be sufficiently embedded in a hole or groove of via filling plating of a printed wiring board having a hole diameter or groove width of 200 μm and a depth of 50 μm. On the contrary, the limitation of the present invention does not mean that the hole diameter or the groove width is 0.15 μm to 0.2 μm and the depth is 0.7 μm.
The shape of the wiring connection hole (via) or wiring groove (trench) is not particularly limited. Incidentally, since it is difficult to provide a hole or groove having the same diameter from the opening to the back when the hole diameter or groove width is extremely fine with a hole diameter or groove width of 0.15 μm to 0.2 μm, normally, FIG. As shown in FIG. 4, the cross-sectional shape is narrowed from the opening toward the bottom.

(電解液)
本実施形態で用いる銅めっき用電解液(以下「本電解液」という)としては、1vol%以上のアセトニトリルと1vol%以上の水との混合溶媒であるアセトニトリル水溶液に、電析させる銅イオンを添加してなる溶液、特に溶媒としての水及びアセトニトリル中に硫酸イオン及び銅イオンを含み、且つ、ハロゲンイオン及び有機系添加剤を実質的に含まない電解液を用いるのが好ましい。
(Electrolyte)
As an electrolytic solution for copper plating (hereinafter referred to as “the present electrolytic solution”) used in this embodiment, copper ions to be electrodeposited are added to an acetonitrile aqueous solution that is a mixed solvent of 1 vol% or more of acetonitrile and 1 vol% or more of water. It is preferable to use an electrolytic solution containing sulfate ions and copper ions in water and acetonitrile as a solvent, and substantially free of halogen ions and organic additives.

この際、「実質的に含まない」とは、積極的に添加しないという意味であり、不可避的に含まれる程度を許容する意味である。具体的濃度で言えば1ppm以下であるのが好ましい。   In this case, “substantially does not contain” means that it is not actively added, and means that it is inevitably included. In terms of specific concentration, it is preferably 1 ppm or less.

アセトニトリル(CHCN)は、エタンニトリル或いはシアン化メチルと称される水溶性の有機シアン化合物である。
なお、アセトニトリルの替わりに、他の水溶性有機物を主成分として用いたとしても、アセトニトリルの効果と同様の効果を期待することができる。この場合の「水溶性有機溶媒」、すなわち水と相互溶解する有機溶媒としては、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、イソブタノール、エチレングリコール、ジプロピレングリコール、プロピレングリコール等のアルコール類、例えばアセトン,エチルメチルケトンなどのケトン類、そのほか、ジエチレングリコール、テトラヒドロフラン、ジオキサン、或いはアセトニトリル等のシアン系有機溶媒等を挙げることができるが、本発明はこれらの中で特に好ましい「水溶性有機溶媒」としてアセトニトリルを提案するものである。
Acetonitrile (CH 3 CN) is a water-soluble organic cyanide compound called ethanenitrile or methyl cyanide.
In addition, even if another water-soluble organic substance is used as a main component instead of acetonitrile, the same effect as that of acetonitrile can be expected. Examples of the “water-soluble organic solvent” in this case, that is, an organic solvent that is mutually soluble in water include alcohols such as methanol, ethanol, n-propanol, isopropanol, isobutanol, ethylene glycol, dipropylene glycol, and propylene glycol, for example Examples thereof include ketones such as acetone and ethyl methyl ketone, and other cyan organic solvents such as diethylene glycol, tetrahydrofuran, dioxane, and acetonitrile. Acetonitrile is proposed.

本電解液におけるアセトニトリルの濃度は、上述のように1vol%以上であることが重要であり、好ましくはアセトニトリルと水との合計量に対するアセトニトリルの混合比率が、1〜40vol%、特に1〜26vol%となるように調整乃至制御するのが好ましい。   It is important that the concentration of acetonitrile in the electrolytic solution is 1 vol% or more as described above, and the mixing ratio of acetonitrile with respect to the total amount of acetonitrile and water is preferably 1 to 40 vol%, particularly 1 to 26 vol%. It is preferable to adjust or control so that

また、銅イオンを提供する銅化合物としては、例えば、アルカリ性のシアン化銅、ピロリン酸銅や酸性のホウフッ化銅、硫酸銅などの水溶性銅塩が好ましく、中でも硫酸銅及び硫酸を含む硫酸銅水溶液が好ましい。
これらは、予めアセトニトリルと混合することができる。
Moreover, as a copper compound which provides a copper ion, water-soluble copper salts, such as alkaline copper cyanide, copper pyrophosphate, acidic copper borofluoride, copper sulfate, are preferable, and especially copper sulfate containing copper sulfate and sulfuric acid. An aqueous solution is preferred.
These can be premixed with acetonitrile.

本電解液の好ましい具体例として、硫酸銅水溶液とアセトニトリルとを含む電解液を、純水によって希釈して、目的に合った所望の組成濃度に調整してなる電解液を挙げることができる。   As a preferred specific example of the electrolytic solution, an electrolytic solution obtained by diluting an electrolytic solution containing an aqueous copper sulfate solution and acetonitrile with pure water to have a desired composition concentration suitable for the purpose can be given.

上記のような水とアセトニトリルの混合溶媒を銅めっき用電解液として使用することにより、有機系添加剤および塩化物イオンなどのハロゲン添加剤を加えない単純な組成の電解液としても、極めて微細な孔や溝へ銅を埋め込むことが可能となる。
但し、有機系添加剤やハロゲン添加剤、その他の添加剤を適切な組合せで加えることは任意である。例えば光沢剤、錯化剤、緩衝剤、導電剤、有機化合物(にかわ、ゼラチン、フェノールスルフォン酸、白糖蜜など)、多価アルコール、チタンなどの添加剤を電解液に添加するは可能である。
By using a mixed solvent of water and acetonitrile as described above as an electrolytic solution for copper plating, even an electrolytic solution having a simple composition that does not contain halogen additives such as organic additives and chloride ions is extremely fine. It becomes possible to embed copper in the hole or groove.
However, it is optional to add organic additives, halogen additives, and other additives in an appropriate combination. For example, additives such as brighteners, complexing agents, buffering agents, conductive agents, organic compounds (such as glue, gelatin, phenolsulfonic acid, molasses), polyhydric alcohols, and titanium can be added to the electrolyte.

(陰極)
本実施形態で用いる陰極、すなわち被メッキ体となる基板の素材は、特に限定するものではない。半導体デバイスの基板材料は、通常シリコンウエハ等からなる基板上に酸化膜等の絶縁膜を形成してなる構成のものであるため、それだけでは導通が得られず電気めっきすることができない。そこで、通常は前記絶縁膜上に導電性材料、例えば銅などをスパッタその他の手段により積層させて下地導電膜を形成するのが一般的である。
(cathode)
The material of the cathode used in the present embodiment, that is, the substrate to be plated is not particularly limited. Since the substrate material of a semiconductor device has a structure in which an insulating film such as an oxide film is usually formed on a substrate made of a silicon wafer or the like, continuity cannot be obtained by itself and electroplating cannot be performed. Therefore, it is general to form a base conductive film by laminating a conductive material such as copper on the insulating film by sputtering or other means.

(陽極)
本実施形態で用いる陽極すなわち対極としての素材は、特に限定するものではない。例えば銅のほか、白金、白金めっきチタンなどの不溶性電極、その他の電極板を例示できるが、中でも銅が好ましい。
(anode)
The material as the anode, that is, the counter electrode used in the present embodiment is not particularly limited. For example, in addition to copper, insoluble electrodes such as platinum and platinum-plated titanium, and other electrode plates can be exemplified, but copper is particularly preferable.

(電解条件等)
本実施形態における電解条件等について説明する。
(Electrolysis conditions, etc.)
The electrolysis conditions and the like in this embodiment will be described.

(アセトニトリルの量)
電解液中のアセトニトリル濃度は、1vol%以上に制御することが重要であり、好ましくは5vol%以上、特に10vol%以上であるのが好ましい。上限値は、特に限定するものではないが、40vol%程度であると考えられる。
電解液中のアセトニトリル濃度は、均一電着性、すなわち対極とめっき面との距離が変化しても電着性が変化しない性質に影響する。言い換えれば、対極とめっき面との距離が変れば電流密度が変化するから、電流密度が変化しても電着性が変化しない性質に影響する。孔或いは溝内への電着を考えると、開口部付近と孔又は溝の奥とでは対極からの距離および電流密度が異なるから、均一電着性に優れていれば、より均一な厚さにめっき膜を形成でき、より好適に埋め込みできることになる。この観点から、電解液中のアセトニトリル濃度は、5vol%以上であるのが好ましく、特に10vol%以上であるのがより好ましい。
(Amount of acetonitrile)
It is important to control the acetonitrile concentration in the electrolytic solution to 1 vol% or more, preferably 5 vol% or more, and particularly preferably 10 vol% or more. Although an upper limit is not specifically limited, It is thought that it is about 40 vol%.
The acetonitrile concentration in the electrolytic solution affects the uniform electrodeposition, that is, the property that the electrodeposition does not change even if the distance between the counter electrode and the plating surface changes. In other words, since the current density changes if the distance between the counter electrode and the plating surface changes, this affects the property that the electrodeposition does not change even if the current density changes. Considering the electrodeposition in the hole or groove, the distance from the counter electrode and the current density are different between the vicinity of the opening and the depth of the hole or groove. A plating film can be formed and can be embedded more suitably. From this viewpoint, the acetonitrile concentration in the electrolytic solution is preferably 5 vol% or more, and more preferably 10 vol% or more.

(HSO濃度)
SO濃度は、適宜調整可能であるが、通常0.01mol/L以上、特に0.1mol/L〜2mol/Lとするのが好ましい。
(H 2 SO 4 concentration)
The H 2 SO 4 concentration can be adjusted as appropriate, but is usually 0.01 mol / L or more, preferably 0.1 mol / L to 2 mol / L.

(+1価の金属(銅)の電解液中濃度)
+1価の金属(銅)の電解液中濃度、すなわち2つ以上の価数を有する金属における最も低価数の金属の電解液中濃度は、0〜0.05mol/Lに制御することが重要であり、中でも0.02mol/Lより低くなるように制御するのが特に好ましい。
なお、+1価の金属(銅)の電解液中濃度の調節は、例えば電解液の循環(+1価の金属(銅)が含まれない電解液)量の調整や、電解時間の調整、不溶性陽極の使用などによって調節することができる。但し、これらの方法に限定されるものではない。
(Concentration of +1 valent metal (copper) in the electrolyte)
It is important to control the concentration of +1 valent metal (copper) in the electrolyte, that is, the concentration of the lowest valent metal in the electrolyte having a valence of 2 or more to 0 to 0.05 mol / L. In particular, it is particularly preferable to control it to be lower than 0.02 mol / L.
Adjustment of the concentration of +1 valent metal (copper) in the electrolyte is, for example, adjustment of the amount of electrolyte circulation (electrolyte not containing +1 valent metal (copper)), adjustment of electrolysis time, insoluble anode Can be adjusted by the use of. However, it is not limited to these methods.

(+2価の金属(銅)の電解液中濃度)
+2価の金属(銅)の電解液中濃度、すなわち2つ以上の価数を有する金属において、最も低価数の金属以外の金属の電解液中濃度は、電流密度にもよるが0.01mol/L〜0.2mol/Lの範囲に制御するのが好ましい。
なお、本電解液は、配線接続孔又は配線溝の表面に形成されるCu下地導電膜を腐食する性質があり、腐食速度が大きくなるとCu下地導電膜が腐食して電気めっき時に十分な導通が得られず埋め込み不良となる可能性がある。本発明者の研究の結果、+2価の金属(銅)の電解液中濃度は、腐食速度に影響し、+2価の金属(銅)の電解液中濃度が高くなると腐食速度が大きくなる傾向があるため、この観点から、+2価の金属(銅)の電解液中濃度は、より好ましくは0.01〜0.15mol/Lの範囲、中でも0.05〜0.10mol/Lの範囲に制御するのが特に好ましい。
(Concentration of + divalent metal (copper) in the electrolyte)
+ Concentration of divalent metal (copper) in the electrolyte solution, that is, in the metal having two or more valences, the concentration of the metal other than the lowest valent metal in the electrolyte solution is 0.01 mol although it depends on the current density. / L to 0.2 mol / L is preferable.
This electrolyte has a property of corroding the Cu underlying conductive film formed on the surface of the wiring connection hole or the wiring groove. When the corrosion rate is increased, the Cu underlying conductive film is corroded to provide sufficient conduction during electroplating. There is a possibility that it may not be obtained, resulting in poor embedding. As a result of the inventor's research, the concentration of +2 metal (copper) in the electrolyte affects the corrosion rate, and as the concentration of +2 metal (copper) in the electrolyte increases, the corrosion rate tends to increase. Therefore, from this point of view, the concentration of +2 metal (copper) in the electrolyte is more preferably controlled in the range of 0.01 to 0.15 mol / L, and more preferably in the range of 0.05 to 0.10 mol / L. It is particularly preferable to do this.

(電解温度)
電解温度、すなわち電解液の温度は、特に限定するものではなく、25℃以上であればよい。中でも、製造コストや有機成分の蒸発を少なくするために25〜45℃となるように制御するのが好ましい。
(Electrolysis temperature)
The electrolysis temperature, that is, the temperature of the electrolytic solution is not particularly limited, and may be 25 ° C. or higher. Especially, it is preferable to control so that it may become 25-45 degreeC in order to reduce manufacturing cost and evaporation of an organic component.

(電流密度)
電流密度は、特に限定するものではないが、好ましくは0.005A/cm以上に制御するのがよい。上限値は特に限定されないが、0.5A/cm程度が現実的な上限値になると考えられる。より好ましくは、電解温度に応じて電流密度を制御するのが好ましく、具体的には電解温度が25℃以上35℃未満の場合には0.005〜0.02A/cm、電解温度が35℃以上の場合には0.02A/cm以上に制御するのが好ましい。
(Current density)
The current density is not particularly limited, but is preferably controlled to 0.005 A / cm 2 or more. Although the upper limit is not particularly limited, it is considered that about 0.5 A / cm 2 is a realistic upper limit. More preferably, the current density is preferably controlled according to the electrolysis temperature. Specifically, when the electrolysis temperature is 25 ° C. or higher and lower than 35 ° C., 0.005 to 0.02 A / cm 2 , and the electrolysis temperature is 35 When the temperature is higher than or equal to ° C., it is preferably controlled to 0.02 A / cm 2 or higher.

(電解時間)
電解時間(通電時間)は、特に限定するものではない。孔や溝の大きさや形状等に応じて適宜調整するのがよい。
(Electrolysis time)
The electrolysis time (energization time) is not particularly limited. It is preferable to adjust appropriately according to the size and shape of the holes and grooves.

(好ましい電解条件)
以上の点を総合すると,好ましい電解条件の一例として,電解液中のアセトニトリル濃度を8〜12vol%とし、且つ、電解液中の+1価の銅濃度を0〜0.02mol/Lとし、且つ、電解液中の+2価の銅濃度を0.05〜0.15mol/Lとし、且つ、電解温度を25〜45℃とし、且つ、電流密度を0.005A/cm〜0.035A/cmを挙げることができる。
(Preferable electrolysis conditions)
Taking the above points together, as an example of preferable electrolysis conditions, the acetonitrile concentration in the electrolytic solution is 8 to 12 vol%, the +1 valent copper concentration in the electrolytic solution is 0 to 0.02 mol / L, and The + 2-valent copper concentration in the electrolytic solution is 0.05 to 0.15 mol / L, the electrolysis temperature is 25 to 45 ° C., and the current density is 0.005 A / cm 2 to 0.035 A / cm 2. Can be mentioned.

(装置)
電気めっき装置の構成は適宜設計可能であり、特に限定するものではない。例えば、電解液を収容するメッキ槽を備え、このメッキ槽は電解液排水部と電解液供給部とを備え、メッキ槽内には、基板(例えば半導体ウエハ)保持する基板ホルダーと、電源の陽極が接続されたアノード電極とが配設されてなる電気めっき装置を挙げることができる。
(apparatus)
The configuration of the electroplating apparatus can be appropriately designed and is not particularly limited. For example, a plating tank containing an electrolytic solution is provided. The plating tank includes an electrolytic solution drain part and an electrolytic solution supply part. In the plating tank, a substrate holder for holding a substrate (for example, a semiconductor wafer), an anode of a power source An electroplating apparatus in which an anode electrode to which is connected is disposed.

(得られる銅配線の特徴)
本電解液によれば、有機系添加剤や塩化物イオンなどのハロゲン系添加剤を実質的に含まないでも、極めて微細な孔又は溝(例えば径0.15μm〜0.2μmで深さ0.7μm)内にボイドやシームなどの欠陥を発生させることなく銅を埋め込むことができ、極めて微細な銅配線を形成することができる。
また、本実施形態で得られる銅配線は、純度が高いという特徴を有しており、アセトニトリルを電解液に添加しても、得られる銅配線中にアセトニトリルが残らないことも本発明の特徴の一つである。そのため、不純物の濃度が低く、且つ比抵抗が十分に低い銅薄膜を得ることができる。
さらに、本実施形態で得られる銅配線の配向性は、(111)面が優先配向となるため、エレクトロマイグレーション耐性に優れた配線となることが期待できる。
よって、本発明によって形成される銅配線は、電子材料、例えばIC、LSI、CPU等の集積回路やそれを実装する回路基板などの製造に有効に利用することができる。
(Features of the obtained copper wiring)
According to this electrolytic solution, even though it is substantially free of organic additives and halogen additives such as chloride ions, extremely fine pores or grooves (for example, a diameter of 0.15 μm to 0.2 μm and a depth of 0.1 μm). 7 μm), copper can be buried without generating defects such as voids and seams, and extremely fine copper wiring can be formed.
In addition, the copper wiring obtained in the present embodiment has a feature that the purity is high, and even if acetonitrile is added to the electrolytic solution, no acetonitrile remains in the obtained copper wiring. One. Therefore, a copper thin film having a low impurity concentration and a sufficiently low specific resistance can be obtained.
Furthermore, the orientation of the copper wiring obtained in this embodiment can be expected to be a wiring excellent in electromigration resistance because the (111) plane is preferentially oriented.
Therefore, the copper wiring formed according to the present invention can be effectively used for manufacturing an electronic material, for example, an integrated circuit such as an IC, LSI, or CPU, or a circuit board on which the integrated circuit is mounted.

以下、試験結果(実施例に相当)に基づいて本発明について説明するが、本発明の範囲が下記試験結果に限定されるものではない。   Hereinafter, although this invention is demonstrated based on a test result (equivalent to an Example), the scope of the present invention is not limited to the following test result.

(試験1)
下記装置を用いて、下記サンプル(被めっき体)に対して、表1に示すように電解条件を種々変化させながら電気めっきを行い、各サンプルについて配線溝内の埋め込み性を比較検討した。
(Test 1)
Using the following apparatuses, electroplating was performed on the following samples (substances to be plated) while variously changing the electrolysis conditions as shown in Table 1, and the embeddability in the wiring grooves was compared for each sample.

めっき用のセルには、図2に示すように、(株)山本鍍金試験器製マイクロセルModelI型を用い、アノードには含燐銅を用いた。
カソードには、図3に示すように、表面を酸化膜処理されたシリコンウエハ板(11mm×15mm×0.8mm)に、溝幅190nm、深さ700nmの配線溝を、190nm間隔で185本形成し、その表面にTaN及びCuを順次スパッタしてTaバリヤ層、Cuシード層を形成したものを使用した。
電流制御には、北斗電工(株)製のポテンシオスタット(HA-151)を用い、約0.8Hzでカソードを揺動させながら、表1に示す条件にて電気めっきを行った。
また、電解液は、硫酸銅水溶液とアセトニトリルとを混合した後、純水によって希釈したり、添加剤を加えたりして、表1に示す組成に調製した。
As shown in FIG. 2, a micro cell Model I type manufactured by Yamamoto Kakin Tester Co., Ltd. was used for the plating cell, and phosphorous copper was used for the anode.
As shown in FIG. 3, on the cathode, 185 wiring grooves having a groove width of 190 nm and a depth of 700 nm are formed at intervals of 190 nm on a silicon wafer plate (11 mm × 15 mm × 0.8 mm) whose surface is subjected to an oxide film treatment. Then, TaN and Cu were sequentially sputtered on the surface to form a Ta barrier layer and a Cu seed layer.
For current control, a potentiostat (HA-151) manufactured by Hokuto Denko Co., Ltd. was used, and electroplating was performed under the conditions shown in Table 1 while the cathode was swung at about 0.8 Hz.
Moreover, after mixing copper sulfate aqueous solution and acetonitrile, the electrolyte solution was prepared with the composition shown in Table 1 by diluting with pure water or adding an additive.

めっき後のサンプルの埋め込み性は、エスアイアイナノテクノロジー(株)製の集束イオンビーム加工観察装置/走査型イオン顕微鏡を用いて断面観察し、次の基準で評価し、表1に示した。
◎:溝内への銅の埋め込み率がほぼ100%
○:溝内への銅の埋め込み率が80%以上100%未満
△:溝内への銅の埋め込み率が50%以上80%未満
×:溝内への銅の埋め込み率が50%未満
The embedding property of the sample after plating was observed by a cross-section using a focused ion beam processing observation apparatus / scanning ion microscope manufactured by SII Nano Technology, Inc., and evaluated according to the following criteria.
A: Copper filling rate in the groove is almost 100%
○: Copper filling rate in the groove is 80% or more and less than 100% Δ: Copper filling rate in the groove is 50% or more and less than 80% ×: Copper filling rate in the groove is less than 50%

Figure 0004472673
Figure 0004472673

サンプルの埋め込み性が△以下に評価されたものについては、その原因を検討した。
サンプル1及び2は、Cu (II)濃度が低く一部水素発生を伴うため、埋め込み性が若干低下したと考えられる。
サンプル4は、アセトニトリルが混合されていないため、均一電着性が悪く、埋め込み性が低下したと考えられる。
サンプル5は、アセトニトリル濃度が低いため均一電着性が悪く、埋め込み性が低下したと考えられる。
サンプル8は、電流密度が高く、一部水素発生を伴うため、埋め込み性が若干低下したと考えられる。
サンプル9は、電流密度が高すぎて水素発生を伴うため、埋め込み性が低下したと考えられる。
サンプル14は、Cu
(I)の電解液では均一電着性が低下するため、埋め込み性が低下したものと考えられる。
サンプル15は、Cu
(I)が均一電着性を低下させ、埋め込み性が若干低下したものと考えられる。
サンプル17は、Cu(II)濃度が高すぎるため、腐食性が増加し、埋め込み性が低下したものと考えられる。
サンプル18は、Cl-がアセトニトリルのもつ効果を阻害し、埋め込み性が低下したものと考えられる。
サンプル22は、MPS(3-メルカプト-1-プロパンスルフォネート)がアセトニトリルのもつ効果を阻害し、埋め込み性が若干低下したものと考えられる。
For samples whose embeddability was evaluated to be less than Δ, the cause was examined.
Samples 1 and 2 have a low Cu (II) concentration and are partly accompanied by hydrogen generation.
Since sample 4 is not mixed with acetonitrile, it is considered that the throwing power is poor and the embedding property is lowered.
Since sample 5 has a low acetonitrile concentration, it is considered that the throwing power is poor and the embedding property is lowered.
Since Sample 8 has a high current density and partly generates hydrogen, it is considered that the embedding property is slightly lowered.
Sample 9 is considered to have reduced embeddability because the current density is too high and hydrogen is generated.
Sample 14 is Cu
The electrolytic solution (I) is considered to have reduced embeddability due to a decrease in throwing power.
Sample 15 is Cu
It is considered that (I) decreased the throwing power and the embedding property slightly decreased.
It is considered that the sample 17 has a high Cu (II) concentration, so that the corrosivity is increased and the embedding property is lowered.
In Sample 18, it is considered that Cl impeded the effect of acetonitrile and the embedding property was lowered.
In Sample 22, it is considered that MPS (3-mercapto-1-propanesulfonate) inhibits the effect of acetonitrile and the embedding property is slightly reduced.

表1の結果から、たとえば次のような点が分かった。
電解液中のアセトニトリル濃度は、1.0vol%以上に制御することが重要であり、電解液中の塩化物イオンやMPSはアセトニトリルの効果を阻害するため、実質的に含有させないことが好ましいことが分かった。逆に、ポリエチレングリコールなどの有機系添加剤は添加しても埋め込み性は阻害されないことが分かった。
+1価の金属(銅)の電解液中濃度は、0.1mol/Lより低くなるように制御することが重要であり、好ましくは0〜0.05mol/Lに制御することが重要であり、中でも0.02mol/Lより低くなるように制御するのが好ましいことが分かった。
+2価の金属(銅)の電解液中濃度は、0.24mol/Lより低くなるように制御するのが好ましく、0.05〜0.1mol/Lの範囲に制御するのが好ましいことが分かった。
電流密度は、40mA/cmより低く設定することが重要であり、30mA/cm以下に設定することが好ましいことが分かった。
From the results in Table 1, for example, the following points were found.
It is important to control the acetonitrile concentration in the electrolytic solution to 1.0 vol% or more, and chloride ions and MPS in the electrolytic solution inhibit the effect of acetonitrile. I understood. On the contrary, it was found that the embedding property is not inhibited even when an organic additive such as polyethylene glycol is added.
It is important to control the concentration of the +1 valent metal (copper) in the electrolyte solution to be lower than 0.1 mol / L, preferably it is important to control to 0 to 0.05 mol / L, It turned out that it is preferable to control so that it may become below 0.02 mol / L especially.
It is understood that the concentration of +2 metal (copper) in the electrolyte is preferably controlled to be lower than 0.24 mol / L, and preferably in the range of 0.05 to 0.1 mol / L. It was.
It has been found that it is important to set the current density lower than 40 mA / cm 2 , and it is preferable to set it to 30 mA / cm 2 or less.

(試験2:ハルセル試験におけるアセトニトリル濃度依存性)
(株)山本鍍金試験器製のハルセル水槽を用い、陰極に銅板、陽極に無酸素銅板を用い、電解液のアセトニトリル濃度を変化させて、1Aの電流を10分間印加することによって得られた銅めっき膜の外観をデジタルカメラにて撮影した。
(Test 2: Acetonitrile concentration dependence in the Hull cell test)
Copper obtained by applying a current of 1 A for 10 minutes while changing the acetonitrile concentration of the electrolyte using a Hull Cell water tank manufactured by Yamamoto Gold Tester Co., Ltd., using a copper plate as the cathode and an oxygen-free copper plate as the anode. The appearance of the plating film was photographed with a digital camera.

この結果、電解液中のアセトニトリル濃度は、5vol%以上であるのが好ましく、特に10vol%以上であるのがより好ましいことが分かった。   As a result, it was found that the acetonitrile concentration in the electrolytic solution was preferably 5 vol% or more, and more preferably 10 vol% or more.

(試験3:腐食速度に対するCu(II)濃度依存性)
タフピッチ銅板の周りを、露出面積が7.5cm2となるようにマスキングテープにて被覆したものを腐食速度測定用のサンプルとして用いた。
この腐食測定用サンプルを、H2SO4濃度0.1mol/L、アセトニトリル濃度11vol%、+1価の銅イオン濃度0mol/Lで、+2価の銅イオン濃度の異なる電解液(21℃)に12時間浸漬させた。12時間後に電解液から取り出したサンプルの浸漬前後の重量差より腐食速度を算出した。
(Test 3: Cu (II) concentration dependence on corrosion rate)
A tough pitch copper plate covered with a masking tape so that the exposed area was 7.5 cm 2 was used as a sample for measuring the corrosion rate.
This corrosion measurement sample was added to electrolytes (21 ° C.) having different H 2 SO 4 concentrations of 0.1 mol / L, acetonitrile concentrations of 11 vol%, +1 valent copper ion concentrations of 0 mol / L, and different +2 valent copper ion concentrations. Soaked for hours. The corrosion rate was calculated from the weight difference before and after immersion of the sample taken out of the electrolyte solution after 12 hours.

この結果、Cu(II)濃度、すなわち+2価の銅イオンの電解液中濃度は、腐食速度に影響し、+2価の銅イオンの電解液中濃度が高くなると腐食速度が大きくなる。この観点から、Cu(II)濃度、すなわち+2価の銅イオンの電解液中濃度は、0.01〜0.15mol/Lの範囲、中でも0.05〜0.10mol/Lの範囲に制御するのが好ましいことが分かった。   As a result, the Cu (II) concentration, that is, the concentration of + 2-valent copper ions in the electrolytic solution affects the corrosion rate, and the corrosion rate increases as the concentration of + 2-valent copper ions in the electrolytic solution increases. From this point of view, the Cu (II) concentration, that is, the concentration of +2 valent copper ions in the electrolytic solution is controlled in the range of 0.01 to 0.15 mol / L, particularly 0.05 to 0.10 mol / L. It has been found preferable.

(A)〜(D)は、銅配線の製造方法を工程順に説明した断面図である。(A)-(D) are sectional drawings explaining the manufacturing method of copper wiring in order of a process. 実施例・比較例で使用したセルの構成を説明した図である。It is the figure explaining the structure of the cell used by the Example and the comparative example. 実施例・比較例で使用したカソードの構成を説明した図である。It is the figure explaining the structure of the cathode used by the Example and the comparative example. 試験2の結果として、アセトニトリルの濃度毎に、陽極からの距離に応じた陰極の色変化を示した図である。It is the figure which showed the color change of the cathode according to the distance from an anode as a result of the test 2 for every density | concentration of acetonitrile. 試験3の結果として、Cu(II)濃度と腐食速度との関係を示したグラフである。4 is a graph showing the relationship between Cu (II) concentration and corrosion rate as a result of Test 3.

符号の説明Explanation of symbols

1A 基板
1B 絶縁膜
2 溝又は孔
3 バリアメタル膜
4 下地導電膜
5 銅層
6 銅配線
1A Substrate 1B Insulating film 2 Groove or hole 3 Barrier metal film 4 Underlying conductive film 5 Copper layer 6 Copper wiring

Claims (7)

1vol%以上のアセトニトリルと、1vol%以上の水と硫酸と、銅イオンとを含む銅めっき用電解液を用いて、配線接続孔又は配線溝内に銅を電気めっきすることにより、銅配線を形成することを特徴とする銅配線の製造方法。 And 1 vol% or more of acetonitrile, and 1 vol% or more of water, and sulfuric acid, and copper ions with including copper plating electrolyte by electroplating copper wiring connection hole or the wiring groove, a copper wire Forming a copper wiring. 電解液中のCu (I)濃度が0〜0.05mol/Lとなるように制御して電気めっきすることを特徴とする請求項記載の銅配線の製造方法。 Method for producing a copper wiring of claim 1, wherein the Cu (I) concentration in the electrolytic solution is electroplating controlled to be 0~0.05mol / L. 水、アセトニトリル、硫酸及び銅イオンを含み、且つ、ハロゲンイオン及び有機系添加剤を実質的に含まない銅めっき用電解液を用いて電気めっきすることを特徴とする請求項1又は2記載の銅配線の製造方法。 Water, acetonitrile, containing sulfuric acid and copper ions, and copper according to claim 1 or 2, wherein the electroplating using the copper plating electrolyte containing no halogen ions and organic additives substantially Wiring manufacturing method. 硫酸濃度が0.05mol/L〜2mol/Lであることを特徴とする請求項2に記載の銅配線の製造方法。The method for producing a copper wiring according to claim 2, wherein the sulfuric acid concentration is 0.05 mol / L to 2 mol / L. アセトニトリルと水との合計量に対するアセトニトリルの混合比率が、1〜40vol%となるように制御して電気めっきすることを特徴とする請求項1〜3の何れかに記載の銅配線の製造方法。 The method for producing a copper wiring according to any one of claims 1 to 3, wherein electroplating is performed by controlling the mixing ratio of acetonitrile to the total amount of acetonitrile and water to be 1 to 40 vol%. 請求項1〜5の何れかに記載の銅配線の製造方法によって基板に銅配線形成されてなる構成を備えた電子回路基板及び集積回路。 Electronic circuit boards and integrated circuits having a copper wiring is formed configured to the substrate by the manufacturing method of copper wire according to any one of claims 1 to 5. 配線接続孔又は配線溝内に電気めっきによって銅を埋め込む際に用いる銅めっき用電解液であって、1vol%以上のアセトニトリルと、1vol%以上の水と、硫酸と、銅イオンとを含む、埋め込み銅めっき用電解液。 An electrolytic solution for copper plating used when copper is embedded in a wiring connection hole or a wiring groove by electroplating, and includes 1 vol% or more of acetonitrile, 1 vol% or more of water, sulfuric acid, and copper ions. Electrolytic solution for copper plating.
JP2006233373A 2006-08-30 2006-08-30 Manufacturing method of copper wiring and electrolytic solution for copper plating Active JP4472673B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006233373A JP4472673B2 (en) 2006-08-30 2006-08-30 Manufacturing method of copper wiring and electrolytic solution for copper plating
KR1020070064357A KR20080020460A (en) 2006-08-30 2007-06-28 Method for manufacturing copper wiring and electrolyte for copper plating
TW096124258A TW200811998A (en) 2006-08-30 2007-07-04 Method for making copper circuit wiring and electrolytic solution for copper plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233373A JP4472673B2 (en) 2006-08-30 2006-08-30 Manufacturing method of copper wiring and electrolytic solution for copper plating

Publications (2)

Publication Number Publication Date
JP2008056968A JP2008056968A (en) 2008-03-13
JP4472673B2 true JP4472673B2 (en) 2010-06-02

Family

ID=39240065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233373A Active JP4472673B2 (en) 2006-08-30 2006-08-30 Manufacturing method of copper wiring and electrolytic solution for copper plating

Country Status (3)

Country Link
JP (1) JP4472673B2 (en)
KR (1) KR20080020460A (en)
TW (1) TW200811998A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162775A1 (en) * 2014-04-25 2015-10-29 株式会社Jcu High-speed filling method for copper
WO2018016593A1 (en) * 2016-07-21 2018-01-25 日立化成株式会社 Secondary battery, secondary battery system, positive electrode electrolyte solution, and power generation system

Also Published As

Publication number Publication date
JP2008056968A (en) 2008-03-13
TW200811998A (en) 2008-03-01
KR20080020460A (en) 2008-03-05

Similar Documents

Publication Publication Date Title
JP4472157B2 (en) Via filling method
KR101105485B1 (en) Process for through silicon via filling
CN102318041B (en) Process for electrodeposition of copper chip to chip, chip to wafer and wafer to wafer interconnects in through-silicon vias (tsv)
TWI523976B (en) Through silicon via filling using an electrolyte with a dual state inhibitor
JP5346215B2 (en) Method and composition for direct copper plating and filling to form interconnects in the manufacture of semiconductor devices
US20080264798A1 (en) Copper Plating Bath and Plating Method
JP2002527621A (en) Electrodeposition of metals in small recesses using modulated electric fields
US20120024713A1 (en) Process for electrodeposition of copper chip to chip, chip to wafer and wafer to wafer interconnects in through-silicon vias (tsv) with heated substrate and cooled electrolyte
US20050045486A1 (en) Plating method and plating solution
US10472726B2 (en) Electrolyte and process for electroplating copper onto a barrier layer
KR102312018B1 (en) Copper electrodeposition bath containing an elecrochemically inert cation
KR101134610B1 (en) Additive for copper plating and process for producing electronic circuit substrate therewith
JP3124523B2 (en) Copper plating method
CN1337064A (en) Method for galvanically forming conductor structures of high-purity copper in the production of integrated circuits
JP4472673B2 (en) Manufacturing method of copper wiring and electrolytic solution for copper plating
US20050126919A1 (en) Plating method, plating apparatus and a method of forming fine circuit wiring
JP2009242860A (en) Pretreating agent for acidic copper and plating method using the same
JP2009132982A (en) Method of manufacturing copper wiring
JP4226994B2 (en) Method for forming fine circuit wiring and plating solution and plating apparatus used therefor
JP7346738B2 (en) Cobalt chemistry for smooth topology
JP2009132983A (en) Method of manufacturing copper plated body
JP2003321792A (en) Copper plating bath and method for forming fine circuit wiring using this plating bath, and apparatus used for the same
US8114770B2 (en) Pre-treatment method to increase copper island density of CU on barrier layers
KR20200062001A (en) Method for preparing an insulative substrate comprising metal layer filled in via hole
JP2009135336A (en) Copper-layer etching method, etching treatment liquid, and copper-wiring manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150