WO2017202069A1 - 触控面板及其制造方法、触控装置 - Google Patents

触控面板及其制造方法、触控装置 Download PDF

Info

Publication number
WO2017202069A1
WO2017202069A1 PCT/CN2017/073784 CN2017073784W WO2017202069A1 WO 2017202069 A1 WO2017202069 A1 WO 2017202069A1 CN 2017073784 W CN2017073784 W CN 2017073784W WO 2017202069 A1 WO2017202069 A1 WO 2017202069A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
line
vacant
gap
transparent conductive
Prior art date
Application number
PCT/CN2017/073784
Other languages
English (en)
French (fr)
Inventor
郑启涛
胡明
张明
许世峰
朱雨
田新斌
刘纯建
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/558,747 priority Critical patent/US10649558B2/en
Publication of WO2017202069A1 publication Critical patent/WO2017202069A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present disclosure relates to the field of touch panel manufacturing, and in particular to a touch panel, a method of manufacturing the same, and a touch device.
  • a one-piece touch panel is a black matrix (abbreviated as BM) or indium tin oxide (Indium Tin Oxide) on a base substrate (usually a protective glass). ITO) The resulting touch panel.
  • BM black matrix
  • ITO indium tin oxide
  • the BM material contains carbon and has a certain conductivity
  • the region in which the BM is formed is more susceptible to Electro-Static discharge (ESD) than the view area of the touch panel.
  • ESD Electro-Static discharge
  • the touch sensing line, the touch driving line and the other graphic units in the ITO pattern are more likely to be short-circuited, thereby affecting the capacitance between the touch sensing line and the touch driving line.
  • the size which in turn affects the touch effect of the touch panel.
  • the embodiment of the invention provides a touch panel, a manufacturing method thereof, and a touch device.
  • an embodiment of the present invention provides a touch panel, where the touch panel includes:
  • the utility model comprises a plurality of laterally arranged touch driving lines and a plurality of longitudinally arranged touch sensing lines, and a plurality of empty blocks.
  • the touch driving line and the touch sensing line are insulated from each other, and each vacant block forms one of the transparent conductive patterns
  • An independent graphics unit and the distribution density of the vacant blocks located in the overlapping area is greater than the distribution density of the vacant blocks located in the visible area.
  • the plurality of laterally disposed touch drive lines and the plurality of longitudinally disposed touch sensing lines form a plurality of cross structures, each of the cross structures and a plurality of empty blocks located in the vacant areas of the four corners of the cross structure A touch unit.
  • the distribution density of the vacant blocks in each of the vacant areas in the overlap area is greater than the distribution density of the vacant blocks located in the view area.
  • the gap width of any two adjacent graphics elements in the overlap region is greater than 30 um.
  • the gap width of any two adjacent graphics elements in the overlap region is 100 um.
  • the corners of any of the graphic elements in the transparent conductive pattern are rounded.
  • the area of the plurality of empty blocks in the overlapping area decreases from far to near the main touch line
  • the main touch line is one of a touch driving line and a touch sensing line.
  • the transparent conductive pattern is an axisymmetric pattern and there are two mutually perpendicular axes of symmetry.
  • the transparent conductive pattern further includes a wing line, wherein the wing line is a slave touch line extending from the main touch line and having a direction different from a direction in which the main touch line is disposed.
  • the main touch line is one of a touch drive line and a touch sense line. The area of the plurality of empty blocks in the overlap region decreases from far to near the wing line.
  • the plurality of vacant blocks include a first vacant block adjacent to the first main touch line in the overlap region, the first main touch line being the plurality of touch drive lines and the a gap of the plurality of touch sensing lines, the gap surrounding the first vacant block includes: a gap between the first vacant block and the first main touch line, the first vacant block and adjacent a first gap between the vacant blocks, and a second gap; the extending direction of the first gap is parallel to a direction in which the first main touch line is disposed, and the first gap extends from a boundary of the transparent conductive pattern a first distance from an inner boundary of the black matrix, an extension direction of the second gap being parallel to an inner boundary of the black matrix, the first distance being equal to a gap width of a graphic unit in the visible region.
  • the transparent conductive pattern further includes a wing line extending from the second main touch line, and the setting direction and the second main touch line are disposed. a pair of slave touch lines having different orientations, wherein the second main touch line is one of the plurality of touch drive lines and the plurality of touch sense lines, the plurality of empty blocks including the overlapping area The second main touch line and the second vacant block adjacent to the wing line, and the overlap region is not adjacent to the second main touch line and adjacent to the wing line The third vacant block.
  • the gap surrounding the second vacant block includes: a gap between the second vacant block and the second main touch line, the wing line, the second vacant block and an adjacent vacant block a third gap and a fourth gap; a gap surrounding the third vacant block includes: a gap between the third vacant block and the wing line and the third vacant block and an adjacent vacant block a fifth gap; the extending direction of the third gap is parallel to a direction in which the second main touch line is disposed, and the third gap starts from the wing line until the inner boundary of the black matrix extends second The distance is terminated, the extending direction of the fourth gap is parallel to the inner boundary of the black matrix, the extending direction of the fifth gap is parallel to the direction in which the wing line is disposed, and the second distance is in the visible area The gap width of the graphic unit is equal.
  • a further embodiment of the present invention provides a touch device comprising the touch panel of any of the embodiments of the present invention as described above.
  • a further embodiment of the present invention provides a touch panel including: a substrate; a black matrix, the black matrix being located in an annular region at an edge of the substrate;
  • a transparent conductive pattern the transparent conductive pattern and the black matrix in the annular region have overlapping regions, the transparent conductive pattern comprising a plurality of laterally disposed touch driving lines and a plurality of vertically disposed touch sensing lines, and a plurality of vacant Piece.
  • a plurality of laterally disposed Tx and a plurality of longitudinally disposed Rx are insulated from each other, each of the vacant blocks forming a separate graphic unit in the transparent conductive pattern; a gap width of any two adjacent graphic units in the overlapping area More than 30um.
  • the gap width of any two adjacent graphics elements in the overlap region is 100 um.
  • the overlapping area is located in the overlapping area.
  • the distribution density of the vacant blocks in W is large, that is, in the unit area, the number of vacant blocks in the overlap region is large, and the area of each vacant block in the overlap region is relatively small, in the touch drive line.
  • the touch sensing line and the empty block are short-circuited, since the area of the empty block in the black matrix area is small, the influence on the size of the capacitance between the touch driving line and the touch sensing line is weak, thereby effectively reducing the influence.
  • the effect on the touch effect of the touch panel since the distribution density of the vacant blocks in the overlapping area in the transparent conductive pattern is larger than the distribution density of the vacant blocks in the visible area, the overlapping area is located in the overlapping area.
  • the distribution density of the vacant blocks in W is large, that is, in the unit area, the number of vacant blocks in the overlap region is large, and the area of each vacant block in the overlap region is relatively small, in the touch drive line.
  • 1-1 is a schematic structural diagram of a touch panel according to an embodiment of the present invention.
  • FIG. 1-1 is a schematic structural diagram of a touch panel in which the BM is not shaded in FIG. 1-1;
  • FIG. 2 is a schematic structural view of the touch unit L1 in which the entire area is located in the visible area in FIG. 1-1;
  • FIG. 6 are schematic structural views of the touch units L2, L3, L4, and L5 having the upper, lower, left, and right edges of the overlapping area shown in FIG.
  • FIG. 10 are structural diagrams of the touch units L6, L7, L8, and L9 in which the partial regions are located at the upper left corner, the upper right corner, the lower left corner, and the lower right corner of the overlap region illustrated in FIG. 1;
  • FIG. 11 is a partial schematic diagram of a touch unit of a transparent touch electrode without a wing line according to an embodiment of the present invention.
  • FIG. 12 is a partial schematic diagram of a touch unit with a transparent touch electrode with a wing line according to an embodiment of the present invention
  • FIG. 13 is a schematic structural view of a conventional touch panel
  • FIG. 14 is a partial schematic structural diagram of a touch panel according to an embodiment of the present invention.
  • FIG. 15 is a flowchart of a method for manufacturing a touch panel according to an embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of a substrate substrate on which a BM is formed according to an embodiment of the present invention
  • FIG. 17 is a top plan view of a substrate on which a BM is formed according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a touch panel according to an embodiment of the invention.
  • FIG. 1-1 is a touch panel 10 according to an embodiment of the present invention.
  • the schematic diagram of the touch panel 10 includes a base substrate (not shown in FIG. 1-1), and the base substrate may be transparent glass.
  • a black matrix 101 is formed on the base substrate, and the black matrix 101 is located at an annular region (shaded region in FIG. 1-1) at the edge of the substrate substrate.
  • a transparent conductive pattern 102 (a pattern in a broken line frame in FIG. 1-1) is formed on the base substrate on which the black matrix 101 is formed, and the transparent conductive pattern 102 and the black matrix in the annular area have an overlapping area W.
  • FIG. 1-2 is a schematic structural diagram of a touch panel in FIG.
  • the transparent conductive pattern 102 includes: multiple transverse directions.
  • the touch driving line 1021 and the plurality of vertically disposed touch sensing lines 1022, and the plurality of empty blocks 1023, the plurality of laterally disposed touch driving lines 1021 and the plurality of vertically disposed touch sensing lines 1022 are insulated from each other, and each of the empty blocks 1023 can form a separate graphic unit in the transparent conductive pattern.
  • These multiple empty blocks can be used to adjust the mutual capacitance between the touch sensing line and the touch driving line, and improve the optical effect of the visible area of the touch panel.
  • the touch driving line 1021 and the touch sensing line 1022 may be patterns arranged in the same layer formed by one patterning process, and the two are insulated by providing a gap.
  • the transparent conductive pattern 102 can further include a plurality of conductive bridges 1024 for electrically connecting the plurality of laterally disposed touch drive lines.
  • the distribution density of the vacant blocks located in the overlap region is greater than the distribution density of the vacant blocks located in the viewable area of the touch panel.
  • the distribution density of the vacant blocks refers to the tightness of the distribution of the vacant blocks in a unit area. The more the number of vacant blocks per unit area, the greater the distribution density.
  • the distribution density of the vacant blocks in the overlapping area in the transparent conductive pattern is greater than the distribution density of the vacant blocks in the visible area, due to the vacant blocks in the overlapping area.
  • the distribution density is large, that is, in the unit area, the number of vacant blocks in the overlapping area is large, and the area of each vacant block in the overlapping area is relatively small, in the touch driving line or the touch sensing line and
  • the vacant block is short-circuited, since the area of the vacant block in the black matrix area is small, the influence of the mutual capacitance between the touch driving line and the touch sensing line is weak, thereby effectively reducing the touch effect on the touch panel. Impact.
  • a plurality of laterally disposed touch driving lines and a plurality of vertically disposed touch sensing lines may form a plurality of cross structures M.
  • each of the cross structures M and a plurality of empty blocks 1023 located in the vacant area N of the four corners of the cross structure M constitutes a vacant block 1023.
  • the transparent conductive pattern 102 may be made of tin indium oxide (ITO).
  • the transparent conductive pattern 102 is an axisymmetric pattern and there are two mutually perpendicular axes of symmetry. As shown in FIG. 1-2, the transparent conductive pattern 102 is approximately rectangular, which ensures the consistency of the optical performance of the touch panel.
  • the distribution density of the vacant blocks in the vacant area in the overlap area is greater than the distribution density of the vacant blocks located in the visible area.
  • the distribution density of the vacant blocks in the partial vacant area N1 in the overlapping area W in FIG. 1-2 is greater than the distribution density of the vacant blocks in the vacant area N2 of the visible area.
  • the visible area is also That is, an area other than the overlapping area on the transparent conductive pattern.
  • Figure 1-1 and Figure 1-2 illustrate the example in which a part of the vacant area is located in the overlapping area.
  • the number of the touch driving lines and the touch sensing lines in the transparent conductive pattern 102 is adaptively set according to the size of the touch panel, and FIG. 1-1 and FIG. 1-2 only have three touch driving lines and three The touch sensing line is taken as an example for explanation.
  • the distribution rule of the vacant block in the overlap region is generally that the area of the vacant block is positively related to the distance between the vacant block and the main touch line, that is, the closer the vacant block is to the main touch line, The smaller the area.
  • the main touch line can be a touch drive line or a touch sense line.
  • the area of the plurality of empty blocks in the overlap region decreases from far to near the main touch line. Since the area of the vacant block near the main touch line is small, when the main touch line is short-circuited with the vacant block, the influence on the size of the capacitance between the touch drive line and the touch sensing line is weak, thereby effectively reducing the pair. The effect of the touch effect of the touch panel.
  • the shapes of the vacant blocks of the transparent conductive pattern are different, generally irregular shapes, it is not necessarily ensured that the area of the plurality of vacant blocks in the overlap region decreases from far to near the touch line. Therefore, at this time, it is ensured that the area of the vacant block adjacent to the touch line in the overlapping area is smaller than the preset area, and the preset area is between the touch driving line and the touch sensing line when the vacant block is short-circuited with the touch line.
  • the effect of the size of the capacitor is less than the corresponding area at the preset level.
  • FIG. 2 is a schematic structural diagram of a touch unit provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a touch unit L1 in which all areas are located in the visible area of FIG. 1-1
  • FIG. 3 to FIG. 6 respectively have the partial area located on the overlapping area shown in FIG.
  • Touch unit L2 for edge, bottom edge, left edge and right edge
  • FIGS. 7-10 are touch units L6, L7, L8, and L9 in which the partial regions are located at the upper left corner, the upper right corner, the lower left corner, and the lower right corner of the overlap region shown in FIG. Schematic diagram of the structure.
  • the transparent touch electrodes 102 can generally be divided into two types, a transparent touch electrode with a wing line and a transparent touch electrode without a wing line.
  • the transparent touch electrodes 102 in FIGS. 1-1 to 10 are all transparent touch electrodes with wing lines. As can be seen from FIG. 1-1 to FIG. 10, the transparent touch electrodes 102 in the embodiment of the present invention are further
  • the wing line may be a wing line extending from a main touch line and having a direction different from a direction in which the main touch line is disposed, the main touch
  • the control line is one of the touch drive line and the touch sense line.
  • the transparent touch electrode 102 provided with the wing line has a small overall resistance, and the touch unit is more smoothly connected.
  • FIG. 11 is a partial schematic diagram of a touch unit of a transparent touch electrode without a wing line according to an embodiment of the present invention.
  • the transparent conductive pattern of the touch panel includes a first empty block adjacent to the first main touch line in the overlapping area, and the first main touch line is one of a touch driving line and a touch sensing line.
  • the gap surrounding the first vacant block includes a gap between the first vacant block and the first main touch line, a first gap between the first vacant block and the adjacent vacant block, and a second gap.
  • the adjacent empty blocks may be one or more.
  • the first main touch line in FIG. 11 is the touch driving line Tx
  • the first empty block is A
  • the gap surrounding the first empty block A includes: the first empty block A and the first main touch line Tx.
  • the first main touch line in FIG. 11 is the touch sensing line Rx
  • the first empty block is B
  • the gap surrounding the first empty block B includes: the first empty block B and the first main touch line Rx.
  • the extending direction of the first gap is parallel to the direction in which the first main touch line is disposed.
  • the first gap extends from the boundary of the transparent conductive pattern to the inner boundary P of the black matrix by a first distance F, and the extending direction of the second gap is parallel to the inside of the black matrix.
  • the boundary P, the first distance F is equal to the gap width of the graphic unit in the visible area, and is usually 30 um. This ensures optical uniformity of the visible area and reduces the occurrence of ESD.
  • the two boundaries of the second gap respectively have a certain distance from the inner boundary P of the black matrix, wherein the distance from the boundary of the visible region to the inner boundary P of the black matrix is the first distance F, and the other boundary and the black matrix
  • the distance of the inner boundary P can be It is 30 um to 90 um, preferably 30 um.
  • FIG. 12 is a partial schematic diagram of a touch unit with a transparent touch electrode with a wing line according to an embodiment of the present invention.
  • the transparent conductive pattern further includes a wing line Tw, the wing line is a touch line extending from the second main touch line, and the setting direction is different from the setting direction of the second main touch line,
  • the two main touch lines are one of a touch drive line and a touch sense line.
  • the transparent conductive pattern may include a second vacant block adjacent to the second main touch line and the wing line in the overlap region, and a second portion of the overlap region that is not adjacent to the second main touch line and adjacent to the wing line Three empty blocks.
  • the gap surrounding the second vacant block includes: a gap between the second vacant block and the second main touch line, the wing line, a third gap between the second vacant block and the adjacent vacant block, and a fourth gap;
  • the gap surrounding the third vacant block includes a gap between the third vacant block and the wing line and a fifth gap between the third vacant block and the adjacent vacant block.
  • the second main touch line is the touch driving line Tx
  • the second empty block is C
  • the third empty block is D
  • the wing line is Tw
  • the gap surrounding the second empty block C includes: a gap c1 between the second vacant block C and the second main touch line Tx, the wing line Tw, a third gap c2 between the second vacant block C and the adjacent vacant block, and a fourth gap c3;
  • the gap of the vacant block D includes a gap d1 between the third vacant block D and the wing line Tw and a fifth gap d2 between the third vacant block D and the adjacent vacant block.
  • the extending direction of the third gap is parallel to the direction in which the second main touch line Tx is disposed.
  • the third gap starts from the wing line until the inner boundary P of the black matrix extends.
  • the second distance F terminates.
  • the extending direction of the fourth gap is parallel to the black matrix.
  • the inner boundary, the extending direction of the fifth gap is parallel to the direction in which the wing lines are disposed, and the second distance F is equal to the gap width of the graphic unit in the visible region, and is usually 30 um. This ensures optical uniformity of the visible area and reduces the occurrence of ESD.
  • the two boundaries of the fourth gap c3 respectively have a certain distance from the inner boundary P of the black matrix, wherein the distance between the boundary of the visible region and the inner boundary of the black matrix is the second distance F, and the other boundary and the black matrix
  • the distance of the inner boundary may be 30 um to 90 um, preferably 30 um.
  • the gap around the gap may not include the wing line.
  • the gap in which the direction is parallel is set as long as the area of the third vacant block D is small.
  • the third vacant block may also be E, and the third vacant block may be There is a gap e1 between the E and the wing line Tw and a fifth gap e2 between the third vacant block E and the adjacent vacant block, and the fifth gap e2 is not parallel to the direction in which the wing line is disposed.
  • the structure of the vacant block can be referred to FIG. 11 .
  • the pattern of the vacant block shown in FIG. 11 and FIG. 12 is used to form a transparent conductive pattern, so that the area of the adjacent vacant block adjacent to the main touch line is small, so that the capacitance between the touch drive line and the touch sensing line is made.
  • the effect of the size is less than the preset level.
  • the transparent conductive pattern can be obtained by adjusting the shape of the transparent region or the opaque region of the mask in the patterning process, and the manufacturing process is relatively simple.
  • the distribution rule of the vacant block in the overlap region may include that the area of the vacant block is positively related to the distance between the vacant block and the wing line, that is, the vacant block The closer to the wing line, the smaller the area.
  • FIG. 13 is a schematic structural view of a conventional touch panel 20 (for the clarity of FIG. 13 , the black matrix is not shaded), the touch panel 20 includes: a base substrate; A black matrix is formed thereon, the black matrix is located at an annular region at the edge of the substrate substrate; a transparent conductive pattern 201 is formed on the base substrate on which the black matrix is formed, and an outer edge of the transparent conductive pattern 201 and an inner edge of the black matrix overlap
  • the transparent conductive pattern 201 includes: a plurality of laterally disposed touch driving line touch driving lines and a plurality of vertically disposed touch sensing line touch sensing lines, and a plurality of empty blocks, a plurality of laterally disposed touch driving lines and a plurality of longitudinal directions
  • the set touch sensing lines are insulated from each other and form a plurality of cross structures.
  • Each of the cross structures and the plurality of vacant blocks in the vacant area of the four corners of the cross structure form a touch unit; the structure of each touch unit L0 in the transparent conductive pattern 201 is the same; in the related art, the touch unit is generally called The pixel, the transparent conductive pattern 201 of FIG. 13 is actually a pixel array formed of a plurality of identical pixels.
  • the touch panel provided in the embodiment of the present invention is apparent.
  • the distribution density of the hollow block in the overlapping area of the black matrix and the transparent conductive pattern is significantly larger than the distribution density of the hollow block of the conventional touch panel 20. That is, in the unit area, the number of vacant blocks in the overlap region is large, and the area of each vacant block is relatively small.
  • the black matrix area is hollow
  • the area of the block is small, and the influence on the size of the capacitance between the touch driving line and the touch sensing line is weak, thereby effectively reducing the influence on the touch effect of the touch panel.
  • the structure of the vacant block in the non-display area of the transparent conductive pattern is changed, and the display of the visible area is not affected.
  • the gap width of each adjacent graphic unit in the visible area is usually 30 um (micrometer), in order to ensure the uniformity of the overall structure of the touch panel, transparent
  • the gap width of all the graphic elements on the conductive pattern is set to a fixed width, that is, 30 um.
  • the graphic unit may be a minimum independent graphic constituting a transparent conductive pattern, such as a blank block, a touch driving line, or the like.
  • the inventors have confirmed through many experiments that in the overlapping region of the transparent conductive pattern and the black matrix, the larger the gap width of two adjacent pattern units, the lower the probability of occurrence of a short circuit, and therefore, in the embodiment of the present invention
  • the gap width of any two adjacent graphic units located in the overlapping area may be greater than 30 um. This will effectively reduce the probability of a short circuit in the overlap region.
  • the gap width of the graphic unit in the black matrix region is increased, the mutual capacitance value of the node of the single touch unit is increased.
  • the gap width is too large (for example, greater than 100 um), the node capacitance value is excessively increased.
  • the node capacitance value of the black matrix area is generally much larger than the node capacitance value of the visible area, resulting in poor uniformity of the transparent conductive pattern and affecting the touch performance of the edge area of the touch panel.
  • the upper limit of the gap width that can be supported by the driver integrated circuit (English: Integrated Circuit; IC) chip connected to the touch driving line and the touch sensing line is usually 100 um (that is, when the gap width is within 100 um, the node The capacitance value is within the acceptable range of the driving IC chip, and the touch performance of the touch panel edge region is not greatly affected at this time.
  • the gap width D1 of any two adjacent graphic units in the overlapping area is 100 um.
  • the gap width D2 of the visible area can still be 30um.
  • the charge density is related to the shape of the surface of the conductor, and the charge density is small at a gentle portion and largest at a pointed portion. Therefore, the tip of the conductor tends to accumulate charges. When the charge density reaches a certain magnitude, the electric field generated by the charge is large, and the tip discharge phenomenon is likely to occur.
  • the corners of any of the graphic units in the transparent conductive pattern are rounded, and the rounded corners are sharper than the sharp acute angles. Small, to achieve a smooth transition of the pattern, can reduce charge accumulation, avoid the generation of tip discharge phenomenon.
  • the distribution density of the vacant blocks in the overlapping area in the transparent conductive pattern is greater than the distribution density of the vacant blocks in the visible area, due to being located in the overlapping area W.
  • the distribution density of the vacant blocks is large, that is, in the unit area, the number of vacant blocks in the overlap region is large, and the area of each vacant block in the overlap region is relatively small, in the touch drive line or touch sensing.
  • a further embodiment of the present invention provides a method of manufacturing a touch panel for manufacturing the touch panel 10 according to the above embodiment of the present invention. As shown in FIG. 15, the manufacturing method includes:
  • Step 301 forming a black matrix on the base substrate, the black matrix being located in an annular region at the edge of the substrate substrate.
  • a black matrix layer may be formed on a substrate by a deposition or coating process, and then the black matrix layer is processed by one patterning process to obtain a desired black matrix.
  • One patterning process may include photoresist coating, exposure, Processes such as development, etching, and photoresist stripping.
  • a cross-sectional view of the base substrate 103 on which the black matrix 101 is formed is shown in Fig. 16, and a plan view is shown in Fig. 17.
  • Step 302 forming a transparent conductive pattern on the base substrate formed with the black matrix, and an overlapping area exists between an outer edge of the transparent conductive pattern and an inner edge of the black matrix, and the transparent conductive pattern includes: a plurality of laterally disposed touch driving line touches The driving line and the plurality of vertically arranged touch sensing line touch sensing lines, and the plurality of empty blocks, the plurality of laterally disposed touch driving lines and the plurality of longitudinally arranged touch sensing lines are insulated from each other.
  • a transparent conductive layer may be formed on a substrate by a deposition or coating process, and the transparent conductive layer is processed by a patterning process to obtain a transparent conductive pattern.
  • the one patterning process may include processes such as photoresist coating, exposure, development, etching, and photoresist stripping.
  • the method may further include: forming a plurality of conductive bridges on the base substrate, the plurality of conductive bridges for connecting the plurality of laterally disposed touch drive lines, the plurality of laterally disposed
  • the touch drive line can transmit signals through the conductive bridge.
  • the touch panel can be formed by 5 patterning processes, also called 5mask (Chinese: mask), or 6 patterning processes, also called 6mask.
  • the conductive bridge is formed of a metal material; in a scene in which the touch panel is formed by 6 patterning processes, the conductive bridge is formed of ITO material, and is transparent.
  • the conductive patterns are formed in the same material.
  • a top view of the substrate substrate on which the conductive bridge and the transparent conductive layer are formed may be as shown in FIG. 1-1 or FIG. 1-2.
  • the distribution density of the vacant blocks located in the overlap region is greater than the distribution density of the vacant blocks located in the viewable region.
  • a plurality of laterally disposed touch driving lines and a plurality of vertically disposed touch sensing lines form a plurality of cross structures, and each of the cross structures and the plurality of empty blocks located in the vacant areas at the four corners of the cross structure constitute one touch unit.
  • the distribution density of the vacant blocks in each of the first vacant areas in the overlapping area is greater than the distribution density of the hollow blocks in the second vacant area of the visible area, and the first vacant area and the second vacant area are in different touch units. The relative positions in the same are the same.
  • the gap width of any two adjacent graphics elements located in the overlap region is greater than 30 um.
  • the gap width of any two adjacent graphics elements in the overlap region is 100 um.
  • the corners of any of the graphic elements in the transparent conductive pattern are rounded.
  • the transparent conductive pattern is an axisymmetric pattern and there are two mutually perpendicular axes of symmetry.
  • the overlapping area is located in the overlapping area.
  • the distribution density of the vacant blocks in W is large, that is, in the unit area, the number of vacant blocks in the overlap region is large, and the area of each vacant block in the overlap region is relatively small, in the touch drive line.
  • a further embodiment of the present invention provides a touch device comprising the touch panel 10 provided in any of the above embodiments of the present invention.
  • the touch device provided by the embodiment of the invention may be a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, Any product or part that has a touch display function, such as a navigator.
  • touch panel 40 As shown in FIG. 18, the touch panel includes:
  • the base substrate (not shown in Fig. 18).
  • a transparent conductive pattern 402 is formed on the base substrate on which the black matrix is formed, and the transparent conductive pattern and the black matrix in the annular region have overlapping regions.
  • the transparent conductive pattern includes: a plurality of laterally disposed touch driving line touch driving lines and a plurality of longitudinal directions. a touch sensing line touch sensing line, and a plurality of empty blocks, a plurality of laterally disposed touch driving lines and a plurality of longitudinally disposed touch sensing lines are insulated from each other, each of the empty blocks forming a separate graphic in the transparent conductive pattern Unit; the gap width of any two adjacent graphics elements in the overlap region is greater than 30um.
  • the gap width of any two adjacent graphics elements in the overlap region is 100 um.
  • Figure 18 shows the example of 100um.
  • the gap width of each adjacent graphic unit in the visible area is usually 30 um (micrometer), in order to ensure the overall structure of the touch panel. Uniformity, the gap width of all the graphic elements on the transparent conductive pattern is set to a fixed width, that is, 30 um.
  • the inventors have confirmed through many experiments that in the overlapping region of the transparent conductive pattern and the black matrix, the larger the gap width of two adjacent pattern units, the lower the probability of occurrence of a short circuit, and therefore, in the embodiment of the present invention
  • the gap width of any two adjacent graphic units located in the overlapping area may be greater than 30 um. This will effectively reduce the probability of a short circuit in the overlap region.
  • the gap width of the graphic unit in the black matrix region is increased, the mutual capacitance value of the node of the single touch unit is increased, and when the gap width is too large (for example, greater than 100 um), the node capacitance value is excessively increased. Therefore, the node capacitance value of the black matrix area is generally much larger than the node capacitance value of the visible area, resulting in poor uniformity of the transparent conductive pattern and affecting the touch performance of the edge area of the touch panel.
  • the upper limit of the gap width that can be supported by the driver integrated circuit (English: Integrated Circuit; IC) chip connected to the touch driving line and the touch sensing line is usually 100 um (that is, when the gap width is within 100 um, the node
  • the capacitance value is within the acceptable range of the driving IC chip, and the touch property on the edge region of the touch panel at this time
  • any two adjacent ones in the overlapping area is 100 um.
  • the gap width D2 of the visible area can still be 30um.
  • the gap width of any two adjacent graphic units in the overlapping area is greater than 30 um, the probability of short-circuiting in the overlapping area can be effectively reduced, and in any two phases When the gap width of the adjacent graphics unit is 100 um, it is possible to minimize the probability of short-circuiting in the overlap region while ensuring effective driving of the driving IC chip.
  • adjacent in the embodiment of the present invention means that the two patterns are insulated by the gap, but are close together.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控面板及其制造方法、触控装置,属于触控面板制造领域。触控面板包括:衬底基板;位于衬底基板边缘的环形区域的黑矩阵(101);以及透明导电图形(102),透明导电图形(102)和环形区域中的黑矩阵(101)存在重叠区域,透明导电图形(102)包括:多条横向设置的触摸驱动线(1021)和多条纵向设置的触摸感应线(1022),以及多个空置块(1023),多条横向设置的触摸驱动线(1021)和多条纵向设置的触摸感应线(1022)相互绝缘;位于重叠区域中的空置块(1023)的分布密度大于位于可视区域中的空置块(1023)的分布密度。所述触控面板能够缓解或减轻触控面板的触摸效果较差的问题,能够实现改善触控面板的触摸效果的有益效果。

Description

触控面板及其制造方法、触控装置
相关申请的交叉引用
本申请要求于2016年5月25日向中国专利局提交的专利申请201610355428.7的优先权利益,并且在此通过引用的方式将该在先申请的内容并入本文。
技术领域
本公开涉及触控面板制造领域,特别涉及一种触控面板及其制造方法、触控装置。
背景技术
单片式触控面板(One Glass Solution;简称:OGS)是在衬底基板(通常为保护玻璃)上依次形成黑矩阵(Black Matrix;简称:BM)、氧化铟锡(Indium Tin Oxide;简称:ITO)图形所得到的触控面板。
由于BM材质中含有碳元素,具有一定的导电性,因而形成有BM的区域比触控面板的可视区域(View area)更易发生静电击穿(Electro-Static discharge;简称:ESD)现象,使得在形成有BM的区域(简称:BM区)中,ITO图形中的触摸感应线、触摸驱动线与其他的图形单元之间更容易发生短路,从而影响触摸感应线和触摸驱动线之间电容的大小,进而影响触控面板的触摸效果。
发明内容
为了缓解或解决现有技术的触控面板的触摸效果较差的问题,本发明实施例提供了一种触控面板及其制造方法、触控装置。
第一方面,本发明的实施例提供了一种触控面板,所述触控面板包括:
衬底基板;黑矩阵,所述黑矩阵位于所述衬底基板边缘的环形区域;以及透明导电图形,所述透明导电图形和所述环形区域中的黑矩阵存在重叠区域,所述透明导电图形包括多条横向设置的触摸驱动线和多条纵向设置的触摸感应线,以及多个空置块。所述触摸驱动线和所述触摸感应线相互绝缘,每个空置块形成所述透明导电图形中的一 个独立图形单元,并且位于所述重叠区域中的空置块的分布密度大于位于可视区域中的空置块的分布密度。
在一些实施例中,多条横向设置的触摸驱动线和多条纵向设置的触摸感应线形成多个十字结构,每个十字结构以及位于所述十字结构四角的空置区内的多个空置块组成一个触控单元。重叠区域中的每个空置区中的空置块的分布密度大于位于所述可视区域的空置块的分布密度。
在一些实施例中,重叠区域中的任意两个相邻的图形单元的间隙宽度大于30um。
在一些实施例中,重叠区域中的任意两个相邻的图形单元的间隙宽度为100um。
在一些实施例中,透明导电图形中任一图形单元的边角为圆角。
在一些实施例中,重叠区域中的多个空置块的面积从远离到靠近主触控线依次减小,所述主触控线为触摸驱动线和触摸感应线中的一个。
在一些实施例中,透明导电图形为轴对称图形,且存在两个互相垂直的对称轴。
在一些实施例中,透明导电图形还包括翅膀线,所述翅膀线为从主触控线上延伸出的、且设置方向与所述主触控线的设置方向不同的从触控线,所述主触控线为触摸驱动线和触摸感应线中的一个。重叠区域中的多个空置块的面积从远离到靠近所述翅膀线依次减小。
在一些实施例中,多个空置块包括所述重叠区域中与第一主触控线相邻的第一空置块,所述第一主触控线为所述多条触摸驱动线和所述多条触摸感应线中的一个,围绕所述第一空置块的间隙包括:所述第一空置块与所述的第一主触控线之间的间隙、所述第一空置块与相邻的空置块之间的第一间隙,和第二间隙;所述第一间隙的延伸方向平行所述第一主触控线的设置方向,所述第一间隙从所述透明导电图形的边界延伸出所述黑矩阵的内边界第一距离,所述第二间隙的延伸方向平行所述黑矩阵的内边界,所述第一距离与所述可视区域中的图形单元的间隙宽度相等。
在一些实施例中,所述透明导电图形还包括翅膀线,所述翅膀线为从第二主触控线上延伸出的,且设置方向与所述第二主触控线的设 置方向不同的从触控线,所述第二主触控线为所述多条触摸驱动线和所述多条触摸感应线中的一个,所述多个空置块包括所述重叠区域中与所述第二主触控线、所述翅膀线均相邻的第二空置块,以及所述重叠区域中与所述第二主触控线不相邻且与所述翅膀线均相邻的第三空置块。围绕所述第二空置块的间隙包括:所述第二空置块分别与所述第二主触控线、所述翅膀线之间的间隙、所述第二空置块与相邻的空置块之间的第三间隙和第四间隙;围绕所述第三空置块的间隙包括:所述第三空置块与所述翅膀线之间的间隙和所述第三空置块与相邻的空置块之间的第五间隙;所述第三间隙的延伸方向平行所述第二主触控线的设置方向,所述第三间隙从所述翅膀线开始直至延伸出所述黑矩阵的内边界第二距离终止,所述第四间隙的延伸方向平行所述黑矩阵的内边界,所述第五间隙的延伸方向平行所述翅膀线的设置方向,所述第二距离与所述可视区域中的图形单元的间隙宽度相等。
本发明的另外的实施例提供了触控装置,包括如上所述的本发明的实施例中的任一实施例所述的触控面板。
本发明的又一实施例提供了一种触控面板,包括:衬底基板;黑矩阵,所述黑矩阵位于所述衬底基板边缘的环形区域;
透明导电图形,所述透明导电图形和所述环形区域中的黑矩阵存在重叠区域,所述透明导电图形包括多条横向设置的触摸驱动线和多条纵向设置的触摸感应线,以及多个空置块。多条横向设置的Tx和多条纵向设置的Rx相互绝缘,每个空置块形成所述透明导电图形中的一个独立图形单元;所述重叠区域中的任意两个相邻的图形单元的间隙宽度大于30um。
在一些实施例中,所述重叠区域中的任意两个相邻的图形单元的间隙宽度为100um。
对于本发明实施例提供的触控面板及其制造方法、触控装置,由于透明导电图形中位于重叠区域中的空置块的分布密度大于位于可视区域中的空置块的分布密度,位于重叠区域W中的空置块的分布密度较大,也即是,在单位面积中,重叠区域中的空置块的个数较多,重叠区域中的每个空置块的面积相对较小,在触摸驱动线或触摸感应线与空置块发生短路时,由于黑矩阵区内的空置块的面积较小,对触摸驱动线和触摸感应线之间的电容的大小的影响较弱,从而有效减少了 对触控面板的触摸效果的影响。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-1是本发明实施例提供的一种触控面板的结构示意图;
图1-2为图1-1中未对BM进行阴影标示的触控面板的结构示意图;
图2为其全部区域位于图1-1中的可视区域中的触控单元L1的结构示意图;
图3至图6分别为存在部分区域位于图1所示的重叠区域的上边缘、下边缘、左边缘和右边缘的触控单元L2、L3、L4和L5的结构示意图;
图7至图10分别为存在部分区域位于图1所示的重叠区域的左上角、右上角、左下角和右下角的触控单元L6、L7、L8和L9的结构示意图;
图11为本发明实施例提供的不带有翅膀线的透明触控电极的触控单元的局部示意图;
图12为本发明实施例提供的带有翅膀线的透明触控电极的触控单元的局部示意图;
图13是一种传统的触控面板的结构示意图;
图14是本发明实施例提供的一种触控面板的部分结构示意图;
图15是本发明实施例提供的一种触控面板的制造方法流程图;
图16是本发明实施例提供的形成有BM的衬底基板的截面视图;
图17是本发明实施例提供的形成有BM的衬底基板的俯视图;
图18是本发明实施例的一种触控面板的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例作进一步地详细描述。
如图1-1所示,图1-1是本发明实施例提供的一种触控面板10的 结构示意图,触控面板10包括衬底基板(图1-1中未标示),该衬底基板可以为透明玻璃。在衬底基板上形成有黑矩阵101,黑矩阵101位于衬底基板边缘的环形区域(图1-1中的阴影区域)。形成有黑矩阵101的衬底基板上形成有透明导电图形102(图1-1中虚线框中的图形),透明导电图形102和所述环形区域中的黑矩阵存在重叠区域W。为了更为清晰地进行说明,如图1-2所示,图1-2为图1-1中未对黑矩阵进行阴影标示的触控面板的结构示意图,透明导电图形102包括:多条横向设置的触摸驱动线1021和多条纵向设置的触摸感应线1022,以及多个空置块1023,多条横向设置的触摸驱动线1021和多条纵向设置的触摸感应线1022相互绝缘,每个空置块1023可形成所述透明导电图形中的一个独立图形单元。这些多个空置块可用于调节触摸感应线和触摸驱动线之间的互电容,改善触控面板的可视区域的光学效果。
在本发明实施例中,触摸驱动线1021和触摸感应线1022可以是通过一次构图工艺形成的同层设置的图形,通过设置间隙使两者绝缘。
进一步的,透明导电图形102还可包括多个导电桥1024,该多个导电桥用于电连接该多个横向设置的触摸驱动线。
位于重叠区域中的空置块的分布密度大于位于触控面板的可视区域中的空置块的分布密度。本发明实施例中,空置块的分布密度指的是在单位面积内空置块分布的紧密程度。单位面积内空置块的个数越多,其分布密度越大。
综上所述,对于本发明实施例提供的触控面板,透明导电图形中位于重叠区域中的空置块的分布密度大于位于可视区域中的空置块的分布密度,由于重叠区域中的空置块的分布密度较大,也即是,在单位面积中,重叠区域中的空置块的个数较多,重叠区域中的每个空置块的面积相对较小,在触摸驱动线或触摸感应线与空置块发生短路时,由于黑矩阵区中的空置块的面积较小,对触摸驱动线和触摸感应线之间的互电容的大小的影响较弱,从而有效减少了对触控面板的触摸效果的影响。
进一步的,多条横向设置的触摸驱动线和多条纵向设置的触摸感应线可形成多个十字结构M。如图2所示,每个十字结构M以及位于十字结构M四角的空置区N(该空置区类似于矩形区,图2以矩形虚线框示意性标出)内的多个空置块1023组成一个触控单元。示例的, 透明导电图形102可以由锡铟氧化物(ITO)制成。在一些实施中,透明导电图形102为轴对称图形,且存在两个互相垂直的对称轴。如图1-2所示,该透明导电图形102近似于矩形,这样可以保证触控面板的光学性能的一致性。
如图1-2所示,空置区中位于重叠区域中的空置块的分布密度均大于位于可视区域的空置块的分布密度。例如,图1-2中位于重叠区域W中的部分空置区N1中的空置块的分布密度大于位于可视区域的空置区N2的空置块的分布密度,本发明实施例中,可视区域也即是透明导电图形上除重叠区域之外的区域。
实际应用中,可能的是一个空置区的部分或全部处于重叠区域中,图1-1和图1-2是以空置区的一部分位于重叠区域中为例进行说明的。并且,透明导电图形102中的触摸驱动线和触摸感应线的个数是根据触控面板的尺寸来适应性设置的,图1-1和图1-2只是以3个触摸驱动线和3个触摸感应线为例进行说明。
在本发明实施例中,重叠区域中的空置块的分布规律通常是空置块的面积正相关于该空置块与主触控线的距离,也即是,空置块越靠近主触控线,其面积越小。该主触控线可以为触摸驱动线或触摸感应线。在一些实施例中,该重叠区域中的多个空置块的面积从远离到靠近主触控线依次减小。由于靠近主触控线的空置块的面积较小,当主触控线与该空置块发生短路时,对触摸驱动线和触摸感应线之间的电容的大小的影响较弱,从而有效减少了对触控面板的触摸效果的影响。
在一些实施例中,由于透明导电图形的空置块的形状各异,通常是不规则形状,不一定能保证重叠区域中的多个空置块的面积从远离到靠近触控线依次减小。因此,此时保证重叠区域中靠近触控线的空置块的面积小于预设面积即可,该预设面积为在该空置块与触控线短路时,对触摸驱动线和触摸感应线之间的电容的大小的影响小于预设程度时对应的面积。
图2至图10均为本发明实施例提供的触控单元的结构示意图,图2为其全部区域位于图1-1中可视区域内的触控单元L1的结构示意图,由图1-1可以看出,其全部区域位于可视区域内的触控单元的结构相同,且与触控单元L1的结构相同;图3至图6分别为存在部分区域位于图1所示的重叠区域的上边缘、下边缘、左边缘和右边缘的触控单元L2、 L3、L4和L5的结构示意图;图7至图10分别为存在部分区域位于图1所示的重叠区域的左上角、右上角、左下角和右下角的触控单元L6、L7、L8和L9的结构示意图。
透明触控电极102通常可以分为两类,带有翅膀(wing)线的透明触控电极和不带有翅膀线的透明触控电极。图1-1至图10中的透明触控电极102均为带有翅膀线的透明触控电极,由图1-1至图10可以看出,本发明实施例中的透明触控电极102还可以包括翅膀(wing)线,该翅膀线为从某一主触控线上延伸出的,且设置方向与该某一主触控线的设置方向不同的从触控线,该某一主触控线为触摸驱动线和触摸感应线的一个。设置有翅膀线的透明触控电极102的整体电阻较小,触控单元的衔接更顺畅。
图11为本发明实施例提供的不带有翅膀线的透明触控电极的触控单元的局部示意图。如图11所示,触控面板的透明导电图形包括重叠区域中与第一主触控线相邻的第一空置块,第一主触控线为触摸驱动线和触摸感应线中的一个,围绕第一空置块的间隙包括:第一空置块与第一主触控线之间的间隙、第一空置块与相邻的空置块之间的第一间隙以及第二间隙。该相邻的空置块可以为一个或多个。
示例的,假设图11中第一主触控线为触摸驱动线Tx,第一空置块为A,围绕第一空置块A的间隙包括:第一空置块A与第一主触控线Tx之间的间隙a1、第一空置块A与相邻的空置块之间的第一间隙a2以及第二间隙a3。
示例的,假设图11中第一主触控线为触摸感应线Rx,第一空置块为B,围绕第一空置块B的间隙包括:第一空置块B与第一主触控线Rx之间的间隙b1、第一空置块B与相邻的空置块之间的第一间隙b2以及第二间隙b3。
第一间隙的延伸方向平行第一主触控线的设置方向,第一间隙从透明导电图形的边界延伸出黑矩阵的内边界P第一距离F,第二间隙的延伸方向平行黑矩阵的内边界P,该第一距离F与可视区域中的图形单元的间隙宽度相等,通常为30um。这样可以保证可视区域的光学均匀性并且减少ESD的发生。该第二间隙的两个边界分别和黑矩阵的内边界P存在一定距离,其中靠近可视区域的边界与黑矩阵的内边界P的距离为上述第一距离F,另一个边界与该黑矩阵的内边界P的距离可以 为30um至90um,优选为30um。
图12为本发明实施例提供的带有翅膀线的透明触控电极的触控单元的局部示意图。如图12所示,透明导电图形还包括翅膀线Tw,翅膀线为从第二主触控线上延伸出的,且设置方向与第二主触控线的设置方向不同的触控线,第二主触控线为触摸驱动线和触摸感应线的一个。
透明导电图形可包括重叠区域中与第二主触控线、翅膀线均相邻的第二空置块,以及重叠区域中与第二主触控线不相邻且与翅膀线均相邻的第三空置块。
围绕第二空置块的间隙包括:第二空置块分别与第二主触控线、翅膀线之间的间隙、第二空置块与相邻的空置块之间的第三间隙以及第四间隙;围绕第三空置块的间隙包括:第三空置块与翅膀线之间的间隙和第三空置块与相邻的空置块之间的第五间隙。
示例的,假设在图12中第二主触控线为触摸驱动线Tx,第二空置块为C,第三空置块为D,翅膀线为Tw,围绕第二空置块C的间隙包括:第二空置块C分别与第二主触控线Tx、翅膀线Tw之间的间隙c1、第二空置块C与相邻的空置块之间的第三间隙c2以及第四间隙c3;围绕第三空置块D的间隙包括:第三空置块D与翅膀线Tw之间的间隙d1和第三空置块D与相邻的空置块之间的第五间隙d2。
第三间隙的延伸方向平行第二主触控线Tx的设置方向,第三间隙从翅膀线开始,直至延伸出黑矩阵的内边界P第二距离F终止,第四间隙的延伸方向平行黑矩阵的内边界,第五间隙的延伸方向平行翅膀线的设置方向,该第二距离F与可视区域中的图形单元的间隙宽度相等,通常为30um。这样可以保证可视区域的光学均匀性并且减少ESD的发生。该第四间隙c3的两个边界分别和黑矩阵的内边界P存在一定距离,其中靠近可视区域的边界与黑矩阵的内边界的距离为上述第二距离F,另一个边界与该黑矩阵的内边界的距离可以为30um至90um,优选的为30um。
需要说明的是,在一些实施例中,对于重叠区域中与第二主触控线不相邻且与翅膀线均相邻的第三空置块D,围绕其的间隙也可以不包括与翅膀线的设置方向平行的间隙,只要保证该第三空置块D的面积较小即可,例如,图12中,第三空置块也可以为E,则第三空置块 E与翅膀线Tw之间存在间隙e1和第三空置块E与相邻的空置块之间存在第五间隙e2,该第五间隙e2与翅膀线的设置方向不平行。
进一步的,在带有翅膀线的透明触控电极的触控单元中,如果有的触控单元的空置块仅与触摸驱动线或触摸感应线相邻,该空置块的结构可以参考图11所示的第一空置块A的结构。本发明实施例对此不作赘述。
采用图11和图12所示的空置块的构图方式来形成透明导电图形,可以保证与主触控线的相邻的空置块的面积较小,使得对触摸驱动线和触摸感应线之间电容的大小的影响小于预设程度。并且,只需在构图工艺中将掩膜版的透光区域或不透光区域的形状进行调整,就可以得到这样的透明导电图形,制作工艺较为简便。
进一步的,在一些实施例中,在存在翅膀线的情况下,重叠区域中的空置块的分布规律可以包括空置块的面积正相关于该空置块与翅膀线的距离,也即是,空置块越靠近翅膀线,其面积越小。
如图13所示,图13是一种传统的触控面板20的结构示意图(为了图13的清晰,未对黑矩阵进行阴影标示),触控面板20包括:衬底基板;在衬底基板上形成有黑矩阵,黑矩阵位于衬底基板边缘的环形区域;形成有黑矩阵的衬底基板上形成有透明导电图形201,透明导电图形201的外边缘和黑矩阵的内边缘之间存在重叠区域,透明导电图形201包括:多条横向设置的触摸驱动线触摸驱动线和多条纵向设置的触摸感应线触摸感应线,以及多个空置块,多条横向设置的触摸驱动线和多条纵向设置的触摸感应线相互绝缘,且形成多个十字结构。每个十字结构以及位于十字结构四角的空置区内的多个空置块组成一个触控单元;透明导电图形201中每个触控单元L0的结构相同,相关技术中,通常将触控单元称为像素,图13的透明导电图形201实际上是由多个相同的像素形成的像素阵列。
因此,将图1-1、图1-2或图3至图10中提供的触控单元与图13提供的触控单元进行比较,可以明显看出,在本发明实施例提供的触控面板10中,黑矩阵与透明导电图形的重叠区域中空置块的分布密度明显大于传统的触控面板20中空置块的分布密度。也即是,在单位面积中,重叠区域中的空置块的个数较多,每个空置块的面积相对较小。在触摸驱动线或触摸感应线与空置块发生短路时,由于黑矩阵区中空 置块的面积较小,对触摸驱动线和触摸感应线之间的电容的大小的影响较弱,从而有效减少了对触控面板的触摸效果的影响。并且,本发明实施例中,改变的是透明导电图形的非显示区域中的空置块的结构,不影响其可视区域的显示。
在传统的触控面板20中,为了改善可视区域的光学效果,可视区域中相邻的各个图形单元的间隙宽度通常为30um(微米),为了保证触控面板整体结构的均一性,透明导电图形上所有的图形单元的间隙宽度均设置为固定的宽度,也即是30um。本发明实施例中,图形单元可以为构成透明导电图形的最小独立图形,如空置块、触摸驱动线等。
但是,发明人经过多次的实验证实,在透明导电图形和黑矩阵的重叠区域中,两个相邻的图形单元的间隙宽度越大,产生短路的概率越低,因此,在本发明实施例中,位于该重叠区域中的任意两个相邻的图形单元的间隙宽度可以大于30um。这样会有效降低重叠区域短路的概率。
但是,当黑矩阵区内图形单元的间隙宽度增大时,单个触控单元的节点互容值会增大,当间隙宽度过大时(例如大于100um),节点电容值的增大过多,这样黑矩阵区的节点电容值普遍比可视区域的节点电容值大很多,导致透明导电图形的均匀性差,影响触控面板边缘区域的触摸性能。与触摸驱动线、触摸感应线分别连接的驱动集成电路(英文:Integrated Circuit;简称:IC)芯片所能支持的间隙宽度的上限通常为100um(也即是,在间隙宽度为100um以内时,节点电容值在驱动IC芯片的可接受范围内,此时对触控面板边缘区域的触摸性能影响不大),为了保证驱动IC芯片的有效驱动,在一些实施例中,如图14所示,本发明实施例所提供的触控面板10中,重叠区域中的任意两个相邻的图形单元的间隙宽度D1为100um。可视区域的间隙宽度D2依然可以为30um。
此外,导体表面有电荷堆积时,电荷密度与导体表面的形状有关,电荷密度在平缓的部位小,在尖的部位最大。因此,导体的尖端容易聚集电荷,当电荷密度达到一定的量值后,电荷产生的电场会很大,就容易会出现尖端放电现象。
本发明实施例中,为了避免尖端放电现象的产生,透明导电图形中任一图形单元的边角为圆角,而圆角相对于尖锐的锐角,其曲率较 小,实现图形的平滑过渡,能够减少电荷聚集,避免尖端放电现象的产生。
综上所述,对于本发明实施例提供的触控面板,透明导电图形中位于重叠区域中的空置块的分布密度大于位于可视区域中的空置块的分布密度,由于位于重叠区域W中的空置块的分布密度较大,也即是,在单位面积中,重叠区域中的空置块的个数较多,重叠区域中的每个空置块的面积相对较小,在触摸驱动线或触摸感应线与空置块发生短路时,由于黑矩阵区内的空置块的面积较小,对触摸驱动线和触摸感应线之间的电容的大小的影响较弱,从而有效减少了对触控面板的触摸效果的影响。
本发明的另外的实施例提供一种触控面板的制造方法,用于制造本发明上述实施例提供的触控面板10,如图15所示,该制造方法包括:
步骤301、在衬底基板上形成黑矩阵,该黑矩阵位于衬底基板边缘的环形区域。
示例的,可以通过沉积或涂覆工艺在衬底基板上形成黑矩阵层,再对该黑矩阵层通过一次构图工艺处理得到所需要的黑矩阵一次构图工艺可以包括光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离等工艺。形成有黑矩阵101的衬底基板103的截面视图如图16所示,俯视图如图17所示。
步骤302、在形成有黑矩阵的衬底基板上形成透明导电图形,透明导电图形的外边缘和黑矩阵的内边缘之间存在重叠区域,透明导电图形包括:多条横向设置的触摸驱动线触摸驱动线和多条纵向设置的触摸感应线触摸感应线,以及多个空置块,多条横向设置的触摸驱动线和多条纵向设置的触摸感应线相互绝缘。
示例的,可以通过沉积或涂覆工艺在衬底基板上形成透明导电层,再对该透明导电层通过一次构图工艺处理得到透明导电图形。一次构图工艺可以包括光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离等工艺。
在步骤302之前或步骤302之后,该方法还可包括:在衬底基板上形成多个导电桥,该多个导电桥用于连接该多个横向设置的触摸驱动线,该多个横向设置的触摸驱动线能够通过该导电桥进行信号的传输。在本发明的该实施例中,可以通过5次构图工艺,也称5mask(中文:掩膜),或者6次构图工艺,也称6mask,形成该触控面板。在通 过5次构图工艺形成该触控面板的场景中,该导电桥由金属(Metal)材质形成;在通过6次构图工艺形成该触控面板的场景中,该导电桥由ITO材质形成,与透明导电图形的形成材质相同。
形成有导电桥和透明导电层的衬底基板俯视图可以如图1-1或图1-2所示。
位于重叠区域中的空置块的分布密度大于位于可视区域中的空置块的分布密度。多条横向设置的触摸驱动线和多条纵向设置的触摸感应线形成多个十字结构,每个十字结构以及位于十字结构四角的空置区内的多个空置块组成一个触控单元。每个位于重叠区域中的第一空置区中的空置块的分布密度均大于位于可视区域的第二空置区中空置块的分布密度,第一空置区和第二空置区在不同触控单元中的相对位置相同。
在一些实施例中,位于重叠区域中的任意两个相邻的图形单元的间隙宽度大于30um。
在一些实施例中,重叠区域中的任意两个相邻的图形单元的间隙宽度为100um。
在一些实施例中,透明导电图形中任一图形单元的边角为圆角。
可在一些实施例中,透明导电图形为轴对称图形,且存在两个互相垂直的对称轴。
本发明实施例中触控面板的制造方法的具体解释可以参考上述装置实施例中的相应描述,本发明实施例对此不再赘述。
综上所述,利用本发明实施例提供的触控面板的制造方法,由于透明导电图形中位于重叠区域中的空置块的分布密度大于位于可视区域中的空置块的分布密度,位于重叠区域W中的空置块的分布密度较大,也即是,在单位面积中,重叠区域中的空置块的个数较多,重叠区域中的每个空置块的面积相对较小,在触摸驱动线或触摸感应线与空置块发生短路时,由于黑矩阵区内的空置块的面积较小,对触摸驱动线和触摸感应线之间的电容的大小的影响较弱,从而有效减少了对触控面板的触摸效果的影响。
本发明的另外的实施例提供一种触控装置,其包括本发明的上述实施例中任一实施例提供的触控面板10。本发明实施例提供的触控装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、 导航仪等任何具有触控显示功能的产品或部件。
本发明的又一实施例还提供一种触控面板40,如图18所示,触控面板包括:
衬底基板(图18未标示)。
在衬底基板上形成有黑矩阵401,黑矩阵位于衬底基板边缘的环形区域;
形成有黑矩阵的衬底基板上形成有透明导电图形402,透明导电图形和环形区域中的黑矩阵存在重叠区域,透明导电图形包括:多条横向设置的触摸驱动线触摸驱动线和多条纵向设置的触摸感应线触摸感应线,以及多个空置块,多条横向设置的触摸驱动线和多条纵向设置的触摸感应线相互绝缘,每个空置块形成所述透明导电图形中的一个独立图形单元;重叠区域中的任意两个相邻的图形单元的间隙宽度大于30um。
在一些实施例中,重叠区域中的任意两个相邻的图形单元的间隙宽度为100um。图18以100um为例进行了标示。
传统的触控面板20中,如图13所示,为了改善可视区域的光学效果,可视区域中相邻的各个图形单元的间隙宽度通常为30um(微米),为了保证触控面板整体结构的均一性,透明导电图形上所有的图形单元的间隙宽度均设置为固定的宽度,也即是30um。
但是,发明人经过多次的实验证实,在透明导电图形和黑矩阵的重叠区域中,两个相邻的图形单元的间隙宽度越大,产生短路的概率越低,因此,在本发明实施例中,位于该重叠区域中的任意两个相邻的图形单元的间隙宽度可以大于30um。这样会有效降低重叠区域短路的概率。
但是,当黑矩阵区内的图形单元的间隙宽度增大时,单个触控单元的节点互容值会增大,当间隙宽度过大时(例如大于100um),节点电容值的增大过多,这样黑矩阵区的节点电容值普遍比可视区域的节点电容值大很多,导致透明导电图形的均匀性差,影响触控面板边缘区域的触摸性能。与触摸驱动线、触摸感应线分别连接的驱动集成电路(英文:Integrated Circuit;简称:IC)芯片所能支持的间隙宽度的上限通常为100um(也即是,在间隙宽度为100um以内时,节点电容值在驱动IC芯片的可接受范围内,此时对触控面板边缘区域的触摸性 能影响不大),为了保证驱动IC芯片的有效驱动,在一些实施例中,如图18所示,本发明实施例所提供的触控面板10中,重叠区域中的任意两个相邻的图形单元的间隙宽度D1为100um。可视区域的间隙宽D2度依然可以为30um。
综上所述,本发明实施例提供的触控面板,由于重叠区域中的任意两个相邻的图形单元的间隙宽度大于30um,可有效降低重叠区域短路的概率,并且,在任意两个相邻的图形单元的间隙宽度为100um时,能够在保证驱动IC芯片的有效驱动的前提下,实现尽量减少重叠区域短路的概率。
需要说明的是,本发明实施例中所述的“相邻”是指两个图形通过间隙绝缘,但是挨得很近。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种触控面板,包括:
    衬底基板;
    黑矩阵,所述黑矩阵位于所述衬底基板边缘的环形区域;
    透明导电图形,所述透明导电图形和所述环形区域中的黑矩阵存在重叠区域,所述透明导电图形包括:多条横向设置的触摸驱动线和多条纵向设置的触摸感应线,以及多个空置块,
    其中所述触摸驱动线和所述触摸感应线相互绝缘,每个空置块形成所述透明导电图形中的一个独立图形单元;
    其中,位于所述重叠区域中的空置块的分布密度大于位于可视区域中的空置块的分布密度。
  2. 根据权利要求1所述的触控面板,其中所述多条横向设置的触摸驱动线和多条纵向设置的触摸感应线形成多个十字结构,每个十字结构以及位于所述十字结构四角的空置区内的多个空置块组成一个触控单元;
    其中所述重叠区域中的每个空置区中的空置块的分布密度大于位于所述可视区域的空置块的分布密度。
  3. 根据权利要求1所述的触控面板,其特征在于,所述重叠区域中的任意两个相邻的图形单元的间隙宽度大于30um。
  4. 根据权利要求3所述的触控面板,其中所述重叠区域中的任意两个相邻的图形单元的间隙宽度为100um。
  5. 根据权利要求1所述的触控面板,其中所述透明导电图形中任一图形单元的边角为圆角。
  6. 根据权利要求1至5任一所述的触控面板,其中所述重叠区域中的多个空置块的面积从远离到靠近主触控线依次减小,所述主触控线为触摸驱动线和触摸感应线中的一个。
  7. 根据权利要求1至5中任一所述的触控面板,其中所述透明导电图形为轴对称图形,且存在两个互相垂直的对称轴。
  8. 根据权利要求1-5中任一项所述的触控面板,其中所述透明导电图形还包括翅膀线,所述翅膀线为从主触控线上延伸出的、且设置方向与所述主触控线的设置方向不同的从触控线,所述主触控线为触 摸驱动线和触摸感应线中的一个,
    其中所述重叠区域中的多个空置块的面积从远离到靠近所述翅膀线依次减小。
  9. 根据权利要求1所述的触控面板,其中所述多个空置块包括所述重叠区域中与第一主触控线相邻的第一空置块,所述第一主触控线为所述多条触摸驱动线和所述多条触摸感应线中的一个,
    其中围绕所述第一空置块的间隙包括:所述第一空置块与所述的第一主触控线之间的间隙、所述第一空置块与相邻的空置块之间的第一间隙和第二间隙;
    其中,所述第一间隙的延伸方向平行所述第一主触控线的设置方向,所述第一间隙从所述透明导电图形的边界延伸出所述黑矩阵的内边界第一距离,所述第二间隙的延伸方向平行所述黑矩阵的内边界,所述第一距离与所述可视区域中的图形单元的间隙宽度相等。
  10. 根据权利要求1或9所述的触控面板,其中所述透明导电图形还包括翅膀线,所述翅膀线为从第二主触控线上延伸出的,且设置方向与所述第二主触控线的设置方向不同的从触控线,所述第二主触控线为所述多条触摸驱动线和所述多条触摸感应线中的一个,
    所述多个空置块包括所述重叠区域中与所述第二主触控线、所述翅膀线均相邻的第二空置块,以及所述重叠区域中与所述第二主触控线不相邻且与所述翅膀线均相邻的第三空置块,
    其中围绕所述第二空置块的间隙包括:所述第二空置块分别与所述第二主触控线、所述翅膀线之间的间隙、所述第二空置块与相邻的空置块之间的第三间隙和第四间隙;
    围绕所述第三空置块的间隙包括:所述第三空置块与所述翅膀线之间的间隙和所述第三空置块与相邻的空置块之间的第五间隙;
    其中,所述第三间隙的延伸方向平行所述第二主触控线的设置方向,所述第三间隙从所述翅膀线开始直至延伸出所述黑矩阵的内边界第二距离终止,所述第四间隙的延伸方向平行所述黑矩阵的内边界,所述第五间隙的延伸方向平行所述翅膀线的设置方向,所述第二距离与所述可视区域中的图形单元的间隙宽度相等。
  11. 一种触控装置,包括:权利要求1至10中任一项所述的触控面板。
  12. 一种触控面板,包括:
    衬底基板;
    黑矩阵,所述黑矩阵位于所述衬底基板边缘的环形区域;
    透明导电图形,所述透明导电图形和所述环形区域中的黑矩阵存在重叠区域,所述透明导电图形包括:多条横向设置的触摸驱动线和多条纵向设置的触摸感应线,以及多个空置块,
    其中多条横向设置的Tx和多条纵向设置的Rx相互绝缘,每个空置块形成所述透明导电图形中的一个独立图形单元;
    其中,所述重叠区域中的任意两个相邻的图形单元的间隙宽度大于30um。
  13. 根据权利要求12所述的触控面板,其中所述重叠区域中的任意两个相邻的图形单元的间隙宽度为100um。
PCT/CN2017/073784 2016-05-25 2017-02-16 触控面板及其制造方法、触控装置 WO2017202069A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/558,747 US10649558B2 (en) 2016-05-25 2017-02-16 Touch panel and manufacturing method thereof, touch device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610355428.7 2016-05-25
CN201610355428.7A CN106055147B (zh) 2016-05-25 2016-05-25 触控面板及其制造方法、触控装置

Publications (1)

Publication Number Publication Date
WO2017202069A1 true WO2017202069A1 (zh) 2017-11-30

Family

ID=57175158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073784 WO2017202069A1 (zh) 2016-05-25 2017-02-16 触控面板及其制造方法、触控装置

Country Status (3)

Country Link
US (1) US10649558B2 (zh)
CN (1) CN106055147B (zh)
WO (1) WO2017202069A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106055147B (zh) * 2016-05-25 2019-10-01 京东方科技集团股份有限公司 触控面板及其制造方法、触控装置
CN106201134B (zh) 2016-06-21 2019-05-07 京东方科技集团股份有限公司 触控基板及其制作方法、触控屏
KR102565297B1 (ko) * 2016-10-17 2023-08-10 엘지디스플레이 주식회사 터치 표시 장치, 터치 시스템, 터치 마스터 및 통신 방법
EP3549000A4 (en) * 2016-11-30 2020-10-14 Boe Technology Group Co. Ltd. TOUCH SUBSTRATE, DISPLAY BOARD, DISPLAY DEVICE AND MANUFACTURING METHOD FOR IT
CN108170327B (zh) * 2018-03-14 2021-11-26 京东方科技集团股份有限公司 一种触控屏及其制备方法、显示装置
CN108513523B (zh) * 2018-03-30 2020-12-22 信利半导体有限公司 一种用于显示器件的抗静电失效装置
CN108984036A (zh) * 2018-07-20 2018-12-11 深圳市宇顺电子股份有限公司 一种Film sensor ITO图形及其制作方法
US12019834B2 (en) 2021-05-26 2024-06-25 Chengdu Boe Optoelectronics Technology Co., Ltd. Touch control structure and display apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182104A (zh) * 2013-05-27 2014-12-03 胜华科技股份有限公司 触控板
CN204155245U (zh) * 2014-11-14 2015-02-11 京东方科技集团股份有限公司 触摸屏、显示装置
CN106055147A (zh) * 2016-05-25 2016-10-26 京东方科技集团股份有限公司 触控面板及其制造方法、触控装置
CN205721706U (zh) * 2016-05-25 2016-11-23 京东方科技集团股份有限公司 触控面板及触控装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224242B2 (ja) * 2008-04-09 2013-07-03 Nltテクノロジー株式会社 表示装置、液晶表示装置、電子機器、及び表示装置用製造方法
TW201229616A (en) * 2011-01-07 2012-07-16 Unidisplay Inc Touch panel
CN103376939A (zh) * 2012-04-11 2013-10-30 联胜(中国)科技有限公司 触控板以及触控显示板以及其制造方法
US9519810B2 (en) * 2012-07-31 2016-12-13 Datalogic ADC, Inc. Calibration and self-test in automated data reading systems
TW201413519A (zh) * 2012-09-27 2014-04-01 Wintek Corp 觸控面板與觸控顯示面板
TW201421332A (zh) * 2012-11-30 2014-06-01 Wintek Corp 觸控面板
TW201439829A (zh) * 2013-04-01 2014-10-16 Wintek Corp 觸控面板
TW201445379A (zh) * 2013-05-21 2014-12-01 Wintek Corp 觸控面板
TW201445621A (zh) * 2013-05-24 2014-12-01 Wintek Corp 觸控感測電極結構及觸控裝置
US20140347319A1 (en) 2013-05-27 2014-11-27 Wintek Corporation Touch panel
TW201508579A (zh) * 2013-08-29 2015-03-01 Wintek Corp 裝飾基板以及觸控面板
TW201512917A (zh) * 2013-09-23 2015-04-01 Wintek Corp 觸控面板
TW201516781A (zh) * 2013-10-21 2015-05-01 Wintek Corp 觸控面板及其製造方法
CN105278739A (zh) * 2014-07-17 2016-01-27 财团法人工业技术研究院 感测结构
CN104635992B (zh) 2015-03-11 2017-07-04 京东方科技集团股份有限公司 触控面板及显示装置
CN205193753U (zh) * 2015-10-21 2016-04-27 宸鸿科技(厦门)有限公司 触控面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182104A (zh) * 2013-05-27 2014-12-03 胜华科技股份有限公司 触控板
CN204155245U (zh) * 2014-11-14 2015-02-11 京东方科技集团股份有限公司 触摸屏、显示装置
CN106055147A (zh) * 2016-05-25 2016-10-26 京东方科技集团股份有限公司 触控面板及其制造方法、触控装置
CN205721706U (zh) * 2016-05-25 2016-11-23 京东方科技集团股份有限公司 触控面板及触控装置

Also Published As

Publication number Publication date
US20180181226A1 (en) 2018-06-28
US10649558B2 (en) 2020-05-12
CN106055147B (zh) 2019-10-01
CN106055147A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
WO2017202069A1 (zh) 触控面板及其制造方法、触控装置
US11334179B2 (en) Display panel to mitigate short-circuiting between touch electrodes, and display device
US10928959B2 (en) Touch screen and manufacturing method thereof, and touch display device
US10521059B2 (en) Touch panel, mutual capacitive touch screen, and touch display device
US11188179B2 (en) Touch panel and manufacturing method thereof, and touch display device
US9910309B2 (en) Array substrate having a touch function and display device
US9996208B2 (en) Touch screen, manufacturing method thereof and display device
CN106933398B (zh) 触控面板与电子装置
US9817532B2 (en) Touch panel and display device
US10802621B2 (en) Touch panel
US10768764B2 (en) Touch structure and manufacturing method thereof, and touch device
WO2022156341A1 (zh) 触控面板及其制备方法、显示触控装置
US10990209B2 (en) Touch panels and display devices
TWI679563B (zh) 觸控面板及佈線區域形成方法
JP2018063677A (ja) タッチスクリーンパネル
TWI631399B (zh) 具有線寬變化的導電層之顯示面板
CN205721706U (zh) 触控面板及触控装置
TWI604359B (zh) 觸控面板與電子裝置
WO2016169191A1 (zh) 触摸屏及触摸显示装置
WO2020113750A1 (zh) 一种显示屏及电子装置
CN112860110A (zh) 触控显示面板
CN208013915U (zh) 一种触摸屏、触控显示面板及显示装置
TWI595298B (zh) 顯示面板
WO2019041920A1 (zh) 触控显示面板
WO2023197940A1 (zh) 一种显示触控模组和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15558747

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17801925

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17801925

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 280619)

122 Ep: pct application non-entry in european phase

Ref document number: 17801925

Country of ref document: EP

Kind code of ref document: A1