WO2017203706A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2017203706A1
WO2017203706A1 PCT/JP2016/065796 JP2016065796W WO2017203706A1 WO 2017203706 A1 WO2017203706 A1 WO 2017203706A1 JP 2016065796 W JP2016065796 W JP 2016065796W WO 2017203706 A1 WO2017203706 A1 WO 2017203706A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
indoor
cooling
units
indoor unit
Prior art date
Application number
PCT/JP2016/065796
Other languages
English (en)
French (fr)
Inventor
就哉 駒崎
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to EP16903187.9A priority Critical patent/EP3467393B1/en
Priority to PCT/JP2016/065796 priority patent/WO2017203706A1/ja
Publication of WO2017203706A1 publication Critical patent/WO2017203706A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/07Remote controls

Definitions

  • a plurality of cooling / heating switching units are connected to one outdoor unit, and one or a plurality of indoor units are connected to each of these cooling / heating switching units, and each indoor unit is stopped, cooled, or heated.
  • the present invention relates to an air conditioner capable of simultaneous setting.
  • a plurality of cooling / heating switching units are connected to one outdoor unit, one indoor unit is connected to each of these cooling / heating switching units, and the refrigerant flow path between the outdoor unit and each indoor unit is switched by each cooling / heating switching unit.
  • An air conditioner that can be stopped, cooled and heated in units of indoor units is known. Further, a plurality of indoor units can be connected in parallel to one cooling / heating switching unit.
  • Each indoor unit has, for example, a flow rate adjusting valve for adjusting the flow rate of the refrigerant.
  • Each cooling / heating switching unit has one or more on / off valves for switching the refrigerant flow path.
  • the same operation mode is set on the condition that heating is prioritized, and the refrigerant flow path corresponding to this operation mode is set by the cooling / heating switching unit.
  • the controller of the outdoor unit is the master unit (host), and the controller of the multiple indoor units is the slave unit (terminal or client), and the query from the master unit to each slave unit is performed sequentially. Communication that receives a response from each slave unit at the master unit, so-called polling communication, is periodically repeated.
  • the master unit controls the operation of the master unit according to the response from each slave unit, and controls each slave unit (indoor unit) according to the response from each slave unit.
  • the refrigerant flow path of the cooling / heating switching unit to which the indoor unit is connected is controlled.
  • the order of communication from the parent device to each child device is determined in advance based on an address unique to each child device.
  • each slave unit (indoor unit) is set manually by the construction contractor when installing the indoor unit, or automatically assigned from the outdoor unit during the first test run after installing all the indoor units. For this reason, the unique address of the indoor unit is often set regardless of the connection to the cooling / heating switching unit.
  • two indoor units whose communication orders are separated from each other may be connected to one cooling / heating switching unit.
  • a time difference occurs between the communication with the indoor unit with the earlier communication order and the communication with the indoor unit with the later communication order. If this time difference is large, the operation of the flow rate adjustment valve in both indoor units and the operation of the on-off valve in the cooling / heating switching unit will be in an inappropriate state. Specifically, the operation state (stop / cooling operation / heating operation) set in both indoor units and the refrigerant flow path set in the cooling / heating switching unit to which both indoor units are connected become incompatible. .
  • the flow rate adjustment valves of both indoor units and the on / off valves of the cooling / heating switching unit frequently repeat the operation, and the operation sound and the refrigerant flow sound are frequently generated, which may cause discomfort to the user. .
  • An object of the embodiment of the present invention is to adapt the operation state set in each indoor unit and the refrigerant flow path set in each cooling / heating switching unit without time delay, thereby allowing proper operation of each indoor unit. And providing an air conditioner that can reduce the generation of unpleasant sounds.
  • the air conditioner according to claim 1 includes an outdoor unit, a plurality of cooling / heating switching units connected to the outdoor unit, and a plurality of indoor units connected individually or connected to each of the cooling / heating switching units. By switching the refrigerant flow path between each indoor unit by each cooling / heating switching unit, cooling / heating operation can be performed in units of the cooling / heating switching unit.
  • the indoor unit has a first valve for adjusting the amount of the refrigerant flowing from the cooling / heating switching unit as a connection destination, and controls the first valve in accordance with an instruction from the outdoor unit. An instruction from the outdoor unit is transferred to the previous cooling / heating switching unit.
  • Each of the cooling / heating switching units has a second valve for switching a refrigerant flow path between the outdoor unit and each indoor unit, and the second valve is responsive to the instruction transferred from the indoor unit.
  • Control. The outdoor unit sets a communication order for the indoor units so that a communication order to the plurality of connected indoor units is continuous; an inquiry to the indoor units and a response from the indoor units to the inquiry Communication with each of the indoor units is sequentially performed; an operation mode of each of the indoor units and a refrigerant flow path of each of the cooling / heating switching units are determined according to the responses from all the indoor units; Communication including the instruction of the determined content is sequentially performed with each indoor unit according to the set communication order.
  • the block diagram which shows the structure of one Embodiment.
  • the flowchart which shows control of the outdoor unit in one Embodiment.
  • the time chart which shows the polling communication in one Embodiment.
  • the outdoor unit A includes a refrigeration cycle unit 1 (hereinafter referred to as “refrigeration unit”) including a compressor, a four-way valve, an outdoor heat exchanger, and the like.
  • a liquid pipe 11, a discharge gas pipe 12, and a suction gas pipe 13 are led out from the refrigeration unit 1.
  • the liquid pipe 11 has a case where the liquid refrigerant flowing out from the outdoor heat exchanger is guided to each indoor unit to be described later and a case where the liquid refrigerant flowing out from each indoor unit is guided to the outdoor heat exchanger.
  • the discharge gas pipe 12 guides the refrigerant discharged from the compressor to each indoor unit.
  • the suction gas pipe 13 guides the gas refrigerant flowing out from each indoor unit to the suction side of the compressor.
  • a plurality of cooling / heating switching units B1 to B10 are connected to the liquid pipe 11, the discharge gas pipe 12, and the suction gas pipe 13 through a plurality of liquid pipes 21, a plurality of gas pipes 22, and a plurality of gas pipes 23.
  • 64 indoor units C1 to C64 are connected to the cooling / heating switching units B1 to B10 through a liquid pipe 51 and a gas pipe 52, respectively.
  • one indoor unit may be connected to one cooling / heating switching unit, and a plurality of indoor units may be connected in parallel for each cooling / heating switching unit. Parallel connection is also called multiple connection. In the use stage after installation, some indoor units may be added or replaced.
  • the cooling / heating switching unit in which one indoor unit is independently connected and the cooling / heating switching unit in which a plurality of indoor units are connected in parallel are the same as a single unit.
  • the number of indoor units that can be connected in parallel to one cooling / heating switching unit is determined by the relationship between the thickness of the refrigerant pipe in the connected cooling / heating unit and the total refrigeration capacity of each of the plurality of indoor units connected, and the upper limit. In general, the number is limited to two.
  • Fig. 2 shows the piping connection on the refrigeration cycle of the outdoor unit A, cooling / heating switching units B1 to B10, and indoor units C1 to C64.
  • Two indoor units (second indoor units) C1 and C64 are connected in parallel to the cooling / heating switching unit (second cooling / heating switching unit) B1, and one indoor unit is connected to the cooling / heating switching unit (first cooling / heating switching unit) B2.
  • Unit (first indoor unit) C2 is connected by piping.
  • One indoor unit (first indoor unit) C3 is connected to the cooling / heating switching unit (first cooling / heating switching unit) B3, and two indoor units (second indoors) are connected to the cooling / heating switching unit (second cooling / heating switching unit) B4.
  • Machine) C4 and C21 are connected in parallel to each other.
  • two indoor units (second indoor units) C61 and C62 are connected to the cooling / heating switching unit (second cooling / heating switching unit) B9, and one indoor unit (first cooling unit) is connected to the cooling / heating switching unit (first cooling / heating switching unit) B10.
  • 1 indoor unit) C63 is connected by piping.
  • the cooling / heating switching unit B1 guides the liquid refrigerant flowing from the refrigeration unit 1 to the liquid pipe 11 to the indoor units C1 and C64, and guides the liquid refrigerant flowing from the indoor units C1 and C64 to the liquid pipe 11.
  • An open / close valve (second valve) 32 for opening and closing the flow path L2, a cooling flow path L3 for guiding the gas refrigerant flowing out from the indoor unit C1 to the suction gas pipe 13, and an open / close valve (second valve) for opening and closing the cooling flow path L3 Valve) 33, a supercooling circuit L4 communicating the liquid refrigerant flow path L1 and the cooling flow path L3 through the other pipe of the double pipe 31, and a pulse motor valve (PMV) for adjusting the
  • the on-off valves 32 and 33 are electromagnetic on-off valves and function for switching the refrigerant flow path.
  • the electric expansion valve 34 is a pulse motor valve (PWM) whose opening degree changes continuously from fully closed to fully open according to the number of input drive pulses, and functions as an adjustment of the degree of supercooling.
  • PWM pulse motor valve
  • the electric expansion valve 34 is referred to as a pulse motor valve 34.
  • branch pipes are respectively connected to the liquid pipe 51 and the gas pipe 52 derived from the cooling / heating switching unit B1
  • the indoor units C1, C64 are connected to these pipes. This is implemented by connecting the pipes to each other.
  • the parallel connection of the indoor units C4 and C21 in the cooling / heating switching unit B4 and the parallel connection of the indoor units C61 and C62 in the cooling / heating switching unit B9 are similarly performed.
  • cooling / heating switching units B2, B3, and B10 have the same configuration as the cooling / heating switching unit B1 except that one indoor unit is connected.
  • the indoor unit C1 has a flow rate adjusting valve (PMV; first valve) 61 and an indoor heat exchanger 62.
  • PMV flow rate adjusting valve
  • the indoor unit C1 takes in liquid refrigerant from the liquid pipe 51 of the cooling / heating switching unit B1 through the flow rate adjusting valve 61.
  • the taken-in liquid refrigerant flows into the indoor heat exchanger 62, and the gas refrigerant evaporated in the indoor heat exchanger 62 is sent out to the gas pipe 52 of the cooling / heating switching unit B1.
  • the gas refrigerant is taken from the gas pipe 52 of the cooling / heating switching unit B1 and flows to the indoor heat exchanger 62, and the liquid refrigerant condensed in the indoor heat exchanger 62 is supplied to the cooling / heating switching unit B1 via the flow rate adjusting valve 61.
  • the flow rate adjusting valve 61 adjusts the amount of refrigerant flowing from the cooling / heating switching unit B1.
  • the other indoor units C2 to C64 have the same configuration as the indoor unit C1.
  • FIG. 1 shows a state in which the indoor units C1, C63, and C64 perform the cooling operation, and the indoor unit C2 performs the heating operation.
  • the opening / closing valve 32 is closed (black in the drawing) and the opening / closing valve 33 is opened (shown in the drawing).
  • the open / close valve 32 is opened (white in the figure) and the open / close valve 33 is closed (black in the figure).
  • the outdoor unit A includes the controller 2
  • the cooling / heating switching units B1 to B10 include the controller 30
  • the indoor units C1 to C64 include the controller 60.
  • Remote controllers 70 are attached to the indoor units C1 to C64, respectively, and communication signal lines 71 are arranged between the controllers 70 and the controllers 60 of the indoor units C1 to C64.
  • the controller 70 of the indoor unit C1 is operated by the power supply voltage supplied from the indoor unit C1, and the operation mode (stop mode, cooling operation mode, heating operation mode) and the indoor set temperature are transmitted through the communication signal line 71 to the indoor unit.
  • the controller 60 of C1 is instructed.
  • the operation units 70 of the other indoor units C2 to C64 have the same function.
  • the signal line 71 is disposed as a first signal line for communication between the controller 30 of the cooling / heating switching unit B2 and the controller 60 of one indoor unit C2.
  • a signal line 72 is disposed as a second signal line for communication.
  • the controller 30 of the cooling / heating switching unit B1 can communicate with the controller 60 of one indoor unit C1 out of C1 and C64 connected in parallel, but with the controller 60 of the other indoor unit C64. Can not communicate.
  • a signal line 73 is sequentially arranged as a third signal line for communication between the controller 2 of the outdoor unit A and the controllers 60 of the indoor units C1 to C64.
  • the controller 60 of the indoor unit C1 receives an instruction from the outdoor unit A for the indoor unit C1 through the signal line 73, controls the opening degree of the flow rate adjusting valve 61 according to the instruction, and also connects the cooling / heating switching unit B1 to which it is connected.
  • An instruction from the outdoor unit A is received through the signal line 73 and transferred to the connected cooling / heating switching unit B 1 through the signal line 72.
  • the controller 60 of the indoor unit C64 receives an instruction from the outdoor unit A for the indoor unit C1 through the signal line 73, and controls the opening degree of the flow rate adjusting valve 61 according to the instruction.
  • the controller 30 of the cooling / heating switching unit B1 controls the on-off valves 32 and 33 according to the above instructions transferred from the controller 60 of the indoor unit C1. That is, when the controller 30 of the cooling / heating switching unit B1 receives an instruction of the cooling operation mode from the controller 60 of the indoor unit C1, the refrigerant flow path for cooling operation shown in FIG. 1 is formed for the indoor units C1 and C64. Thus, the opening and closing of the on-off valves 32 and 33 is controlled. In addition, when the controller 30 of the cooling / heating switching unit B1 receives an instruction of the heating operation mode from the controller 60 of the indoor unit C1, the controller 30 opens and closes so that a refrigerant channel for heating operation is formed with respect to the indoor units C1 and C64. Controls opening and closing of the valves 32 and 33. Furthermore, the controller 30 of the cooling / heating switching unit B1 fully closes the on-off valves 32 and 33 when receiving a stop mode instruction from the controller 60 of the indoor unit C1.
  • the controller 60 of the indoor unit C2 receives an instruction from the outdoor unit A for the indoor unit C2 through the signal line 73, controls the opening degree of the flow rate adjusting valve 61 in accordance with the instruction, and connects to the connected cooling / heating switching unit B2.
  • An instruction from the outdoor unit A is received through the signal line 73 and transferred to the connected cooling / heating switching unit B2 through the signal line 71.
  • the controller 30 of the cooling / heating switching unit B2 controls the on-off valves 32 and 33 according to the above instructions transferred from the controller 60 of the indoor unit C2. That is, when the controller 30 of the cooling / heating switching unit B2 receives an instruction of the heating operation mode from the controller 60 of the indoor unit C2, the refrigerant channel for heating operation shown in FIG. 1 is formed in the indoor unit C2. The opening and closing valves 32 and 33 are controlled. When the controller 30 of the cooling / heating switching unit B2 receives a stop mode instruction from the controller 60 of the indoor unit C2, the controller 30 fully closes the on-off valves 32 and 33.
  • the controller 60 of the indoor unit C63 receives an instruction from the outdoor unit A for the indoor unit C63 through the signal line 73, controls the opening degree of the flow rate adjusting valve 61 according to the instruction, and also connects the cooling / heating switching unit B10 to which it is connected.
  • An instruction from the outdoor unit A is received through the signal line 73 and transferred to the connected cooling / heating switching unit B10 through the signal line 71.
  • the controller 30 of the cooling / heating switching unit B10 controls the on-off valves 32 and 33 according to the above instructions transferred from the controller 60 of the indoor unit C63. That is, when the controller 30 of the cooling / heating switching unit B10 receives an instruction for the cooling operation mode from the controller 60 of the indoor unit C63, the refrigerant flow path for cooling operation shown in FIG. 1 is formed in the indoor unit C63. The opening and closing valves 32 and 33 are controlled. When the controller 30 of the cooling / heating switching unit B10 receives a stop mode instruction from the controller 60 of the indoor unit C63, it fully closes the on-off valves 32 and 33.
  • Cooling / heating operation is possible in units of cooling / heating switching units. Operation can be stopped for each indoor unit.
  • the controller 2 of the outdoor unit A includes a detection unit 2a, a setting unit 2b, a communication unit 2c, a determination unit 2d, a communication unit 2e, and a control unit 2f as main functions.
  • the detection unit 2a applies the indoor units C1, C64, C4, C21,... C61, C62 connected to each cooling / heating switching unit to all the indoor units C1 to C64. Detect by initial communication.
  • the setting unit 2b is connected to the indoor units C1, C64, C4, C21,... C61, C62 in the order of communication with the plurality of indoor units C1, C64, C4, C21,.
  • the communication order for all the indoor units C1 to C64 is set so that each of the preceding cooling / heating switching units B1, B4, B9.
  • the communication unit 2c performs communication including inquiries to all the indoor units C1 to C64 and responses from the indoor units C1 to C64 with respect to the inquiries between all the indoor units C1 to C64 by the setting unit 2b. Sequentially according to the set communication order.
  • the determination unit 2d is a single connection of the indoor units C2, C3, except for the plurality of indoor units C1, C64, C4, C21, ... C61, C62 detected by the detection unit 2a. ... in response to a response from C63, the operation modes of the individually connected indoor units C2, C3, ... C63 and the cooling / heating switching unit (first cooling / heating switching unit) B2 to which these indoor units C2, C3, ... C63 are connected. , B3,... B10 are determined. Further, the determination unit 2d determines the plurality of indoor units C1, C64, C64, C64, C62, ...
  • the communication unit 2e sequentially performs communication including instructions on the contents determined by the determination unit 2d among all the indoor units C1 to C64 according to the communication order set by the setting unit 2b.
  • the control unit 2f controls the operation of the outdoor unit A according to the response received by the communication unit 2c.
  • the sequential communication between the outdoor unit A and the indoor units C1 to C64 is periodic polling communication including the “inquiry”, “response”, and “instruction” for each communication.
  • step S1 the controller 2 of the outdoor unit A that is the master unit has a predetermined communication order based on the addresses unique to the indoor units C1 to C64 with respect to the indoor units C1 to C64 that are the slave units.
  • Initial communication is performed (step S2).
  • the controller 2 acquires from the controller 60 of the indoor units C1 to C64 a common unit setting code for detecting the order in which the indoor units C1 to C64 are connected to the cooling / heating switching units B1 to B10.
  • the addresses unique to the indoor units C1 to C64 are registered in advance in the internal memory of the controller 2 in a state in which the addresses are associated with, for example, device IDs that are identification information of the indoor units C1 to C64.
  • the common unit setting code is registered for each indoor unit to be connected by, for example, operating the operation unit 70 of a staff member who performs work.
  • the common unit setting code is not registered.
  • the common unit setting code “1” indicating the first multiple connection is set to the indoor units C1, C64.
  • the common unit setting code “2” indicating the second plurality of connections is registered in the controllers 60 of the indoor units C4 and C21, respectively.
  • the common unit setting code “18” indicating the 18th plurality of connections is given to the controllers 60 of the indoor units C61 and C62, respectively. be registered.
  • FIG. 4 shows the relationship between the common unit setting code registered in the indoor units C1 to C64 and the communication order set in the indoor units C1 to C64 based on the common unit setting code.
  • the communication order that is set directly corresponds to the arrangement order of the indoor units C1 to C64 connected to the cooling / heating switching units B1 to B10.
  • the controller 2 updates and stores the set communication order in the internal memory, and executes regular communication according to the communication order and control based on the regular communication (step S13). That is, as shown in FIG. 5, the controller 2 sequentially performs inquiry communication for the indoor units C1 to C64 in accordance with the set communication order, and periodically performs polling communication for sequentially receiving responses from the indoor units C1 to C64 for these inquiries. Repeat.
  • the controller 2 determines the operation mode of the indoor units C1 to C64 and the refrigerant flow paths of the cooling / heating switching units B1 to B10 according to the received response, and the determined contents are determined based on the indoor units C1 to C64 and the cooling / heating switching unit B1 to By instructing B10, the flow control valves 61 of the indoor units C1 to C64 and the open / close valves 32 and 33 of the cooling / heating switching units B1 to B10 are controlled.
  • the time t1 required for one round of polling communication from the start of communication with the indoor unit C1 with the first communication order to the completion of communication with the indoor unit C63 with the last communication order is, for example, about 10 seconds.
  • the controller 2 repeats this polling communication every predetermined time t2.
  • An "inquiry”, “response”, and “instruction” are included during communication with one indoor unit.
  • the operation modes of the indoor units C1 to C63 and the refrigerant flow paths of the cooling / heating switching units B1 to B10 are determined according to the contents of the “response” during each communication in the first round, and according to the contents of the “response”.
  • Control of the outdoor unit A itself for example, the rotational speed of the compressor, the opening / closing and opening of the valve, the switching direction of the four-way valve, and the like are also determined and executed.
  • the operation mode of each of the indoor units C1 to C63 and the “instruction” of the refrigerant flow path of the cooling / heating switching units B1 to B10 determined according to the contents of the “response” during each communication in the first round are the communications in the second round. Included in. Then, the operation mode and the refrigerant flow path are determined again according to the contents of the “response” during each communication of the second round, and “instructions” of the determined contents are included in each communication of the third round. Thereafter, the same processing is repeated.
  • the controller 2 can receive the response from the indoor unit C1 and the response from the indoor unit C64 almost simultaneously. At this time, the controller 2 does not respond to the responses received from the indoor units C1 and C64 each time, but determines the operation mode and the refrigerant flow path based on the mutual relationships of the responses received from the indoor units C1 and C64. To do.
  • the controller 2 determines the instructions for controlling the flow rate adjustment valves 61 of the indoor units C1 and C64 to the opening corresponding to the determined operation mode, and the opening and closing valves 32 and 33 of the cooling / heating switching unit B1.
  • An instruction for controlling the open / close state corresponding to the refrigerant flow path is issued. This instruction communication is also performed continuously without leaving the time t1 required for one round of polling communication.
  • the operation state (stop / cooling operation / heating operation) set by the indoor units C1 and C64 and the refrigerant flow path set by the cooling / heating switching unit B1 connected to the indoor units C1 and C64 are almost time-delayed.
  • the flow rate adjusting valve 61 of the indoor units C1 and C64 and the on-off valves 32 and 33 of the cooling / heating switching unit B1 do not frequently repeat operations, and unpleasant sounds such as operation sounds and refrigerant flow sounds are generated. Can be reduced. Further, it is possible to prevent an unstable state of the refrigeration cycle control due to instruction delay to various valves provided in the cooling / heating switching unit B1 and the indoor units C1 and C64.
  • the other indoor unit is in the heating operation after a time t1 required for one round of polling communication has elapsed since the switching of one indoor unit to the cooling operation. No time lag such as switching from cooling to cooling operation.
  • step S14 the controller 2 monitors power shutdown (step S14). If there is no power interruption (NO in step S14), the controller 2 returns to step S13, and repeats regular communication and control based on the regular communication. If there is a power shutdown (YES in step S14), the controller 2 ends the process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

室内機は、第1弁を有し、この第1弁を室外機からの指示に応じて制御するとともに、接続先の前記冷暖切換ユニットに対し前記室外機からの指示を転送する。各冷暖切換ユニットは、第2弁を有し、この第2弁を前記室内機から転送される前記指示に応じて制御する。前記室外機は、前記複数接続された室内機への通信順位が連続するように、前記各室内機に対する通信順位を設定する。

Description

空気調和機
 本発明の実施形態は、1つの室外機に複数の冷暖切換ユニットを接続し、これら冷暖切換ユニットごとに1つまたは複数の室内機を接続し、各室内機で停止・冷房運転・暖房運転の同時設定が可能な空気調和機に関する。
 1つの室外機に複数の冷暖切換ユニットを接続し、これら冷暖切換ユニットごとに1つの室内機を接続し、室外機と各室内機との間の冷媒流路を各冷暖切換ユニットで切換えることにより、室内機単位で停止・冷房運転・暖房運転が可能な空気調和機が知られている。さらに、1つの冷暖切換ユニットに複数の室内機を並列接続することも可能となっている。
 各室内機は、冷媒の流量を調整するための例えば流量調整弁を有している。各冷暖切換ユニットは、冷媒流路を切換えるための1つまたは複数の開閉弁を有している。接続先が同じ1つの冷暖切換ユニットである複数の室内機では暖房優先を条件として同じ運転モードが設定され、この運転モードに対応する冷媒流路が同冷暖切換ユニットで設定される。
 この空気調和機では、室外機のコントローラを親機(ホスト)、複数の室内機のコントローラをそれぞれ子機(ターミナルまたはクライアント)とし、親機から各子機への問合せを順次に行い、これら問合せに対する各子機からの応答を親機で受ける通信いわゆるポーリング通信を定期的に繰り返す。親機は、各子機からの応答に応じて当該親機の運転を制御するとともに、各子機からの応答に応じて各子機(室内機)を制御し、さらにその室内機を介して当該室内機が接続されている冷暖切換ユニットの冷媒流路を制御する。親機から各子機への通信の順位は、各子機に固有のアドレスに基づいて、予め定められている。
特開2008-39276号公報
 前記各子機(室内機)の固有のアドレスは、室内機の据付時に工事業者が手動で設定したり、全ての室内機を設置後の最初の試運転時に、室外機から自動で割り振られる。このため、室内機の固有のアドレスは、冷暖切換ユニットへの接続とは無関係に設定されることが多い。
 このため、通信の順位が互いに離れた2つの室内機が、1つの冷暖切換ユニットに接続されていることがある。この場合、通信の順位が早い方の室内機に対する通信と、通信の順位が遅い方の室内機に対する通信との間に、時間差が生じる。この時間差が大きいと、両室内機における流量調整弁の動作および冷暖切換ユニットにおける開閉弁の動作が不適切な状態となる。具体的には、両室内機で設定される運転状態(停止・冷房運転・暖房運転)と、両室内機の接続先の冷暖切換ユニットで設定される冷媒流路とが、適合しない状態となる。しかも、この場合、両室内機の流量調整弁および冷暖切換ユニットの開閉弁が頻繁に動作を繰り返し、その動作の音や冷媒の流れ音が頻繁に発生してユーザに不快感を与える場合も生じる。
 本発明の実施形態の目的は、各室内機で設定される運転状態と各冷暖切換ユニットで設定される冷媒流路とを時間遅れなく適合させることができ、これにより各室内機の適正な運転を可能にするとともに不快な音の発生を軽減できる空気調和機を提供することである。
 請求項1の空気調和機は、室外機、この室外機に接続された複数の冷暖切換ユニット、これら冷暖切換ユニットごとに単独接続または複数接続された複数の室内機を備え、前記室外機と前記各室内機との間の冷媒の流路を前記各冷暖切換ユニットで切換えることにより、前記冷暖切換ユニット単位で冷房運転・暖房運転が可能である。前記室内機は、接続先の前記冷暖切換ユニットから流入する前記冷媒の量を調整するための第1弁を有し、この第1弁を前記室外機からの指示に応じて制御するとともに、接続先の前記冷暖切換ユニットに対し前記室外機からの指示を転送する。前記各冷暖切換ユニットは、前記室外機と前記各室内機との間の冷媒の流路を切換えるための第2弁を有し、この第2弁を前記室内機から転送される前記指示に応じて制御する。前記室外機は、前記複数接続された室内機への通信順位が連続するように、前記各室内機に対する通信順位を設定し;前記各室内機に対する問合せおよびその問合せに対する前記各室内機からの応答が含まれる通信を前記各室内機との間で順次に行い;すべての前記室内機からの前記応答に応じて前記各室内機の運転モードおよび前記各冷暖切換ユニットの冷媒流路を決定し;前記決定した内容の指示を含む通信を、前記設定した通信順位に従い前記各室内機との間で順次に行う。
一実施形態の構成を示すブロック図。 一実施形態の室外機,複数の冷暖切換ユニット,複数の室内機の冷凍サイクル上の配管接続状態を示す図。 一実施形態における室外機の制御を示すフローチャート。 一実施形態における通信順位の設定の仕方を示す図。 一実施形態におけるポーリング通信を示すタイムチャート。
 以下、一実施形態について図面を参照して説明する。 
 図1に示すように、室外機Aは、圧縮機、四方弁、室外熱交換器などを含む冷凍サイクルユニット1(以下“冷凍ユニット”という)を有する。この冷凍ユニット1から液管11,吐出ガス管12,吸込ガス管13が導出されている。液管11は、上記室外熱交換器から流出する液冷媒を後述の各室内機に導く場合と、各室内機から流出する液冷媒を上記室外熱交換器に導く場合とがある。吐出ガス管12は、上記圧縮機から吐出される冷媒を各室内機に導く。吸込ガス管13は、各室内機から流出するガス冷媒を上記圧縮機の吸込側に導く。
 液管11,吐出ガス管12,吸込ガス管13に、複数の液管21,複数のガス管22,複数のガス管23を介して、複数の冷暖切換ユニットB1~B10が接続されている。これら冷暖切換ユニットB1~B10に、それぞれ液管51およびガス管52を介して、例えば64台の室内機C1~C64が接続されている。当該空気調和機の据付け場所などに応じて、1つの冷暖切換ユニットに1つの室内機が単独接続される場合、および1つの冷暖切換ユニットごとに複数の室内機が並列接続される場合がある。並列接続のことを複数接続ともいう。据付け後の使用段階で、いくつかの室内機が増設あるいは交換されることもある。ここで、1つの室内機が単独接続される冷暖切換ユニットと複数の室内機が並列接続される冷暖切換ユニットは、ユニット単体としてはそれぞれ同一物である。また、1つの冷暖切換ユニットに対して並列接続可能な室内機の台数は、接続先の冷暖冷暖ユニットにおける冷媒配管の太さと複数接続される各室内機の合計冷凍能力との関係により定まり、上限を2台までとすることが一般的である。
 室外機A、冷暖切換ユニットB1~B10、室内機C1~C64の冷凍サイクル上の配管接続状態を図2に示す。冷暖切換ユニット(第2冷暖切換ユニット)B1には2つの室内機(第2室内機)C1,C64が互いに並列に配管接続され、冷暖切換ユニット(第1冷暖切換ユニット)B2には1つの室内機(第1室内機)C2が配管接続されている。冷暖切換ユニット(第1冷暖切換ユニット)B3には1つの室内機(第1室内機)C3が配管接続され、冷暖切換ユニット(第2冷暖切換ユニット)B4には2つの室内機(第2室内機)C4,C21が互いに並列に配管接続されている。さらに、冷暖切換ユニット(第2冷暖切換ユニット)B9に2つの室内機(第2室内機)C61,C62が配管接続され、冷暖切換ユニット(第1冷暖切換ユニット)B10に1つの室内機(第1室内機)C63が配管接続されている。
 冷暖切換ユニットB1は、冷凍ユニット1から液管11に流出する液冷媒を室内機C1,C64に導くとともにその室内機C1,C64から流出する液冷媒を液管11に導く液冷媒流路L1、この液冷媒流路L1に一方の管路が配置された二重管31、冷凍ユニット1から吐出ガス管12に流出するガス冷媒を室内機C1,C64に導く暖房用流路L2、この暖房用流路L2を開閉する開閉弁(第2弁)32、室内機C1から流出するガス冷媒を吸込ガス管13に導く冷房用流路L3、この冷房用流路L3を開閉する開閉弁(第2弁)33、液冷媒流路L1と冷房用流路L3とを二重管31の他方の管路を通して連通する過冷却回路L4、この過冷却回路L4の冷媒流量を調整するパルスモータバルブ(PMV)34を含む。開閉弁32,33は、電磁開閉弁であり、冷媒流路の切換用として機能する。電動膨張弁34は、入力される駆動パルスの数に応じて開度が全閉から全開まで連続的に変化するパルスモータバルブ(PWM)であり、過冷却度の調整用として機能する。電動膨張弁34のことを、以下、パルスモータバルブ34という。冷暖切換ユニットB1に対する室内機C1,C64の実際の並列接続は、冷暖切換ユニットB1から導出される液管51およびガス管52にそれぞれ分岐用の配管を接続し、これら配管に室内機C1,C64をそれぞれ配管接続することで実施される。冷暖切換ユニットB4における室内機C4,C21の並列接続、および冷暖切換ユニットB9における室内機C61,C62の並列接続も、同様に実施される。
 他の冷暖切換ユニットB2,B3,B10は、接続される室内機が1つであることの他は冷暖切換ユニットB1と同じ構成である。
 室内機C1は、流量調整弁(PMV;第1弁)61および室内熱交換器62を有し、冷房時、冷暖切換ユニットB1の液管51から流量調整弁61を介して液冷媒を取込み、取込んだ液冷媒を室内熱交換器62に流し、その室内熱交換器62で蒸発したガス冷媒を冷暖切換ユニットB1のガス管52へと送り出す。暖房時は、冷暖切換ユニットB1のガス管52からガス冷媒を取込んで室内熱交換器62に流し、その室内熱交換器62で凝縮した液冷媒を流量調整弁61を介して冷暖切換ユニットB1の液管51へと送り出す。流量調整弁61は、冷暖切換ユニットB1から流入する冷媒の量を調整する。他の室内機C2~C64も、室内機C1と同じ構成である。
 図1は、室内機C1,C63,C64が冷房運転を実行し、室内機C2が暖房運転を実行する状態を示している。この場合、冷房運転の室内機C1,C63,C64が接続されている冷暖切換ユニットB1,B10では、開閉弁32が閉成され(図示黒塗り)、開閉弁33が開放される(図示白抜き)。暖房運転の室内機C2が接続されている冷暖切換ユニットB2では、開閉弁32が開放され(図示白抜き)、開閉弁33が閉成される(図示黒塗り)。
 一方、室外機Aはコントローラ2を含み、冷暖切換ユニットB1~B10はコントローラ30を含み、室内機C1~C64はコントローラ60を含む。室内機C1~C64にはリモートコントロール式の操作器70がそれぞれ付属されており、これら操作器70と室内機C1~C64のコントローラ60との間にそれぞれ通信用の信号線71が配置されている。室内機C1の操作器70は、室内機C1から供給される電源電圧により動作し、運転モード(停止モード、冷房運転モード、暖房運転モード)および室内設定温度を通信用の信号線71を通じて室内機C1のコントローラ60に指示する。他の室内機C2~C64の操作器70も、同じ機能を有する。
 冷暖切換ユニットB2のコントローラ30と、1つの室内機C2のコントローラ60との間に、通信用の第1信号線として上記信号線71が配置されている。冷暖切換ユニットB1のコントローラ30と、2つの室内機C1,C64のうちいずれか1つ例えば室内機C1のコントローラ60との間に、通信用の第2信号線として信号線72が配置されている。このため、冷暖切換ユニットB1のコントローラ30は、並列に配管接続されているC1,C64のうち、一方の室内機C1のコントローラ60とは通信可能であるが、他方の室内機C64のコントローラ60とは通信ができないようになっている。さらに、室外機Aのコントローラ2と室内機C1~C64のコントローラ60との間に、それぞれ通信用の第3信号線として信号線73が順次に配置されている。
 室内機C1のコントローラ60は、当該室内機C1に対する室外機Aからの指示を信号線73を通して受け、その指示に応じて流量調整弁61の開度を制御するとともに、接続先の冷暖切換ユニットB1に対する室外機Aからの指示を信号線73を通して受け、それを接続先の冷暖切換ユニットB1に信号線72を介して転送する。室内機C64のコントローラ60は、当該室内機C1に対する室外機Aからの指示を信号線73を通して受け、その指示に応じて流量調整弁61の開度を制御する。
 冷暖切換ユニットB1のコントローラ30は、開閉弁32,33を室内機C1のコントローラ60から転送される上記指示に応じて制御する。すなわち、冷暖切換ユニットB1のコントローラ30は、室内機C1のコントローラ60から冷房運転モードの指示を受けた場合、室内機C1,C64に対して図1に示す冷房運転用の冷媒流路が形成されるように開閉弁32,33の開閉を制御する。また、冷暖切換ユニットB1のコントローラ30は、室内機C1のコントローラ60から暖房運転モードの指示を受けた場合、室内機C1,C64に対して暖房運転用の冷媒流路が形成されるように開閉弁32,33の開閉を制御する。さらに、冷暖切換ユニットB1のコントローラ30は、室内機C1のコントローラ60から停止モードの指示を受けた場合、開閉弁32,33を全閉する。
 室内機C2のコントローラ60は、当該室内機C2に対する室外機Aからの指示を信号線73を通して受け、その指示に応じて流量調整弁61の開度を制御するとともに、接続先の冷暖切換ユニットB2に対する室外機Aからの指示を信号線73を通して受け、それを接続先の冷暖切換ユニットB2に信号線71を介して転送する。
 冷暖切換ユニットB2のコントローラ30は、開閉弁32,33を室内機C2のコントローラ60から転送される上記指示に応じて制御する。すなわち、冷暖切換ユニットB2のコントローラ30は、室内機C2のコントローラ60から暖房運転モードの指示を受けた場合、室内機C2に対して図1に示す暖房運転用の冷媒流路が形成されるように開閉弁32,33の開閉を制御する。また、冷暖切換ユニットB2のコントローラ30は、室内機C2のコントローラ60から停止モードの指示を受けた場合、開閉弁32,33を全閉する。
 室内機C63のコントローラ60は、当該室内機C63に対する室外機Aからの指示を信号線73を通して受け、その指示に応じて流量調整弁61の開度を制御するとともに、接続先の冷暖切換ユニットB10に対する室外機Aからの指示を信号線73を介して受け、それを接続先の冷暖切換ユニットB10に信号線71を通して転送する。
 冷暖切換ユニットB10のコントローラ30は、開閉弁32,33を室内機C63のコントローラ60から転送される上記指示に応じて制御する。すなわち、冷暖切換ユニットB10のコントローラ30は、室内機C63のコントローラ60から冷房運転モードの指示を受けた場合、室内機C63に対して図1に示す冷房運転用の冷媒流路が形成されるように開閉弁32,33の開閉を制御する。また、冷暖切換ユニットB10のコントローラ30は、室内機C63のコントローラ60から停止モードの指示を受けた場合、開閉弁32,33を全閉する。
 冷暖切換ユニット単位で冷房運転・暖房運転が可能である。運転の停止は、室内機単位で可能である。
 室外機Aのコントローラ2は、主要な機能として、検出部2a,設定部2b,通信部2c,決定部2d,通信部2e,制御部2fを含む。
 検出部2aは、当該室外機Aの電源投入時、冷暖切換ユニットごとに複数接続(並列接続)された室内機C1,C64,C4,C21,…C61,C62を全ての室内機C1~C64に対する初期通信により検出する。設定部2bは、検出部2aで検出した複数接続の室内機C1,C64,C4,C21,…C61,C62への通信順位がその室内機C1,C64,C4,C21,…C61,C62の接続先の冷暖切換ユニットB1,B4,B9…の個々において連続する状態となるように、全ての室内機C1~C64に対する通信順位を設定する。通信部2cは、全ての室内機C1~C64に対する問合せおよびその問合せに対する室内機C1~C64からの応答が含まれる通信を、その全ての室内機C1~C64との間で、上記設定部2bで設定した通信順位に従い順次に行う。
 決定部2dは、通信部2cで受けた上記応答のうち、検出部2aで検出した複数接続の室内機C1,C64,C4,C21,…C61,C62を除く単独接続の室内機C2,C3,…C63からの応答に応じて、その単独接続の室内機C2,C3,…C63の運転モードおよびこれら室内機C2,C3,…C63が接続されている冷暖切換ユニット(第1冷暖切換ユニット)B2,B3,…B10の冷媒流路を決定する。さらに、決定部2dは、検出部2aで検出した複数接続の室内機C1,C64,C4,C21,…C61,C62からの応答の相互関係に応じて、その複数接続の室内機C1,C64,C4,C21,…C61,C62の運転モードおよびこれら室内機C1,C64,C4,C21,…C61,C62が接続されている冷暖切換ユニットB1,B4,…B9の冷媒流路を決定する。通信部2eは、決定部2dで決定した内容の指示を含む通信を、全ての室内機C1~C64との間で、上記設定部2bで設定した通信順位に従い順次に行う。制御部2fは、通信部2cで受けた上記応答に応じて当該室外機Aの運転を制御する。
 なお、室外機Aと室内機C1~C64との順次の通信は、その通信ごとに上記“問合せ”と“応答”と“指示”を含む定期的なポーリング通信である。
 つぎに、室外機Aのコントローラ2が実行する制御を図3のフローチャートを参照しながら説明する。 
 電源投入時(ステップS1のYES)、親機である室外機Aのコントローラ2は、子機である室内機C1~C64に対し、室内機C1~C64に固有のアドレスに基づく所定の通信順位で初期通信を行う(ステップS2)。この初期通信において、コントローラ2は、冷暖切換ユニットB1~B10に対する室内機C1~C64の接続の並び順を検出するための共通ユニット設定コードを室内機C1~C64のコントローラ60から取得する。室内機C1~C64に固有のアドレスは、室内機C1~C64の識別情報である例えば機器IDに対応付けた状態で、コントローラ2の内部メモリに予め登録されている。
 共通ユニット設定コードは、1つの冷暖切換ユニットに複数の室内機が複数接続される際に、作業を行う係員の例えば操作器70の操作により接続対象の室内機ごとに登録される。1つの冷暖切換ユニットに1つの室内機が単独接続される際には、共通ユニット設定コードは登録されない。図1および図2の例では、冷暖切換ユニットB1に室内機C1,C64が複数接続された際に、1番目の複数接続であることを示す共通ユニット設定コード“1”が室内機C1,C64のコントローラ60にそれぞれ登録される。冷暖切換ユニットB4に室内機C4,C21が複数接続された際には、2番目の複数接続であることを示す共通ユニット設定コード“2”が室内機C4,C21のコントローラ60にそれぞれ登録される。冷暖切換ユニットB9に複数の室内機C61,C62が複数接続された際には、例えば18番目の複数接続であることを示す共通ユニット設定コード“18”が室内機C61,C62のコントローラ60にそれぞれ登録される。
 上記初期通信の後、コントローラ2は、ステップS3~S12の順位設定処理を実行する。すなわち、コントローラ2は、順位番号Jに初期値“1”を設定し(ステップS3)、コード番号Xnに初期値“1”を設定し(ステップS4)、室内機番号Cnとして初期値“1”を設定する(ステップS5)。そして、コントローラ2は、室内機番号Cnが“1”である室内機C1に、コード番号Xn(=“1”)に対応する共通ユニット設定コード“1”の登録があるか否かを判定する(ステップS6)。
 室内機C1には共通ユニット設定コード“1”が登録されているので(ステップS6のYES)、コントローラ2は、室内機C1の通信順位を順位番号J(=“1”)に対応する“1”に設定する(ステップS7)。この設定に伴い、コントローラ2は、順位番号Jを“1”アップして“2”とし(ステップS8)、かつ室内機番号Cnを“1”アップして“2”とする(ステップS9)。そして、コントローラ2は、新たな室内機番号Cn(=“2”)が最大値Cns(=“64”)に達しているか否かを判定する(ステップS10)。
 室内機番号Cn(=“2”)は最大値Cns(=“64”)に達していないので(ステップS10のNO)、コントローラ2は、ステップS6に戻り、室内機番号Cnが“2”である室内機C2に、共通ユニット設定コードXn(=“1”)の登録があるか否かを判定する。
 室内機C2には共通ユニット設定コード“1”の登録がないので(ステップS6のNO)、コントローラ2は、ステップS7,S8の処理を行うことなく、室内機番号Cnを“1”アップして“3”とする(ステップS9)。そして、コントローラ2は、新たな室内機番号Cn(=“3”)が最大値Cns(=“64”)に達しているか否かを判定する(ステップS10)。
 室内機番号Cn(=“3”)は最大値Cns(=“64”)に達していないので(ステップS10のNO)、コントローラ2は、ステップS6に戻り、室内機番号Cnが“3”である室内機C3に、共通ユニット設定コードXn(=“1”)の登録があるか否かを判定する。
 室内機C3には共通ユニット設定コード“1”の登録がないので(ステップS6のNO)、コントローラ2は、ステップS7,S8の処理を行うことなく、室内機番号Cnを“1”アップして“4”とする(ステップS9)。そして、コントローラ2は、新たな室内機番号Cn(=“4”)が最大値Cns(=“64”)に達しているか否かを判定する(ステップS10)。
 室内機番号Cn(=“4”)は最大値Cns(=“64”)に達していないので(ステップS10のNO)、コントローラ2は、ステップS6に戻り、室内機番号Cnが“4”である室内機C4に、共通ユニット設定コードXn(=“1”)の登録があるか否かを判定する。
 室内機C4には共通ユニット設定コード“1”の登録がないので(ステップS6のNO)、コントローラ2は、ステップS7,S8の処理を行うことなく、室内機番号Cnを“1”アップして“5”とする(ステップS9)。そして、コントローラ2は、新たな室内機番号Cn(=“5”)が最大値Cns(=“64”)に達しているか否かを判定する(ステップS10)。
 こうして、室内機番号Cnの“1”アップが繰り返されて室内機番号Cnが最大値Cns(=“64”)に達した場合(ステップS10のYES)、コントローラ2は、コード番号Xnを“1”アップして“2”とする(ステップS11)。そして、コントローラ2は、コード番号Xn(=“2”)が、登録済みの共通ユニット設定コードの最大値(例えば“18”)に対応する設定値Xns(=“18”)を超えているか否かを判定する(ステップS12)。
 新たなコード番号Xn(=“2”)は設定値Xns(=“18”)を超えていないので(ステップS12のNO)、コントローラ2は、ステップS5に戻り、室内機番号Cnに再び初期値“1”を設定する。そして、コントローラ2は、室内機番号Cnが“1”である室内機C1に、新たなコード番号Xn(=“2”)に対応する共通ユニット設定コード“2”の登録があるか否かを判定する(ステップS6)。
 室内機C1には共通ユニット設定コード“2”の登録がないので(ステップS6のNO)、コントローラ2は、ステップS7,S8の処理を行うことなく、室内機番号Cnを“1”アップして“2”とする(ステップS9)。そして、コントローラ2は、新たな室内機番号Cn(=“2”)が最大値Cns(=“64”)に達しているか否かを判定する(ステップS10)。
 室内機番号Cn(=“2”)は最大値Cns(=“64”)に達していないので(ステップS10のNO)、コントローラ2は、ステップS6に戻り、室内機番号Cnが“2”である室内機C2に、共通ユニット設定コードXn(=“2”)の登録があるか否かを判定する。
 室内機C2には共通ユニット設定コード“2”の登録がないので(ステップS6のNO)、コントローラ2は、ステップS7,S8の処理を行うことなく、室内機番号Cnを“1”アップして“3”とする(ステップS9)。そして、コントローラ2は、新たな室内機番号Cn(=“3”)が最大値Cns(=“64”)に達しているか否かを判定する(ステップS10)。
 室内機番号Cn(=“3”)は最大値Cns(=“64”)に達していないので(ステップS10のNO)、コントローラ2は、ステップS6に戻り、室内機番号Cnが“3”である室内機C3に、共通ユニット設定コードXn(=“2”)の登録があるか否かを判定する。
 室内機C3には共通ユニット設定コード“2”の登録がないので(ステップS6のNO)、コントローラ2は、ステップS7,S8の処理を行うことなく、室内機番号Cnを“1”アップして“4”とする(ステップS9)。そして、コントローラ2は、新たな室内機番号Cn(=“4”)が最大値Cns(=“64”)に達しているか否かを判定する(ステップS10)。
 室内機番号Cn(=“4”)は最大値Cns(=“64”)に達していないので(ステップS10のNO)、コントローラ2は、ステップS6に戻り、室内機番号Cnが“4”である室内機C4に、共通ユニット設定コードXn(=“2”)の登録があるか否かを判定する。
 室内機C4には共通ユニット設定コード“2”の登録があるので(ステップS6のYES)、コントローラ2は、室内機C4の通信順位を順位番号J(=“2”)に対応する“2”に設定する(ステップS7)。この決定に伴い、コントローラ2は、順位番号Jを“1”アップして“3”とし(ステップS8)、かつ室内機番号Cnを“1”アップして“5”とする(ステップS9)。そして、コントローラ2は、新たな室内機番号Cn(=“5”)が最大値Cns(=“64”)に達しているか否かを判定する(ステップS10)。
 これらの処理が繰り返されて、コード番号Xn(=“2”)が共通ユニット設定コードの最大値(例えば“18”)に対応する設定値Xns(=“18”)を超えたとき(ステップS12のYES)、通信順位の設定が完了する。
 室内機C1~C64に登録される共通ユニット設定コードと、その共通ユニット設定コードに基づいて室内機C1~C64に設定される通信順位との関係を、図4に示している。設定される通信順位は、冷暖切換ユニットB1~B10に対する室内機C1~C64の接続の並び順にそのまま対応している。
 コントローラ2は、設定した通信順位を内部メモリに更新記憶し、その通信順位に従った定期通信およびその定期通信に基づく制御を実行する(ステップS13)。すなわち、コントローラ2は、図5に示すように、設定した通信順位に従って室内機C1~C64に対する問合せの通信を順次に行いこれら問合せに対する室内機C1~C64からの応答を逐次に受けるポーリング通信を定期的に繰り返す。そして、コントローラ2は、受けた応答に応じて室内機C1~C64の運転モードおよび冷暖切換ユニットB1~B10の冷媒流路を決定し、これら決定内容を室内機C1~C64および冷暖切換ユニットB1~B10に指示することで室内機C1~C64の流量調整弁61および冷暖切換ユニットB1~B10の開閉弁32,33を制御する。
 通信順位が最初の室内機C1に対する通信の開始から、通信順位が最後の室内機C63に対する通信の完了までのポーリング通信の一巡に要する時間t1は、例えば10秒程度である。コントローラ2は、このポーリング通信を一定時間t2ごとに繰り返す。1つの室内機に対する通信中に、“問合せ”“応答”“指示”が含まれる。一巡目の各通信中の“応答”の内容に応じて各室内機C1~C63の運転モードおよび冷暖切換ユニットB1~B10の冷媒流路が決定されるとともに、その“応答”の内容に応じて室外機A自身の制御たとえば圧縮機の回転数、弁の開閉や開度、四方弁の切換方向等も決定され実行される。一巡目の各通信中の“応答”の内容に応じて決定された各室内機C1~C63の運転モードおよび冷暖切換ユニットB1~B10の冷媒流路の“指示”が、二巡目の各通信中に含まれる。そして、この二巡目の各通信中の“応答”の内容に応じて運転モードおよび冷媒流路が再び決定され、その決定内容の“指示”が三巡目の各通信中に含まれる。以後同様の処理が繰り返される。
 以上の動作により、冷暖切換ユニットB1に複数接続された室内機C1,C64に対する通信は、ポーリング通信の一巡に要する時間t1をあけることなく、連続する。したがって、コントローラ2は、室内機C1からの応答および室内機C64からの応答をほぼ同時に受けることができる。このとき、コントローラ2は、室内機C1,C64からそれぞれ受けた応答にその都度対応するのではなく、室内機C1,C64からそれぞれ受けた応答の相互関係に基づいて運転モードおよび冷媒流路を決定する。そして、コントローラ2は、室内機C1,C64のそれぞれ流量調整弁61を上記決定した運転モードに対応する開度に制御するための指示、および冷暖切換ユニットB1の開閉弁32,33を上記決定した冷媒流路に対応する開閉状態に制御するための指示を発する。この指示の通信も、ポーリング通信の一巡に要する時間t1をあけることなく、連続して行われる。
 つまり、室内機C1,C64で設定される運転状態(停止・冷房運転・暖房運転)と、室内機C1,C64の接続先の冷暖切換ユニットB1で設定される冷媒流路とを、ほとんど時間遅れなく適合させることができる。結果として、室内機C1,C64の流量調整弁61および冷暖切換ユニットB1の開閉弁32,33が頻繁に動作を繰り返すことがなくなり、その動作の音や冷媒の流れ音などの不快な音の発生を軽減できる。また、冷暖切換ユニットB1や室内機C1,C64に設けられた各種の弁への指示遅れに起因する冷凍サイクル制御の不安定状態を防止できる。たとえば、室内機C1,C64を同時に冷凍運転から暖房運転に切り替えた際に、一方の室内機が冷房運転に切り替わってからポーリング通信の一巡に要する時間t1が経過した後に他方の室内機が暖房運転から冷房運転に切り替わるなどの時間ずれが生じなくなる。
 上記定期通信およびその定期通信に基づく制御に伴い、コントローラ2は、電源遮断を監視する(ステップS14)。電源遮断がなければ(ステップS14のNO)、コントローラ2は、ステップS13に戻り、定期通信およびその定期通信に基づく制御を繰返す。電源遮断があれば(ステップS14のYES)、コントローラ2は、処理を終了する。
 なお、上記実施形態では、室外機Aが1台、冷暖切換ユニットBが10台、室内機Cが64台の場合を例に説明したが、これら台数について限定はない。
 また、上記実施形態においては、室内機が複数接続された冷暖切換ユニットと室内機が単独接続された冷暖切換ユニットとが同じ冷凍サイクル上で混在する場合を例に説明したが、冷凍サイクル上のすべての冷暖切換ユニットに室内機が複数接続される場合、例えば全部で10台の冷暖切換ユニットに対し、各2台ずつの室内機(全部で20台)が複数接続された場合にも、同様に実施が可能である。
 その他、上記実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 A…室外機、B1~B10…冷暖切換ユニット、C1~C64…室内機、1…冷凍ユニット、2…コントローラ、11…液管、12…吐出ガス管、13…吸込ガス管、L1…液冷媒流路、L2…暖房用流路、L3…冷房用流路、L4…過冷却回路、31…二重管、32…開閉弁(第2弁)、33…開閉弁(第2弁)、34…パルスモータバルブ、30…コントローラ、61…流量調整弁(第1弁)、62…室内熱交換器、60…コントローラ

Claims (6)

  1.  室外機、この室外機に接続された複数の冷暖切換ユニット、これら冷暖切換ユニットごとに単独接続または複数接続された複数の室内機を備え、前記室外機と前記各室内機との間の冷媒の流路を前記各冷暖切換ユニットで切換えることにより、前記冷暖切換ユニット単位で冷房運転・暖房運転が可能な空気調和機であって、
     前記室内機は、接続先の前記冷暖切換ユニットから流入する前記冷媒の量を調整するための第1弁を有し、この第1弁を前記室外機からの指示に応じて制御するとともに、接続先の前記冷暖切換ユニットに対し前記室外機からの指示を転送する、
     前記各冷暖切換ユニットは、前記室外機と前記各室内機との間の冷媒の流路を切換えるための第2弁を有し、この第2弁を前記室内機から転送される前記指示に応じて制御する、
     前記室外機は、
     前記複数接続された室内機への通信順位が連続するように、前記各室内機に対する通信順位を設定し、
     前記各室内機に対する問合せおよびその問合せに対する前記各室内機からの応答が含まれる通信を前記各室内機との間で順次に行い、
     すべての前記室内機からの前記応答に応じて前記各室内機の運転モードおよび前記各冷暖切換ユニットの冷媒流路を決定し、
     前記決定した内容の指示を含む通信を、前記設定した通信順位に従い前記各室内機との間で順次に行う、
     ことを特徴とする空気調和機。
  2.  前記室外機は、
     前記複数接続された室内機を前記各室内機との初期通信により検出し、
     前記検出した室内機への通信が連続するように、前記各室内機に対する通信順位を設定する、
     ことを特徴とする請求項1記載の空気調和機。
  3.  前記第1弁は、開度が全閉から全開まで連続的に変化するパルスモータバルブであり、
     前記第2弁は、複数の開閉弁である、
     ことを特徴とする請求項1記載の空気調和機。
  4.  前記室外機と前記各室内機との間の順次の通信は、前記問合せと前記応答と前記指示を含む定期的なポーリング通信である、
     ことを特徴とする請求項1記載の空気調和機。
  5.  前記室外機は、
     前記各室内機に対する問合せおよびその問合せに対する前記各室内機からの応答が含まれる通信を前記設定した通信順位に従って順次に行う、
     ことを特徴とする請求項1記載の空気調和機。
  6.  前記冷暖切換ユニットは、
     前記複数接続された室内機のいずれか一方にのみ信号線により接続され、この信号線を介して接続された前記室内機から前記指示を受け取る、
     ことを特徴とする請求項1記載の空気調和機。
PCT/JP2016/065796 2016-05-27 2016-05-27 空気調和機 WO2017203706A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16903187.9A EP3467393B1 (en) 2016-05-27 2016-05-27 Air conditioner
PCT/JP2016/065796 WO2017203706A1 (ja) 2016-05-27 2016-05-27 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065796 WO2017203706A1 (ja) 2016-05-27 2016-05-27 空気調和機

Publications (1)

Publication Number Publication Date
WO2017203706A1 true WO2017203706A1 (ja) 2017-11-30

Family

ID=60412735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065796 WO2017203706A1 (ja) 2016-05-27 2016-05-27 空気調和機

Country Status (2)

Country Link
EP (1) EP3467393B1 (ja)
WO (1) WO2017203706A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242030A (ja) * 2010-05-17 2011-12-01 Daikin Industries Ltd 空調制御装置
WO2015111173A1 (ja) * 2014-01-23 2015-07-30 三菱電機株式会社 空調機用コントローラ及び空気調和システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380738B2 (ja) * 2007-07-05 2009-12-09 ダイキン工業株式会社 空調機器間の通信方法、空調機器間の通信システムおよび空調機器間の通信プログラム
JP5352512B2 (ja) * 2010-03-31 2013-11-27 日立アプライアンス株式会社 空気調和機
JP2013181695A (ja) * 2012-03-01 2013-09-12 Fujitsu General Ltd 空気調和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242030A (ja) * 2010-05-17 2011-12-01 Daikin Industries Ltd 空調制御装置
WO2015111173A1 (ja) * 2014-01-23 2015-07-30 三菱電機株式会社 空調機用コントローラ及び空気調和システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467393A4 *

Also Published As

Publication number Publication date
EP3467393A4 (en) 2019-11-27
EP3467393B1 (en) 2021-09-15
EP3467393A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
EP3034966B1 (en) Air-conditioning system
US7819331B2 (en) HVAC staging control
EP3279576A1 (en) Variable refrigerant flow system
JP2005274117A (ja) マルチエアコンの中央制御システム及びその動作方法
JP2005024152A (ja) マルチ式空気調和機の膨張弁制御方法
WO2017204287A1 (ja) 熱源システム、及び熱源システムの制御方法
JP6115556B2 (ja) 空気調和装置
CN110500734A (zh) 一种水多联机空调系统及其控制方法
JP2003287260A (ja) 空気調和機および空気調和機の制御方法
EP3686501A1 (en) Heat exchanging type ventilation system
US20190353392A1 (en) Control board systems and methods for diagnosis of hvac components
WO2017203706A1 (ja) 空気調和機
JP6627913B2 (ja) 空気調和装置
JP2001041534A (ja) 空気調和システム
KR20100079407A (ko) 공기조화기 및 그 동작방법
JP7184484B2 (ja) 建物の空調システム
JP2012220032A (ja) 多室型空気調和機
US20210278100A1 (en) Air-cooling/heating switching type air-conditioning system and operation control method for same system
KR20180084252A (ko) 공기조화시스템 및 그 제어방법
JP2001208441A (ja) 空気調和装置
JPH0486445A (ja) 空気調和機
JPS62248948A (ja) 空気調和機の制御装置
JP2000304330A (ja) 空気調和システムの運転モード切換方法及び空気調和システム
GB2545872A (en) Control system for air-conditioning device and control method for air-conditioning device
JP2013200067A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016903187

Country of ref document: EP

Effective date: 20190102

NENP Non-entry into the national phase

Ref country code: JP