WO2015066992A1 - 一种用于角度交会测量的可顶装倒置发射基站 - Google Patents

一种用于角度交会测量的可顶装倒置发射基站 Download PDF

Info

Publication number
WO2015066992A1
WO2015066992A1 PCT/CN2014/074057 CN2014074057W WO2015066992A1 WO 2015066992 A1 WO2015066992 A1 WO 2015066992A1 CN 2014074057 W CN2014074057 W CN 2014074057W WO 2015066992 A1 WO2015066992 A1 WO 2015066992A1
Authority
WO
WIPO (PCT)
Prior art keywords
turntable
base station
fixed
rotating shaft
measurement
Prior art date
Application number
PCT/CN2014/074057
Other languages
English (en)
French (fr)
Inventor
邾继贵
任永杰
杨凌辉
韩延东
薛彬
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2015066992A1 publication Critical patent/WO2015066992A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves

Definitions

  • the invention belongs to the technical field of large-scale three-dimensional coordinate measurement in industrial field, and relates to a transmitting base station for measuring angle intersection. Background technique
  • the workspace measuring position system is a fully automated, multi-task parallel processing, high-precision, real-time 3D coordinate measuring system. Similar to the composition of the Global Positioning System (GPS), the system mainly includes a transmitting base station and a receiver.
  • the transmitting base station is arranged at the industrial measurement site to form a regional measurement field, and the receiver in the measurement field can measure the three-dimensional coordinates of itself.
  • the basic principle is the principle of multi-plane constrained positioning, that is, each transmitting base station provides two rotating laser planes, and n transmitting base stations can provide 2n laser planes; the receiver senses the transmitting base station at the initial position of each rotating cycle.
  • the time interval between the sync optical signal and the signal when a laser plane is rotated to the position of the receiver, the angle at which the plane is rotated from the initial position of each revolution to the position of the receiver is obtained.
  • the receiver is perceptible
  • the other plane rotates from the initial position of the week to the angle of its position, so that multiple planes in the space intersect at the receiver, and the spatial position coordinates of the receiver are obtained by solving the equation.
  • the transmitting base station in the measuring system generates a light plane that rotates around a fixed axis by mechanical and optical means to scan the surrounding space.
  • the receiver for measuring the photosensitive member is mounted at a target position to be measured, and the scanning angle through which the scanning optical signal passes from the predetermined initial position to the receiver is measured by a timing method.
  • the transmitting base station sends a synchronous optical pulse to the receiver as a synchronization signal starting point of the horn timing, and when the scanning optical plane sweeps over the photosensitive area of the receiver, a scanning pulse signal is generated as the receiver timing end signal.
  • the receiver can calculate the scanning angle of the scanning optical signal from the initial position to the receiver by measuring the time interval between the synchronization signal and the scanning signal.
  • the transmitting base station is installed at a certain height on the ground through a column and optically scanned 360 degrees to the whole circumference to achieve measurement, but there are many shortcomings:
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art, and to provide a transmitting base station, thereby solving the problems of affecting the passability of the remaining devices when the ground installation station is installed, occlusion in some measurement occasions, and frequent calibration, thereby improving the entire space.
  • the adaptability and precision of the measurement system provide reliable hardware support for the measurement and calibration of the measured points in space.
  • the DC motor is directly driven to reduce the intermediate part of the vibration, and the spindle speed is balanced.
  • a top-mounted inverted launch base station for angular intersection measurement comprising a fixed bracket (4), a flip-chip fastening mechanism (5) and a turntable (3), and the rotating shaft (11) is tightly mounted by a bearing (7)
  • the fixed mechanism (5) is connected, and the lower part of the rotating shaft is fixed with a turntable (3) driven by a DC motor.
  • a code wheel (10) is connected to the motor main shaft, and at least two lasers (1) for emitting scanning light are fixed downward at the bottom of the turntable (3), and the light plane and the rotating shaft of the laser (1) (11)
  • the skew is so that the cone angle of the measurement dead zone is in the range of 25 to 35 degrees, and the sync pulse laser (2) is fixed on the fixed bracket (4); the turntable (3) rotates through the code wheel every revolution ( 10) When the zero position is triggered, the synchronous pulse output of the synchronous pulse laser (2) is triggered.
  • the transmitting base station provided by the invention can be installed on the roof, which overcomes the shortcomings of the ordinary ground-mounted transmitting base station.
  • the DC motor direct drive and the reverse mounting device are used, and the motor directly drives the rotary table to rotate, thereby avoiding the vibration influence of the common rotating shaft system.
  • the laser 1 and the sync pulse laser 2 on the transmitting base station are simultaneously mounted on the end face of the instrument, and the mounting angle is appropriately adjusted to have a certain scanning inclination angle with the rotating shaft.
  • the present invention redesigns the mounting form of the laser 1 and the sync pulse laser 2 on the transmitting base station for the requirements of the top mounting so that the scanning range is directly below the instrument.
  • the scanning range is enlarged, and the top layer installation effectively reduces the occlusion problem and possible human collision problems in the measurement occasion, making the measurement more convenient and user-friendly.
  • the DC motor is directly driven, which reduces the power loss during long-axis transmission, which greatly increases the stability, greatly increases the stability of the rotation speed, and improves the measurement accuracy.
  • FIG. 1 is a schematic diagram of the design of a top-mounted inverted transmitting base station of the present invention.
  • the transmitting base station designed by the invention is suitable for roof installation. First, the whole structure is introduced.
  • the transmitting base station turntable 3 is mounted on the bearing 7 through the rotating shaft 11, the DC motor rotor 9 is fixedly connected with the transmitting base station turntable 3, and the motor stator 8 and the bracket 4 are fixed. Even, the code wheel 10 is connected to the main shaft for speed regulation.
  • the sync pulse laser 2 is mounted on the bracket 4, and each time it is rotated, when the code wheel is zero, the internal circuit triggers a synchronous pulse output, indicating that the angle measurement starts timing this week.
  • the laser 1 is connected to the transmitting base station turntable 3 at a certain angle, and is rotated by the motor controller 6.
  • the cone angle of the measurement dead zone is in the range of 25 to 35 degrees.
  • the installation height is 12 meters, and the scan blind zone radius is 3. 2 meters.
  • the transmitting base station turntable 3 can still flexibly rotate in the inverted state, thereby avoiding the influence of the gravity of the turntable.
  • the pre-tightening force applied to the inner ring of the bearing 7 is ensured when the top mount is inverted, so that the transmitting base station turntable 3 does not drift downward.
  • the motor rotor 9 is directly connected to the transmitting base station turntable 3, thereby improving the stability during operation.
  • the transmitting base station turntable 3 is rotated together with the motor rotor 9, so that the transmitting base station turntable 3 directly obtains the driving power, and the speed regulation feedback of the code wheel 10 makes the speed stability high and is convenient for measurement.
  • the downwardly arranged sync light 2 is driven by the code wheel to generate a periodic signal every revolution of the turntable 3, and the downwardly arranged laser 1 follows the transmitting base station turntable 3 to rotate together to scan the lower space of the instrument. Due to the angle of the beam, an intrinsic measurement dead zone with a cone angle of about 30 degrees is formed directly below the transmitting base station. As mentioned earlier, this blind zone can be eliminated by rationally arranging multiple stations.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种用于角度交会测量的可顶装倒置发射基站,包括固定支架(4)、倒装紧定机构(5)和转台(3),旋转轴(11)通过轴承(7)与倒装紧定机构(5)相连,旋转轴(11)的下部固定有受直流电机驱动的转台(3),在电机主轴上连接有码盘(10),在转台(3)的底部朝下固定有至少两个用于发射扫描光的激光器(1),激光器(1)的光平面与旋转轴(11)之间斜交,使得测量盲区的锥顶角在25度至35度范围内,在固定支架(4)上固定有同步脉冲激光器(2);转台(3)每旋转一周,当经过码盘(10)零位时,触发一次同步脉冲激光器(2)的同步脉冲输出。该发射基站能够提高整个空间测量系统的适应性与精密性。

Description

一种用于角度交会测量的可顶装倒置发射基站 所属技术领域
本发明属于工业现场大尺寸三维坐标测量技术领域, 涉及一种角度交会测量的发射基站。 背景技术
工作空间测量定位系统 (workspace Measuring Position System) 是一种全自动化、 多任务并行处 理、 高精度、 实时性高的三维坐标测量系统。 类似于全球定位系统(GPS ) 的构成, 该系统主要包括发射 基站和接收器。 发射基站布置于工业测量现场, 构成区域测量场, 此测量场内的接收器可实现对自身三 维坐标的测量。 其基本原理是多平面约束定位原理, 即每个发射基站提供两个旋转激光平面, n 个发射 基站即能提供 2η个激光平面;接收器感知发射基站在每个旋转周的初始位置时发出的同步光信号与某个 激光平面旋转到接收器所在位置时的信号之间的时间间隔, 得到该平面从每个旋转周的初始位置旋转到 接收器所在位置的角度, 类似的, 接收器可感知其他平面从每周初始位置旋转到它所在位置的角度, 这 样, 空间内多个平面就交会到接收器这一点上, 通过解算方程得到此接收器的空间位置坐标。
此测量系统中的发射基站通过机械及光学手段产生绕固定轴转动的光平面, 对周围空间进行扫描。 测量时装有光敏元件的接收器被安装在需要测量的目标位置, 通过计时的方法测量扫描光信号从预定的 初始位置转到接收器时所经过的扫描角。 以扫描光平面处于初始位置时发射基站向接收器发出同步光脉 冲作为测角计时起点的同步信号, 当扫描光平面扫过接收器光敏区时产生扫描脉冲信号作为接收器计时 终点信号。 接收器通过测量同步信号与扫描信号间的时间间隔可以计算出扫描光信号从初始位置到接收 器所经过的扫描角。
通常情况下, 发射基站在地面一定高度通过立柱进行安装, 并向全周 360度进行光电扫描, 从而实 现测量, 但存在很多不足:
( 1 ) 实际应用过程中, 由于发射基站布置在地面, 在测量的时候由于人员、 周围设备等原因, 造成遮挡;
( 2 ) 由于厂区工况的变化, 需要不定时的移动发射基站, 重新使用时, 必须重新校准, 从而增 加了测量时间;
( 3 ) 地面电缆过多, 当发射基站数目多时更突出, 影响其余设备的通过性;
( 4 ) 联轴器传动导致的轴系振动, 使得扫描测角精度降低。 发明内容
本发明的目的是克服现有技术的上述不足, 提供一种发射基站, 从而解决地面安装布站时影响其余 设备的通过性、 在某些测量场合存在遮挡、 以及频繁校准等问题, 提高整个空间测量系统的适应性与精 密性, 为空间被测点的测量和标定提供可靠的硬件支持。 同时在轴系设计中, 采用直流电机直接传动, 减小产生振动的中间环节, 主轴转速平衡。 本发明的技术方案如下:
一种用于角度交会测量的可顶装倒置发射基站,包括固定支架(4)、倒装紧定机构(5)和转台(3), 旋转轴(11 )通过轴承(7)与倒装紧定机构(5)相连, 旋转轴的下部固定有受直流电机驱动的转台(3), 在电机主轴上连接有码盘(10), 在转台(3 )的底部朝下固定有至少两个用于发射扫描光的激光器(1 ), 激光器(1 ) 的光平面与旋转轴(11 )之间斜交, 使得测量盲区的锥顶角在 25度至 35度范围内, 在固定 支架 (4 ) 上固定有同步脉冲激光器 (2 ) ; 转台 (3 ) 每旋转一周, 当经过码盘 (10 ) 零位时, 触发一次 同步脉冲激光器 (2 ) 的同步脉冲输出。
本发明提供的发射基站, 可以安装于屋顶, 克服了普通地面安装型发射基站的不足。 同时在发射基 站内部轴系的设计上, 采用直流电机直接驱动及倒装紧定装置, 由电机直接驱动转台旋转, 避免了常见 旋转轴系的振动影响。 发射基站上的激光器 1和同步脉冲激光器 2, 同时安装于仪器的端面上, 并通过 适当调整安装角度, 使其与转轴成一定的扫描倾角。 本发明针对顶装的要求, 重新设计了发射基站上激 光器 1和同步脉冲激光器 2的安装形式, 使得扫描范围在仪器的正下方。 通过合理设置激光器 1的安装 角度,扩大了扫描范围,并且顶层安装有效减少了测量场合存在的遮挡问题和可能发生的人为碰撞问题, 使测量更加便利和人性化。 直流电机直接驱动, 减少了长轴传动时的动力损失, 使得平稳性大大增加, 极大的增加了转速稳定性, 提高了测量精度。 附图说明
图 1 本发明的顶装倒置发射基站设计示意图。
图中序号对应名称: 1、激光器 2、同步脉冲激光器 3、发射基站转台 4、支架 5、倒装紧定机构 6、 电机控制器 7、 轴承 8、 电机定子 9、 电机转子 10、 码盘, 11旋转轴 具体实施方式
下面结合附图和实施例对本发明进行说明。
本发明设计的发射基站, 适合屋顶安装, 首先介绍一下整个结构, 发射基站转台 3通过旋转轴 11 安装在轴承 7上, 直流电机转子 9与发射基站转台 3固连, 电机定子 8与支架 4固连, 码盘 10与主轴连 接, 用于调速。 同步脉冲激光器 2安装在支架 4上, 每旋转一周, 当经过码盘零位时, 内部电路触发一 次同步脉冲输出, 标志此周角度测量开始计时。 激光器 1与发射基站转台 3通过一定角度连接在一块, 在电机控制器 6的作用下实现旋转。
通过将激光器 1、 同步脉冲激光器 2放置于仪器端部, 并适当设计激光器 1光平面与旋转轴的夹角, 使得测量盲区的锥顶角在 25度至 35度范围内。 当顶装倒置时, 安装高度为 12米, 扫描盲区半径为 3. 2 米, 通过布置多个顶装发射基站, 可以消除盲区的影响。 而且由于扫描测量范围位于厂房上方, 几乎不 会受到行人及其余设备的干扰。
结构上, 通过倒置紧定机构 5, 使得发射基站转台 3在倒置情况下, 仍能够灵活旋转, 避免了转台 重力的影响。 相比较于地面安装的形式, 在顶装倒置时通过施加给轴承 7内圈的预紧力作用, 保证发射 基站转台 3不向下漂移。 电机转子 9直接和发射基站转台 3相连, 从而提高了工作时的稳定性。
工作时, 通过电机控制器 6, 使得发射基站转台 3跟随电机转子 9一起旋转, 使得发射基站转台 3 直接获得驱动动力, 通过码盘 10的调速反馈, 使得转速稳定性很高, 便于测量。 同时, 朝下布置的同步 光 2在转台 3每旋转一周时, 由码盘驱动产生一个周期信号, 朝下布置的激光器 1跟随发射基站转台 3 一起旋转对仪器下部空间进行扫描。 由于光束的角度原因, 在发射基站的正下方, 会形成锥顶角 30度左 右的一个固有测量盲区。 如前所述, 通过合理布置多站, 可消除此盲区。

Claims

权利要求
1. 一种用于角度交会测量的可顶装倒置发射基站, 包括固定支架 (4)、 倒装紧定机构 (5) 和转台 (3), 旋转轴 (11) 通过轴承 (7) 与倒装紧定机构 (5) 相连, 旋转轴的下部固定有受直流电机驱动的转台 (3), 在电机主轴上连接有码盘 (10), 在转台 (3) 的底部朝下固定有至少两个用于发射扫描光的激 光器(1), 激光器(1) 的光平面与旋转轴 (11)之间斜交, 使得测量盲区的锥顶角在 25度至 35度范 围内, 在固定支架 (4) 上固定有同步脉冲激光器 (2); 转台 (3) 每旋转一周, 当经过码盘 (10) 零 位时, 触发一次同步脉冲激光器 (2) 的同步脉冲输出。
PCT/CN2014/074057 2013-11-07 2014-03-25 一种用于角度交会测量的可顶装倒置发射基站 WO2015066992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310554287.8A CN103616662A (zh) 2013-11-07 2013-11-07 一种用于角度交会测量的可顶装倒置发射基站
CN201310554287.8 2013-11-07

Publications (1)

Publication Number Publication Date
WO2015066992A1 true WO2015066992A1 (zh) 2015-05-14

Family

ID=50167366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074057 WO2015066992A1 (zh) 2013-11-07 2014-03-25 一种用于角度交会测量的可顶装倒置发射基站

Country Status (2)

Country Link
CN (1) CN103616662A (zh)
WO (1) WO2015066992A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616662A (zh) * 2013-11-07 2014-03-05 天津大学 一种用于角度交会测量的可顶装倒置发射基站
CN106249202A (zh) * 2016-07-04 2016-12-21 北京国承万通信息科技有限公司 定位光束发射装置、定位光束发射设备以及定位系统
CN106324564B (zh) * 2016-08-05 2020-01-14 北京国承万通信息科技有限公司 定位方法、装置、设备及系统
CN108226865A (zh) * 2016-12-22 2018-06-29 上海乐相科技有限公司 一种采用激光扫描的目标定位方法及装置
CN108181629A (zh) * 2018-01-16 2018-06-19 永发(河南)模塑科技发展有限公司 一种检测立体模塑产品的真空吸附检测装置
CN110794385B (zh) * 2019-10-18 2021-07-13 北京空间机电研究所 一种激光器零重力指向的评估方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294970A (en) * 1990-12-31 1994-03-15 Spatial Positioning Systems, Inc. Spatial positioning system
CN101329165A (zh) * 2008-07-18 2008-12-24 西安交通大学 基于双旋转激光平面发射机网络的空间定位方法
CN102384717A (zh) * 2011-08-17 2012-03-21 天津大学 采用标准杆的工作空间测量定位系统快速定向方法
CN102425990A (zh) * 2011-09-14 2012-04-25 天津大学 工作空间测量定位系统网络状态监测方法
CN102706318A (zh) * 2012-06-05 2012-10-03 苏州凤凰索卡亚光电科技有限公司 可倒挂使用的电子经纬仪
CN103616662A (zh) * 2013-11-07 2014-03-05 天津大学 一种用于角度交会测量的可顶装倒置发射基站

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501543B2 (en) * 2000-02-28 2002-12-31 Arc Second, Inc. Apparatus and method for determining position
KR100750897B1 (ko) * 2006-09-26 2007-08-22 삼성중공업 주식회사 실내 위치측정시스템을 이용한 3차원 측정 시스템 및리스케일 방법
KR100812724B1 (ko) * 2006-09-29 2008-03-12 삼성중공업 주식회사 실내 위치측정시스템을 이용한 벽면 이동 로봇
CN101363716B (zh) * 2008-09-26 2010-08-04 华中科技大学 一种组合式空间精密测量系统
CN102435177B (zh) * 2011-09-14 2013-08-21 天津大学 室内测量定位系统单发射站位姿参数在线修正方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294970A (en) * 1990-12-31 1994-03-15 Spatial Positioning Systems, Inc. Spatial positioning system
CN101329165A (zh) * 2008-07-18 2008-12-24 西安交通大学 基于双旋转激光平面发射机网络的空间定位方法
CN102384717A (zh) * 2011-08-17 2012-03-21 天津大学 采用标准杆的工作空间测量定位系统快速定向方法
CN102425990A (zh) * 2011-09-14 2012-04-25 天津大学 工作空间测量定位系统网络状态监测方法
CN102706318A (zh) * 2012-06-05 2012-10-03 苏州凤凰索卡亚光电科技有限公司 可倒挂使用的电子经纬仪
CN103616662A (zh) * 2013-11-07 2014-03-05 天津大学 一种用于角度交会测量的可顶装倒置发射基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LAO, DABAO ET AL.: "A New Coordinate Measuring System Based on Spatial Angle Measured by Rotating Planar Laser Beams", TRANSDUCER AND MICROSYSTEM TECHNOLOGIES, vol. 29, no. 12, 31 December 2010 (2010-12-31), pages 99 - 101 *
LAO, DABAO ET AL.: "Constructing Measuring Network with Scanning Planar Laser Space Position Systems", JOURNAL OF OPTOELECTRONICS · LASER, vol. 22, no. 02, 28 February 2011 (2011-02-28), pages 261 - 265 *
YANG, LINGHUI;: "Research on Large-scale Space Coordinate Measurement Location Technology Based on Optical Scanning'';", SCIENCE -ENGINEERING (A), CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE;, 15 May 2012 (2012-05-15), pages B022 - 64 *

Also Published As

Publication number Publication date
CN103616662A (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
WO2015066992A1 (zh) 一种用于角度交会测量的可顶装倒置发射基站
CN100487298C (zh) 一种电控云台
CN107144248B (zh) 一种数控机床旋转台误差的标定方法
CN106840083B (zh) 一种双扇形旋转激光自动经纬仪装置
CN102338616B (zh) 结合定位定姿系统的三维旋转扫描测量系统及方法
CN104296655B (zh) 一种激光跟踪仪像旋公式初始角的标定方法
CN203464196U (zh) 应用磁旋转编码器的舞台灯
CN106886030A (zh) 应用于服务机器人的同步式地图构建与定位系统及方法
CN107044857A (zh) 应用于服务机器人的异步式地图构建与定位系统及方法
CN110987013A (zh) 一种陀螺仪角运动测量系统的校准方法及装置
CN203178569U (zh) 一种两自由度高速并联扫描平台
CN103743338A (zh) 具有球面回转跳动误差补偿功能的激光跟踪测量系统及其补偿方法
CN103925938B (zh) 用于光电测量设备性能指标检测的倒摆式模拟目标源
CN110514141B (zh) 一种谐波减速器刚轮齿形检测系统
CN201804108U (zh) 激光测云雷达旋转装置
CN106042001B (zh) 机器人末端空间位置测量装置
CN103176270B (zh) 两自由度高速并联扫描平台及其垂直度误差的校准方法
CN111948667A (zh) 三维扫描系统
CN102541073A (zh) 太阳光双轴跟踪装置
CN103197416B (zh) 一种两自由度高速并联扫描平台及垂直度误差校准方法
CN107368101B (zh) 一种基于追日传感器的定日镜装置及工作方法
CN104345447B (zh) 高速二维扫描机构
CN112731288B (zh) 线结构激光面的非参数模型标定方法及其标定装置
CN203773357U (zh) 用于航空航天成像领域的快速反射镜扫描跟踪系统
CN201858963U (zh) 结合定位定姿系统的三维旋转扫描测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860991

Country of ref document: EP

Kind code of ref document: A1