WO2017201890A1 - 三维全息成像的伺服旋转扫描系统 - Google Patents

三维全息成像的伺服旋转扫描系统 Download PDF

Info

Publication number
WO2017201890A1
WO2017201890A1 PCT/CN2016/094865 CN2016094865W WO2017201890A1 WO 2017201890 A1 WO2017201890 A1 WO 2017201890A1 CN 2016094865 W CN2016094865 W CN 2016094865W WO 2017201890 A1 WO2017201890 A1 WO 2017201890A1
Authority
WO
WIPO (PCT)
Prior art keywords
servo
rotation
cross arm
scanning system
rotating frame
Prior art date
Application number
PCT/CN2016/094865
Other languages
English (en)
French (fr)
Inventor
黄雄伟
祁春超
陈寒江
吴光胜
赵术开
丁庆
Original Assignee
深圳市无牙太赫兹科技有限公司
深圳市太赫兹科技创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市无牙太赫兹科技有限公司, 深圳市太赫兹科技创新研究院有限公司 filed Critical 深圳市无牙太赫兹科技有限公司
Publication of WO2017201890A1 publication Critical patent/WO2017201890A1/zh
Priority to US16/052,650 priority Critical patent/US10969485B2/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • G05B19/4144Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by using multiplexing for control system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/005Damping of vibrations; Means for reducing wind-induced forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33218Motor encoders, resolvers on common bus with drives, servo controllers

Definitions

  • the present invention belongs to the technical field of mechanical transmission and servo control, and more particularly to a servo rotation scanning system for three-dimensional holographic imaging.
  • Three-dimensional holographic imaging systems are widely used in the field of security inspection. Compared with flat-panel imaging systems, they can detect foreign objects carried by dead angle coverage detection because of their multi-angle observation imaging. In order to achieve accurate three-dimensional imaging, it is necessary to adopt a cylindrical scanning form to cover the subject at multiple angles. Therefore, the servo rotating scanning system for three-dimensional holographic imaging has high requirements. In the course of operation, the rotating frame of the transmitting and receiving antenna module needs to be at a certain angle.
  • the rotation within the range ensures that the deformation or jitter of the rotating frame as a whole in the lateral and radial directions is below a certain threshold; due to the market demand for imaging speed, the scanning speed of the three-dimensional holographic imaging system during operation is high, causing the scanning to start and stop.
  • the stability is reduced.
  • the rotation of the motor and the transceiver of the transceiver module also need to ensure synchronous operation in a certain order, so the requirements for the actual monitoring and detection of the servo control system are put forward; During the multiple reciprocating scanning process of the control system, the starting and ending positions of each scanning must be accurately positioned.
  • the actual motor output rotation angle and the actual rotation angle of the rotating frame should also be compared with the feedback and the feedback delay must meet certain requirements. There is an urgent need in the market to issue a servo-rotation scanning system that satisfies the above-mentioned technical requirements for three-dimensional holographic imaging.
  • An object of the present invention is to provide a three-dimensional holographic imaging servo rotation scanning system, which aims to solve the problem that the existing three-dimensional holographic imaging system has low stability of scanning start and stop due to high running speed of the transceiver antenna module.
  • the problem is that the same condition satisfies the actual monitoring and detection of the servo rotation scanning system, and the precise positioning of each scanning start and end position in the multiple reciprocating scanning process.
  • a three-dimensional holographic imaging servo rotation scanning system comprising:
  • a rotating frame for mounting a transceiver antenna module; a servo motor for driving rotation of the rotating frame, the servo motor having a first angle sensor for detecting an output rotation angle thereof;
  • a second angle sensor disposed on a rotation axis of the rotating frame and configured to detect an actual rotation angle of the rotating frame
  • a servo driver configured to control rotation of the servo motor according to an actual rotation angle of the rotating frame and an output rotation angle of the servo motor, wherein the first angle sensor and the control component are electrically connected to the servo driver .
  • the rotating frame includes a first cross arm driven by the servo motor and two load arms respectively disposed at two ends of the first cross arm and configured to mount the transceiver antenna module.
  • both of the carrying arms extend in a vertical direction, and a receiving antenna module is disposed on an inner side of each of the carrying arms.
  • the rotation axis of the first cross arm is located at the center of the first cross arm.
  • the servo motor drives the rotating frame to perform a reciprocating scanning motion about a rotation axis.
  • the rotating frame further includes a second cross arm connected between the two carrying arms, and the first cross arm is disposed opposite to the second cross arm.
  • first cross arm, the two arm and the second cross arm are arranged in a rectangle.
  • an inner surface of the first cross arm and an inner surface of the second cross arm are parallel to each other.
  • a line connecting the centers of the first cross arm and the second cross arm is a rotation axis of the rotating frame.
  • first cross arm, the two arm and the second cross arm are an integrally formed structure or an assembled structure.
  • a fixing bracket having an upper mounting arm and a lower mounting arm disposed opposite to each other is further included, and the rotating frame is rotatably mounted between the upper mounting arm and the lower mounting arm.
  • the servo motor is disposed on the upper mounting arm, the first cross arm is rotatably mounted on the upper mounting arm, and the second cross arm is rotatably mounted on the lower mounting arm; or
  • the servo motor is disposed on the lower mounting arm, the first cross arm is rotatably mounted on the lower mounting arm, and the second cross arm is rotatably mounted on the upper mounting arm.
  • the servo motor and the rotating frame are connected by a reducer.
  • control component includes a host computer, a first controller for receiving a scan command issued by the host computer, and a first communication connection with the first controller and electrically connected to the servo driver. Two controllers.
  • a steering sensor for detecting a positive and negative rotational orientation of the rotating frame and limiting a rotational angle of the rotating frame is further included, and the steering sensor is electrically connected to the second controller.
  • the servo rotation scanning system of three-dimensional holographic imaging is mainly composed of a servo motor having a first angle sensor, a second angle sensor, a control component, a servo driver and a rotating frame
  • the servo rotation scanning system of three-dimensional holographic imaging is a full-closed servo control system.
  • the second angle sensor detects the actual rotation angle of the rotating frame and feeds back a frame feedback signal to the control component.
  • the command signal is compared with the frame feedback signal to generate a follow-up.
  • the first angle sensor detects the output rotation angle of the servo motor and feeds back a motor feedback signal to the servo driver.
  • the servo driver controls the rotation of the servo motor according to the following error and the motor feedback signal.
  • the three-dimensional holographic imaging servo rotation scanning system has a simple structure, low cost, easy assembly, high rotation precision, and easy control.
  • the rotating frame also guarantees the stability of the start and stop of the scan at high running speeds.
  • the servo motor rotation and transceiver antenna module can ensure synchronous operation in a certain order, which can meet the requirements of the actual control and detection of the servo control system.
  • the start and end positions of each scan can be accurately positioned.
  • the actual output angle of the servo motor and the actual rotation angle of the rotating frame can also meet the feedback requirements. .
  • FIG. 1 is a perspective structural view of a three-dimensional holographic imaging servo rotation scanning system according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of a three-dimensional holographic imaging servo rotation scanning system
  • FIG. 3 is a three-dimensional structure of a three-dimensional holographic imaging servo rotation scanning system according to a second embodiment of the present invention.
  • a three-dimensional holographic imaging servo rotation scanning system includes a rotating frame 10 for mounting a transmitting/receiving antenna module 90, and a servo for driving the rotating frame 10 to rotate.
  • the motor 20, the servo motor 20 has a first angle sensor 21 for detecting its output rotation angle; a second angle sensor 30 provided on the rotation axis of the rotating frame 10 for detecting the actual rotation angle of the rotating frame 10; and the second angle sensor 30
  • the electrically connected control unit 40; and the servo driver 50 for controlling the rotation of the servo motor 20 according to the actual rotation angle of the rotating frame 10 and the output rotation angle of the servo motor 20, the first angle sensor 21 and the control unit 40 are electrically connected to the servo driver 50. .
  • the servo rotation scanning system of three-dimensional holographic imaging is mainly composed of a servo motor 20 having a first angle sensor 21, a second angle sensor 30, a control assembly 40, a servo driver 50, and a rotating frame 10, the servo rotation of the three-dimensional holographic imaging
  • the scanning system is a full-closed servo control system.
  • the second angle sensor 30 detects the actual rotation angle of the rotating frame 10 and feeds back a frame feedback signal A to the control unit 40.
  • the command signal I is compared with the frame feedback signal A to generate a Following the error E
  • the first angle sensor 21 detects the output angle of the servo motor 20 and feeds back a motor feedback signal B to the servo driver 50.
  • the servo driver 50 controls the servo motor 20 to rotate according to the following error E and the motor feedback signal B.
  • the three-dimensional holographic imaging servo rotation scanning system has a simple structure, low cost, easy assembly, high rotation precision, and easy control.
  • the rotating frame 10 also ensures the stability of the start and stop of the scan at a higher running speed.
  • the servo motor 20 rotates and the transmitting and receiving antenna module 90 can ensure synchronous operation in a certain order, which can meet the requirements of the actual monitoring and detection of the servo control system.
  • the start and end positions of each scan can be accurately positioned, and the actual output angle of the servo motor 20 and the actual rotation angle of the rotating frame 10 can also be ⁇ feedback and the feedback delay is satisfied. Certain requirements.
  • the transceiver antenna module 90 includes a plurality of transceiver antenna units distributed in a column. Transceiver antenna unit including transmission The antenna and the receiving antenna disposed adjacent to the transmitting antenna, the transmitting antennas of all the transmitting and receiving antenna units are sequentially emitted to the object to be imaged, and the millimeter waves reflected by the object to be imaged are sequentially received by the receiving antenna corresponding to the transmitting antenna, that is, The predetermined scan area can be scanned.
  • the transceiver antenna module 90 is a millimeter wave transceiver antenna module, and the millimeter wave refers to an electromagnetic wave having a frequency of 26 GHz to 300 GHz.
  • the first angle sensor 21 is provided for the servo motor 20 and is used to detect the output rotation angle of the servo motor 20.
  • the second angle sensor 30 can be mounted at any part of the axis of rotation of the rotating frame 10, such as above or below the rotating frame 10, for detecting the actual corner of the rotating frame 10.
  • the first angle sensor 21, the second angle sensor 30 can be a resolver, an inductive synchronizer, a grating, a magnetic grid, an encoder or other angle detecting component, as needed.
  • the control component 40 is provided with a command signal I, and the command signal I of the control component 40 is compared with the frame feedback signal A to generate a following error E, which may be generated if the following error E exceeds a certain range.
  • the warning signal, the servo driver 50 controls the servo motor 20 to rotate according to the following error E and the motor feedback signal B.
  • the frame feedback signal A fed back to the control unit 40 by the second angle sensor 30 is a position feedback signal
  • the motor feedback signal B fed back by the first angle sensor 21 to the servo driver 50 is a position and speed feedback signal.
  • the servo driver 50 controls the rotation of the servo motor 20 according to the following error E and the motor feedback signal B.
  • the related software algorithms are prior art.
  • the rotating frame 10 includes a first cross arm 11 driven by the servo motor 20 and two load arms 12 respectively disposed at both ends of the first cross arm 11 for mounting the transceiver antenna module 90.
  • the servo motor 20 drives the first cross arm 11 to rotate, and the two carrier arms 12 are relatively distributed.
  • a transceiver antenna module 90 is disposed on the inner side of each carrier arm 12, and a predetermined scanning area is formed between the two transceiver antenna modules 90.
  • the antenna module 90 is rotated about the same vertical line to scan a predetermined scanning area.
  • the servo motor 20 drives the rotating frame 10 to perform a half-circle reciprocating scanning motion, which can realize cylindrical rotation scanning, and the person standing in the predetermined scanning area can complete the three-dimensional scanning of the human body by scanning once.
  • Both of the carrier arms 12 extend in the vertical direction, and the transceiver antenna modules 90 on the two carriers 12 rotate around the same vertical line to scan the predetermined scanning area.
  • the rotation axis of the first cross arm 11 is located at the center of the first cross arm 11.
  • the structure allows the rotating frame 10 to rotate symmetrically and smoothly about the axis of rotation.
  • the rotating frame 10 can rotate within a certain range of angles and ensure that the deformation or jitter of the rotating frame 10 as a whole in the lateral and radial directions is below a certain threshold.
  • the servo motor 20 drives the rotating frame 10 to perform a reciprocating scanning motion about the rotation axis.
  • Single scan Covers any angle range from -90° to 90°.
  • the angle of rotation is 120° and the next scan scans the same angle in the opposite direction.
  • the rotational scan angular velocity ⁇ range is 10 s ⁇ e ⁇ 80 s ; the single scan scan interval ranges from 2 seconds to 10 seconds. Specifically selected as needed.
  • the number of the loading arms 12 is one, and the transmitting and receiving antenna module 90 is disposed on the inner side of the carrier arm 12.
  • the transmitting and receiving antenna module 90 forms a predetermined scanning area toward one side of the rotation axis, and the transmitting and receiving antenna module 90 is wound around a vertical line. Rotate to scan the predetermined scan area.
  • This solution can achieve partial rotation scan or cylindrical rotation scan.
  • the rotation angle range of the transceiver antenna module 90 is 120°, and the person standing in the predetermined scanning area, the front and rear sides of the person face the receiving antenna module 90 respectively, and the three-dimensional scanning of the human body can be completed by scanning twice.
  • the transmitting and receiving antenna module 90 has a rotation angle of 300°, and the person is standing in the predetermined scanning area, and scanning the body once to complete the three-dimensional scanning of the human body.
  • the rotating frame 10 further includes a second cross arm 13 connected between the two carriers 12, and the first cross arm 11 is disposed opposite to the second cross arm 13.
  • the servo motor 20 drives the first cross arm 11 to rotate, and can simultaneously drive the transceiver antenna module 90 on the two carriers 12 to rotate around the same vertical line to scan a predetermined scanning area, and the second cross arm 13 allows the rotating frame 10 to have an overall structure. Stable, rotating ⁇ jitter is small.
  • first cross arm 11, the two carrier arms 12 and the second cross arm 13 are arranged in a rectangular shape.
  • the structure is stable, and the rotating frame 10 can rotate within a certain range of angles during operation and ensure that the deformation or jitter of the rotating frame 10 as a whole in the lateral and radial directions is below a certain threshold.
  • the two carrier arms 12 are symmetrically mounted perpendicularly at both ends of the first cross arm 11 and the second cross arm 13, and the vertical error is guaranteed to be within 0.01°.
  • the inner surfaces of the first cross arm 11 and the second cross arm 13 are parallel to each other, and the actual non-parallelism between the inner surfaces of the two arm members 12 (the surface facing the center of the cylinder) is guaranteed to be within the range of ⁇ 0.5 mm / 2000 mm.
  • the distance between the inner surfaces of the two carriers 12 is 1200.0 mm.
  • the center of the first cross arm 11 and the second cross arm 13 is the rotation axis of the rotating frame 10.
  • the relative positional relationship between the transmitting and receiving antenna module 90 and its carrier arm 12 and the servo motor 20 is fixed during the rotary scanning motion, and the radial and tangential vibration amplitudes of the transmitting and receiving antenna module 90 carrier arm 12 are small.
  • the relative positional deviation between the transceiver antenna module 90 and its carrier arm 12 and servo motor 20 should be limited to a radial vibration amplitude of less than ⁇ 0.5 mm and a tangential vibration amplitude of less than ⁇ 0.5 mm.
  • the structure is detachable, the repeating installation accuracy is high, and the repeatable mounting accuracy after the parts are separated is guaranteed to be within ⁇ 0.5mm/2000mm.
  • first cross arm 11, the two carrier arms 12 and the second cross arm 13 are integrally formed or assembled. Structure.
  • first cross arm 11, the two arm 12 and the second cross arm 13 are integrally cast, and the solution is easy to process and stable in structure.
  • a fixing bracket 60 having an oppositely disposed upper mounting arm 61 and a lower mounting arm 62 is further included, and the rotating frame 10 is rotatably mounted between the upper mounting arm 61 and the lower mounting arm 62.
  • the fixing bracket 60 facilitates the assembly of the rotating frame 10, and the rotating frame 10 can be stably rotated on the fixing bracket 60.
  • the fixing bracket 60 can be in the form of four supporting columns, and the upper mounting arm 61 and the lower mounting arm 62 are made of I-beams, which are easy to process and stable in structure. It is to be understood that the rotation of the rotating frame 10 by the servo motor 20 is also possible without the fixing bracket 60 being disposed.
  • the servo motor 20 is mounted to the upper mounting arm 61, the first cross arm 11 is rotatably mounted to the upper mounting arm 61, and the second cross arm 13 is rotatably mounted to the lower mounting arm 62.
  • the overall structure is stable, the traverse is small when the rotating frame 10 is rotated, and the second cross arm 13 can be arranged at a lower position.
  • the second cross arm 13 is provided with a rotating shaft, and the lower mounting arm 6 2 is mounted with a mounting hole. The end of the rotating shaft is inserted into the mounting hole, and the rotating shaft can be rotated around the axis of the mounting hole, so that the second cross arm 13 is rotated and mounted under the mounting. Arm 62.
  • the speed reducer 70 increases the output torque by lowering the output rotational speed to drive the rotary frame 10 to rotate.
  • control component 40 includes a host computer 41, a first controller 42 for receiving a scan command issued by the host computer 41, and a second control communicatively coupled to the first controller 42 and electrically connected to the servo driver 50. 4 3 .
  • the user inputs an instruction through the upper computer 41, and the upper computer 41 sends a control command to the second controller 43 through the first controller 42, and receives the return status information.
  • the first controller 42 communicates with the second controller 43, and the first controller 42 sends a control command to the second controller 43 and receives the return status information.
  • the second controller 43 transmits an enable control, a scan direction command, and a scan speed command to the servo driver 50 based on the received control command, and indirectly controls the rotation of the servo motor 20 by the servo driver 50.
  • the rotational speed of the servo motor 20 is preset to the servo drive 50, and the servo drive 50 drives the servo motor 20 to operate in different speed modes according to different speed commands.
  • the servo drive 50 can preset a variety of operating modes to meet the needs of precise rotation and positioning.
  • the servo motor 20 incorporates a first angle sensor 21 to generate a pulse sequence feedback to the second controller 43 to analyze the servo motor 20 operating state after the servo motor 20 is operated, and returns the state information to the upper computer 41 program, the second angle sensor 30 generates a pulse signal and feeds back to the second controller 43.
  • the servo driver 50 drives the servo motor 20 to rotate.
  • the second angle sensor 30 inputs the pulse signal into the first
  • the first controller 42 processes the received pulse signal to determine whether to trigger the operation of the transceiver antenna module 90 and other modules.
  • the first controller 42 is a PLC programmable logic device.
  • the second controller 43 is an FPGA control board.
  • the PLC programmable logic device cooperates with the FPGA control board to make the whole system more stable and convenient for later maintenance, which can reduce the probability of failure of the overall system.
  • the FPGA control board communicates with the PLC programmable logic device.
  • the communication interface can communicate with RS422/RS232 or network port.
  • the communication protocol with PLC programmable logic device includes frame header, instruction word, status word, frame count and checksum. Bit information; The communication protocol between the PLC programmable logic device and the servo driver 50 satisfies the design requirements of the driver.
  • the FPGA control board generates various trigger signals and sequence signals to trigger the transceiver antenna module 90 and other devices to work.
  • the number of trigger interfaces of the FPGA control board is greater than 2.
  • the devices triggered by the FPGA control board include but are not limited to the transceiver antenna module 90, and can be more Channel output, multi-channel combined output sequence signal to trigger or control other devices, such as four-channel combined output to generate 16 independent inter-turn signals. It can be understood that the first controller 42 and the second controller 43 can also select other types of controllers.
  • the second angle sensor 30 is an encoder, and the encoder actually detects the actual rotation angle signal of the rotating frame 10 and inputs it to the first controller 42.
  • the servo rotation scanning system calculates the square wave signal. Number to determine the angle of rotation, the angular position resolution is better than 0.005°; each position ( ⁇ ⁇ is the angular interval, ⁇ ⁇ ?
  • the angular interval of the scanning motion is set by the communication interface through the program in the second controller 43.
  • the repeating positioning accuracy of the upper mounting arm 61 and the lower mounting arm 62 is ⁇ 0.01° (repeated 100 times); the absolute positioning accuracy of the upper mounting arm 61 and the lower mounting arm 62 is ⁇ 0.01°; position trigger pulse
  • the corresponding angular position error should be better than ⁇ 0.01°.
  • a steering sensor 80 for detecting the rotational positive and negative azimuth of the rotating frame 10 and limiting the rotational angle of the rotating frame 10 is further included, and the steering sensor 80 is electrically connected to the second controller 43.
  • the steering sensor 80 actually monitors the positive and negative orientation of the current rotating frame 10 and acquires an absolute zero position.
  • the steering sensor 80 also monitors whether the optional frame exceeds the extreme position and feeds back state information to the second controller 43.
  • the steering sensor 80 can be a photoelectrically-coupled, a combination of two rotary encoders or other steering sensors.
  • the steering sensor 80 is photoelectrically mounted, mounted on the axis of rotation and fixed on the fixing bracket 60, centered at 0° Bit, negative angle is negative direction, positive angle is positive direction.
  • the photoelectric switch distinguishes the positive and negative directions by outputting high and low levels, and the high and low jumps are center zero positions.
  • the steering sensor 80 employs two rotary encoders, and the two rotary encoders output two sets of pulses having a phase difference of 90 degrees. The two sets of pulses can be used to measure the rotational speed and determine the direction of rotation.
  • the steering sensor 80 is internally arranged to output positive and negative levels only within a certain range of angles, such as 60° for each of the positive and negative limits, and when a certain angle is exceeded, a different signal is output to indicate that the scanning angle exceeds the upper limit of the specified range. A signal is sent to the second controller 43 to take security measures.
  • the steering sensor 80 transmits an orientation signal, a limit signal, and the like to the second controller 43 to control the servo motor 20 to rotate in a correct and safe manner.
  • a power supply for supplying power to the servo motor 20, the control unit 40, and the servo driver 50 is further included.
  • the servo rotation scanning system of the three-dimensional holographic imaging provided by the second embodiment of the present invention is substantially the same as the servo rotation scanning system of the three-dimensional holographic imaging provided by the first embodiment, and the first implementation
  • the servo motor 20 is disposed on the lower mounting arm 62
  • the first cross arm 11 is rotatably mounted to the lower mounting arm 62
  • the second cross arm 13 is rotatably mounted to the upper mounting arm 61.
  • the overall structure is stable, the rotation of the rotating frame 10 is small, the servo motor 20 is easy to install, and the overall system is safe to use.
  • the second cross arm 13 is provided with a rotating shaft
  • the upper mounting arm 61 is mounted with a mounting hole. The end of the rotating shaft is inserted into the mounting hole, and the rotating shaft can be rotated around the axis of the mounting hole, so that the second cross arm 13 is rotatably mounted on the upper mounting arm. 61.
  • the servo rotation scanning system of three-dimensional holographic imaging is mainly composed of a servo motor 20 having a first angle sensor 21, a second angle sensor 30, a control assembly 40, a servo driver 50, and a rotating frame 10, and the servo rotation of the three-dimensional holographic imaging
  • the scanning system is a full-closed servo control system.
  • the second angle sensor 30 detects the actual rotation angle of the rotating frame 10 and feeds back a frame feedback signal A to the control unit 40.
  • the command signal I is compared with the frame feedback signal A to generate a Following the error E, the first angle sensor 21 detects the output angle of the servo motor 20 and feeds back a motor feedback signal B to the servo driver 50.
  • the servo driver 50 controls the servo motor 20 to rotate according to the following error E and the motor feedback signal B.
  • the three-dimensional holographic imaging servo rotary scanning system has a simple structure, low cost, easy assembly, high rotation precision and easy control.
  • the rotating frame 10 also ensures the stability of the scanning start and stop when the running speed is high.
  • the servo motor 20 rotates and transmits and receives the antenna module 90. It can ensure that the work is synchronized in a certain order, which can meet the requirements of the actual monitoring and detection of the servo control system.
  • the start and end positions of each scan can be accurately positioned, and the actual output angle of the servo motor 20 and the actual rotation angle of the rotating frame 10 can also be ⁇ feedback and the feedback delay is satisfied. Certain requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

三维全息成像的伺服旋转扫描系统主要由具有第一角度传感器(21)的伺服电机(20)、第二角度传感器(30)、控制组件(40)、伺服驱动器(50)和旋转框架(10)组成,该三维全息成像的伺服旋转扫描系统是一个全闭环伺服控制系统,第二角度传感器(30)检测旋转框架(10)的实际转角并向控制组件(40)反馈一框架反馈信号,在控制组件(40)中指令信号与框架反馈信号比较产生一跟随误差,第一角度传感器(21)检测伺服电机(20)的输出转角并向伺服驱动器(50)反馈一电机反馈信号,伺服驱动器(50)依据跟随误差与电机反馈信号控制伺服电机(20)转动。该三维全息成像的伺服旋转扫描系统结构简单,成本较低,易组装,旋转精度高,易于控制。

Description

三维全息成像的伺服旋转扫描系统 技术领域
[0001] 本发明属于机械传动与伺服控制技术领域, 尤其涉及三维全息成像的伺服旋转 扫描系统。
背景技术
[0002] 三维全息成像系统广泛应用于安检领域, 相比于平板式成像系统, 因其能多视 角观察成像而实现无死角覆盖检测携带的异物。 为了实现精准的三维成像需要 采取圆柱扫描的形式对被测者多角度覆盖, 因此, 对三维全息成像的伺服旋转 扫描系统提出了较高要求, 在运转过程中收发天线模块旋转框架需要在一定角 度范围内旋转并保证旋转框架整体在横向和径向上的形变或抖动低于一定阈值 ; 由于市场对于成像速度的要求, 三维全息成像系统在运转过程中的扫描速度 较高, 造成扫描启动和停止吋的稳定性降低。 此外, 为配合收发天线模块的信 号准确发射与接收, 电机转动与收发天线模块收发间亦需要保证在一定吋序上 同步工作, 因此对伺服控制系统的实吋监控与检测提出了要求; 在伺服控制系 统多次往复扫描过程中, 每次扫描的起始和终止位置必须精准定位, 实吋的电 机输出转角和旋转框架实际转角也要及吋反馈且反馈吋延要满足一定要求。 市 场急需幵发出能满足上述技术要求的三维全息成像的伺服旋转扫描系统。
技术问题
[0003] 本发明的目的在于提供一种三维全息成像的伺服旋转扫描系统, 旨在解决现有 三维全息成像系统由于收发天线模块运转速度较高引起扫描启动和停止吋的稳 定性较低的技术问题, 同吋满足伺服旋转扫描系统的实吋监控与检测, 以及多 次往复扫描过程中每次扫描起始和终止位置精准定位。
问题的解决方案
技术解决方案
[0004] 本发明是这样实现的, 三维全息成像的伺服旋转扫描系统, 包括:
[0005] 旋转框架, 用于安装收发天线模块; [0006] 伺服电机, 用于驱动所述旋转框架转动, 所述伺服电机具有检测其输出转角的 第一角度传感器;
[0007] 第二角度传感器, 设于所述旋转框架的转动轴线上且用于检测所述旋转框架的 实际转角;
[0008] 控制组件, 与所述第二角度传感器电连接; 以及
[0009] 伺服驱动器, 用于依据所述旋转框架的实际转角与所述伺服电机的输出转角控 制所述伺服电机转动, 所述第一角度传感器、 所述控制组件均与所述伺服驱动 器电连接。
[0010] 进一步地, 所述旋转框架包括由所述伺服电机驱动转动的第一横臂及两个分别 设于所述第一横臂的两端且用于安装收发天线模块的载臂。
[0011] 进一步地, 两个所述载臂均沿竖直方向延伸, 每一所述载臂的内侧均设有一收 发天线模块。
[0012] 进一步地, 所述第一横臂的转动轴线位于所述第一横臂的中心处。
[0013] 进一步地, 所述伺服电机带动所述旋转框架绕一转动轴线做往复扫描运动。
[0014] 进一步地, 所述旋转框架还包括连接于两个所述载臂之间的第二横臂, 所述第 一横臂与所述第二横臂相对设置。
[0015] 进一步地, 所述第一横臂、 两个所述载臂与所述第二横臂呈矩形布置。
[0016] 进一步地, 所述第一横臂的内表面与所述第二横臂的内表面相互平行。
[0017] 进一步地, 所述第一横臂与所述第二横臂的中心连线为所述旋转框架的转动轴 线。
[0018] 进一步地, 所述第一横臂、 两个所述载臂与所述第二横臂为一体成型结构或者 组装结构。
[0019] 进一步地, 还包括具有相对设置的上安装臂与下安装臂的固定支架, 所述旋转 框架转动安装于所述上安装臂与所述下安装臂之间。
[0020] 进一步地, 所述伺服电机设于所述上安装臂, 所述第一横臂转动安装于所述上 安装臂, 所述第二横臂转动安装于所述下安装臂; 或者, 所述伺服电机设于所 述下安装臂, 所述第一横臂转动安装于所述下安装臂, 所述第二横臂转动安装 于所述上安装臂。 [0021] 进一步地, 所述伺服电机与所述旋转框架之间通过一减速器连接。
[0022] 进一步地, 所述控制组件包括上位机、 用于接收所述上位机发出的扫描指令的 第一控制器及与所述第一控制器通信连接且与所述伺服驱动器电连接的第二控 制器。
[0023] 进一步地, 还包括用于检测所述旋转框架的转动正负方位并对所述旋转框架的 转角限位的转向传感器, 所述转向传感器与所述第二控制器电连接。
发明的有益效果
有益效果
[0024] 本发明相对于现有技术的技术效果是, 三维全息成像的伺服旋转扫描系统主要 由具有第一角度传感器的伺服电机、 第二角度传感器、 控制组件、 伺服驱动器 和旋转框架组成, 该三维全息成像的伺服旋转扫描系统是一个全闭环伺服控制 系统, 第二角度传感器检测旋转框架的实际转角并向控制组件反馈一框架反馈 信号, 在控制组件中指令信号与框架反馈信号比较产生一跟随误差, 第一角度 传感器检测伺服电机的输出转角并向伺服驱动器反馈一电机反馈信号, 伺服驱 动器依据跟随误差与电机反馈信号控制伺服电机转动。
[0025] 该三维全息成像的伺服旋转扫描系统结构简单, 成本较低, 易组装, 旋转精度 高, 易于控制。 旋转框架在运转速度较高情况下, 也能保证扫描启动和停止吋 的稳定性。 为配合收发天线模块的信号准确发射与接收, 伺服电机转动与收发 天线模块收发间能保证在一定吋序上同步工作, 能满足伺服控制系统的实吋监 控与检测要求。 在伺服控制系统多次往复扫描过程中, 每次扫描的起始和终止 位置能精准定位, 实吋的伺服电机的输出转角和旋转框架的实际转角也能及吋 反馈且反馈吋延满足一定要求。
对附图的简要说明
附图说明
[0026] 图 1是本发明第一实施例提供的三维全息成像的伺服旋转扫描系统的立体结构 图;
[0027] 图 2是三维全息成像的伺服旋转扫描系统的结构示意图;
[0028] 图 3是本发明第二实施例提供的三维全息成像的伺服旋转扫描系统的立体结构 图。
本发明的实施方式
[0029] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0030] 请参阅图 1、 图 2, 本发明第一实施例提供的三维全息成像的伺服旋转扫描系统 , 包括用于安装收发天线模块 90的旋转框架 10; 用于驱动旋转框架 10转动的伺 服电机 20, 伺服电机 20具有检测其输出转角的第一角度传感器 21 ; 设于旋转框 架 10的转动轴线上且用于检测旋转框架 10的实际转角的第二角度传感器 30; 与 第二角度传感器 30电连接的控制组件 40; 以及用于依据旋转框架 10的实际转角 与伺服电机 20的输出转角控制伺服电机 20转动的伺服驱动器 50, 第一角度传感 器 21、 控制组件 40均与伺服驱动器 50电连接。
[0031] 三维全息成像的伺服旋转扫描系统主要由具有第一角度传感器 21的伺服电机 20 、 第二角度传感器 30、 控制组件 40、 伺服驱动器 50和旋转框架 10组成, 该三维 全息成像的伺服旋转扫描系统是一个全闭环伺服控制系统, 第二角度传感器 30 检测旋转框架 10的实际转角并向控制组件 40反馈一框架反馈信号 A, 在控制组件 40中指令信号 I与框架反馈信号 A比较产生一跟随误差 E, 第一角度传感器 21检测 伺服电机 20的输出转角并向伺服驱动器 50反馈一电机反馈信号 B, 伺服驱动器 50 依据跟随误差 E与电机反馈信号 B控制伺服电机 20转动。
[0032] 该三维全息成像的伺服旋转扫描系统结构简单, 成本较低, 易组装, 旋转精度 高, 易于控制。 旋转框架 10在运转速度较高情况下, 也能保证扫描启动和停止 吋的稳定性。 为配合收发天线模块 90的信号准确发射与接收, 伺服电机 20转动 与收发天线模块 90收发间能保证在一定吋序上同步工作, 能满足伺服控制系统 的实吋监控与检测要求。 在伺服控制系统多次往复扫描过程中, 每次扫描的起 始和终止位置能精准定位, 实吋的伺服电机 20的输出转角和旋转框架 10的实际 转角也能及吋反馈且反馈吋延满足一定要求。
[0033] 收发天线模块 90包括若干呈列状分布的收发天线单元。 收发天线单元包括发射 天线及相邻于发射天线设置的接收天线, 所有收发天线单元中的发射天线依次 发射的照射至待成像物, 由待成像物反射回的毫米波由对应于发射天线的接收 天线依次接收, 即可对预定扫描区扫描。 具体地, 收发天线模块 90为毫米波收 发天线模块, 毫米波是指频率为 26GHz到 300GHz电磁波。
[0034] 第一角度传感器 21为伺服电机 20自带, 用于检测伺服电机 20的输出转角。 第二 角度传感器 30可安装在旋转框架 10转动轴线的任意部件处, 比如旋转框架 10的 上方或下方, 用于检测旋转框架 10实际转角。 第一角度传感器 21、 第二角度传 感器 30可以为旋转变压器、 感应同步器、 光栅、 磁栅、 编码器或其它角度检测 元件, 具体按需选用。
[0035] 在上述全闭环伺服控制系统中, 控制组件 40中设置有指令信号 I, 控制组件 40 的指令信号 I与框架反馈信号 A比较产生一跟随误差 E, 若跟随误差 E超过一定范 围可产生警告信号, 伺服驱动器 50依据跟随误差 E与电机反馈信号 B控制伺服电 机 20转动。 第二角度传感器 30向控制组件 40反馈的框架反馈信号 A为位置反馈信 号, 第一角度传感器 21向伺服驱动器 50反馈的电机反馈信号 B为位置、 速度反馈 信号。 其中, 伺服驱动器 50依据跟随误差 E与电机反馈信号 B控制伺服电机 20转 动, 所涉及相关软件算法为现有技术。
[0036] 进一步地, 旋转框架 10包括由伺服电机 20驱动转动的第一横臂 11及两个分别设 于第一横臂 11的两端且用于安装收发天线模块 90的载臂 12。 伺服电机 20驱动第 一横臂 11转动, 两个载臂 12相对分布, 每一载臂 12的内侧均设有一收发天线模 块 90, 两个收发天线模块 90之间形成预定扫描区, 两个收发天线模块 90绕同一 铅垂线转动以扫描预定扫描区。 伺服电机 20驱动旋转框架 10作半圆周往复扫描 运动, 可实现圆柱旋转扫描, 人站在预定扫描区内, 只要扫描一次即可完成人 体的三维扫描。 两个载臂 12均沿竖直方向延伸, 两个载臂 12上的收发天线模块 9 0绕同一铅垂线转动可扫描预定扫描区。
[0037] 进一步地, 第一横臂 11的转动轴线位于第一横臂 11的中心处。 该结构让旋转框 架 10绕转动轴线对称平稳旋转, 在运转过程中旋转框架 10能在一定角度范围内 旋转并保证旋转框架 10整体在横向和径向上的形变或抖动低于一定阈值。
[0038] 进一步地, 伺服电机 20带动旋转框架 10绕转动轴线做往复扫描运动。 单次扫描 覆盖 -90°至 90°内任意角度区间。 优选地, 旋转角度为 120°, 下一次扫描沿相反 方向扫描同样角度。 旋转扫描角速度 Θ范围是 10 s <e<80 s; 单次扫描吋间范围 为 2秒至 10秒。 具体按需选用。
[0039] 或者, 载臂 12的数量为一, 载臂 12的内侧设有一收发天线模块 90, 收发天线模 块 90朝向于转动轴线的一侧形成预定扫描区, 收发天线模块 90绕一铅垂线转动 以扫描预定扫描区。 该方案可实现局部旋转扫描或圆柱旋转扫描。 比如收发天 线模块 90的旋转角度范围为 120°, 人站在预定扫描区内, 人前后两侧分别面向收 发天线模块 90, 扫描两次即可完成人体的三维扫描。 或者, 收发天线模块 90的 旋转角度范围为 300°, 人站在预定扫描区内, 扫描一次即可完成人体的三维扫描
[0040] 进一步地, 旋转框架 10还包括连接于两个载臂 12之间的第二横臂 13, 第一横臂 11与第二横臂 13相对设置。 伺服电机 20驱动第一横臂 11转动, 可同吋带动两个 载臂 12上的收发天线模块 90绕同一铅垂线转动以扫描预定扫描区, 而且第二横 臂 13让旋转框架 10整体结构稳定, 转动吋抖动小。
[0041] 进一步地, 第一横臂 11、 两个载臂 12与第二横臂 13呈矩形布置。 该结构稳定, 在运转过程中旋转框架 10能在一定角度范围内旋转并保证旋转框架 10整体在横 向和径向上的形变或抖动低于一定阈值。
[0042] 进一步地, 两个载臂 12对称垂直安装在第一横臂 11与第二横臂 13两端, 铅直度 误差保证在 0.01°范围内。 第一横臂 11与第二横臂 13内表面相互平行, 两个载臂 1 2的内表面 (朝向圆柱中心的表面) 实际之间不平行度保证在 ±0.5mm/ 2000mm范 围内。 两个载臂 12的内表面之间的距离为 1200.0mm。 第一横臂 11与第二横臂 13 的中心连线为旋转框架 10的转动轴线。 采用框架式的旋转结构, 在旋转扫描运 动过程中, 收发天线模块 90与其载臂 12及伺服电机 20之间的相对位置关系固定 , 收发天线模块 90载臂 12径向和切向震动幅度小。 收发天线模块 90与其载臂 12 及伺服电机 20之间的相对位置关系偏离范围应限制在径向振动幅度小于 ±0.5mm , 切向振动幅度量小于 ±0.5mm。 结构可拆卸, 重复安装精度高, 分拆部件后的 可重复安装精度保证在 ±0.5mm/ 2000mm范围内。
[0043] 进一步地, 第一横臂 11、 两个载臂 12与第二横臂 13为一体成型结构或者组装结 构。 比如, 第一横臂 11、 两个载臂 12与第二横臂 13为整体铸造, 该方案容易加 工, 结构稳定。
[0044] 进一步地, 还包括具有相对设置的上安装臂 61与下安装臂 62的固定支架 60, 旋 转框架 10转动安装于上安装臂 61与下安装臂 62之间。 固定支架 60便于旋转框架 1 0的装配, 旋转框架 10可稳定旋转于固定支架 60上。 固定支架 60可采用四支撑柱 形式, 上安装臂 61与下安装臂 62采用工字梁, 容易加工, 结构稳定。 可以理解 地, 不配置固定支架 60, 通过伺服电机 20驱动旋转框架 10转动也是可行的。
[0045] 进一步地, 伺服电机 20安装于上安装臂 61, 第一横臂 11转动安装于上安装臂 61 , 第二横臂 13转动安装于下安装臂 62。 整体结构稳定, 在旋转框架 10转动吋抖 动小, 第二横臂 13可以布置在较低的位置。 第二横臂 13上设有转轴, 下安装臂 6 2上安装有安装孔, 转轴的端部插接于安装孔, 转轴可绕安装孔轴线转动, 实现 第二横臂 13转动安装于下安装臂 62。
[0046] 进一步地, 伺服电机 20与旋转框架 10之间通过一减速器 70连接。 减速器 70通过 降低输出转速而提高输出转矩, 以驱动旋转框架 10转动。 该方案结构简单, 安 装便捷, 可保证定位精确性。
[0047] 进一步地, 控制组件 40包括上位机 41、 用于接收上位机 41发出的扫描指令的第 一控制器 42及与第一控制器 42通信连接且与伺服驱动器 50电连接的第二控制器 4 3。 用户通过上位机 41输入指令, 上位机 41通过第一控制器 42发送控制指令到第 二控制器 43, 并接收返回状态信息。 第一控制器 42与第二控制器 43间进行通信 , 第一控制器 42发送控制命令给第二控制器 43并接收返回状态信息。 第二控制 器 43根据接收到的控制命令, 发送使能控制、 扫描方向指令和扫描速度指令至 伺服驱动器 50, 通过伺服驱动器 50间接控制伺服电机 20的转动。 伺服电机 20的 转动速度预设在伺服驱动器 50, 伺服驱动器 50依据不同的速度指令驱动伺服电 机 20以不同的速度模式运转。 伺服驱动器 50可预设多种运转模式以满足精准转 动和定位的需求。 同吋, 伺服电机 20内置第一角度传感器 21在伺服电机 20运转 吋产生脉冲序列反馈至第二控制器 43分析伺服电机 20运行状态, 并将状态信息 返回至上位机 41程序, 第二角度传感器 30产生脉冲信号实吋反馈至第二控制器 4 3, 伺服驱动器 50驱动伺服电机 20转动。 第二角度传感器 30将脉冲信号输入第一 控制器 42, 第一控制器 42处理接收到的脉冲信号判断是否触发收发天线模块 90 及其它模块的工作。
[0048] 具体地, 第一控制器 42为 PLC可编程逻辑器件。 第二控制器 43为 FPGA控制板 。 PLC可编程逻辑器件与 FPGA控制板配合, 使整个系统更稳定, 方便后期维修 , 能降低整体系统发生故障的概率。 FPGA控制板与 PLC可编程逻辑器件间进行 通信, 通信接口可采用 RS422/RS232或网口实现通信, 同 PLC可编程逻辑器件的 通信协议包括帧头、 指令字、 状态字、 帧计数以及校验位信息; PLC可编程逻辑 器件同伺服驱动器 50的通信协议满足驱动器的设计要求。 FPGA控制板产生各类 触发信号和吋序信号触发收发天线模块 90以及其他设备工作, FPGA控制板触发 接口数量大于 2, FPGA控制板所触发的设备包括但不限于收发天线模块 90, 而 且可多通道输出, 多通道组合输出吋序信号以触发或控制其他设备, 如四通道 组合输出产生 16位独立的吋间信号。 可以理解地, 第一控制器 42与第二控制器 4 3还可以选用其它类型的控制器。
[0049] 进一步地, 第二角度传感器 30为编码器, 编码器实吋检测旋转框架 10实际转角 信号并输入至第一控制器 42; 在扫描运动过程中, 伺服旋转扫描系统计算方波 信号的个数来确定已旋转的角度, 角度位置分辨率优于 0.005° ; 每间隔 (Α Θ 为角度间隔, Δ ί?为 0.20°至 0.40°之间的确定的角度值) 发送一个位置触发信号, 有效行程 0旋转扫描运动中, 共计输出 Ν (Ν= Θ/Α Θ , 且取 Ν整数部分) 个角度 位置触发信号; 扫描运动的角度间隔由通讯接口通过第二控制器 43中的程序设 置。 在往复扫描过程中, 上安装臂 61与下安装臂 62的重复定位精度为 ±0.01° (重 复 100次) ; 上安装臂 61与下安装臂 62的绝对定位精度为 ±0.01° ; 位置触发脉冲 对应的角度位置误差应优于 ±0.01°。
[0050] 进一步地, 还包括用于检测旋转框架 10的转动正负方位并对旋转框架 10的转角 限位的转向传感器 80, 转向传感器 80与第二控制器 43电连接。 转向传感器 80实 吋监测当前旋转框架 10的正负方位并获取绝对零位置, 转向传感器 80还监测选 装框架是否超过极限位置, 并将状态信息反馈至第二控制器 43。 具体地, 转向 传感器 80可以为光电幵关、 两个旋转编码器的组合或其它转向传感器。 转向传 感器 80采用光电幵关, 安装在转动轴线上并固定在固定支架 60上, 以 0°为中心零 位, 负角度为负方向, 正角度为正方向。 光电幵关以输出高低电平来区分正负 方向, 高低电平跳变处为中心零位置。 或者, 转向传感器 80采用两个旋转编码 器, 两个旋转编码器输出两组相位差 90度的脉冲, 通过这两组脉冲可以测量转 速和判断旋转的方向。 还有, 转向传感器 80内部设置为只在一定角度范围内输 出正负电平, 如正负各 60°为限位, 当超出限定的角度吋输出不同的信号以示扫 描角度超出规定范围上限, 并将信号发送至第二控制器 43, 以便采取安全措施 。 可选取的措施包括但不限于断电、 电机使能中断、 电机不负载空转等。 转向 传感器 80将方位信号、 限位信号等实吋发送至第二控制器 43以便控制伺服电机 2 0以正确安全的方式转动。
[0051] 进一步地, 还包括用于对伺服电机 20、 控制组件 40与伺服驱动器 50等器件提供 电能的电源。
[0052] 请参阅图 2、 图 3, 本发明第二实施例提供的三维全息成像的伺服旋转扫描系统 , 与第一实施例提供的三维全息成像的伺服旋转扫描系统大致相同, 与第一实 施例不同的是, 伺服电机 20设于下安装臂 62, 第一横臂 11转动安装于下安装臂 6 2, 第二横臂 13转动安装于上安装臂 61。 整体结构稳定, 在旋转框架 10转动吋抖 动小, 伺服电机 20安装便捷, 整体系统使用安全。 第二横臂 13上设有转轴, 上 安装臂 61上安装有安装孔, 转轴的端部插接于安装孔, 转轴可绕安装孔轴线转 动, 实现第二横臂 13转动安装于上安装臂 61。
[0053] 三维全息成像的伺服旋转扫描系统主要由具有第一角度传感器 21的伺服电机 20 、 第二角度传感器 30、 控制组件 40、 伺服驱动器 50和旋转框架 10组成, 该三维 全息成像的伺服旋转扫描系统是一个全闭环伺服控制系统, 第二角度传感器 30 检测旋转框架 10的实际转角并向控制组件 40反馈一框架反馈信号 A, 在控制组件 40中指令信号 I与框架反馈信号 A比较产生一跟随误差 E, 第一角度传感器 21检测 伺服电机 20的输出转角并向伺服驱动器 50反馈一电机反馈信号 B, 伺服驱动器 50 依据跟随误差 E与电机反馈信号 B控制伺服电机 20转动。 该三维全息成像的伺服 旋转扫描系统结构简单, 成本较低, 易组装, 旋转精度高, 易于控制。 旋转框 架 10在运转速度较高情况下, 也能保证扫描启动和停止吋的稳定性。 为配合收 发天线模块 90的信号准确发射与接收, 伺服电机 20转动与收发天线模块 90收发 间能保证在一定吋序上同步工作, 能满足伺服控制系统的实吋监控与检测要求 。 在伺服控制系统多次往复扫描过程中, 每次扫描的起始和终止位置能精准定 位, 实吋的伺服电机 20的输出转角和旋转框架 10的实际转角也能及吋反馈且反 馈吋延满足一定要求。
以上仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神 和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范 围之内。

Claims

权利要求书
[权利要求 1] 三维全息成像的伺服旋转扫描系统, 其特征在于, 包括:
旋转框架, 用于安装收发天线模块;
伺服电机, 用于驱动所述旋转框架转动, 所述伺服电机具有检测其输 出转角的第一角度传感器;
第二角度传感器, 设于所述旋转框架的转动轴线上且用于检测所述旋 转框架的实际转角;
控制组件, 与所述第二角度传感器电连接; 以及 伺服驱动器, 用于依据所述旋转框架的实际转角与所述伺服电机的输 出转角控制所述伺服电机转动, 所述第一角度传感器、 所述控制组件 均与所述伺服驱动器电连接。
[权利要求 2] 如权利要求 1所述的三维全息成像的伺服旋转扫描系统, 其特征在于
, 所述旋转框架包括由所述伺服电机驱动转动的第一横臂及两个分别 设于所述第一横臂的两端且用于安装收发天线模块的载臂。
[权利要求 3] 如权利要求 2所述的三维全息成像的伺服旋转扫描系统, 其特征在于
, 两个所述载臂均沿竖直方向延伸, 每一所述载臂的内侧均设有一收 发天线模块。
[权利要求 4] 如权利要求 2所述的三维全息成像的伺服旋转扫描系统, 其特征在于
, 所述第一横臂的转动轴线位于所述第一横臂的中心处。
[权利要求 5] 如权利要求 2所述的三维全息成像的伺服旋转扫描系统, 其特征在于
, 所述伺服电机带动所述旋转框架绕一转动轴线做往复扫描运动。
[权利要求 6] 如权利要求 2所述的三维全息成像的伺服旋转扫描系统, 其特征在于
, 所述旋转框架还包括连接于两个所述载臂之间的第二横臂, 所述第 一横臂与所述第二横臂相对设置。
[权利要求 7] 如权利要求 6所述的三维全息成像的伺服旋转扫描系统, 其特征在于
, 所述第一横臂、 两个所述载臂与所述第二横臂呈矩形布置。
[权利要求 8] 如权利要求 6所述的三维全息成像的伺服旋转扫描系统, 其特征在于
, 所述第一横臂的内表面与所述第二横臂的内表面相互平行。
[权利要求 9] 如权利要求 6所述的三维全息成像的伺服旋转扫描系统, 其特征在于
, 所述第一横臂与所述第二横臂的中心连线为所述旋转框架的转动轴 线。
[权利要求 10] 如权利要求 6所述的三维全息成像的伺服旋转扫描系统, 其特征在于 , 所述第一横臂、 两个所述载臂与所述第二横臂为一体成型结构或者 组装结构。
[权利要求 11] 如权利要求 6所述的三维全息成像的伺服旋转扫描系统, 其特征在于 , 还包括具有相对设置的上安装臂与下安装臂的固定支架, 所述旋转 框架转动安装于所述上安装臂与所述下安装臂之间。
[权利要求 12] 如权利要求 11所述的三维全息成像的伺服旋转扫描系统, 其特征在于 , 所述伺服电机设于所述上安装臂, 所述第一横臂转动安装于所述上 安装臂, 所述第二横臂转动安装于所述下安装臂; 或者, 所述伺服电 机设于所述下安装臂, 所述第一横臂转动安装于所述下安装臂, 所述 第二横臂转动安装于所述上安装臂。
[权利要求 13] 如权利要求 1至 12任一项所述的三维全息成像的伺服旋转扫描系统, 其特征在于, 所述伺服电机与所述旋转框架之间通过一减速器连接。
[权利要求 14] 如权利要求 1至 12任一项所述的三维全息成像的伺服旋转扫描系统, 其特征在于, 所述控制组件包括上位机、 用于接收所述上位机发出的 扫描指令的第一控制器及与所述第一控制器通信连接且与所述伺服驱 动器电连接的第二控制器。
[权利要求 15] 如权利要求 14所述的三维全息成像的伺服旋转扫描系统, 其特征在于 , 还包括用于检测所述旋转框架的转动正负方位并对所述旋转框架的 转角限位的转向传感器, 所述转向传感器与所述第二控制器电连接。
PCT/CN2016/094865 2016-05-24 2016-08-12 三维全息成像的伺服旋转扫描系统 WO2017201890A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/052,650 US10969485B2 (en) 2016-05-24 2018-08-02 Servo rotary scanning system of three-dimensional holographic imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610349789.0 2016-05-24
CN201610349789.0A CN105843176A (zh) 2016-05-24 2016-05-24 三维全息成像的伺服旋转扫描系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/052,650 Continuation US10969485B2 (en) 2016-05-24 2018-08-02 Servo rotary scanning system of three-dimensional holographic imaging

Publications (1)

Publication Number Publication Date
WO2017201890A1 true WO2017201890A1 (zh) 2017-11-30

Family

ID=56594247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094865 WO2017201890A1 (zh) 2016-05-24 2016-08-12 三维全息成像的伺服旋转扫描系统

Country Status (3)

Country Link
US (1) US10969485B2 (zh)
CN (1) CN105843176A (zh)
WO (1) WO2017201890A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105843176A (zh) * 2016-05-24 2016-08-10 深圳市无牙太赫兹科技有限公司 三维全息成像的伺服旋转扫描系统
CN106412270A (zh) * 2016-09-23 2017-02-15 Tcl通讯(宁波)有限公司 一种支持移动终端多功能后盖的方法及移动终端
CN107356984A (zh) * 2017-06-20 2017-11-17 深圳市无牙太赫兹科技有限公司 立体扫描装置
CN108717204B (zh) * 2018-06-08 2020-09-25 深圳市华讯方舟太赫兹科技有限公司 一种扫描成像系统及安检设备
CN109061635B (zh) * 2018-06-08 2021-07-06 深圳市重投华讯太赫兹科技有限公司 旋转扫描系统
CN109491309A (zh) * 2018-09-26 2019-03-19 河北华讯方舟太赫兹技术有限公司 安检仪的控制方法、安检仪及具有存储功能的装置
CN109237248A (zh) * 2018-10-15 2019-01-18 江西师范大学 立体拍照装置及物体三维重现方法
CN109615689B (zh) * 2018-10-25 2023-07-18 深圳市重投华讯太赫兹科技有限公司 三维成像方法、设备及计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040174289A1 (en) * 2003-03-07 2004-09-09 Singh Donald R. Imaging methods and systems for concealed weapon detection
CN102419560A (zh) * 2011-12-30 2012-04-18 北京华航无线电测量研究所 一种三维成像安检门伺服控制装置的伺服控制器
CN102540185A (zh) * 2011-12-30 2012-07-04 北京华航无线电测量研究所 一种阵列天线弧形扫描的毫米波成像系统成像的方法
CN102540928A (zh) * 2011-12-30 2012-07-04 北京华航无线电测量研究所 一种三维成像安检门伺服控制装置伺服控制器的控制方法
CN102565793A (zh) * 2011-12-30 2012-07-11 北京华航无线电测量研究所 一种单天线阵列全方位扫描的毫米波成像系统
CN105467386A (zh) * 2015-12-28 2016-04-06 同方威视技术股份有限公司 毫米波三维全息扫描成像设备
CN105843176A (zh) * 2016-05-24 2016-08-10 深圳市无牙太赫兹科技有限公司 三维全息成像的伺服旋转扫描系统
CN205787855U (zh) * 2016-05-24 2016-12-07 深圳市无牙太赫兹科技有限公司 三维全息成像的伺服旋转扫描系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2001450A (en) * 1926-09-16 1935-05-14 Westinghouse Electric & Mfg Co Transmitting circuit
US3683392A (en) * 1969-12-02 1972-08-08 Edward Gates White Convertible antenna-mounting structure
US6034643A (en) * 1997-03-28 2000-03-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Directional beam antenna device and directional beam controlling apparatus
KR101584663B1 (ko) 2009-02-17 2016-01-13 삼성전자주식회사 양자 점을 이용한 고분자 분산형 액정 디스플레이 장치
CN102428361B (zh) 2009-05-21 2014-07-02 本田技研工业株式会社 表面检查装置
CN102426361A (zh) * 2011-10-30 2012-04-25 北京无线电计量测试研究所 一种毫米波主动式三维全息成像的人体安检系统
US10261176B2 (en) * 2013-05-15 2019-04-16 Flir Systems, Inc. Rotating attitude heading reference systems and methods
CN104711754A (zh) * 2013-12-13 2015-06-17 苏州御能动力科技有限公司 一种用于毛巾织机的伺服控制装置及其运行控制方法
CN103728972B (zh) * 2014-01-06 2014-10-15 中国石油大学(华东) 多机械臂同步控制实验平台及实验方法
CN103810929B (zh) * 2014-01-17 2016-04-13 渤海大学 平面二维自由度旋转倒立摆装置
CN105182346A (zh) * 2015-09-30 2015-12-23 长沙开山斧智能科技有限公司 一种复合障碍物扫描仪及其扫描方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040174289A1 (en) * 2003-03-07 2004-09-09 Singh Donald R. Imaging methods and systems for concealed weapon detection
CN102419560A (zh) * 2011-12-30 2012-04-18 北京华航无线电测量研究所 一种三维成像安检门伺服控制装置的伺服控制器
CN102540185A (zh) * 2011-12-30 2012-07-04 北京华航无线电测量研究所 一种阵列天线弧形扫描的毫米波成像系统成像的方法
CN102540928A (zh) * 2011-12-30 2012-07-04 北京华航无线电测量研究所 一种三维成像安检门伺服控制装置伺服控制器的控制方法
CN102565793A (zh) * 2011-12-30 2012-07-11 北京华航无线电测量研究所 一种单天线阵列全方位扫描的毫米波成像系统
CN105467386A (zh) * 2015-12-28 2016-04-06 同方威视技术股份有限公司 毫米波三维全息扫描成像设备
CN105843176A (zh) * 2016-05-24 2016-08-10 深圳市无牙太赫兹科技有限公司 三维全息成像的伺服旋转扫描系统
CN205787855U (zh) * 2016-05-24 2016-12-07 深圳市无牙太赫兹科技有限公司 三维全息成像的伺服旋转扫描系统

Also Published As

Publication number Publication date
US10969485B2 (en) 2021-04-06
CN105843176A (zh) 2016-08-10
US20180341015A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2017201890A1 (zh) 三维全息成像的伺服旋转扫描系统
CN108363071A (zh) 一种激光雷达装置
CN100487298C (zh) 一种电控云台
CN108700657A (zh) 雷达和具有该雷达的可移动设备
CN106802412B (zh) 一种基于激光及无线技术的近距离移动定位系统及其方法
US20120065829A1 (en) Wall-following Moving Device
CN108227183A (zh) 旋转式激光扫描装置
JP2014046405A5 (zh)
CN102565793A (zh) 一种单天线阵列全方位扫描的毫米波成像系统
CN102540185A (zh) 一种阵列天线弧形扫描的毫米波成像系统成像的方法
CN208207196U (zh) 一种机扫安防雷达与光电一体化探测装置
CN102540186A (zh) 一种阵列天线弧形扫描的毫米波成像系统
US10877460B2 (en) Security check instrument motion control system
CN103259089A (zh) 一种x波段气象雷达天线控制方法和控制装置
US20230033189A1 (en) Minimally invasive surgical robot master manipulator and slave manipulator control method
CN109849046A (zh) 一种舵机转子的回零方法、回零系统、舵机及机器人
CN108304002B (zh) 接近传感器靶标运动角度控制的方法
WO2011048831A1 (ja) 車両用障害物検知装置
EP4299382A1 (en) Vehicle-mounted radar adjusting device and vehicle-mounted radar device
JP2019184404A (ja) センサシステム
WO2015066992A1 (zh) 一种用于角度交会测量的可顶装倒置发射基站
CN109085539B (zh) 一种双反射面雷达成像天线
CN201716010U (zh) 混合驱动半闭环精密定位系统
CN203553351U (zh) 一种用于移动载体上的卫星天线
CN208255418U (zh) 一种激光雷达装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902876

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902876

Country of ref document: EP

Kind code of ref document: A1