WO2017203827A1 - 脂質の製造方法 - Google Patents

脂質の製造方法 Download PDF

Info

Publication number
WO2017203827A1
WO2017203827A1 PCT/JP2017/012923 JP2017012923W WO2017203827A1 WO 2017203827 A1 WO2017203827 A1 WO 2017203827A1 JP 2017012923 W JP2017012923 W JP 2017012923W WO 2017203827 A1 WO2017203827 A1 WO 2017203827A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
seq
gene
acid sequence
Prior art date
Application number
PCT/JP2017/012923
Other languages
English (en)
French (fr)
Inventor
達郎 尾崎
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2017203827A1 publication Critical patent/WO2017203827A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/405Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Definitions

  • the present invention relates to a method for producing lipids.
  • the present invention also relates to a transformant used in the method.
  • Fatty acids are one of the main components of lipids, and constitute lipids (oils and fats) such as triacylglycerol produced by ester bonds with glycerin in vivo. In many animals and plants, fatty acids are also stored and used as energy sources. Fatty acids and lipids stored in animals and plants are widely used for food or industry. For example, derivatives of higher alcohols obtained by reducing higher fatty acids having about 12 to 18 carbon atoms are used as surfactants. Alkyl sulfate esters and alkylbenzene sulfonates are used as anionic surfactants. Polyoxyalkylene alkyl ethers, alkyl polyglycosides, and the like are used as nonionic surfactants.
  • surfactants are used as cleaning agents, disinfectants, and the like.
  • Cationic surfactants such as alkylamine salts and mono- or dialkyl quaternary ammonium salts, which are derivatives of the same higher alcohol, are routinely used for fiber treatment agents, hair rinse agents, disinfectants, and the like.
  • Benzalkonium-type quaternary ammonium salts are routinely used for bactericides and preservatives.
  • vegetable oils and fats are also used as raw materials for biodiesel fuel.
  • fatty acids and lipids are widely used, and therefore, attempts have been made to improve the productivity of fatty acids and lipids in vivo in plants and the like.
  • attempts have been made to control the number of carbon atoms of fatty acids, that is, the chain length.
  • acetyl-acyl carrier protein hereinafter also referred to as “ACP”
  • ACP acetyl-acyl carrier protein
  • the carbon chain elongation reaction is repeated, and finally fatty acids having about 18 carbon atoms are synthesized
  • the number of carbon atoms indicates the number of carbon atoms of the acyl group, and may be indicated in the same manner below.
  • ACP functions as a fatty acid carrier. So far, in the biosynthesis of fatty acids, a method of using ACP to control the number of carbon atoms (chain length) of fatty acids has been proposed.
  • Non-patent document 1 describes a method for improving the productivity of fatty acids.
  • Non-Patent Document 2 discloses a method for improving the productivity of ⁇ -linolenic acid, which is one of unsaturated fatty acids having 18 carbon atoms, by overexpressing an ACP gene derived from Arabidopsis in Nazuna. Are listed.
  • Patent Document 1 proposes that an ACP gene is introduced into various microorganisms to produce fatty acid derivatives such as fatty acids, aliphatic alcohols, and aliphatic esters.
  • Patent Document 2 discloses a promoter sequence for the ACP gene.
  • many unexplained parts remain regarding the algal lipid synthesis mechanism.
  • the present invention relates to a method for producing a lipid, in which a transformant in which expression of a gene encoding the following protein (A) or (B) is promoted is cultured to produce a fatty acid or a lipid comprising the same.
  • a protein comprising the amino acid sequence represented by SEQ ID NO: 1.
  • B A protein comprising an amino acid sequence having an identity of 70% or more with the amino acid sequence of the protein (A) and having acyl carrier protein activity.
  • the present invention increases the ratio of medium-chain fatty acids in the total fatty acids produced in the cells of the transformant by promoting the expression of the gene encoding the protein (A) or (B).
  • the present invention relates to a composition modification method. Furthermore, this invention relates to the transformant which promoted the expression of the gene which codes the said protein (A) or (B).
  • the present invention relates to the provision of a method for producing a lipid, which improves the productivity of a medium chain fatty acid or a lipid comprising the same.
  • the present invention also relates to the provision of a transformant with improved productivity of medium-chain fatty acids or lipids comprising the same.
  • the present inventor newly identified an ACP of algae belonging to the genus Nannochloropsis, which is a kind of algae, as an enzyme involved in the synthesis of medium chain fatty acids. As a result of accelerating the expression of this ACP in the microorganism, it was found that the productivity of the produced medium chain fatty acids or lipids comprising them is significantly improved. The present invention has been completed based on these findings.
  • the productivity of a medium chain fatty acid or a lipid containing this as a constituent can be improved.
  • the transformant of the present invention is excellent in productivity of medium chain fatty acids or lipids containing the same as a constituent component.
  • lipid refers to neutral lipids (such as triacylglycerol), simple lipids such as wax and ceramide; complex lipids such as phospholipids, glycolipids, and sulfolipids; and fatty acids derived from these lipids.
  • Free fatty acids derived lipids such as alcohols and hydrocarbons are included.
  • Fatty acids generally classified as derived lipids refer to the fatty acids themselves, meaning “free fatty acids”.
  • fatty acid residue a fatty acid moiety or an acyl group moiety in simple lipid and complex lipid molecules is referred to as “fatty acid residue”.
  • fatty acid is used as a general term for “free fatty acid” and “fatty acid residue”.
  • fatty acid or lipid containing this as a constituent is used generically as “free fatty acid” and “lipid having the fatty acid residue”.
  • the “fatty acid composition” means the weight ratio of each fatty acid to the total fatty acid (total fatty acid) obtained by adding the free fatty acid and the fatty acid residue. The weight (production amount) and fatty acid composition of the fatty acid can be measured by the methods used in the examples.
  • Cx: y in the notation of fatty acids and acyl groups constituting fatty acids means that the number of carbon atoms is x and the number of double bonds is y.
  • Cx represents a fatty acid or acyl group having x carbon atoms.
  • identity of a base sequence and an amino acid sequence is calculated by the Lipman-Pearson method (Science, 1985, vol. 227, p. 1435-1441). Specifically, it is calculated by performing an analysis assuming that Unit size to compare (ktup) is 2 using the homology analysis (Search homology) program of genetic information processing software Genetyx-Win.
  • examples of the “stringent conditions” include the method described in Molecular Cloning-A LABORATORY MANUAL THIRD EDITION [Joseph Sambrook, David W. Russell., Cold Spring Harbor Laboratory Press].
  • a solution containing 6 ⁇ SSC composition of 1 ⁇ SSC: 0.15M sodium chloride, 0.015M sodium citrate, pH 7.0
  • 0.5% SDS 0.5% SDS
  • 5 ⁇ Denhart 100 mg / mL herring sperm DNA
  • Examples of the conditions include hybridization with the probe at 65 ° C. for 8 to 16 hours.
  • upstream of a gene refers to a region continuing on the 5 ′ side of a gene or region regarded as a target, not a position from the translation start point.
  • downstream indicates a region continuing 3 ′ side of the gene or region captured as a target.
  • the proteins (A) and (B) are one type of ACP, and fatty acids Protein that functions as a fatty acid carrier in the biosynthetic pathway.
  • the protein consisting of the amino acid sequence of SEQ ID NO: 1 is a kind of ACP derived from Nannochloropsis oculata NIES2145 strain, which is an algae belonging to the genus Nannochloropsis .
  • ACP functions as a scaffold (carrier) for fatty acid biosynthesis (fatty acid elongation reaction).
  • the acyl group of the fatty acid forms a thioester bond with the phosphopantethein group bonded to the serine residue of ACP. In this state, the fatty acid is elongated.
  • ACP activity means an activity that functions as a scaffold for the elongation reaction of fatty acids by forming a thioester bond with the acyl group of the fatty acid. It is confirmed that the protein has ACP activity by, for example, introducing a DNA linking the gene encoding the protein downstream of a promoter functioning in the host into the ACP gene-deficient strain and complementing the ability to synthesize fatty acids. can do.
  • DNA in which a gene encoding the protein is linked downstream of a promoter that functions in the host cell is introduced into the host cell, and the cell is cultured under conditions where the introduced gene is expressed. It can be confirmed by analyzing changes in the production amount and composition of the fatty acids by conventional methods.
  • the protein can be obtained by referring to the literature such as Biochemistry, 2011, vol. 50 (25), p. 5704-5717, etc. and coenzyme A (CoA) and an appropriate ACP synthase (phosphopantetheinyl). This can be confirmed by reacting with phosphopantetheinyl transferase to form holo-ACP to which a phosphopantethein group is bound.
  • the holo-ACP is converted to a fatty acid and an appropriate acyl-ACP synthetase.
  • the reaction can be confirmed by forming an acyl-ACP having an acyl group bonded thereto.
  • medium chain means that the acyl group has 6 to 14 carbon atoms, preferably 8 to 14 carbon atoms, more preferably 10 to 14 carbon atoms, and still more preferably. Means that the number of carbon atoms is 10, 12, or 14.
  • the identity with the amino acid sequence of the protein (A) is preferably 75% or more, preferably 80% or more, more preferably 85% or more, more preferably 90% or more. Preferably, it is more preferably 92% or more, more preferably 93% or more, more preferably 94% or more, more preferably 95% or more, more preferably 96% or more, more preferably 97% or more, and more preferably 98% or more. 99% or more is more preferable. Further, as the protein (B), one or more (for example, 1 to 36, preferably 1 to 30 and more preferably 1 to 24) amino acid sequences of the protein (A).
  • Examples of the method for introducing a mutation into an amino acid sequence include a method for introducing a mutation into a base sequence encoding an amino acid sequence. Examples of the method for introducing mutation include site-specific mutagenesis.
  • Specific methods for introducing site-specific mutations include a method using SOE-PCR, an ODA method, a Kunkel method, and the like. Also, commercially available kits such as Site-Directed Mutagenesis System Mutan-SuperExpress Km Kit (Takara Bio), Transformer TM Site-Directed Mutagenesis Kit (Clonetech), KOD-Plus-Mutagenesis Kit (Toyobo) may be used. it can. Moreover, after giving a random gene mutation, the target gene can also be obtained by performing activity evaluation and gene analysis by an appropriate method.
  • the proteins (A) and (B) can be obtained by ordinary chemical techniques, genetic engineering techniques, and the like.
  • a protein derived from a natural product can be obtained by isolation, purification or the like from Nannochloropsis oculata.
  • the proteins (A) and (B) can be obtained by artificial chemical synthesis based on the amino acid sequence information shown in SEQ ID NO: 1.
  • the proteins (A) and (B) may be prepared as recombinant proteins by genetic recombination techniques.
  • the acyl carrier protein gene described below can be used.
  • algae such as Nannochloropsis oculata can be obtained from a preservation organization such as a private or public laboratory.
  • Nannochloropsis oculata strain NIES-2145 can be obtained from the National Institute for Environmental Studies (NIES).
  • ACP2 gene a gene comprising the following DNA (a) or (b) (hereinafter also referred to as “NoACP2 gene”)
  • NoACP2 gene a gene comprising the following DNA (a) or (b) (hereinafter also referred to as “NoACP2 gene”)
  • A DNA consisting of the base sequence represented by SEQ ID NO: 2.
  • B DNA encoding a protein having a base sequence with 70% or more identity to the DNA (a) and having ACP activity.
  • the base sequence of SEQ ID NO: 2 is a base sequence of a gene encoding a protein consisting of the amino acid sequence of SEQ ID NO: 1.
  • the identity with the base sequence of the DNA (a) is preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more. More preferably, 92% or more is more preferable, 93% or more is more preferable, 94% or more is more preferable, 95% or more is more preferable, 96% or more is more preferable, 97% or more is more preferable, and 98% or more is more Preferably, 99% or more is more preferable.
  • the DNA (b) may be one or more (for example, 1 to 108, preferably 1 to 90, more preferably 1 to 72 in the base sequence of the DNA (a), and more.
  • DNA encoding the protein (A) or (B) having a base deleted, substituted, inserted, or added and having ACP activity is also preferred.
  • the DNA (b) encodes the protein (A) or (B) that hybridizes with a DNA comprising a base sequence complementary to the DNA (a) under stringent conditions and has ACP activity. DNA is also preferred.
  • the method for promoting the expression of the ACP2 gene can be appropriately selected from conventional methods. Examples thereof include a method of introducing the ACP2 gene into a host, and a method of modifying an expression regulatory region (promoter, terminator, etc.) of the gene in a host having the ACP2 gene on the genome. Among them, a method of introducing the ACP2 gene into a host and promoting the expression of the ACP2 gene is preferable.
  • one that promotes the expression of a gene encoding the target protein is also referred to as a “transformant”, and one that does not promote the expression of the gene encoding the target protein is referred to as “host” or “ Also referred to as “wild strain”.
  • the transformant of the present invention is capable of producing medium-chain fatty acids or lipids comprising the medium-chain fatty acids.
  • the ratio of the lipid is significantly improved.
  • the transformant of the present invention is a lipid having a specific number of carbon atoms, particularly a medium chain fatty acid or a lipid comprising this, preferably a fatty acid having 6 to 14 carbon atoms or a lipid comprising this.
  • the fatty acid having 8 to 14 carbon atoms or a lipid comprising the same more preferably a fatty acid having 10 to 14 carbon atoms or a lipid comprising the same, more preferably the number of carbon atoms Is a fatty acid having 10, 12, or 14 fatty acid or a lipid comprising this as a constituent, more preferably a saturated fatty acid having 10, 12, or 14 carbon atoms (capric acid, lauric acid, myristic acid) or this as a constituent
  • a saturated fatty acid having 10, 12, or 14 carbon atoms (capric acid, lauric acid, myristic acid) or this as a constituent Can be suitably used for the production of a saturated fatty acid, more preferably a saturated fatty acid having 12 carbon atoms (lauric acid) or a lipid comprising this.
  • the productivity of fatty acids and lipids in the host and transformant can be measured by the method used in the examples.
  • the ACP2 gene can be obtained by ordinary genetic engineering techniques.
  • the ACP2 gene can be artificially synthesized based on the amino acid sequence shown in SEQ ID NO: 1 or the base sequence shown in SEQ ID NO: 2.
  • services such as Invitrogen can be used.
  • It can also be obtained by cloning from Nannochloropsis oculata. For example, it can be performed by the method described in Molecular Cloning-A LABORATORY MANUAL THIRD EDITION [Joseph Sambrook, David W. Russell, Cold Spring Harbor Laboratory Press (2001)].
  • Nannochloropsis oculata NIES-2145 used in the examples can be obtained from the National Institute for Environmental Studies (NIES).
  • a transformant that can be preferably used in the present invention can be obtained by introducing the ACP2 gene into a host by a conventional method. Specifically, it can be prepared by preparing a recombinant vector or gene expression cassette capable of expressing the ACP2 gene in a host cell, introducing it into the host cell, and transforming the host cell.
  • the host for the transformant can be appropriately selected from those usually used.
  • hosts that can be used in the present invention include microorganisms (including algae and microalgae), plants, and animals. From the viewpoint of production efficiency and availability of the obtained lipid, the host is preferably a microorganism or a plant, more preferably a microorganism, and even more preferably a microalgae.
  • the microorganism may be either prokaryotic, eukaryotic, Escherichia (Escherichia) genus microorganisms or Bacillus (Bacillus) genus microorganisms, Synechocystis (Synechocystis) microorganism of the genus, Synechococcus (Synechococcus) genus microorganism of Prokaryotes or eukaryotic microorganisms such as yeast and filamentous fungi can be used. Among them, Escherichia coli , Bacillus subtilis , red yeast ( Rhodosporidium toruloides ), or Mortierella sp.
  • Chlamydomonas Chlamydomonas
  • Chlorella Chlorella
  • Faye Oda Kuti ram Phaeodactylum
  • Nan'nokuroro Algae of the genus Psis are preferred, and algae of the genus Nannochloropsis are more preferred.
  • Nannochloropsis gaditana examples include Nannochloropsis gaditana , Nannochloropsis salina , Nannochloropsis oceanica , Nannochloropsis oceanica , Nannochloropsis oceanica Examples thereof include Nannochloropsis atomus , Nannochloropsis maculata , Nannochloropsis granulata , Nannochloropsis sp.
  • Nannochloropsis oculata or Nannochloropsis gaditana is preferable, and Nannochloropsis oculata is more preferable.
  • Arabidopsis thaliana As the plant body, Arabidopsis thaliana , Brassica napus , Brassica rapa , Cocos nucifera , Palm ( Elaeis guineensis ), caffe, soybean, from the viewpoint of high lipid content in seeds ( Glycine max ), corn ( Zea mays ), rice ( Oryza sativa ), sunflower ( Helianthus annuus ), camphor ( Cinnamomum camphora ), or jatropha ( Jatropha curcas ) are preferable, and Arabidopsis is more preferable.
  • a gene capable of introducing a gene encoding a target protein into a host and expressing the gene in a host cell I just need it.
  • a vector having an expression regulatory region such as a promoter or terminator according to the type of host to be introduced, and a vector having a replication origin or a selection marker can be used.
  • it may be a vector that autonomously grows and replicates outside the chromosome, such as a plasmid, or a vector that is integrated into the chromosome.
  • an expression vector that can be preferably used in the present invention, when a microorganism is used as a host, for example, pBluescript (pBS) II SK (-) (Stratagene), pSTV vector (Takara Bio), pUC vector (Takara Shuzo), pET vector (Takara Bio), pGEX vector (GE Healthcare), pCold vector (Takara Bio), pHY300PLK (Takara Bio), pUB110 ( 1986, Plasmid 15 (2), p.
  • pBR322 manufactured by Takara Bio Inc.
  • pRS403 manufactured by Stratagene
  • pMW218 / 219 manufactured by Nippon Gene.
  • pBluescript II SK
  • pMW218 / 219 is preferably used.
  • pUC19 manufactured by Takara Bio Inc.
  • P66 Cholamydomonas Center
  • P-322 Cholamydomonas Center
  • pPha-T1 Journal of Basic Microbiology, 2011, vol. 51) , p.
  • pJET1 manufactured by Cosmo Bio
  • the host is an algae belonging to the genus Nannochloropsis
  • pUC19, pPha-T1, or pJET1 is preferably used.
  • the host is an algae belonging to the genus Nannochloropsis, refer to the method described in Proceedings of the National Academy of Sciences of the United States of America, 2011, vol. 108 (52).
  • a host can also be transformed with a DNA fragment (gene expression cassette) comprising a promoter and a terminator. Examples of the DNA fragment include a DNA fragment amplified by a PCR method and a DNA fragment cleaved with a restriction enzyme.
  • pRI vectors manufactured by Takara Bio Inc.
  • pBI vectors manufactured by Clontech
  • IN3 vectors manufactured by Implanta Innovations
  • the host is Arabidopsis thaliana
  • pRI vectors or pBI vectors are preferably used.
  • promoter that regulates the expression of the gene encoding the target protein incorporated in the expression vector
  • Promoters that can be preferably used in the present invention can be induced by the addition of lac promoter, trp promoter, tac promoter, trc promoter, T7 promoter, SpoVG promoter, isopropyl ⁇ -D-1-thiogalactopyranoside (IPTG).
  • Promoters related to various derivatives Rubisco operon (rbc), PSI reaction center protein (psaAB), PSII D1 protein (psbA), cauliflower mosil virus 35SRNA promoter, housekeeping gene promoter (eg, tubulin promoter, actin promoter, ubiquitin promoter) etc.), rape or oilseed rape derived Napin gene promoter, a plant-derived Rubisco promoters, Nannochloropsis from the genus violaxanthin / chlorophyll a binding protein gene promoter (VCP1 Promoter, VCP2 promoter) (Proceedings of the National Academy of Sciences of the United States of America, 2011, vol.
  • the promoter of the oleosin-like protein LDSP lipid droplet surface protein gene from the genus Nannochloropsis
  • the promoter of the violaxanthin / chlorophyll a-binding protein gene or the genus Nannochloropsis is used.
  • the promoter of the oleosin-like protein LDSP gene can be preferably used.
  • the type of selectable marker for confirming that the gene encoding the target protein has been incorporated can be appropriately selected according to the type of host used.
  • Selectable markers that can be preferably used in the present invention include ampicillin resistance gene, chloramphenicol resistance gene, erythromycin resistance gene, neomycin resistance gene, kanamycin resistance gene, spectinomycin resistance gene, tetracycline resistance gene, blasticidin S Drug resistance genes such as resistance genes, bialaphos resistance genes, zeocin resistance genes, paromomycin resistance genes, gentamicin resistance genes, and hygromycin resistance genes. Furthermore, a gene deficiency associated with auxotrophy can be used as a selectable marker gene.
  • transformation method can be appropriately selected from conventional methods according to the type of host used. For example, transformation methods using calcium ions, general competent cell transformation methods, protoplast transformation methods, electroporation methods, LP transformation methods, methods using Agrobacterium, particle gun methods, etc. .
  • transformation methods using calcium ions For example, transformation methods using calcium ions, general competent cell transformation methods, protoplast transformation methods, electroporation methods, LP transformation methods, methods using Agrobacterium, particle gun methods, etc.
  • transformation can also be performed using the electroporation method described in Nature Communications, DOI: 10.1038 / ncomms1688, 2012 or the like.
  • ⁇ Selection of transformant introduced with target gene fragment> can be performed by using a selection marker or the like.
  • a drug resistance gene acquired by a transformant as a result of introduction of a drug resistance gene into a host cell together with a target DNA fragment at the time of transformation can be used as an indicator.
  • the introduction of the target DNA fragment can be confirmed by a PCR method using a genome as a template.
  • “Expression regulatory region” refers to a promoter or terminator, and these sequences are generally involved in regulating the expression level (transcription level, translation level) of adjacent genes.
  • the expression regulatory region of the gene is modified to promote the expression of the ACP2 gene, thereby improving the productivity of medium-chain fatty acids or lipids comprising the same. be able to.
  • Examples of the method for modifying the expression regulatory region include promoter replacement.
  • the expression of the ACP2 gene can be promoted by replacing the promoter of the gene (hereinafter also referred to as “ACP2 promoter”) with a promoter having higher transcriptional activity.
  • ACP2 promoter the promoter of the gene
  • the NoACP2 gene is present immediately below the DNA sequence consisting of the base sequence shown in SEQ ID NO: 37.
  • a promoter region is present in the DNA sequence consisting of the base sequence shown in SEQ ID NO: 37.
  • the promoter used for replacement of the ACP2 promoter is not particularly limited, and can be appropriately selected from those having higher transcriptional activity than the ACP2 promoter and suitable for production of medium-chain fatty acids or lipids comprising them.
  • the promoter of the LDSP gene can be preferably used. From the viewpoint of improving the productivity of medium chain fatty acids or lipids comprising them as a constituent, the promoter of violaxanthin / chlorophyll a binding protein gene or the promoter of LDSP gene is more preferable.
  • the above-described promoter modification can be performed according to a conventional method such as homologous recombination. Specifically, a linear DNA fragment containing upstream and downstream regions of the target promoter and containing another promoter instead of the target promoter is constructed and incorporated into the host cell, and the target promoter of the host genome Two homologous recombination occurs at the upstream and downstream side of. As a result, the target promoter on the genome is replaced with another promoter fragment, and the promoter can be modified.
  • a method of modifying a target promoter by homologous recombination can be performed with reference to documents such as Methods in molecular biology, 1995, vol. 47, p. 291-302.
  • the host is an algae belonging to the genus Nannochloropsis
  • the genome is obtained by homologous recombination with reference to documents such as Proceedings of the National Academy of Sciences of the United States of America, 2011, vol. 108 (52). Specific regions within can be modified.
  • the transformant of the present invention includes a gene encoding an acyl-ACP thioesterase (hereinafter also referred to as “TE”) in addition to the gene encoding the protein (A) or (B) (hereinafter referred to as “TE gene”). It is preferable that expression of (also referred to as) is promoted.
  • TE hydrolyzes the thioester bond of acyl-ACP synthesized by fatty acid synthase such as ⁇ -ketoacyl-acyl-carrier-protein synthase (hereinafter also referred to as “KAS”) It is an enzyme that produces fatty acids.
  • the fatty acid synthesis on the ACP is completed by the action of TE, and the extracted fatty acid is used for synthesis of polyunsaturated fatty acid, triacylglycerol and the like. Therefore, by promoting the expression of the TE gene in addition to the ACP2 gene, it is possible to further improve the lipid productivity, particularly the fatty acid productivity, of the transformant used for lipid production.
  • the TE that can be preferably used in the present invention may be a protein having acyl-ACP thioesterase activity (hereinafter also referred to as “TE activity”).
  • TE activity refers to an activity of hydrolyzing the thioester bond of acyl-ACP.
  • TE is known to exhibit different reactivity depending on the number of carbon atoms and the number of unsaturated bonds of the acyl group (fatty acid residue) constituting the substrate acyl-ACP. Thus, TE is considered to be an important factor that determines the fatty acid composition in vivo.
  • it is preferable to promote the expression of the gene encoding TE.
  • the productivity of medium chain fatty acids is improved. By introducing such a gene, the productivity of medium chain fatty acids can be further improved.
  • TE that can be preferably used in the present invention can be appropriately selected from normal TE and functionally equivalent proteins according to the type of host.
  • normal TE For example, Cuphea calophylla subsp mesostemon derived TE (GenBank ABB71581);.
  • Cinnamomum camphora derived TE (GenBank AAC49151.1); Myristica fragrans derived TE (GenBank AAB71729); Myristica fragrans derived TE (GenBank AAB71730); Cuphea lanceolata from TE (GenBank CAA54060); TE from Cuphea hookeriana (GenBank Q39513); TE from Ulumus americana (GenBank AAB71731); TE from Sorghum bicolor (GenBank EER87824); TE from Sorghum bicolor (GenBank EER88593); Cocos nucifera TE from CnFatB1: BMC Biochemistry 2011, 12:44; TE from Cocos nucifera (see CnFatB2: BMC Biochemistry, 2011, 12:44); TE from Cuphea viscosissima (CvFatB1: BMC Biochemistry, 2011, 12:44) TE) from Cuphea viscosissima (see CvFatB2
  • Nannochloropsis-Guranyurata derived TE SEQ ID NO: 44, the gene of the nucleotide sequence encoding it: SEQ ID NO: 45
  • Simbionix Oddi iodonium Micro Adria Chi cam Symbiodinium microadriaticum derived from TE
  • SEQ ID NO: 46 the base sequence of the gene encoding the same: SEQ ID NO: 47
  • the identity with any of the above-described TE amino acid sequences is 50% or more (preferably 70% or more, more preferably 80% or more, and further preferably 90% or more).
  • a protein having the amino acid sequence and having TE activity can also be used.
  • TE derived from coconut SEQ ID NO: 40, nucleotide sequence of the gene encoding it: SEQ ID NO: 41
  • NoTE SEQ ID NO: 36, Base sequence of encoding gene: SEQ ID NO: 27
  • TE derived from bay SEQ ID NO: 38, base sequence of gene encoding this: SEQ ID NO: 39
  • TE derived from Nannochloropsis gaditana SEQ ID NO: 42, this Base sequence of encoding gene: SEQ ID NO: 43
  • TE derived from Nannochloropsis granulata SEQ ID NO: 44, base sequence of gene encoding this: SEQ ID NO: 45
  • derived from symbiodinium microadriaticum TE SEQ ID NO: 46, nucleotide sequence of the gene encoding it: SEQ ID NO: 47
  • identity with the amino acid sequence of these TEs 50%
  • a protein has TE activity means that, for example, a DNA in which a TE gene is linked downstream of a promoter that functions in a host cell such as E. coli is introduced into a host cell lacking the fatty acid degradation system, and the introduced TE gene is expressed. It can be confirmed by culturing under conditions and analyzing the change in fatty acid composition in the host cell or culture solution using a method such as gas chromatography analysis. In addition, after introducing the DNA linked to the TE gene downstream of a promoter that functions in a host cell such as E. coli into the host cell and culturing the cell under conditions where the introduced TE gene is expressed, By carrying out reactions using various acyl-ACP substrates prepared by the method of Yuan et al. (Proc. Natl. Acad. Sci. USA, 1995, vol. 92 (23), p. 10639-10643) Can be measured.
  • the transformant of the present invention preferably promotes the expression of a gene encoding KAS in addition to the gene encoding the protein (A) or (B).
  • KAS is a protein that catalyzes the condensation reaction between acyl-ACP and malonyl ACP and is involved in the synthesis of acyl-ACP. Therefore, by promoting the expression of the gene encoding KAS in addition to the ACP2 gene (hereinafter also simply referred to as “KAS gene”), the productivity of lipids in transformants used for lipid production, particularly the productivity of fatty acids Can be further improved.
  • the KAS that can be preferably used in the present invention may be a protein having ⁇ -ketoacyl-ACP synthase activity (hereinafter also referred to as “KAS activity”).
  • KAS activity refers to an activity of catalyzing the condensation reaction of acetyl-ACP or acyl-ACP with malonyl ACP.
  • KAS is classified into KAS I, KAS II, KAS III, and KAS IV depending on its substrate specificity.
  • KAS IV which is a kind of KAS, mainly catalyzes elongation reactions having 6 to 14 carbon atoms to synthesize medium chain acyl-ACP. Therefore, by promoting the expression of the gene encoding KAS IV in addition to the ACP2 gene, the productivity of medium chain fatty acids can be further improved.
  • KAS III a type of KAS, catalyzes the reaction of extending acetyl-ACP (or acetyl-CoA) having 2 carbon atoms to ⁇ -ketoacyl-ACP having 4 carbon atoms to synthesize short-chain or medium-chain fatty acids. Promote. Therefore, the productivity of medium chain fatty acids can be further improved by promoting the expression of the gene encoding KAS III in addition to the ACP2 gene.
  • the KAS that can be preferably used in the present invention can be appropriately selected from normal KAS and functionally equivalent proteins according to the type of host.
  • KAS IV derived from Nannochloropsis oculata (hereinafter also referred to as “NoKASIV”) (SEQ ID NO: 48, nucleotide sequence of the gene encoding the same: SEQ ID NO: 49)
  • KAS IV III derived from Nannochloropsis oculata hereinafter referred to as “NoKASIV”
  • NoKASIII Also referred to as “NoKASIII”
  • an amino acid sequence having an identity with the amino acid sequence of NoKASIV of 50% or more preferably 70% or more, more preferably 80% or more, more preferably 90% or more.
  • a protein having KAS activity can also be used.
  • the transformant of the present invention preferably promotes the expression of a gene encoding an acyltransferase in addition to the gene encoding the protein (A) or (B).
  • acyltransferase (hereinafter also simply referred to as “AT”) is a protein that catalyzes acylation of glycerol compounds such as glycerol triphosphate, lysophosphatidic acid, diacylglycerol and the like.
  • TAG triacylglycerol
  • AT has a plurality of ATs having different reaction specificities depending on the number of carbon atoms and the number of unsaturated bonds in the acyl group (fatty acid residue) constituting fatty acid acyl CoA or fatty acid acyl ACP as a substrate. It has been. Therefore, AT is considered to be an important factor that determines fatty acid composition in vivo. In addition, when using a host that does not originally have an AT gene, it is preferable to promote the expression of the AT gene. Further, by promoting the expression of an AT gene having substrate specificity for medium chain fatty acyl CoA or medium chain fatty acyl ACP, the productivity of medium chain fatty acid is improved.
  • the AT that can be used in the present invention may be a protein having acyltransferase activity (hereinafter also referred to as “AT activity”).
  • AT activity means an activity of catalyzing acylation of glycerol compounds such as glycerol triphosphate, lysophosphatidic acid, diacylglycerol and the like.
  • the AT that can be used in the present invention can be appropriately selected from normal AT and functionally equivalent proteins according to the type of host.
  • AT derived from Nannochloropsis oculata hereinafter also referred to as “NoAT”
  • SEQ ID NO: 52 nucleotide sequence of the gene encoding the same: SEQ ID NO: 53
  • a protein that is functionally equivalent to this from an amino acid sequence having an identity with the amino acid sequence of NoKASIV of 50% or more (preferably 70% or more, more preferably 80% or more, more preferably 90% or more).
  • a protein having AT activity can also be used.
  • the transformant of the present invention preferably promotes the expression of a gene encoding acyl-CoA synthetase in addition to the gene encoding protein (A) or (B).
  • acyl-CoA synthetase (hereinafter, also simply referred to as “ACS”) is a protein involved in the production of acyl-CoA by adding CoA to biosynthesized fatty acids (free fatty acids). Therefore, by promoting the expression of the gene encoding ACS in addition to the ACP2 gene (hereinafter also simply referred to as “ACS gene”), the productivity of lipids in transformants used for lipid production, particularly the productivity of fatty acids Can be further improved.
  • the ACS that can be used in the present invention may be a protein having acyl-CoA synthetase activity (hereinafter also referred to as “ACS activity”).
  • ACS activity means an activity of binding free fatty acid and CoA to produce acyl-CoA.
  • ACSs that can be used in the present invention can be appropriately selected from ordinary ACSs and proteins functionally equivalent to them according to the type of host.
  • ACS derived from Nannochloropsis oculata (SEQ ID NO: 54, nucleotide sequence of the gene encoding the same: SEQ ID NO: 55; SEQ ID NO: 56, nucleotide sequence of the gene encoding the same: SEQ ID NO: 57; SEQ ID NO: 58, this The nucleotide sequence of the gene encoding: SEQ ID NO: 59) and the like.
  • identity with the amino acid sequence of ACS derived from the Nannochloropsis oculata is 50% or more (preferably 70% or more, more preferably 80% or more, more preferably 90%). % Or more) and a protein having ACS activity can also be used.
  • the above-mentioned amino acid sequence information of TE, KAS, AT, and ACS, and the sequence information of genes encoding these can be obtained from, for example, the National Center for Biotechnology Information (NCBI).
  • NBI National Center for Biotechnology Information
  • transformants in which the expression of TE gene, KAS gene, AT gene, and ACS gene are promoted can be prepared by a conventional method. For example, in the same manner as the method for promoting the expression of the ACP2 gene described above, transformation by a method for introducing the various genes into a host, a method for modifying the expression regulatory region of the gene in a host having the various genes on the genome, etc. The body can be made.
  • productivity of medium-chain fatty acids or lipids comprising the same is improved as compared to a host in which expression of the gene encoding the protein (A) or (B) is not promoted. is doing. Therefore, if the transformant of the present invention is cultured under appropriate conditions, and then the medium chain fatty acid or the lipid containing it as a constituent component is recovered from the obtained culture or growth product, the medium chain fatty acid or the constituent component thereof is recovered. Can be produced efficiently.
  • “culture” refers to the culture solution and transformant after culturing
  • “growth” refers to the transformant after growth.
  • the culture conditions of the transformant of the present invention can be appropriately selected depending on the host, and culture conditions usually used for the host can be used. From the viewpoint of fatty acid production efficiency, for example, glycerol, acetic acid, glucose or the like may be added to the medium as a precursor involved in the fatty acid biosynthesis system.
  • the Escherichia coli When Escherichia coli is used as a host, the Escherichia coli can be cultured, for example, in LB medium or Overnight Express Instant TB Medium (Novagen) at 30 to 37 ° C. for 0.5 to 1 day.
  • the culture of Arabidopsis thaliana can be performed, for example, at a temperature of 20 to 25 ° C. in soil, continuously irradiated with white light, or under light conditions such as 16 hours of light and 8 hours of dark. Can be cultivated monthly.
  • the culture medium may be based on natural seawater or artificial seawater, or a commercially available culture medium may be used.
  • the medium include f / 2 medium, ESM medium, Daigo IMK medium, L1 medium, and MNK medium.
  • f / 2 medium, ESM medium, or Daigo IMK medium is preferable, f / 2 medium or Daigo IMK medium is more preferable, and f / 2 medium is further included. preferable.
  • nitrogen sources, phosphorus sources, metal salts, vitamins, trace metals, and the like can be appropriately added to the medium.
  • the amount of the transformant inoculated on the medium can be selected as appropriate, and is preferably 1% (vol / vol) or more per medium from the viewpoint of growth. Moreover, the upper limit is preferably 50% (vol / vol) or less, and more preferably 10% (vol / vol) or less.
  • the numerical range of the amount of algae to be inoculated is preferably 1 to 50% (vol / vol), more preferably 1 to 10% (vol / vol).
  • the culture temperature is not particularly limited as long as it does not adversely affect the growth of algae, but it is usually in the range of 5 to 40 ° C. From the viewpoint of promoting the growth of algae, improving the productivity of fatty acids, and reducing the production cost, 10 ° C. or higher is preferable, and 15 ° C.
  • the upper limit is preferably 35 ° C. or lower, and more preferably 30 ° C. or lower.
  • the numerical range of the culture temperature is preferably 10 to 35 ° C, more preferably 15 to 30 ° C.
  • the algae is preferably cultured under light irradiation so that photosynthesis is possible.
  • the light irradiation may be performed under conditions that allow photosynthesis, and may be artificial light or sunlight.
  • the illuminance at the time of light irradiation is preferably 100 lux or more, more preferably 300 lux or more, and even more preferably 1000 lux or more from the viewpoint of promoting the growth of algae and improving the productivity of fatty acids.
  • the upper limit is preferably 50000 lux or less, more preferably 10,000 lux or less, and further preferably 6000 lux or less.
  • the numerical range of illuminance upon light irradiation is preferably in the range of 100 to 50000 lux, more preferably in the range of 300 to 10,000 lux, and still more preferably in the range of 1000 to 6000 lux.
  • the light irradiation interval is not particularly limited, but from the same viewpoint as described above, it is preferably performed in a light / dark cycle. Of the 24 hours, the light period is preferably 8 hours or more, and more preferably 10 hours or more.
  • the upper limit is preferably 24 hours or less, and more preferably 18 hours or less.
  • the numerical range of the light period is preferably 8 to 24 hours, more preferably 10 to 18 hours, and further preferably 12 hours.
  • the culture of algae is preferably performed in the presence of a gas containing carbon dioxide or a medium containing a carbonate such as sodium bicarbonate so that photosynthesis is possible.
  • concentration of carbon dioxide in the gas is not particularly limited, but is preferably 0.03% (similar to atmospheric conditions) or more, more preferably 0.05% or more from the viewpoint of promoting growth and improving the productivity of fatty acids. 1% or more is further preferable, and 0.3% or more is further more preferable.
  • the upper limit is preferably 10% or less, more preferably 5% or less, still more preferably 3% or less, and even more preferably 1% or less.
  • the numerical range of the carbon dioxide concentration is preferably 0.03 to 10%, more preferably 0.05 to 5%, further preferably 0.1 to 3%, and still more preferably 0.3 to 1%.
  • the concentration of the carbonate is not particularly limited.
  • sodium hydrogen carbonate it is preferably 0.01% by mass or more, more preferably 0.05% by mass or more from the viewpoint of promoting growth and improving the fatty acid productivity. 1% by mass or more is more preferable.
  • the upper limit is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less.
  • the numerical range of the concentration of sodium bicarbonate is preferably 0.01 to 5% by mass, more preferably 0.05 to 2% by mass, and further preferably 0.1 to 1% by mass.
  • the culture time is not particularly limited, and may be performed for a long period of time (for example, about 150 days) so that algal bodies that accumulate lipids at a high concentration can grow at a high concentration. 3 days or more are preferable, and 7 days or more are more preferable.
  • the upper limit is preferably 90 days or less, and more preferably 30 days or less.
  • the numerical range of the culture period is preferably 3 to 90 days, more preferably 3 to 30 days, and further preferably 7 to 30 days.
  • cultivation may be any of aeration stirring culture, shaking culture, or stationary culture, and aeration stirring culture is preferable from the viewpoint of improving aeration.
  • the method for collecting lipid from the culture or growth can be appropriately selected from conventional methods.
  • lipid components can be isolated from the aforementioned culture or growth by filtration, centrifugation, cell disruption, gel filtration chromatography, ion exchange chromatography, chloroform / methanol extraction method, hexane extraction method, ethanol extraction method, or the like. Can be separated and recovered.
  • oil is recovered from the culture or growth by pressing or extraction, and then general purification such as degumming, deoxidation, decolorization, dewaxing, deodorization, etc. is performed to obtain lipids. be able to.
  • a fatty acid can be obtained by hydrolyzing the isolated lipid.
  • Examples of the method for isolating the fatty acid from the lipid component include a method of treating at a high temperature of about 70 ° C. in an alkaline solution, a method of treating with lipase, a method of decomposing using high-pressure hot water, and the like.
  • the lipid produced in the production method of the present invention preferably contains a fatty acid or a fatty acid compound, and more preferably contains a fatty acid or a fatty acid ester compound, from the viewpoint of its availability.
  • the fatty acid or fatty acid ester compound contained in the lipid is preferably a medium chain fatty acid or a fatty acid ester compound thereof from the viewpoint of availability to a surfactant or the like, and a fatty acid having 6 to 14 carbon atoms or a fatty acid ester compound thereof.
  • a fatty acid having 8 to 14 carbon atoms or a fatty acid ester compound thereof is more preferable, a fatty acid having 10 to 14 carbon atoms or a fatty acid ester compound thereof is further preferable, and the number of carbon atoms is 10, 12, Or 14 fatty acids or fatty acid ester compounds thereof, more preferably saturated fatty acids (capric acid, lauric acid, myristic acid) having 10, 12 or 14 carbon atoms or fatty acid ester compounds thereof, and 12 carbon atoms. Saturated fatty acid (lauric acid) or its fatty acid ester compound But more preferable. From the viewpoint of productivity, the fatty acid ester compound is preferably a simple lipid or a complex lipid, more preferably a simple lipid, and even more preferably triacylglycerol.
  • Lipids obtained by the production method of the present invention are used as edible, plasticizers, emulsifiers such as cosmetics, detergents such as soaps and detergents, fiber treatment agents, hair rinse agents, or bactericides and preservatives. Can do.
  • the present invention further discloses the following lipid production method, method for modifying the composition of the fatty acid produced, a transformant, and a method for producing the transformant with respect to the embodiment described above.
  • a method for producing a lipid comprising culturing a transformant in which expression of a gene encoding the following protein (A) or (B) is promoted to produce a fatty acid or a lipid comprising the same.
  • a protein comprising the amino acid sequence represented by SEQ ID NO: 1.
  • the identity with the amino acid sequence of the protein (A) is 70% or more, preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably 92 % Or more, preferably 93% or more, more preferably 94% or more, more preferably 95% or more, more preferably 96% or more, more preferably 97% or more, more preferably 98% or more, and even more preferably 99% or more.
  • a protein comprising the amino acid sequence of and having ACP activity.
  • ⁇ 2> Improve productivity of medium-chain fatty acids produced in cells of transformants or lipids comprising them by promoting expression of the gene encoding the protein (A) or (B) A method for producing lipids.
  • ⁇ 3> Increase the proportion of medium chain fatty acids in the total fatty acids produced in the cells of the transformant by promoting the expression of the gene encoding the protein (A) or (B), Modification method.
  • ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, wherein a gene encoding the protein (A) or (B) is introduced into a host to promote expression of the gene.
  • ⁇ 5> A method for producing a lipid, comprising culturing a transformant introduced with a gene encoding the protein (A) or (B) to produce a fatty acid or a lipid comprising this as a constituent.
  • ⁇ 6> A method for producing a lipid, wherein a gene encoding the protein (A) or (B) is introduced to improve the productivity of the produced medium chain fatty acid or a lipid comprising the same.
  • ⁇ 7> A method for modifying a fatty acid composition, wherein a transformant into which a gene encoding the protein (A) or (B) is introduced is cultured, and the proportion of medium chain fatty acids in all the fatty acids produced is increased.
  • the protein (B) has one or more, preferably 1 to 36, more preferably 1 to 30, more preferably 1 or more amino acid sequences in the protein (A). 24 or less, more preferably 1 or more and 18 or less, more preferably 1 or more and 12 or less, more preferably 1 or more and 9 or less, more preferably 1 or more and 8 or less, more preferably 1 or more 7 or less, more preferably 1 or more and 6 or less, more preferably 1 or more and 4 or less, more preferably 1 or more and 3 or less, more preferably 1 or more and 2 or less, more preferably 1;
  • the method according to any one of ⁇ 1> to ⁇ 7>, wherein the amino acid is a protein in which the amino acid is deleted, substituted, inserted or added.
  • ⁇ 9> The method according to any one of ⁇ 1> to ⁇ 8>, wherein the gene encoding the protein (A) or (B) is a gene consisting of the following DNA (a) or (b).
  • (B) The identity of the base sequence of the DNA (a) is 70% or more, preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably 92 % Or more, preferably 93% or more, more preferably 94% or more, more preferably 95% or more, more preferably 96% or more, more preferably 97% or more, more preferably 98% or more, and even more preferably 99% or more.
  • the DNA (b) has one or more, preferably 1 to 108, more preferably 1 to 90, more preferably 1 or more nucleotide sequences in the DNA (a).
  • ⁇ 11> The method according to any one of ⁇ 1> to ⁇ 10>, wherein the transformant promotes the expression of a gene encoding TE.
  • ⁇ 12> The method according to ⁇ 11>, wherein the TE is TE having substrate specificity for medium chain acyl-ACP.
  • a protein having the amino acid sequence shown in SEQ ID NO: 40, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 42, SEQ ID NO: 44, or SEQ ID NO: 46, or the amino acid sequence of the protein is 50 % Or more, preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more, and is a protein having TE activity against medium chain acyl-ACP, ⁇ 11> or ⁇ 11 Item 12>.
  • ⁇ 14> The method according to any one of ⁇ 1> to ⁇ 13>, wherein expression of the gene encoding AT is promoted in the transformant.
  • a protein comprising the amino acid sequence shown in SEQ ID NO: 52, or the identity of the protein with the amino acid sequence of 50% or more, preferably 70% or more, more preferably 80% or more, and still more preferably 90 % Or more of the amino acid sequence, and the method according to ⁇ 14> above, wherein the protein has AT activity.
  • the protein having the amino acid sequence shown in SEQ ID NO: 48 or 50, or the identity of the amino acid sequence of the protein is 50% or more, preferably 70% or more, more preferably 80% or more, More preferably, the method according to ⁇ 16>, wherein the method is a protein having an amino acid sequence of 90% or more and having KAS activity.
  • the protein having the amino acid sequence shown in SEQ ID NO: 54, SEQ ID NO: 56 or SEQ ID NO: 58, or the identity of the amino acid sequence of the protein is 50% or more, preferably 70% or more, more preferably ⁇ 16>
  • ⁇ 19> The method according to any one of ⁇ 1> to ⁇ 18>, wherein the transformant is a microorganism or a plant.
  • the microorganism is a microalgae.
  • the microalga is an algae belonging to the genus Nannochloropsis, preferably Nannochloropsis oculata.
  • the microorganism is Escherichia coli.
  • the plant is Arabidopsis thaliana.
  • the lipid is a medium chain fatty acid or a fatty acid ester compound thereof, preferably a fatty acid having 6 to 14 carbon atoms or a fatty acid ester compound thereof, more preferably a fatty acid having 8 to 14 carbon atoms or a fatty acid thereof.
  • An ester compound more preferably a fatty acid having 10 to 14 carbon atoms or a fatty acid ester compound thereof, more preferably a fatty acid having 10, 12, or 14 carbon atoms or a fatty acid ester compound thereof, more preferably a carbon atom number.
  • ⁇ 26> A transformant in which expression of a gene encoding the protein (A) or (B) is promoted in a host cell.
  • ⁇ 27> A transformant obtained by introducing a gene encoding the protein (A) or (B) or a recombinant vector containing the gene into a host.
  • ⁇ 28> A method for producing a transformant, wherein a gene encoding the protein (A) or (B) or a recombinant vector containing the gene is introduced into a host.
  • ⁇ 29> The transformant according to any one of ⁇ 26> to ⁇ 28> or the method for producing the same, wherein the protein (B) is a protein defined in the item ⁇ 8>.
  • ⁇ 30> The transformation according to any one of ⁇ 26> to ⁇ 29>, wherein the gene encoding the protein (A) or (B) is the gene consisting of the DNA (a) or (b) Body or its production method.
  • the gene encoding the protein (A) or (B) is the gene consisting of the DNA (a) or (b) Body or its production method.
  • the DNA (b) is DNA defined in the ⁇ 10>.
  • ⁇ 32> The transformant according to any one of ⁇ 26> to ⁇ 31> or the method for producing the transformant, wherein expression of a gene encoding TE is promoted in the transformant.
  • ⁇ 33> The transformant according to ⁇ 32> or the method for producing the same, wherein the TE is TE having substrate specificity for medium-chain acyl-ACP.
  • the protein having the amino acid sequence shown in SEQ ID NO: 40, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 42, SEQ ID NO: 44 or SEQ ID NO: 46, or the amino acid sequence of the protein has 50 identity % Or more, preferably 70% or more, more preferably 80% or more, more preferably 90% or more, and a protein having TE activity against medium chain acyl-ACP, ⁇ 32> or ⁇ 33>
  • ⁇ 35> The transformant according to any one of ⁇ 26> to ⁇ 34> or a method for producing the transformant, wherein expression of a gene encoding AT is promoted in the transformant.
  • ⁇ 36> A protein comprising the amino acid sequence shown in SEQ ID NO: 52, or the identity of the protein with the amino acid sequence of 50% or more, preferably 70% or more, more preferably 80% or more, and still more preferably 90 % Or more of the amino acid sequence and a transformant according to the above ⁇ 35>, which is a protein having AT activity or a method for producing the same.
  • ⁇ 37> The trait according to any one of ⁇ 26> to ⁇ 36>, wherein the transformant promotes the expression of a gene encoding at least one protein selected from the group consisting of KAS and ACS. A converter or a production method thereof.
  • the protein having the amino acid sequence shown in SEQ ID NO: 48 or SEQ ID NO: 50 or the identity of the amino acid sequence of the protein is 50% or more, preferably 70% or more, more preferably 80% or more, More preferably, the transformant according to ⁇ 37> above or a method for producing the same, which is a protein having an amino acid sequence of 90% or more and having KAS activity.
  • the protein having the amino acid sequence represented by SEQ ID NO: 54, SEQ ID NO: 56 or SEQ ID NO: 58, or the amino acid sequence of the protein is 50% or more, preferably 70% or more, more preferably
  • the transformant according to ⁇ 37> above or a method for producing the same which is a protein having an amino acid sequence of 80% or more, more preferably 90% or more and having ACS activity.
  • ⁇ 41> The transformant according to ⁇ 40> or the method for producing the same, wherein the microorganism is a microalgae.
  • ⁇ 42> The transformant according to ⁇ 41> above, wherein the microalgae are algae belonging to the genus Nannochloropsis, preferably Nannochloropsis oculata, or a method for producing the same.
  • ⁇ 43> The transformant according to ⁇ 40> or the production method thereof, wherein the microorganism is Escherichia coli.
  • ⁇ 44> The transformant according to ⁇ 40> or a method for producing the same, wherein the plant is Arabidopsis thaliana.
  • the medium chain fatty acid is a fatty acid having 6 to 14 carbon atoms, preferably a fatty acid having 8 to 14 carbon atoms, more preferably a fatty acid having 10 to 14 carbon atoms, more preferably.
  • Example 1 Production of a transformant in which an ACP gene derived from Nannochloropsis oculata was introduced into Nannochloropsis oculata, and production of lipids by the transformant (1) Construction of plasmid for expression of zeocin resistance gene Zeocin resistance gene (sequence) No. 3) and the tubulin promoter sequence (SEQ ID NO: 4) derived from Nannochloropsis gaditana strain CCMP526 described in the literature (Nature Communications, DOI: 10.1038 / ncomms1688, 2012) was artificially synthesized.
  • PCR was performed using the primer pair of primer number 5 and primer number 6 and the primer pair of primer number 7 and primer number 8 shown in Table 1, respectively, and the zeocin resistance gene and tubulin promoter sequence Each was amplified.
  • PCR was performed using the primer pair of primer number 9 and primer number 10 shown in Table 1, using the genome of Nannochloropsis oculata NIES2145 strain (obtained from National Institute for Environmental Studies (NIES)) as a template, The heat shock protein terminator sequence (SEQ ID NO: 11) was amplified.
  • PCR was performed using the primer pair of primer number 12 and primer number 13 shown in Table 1, to amplify plasmid vector pUC19.
  • This expression plasmid consists of an insert sequence linked in the order of a tubulin promoter sequence, a zeocin resistance gene, a heat shock protein terminator sequence, and a pUC19 vector sequence.
  • PCR was performed using the genome of Nannochloropsis oculata NIES2145 strain as a template and the primer pair of primer number 16 and primer number 17 and the primer pair of primer number 18 and primer number 19 shown in Table 1, respectively.
  • a promoter sequence (SEQ ID NO: 20) and a VCP1 terminator sequence (SEQ ID NO: 21) were obtained.
  • PCR was performed using the zeocin resistance gene expression plasmid as a template and the primer pair of primer number 22 and primer number 13 shown in Table 1, and a zeocin resistance gene expression cassette (tubulin promoter sequence, zeocin resistance gene, heat shock) A fragment consisting of a protein terminator sequence) and a pUC19 sequence was amplified.
  • the NoACP2 gene fragment was mixed with a fragment consisting of an LDSP promoter fragment, a VCP1 terminator fragment, a zeocin resistance gene expression cassette and a pUC19 sequence. These four amplified fragments were fused in the same manner as described above to construct a NoACP2 gene expression plasmid.
  • This expression plasmid consists of an LDSP promoter sequence, NoACP2 gene, VCP1 terminator sequence, tubulin promoter sequence, zeocin resistance gene, heat shock protein terminator sequence ligated insert sequence in this order, and pUC19 vector sequence.
  • Nannochloropsis oculata strain NIES2145 were washed with a 384 mM sorbitol solution to completely remove salts, and used as host cells for transformation.
  • About 500 ng of the NoACP2 gene expression cassette amplified above was mixed with host cells, and electroporation was performed under the conditions of 50 ⁇ F, 500 ⁇ , and 2,200 v / 2 mm.
  • the mixture was applied to a 2 ⁇ g / mL zeocin-containing f / 2 agar medium, and cultured at 25 ° C. in a 0.3% CO 2 atmosphere under 12 h / 12 h light / dark conditions for 2 to 3 weeks. From the obtained colonies, the Nannochloropsis oculata strain containing the NoACP2 gene expression cassette was selected by PCR.
  • N15P5 medium a medium in which the nitrogen concentration of f / 2 medium is increased 15-fold and the phosphorus concentration is increased 5-fold. ° C., under 0.3% CO 2 atmosphere, 3 to 4 weeks shaking culture at 12h / 12h light-dark conditions to the preculture. 2 mL of the pre-culture solution of two independent transformants was transferred to 18 mL of N15P5 medium and cultured with shaking for 12 days at 25 ° C. in a 0.3% CO 2 atmosphere under 12 h / 12 h light / dark conditions. As a negative control, the same experiment was performed on the wild strain Nannochloropsis oculata NIES2145.
  • Nitrogen gas was blown onto the resulting chloroform layer to dry it, 0.7 mL of 0.5 N KOH methanol solution was added, and the temperature was kept constant at 80 ° C. for 30 minutes. Furthermore, 1 mL of 14% boron trifluoride solution (manufactured by SIGMA) was added, and the temperature was kept constant at 80 ° C. for 30 minutes. Thereafter, 0.5 mL of hexane and 1 mL of saturated saline were added and stirred vigorously, and allowed to stand at room temperature for 10 minutes, and the upper hexane layer was recovered to obtain a fatty acid methyl ester.
  • the fatty acid methyl ester was identified by subjecting the sample to gas chromatograph mass spectrometry analysis under the same conditions.
  • the amount of methyl ester of each fatty acid was quantified from the peak area of the waveform data obtained by gas chromatography analysis.
  • Each peak area was compared with the peak area of 7-pentadecanone, which is an internal standard, to correct between samples, and the amount of each fatty acid per liter of culture solution was calculated.
  • the sum total of each fatty acid amount was made into the total fatty acid amount, and the ratio of each fatty acid amount which occupies for the total fatty acid amount was computed. The results are shown in Table 4.
  • TFA represents the total fatty acid content
  • Fatty Acid Composition (% TFA)” represents the ratio of the weight of each fatty acid to the weight of the total fatty acid.
  • N is an integer of 0 to 5, for example, when “C18: n” is described, the composition is C18: 0, C18: 1, C18: 2, C18: 3, C18: 4, and C18. : Total of 5 fatty acids.
  • the transformant into which the NoACP2 gene expression cassette was introduced was able to confirm a large change in fatty acid composition as compared to the wild strain (NIES2145). Specifically, the ratio of long chain fatty acids, particularly C16: 0 (palmitic acid) and C18: n, was greatly reduced. And the ratio of medium chain fatty acid (C12: 0 (lauric acid) and C14: 0 (myristic acid)) increased remarkably. From the above results, it was revealed that the NoACP2 gene can be suitably used for improving the productivity of medium chain fatty acids.
  • Example 2 Production of transformants in which NoACP2 gene and NoTE gene were introduced into Nannochloropsis oculata, and production of fatty acids by transformants
  • Construction of NoTE expression plasmid Nannochloropsis produced in Example 1 PCR was performed using the cDNA derived from Oculata NIES2145 strain as a template and the primer pair of primer number 23 and primer number 24, and the primer pair of primer number 25 and primer number 26 shown in Table 2, and from position 262 of SEQ ID NO: 27
  • An acyl-ACP thioesterase gene fragment (hereinafter also referred to as “NoTE gene fragment”) consisting of the nucleotide sequence up to position 864 and a VCP1 chloroplast translocation signal fragment consisting of the nucleotide sequence of SEQ ID NO: 28 were obtained.
  • a NoTE gene expression plasmid was constructed.
  • This expression plasmid consists of an LDSP promoter sequence, a VCP1 chloroplast translocation signal sequence, an NoTE gene, a VCP1 terminator sequence, a tubulin promoter sequence, a zeocin resistance gene, a heat shock protein terminator sequence in this order, and a pUC19 vector. Consists of an array.
  • NoTE (V204W) A modified (hereinafter also referred to as “NoTE (V204W))” gene expression plasmid was constructed.
  • this expression plasmid among NoTE consisting of the amino acid sequence shown in SEQ ID NO: 36 (NoTE encoded by the NoTE gene consisting of the base sequence shown in SEQ ID NO: 27), valine (V) at position 204 is tryptophan (W). Has been replaced.
  • NoACP2 gene expression plasmid constructed in Example 1 as a template
  • PCR was performed using the primer pairs of primer numbers 31 and 32 shown in Table 2.
  • PCR was performed using the artificially synthesized paromomycin resistance gene (SEQ ID NO: 33) as a template and the primer pairs of primer numbers 34 and 35 shown in Table 2. These two amplified fragments were fused in the same manner as in Example 1 to construct a NoACP2 gene expression plasmid (paromomycin resistance).
  • This expression plasmid consists of an LDSP promoter sequence, a NoACP2 gene, a VCP1 terminator sequence, a tubulin promoter sequence, a paromomycin resistance gene, a heat shock protein terminator sequence linked in this order, and a pUC19 vector sequence.
  • NoACP2 gene expression plasmid (paromomycin resistance) as a template
  • PCR was performed using the primer pair of primer number 10 and primer number 16 shown in Table 1, and a NoACP2 gene expression cassette (LDSP promoter sequence, NoACP2 gene, A DNA fragment comprising a VCP1 terminator sequence, a tubulin promoter sequence, a paromomycin resistance gene, and a heat shock protein terminator sequence) was amplified.
  • the obtained amplified fragment was purified by the same method as in Example 1, and the purified fragment was introduced into the NoTE (V204W) strain by electroporation.
  • Example 2 After recovery culture in the same manner as in Example 1, it was applied to an f / 2 agar medium containing 2 ⁇ g / mL zeocin and 100 ⁇ g / mL paromomycin, and at 25 ° C. in a 0.3% CO 2 atmosphere for 12 h / 12 h. The cells were cultured for 2 to 3 weeks under light and dark conditions. From the obtained colonies, the Nannochloropsis oculata strain containing the NoACP2 gene expression cassette was selected by PCR.
  • Example 3 Production of transformants in which NoACP2 gene and NoAT gene were introduced into Nannochloropsis oculata, and production of fatty acids by the transformants
  • Construction of NoAT expression plasmid Nannochloropsis produced in Example 1 PCR was performed using cDNA derived from Oculata NIES2145 strain as a template and a primer pair of primer number 60 and primer number 61 shown in Table 3, and an acyltransferase gene fragment consisting of the nucleotide sequence of SEQ ID NO: 53 (hereinafter referred to as “NoAT gene fragment”). ").
  • This amplified fragment is mixed with the fragment consisting of the LDSP promoter fragment, VCP1 terminator fragment, zeocin resistance gene expression cassette, and pUC19 sequence prepared in the same manner as in Example 1, and fused in the same manner as in Example 1.
  • a NoAT gene expression plasmid was constructed. This expression plasmid consists of an LDSP promoter sequence, a NoAT gene, a VCP1 terminator sequence, a tubulin promoter sequence, a zeocin resistance gene, a heat shock protein terminator sequence in this order, and a pUC19 vector sequence.
  • NoAT expression plasmid into Nannochloropsis oculata
  • PCR was performed using the primer pairs of primer numbers 10 and 16 shown in Table 1, and the NoAT gene
  • the expression cassette DNA fragment consisting of LDSP promoter sequence, NoAT gene, VCP1 terminator sequence, tubulin promoter sequence, zeocin resistance gene, heat shock protein terminator sequence
  • This amplified fragment was purified by the same method as in Example 1 and transformed into Nannochloropsis oculata strain NIES2145.
  • a strain into which a NoAT gene has been introduced is also referred to as a “NoAT strain”.
  • NoACP2 gene expression plasmid (paromomycin resistance) constructed in Example 2 as a template
  • PCR was performed using the primer pairs of primer numbers 10 and 16 shown in Table 1.
  • NoACP2 gene expression cassette DNA fragment consisting of LDSP promoter sequence, NoACP2 gene, VCP1 terminator sequence, tubulin promoter sequence, paromomycin resistance gene, heat shock protein terminator sequence
  • the obtained amplified fragment was purified by the same method as in Example 1, and the purified fragment was introduced into the NoAT strain by electroporation.
  • Example 2 After recovery culture in the same manner as in Example 1, it was applied to an f / 2 agar medium containing 2 ⁇ g / mL zeocin and 100 ⁇ g / mL paromomycin, and at 25 ° C. in a 0.3% CO 2 atmosphere for 12 h / 12 h. The cells were cultured for 2 to 3 weeks under light and dark conditions. From the obtained colonies, the Nannochloropsis oculata strain containing the NoACP2 gene expression cassette was selected by PCR.
  • N5P5 medium a medium (hereinafter referred to as “N5P5 medium”), and cultured under shaking at 25 ° C. and 0.3% CO 2 atmosphere under 12 h / 12 h light / dark conditions for 3 weeks to obtain a preculture solution. 1 mL of the preculture was transferred to 19 mL of N5P5 medium, and cultured with shaking for 14 days under 25 h, 0.3% CO 2 atmosphere under 12 h / 12 h light / dark conditions.
  • NoACP2 strain the NoACP2 gene-introduced strain prepared in Example 1 (hereinafter also referred to as “NoACP2 strain”) as a reference example.
  • NoACP2 strain the NoACP2 gene-introduced strain prepared in Example 1
  • lipid extraction and constituent fatty acid analysis were performed in the same manner as in Example 1. The results are shown in Table 6.
  • a transformant with improved productivity of medium chain fatty acids can be produced.
  • the productivity of medium chain fatty acids can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

下記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させた形質転換体を培養して脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法、並びに、下記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させた形質転換体。 (A)配列番号1で表されるアミノ酸配列からなるタンパク質。 (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつアシルキャリアープロテイン活性を有するタンパク質。

Description

脂質の製造方法
 本発明は、脂質の製造方法に関する。また、本発明は当該方法に用いる形質転換体に関する。
 脂肪酸は脂質の主要構成成分の1つであり、生体内においてグリセリンとのエステル結合により生成するトリアシルグリセロール等の脂質(油脂)を構成する。また、多くの動植物において脂肪酸はエネルギー源として貯蔵され利用される物質でもある。動植物内に蓄えられた脂肪酸や脂質は、食用又は工業用として広く利用されている。
 例えば、炭素原子数12~18前後の高級脂肪酸を還元して得られる高級アルコールの誘導体は、界面活性剤として用いられている。アルキル硫酸エステル塩やアルキルベンゼンスルホン酸塩等は陰イオン性界面活性剤として利用されている。また、ポリオキシアルキレンアルキルエーテルやアルキルポリグリコシド等は非イオン性界面活性剤として利用されている。そしてこれらの界面活性剤は、いずれも洗浄剤や殺菌剤等に利用されている。同じ高級アルコールの誘導体であるアルキルアミン塩やモノ又はジアルキル4級アンモニウム塩等のカチオン性界面活性剤は、繊維処理剤、毛髪リンス剤、殺菌剤等に日常的に利用されている。また、ベンザルコニウム型4級アンモニウム塩は殺菌剤や防腐剤等に日常的に利用されている。さらに、植物油脂はバイオディーゼル燃料の原料としても利用されている。
 このように脂肪酸や脂質の利用は多岐にわたり、そのため植物等において生体内での脂肪酸や脂質の生産性を向上させる試みが行われている。さらに、脂肪酸の用途や有用性はその炭素原子数に依存するため、脂肪酸の炭素原子数、即ち鎖長を制御する試みも行われている。
 一般に、植物の脂肪酸合成経路は葉緑体に局在する。葉緑体ではアセチル-アシルキャリアープロテイン(acyl carrier protein、以下「ACP」ともいう)を出発物質とし、炭素鎖の伸長反応が繰り返され、最終的に炭素原子数18程度の脂肪酸が合成される(ここで炭素原子数はアシル基の炭素数を示し、以下同様に示す場合がある。)。この脂肪酸の合成経路においてACPは、脂肪酸の担体としての機能を果たしている。
 これまでに、脂肪酸の生合成において、脂肪酸の炭素原子数(鎖長)の制御にACPを利用する方法が提案されている。例えば、タバコ(tabacco)の葉緑体ゲノム又は核ゲノムに導入した、オリーブ由来のACPをコードする遺伝子(以下、「ACP遺伝子」ともいう)を過剰発現させることで、炭素原子数18の不飽和脂肪酸の生産性を向上させる方法が非特許文献1に記載されている。また、ナズナ(Arabidopsis)由来のACP遺伝子をナズナで過剰発現させることで、炭素原子数18の不飽和脂肪酸の1種であるα-リノレン酸の生産性を向上させる方法が、非特許文献2に記載されている。
 近年、持続可能な社会の実現に向けて再生可能エネルギーに関する研究が推し進められている。特に光合成微生物は、二酸化炭素の削減効果に加えて、穀物と競合しないバイオ燃料生物として期待されている。
 特に近年、バイオ燃料生産に有用であるとして、藻類が注目を集めている。藻類は、バイオディーゼル燃料として利用可能な脂質を光合成によって生産でき、しかも食料と競合しないことから、次世代のバイオマス資源として注目されている。また、藻類は、植物に比べ、高い脂質生産・蓄積能力を有するとの報告もある。
 藻類の脂質合成メカニズムやそれを応用した生産技術について研究が始まってはいる。例えば特許文献1には、ACP遺伝子を各種微生物に導入して、脂肪酸、脂肪族アルコール、脂肪族エステルなどの脂肪酸誘導体を製造することが特許文献2で提案されている。さらに、特許文献2には、ACP遺伝子のプロモーター配列も開示されている。しかし、藻類の脂質合成メカニズムに関して、未解明な部分も数多く残されている。
国際公開第2014/93505号 米国特許出願公開第2013/0289262号明細書
Transgenic Research,2016,vol.25(1),p.45-61 Plant Physiol.,2001,vol.127(1),p.222-229
 本発明は、下記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させた形質転換体を培養して脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法に関する。
(A)配列番号1で表されるアミノ酸配列からなるタンパク質。
(B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつアシルキャリアープロテイン活性を有するタンパク質。
 また本発明は、前記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させることで、形質転換体の細胞内で生産される全脂肪酸に占める中鎖脂肪酸の割合を増加させる、脂肪酸組成の改変方法に関する。
 さらに本発明は、前記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させた形質転換体に関する。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
 本発明は、中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させる、脂質の製造方法の提供に関する。
 また本発明は、中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させた形質転換体の提供に関する。
 本発明者は、中鎖脂肪酸の合成に関与する酵素として、藻類の1種であるナンノクロロプシス属の藻類のACPを新たに同定した。そして、このACPの微生物内での発現を促進させた結果、生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性が有意に向上することを見出した。
 本発明はこれらの知見に基づいて完成するに至ったものである。
 本発明の脂質の製造方法によれば、中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させることができる。
 また本発明の形質転換体は、中鎖脂肪酸又はこれを構成成分とする脂質の生産性に優れる。
 本明細書における「脂質」は、中性脂質(トリアシルグリセロール等)、ろう、セラミド等の単純脂質;リン脂質、糖脂質、スルホ脂質等の複合脂質;及びこれらの脂質から誘導される、脂肪酸(遊離脂肪酸)、アルコール類、炭化水素類等の誘導脂質を包含するものである。
 一般に誘導脂質に分類される脂肪酸は、脂肪酸そのものを指し、「遊離脂肪酸」を意味する。本発明では単純脂質及び複合脂質分子中の脂肪酸部分又はアシル基の部分を「脂肪酸残基」と表記する。そして、特に断りのない限り、「脂肪酸」は「遊離脂肪酸」と「脂肪酸残基」の総称として用いる。
 また本明細書において、「脂肪酸又はこれを構成成分とする脂質」は、「遊離脂肪酸」と「当該脂肪酸残基を有する脂質」を総称して用いる。更に本明細書において、「脂肪酸組成」とは、前記遊離脂肪酸と脂肪酸残基とを合計した全脂肪酸(総脂肪酸)の重量に対する各脂肪酸の重量割合を意味する。脂肪酸の重量(生産量)や脂肪酸組成は、実施例で用いた方法により測定できる。
 本明細書において、脂肪酸や、脂肪酸を構成するアシル基の表記において「Cx:y」とあるのは、炭素原子数xで二重結合の数がyであることを表す。「Cx」は炭素原子数xの脂肪酸やアシル基を表す。
 さらに本明細書において、塩基配列及びアミノ酸配列の同一性は、Lipman-Pearson法(Science, 1985, vol. 227, p. 1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Winのホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 また本明細書において「ストリンジェントな条件」としては、例えばMolecular Cloning-A LABORATORY MANUAL THIRD EDITION[Joseph Sambrook,David W.Russell., Cold Spring Harbor Laboratory Press]記載の方法が挙げられる。例えば、6×SSC(1×SSCの組成:0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム、pH7.0)、0.5%SDS、5×デンハート及び100mg/mLニシン精子DNAを含む溶液にプローブとともに65℃で8~16時間恒温し、ハイブリダイズさせる条件が挙げられる。
 さらに本明細書において、遺伝子の「上流」とは、翻訳開始点からの位置ではなく、対象として捉えている遺伝子又は領域の5'側に続く領域を示す。一方、遺伝子の「下流」とは、対象として捉えている遺伝子又は領域の3'側に続く領域を示す。
 アミノ酸配列及び塩基配列のBlast(Basic Local Alignment Search Tool)の結果から、前記タンパク質(A)及び(B)(以下、「ACP2」、又は「NoACP2」ともいう)はACPの1種であり、脂肪酸の生合成経路において脂肪酸の担体として機能するタンパク質である。配列番号1のアミノ酸配列からなるタンパク質は、ナンノクロロプシス属に属する藻類であるナンノクロロプシス・オキュラータ(Nannochloropsis oculata)NIES2145株由来のACPの1種である。
 ACPは脂肪酸の生合成反応(脂肪酸の伸長反応)の足場(担体)として機能する。脂肪酸のアシル基は、ACPのセリン残基に結合したホスホパンテテイン基とチオエステル結合を形成する。この状態で脂肪酸が伸長される。
 前記タンパク質(A)及び(B)はいずれも、アシルキャリアープロテイン活性(以下、「ACP活性」ともいう)を有する。本明細書において「ACP活性」とは、脂肪酸のアシル基とチオエステル結合を形成することで脂肪酸の伸長反応の足場として機能する活性を意味する。
 前記タンパク質がACP活性を有することは、例えば、ACP遺伝子欠損株に、宿主内で機能するプロモーターの下流に前記タンパク質をコードする遺伝子を連結したDNAを導入し、脂肪酸合成能を相補させることで確認することができる。あるいは、宿主細胞内で機能するプロモーターの下流に前記タンパク質をコードする遺伝子を連結したDNAを宿主細胞へ導入し、導入した遺伝子が発現する条件下で細胞を培養し、宿主細胞内又は培養液中の脂肪酸の生産量や組成の変化を常法により分析することで確認できる。あるいは、前記タンパク質を、Biochemistry, 2011, vol. 50(25), p. 5704-5717等の文献を参考にして、補酵素A(CoA)と適当なACPシンターゼ(ACP synthase)(ホスホパンテテイニルトランスフェラーゼ(phosphopantetheinyl transferase))と反応させ、ホスホパンテテイン基が結合したholo-ACPを形成させることで確認することができる。あるいは、The Journal of Biological Chemistry, 1979, vol. 254(15), p. 7123-7128等の文献を参考にして、前記holo-ACPを脂肪酸及び適当なアシル-ACPシンセターゼ(acyl-ACP synthetase)と反応させ、アシル基が結合したacyl-ACPを形成させることで確認することができる。
 後述の実施例で示すように、前記タンパク質(A)をコードする遺伝子の発現を促進した形質転換体では、炭素原子数が10~14の中鎖脂肪酸の生産性が向上する。なお本明細書において「中鎖」とは、アシル基の炭素原子数が6以上14以下、好ましくは炭素原子数が8以上14以下、より好ましくは炭素原子数が10以上14以下、よりさらに好ましくは炭素原子数が10、12、又は14、であることをいう。
 前記タンパク質(B)において、ACP活性の点から、前記タンパク質(A)のアミノ酸配列との同一性は75%以上が好ましく、80%以上が好ましく、85%以上がより好ましく、90%以上がより好ましく、92%以上がさらに好ましく、93%以上がより好ましく、94%以上がより好ましく、95%以上がより好ましく、96%以上がより好ましく、97%以上がより好ましく、98%以上がより好ましく、99%以上がさらに好ましい。
 また、前記タンパク質(B)として、前記タンパク質(A)のアミノ酸配列に、1又は複数個(例えば1個以上36個以下、好ましくは1個以上30個以下、より好ましくは1個以上24個以下、より好ましくは1個以上18個以下、より好ましくは1個以上12個以下、より好ましくは1個以上9個以下、より好ましくは1個以上8個以下、より好ましくは1個以上7個以下、より好ましくは1個以上6個以下、より好ましくは1個以上4個以下、より好ましくは1個以上3個以下、より好ましくは1個以上2個以下、より好ましくは1個)のアミノ酸を欠失、置換、挿入又は付加したタンパク質が挙げられる。
 アミノ酸配列に変異を導入する方法としては、例えば、アミノ酸配列をコードする塩基配列に変異を導入する方法が挙げられる。変異を導入する方法としては、部位特異的な変異導入法が挙げられる。具体的な部位特異的変異の導入方法としては、SOE-PCRを利用した方法、ODA法、Kunkel法等が挙げられる。また、Site-Directed Mutagenesis System Mutan-SuperExpress Kmキット(タカラバイオ社)、Transformer TM Site-Directed Mutagenesisキット(Clonetech社)、KOD-Plus-Mutagenesis Kit(東洋紡社)等の市販のキットを利用することもできる。また、ランダムな遺伝子変異を与えた後、適当な方法により活性の評価及び遺伝子解析を行うことにより目的遺伝子を取得することもできる。
 前記タンパク質(A)及び(B)は、通常の化学的手法、遺伝子工学的手法等により得ることができる。例えば、ナンノクロロプシス・オキュラータから単離、精製等することで天然物由来のタンパク質を取得することができる。また、配列番号1に示すアミノ酸配列情報をもとに人工的に化学合成することで、前記タンパク質(A)及び(B)を得ることができる。あるいは、遺伝子組み換え技術により、組換えタンパク質として前記タンパク質(A)及び(B)を作製してもよい。組換えタンパク質を作製する場合には、後述するアシルキャリアープロテイン遺伝子を用いることができる。
 なお、ナンノクロロプシス・オキュラータ等の藻類は、私的又は公的な研究所等の保存機関より入手することができる。例えば、ナンノクロロプシス・オキュラータNIES-2145株は、国立環境研究所(NIES)から入手することができる。
 前記タンパク質(A)又は(B)をコードする遺伝子(以下、「ACP2遺伝子」ともいう)の一例として、下記DNA(a)又は(b)からなる遺伝子(以下、「NoACP2遺伝子」ともいう)が挙げられる。
 
(a)配列番号2で表される塩基配列からなるDNA。
(b)前記DNA(a)の塩基配列と同一性が70%以上の塩基配列からなり、かつACP活性を有するタンパク質をコードするDNA。
 
 配列番号2の塩基配列は、配列番号1のアミノ酸配列からなるタンパク質をコードする遺伝子の塩基配列である。
 前記DNA(b)において、ACP活性の点から、前記DNA(a)の塩基配列との同一性は75%以上が好ましく、80%以上がより好ましく、85%以上がより好ましく、90%以上がより好ましく、92%以上がより好ましく、93%以上がより好ましく、94%以上がより好ましく、95%以上がより好ましく、96%以上がより好ましく、97%以上がより好ましく、98%以上がより好ましく、99%以上がさらに好ましい。
 また前記DNA(b)として、前記DNA(a)の塩基配列において1又は複数個(例えば1個以上108個以下、好ましくは1個以上90個以下、より好ましくは1個以上72個以下、より好ましくは1個以上54個以下、より好ましくは1個以上36個以下、より好ましくは1個以上29個以下、より好ましくは1個以上25個以下、より好ましくは1個以上21個以下、より好ましくは1個以上18個以下、より好ましくは1個以上14個以下、より好ましくは1個以上10個以下、より好ましくは1個以上7個以下、より好ましくは1個以上3個以下)の塩基が欠失、置換、挿入、又は付加されており、かつACP活性を有する前記タンパク質(A)又は(B)をコードするDNAも好ましい。
 さらに前記DNA(b)として、前記DNA(a)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつACP活性を有する前記タンパク質(A)又は(B)をコードするDNAも好ましい。
 前記ACP2遺伝子の発現を促進させる方法としては、常法より適宜選択することができる。例えば、前記ACP2遺伝子を宿主に導入する方法、前記ACP2遺伝子をゲノム上に有する宿主において、当該遺伝子の発現調節領域(プロモーター、ターミネーター等)を改変する方法、などが挙げられる。なかでも、前記ACP2遺伝子を宿主に導入し、ACP2遺伝子の発現を促進させる方法が好ましい。
 以下本明細書において、目的のタンパク質をコードする遺伝子の発現を促進させたものを「形質転換体」ともいい、目的のタンパク質をコードする遺伝子の発現を促進させていないものを「宿主」又は「野生株」ともいう。
 本発明の形質転換体は、宿主自体に比べ、中鎖脂肪酸又はこれを構成成分とする脂質の生産性、特に、生産される全脂肪酸中又は全脂質中に占める中鎖脂肪酸又はこれを構成成分とする脂質の割合が有意に向上する。またその結果、当該形質転換体では、脂質中の脂肪酸組成が改変される。そのため、本発明の形質転換体は、特定の炭素原子数の脂質、特に中鎖脂肪酸又はこれを構成成分とする脂質、好ましくは炭素原子数6以上14以下の脂肪酸又はこれを構成成分とする脂質、より好ましくは炭素原子数8以上14以下の脂肪酸又はこれを構成成分とする脂質、より好ましくは炭素原子数が10以上14以下の脂肪酸又はこれを構成成分とする脂質、より好ましくは炭素原子数が10、12、若しくは14の脂肪酸又はこれを構成成分とする脂質、より好ましくは炭素原子数が10、12、若しくは14の飽和脂肪酸(カプリン酸、ラウリン酸、ミリスチン酸)又はこれを構成成分とする脂質、より好ましくは炭素原子数が12の飽和脂肪酸(ラウリン酸)又はこれを構成成分とする脂質、の生産に好適に用いることができる。
 なお、宿主や形質転換体の脂肪酸及び脂質の生産性については、実施例で用いた方法により測定することができる。
 前記ACP2遺伝子を宿主に導入して前記遺伝子の発現を促進させる方法について説明する。
 前記ACP2遺伝子は、通常の遺伝子工学的手法により得ることができる。例えば、配列番号1に示すアミノ酸配列又は配列番号2に示す塩基配列に基づいて、ACP2遺伝子を人工的に合成できる。ACP2遺伝子の合成は、例えば、インビトロジェン社等のサービスを利用することができる。また、ナンノクロロプシス・オキュラータからクローニングによって取得することもできる。例えば、Molecular Cloning-A LABORATORY MANUAL THIRD EDITION[Joseph Sambrook, David W. Russell, Cold Spring Harbor Laboratory Press(2001)]記載の方法等により行うことができる。また、実施例で用いたナンノクロロプシス・オキュラータNIES-2145は、国立環境研究所(NIES)より入手することができる。
 本発明で好ましく用いることができる形質転換体は、前記ACP2遺伝子を常法により宿主に導入することで得られる。具体的には、前記ACP2遺伝子を宿主細胞中で発現させることのできる組換えベクターや遺伝子発現カセットを調製し、これを宿主細胞に導入して宿主細胞を形質転換させることにより作製できる。
 形質転換体の宿主としては通常用いられるものより適宜選択することができる。本発明で用いることができる宿主としては、微生物(藻類や微細藻類を含む)、植物体、及び動物体が挙げられる。製造効率及び得られた脂質の利用性の点から、宿主は微生物又は植物体であることが好ましく、微生物であることがより好ましく、微細藻類であることがさらに好ましい。
 前記微生物は原核生物、真核生物のいずれであってもよく、エシェリキア(Escherichia)属の微生物やバシラス(Bacillus)属の微生物、シネコシスティス(Synechocystis)属の微生物、シネココッカス(Synechococcus)属の微生物等の原核生物、又は酵母や糸状菌等の真核微生物を用いることができる。なかでも、脂質生産性の観点から、大腸菌(Escherichia coli)、枯草菌(Bacillus subtilis)、赤色酵母(Rhodosporidium toruloides)、又はモルチエレラ・エスピー(Mortierella sp.)が好ましく、大腸菌がより好ましい。
 前記藻類や微細藻類としては、遺伝子組換え手法が確立している観点から、クラミドモナス(Chlamydomonas)属の藻類、クロレラ(Chlorella)属の藻類、ファエオダクティラム(Phaeodactylum)属の藻類、又はナンノクロロプシス属の藻類が好ましく、ナンノクロロプシス属の藻類がより好ましい。ナンノクロロプシス属の藻類の具体例としては、ナンノクロロプシス・オキュラータ、ナンノクロロプシス・ガディタナ(Nannochloropsis gaditana)、ナンノクロロプシス・サリナ(Nannochloropsis salina)、ナンノクロロプシス・オセアニカ(Nannochloropsis oceanica)、ナンノクロロプシス・アトムス(Nannochloropsis atomus)、ナンノクロロプシス・マキュラタ(Nannochloropsis maculata)、ナンノクロロプシス・グラニュラータ(Nannochloropsis granulata)、ナンノクロロプシス・エスピー(Nannochloropsis sp.)等が挙げられる。なかでも、脂質生産性の観点から、ナンノクロロプシス・オキュラータ、又はナンノクロロプシス・ガディタナが好ましく、ナンノクロロプシス・オキュラータがより好ましい。
 前記植物体としては、種子に脂質を高含有する観点から、シロイヌナズナ(Arabidopsis thaliana)、西洋アブラナ(Brassica napus)、アブラナ(Brassica rapa)、ココヤシ(Cocos nucifera)、パーム(Elaeis guineensis)、クフェア、ダイズ(Glycine max)、トウモロコシ(Zea mays)、イネ(Oryza sativa)、ヒマワリ(Helianthus annuus)、クスノキ(Cinnamomum camphora)、又はヤトロファ(Jatropha curcas)が好ましく、シロイヌナズナがより好ましい。
 遺伝子発現用プラスミドベクター又は遺伝子発現カセットの母体となるベクター(プラスミド)としては、目的のタンパク質をコードする遺伝子を宿主に導入することができ、宿主細胞内で当該遺伝子を発現させることができるベクターであればよい。例えば、導入する宿主の種類に応じたプロモーターやターミネーター等の発現調節領域を有するベクターであって、複製開始点や選択マーカー等を有するベクターを用いることができる。また、プラスミド等の染色体外で自立増殖・複製するベクターであってもよいし、染色体内に組み込まれるベクターであってもよい。
 本発明で好ましく用いることができる発現用ベクターとしては、微生物を宿主とする場合には、例えば、pBluescript(pBS) II SK(-)(Stratagene社製)、pSTV系ベクター(タカラバイオ社製)、pUC系ベクター(宝酒造社製)、pET系ベクター(タカラバイオ社製)、pGEX系ベクター(GEヘルスケア社製)、pCold系ベクター(タカラバイオ社製)、pHY300PLK(タカラバイオ社製)、pUB110(1986,Plasmid 15(2), p. 93-103)、pBR322(タカラバイオ社製)、pRS403(ストラタジーン社製)、及びpMW218/219(ニッポンジーン社製)が挙げられる。特に、宿主が大腸菌の場合は、pBluescript II SK(-)、又はpMW218/219が好ましく用いられる。
 藻類又は微細藻類を宿主とする場合には、例えば、pUC19(タカラバイオ社製)、P66(Chlamydomonas Center)、P-322(Chlamydomonas Center)、pPha-T1(Journal of Basic Microbiology, 2011, vol. 51, p. 666-672参照)、又はpJET1(コスモ・バイオ社製)が挙げられる。特に、宿主がナンノクロロプシス属に属する藻類の場合は、pUC19、pPha-T1、又はpJET1が好ましく用いられる。また、宿主がナンノクロロプシス属に属する藻類の場合には、Proceedings of the National Academy of Sciences of the United States of America, 2011, vol. 108(52)の記載の方法を参考にして、目的の遺伝子、プロモーター及びターミネーターからなるDNA断片(遺伝子発現カセット)を用いて宿主を形質転換することもできる。このDNA断片としては、例えば、PCR法により増幅したDNA断片や制限酵素で切断したDNA断片が挙げられる。
 植物細胞を宿主とする場合には、例えば、pRI系ベクター(タカラバイオ社製)、pBI系ベクター(クロンテック社製)、及びIN3系ベクター(インプランタイノベーションズ社製)が挙げられる。特に、宿主がシロイヌナズナの場合は、pRI系ベクター又はpBI系ベクターが好ましく用いられる。
 また、前記発現ベクターに組み込んだ目的のタンパク質をコードする遺伝子の発現を調整するプロモーターの種類も、使用する宿主の種類に応じて適宜選択することができる。本発明で好ましく用いることができるプロモーターとしては、lacプロモーター、trpプロモーター、tacプロモーター、trcプロモーター、T7プロモーター、SpoVGプロモーター、イソプロピルβ-D-1-チオガラクトピラノシド(IPTG)の添加によって誘導可能な誘導体に関するプロモーター、Rubiscoオペロン(rbc)、PSI反応中心タンパク質(psaAB)、PSIIのD1タンパク質(psbA)、カリフラワーモザイルウイルス35SRNAプロモーター、ハウスキーピング遺伝子プロモーター(例えば、チューブリンプロモーター、アクチンプロモーター、ユビキチンプロモーター等)、西洋アブラナ又はアブラナ由来Napin遺伝子プロモーター、植物由来Rubiscoプロモーター、ナンノクロロプシス属由来のビオラキサンチン/クロロフィルa結合タンパク質遺伝子のプロモーター(VCP1プロモーター、VCP2プロモーター)(Proceedings of the National Academy of Sciences of the United States of America, 2011, vol. 108(52)、及びナンノクロロプシス属由来のオレオシン様タンパクLDSP(lipid droplet surface protein)遺伝子のプロモーター(PLOS Genetics, 2012; 8(11):e1003064. doi: 10.1371)が挙げられる。本発明で宿主としてナンノクロロプシスを用いる場合、ビオラキサンチン/クロロフィルa結合タンパク質遺伝子のプロモーターや、ナンノクロロプシス属由来のオレオシン様タンパクLDSP遺伝子のプロモーターを好ましく用いることができる。
 また、目的のタンパク質をコードする遺伝子が組み込まれたことを確認するための選択マーカーの種類も、使用する宿主の種類に応じて適宜選択することができる。本発明で好ましく用いることができる選択マーカーとしては、アンピシリン耐性遺伝子、クロラムフェニコール耐性遺伝子、エリスロマイシン耐性遺伝子、ネオマイシン耐性遺伝子、カナマイシン耐性遺伝子、スペクチノマイシン耐性遺伝子、テトラサイクリン耐性遺伝子、ブラストサイジンS耐性遺伝子、ビアラフォス耐性遺伝子、ゼオシン耐性遺伝子、パロモマイシン耐性遺伝子、ゲンタマイシン耐性遺伝子、及びハイグロマイシン耐性遺伝子等の薬剤耐性遺伝子が挙げられる。さらに、栄養要求性に関連する遺伝子の欠損等を選択マーカー遺伝子として使用することもできる。
 目的のタンパク質をコードする遺伝子の前記ベクターへの導入は、制限酵素処理やライゲーション等の常法により行うことができる。
 また、形質転換方法は、使用する宿主の種類に応じて常法より適宜選択することができる。例えば、カルシウムイオンを用いる形質転換方法、一般的なコンピテントセル形質転換方法、プロトプラスト形質転換法、エレクトロポレーション法、LP形質転換方法、アグロバクテリウムを用いた方法、パーティクルガン法等が挙げられる。宿主としてナンノクロロプシス属の藻類を用いる場合、Nature Communications,DOI:10.1038/ncomms1688,2012等に記載のエレクトロポレーション法を用いて形質転換を行うこともできる。
 目的遺伝子断片が導入された形質転換体の選択は、選択マーカー等を利用することで行うことができる。例えば、薬剤耐性遺伝子が、形質転換時に目的DNA断片とともに宿主細胞中に導入された結果、形質転換体が獲得する薬剤耐性を指標に行うことができる。また、ゲノムを鋳型としたPCR法等によって、目的DNA断片の導入を確認することもできる。
 前記ACP2遺伝子をゲノム上に有する宿主において、当該遺伝子の発現調節領域を改変して、前記遺伝子の発現を促進させる方法について説明する。
 「発現調節領域」とは、プロモーターやターミネーターを示し、これらの配列は一般に隣接する遺伝子の発現量(転写量、翻訳量)の調節に関与している。ゲノム上に前記ACP2遺伝子を有する宿主においては、当該遺伝子の発現調節領域を改変して前記ACP2遺伝子の発現を促進させることで、中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させることができる。
 発現調節領域の改変方法としては、例えばプロモーターの入れ替えが挙げられる。ゲノム上に前記ACP2遺伝子を有する宿主において、当該遺伝子のプロモーター(以下、「ACP2プロモーター」ともいう)を、より転写活性の高いプロモーターに入れ替えることで、前記ACP2遺伝子の発現を促進させることができる。例えば、ゲノム上に前記ACP2遺伝子を有する宿主の1つであるナンノクロロプシス・オキュラータNIES-2145株においては、配列番号37に示す塩基配列からなるDNA配列の直下にNoACP2遺伝子が存在しており、配列番号37に示す塩基配列からなるDNA配列中にプロモーター領域が存在している。この配列番号37に示す塩基配列からなるDNA配列の一部又は全部をより転写活性の高いプロモーターに入れ替えることで、前記ACP2遺伝子の発現を促進させることができる。
 ACP2プロモーターの入れ替えに用いるプロモーターとしては特に限定されず、ACP2プロモーターよりも転写活性が高く、中鎖脂肪酸又はこれを構成成分とする脂質の生産に適したものから適宜選択することができる。
 宿主としてナンノクロロプシスを用いる場合には、チューブリンプロモーター、ヒートショックプロテインプロモーター、上述のビオラキサンチン/クロロフィルa結合タンパク質遺伝子のプロモーター(VCP1プロモーター、VCP2プロモーター)、又はナンノクロロプシス属由来のオレオシン様タンパクLDSP遺伝子のプロモーターを好ましく用いることができる。中鎖脂肪酸又はこれを構成成分とする脂質の生産性向上の観点から、ビオラキサンチン/クロロフィルa結合タンパク質遺伝子のプロモーター又はLDSP遺伝子のプロモーターがより好ましい。
 前述のプロモーターの改変は、相同組換えなどの常法に従い行うことができる。具体的には、標的とするプロモーターの上流、下流領域を含み、標的プロモーターに代えて別のプロモーターを含む直鎖状のDNA断片を構築し、これを宿主細胞に取り込ませ、宿主ゲノムの標的プロモーターの上流側と下流側とで2回交差の相同組換えを起こす。その結果、ゲノム上の標的プロモーターが別のプロモーター断片と置換され、プロモーターを改変することができる。
 このような相同組換えによる標的プロモーターの改変方法は、例えば、Methods in molecular biology, 1995, vol. 47, p. 291-302等の文献を参考に行うことができる。特に、宿主がナンノクロロプシス属に属する藻類の場合、Proceedings of the National Academy of Sciences of the United States of America, 2011, vol. 108(52)等の文献を参考にして、相同組換え法によりゲノム中の特定の領域を改変することができる。
 本発明の形質転換体は、前記タンパク質(A)又は(B)をコードする遺伝子に加えて、アシル-ACPチオエステラーゼ(以下、「TE」ともいう)をコードする遺伝子(以下、「TE遺伝子」ともいう)の発現も促進されていることが好ましい。
 TEは、β-ケトアシル-ACPシンターゼ(β-Ketoacyl-acyl-carrier-protein synthase、以下「KAS」ともいう)等の脂肪酸合成酵素によって合成されたアシル-ACPのチオエステル結合を加水分解し、遊離の脂肪酸を生成する酵素である。TEの作用によってACP上での脂肪酸合成が終了し、切り出された脂肪酸は多価不飽和脂肪酸の合成やトリアシルグリセロール等の合成に供される。
 そのため、ACP2遺伝子に加えてTE遺伝子の発現を促進することで、脂質の製造に用いる形質転換体の脂質の生産性、特に脂肪酸の生産性を一層向上させることができる。
 本発明で好ましく用いることができるTEは、アシル-ACPチオエステラーゼ活性(以下、「TE活性」ともいう)を有するタンパク質であればよい。ここで「TE活性」とは、アシル-ACPのチオエステル結合を加水分解する活性をいう。
 TEは、基質であるアシル-ACPを構成するアシル基(脂肪酸残基)の炭素原子数や不飽和結合数によって異なる反応性を示すことが知られている。よってTEは、生体内での脂肪酸組成を決定する重要なファクターであると考えられている。また、TEをコードする遺伝子を元来有していない宿主を用いる場合、TEをコードする遺伝子の発現を促進させることが好ましい。また、中鎖アシル-ACPに対する基質特異性を有するTE遺伝子の発現を促進させることにより、中鎖脂肪酸の生産性が向上する。このような遺伝子を導入することで、中鎖脂肪酸の生産性を一層向上させることができる。
 本発明で好ましく用いることができるTEは、通常のTEや、それらと機能的に均等なタンパク質から、宿主の種類等に応じて適宜選択することができる。
 例えば、Cuphea calophylla subsp. mesostemon由来のTE(GenBank ABB71581);Cinnamomum camphora由来のTE(GenBank AAC49151.1);Myristica fragrans由来のTE(GenBank AAB71729);Myristica fragrans由来のTE(GenBank AAB71730);Cuphea lanceolata由来のTE(GenBank CAA54060);Cuphea hookeriana由来のTE(GenBank Q39513);Ulumus americana由来のTE(GenBank AAB71731);Sorghum bicolor由来のTE(GenBank EER87824);Sorghum bicolor由来のTE(GenBank EER88593);Cocos nucifera由来のTE(CnFatB1:BMC Biochemistry 2011, 12:44参照);Cocos nucifera由来のTE(CnFatB2:BMC Biochemistry, 2011, 12:44参照);Cuphea viscosissima由来のTE(CvFatB1:BMC Biochemistry, 2011, 12:44参照);Cuphea viscosissima由来のTE(CvFatB2:BMC Biochemistry 2011, 12:44参照);Cuphea viscosissima由来のTE(CvFatB3:BMC Biochemistry,2011,12:44参照);Elaeis guineensis由来のTE(GenBank AAD42220);Desulfovibrio vulgaris由来のTE(GenBank ACL08376);Bacteriodes fragilis由来のTE(GenBank CAH09236);Parabacteriodes distasonis由来のTE(GenBank ABR43801);Bacteroides thetaiotaomicron由来のTE(GenBank AAO77182);Clostridium asparagiforme由来のTE(GenBank EEG55387);Bryanthella formatexigens由来のTE(GenBank EET61113);Geobacillus sp.由来のTE(GenBank EDV77528);Streptococcus dysgalactiae由来のTE(GenBank BAH81730);Lactobacillus brevis由来のTE(GenBank ABJ63754);Lactobacillus plantarum由来のTE(GenBank CAD63310);Anaerococcus tetradius由来のTE(GenBank EEI82564);Bdellovibrio bacteriovorus由来のTE(GenBank CAE80300);Clostridium thermocellum由来のTE(GenBank ABN54268);ココヤシ由来のTE(配列番号40、これをコードする遺伝子の塩基配列:配列番号41);ナンノクロロプシス・オキュラータ由来のTE(以下、「NoTE」ともいう)(配列番号36、これをコードする遺伝子の塩基配列:配列番号27);ゲッケイジュ由来のTE(GenBank AAA34215.1、配列番号38、これをコードする遺伝子の塩基配列:配列番号39);ナンノクロロプシス・ガディタナ由来のTE(配列番号42、これをコードする遺伝子の塩基配列:配列番号43);ナンノクロロプシス・グラニュラータ由来のTE(配列番号44、これをコードする遺伝子の塩基配列:配列番号45);シンビオディニウム・ミクロアドリアチカム(Symbiodinium microadriaticum)由来のTE(配列番号46、これをコードする遺伝子の塩基配列:配列番号47)、等が挙げられる。
 また、これらと機能的に均等なタンパク質として、上述したいずれかのTEのアミノ酸配列との同一性が50%以上(好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上)のアミノ酸配列からなり、かつTE活性を有するタンパク質も用いることができる。
 上述したTEの中でも、中鎖アシル-ACPに対する基質特異性の観点から、ココヤシ由来のTE(配列番号40、これをコードする遺伝子の塩基配列:配列番号41)、NoTE(配列番号36、これをコードする遺伝子の塩基配列:配列番号27)、ゲッケイジュ由来のTE(配列番号38、これをコードする遺伝子の塩基配列:配列番号39)、ナンノクロロプシス・ガディタナ由来のTE(配列番号42、これをコードする遺伝子の塩基配列:配列番号43)、ナンノクロロプシス・グラニュラータ由来のTE(配列番号44、これをコードする遺伝子の塩基配列:配列番号45)、シンビオディニウム・ミクロアドリアチカム由来のTE(配列番号46、これをコードする遺伝子の塩基配列:配列番号47)、又はこれらのTEのアミノ酸配列との同一性が50%以上(好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上)のアミノ酸配列からなり、かつ中鎖アシル-ACPに対するTE活性を有するタンパク質が好ましい。
 タンパク質がTE活性を有することは、例えば、大腸菌等の宿主細胞内で機能するプロモーターの下流にTE遺伝子を連結したDNAを脂肪酸分解系が欠損した宿主細胞へ導入し、導入したTE遺伝子が発現する条件で培養して、宿主細胞又は培養液中の脂肪酸組成の変化をガスクロマトグラフィー解析等の方法を用いて分析することにより、確認することができる。
 また、大腸菌等の宿主細胞内で機能するプロモーターの下流にTE遺伝子を連結したDNAを宿主細胞へ導入し、導入したTE遺伝子が発現する条件で細胞を培養した後、細胞の破砕液に対し、Yuanらの方法(Proc. Natl. Acad. Sci. USA, 1995, vol. 92(23), p. 10639-10643)によって調製した各種アシル-ACPを基質とした反応を行うことにより、TE活性を測定することができる。
 さらに本発明の形質転換体は、前記タンパク質(A)又は(B)をコードする遺伝子に加えて、KASをコードする遺伝子の発現も促進されていることが好ましい。
 KASは、アシル-ACPとマロニルACPとの縮合反応を触媒し、アシル-ACPの合成に関与するタンパク質である。そのため、ACP2遺伝子に加えてKASをコードする遺伝子(以下単に、「KAS遺伝子」ともいう)の発現を促進することで、脂質の製造に用いる形質転換体の脂質の生産性、特に脂肪酸の生産性を一層向上させることができる。
 本発明で好ましく用いることができるKASは、β-ケトアシル-ACPシンターゼ活性(以下、「KAS活性」ともいう)を有するタンパク質であればよい。ここで「KAS活性」とは、アセチル-ACPやアシル-ACPとマロニルACPとの縮合反応を触媒する活性をいう。
 KASはその基質特異性によって、KAS I、KAS II、KAS III、KAS IVに分類される。例えば、KASの1種であるKAS IVは主に炭素原子数6から14の伸長反応を触媒し、中鎖アシル-ACPを合成する。そのため、ACP2遺伝子に加えKAS IVをコードする遺伝子の発現を促進することで、中鎖脂肪酸の生産性を一層向上させることができる。
 また、KASの1種であるKAS IIIは炭素数2のアセチル-ACP(又はアセチル-CoA)を炭素数4のβ-ケトアシル-ACPに伸長する反応を触媒し、短鎖又は中鎖脂肪酸の合成を促進する。そのため、ACP2遺伝子に加えKAS IIIをコードする遺伝子の発現を促進することによっても、中鎖脂肪酸の生産性を一層向上させることができる。
 本発明で好ましく用いることができるKASは、通常のKASや、それらと機能的に均等なタンパク質から、宿主の種類等に応じて適宜選択することができる。例えば、ナンノクロロプシス・オキュラータ由来のKAS IV(以下、「NoKASIV」ともいう)(配列番号48、これをコードする遺伝子の塩基配列:配列番号49)、ナンノクロロプシス・オキュラータ由来のKAS III(以下、「NoKASIII」ともいう)(配列番号50、これをコードする遺伝子の塩基配列:配列番号51)等が挙げられる。また、これらと機能的に均等なタンパク質として、前記NoKASIVのアミノ酸配列との同一性が50%以上(好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上)のアミノ酸配列からなり、かつKAS活性を有するタンパク質も用いることができる。
 さらに本発明の形質転換体は、前記タンパク質(A)又は(B)をコードする遺伝子に加えて、アシル基転移酵素をコードする遺伝子の発現も促進されていることが好ましい。
 「アシル基転移酵素」(以下、単に「AT」ともいう)とは、グリセロール3リン酸、リゾホスファチジン酸、ジアシルグリセロールなどのグリセロール化合物のアシル化を触媒するタンパク質である。遊離脂肪酸にCoAが結合した脂肪酸アシルCoA、又はアシルACPは、各種ATによってグリセロール骨格へと取り込まれ、グリセロール1分子に対して脂肪酸3分子がエステル結合してなるトリアシルグリセロール(以下、単に「TAG」ともいう)として蓄積される。
 そのため、ACP2遺伝子の加えてATをコードする遺伝子(以下単に、「AT遺伝子」ともいう)の発現を促進することで、脂質の製造に用いる形質転換体の脂質の生産性、特に脂肪酸の生産性を一層向上させることができる。
 ATは、基質である脂肪酸アシルCoA又は脂肪酸アシルACPを構成するアシル基(脂肪酸残基)の炭素原子数や不飽和結合数によって異なる反応特異性を示す複数のATが存在していることが知られている。よってATは、生体内での脂肪酸組成を決定する重要なファクターであると考えられている。また、AT遺伝子を元来有していない宿主を用いる場合、AT遺伝子の発現を促進させることが好ましい。また、中鎖脂肪酸アシルCoA又は中鎖脂肪酸アシルACPに対する基質特異性を有するAT遺伝子の発現を促進することにより、中鎖脂肪酸の生産性が向上する。このような遺伝子を導入することで、中鎖脂肪酸の生産性を一層向上させることができる。
 本発明で用いることができるATは、アシルトランスフェラーゼ活性(以下、「AT活性」ともいう)を有するタンパク質であればよい。ここで「AT活性」とは、グリセロール3リン酸、リゾホスファチジン酸、ジアシルグリセロールなどのグリセロール化合物のアシル化を触媒する活性を意味する。
 本発明で用いることができるATは、通常のATや、それらと機能的に均等なタンパク質から、宿主の種類等に応じて適宜選択することができる。例えば、ナンノクロロプシス・オキュラータ由来のAT(以下、「NoAT」ともいう)(配列番号52、これをコードする遺伝子の塩基配列:配列番号53)等が挙げられる。また、これと機能的に均等なタンパク質として、前記NoKASIVのアミノ酸配列との同一性が50%以上(好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上)のアミノ酸配列からなり、かつAT活性を有するタンパク質も用いることができる。
 さらに本発明の形質転換体は、前記タンパク質(A)又は(B)をコードする遺伝子に加えて、アシル-CoAシンテターゼをコードする遺伝子の発現も促進されていることが好ましい。
 「アシル-CoAシンテターゼ」(以下、単に「ACS」ともいう)とは、生合成された脂肪酸(遊離脂肪酸)にCoAを付加し、アシル-CoAの生成に関与するタンパク質である。
 そのため、ACP2遺伝子の加えてACSをコードする遺伝子(以下単に、「ACS遺伝子」ともいう)の発現を促進することで、脂質の製造に用いる形質転換体の脂質の生産性、特に脂肪酸の生産性を一層向上させることができる。
 本発明で用いることができるACSは、アシルCoAシンテターゼ活性(以下、「ACS活性」ともいう)を有するタンパク質であればよい。ここで「ACS活性」とは、遊離脂肪酸とCoAを結合させてアシル-CoAを生成する活性を意味する。
 本発明で用いることができるACSは、通常のACSや、それらと機能的に均等なタンパク質から、宿主の種類等に応じて適宜選択することができる。例えば、ナンノクロロプシス・オキュラータ由来のACS(配列番号54、これをコードする遺伝子の塩基配列:配列番号55;配列番号56、これをコードする遺伝子の塩基配列:配列番号57;配列番号58、これをコードする遺伝子の塩基配列:配列番号59)等が挙げられる。また、これらと機能的に均等なタンパク質として、前記ナンノクロロプシス・オキュラータ由来のACSのアミノ酸配列との同一性が50%以上(好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上)のアミノ酸配列からなり、かつACS活性を有するタンパク質も用いることができる。
 前述のTE、KAS、AT及びACSのアミノ酸配列情報、並びにこれらをコードする遺伝子の配列情報等は、例えば、国立生物工学情報センター(National Center for Biotechnology Information, NCBI)などから入手することができる。
 また、TE遺伝子、KAS遺伝子、AT遺伝子、ACS遺伝子の発現を促進させた形質転換体は、常法により作製できる。例えば、前述のACP2遺伝子の発現を促進させる方法と同様、前記各種遺伝子を宿主に導入する方法、前記各種遺伝子をゲノム上に有する宿主において当該遺伝子の発現調節領域を改変する方法、などにより形質転換体を作製することができる。
 本発明の形質転換体は、中鎖脂肪酸又はこれを構成成分とする脂質の生産性が、前記タンパク質(A)又は(B)をコードする遺伝子の発現が促進されていない宿主と比較して向上している。したがって、本発明の形質転換体を適切な条件で培養し、次いで得られた培養物又は生育物から中鎖脂肪酸又はこれを構成成分とする脂質を回収すれば、中鎖脂肪酸又はこれを構成成分とする脂質を効率よく製造することができる。
 ここで「培養物」とは培養した後の培養液及び形質転換体をいい、「生育物」とは生育した後の形質転換体をいう。
 本発明の形質転換体の培養条件は、宿主に応じて適宜選択することができ、その宿主に対して通常用いられる培養条件を使用できる。また脂肪酸の生産効率の点から、培地中に、例えば脂肪酸生合成系に関与する前駆物質としてグリセロール、酢酸、又はグルコース等を添加してもよい。
 宿主として大腸菌を用いる場合、大腸菌の培養は、例えば、LB培地又はOvernight Express Instant TB Medium(Novagen社)で、30~37℃、0.5~1日間培養することができる。
 また、宿主としてシロイヌナズナを用いる場合、シロイヌナズナの培養は、例えば、土壌で温度条件20~25℃、白色光を連続照射又は明期16時間・暗期8時間等の光条件下で1~2か月間栽培することができる。
 宿主として藻類を用いる場合、培地は天然海水又は人工海水をベースにしたものを使用してもよいし、市販の培養培地を使用してもよい。具体的な培地としては、f/2培地、ESM培地、ダイゴIMK培地、L1培地、MNK培地、等を挙げることができる。なかでも、脂質の生産性向上及び栄養成分濃度の観点から、f/2培地、ESM培地、又はダイゴIMK培地が好ましく、f/2培地、又はダイゴIMK培地がより好ましく、f/2培地がさらに好ましい。藻類の生育促進、脂肪酸の生産性向上のため、培地に、窒素源、リン源、金属塩、ビタミン類、微量金属等を適宜添加することができる。
 培地に接種する形質転換体の量は適宜選択することができ、生育性の点から、培地当り1%(vol/vol)以上が好ましい。また、その上限値は50%(vol/vol)以下が好ましく、10%(vol/vol)以下がより好ましい。接種する藻類の量の数値範囲は、1~50%(vol/vol)が好ましく、1~10%(vol/vol)がより好ましい。培養温度は、藻類の増殖に悪影響を与えない範囲であれば特に制限されないが、通常、5~40℃の範囲である。藻類の生育促進、脂肪酸の生産性向上、及び生産コストの低減の観点から、10℃以上が好ましく、15℃以上がより好ましい。またその上限値は35℃以下が好ましく、30℃以下がより好ましい。培養温度の数値範囲は、好ましくは10~35℃であり、より好ましくは15~30℃である。
 また藻類の培養は、光合成ができるよう光照射下で行うことが好ましい。光照射は、光合成が可能な条件であればよく、人工光でも太陽光でもよい。光照射時の照度としては、藻類の生育促進、脂肪酸の生産性向上の観点から、100ルクス以上が好ましく、300ルクス以上がより好ましく、1000ルクス以上がさらに好ましい。またその上限値は、50000ルクス以下が好ましく、10000ルクス以下がより好ましく、6000ルクス以下がさらに好ましい。光照射時の照度の数値範囲は、好ましくは100~50000ルクスの範囲、より好ましくは300~10000ルクスの範囲、さらに好ましくは1000~6000ルクスの範囲である。また、光照射の間隔は、特に制限されないが、前記と同様の観点から、明暗周期で行うことが好ましく、24時間のうち明期は8時間以上が好ましく、10時間以上がより好ましい。またその上限値は、24時間以下が好ましく、18時間以下がより好ましい。明期の数値範囲は、好ましくは8~24時間、より好ましくは10~18時間、さらに好ましくは12時間である。
 また藻類の培養は、光合成ができるように二酸化炭素を含む気体の存在下、又は炭酸水素ナトリウムなどの炭酸塩を含む培地で行うことが好ましい。気体中の二酸化炭素の濃度は特に限定されないが、生育促進、脂肪酸の生産性向上の観点から0.03%(大気条件と同程度)以上が好ましく、0.05%以上がより好ましく、0.1%以上がさらに好ましく、0.3%以上がよりさらに好ましい。またその上限値は、10%以下が好ましく、5%以下がより好ましく、3%以下がさらに好ましく、1%以下がよりさらに好ましい。二酸化炭素の濃度の数値範囲は、0.03~10%が好ましく、0.05~5%がより好ましく、0.1~3%がさらに好ましく、0.3~1%がよりさらに好ましい。炭酸塩の濃度は特に限定されないが、例えば炭酸水素ナトリウムを用いる場合、生育促進、脂肪酸の生産性向上の観点から0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましい。またその上限値は、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下がさらに好ましい。炭酸水素ナトリウムの濃度の数値範囲は、0.01~5質量%が好ましく、0.05~2質量%がより好ましく、0.1~1質量%がさらに好ましい。
 培養時間は特に限定されず、脂質を高濃度に蓄積する藻体が高い濃度で増殖できるように、長期間(例えば150日程度)行なってもよい。3日以上が好ましく、7日以上がより好ましい。またその上限値は、90日以下が好ましく、30日以下がより好ましい。培養期間の数値範囲は、好ましくは3~90日間、より好ましくは3~30日間、さらに好ましくは7~30日間である。なお、培養は、通気攪拌培養、振とう培養又は静置培養のいずれでもよく、通気性の向上の観点から、通気攪拌培養が好ましい。
 培養物又は生育物から脂質を採取する方法としては、常法から適宜選択することができる。例えば、前述の培養物又は生育物から、ろ過、遠心分離、細胞の破砕、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー、クロロホルム/メタノール抽出法、ヘキサン抽出法、又はエタノール抽出法等により脂質成分を単離、回収することができる。より大規模な培養を行った場合は、培養物又は生育物より油分を圧搾又は抽出により回収後、脱ガム、脱酸、脱色、脱蝋、脱臭等の一般的な精製を行い、脂質を得ることができる。このように脂質成分を単離した後、単離した脂質を加水分解することで脂肪酸を得ることができる。脂質成分から脂肪酸を単離する方法としては、例えば、アルカリ溶液中で70℃程度の高温で処理をする方法、リパーゼ処理をする方法、又は高圧熱水を用いて分解する方法等が挙げられる。
 本発明の製造方法において製造される脂質は、その利用性の点から、脂肪酸又は脂肪酸化合物を含んでいることが好ましく、脂肪酸又は脂肪酸エステル化合物を含んでいることがさらに好ましい。
 脂質中に含まれる脂肪酸又は脂肪酸エステル化合物は、界面活性剤等への利用性の観点から、中鎖脂肪酸又はその脂肪酸エステル化合物が好ましく、炭素原子数が6以上14以下の脂肪酸又はその脂肪酸エステル化合物がより好ましく、炭素原子数が8以上14以下の脂肪酸又はその脂肪酸エステル化合物がさらに好ましく、炭素原子数が10以上14以下の脂肪酸又はその脂肪酸エステル化合物がさらに好ましく、炭素原子数が10、12、若しくは14の脂肪酸又はその脂肪酸エステル化合物がさらに好ましく、炭素原子数が10、12、若しくは14の飽和脂肪酸(カプリン酸、ラウリン酸、ミリスチン酸)又はその脂肪酸エステル化合物がさらに好ましく、炭素原子数が12の飽和脂肪酸(ラウリン酸)又はその脂肪酸エステル化合物がさらに好ましい。
 脂肪酸エステル化合物は、生産性の点から、単純脂質又は複合脂質が好ましく、単純脂質がさらに好ましく、トリアシルグリセロールがさらにより好ましい。
 本発明の製造方法により得られる脂質は、食用として用いる他、可塑剤、化粧品等の乳化剤、石鹸や洗剤等の洗浄剤、繊維処理剤、毛髪リンス剤、又は殺菌剤や防腐剤として利用することができる。
 上述した実施形態に関し、本発明はさらに以下の脂質の製造方法、生産される脂肪酸の組成を改変する方法、形質転換体、及び形質転換体の作製方法を開示する。
<1>下記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させた形質転換体を培養して脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法。
(A)配列番号1で表されるアミノ酸配列からなるタンパク質。
(B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上、好ましくは75%以上、より好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは92%以上、好ましくは93%以上、より好ましくは94%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、さらに好ましくは99%以上、のアミノ酸配列からなり、かつACP活性を有するタンパク質。
<2>前記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させることで、形質転換体の細胞内で生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させる、脂質の製造方法。
<3>前記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させることで、形質転換体の細胞内で生産される全脂肪酸に占める中鎖脂肪酸の割合を増加させる、脂肪酸組成の改変方法。
<4>前記タンパク質(A)又は(B)をコードする遺伝子を宿主に導入して前記遺伝子の発現を促進させる、前記<1>~<3>のいずれか1項記載の方法。
<5>前記タンパク質(A)又は(B)をコードする遺伝子を導入した形質転換体を培養して脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法。
<6>前記タンパク質(A)又は(B)をコードする遺伝子を導入し、生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させる、脂質の製造方法。
<7>前記タンパク質(A)又は(B)をコードする遺伝子を導入した形質転換体を培養し、生産される全脂肪酸に占める中鎖脂肪酸の割合を増加させる、脂肪酸の組成の改変方法。
<8>前記タンパク質(B)が、前記タンパク質(A)のアミノ酸配列に、1又は複数個、好ましくは1個以上36個以下、より好ましくは1個以上30個以下、より好ましくは1個以上24個以下、より好ましくは1個以上18個以下、より好ましくは1個以上12個以下、より好ましくは1個以上9個以下、より好ましくは1個以上8個以下、より好ましくは1個以上7個以下、より好ましくは1個以上6個以下、より好ましくは1個以上4個以下、より好ましくは1個以上3個以下、より好ましくは1個以上2個以下、より好ましくは1個、のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、前記<1>~<7>のいずれか1項記載の方法。
<9>前記タンパク質(A)又は(B)をコードする遺伝子が、下記DNA(a)又は(b)からなる遺伝子である、前記<1>~<8>のいずれか1項記載の方法。
(a)配列番号2で表される塩基配列からなるDNA。
(b)前記DNA(a)の塩基配列と同一性が70%以上、好ましくは75%以上、より好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは92%以上、好ましくは93%以上、より好ましくは94%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、さらに好ましくは99%以上、の塩基配列からなり、かつACP活性を有するタンパク質をコードするDNA。
<10>前記DNA(b)が、前記DNA(a)の塩基配列に、1若しくは複数個、好ましくは1個以上108個以下、より好ましくは1個以上90個以下、より好ましくは1個以上72個以下、より好ましくは1個以上54個以下、より好ましくは1個以上36個以下、より好ましくは1個以上29個以下、より好ましくは1個以上25個以下、より好ましくは1個以上21個以下、より好ましくは1個以上18個以下、より好ましくは1個以上14個以下、より好ましくは1個以上10個以下、より好ましくは1個以上7個以下、より好ましくは1個以上3個以下、の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつACP活性を有する前記タンパク質(A)若しくは(B)をコードするDNA、又は前記DNA(a)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつACP活性を有する前記タンパク質(A)若しくは(B)をコードするDNA、である、前記<9>項記載の方法。
<11>前記形質転換体において、TEをコードする遺伝子の発現を促進させた、前記<1>~<10>のいずれか1項記載の方法。
<12>前記TEが、中鎖アシル-ACPに対する基質特異性を有するTEである、前記<11>項記載の方法。
<13>前記TEが、配列番号40、配列番号36、配列番号38、配列番号42、配列番号44若しくは配列番号46に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、のアミノ酸配列からなり、かつ中鎖アシル-ACPに対するTE活性を有するタンパク質である、前記<11>又は<12>項記載の方法。
<14>前記形質転換体において、ATをコードする遺伝子の発現を促進させた、前記<1>~<13>のいずれか1項記載の方法。
<15>前記ATが、配列番号52に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、のアミノ酸配列からなり、かつAT活性を有するタンパク質である、前記<14>項記載の方法。
<16>前記形質転換体において、KAS及びACSからなる群より選ばれる少なくとも1種のタンパク質をコードする遺伝子の発現を促進させた、前記<1>~<15>のいずれか1項記載の方法。
<17>前記KASが、配列番号48若しくは配列番号50に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、のアミノ酸配列からなり、かつKAS活性を有するタンパク質である、前記<16>項記載の方法。
<18>前記ACSが、配列番号54、配列番号56若しくは配列番号58に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、のアミノ酸配列からなり、かつACS活性を有するタンパク質、である前記<16>項記載の方法。
<19>前記形質転換体が微生物又は植物である、前記<1>~<18>のいずれか1項記載の方法。
<20>前記微生物が微細藻類である、前記<19>項記載の方法。
<21>前記微細藻類がナンノクロロプシス属に属する藻類、好ましくはナンノクロロプシス・オキュラータ、である、前記<20>項記載の方法。
<22>前記微生物が大腸菌である、前記<19>項記載の方法。
<23>前記植物がシロイヌナズナである、前記<19>項記載の方法。
<24>前記脂質が、中鎖脂肪酸又はその脂肪酸エステル化合物、好ましくは炭素原子数が6以上14以下の脂肪酸又はその脂肪酸エステル化合物、より好ましくは炭素原子数が8以上14以下の脂肪酸又はその脂肪酸エステル化合物、より好ましくは炭素原子数が10以上14以下の脂肪酸又はその脂肪酸エステル化合物、より好ましくは炭素原子数が10、12、若しくは14の脂肪酸又はその脂肪酸エステル化合物、より好ましくは炭素原子数が10、12、若しくは14の飽和脂肪酸(カプリン酸、ラウリン酸、ミリスチン酸)又はその脂肪酸エステル化合物、より好ましくは炭素原子数が12の飽和脂肪酸(ラウリン酸)又はその脂肪酸エステル化合物、を含む、前記<1>~<23>のいずれか1項記載の方法。
<25>f/2培地を用いて前記形質転換体を培養する、前記<1>~<24>のいずれか1項記載の方法。
<26>前記タンパク質(A)又は(B)をコードする遺伝子の発現を宿主の細胞内で促進させた形質転換体。
<27>前記タンパク質(A)又は(B)をコードする遺伝子、又は当該遺伝子を含有する組換えベクターを宿主に導入してなる、形質転換体。
<28>前記タンパク質(A)又は(B)をコードする遺伝子、又は当該遺伝子を含有する組換えベクターを宿主に導入する、形質転換体の作製方法。
<29>前記タンパク質(B)が前記<8>項で規定するタンパク質である、前記<26>~<28>のいずれか1項記載の形質転換体又はその作製方法。
<30>前記タンパク質(A)又は(B)をコードする遺伝子が、前記DNA(a)又は(b)からなる遺伝子である、前記<26>~<29>のいずれか1項記載の形質転換体又はその作製方法。
<31>前記DNA(b)が前記<10>項で規定するDNAである、前記<30>項に記載の形質転換体又はその作製方法。
<32>前記形質転換体において、TEをコードする遺伝子の発現を促進させた、前記<26>~<31>のいずれか1項記載の形質転換体又はその作製方法。
<33>前記TEが、中鎖アシル-ACPに対する基質特異性を有するTEである、前記<32>項記載の形質転換体又はその作製方法。
<34>前記TEが、配列番号40、配列番号36、配列番号38、配列番号42、配列番号44若しくは配列番号46に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、のアミノ酸配列からなり、かつ中鎖アシル-ACPに対するTE活性を有するタンパク質、である、前記<32>又は<33>項記載の形質転換体又はその作製方法。
<35>前記形質転換体において、ATをコードする遺伝子の発現を促進させた、前記<26>~<34>のいずれか1項記載の形質転換体又はその作製方法。
<36>前記ATが、配列番号52に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、のアミノ酸配列からなり、かつAT活性を有するタンパク質である、前記<35>項記載の形質転換体又はその作製方法。
<37>前記形質転換体において、KAS及びACSからなる群より選ばれる少なくとも1種のタンパク質をコードする遺伝子の発現を促進させた、前記<26>~<36>のいずれか1項記載の形質転換体又はその作製方法。
<38>前記KASが、配列番号48若しくは配列番号50に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、のアミノ酸配列からなり、かつKAS活性を有するタンパク質である、前記<37>項記載の形質転換体又はその作製方法。
<39>前記ACSが、配列番号54、配列番号56若しくは配列番号58に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、のアミノ酸配列からなり、かつACS活性を有するタンパク質、である前記<37>項記載の形質転換体又はその作製方法。
<40>前記形質転換体又は宿主が微生物又は植物である、前記<26>~<39>のいずれか1項記載の形質転換体又はその作製方法。
<41>前記微生物が微細藻類である、前記<40>項記載の形質転換体又はその作製方法。
<42>前記微細藻類がナンノクロロプシス属に属する藻類、好ましくはナンノクロロプシス・オキュラータ、である、前記<41>項記載の形質転換体又はその作製方法。
<43>前記微生物が大腸菌である、前記<40>項記載の形質転換体又はその作製方法。
<44>前記植物がシロイヌナズナである、前記<40>項記載の形質転換体又はその作製方法。
<45>脂質を製造するための、前記<26>~<44>のいずれか1項記載の形質転換体、又は形質転換体の作製方法により得られた形質転換体の使用。
<46>前記中鎖脂肪酸が、炭素原子数が6以上14以下の脂肪酸、好ましくは炭素原子数が8以上14以下の脂肪酸、より好ましくは炭素原子数が10以上14以下の脂肪酸、より好ましくは炭素原子数が10、12、若しくは14の脂肪酸、より好ましくは炭素原子数が10、12、若しくは14の飽和脂肪酸(カプリン酸、ラウリン酸、ミリスチン酸)、より好ましくは炭素原子数が12の飽和脂肪酸(ラウリン酸)、を含む、前記<45>項記載の使用。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。ここで、本実施例で用いるプライマーの塩基配列を表1~3に示す。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
実施例1 ナンノクロロプシス・オキュラータ由来ACP遺伝子をナンノクロロプシス・オキュラータへ導入した形質転換体の作製、及び形質転換体による脂質の製造
(1)ゼオシン耐性遺伝子発現用プラスミドの構築
 ゼオシン耐性遺伝子(配列番号3)、及び文献(Nature Communications,DOI:10.1038/ncomms1688,2012)に記載されている、ナンノクロロプシス・ガディタナCCMP526株由来チューブリンプロモーター配列(配列番号4)を人工合成した。
 合成したDNA断片を鋳型として、表1に示すプライマー番号5及びプライマー番号6のプライマー対、並びにプライマー番号7及びプライマー番号8のプライマー対をそれぞれ用いてPCRを行い、ゼオシン耐性遺伝子及びチューブリンプロモーター配列をそれぞれ増幅した。
 また、ナンノクロロプシス・オキュラータNIES2145株(独立行政法人国立環境研究所(NIES)より入手)のゲノムを鋳型として、表1に示すプライマー番号9及びプライマー番号10のプライマー対を用いてPCRを行い、ヒートショックプロテインターミネーター配列(配列番号11)を増幅した。
 さらに、プラスミドベクターpUC19(タカラバイオ社製)を鋳型として、表1に示すプライマー番号12及びプライマー番号13のプライマー対を用いてPCRを行い、プラスミドベクターpUC19を増幅した。
 これら4つの増幅断片をそれぞれ制限酵素DpnI(東洋紡株式会社製)にて処理し、High Pure PCR Product Purification Kit(Roche Applied Science社製)を用いて精製した。その後、得られた4つの断片をIn-Fusion HD Cloning Kit(Clontech社製)を用いて融合し、ゼオシン耐性遺伝子発現用プラスミドを構築した。
 なお、本発現プラスミドは、チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列の順に連結したインサート配列と、pUC19ベクター配列からなる。
(2)ナンノクロロプシス・オキュラータ由来ACP遺伝子の取得、及びACP遺伝子発現用プラスミドの構築
 ナンノクロロプシス・オキュラータNIES2145株の全RNAを抽出し、SuperScript(商標)III First-Strand Synthesis SuperMix for qRT-PCR(invitrogen社製)を用いて逆転写を行ってcDNAを得た。このcDNAを鋳型として、表1に示すプライマー番号14及びプライマー番号15のプライマー対をそれぞれ用いてPCRを行い、配列番号2の塩基配列からなるNoACP2遺伝子断片を取得した。
 また、ナンノクロロプシス・オキュラータNIES2145株のゲノムを鋳型として、表1に示すプライマー番号16及びプライマー番号17のプライマー対、並びにプライマー番号18及びプライマー番号19のプライマー対をそれぞれ用いてPCRを行い、LDSPプロモーター配列(配列番号20)及びVCP1ターミネーター配列(配列番号21)を取得した。
 さらに、前記ゼオシン耐性遺伝子発現プラスミドを鋳型として、表1に示すプライマー番号22及びプライマー番号13のプライマー対を用いてPCRを行い、ゼオシン耐性遺伝子発現カセット(チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列)及びpUC19配列からなる断片を増幅した。
 NoACP2遺伝子断片を、LDSPプロモーター断片、VCP1ターミネーター断片、ゼオシン耐性遺伝子発現カセット及びpUC19配列からなる断片と混和した。そして、これら4つの増幅断片を、前述の方法と同様の方法にて融合し、NoACP2遺伝子発現用プラスミドを構築した。
 なお、本発現プラスミドはLDSPプロモーター配列、NoACP2遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列の順で連結したインサート配列と、pUC19ベクター配列からなる。
(3)ACP遺伝子発現用カセットのナンノクロロプシス・オキュラータへの導入
 前記NoACP2遺伝子発現プラスミドを鋳型として、表1に示すプライマー番号10及びプライマー番号16のプライマー対を用いてPCRを行い、NoACP2遺伝子発現カセット(LDSPプロモーター配列、NoACP2遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列からなるDNA断片)を増幅した。
 増幅した各DNA断片を、High Pure PCR Product Purification Kit(Roche Applied Science社製)を用いて精製した。なお、精製の際の溶出には、キットに含まれる溶出バッファーではなく、滅菌水を用いた。
 約1×109細胞のナンノクロロプシス・オキュラータNIES2145株を、384mMのソルビトール溶液で洗浄して塩を完全に除去し、形質転換の宿主細胞として用いた。上記で増幅したNoACP2遺伝子発現カセット約500ngを宿主細胞と混和し、50μF、500Ω、2,200v/2mmの条件でエレクトロポレーションを行った。
 f/2液体培地(NaNO3 75mg、NaH2PO4・2H2O 6mg、ビタミンB12 0.5μg、ビオチン 0.5μg、チアミン 100μg、Na2SiO3・9H2O 10mg、Na2EDTA・2H2O 4.4mg、FeCl3・6H2O 3.16mg、FeCl3・6H2O 12μg、ZnSO4・7H2O 21μg、MnCl2・4H2O 180μg、CuSO4・5H2O 7μg、Na2MoO4・2H2O 7μg/人工海水1L)にて24時間回復培養を行った。その後、2μg/mLのゼオシン含有f/2寒天培地に塗布し、25℃、0.3%CO雰囲気下、12h/12h明暗条件にて2~3週間培養した。得られたコロニーの中から、NoACP2遺伝子発現カセットを含むナンノクロロプシス・オキュラータ株をPCRにより選抜した。
(4)形質転換体による脂肪酸の生産
 選抜した株を、f/2培地の窒素濃度を15倍、リン濃度を5倍に増強した培地(以下、「N15P5培地」という)20mLに播種し、25℃、0.3%CO雰囲気下、12h/12h明暗条件にて3~4週間振盪培養し、前培養液とした。それぞれ独立した2ラインの形質転換体の前培養液2mLをN15P5培地18mLに植継ぎ、25℃、0.3%CO2雰囲気下、12h/12h明暗条件にて12日間振盪培養した。なお、陰性対照として、野生株であるナンノクロロプシス・オキュラータNIES2145株についても同様に実験を行った。
(5)脂質の抽出及び構成脂肪酸の分析
 培養液1mLに、内部標準として1mg/mLの7-ペンタデカノン(メタノール溶液)50μLを添加後、クロロホルム0.5mL、及びメタノール1mLを培養液に添加して激しく攪拌し、10分間放置した。その後さらに、クロロホルム0.5mL及び1.5%KCl 0.5mLを添加して攪拌し、3,000rpmにて5分間遠心分離を行い、パスツールピペットにてクロロホルム層(下層)を回収した。
 得られたクロロホルム層に窒素ガスを吹き付けて乾固し、0.5NのKOHメタノール溶液を0.7mL添加し、80℃にて30分間恒温した。さらに、14%三フッ化ホウ素溶液(SIGMA社製)1mLを添加し、80℃にて30分間恒温した。その後、ヘキサン0.5mL、及び飽和食塩水1mLを添加して激しく撹拌し、室温にて10分間放置し、上層であるヘキサン層を回収して脂肪酸メチルエステルを得た。
 下記に示す測定条件下で、得られた脂肪酸メチルエステルをガスクロマトグラフィー解析に供した。
<ガスクロマトグラフィー条件>
分析装置:7890A(Agilent technology)
キャピラリーカラム:DB-1 MS(30m×200μm×0.25μm、J&W Scientific社製)
移動相:高純度ヘリウム
オーブン温度:150℃保持0.5分→150~220℃(40℃/分昇温)→220~320℃(20℃/分昇温)→320℃保持2分(ポストラン2分)
注入口温度:300℃
注入方法:スプリット注入(スプリット比:75:1)
注入量:1μL
洗浄バイアル:メタノール・クロロホルム
検出方法:FID
検出器温度:300℃
 脂肪酸メチルエステルの同定は、同サンプルを同条件でガスクロマトグラフ質量分析解析に供することにより行った。
 ガスクロマトグラフィー解析により得られた波形データのピーク面積より、各脂肪酸のメチルエステル量を定量した。各ピーク面積を、内部標準である7-ペンタデカノンのピーク面積と比較することで試料間の補正を行い、培養液1Lあたりの各脂肪酸量を算出した。さらに、各脂肪酸量の総和を総脂肪酸量とし、総脂肪酸量に占める各脂肪酸量の割合を算出した。
 その結果を表4に示す。なお、以下の表において、「TFA」は総脂肪酸量を、「脂肪酸組成(%TFA)」は総脂肪酸の重量に対する各脂肪酸の重量の割合を示す。また、「n」は0~5の整数であり、例えば「C18:n」と記載した場合には、組成がC18:0、C18:1、C18:2、C18:3、C18:4及びC18:5の脂肪酸の総和を表す。
Figure JPOXMLDOC01-appb-I000004
 表4に示すように、NoACP2遺伝子発現カセットを導入した形質転換体(NoACP2遺伝子導入株)は、野生株(NIES2145)と比較して、脂肪酸組成に大きな変化が確認できた。具体的には、長鎖脂肪酸、特にC16:0(パルミチン酸)及びC18:nの割合が大きく減少した。そして、中鎖脂肪酸(C12:0(ラウリン酸)及びC14:0(ミリスチン酸))の割合が顕著に増加した。
 以上の結果から、NoACP2遺伝子は中鎖脂肪酸の生産性の向上に好適に用いることができるということが明らかになった。
実施例2 NoACP2遺伝子及びNoTE遺伝子をナンノクロロプシス・オキュラータに導入した形質転換体の作製、及び形質転換体による脂肪酸の生産
(1)NoTE発現用プラスミドの構築
 実施例1で作製したナンノクロロプシス・オキュラータNIES2145株由来のcDNAを鋳型として、表2に示すプライマー番号23及びプライマー番号24のプライマー対、並びにプライマー番号25及びプライマー番号26のプライマー対を用いてPCRを行い、配列番号27の262位~864位までの塩基配列からなるアシル-ACPチオエステラーゼ遺伝子断片(以下、「NoTE遺伝子断片」ともいう)、及び配列番号28の塩基配列からなるVCP1葉緑体移行シグナル断片を取得した。
 これらの増幅断片を、実施例1と同様の方法で作製したLDSPプロモーター断片、VCP1ターミネーター断片、ゼオシン耐性遺伝子発現用カセット、及びpUC19配列からなる断片と混和し、実施例1と同様の方法にて融合し、NoTE遺伝子発現用プラスミドを構築した。なお、本発現プラスミドはLDSPプロモーター配列、VCP1葉緑体移行シグナル配列、NoTE遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列の順で連結したインサート配列と、pUC19ベクター配列からなる。
 作製したNoTE遺伝子発現用プラスミドを鋳型として、表2に示すプライマー番号29及びプライマー番号30のプライマー対を用いてPCRを行い、増幅断片を実施例1と同様の方法にて精製及び融合し、NoTE改変体(以下、「NoTE(V204W)」ともいう)遺伝子発現用プラスミドを構築した。なお、本発現用プラスミドでは、配列番号36に示すアミノ酸配列からなるNoTE(配列番号27に示す塩基配列からなるNoTE遺伝子がコードするNoTE)のうち、204位のバリン(V)がトリプトファン(W)に置換されている。
(2)NoTE発現用プラスミドのナンノクロロプシス・オキュラータへの導入
 構築したV204W遺伝子発現用プラスミドを鋳型として、表1に示すプライマー番号10及びプライマー番号16のプライマー対を用いたPCRを行い、NoTE(V204W)遺伝子発現カセット(LDSPプロモーター配列、VCP1葉緑体移行シグナル配列、NoTE(V204W)遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列からなるDNA断片)を増幅した。この増幅断片を、実施例1と同様の方法にて精製し、ナンノクロロプシス・オキュラータNIES2145株に形質転換した。以下、NoTE(V204W)遺伝子を導入した株を「NoTE(V204W)株」ともいう。
(3)NoTE(V204W)株へのNoACP2遺伝子の導入
 実施例1で構築したNoACP2遺伝子発現用プラスミドを鋳型として、表2に示すプライマー番号31及びプライマー番号32のプライマー対を用いてPCRを行った。また、人工合成したパロモマイシン耐性遺伝子(配列番号33)を鋳型として、表2に示すプライマー番号34及びプライマー番号35のプライマー対を用いてPCRを行った。
 これら2つの増幅断片を実施例1と同様の方法にて融合し、NoACP2遺伝子発現用プラスミド(パロモマイシン耐性)を構築した。なお、本発現用プラスミドは、LDSPプロモーター配列、NoACP2遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、パロモマイシン耐性遺伝子、ヒートショックプロテインターミネーター配列の順で連結したインサート配列と、pUC19ベクター配列からなる。
 得られた前記NoACP2遺伝子発現用プラスミド(パロモマイシン耐性)を鋳型として、表1に示すプライマー番号10及びプライマー番号16のプライマー対を用いてPCRを行い、NoACP2遺伝子発現カセット(LDSPプロモーター配列、NoACP2遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、パロモマイシン耐性遺伝子、ヒートショックプロテインターミネーター配列からなるDNA断片)を増幅した。
 得られた増幅断片を実施例1と同様の方法にて精製し、前記NoTE(V204W)株に、精製した断片をエレクトロポレーションにより導入した。実施例1と同様の方法にて回復培養を行った後、2μg/mLのゼオシン及び100μg/mLのパロモマイシン含有f/2寒天培地に塗布し、25℃、0.3%CO雰囲気下、12h/12h明暗条件にて2~3週間培養した。得られたコロニーの中から、NoACP2遺伝子発現カセットを含むナンノクロロプシス・オキュラータ株をPCRにより選抜した。
(4)形質転換体による脂肪酸の生産、脂質の抽出及び構成脂肪酸の分析
 選抜した株を、N15P5培地20mLに播種し、25℃、0.3%CO雰囲気下、12h/12h明暗条件にて3~4週間振盪培養し、前培養液とした。前培養液2mLをN15P5培地18mLに植継ぎ、25℃、0.3%CO2雰囲気下、12h/12h明暗条件にて14日間振盪培養した。なお、陰性対照として、NoTE(V204W)株についても同様の実験を行った。
 得られた培養液を用いて、実施例1と同様の方法にて脂質の抽出及び構成脂肪酸の分析を行った。その結果を表5に示す。
Figure JPOXMLDOC01-appb-I000005
 表5に示すように、NoTE(V204W)株にNoACP2遺伝子を導入した形質転換体(NoTE(V204W)+NoACP2)でも、NoTE(V204W)株と比較して、脂肪酸組成に大きな変化が確認できた。具体的には、C16:0(パルミチン酸)やC16:1(パルミトレイン酸)などの長鎖脂肪酸の割合が大きく減少した。そして、中鎖脂肪酸(C10:0(カプリン酸)及びC12:0(ラウリン酸))の割合が顕著に増加した。
 このことから、NoACP2遺伝子は、中鎖アシル-ACPに対する基質特異性を有するTEをコードする遺伝子と併用することで、中鎖脂肪酸の生産性をさらに向上させることができる。
実施例3 NoACP2遺伝子及びNoAT遺伝子をナンノクロロプシス・オキュラータに導入した形質転換体の作製、及び形質転換体による脂肪酸の生産
(1)NoAT発現用プラスミドの構築
 実施例1で作製したナンノクロロプシス・オキュラータNIES2145株由来のcDNAを鋳型として、表3に示すプライマー番号60及びプライマー番号61のプライマー対を用いてPCRを行い、配列番号53の塩基配列からなるアシルトランスフェラーゼ遺伝子断片(以下、「NoAT遺伝子断片」ともいう)を取得した。
 この増幅断片を、実施例1と同様の方法で作製したLDSPプロモーター断片、VCP1ターミネーター断片、ゼオシン耐性遺伝子発現用カセット、及びpUC19配列からなる断片と混和し、実施例1と同様の方法にて融合し、NoAT遺伝子発現用プラスミドを構築した。なお、本発現プラスミドはLDSPプロモーター配列、NoAT遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列の順で連結したインサート配列と、pUC19ベクター配列からなる。
(2)NoAT発現用プラスミドのナンノクロロプシス・オキュラータへの導入
 構築したNoAT遺伝子発現用プラスミドを鋳型として、表1に示すプライマー番号10及びプライマー番号16のプライマー対を用いたPCRを行い、NoAT遺伝子発現カセット(LDSPプロモーター配列、NoAT遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列からなるDNA断片)を増幅した。この増幅断片を、実施例1と同様の方法にて精製し、ナンノクロロプシス・オキュラータNIES2145株に形質転換した。以下、NoAT遺伝子を導入した株を「NoAT株」ともいう。
(3)NoAT株へのNoACP2遺伝子の導入
 実施例2で構築したNoACP2遺伝子発現用プラスミド(パロモマイシン耐性)を鋳型として、表1に示すプライマー番号10及びプライマー番号16のプライマー対を用いてPCRを行い、NoACP2遺伝子発現カセット(LDSPプロモーター配列、NoACP2遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、パロモマイシン耐性遺伝子、ヒートショックプロテインターミネーター配列からなるDNA断片)を増幅した。
 得られた増幅断片を実施例1と同様の方法にて精製し、前記NoAT株に、精製した断片をエレクトロポレーションにより導入した。実施例1と同様の方法にて回復培養を行った後、2μg/mLのゼオシン及び100μg/mLのパロモマイシン含有f/2寒天培地に塗布し、25℃、0.3%CO雰囲気下、12h/12h明暗条件にて2~3週間培養した。得られたコロニーの中から、NoACP2遺伝子発現カセットを含むナンノクロロプシス・オキュラータ株をPCRにより選抜した。
(4)形質転換体による脂肪酸の生産、脂質の抽出及び構成脂肪酸の分析
 選抜した株(それぞれ独立した3ライン)を、f/2培地の窒素濃度を5倍、リン濃度を5倍に増強した培地(以下、「N5P5培地」という)に播種し、25℃、0.3%CO雰囲気下、12h/12h明暗条件にて3週間振盪培養し、前培養液とした。前培養液1mLをN5P5培地19mLに植継ぎ、25℃、0.3%CO2雰囲気下、12h/12h明暗条件にて14日間振盪培養した。なお、陰性対照として、NoAT株及びNIES2145株、並びに参考例として、実施例1で作製したNoACP2遺伝子導入株(以下、「NoACP2株」ともいう)についても、同様の実験を行った。
 得られた培養液を用いて、実施例1と同様の方法にて脂質の抽出及び構成脂肪酸の分析を行った。その結果を表6に示す。
Figure JPOXMLDOC01-appb-I000006
 表6に示すように、NoAT株にNoACP2遺伝子を導入した形質転換体(NoAT+NoACP2)でも、NoAT株と比較して、脂肪酸組成に大きな変化が確認できた。具体的には、C16:0(パルミチン酸)などの長鎖脂肪酸の割合が大きく減少した。そして、中鎖脂肪酸(C10:0(カプリン酸)、C12:0(ラウリン酸)及びC14:0(ミリスチン酸))の割合が顕著に増加した。
 このことから、NoACP2遺伝子は、中鎖アシル基に対する基質特異性を有するATをコードする遺伝子と併用することで、中鎖脂肪酸の生産性をさらに向上させることができる。
 以上のように、本発明で規定するACP2遺伝子の発現を促進させることで、中鎖脂肪酸の生産性を向上させた形質転換体を作製することができる。そしてこの形質転換体を培養することで、中鎖脂肪酸の生産性を向上させることができる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2016年5月26日に日本国で特許出願された特願2016-105198に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (20)

  1.  下記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させた微細藻類の形質転換体を培養して中鎖脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつアシルキャリアープロテイン活性を有するタンパク質。
  2.  下記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させることで、微細藻類の形質転換体の細胞内で生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させる、脂質の製造方法。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつアシルキャリアープロテイン活性を有するタンパク質。
  3.  下記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させることで、微細藻類の形質転換体の細胞内で生産される全脂肪酸に占める中鎖脂肪酸の割合を増加させる、脂肪酸組成の改変方法。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつアシルキャリアープロテイン活性を有するタンパク質。
  4.  前記タンパク質(A)又は(B)をコードする遺伝子を微細藻類に導入して前記遺伝子の発現を促進させる、請求項1~3のいずれか1項に記載の方法。
  5.  前記タンパク質(A)又は(B)をコードする遺伝子が、下記DNA(a)又は(b)からなる遺伝子である、請求項1~4のいずれか1項記載の方法。
    (a)配列番号2で表される塩基配列からなるDNA。
    (b)前記DNA(a)の塩基配列と同一性が70%以上の塩基配列からなり、かつアシルキャリアープロテイン活性を有するタンパク質をコードするDNA。
  6.  前記形質転換体において、アシル-ACPチオエステラーゼをコードする遺伝子の発現を促進させた、請求項1~5のいずれか1項記載の方法。
  7.  前記アシル-ACPチオエステラーゼが、配列番号40、配列番号36、配列番号38、配列番号42、配列番号44若しくは配列番号46に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が90%以上のアミノ酸配列からなり、かつ中鎖アシル-ACPに対するアシル-ACPチオエステラーゼ活性を有するタンパク質である、請求項6記載の方法。
  8.  前記形質転換体において、アシル基転移酵素をコードする遺伝子の発現を促進させた、請求項1~7のいずれか1項記載の方法。
  9.  前記アシル基転移酵素が、配列番号52に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が90%以上のアミノ酸配列からなり、かつアシルトランスフェラーゼ活性を有するタンパク質である、請求項8記載の方法。
  10.  前記微細藻類がナンノクロロプシス(Nannochloropsis)属に属する藻類である、請求項1~9のいずれか1項記載の方法。
  11.  前記中鎖脂肪酸が、炭素原子数が10、12、又は14の脂肪酸を含む、請求項1~10のいずれか1項記載の方法。
  12.  前記中鎖脂肪酸がラウリン酸を含む、請求項1~11のいずれか1項記載の方法。
  13.  下記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させた微細藻類の形質転換体。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつアシルキャリアープロテイン活性を有するタンパク質。
  14.  下記タンパク質(A)又は(B)をコードする遺伝子、又は当該遺伝子を含有する組換えベクターを微細藻類に導入してなる微細藻類の形質転換体。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつアシルキャリアープロテイン活性を有するタンパク質。
  15.  前記タンパク質(A)又は(B)をコードする遺伝子が、下記DNA(a)又は(b)からなる遺伝子である、請求項13又は14記載の形質転換体。
    (a)配列番号2で表される塩基配列からなるDNA。
    (b)前記DNA(a)の塩基配列と同一性が70%以上の塩基配列からなり、かつアシルキャリアープロテイン活性を有するタンパク質をコードするDNA。
  16.  アシル-ACPチオエステラーゼをコードする遺伝子の発現を促進させた、請求項13~15のいずれか1項記載の形質転換体。
  17.  前記アシル-ACPチオエステラーゼが、配列番号40、配列番号36、配列番号38、配列番号42、配列番号44若しくは配列番号46に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が90%以上のアミノ酸配列からなり、かつ中鎖アシル-ACPに対するアシル-ACPチオエステラーゼ活性を有するタンパク質である、請求項16記載の形質転換体。
  18.  アシル基転移酵素をコードする遺伝子の発現を促進させた、請求項13~17のいずれか1項記載の形質転換体。
  19.  前記アシル基転移酵素が、配列番号52に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が90%以上のアミノ酸配列からなり、かつアシルトランスフェラーゼ活性を有するタンパク質である、請求項18記載の形質転換体。
  20.  前記微細藻類がナンノクロロプシス(Nannochloropsis)属に属する藻類である、請求項13~19のいずれか1項記載の形質転換体。
PCT/JP2017/012923 2016-05-26 2017-03-29 脂質の製造方法 WO2017203827A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-105198 2016-05-26
JP2016105198A JP6779664B2 (ja) 2016-05-26 2016-05-26 脂質の製造方法

Publications (1)

Publication Number Publication Date
WO2017203827A1 true WO2017203827A1 (ja) 2017-11-30

Family

ID=60412370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012923 WO2017203827A1 (ja) 2016-05-26 2017-03-29 脂質の製造方法

Country Status (2)

Country Link
JP (1) JP6779664B2 (ja)
WO (1) WO2017203827A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487344B2 (en) 2015-09-11 2019-11-26 Kao Corporation Method of producing fatty acids or lipids by using acyltransferase
WO2020254585A1 (en) * 2019-06-20 2020-12-24 Total Se Mutation of an acyl-coa synthase for increased triacylglycerol production in microalgae

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017333801A1 (en) * 2016-09-27 2019-04-11 Kao Corporation Method of Producing Lipid
JP7132101B2 (ja) * 2018-11-21 2022-09-06 花王株式会社 脂質の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510275A (ja) * 2008-11-28 2012-05-10 ソラザイム、インク 従属栄養微生物における、用途に応じた油の生産
US20130289262A1 (en) * 2009-06-08 2013-10-31 Oliver Kilian ACP Promoter
WO2015133305A1 (ja) * 2014-03-03 2015-09-11 花王株式会社 β-ケトアシル-ACPシンターゼを用いた脂質の製造方法
WO2015194628A1 (ja) * 2014-06-20 2015-12-23 花王株式会社 脂質の製造方法
JP2016500261A (ja) * 2012-12-12 2016-01-12 アールイージー ライフ サイエンシズ リミテッド ライアビリティ カンパニー 脂肪酸誘導体のacp媒介性生産方法
WO2017043419A1 (ja) * 2015-09-11 2017-03-16 花王株式会社 脂質の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510275A (ja) * 2008-11-28 2012-05-10 ソラザイム、インク 従属栄養微生物における、用途に応じた油の生産
US20130289262A1 (en) * 2009-06-08 2013-10-31 Oliver Kilian ACP Promoter
JP2016500261A (ja) * 2012-12-12 2016-01-12 アールイージー ライフ サイエンシズ リミテッド ライアビリティ カンパニー 脂肪酸誘導体のacp媒介性生産方法
WO2015133305A1 (ja) * 2014-03-03 2015-09-11 花王株式会社 β-ケトアシル-ACPシンターゼを用いた脂質の製造方法
WO2015194628A1 (ja) * 2014-06-20 2015-12-23 花王株式会社 脂質の製造方法
WO2017043419A1 (ja) * 2015-09-11 2017-03-16 花王株式会社 脂質の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE UniProtKB [o] 16 April 2014 (2014-04-16), "Acyl carrier protein", Database accession no. W7TK08 *
HIROSHI HAGIWARA: "Development of Sustainable Raw Materials of Fats and Oils using Microalgae", BIO INDUSTRY, vol. 33, 12 July 2016 (2016-07-12), pages 41 - 47 *
YU INABA ET AL.: "Chusa Shibosan o Kiridasu Thioesterase Idenshi to Acyl Carrier Protein Indenshi no Doji Donyu ni yoru Chlamydomonas reinhardtii no Shibosan no Tanso Sacho no Kaihen", PROCEEDINGS OF THE 2015 ANNUAL MEETING OF JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 3 May 2015 (2015-05-03) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487344B2 (en) 2015-09-11 2019-11-26 Kao Corporation Method of producing fatty acids or lipids by using acyltransferase
WO2020254585A1 (en) * 2019-06-20 2020-12-24 Total Se Mutation of an acyl-coa synthase for increased triacylglycerol production in microalgae

Also Published As

Publication number Publication date
JP2017209064A (ja) 2017-11-30
JP6779664B2 (ja) 2020-11-04

Similar Documents

Publication Publication Date Title
JP6491881B2 (ja) アシル−acpチオエステラーゼ
US10844409B2 (en) Method of producing lipid
JP6381139B2 (ja) アシル−acpチオエステラーゼ
US10337037B2 (en) Method of producing lipid
JPWO2016076231A1 (ja) アシル−acpチオエステラーゼを用いた脂質の製造方法
WO2017203827A1 (ja) 脂質の製造方法
US10487344B2 (en) Method of producing fatty acids or lipids by using acyltransferase
US10724046B2 (en) Method of producing lipid
WO2016088511A1 (ja) アシル-acpチオエステラーゼを用いた脂質の製造方法
JP2019050750A (ja) 脂質の製造方法
JP7562415B2 (ja) 脂質の製造方法
US11279958B2 (en) Method of producing lipid
WO2017022587A1 (ja) 脂質の製造方法
JP7450329B2 (ja) 脂質の製造方法
JP2019216643A (ja) 脂質の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802429

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802429

Country of ref document: EP

Kind code of ref document: A1