WO2017201888A1 - 太赫兹近场探测器、光电导天线及其制作方法 - Google Patents

太赫兹近场探测器、光电导天线及其制作方法 Download PDF

Info

Publication number
WO2017201888A1
WO2017201888A1 PCT/CN2016/094660 CN2016094660W WO2017201888A1 WO 2017201888 A1 WO2017201888 A1 WO 2017201888A1 CN 2016094660 W CN2016094660 W CN 2016094660W WO 2017201888 A1 WO2017201888 A1 WO 2017201888A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium arsenide
layer
antenna
low temperature
photoconductive
Prior art date
Application number
PCT/CN2016/094660
Other languages
English (en)
French (fr)
Inventor
彭世昌
潘奕
李辰
丁庆
Original Assignee
深圳市太赫兹系统设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市太赫兹系统设备有限公司 filed Critical 深圳市太赫兹系统设备有限公司
Priority to EP16894813.1A priority Critical patent/EP3273529B1/en
Publication of WO2017201888A1 publication Critical patent/WO2017201888A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to the field of terahertz technology, and in particular to a terahertz near-field detector, and a photoconductive antenna used in the terahertz near-field detector and a method of fabricating the same.
  • a typical terahertz time-domain spectroscopy system consists of four main components: a femtosecond pulsed radiation source, a time delay system, a terahertz radiator, and a terahertz detector.
  • the femtosecond pulse radiation source outputs a femtosecond laser pulse, and the laser pulse is divided into a pump light and a probe light through a fiber splitter.
  • the pump light excites the terahertz radiator and radiates the terahertz wave outward.
  • the terahertz wave is collected by the terahertz detector and drives carriers generated by the photoconductive antenna in the terahertz detector by the probe light.
  • the photocurrent signal formed by the movement of the carrier is extracted by the current detecting device.
  • the photocurrent signal records the time domain waveform of the terahertz wave after the terahertz time domain information is processed, and further performs Fourier transform on the obtained time domain waveform image to obtain the frequency of the terahertz wave. Domain spectrum map.
  • Terahertz detection is divided into near-field detection and far-field detection.
  • the division of far and near field detection is related to the division of the antenna radiation field.
  • D is the effective radiation aperture length of the antenna
  • is the electromagnetic wave wavelength radiated by the antenna
  • R is the distance between the detection point and the antenna.
  • R ⁇ 2D 2 / ⁇ is satisfied, it is considered to belong to far-field detection, otherwise it is near-field detection.
  • the near-field imaging resolution can reach D/2 or less, and near-field detection imaging can obtain higher spatial resolution than far-field detection.
  • the present invention is directed to a photoconductive antenna and a method of fabricating the same.
  • the present invention also provides a terahertz near-field detector having the above-described photoconductive antenna for achieving high resolution imaging.
  • a photoconductive antenna for terahertz near-field detection comprising:
  • a perforated metal plate is placed on the insulating layer.
  • the substrate is a sapphire substrate.
  • the low temperature gallium arsenide wave plate layer is square or circular.
  • the dipole antenna is two symmetrically arranged T-type low temperature gallium arsenide flakes.
  • the perforated metal sheet is an aluminum sheet having a hole therein, the center of the hole being aligned with the center of the dipole antenna.
  • the insulating layer is a silicon dioxide layer.
  • a terahertz near-field detector for collecting terahertz waves transmitted through a sample including the above-mentioned photoconductive antenna, and a lens and an adjustment frame, the photoconductive antenna being integrated with a lens to form a photoconductive probe, and a photoconductive The probe is placed on the mount, which adjusts the distance between the sample and the photoconductive probe.
  • the step of forming the dipole antenna includes forming a barrier layer on the semi-insulating gallium arsenide substrate, further growing the gallium arsenide thin film layer on the barrier layer, and etching the gallium arsenide thin film layer to form two symmetrically arranged layers T-shaped structure;
  • An insulating layer forming step comprising: removing the gallium arsenide substrate by wet etching and reactive ion etching, removing the barrier layer with hydrogen fluoride, and then depositing silicon dioxide on the exposed low temperature grown gallium arsenide thin film layer Insulation;
  • the perforated metal plate forming step of disposing the perforated metal plate on the insulating layer is a step of disposing the perforated metal plate on the insulating layer.
  • the above-mentioned terahertz near-field detector is provided with a perforated metal plate, which can greatly attenuate the background noise signal and improve the spatial resolution of the near-field detection.
  • FIG. 1 is a partial schematic structural diagram of a terahertz near-field detector according to an embodiment of the present invention, and a schematic structural diagram of a terahertz radiation source and a detection sample.
  • FIG. 2 is a schematic diagram of disassembly of a partial structure in a terahertz near-field detector according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a dipole antenna in a photoconductive antenna in the terahertz near-field detector shown in FIG. 2.
  • a terahertz near-field detector 10 is configured to receive a terahertz wave 200 emitted by a terahertz radiation source, the terahertz wave 200 passing through a sample 201 and being near terahertz Field detector 10 is imaged to enable detection of sample 201.
  • the terahertz wave 200 is focused by a super hemispherical silicon lens 202 before passing through the sample 201, enabling the terahertz wave 201 to be better collected in the terahertz near field detector 10.
  • the terahertz near field detector 10 includes a photoconductive antenna 11, a lens 12, and an adjustment frame 13.
  • the photoconductive antenna 11 and the lens 12 are combined to form a photoconductive probe, and the photoconductive probe is disposed on the adjusting frame 13.
  • the adjusting frame 13 can adjust the distance between the sample 201 and the photoconductive probe, thereby completing different positions of the sample 201. Imaging.
  • the terahertz near field detector 10 further includes an optical fiber 14 for transmitting the probe light 203 and a current detecting device 15 for connecting to the photoconductive antenna 11.
  • the terahertz wave 200 drives the carrier generated by the photoconductive antenna 11 by the probe light 203 to generate a current signal, and the time domain spectrum of the terahertz wave 200 can be obtained by analyzing and processing the current signal, and the terahertz spectrum according to the presence or absence of the sample. The change is thus made to detect the sample 201.
  • the substrate 111 is a circular sapphire substrate having a thickness of 1 mm and a diameter of 6 mm. It can be understood that the substrate 111 may be a substrate of other materials under the premise of achieving the same function, and the thickness may be other specific values, and the shape may be other shapes such as a square shape. It should be noted that in the specific embodiment of the present invention, an example including specific value parameters and shapes is provided, but it should be understood that the parameters need not be exactly equal to the corresponding values, but may approximate the corresponding values within the accepted error tolerance or design constraints. The shape can also be adapted to the transformation. The same understanding can be found in the following specific parameters and shapes.
  • the perforated metal plate 115 is an aluminum piece having a thickness of 300 nm and a side length of 2 mm, and the aluminum piece is provided with a square hole having a side length of 20 ⁇ m, and the center of the square hole is aligned with the dipole antenna.
  • the center of 113 It can be understood that the square hole can also be a circular hole or the like.
  • the center of the dipole antenna 113 refers to the geometric center point of the two T-type low temperature gallium arsenide sheets, as shown by A in FIG.
  • the barrier layer is an aluminum arsenide layer having a thickness of 100 nm.
  • the gallium arsenide substrate has a thickness of 650 ⁇ m.
  • the low temperature gallium arsenide layer has a thickness of 1.5 ⁇ m.
  • the gallium arsenide substrate is reduced by about 600 ⁇ m by wet etching, and when the aluminum arsenide layer is soon to be contacted, the mixed reagent made of SF6 and SiCl4 is used. The remaining 50 ⁇ m gallium arsenide substrate was wiped off by reactive ion etching. The aluminum arsenide layer is wiped off with hydrogen fluoride, and finally a low temperature grown gallium arsenide film layer is exposed to a thickness of about 1 ⁇ m.
  • an insulating layer is disposed on the exposed low temperature grown gallium arsenide film layer by a deposition method.
  • the insulating layer was a silicon dioxide layer having a thickness of 500 nm.
  • the perforated metal plate is an aluminum flake having a thickness of 300 nm and a side length of 2 mm, and a square hole having a side length of 20 ⁇ m is opened on the aluminum foil, and the center of the hole is aligned with the center of the dipole antenna, and the error is about plus or minus 2 ⁇ m. .
  • apertured aluminum foils results in a significant attenuation of the background noise signal, increasing the spatial resolution of near field detection.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种太赫兹近场探测器和光电导天线,以及该光电导天线的制作方法。所述光电导天线包括衬底,粘合在衬底上的低温砷化镓波片层,粘合在低温砷化镓波片层上的偶极天线,偶极天线为低温砷化镓薄片,设置在偶极天线上的绝缘层,以及设置在绝缘层上的带孔金属板。带孔金属板能使背景噪声信号大幅衰减,提高近场探测的空间分辨率。

Description

太赫兹近场探测器、光电导天线及其制作方法
【技术领域】
本发明涉及太赫兹技术领域,特别是涉及一种太赫兹近场探测器,和该太赫兹近场探测器中采用的光电导天线以及该光电导天线的制作方法。
【背景技术】
随着太赫兹技术的不断发展,利用太赫兹时域光谱进行成像越来越受到关注。太赫兹时域光谱成像在安检、空间遥感、材料的无损检测、高分辨率太赫兹显微镜等领域具有较好的应用前景。典型的太赫兹时域光谱系统主要包括四个部分:飞秒脉冲辐射源、时间延迟系统、太赫兹辐射器,以及太赫兹探测器。其中飞秒脉冲辐射源输出飞秒激光脉冲,该激光脉冲经过光纤分路器分为泵浦光和探测光。泵浦光激发太赫兹辐射器进而向外辐射太赫兹波。该太赫兹波被太赫兹探测器收集,并驱动由探测光激发太赫兹探测器中的光电导天线生成的载流子,载流子运动形成的光电流信号被电流探测装置提取。该光电流信号记载着太赫兹时域信息经过后续处理便可得到太赫兹波的时域波形图,进一步地对所得到的时域波形图进行傅里叶变换,即可得到太赫兹波的频域光谱图。
太赫兹探测分为近场探测和远场探测。远近场探测的划分与天线辐射场划分有关,定义D为天线的有效辐射口径长度,λ为天线辐射的电磁波波长,R为探测点与天线的距离。当满足R≥2D2/λ,则认为是属于远场探测,否则即为近场探测。其中远场探测中,由成像分辨率公式ρ=Rλ/D可知,随着成像距离减小空间分辨率不断提高,但是受限于衍射极限,最高只能达到2D。而近场成像分辨率可达D/2以下,相较于远场探测,近场探测成像能获取更高的空间分辨率。
太赫兹近场探测器又可分为无孔型和有孔型,相比于无孔探测方式,有孔近场探测具有高集成度,高灵敏度,高信噪比等优势。
【发明内容】
本发明旨在提供一种光电导天线,以及该光电导天线的制作方法。本发明还提供一种具有上述光电导天线的太赫兹近场探测器,以期实现高分辨率成像。
一种用于太赫兹近场探测的光电导天线,包括:
衬底;
低温砷化镓波片层,粘合在衬底上;
偶极天线,为低温生长的砷化镓薄片并粘合在低温砷化镓波片层上;
绝缘层,设置在偶极天线上;以及
带孔金属板,设置在绝缘层上。
在其中一个实施例中,所述衬底为蓝宝石衬底。
在其中一个实施例中,所述低温砷化镓波片层为方形或者圆形。
在其中一个实施例中,所述低温砷化镓波片层与衬底通过光学胶层粘接。
在其中一个实施例中,所述偶极天线为两个对称排布的T型低温砷化镓薄片。
在其中一个实施例中,所述带孔金属板为铝片,所述铝片上设有孔,所述孔的中心对准所述偶极天线的中心。
在其中一个实施例中,所述绝缘层为二氧化硅层。
一种太赫兹近场探测器,用于收集透过样本的太赫兹波,包括上述光电导天线,以及透镜和调整架,所述光电导天线与透镜集成在一起成为光电导探头,而光电导探头设置在调整架上,调整架能够调整样本与光电导探头之间的距离。
一种上述任意一种的光电导天线的制作方法,步骤包括:
偶极天线的形成步骤,包括在半绝缘砷化镓衬底上形成隔断层,再在隔断层上低温生长砷化镓薄膜层,并蚀刻所述砷化镓薄膜层形成两个对称排布的T型结构;
低温砷化镓波片层粘合步骤,将经过所述形成步骤获得的偶极天线结构与低温砷化镓波片层粘合,且所述T型结构邻近所述低温砷化镓波片层;
衬底粘合步骤,将经过所述粘合步骤获得的结构与蓝宝石衬底通过环氧树脂层粘接;
绝缘层形成步骤,包括湿法刻蚀和反应离子刻蚀去除所述砷化镓衬底,并用氟化氢去除所述隔断层,然后在暴露出的低温生长的砷化镓薄膜层上沉积二氧化硅绝缘层;
带孔金属板形成步骤,将带孔金属板设置在所述绝缘层上。
上述太赫兹近场探测器因设有带孔金属板,能使背景噪声信号大幅衰减,提高近场探测的空间分辨率。
【附图说明】
图1为本发明一实施例提供的太赫兹近场探测器的部分结构示意图,以及与太赫兹辐射源、检测样本配合的结构示意图。
图2为本发明一实施例提供的太赫兹近场探测器中的部分结构的拆解示意图。
图3为图2所示太赫兹近场探测器中的光电导天线中的偶极天线的结构示意图。
【具体实施方式】
如图1所示,本发明一实施例提供的太赫兹近场探测器10用于接收由太赫兹辐射源发出的太赫兹波200,所述太赫兹波200透过样品201并由太赫兹近场探测器10成像,以实现对样品201的检测。太赫兹波200在透过样品201之前,经由一超半球形的硅透镜202进行聚焦,使太赫兹波201能够在太赫兹近场探测器10中被更好的收集。同时参考图2,所述太赫兹近场探测器10包括光电导天线11、透镜12和调整架13。所述光电导天线11和透镜12组合形成光电导探头,所述光电导探头设置在调整架13上,调整架13能够调整样本201与光电导探头之间的距离,从而完成样品201不同位置的成像。
所述太赫兹近场探测器10还包括用于传输探测光203的光纤14以及用于与光电导天线11连接的电流探测装置15。太赫兹波200驱动由探测光203激发光电导天线11产生的载流子从而产生电流信号,分析处理该电流信号便可得到太赫兹波200的时域光谱,根据有无样本时的太赫兹光谱的变化从而实现对样品201的检测。
本发明将重点描述太赫兹近场探测器10中的光电导天线11的结构以及其制作方法,而未详细描述的相关结构与组成均可参现有的设计完成。
如图2和图3中所示,所述光电导天线11包括依次设置的衬底111、低温砷化镓波片层112、偶极天线113、绝缘层114和带孔金属板115。
在一实施例中,所述衬底111为圆形蓝宝石衬底,且厚度为1mm,直径为6mm。可以理解上述衬底111在实现相同功能的前提下,可以是其他材质的衬底,厚度可以是其他特定值,形状也可以是方形等其他形状。需要说明的是本发明具体实施例中提供包含特定值参数以及形状的示范,但应了解,参数无需确切等于相应的值,而是可在接受的误差容限或设计约束内近似于相应的值,形状也可以适应性的变换。下文中涉及具体参数和形状时均可有相同理解。
在一实施例中,所述低温砷化镓波片层112为方形,且厚度为750nm,边长为6mm。低温砷化镓波片层112粘合在衬底111上。所述低温砷化镓波片层112与衬底111通过光学胶层粘接。在一具体实施例中,所述低温砷化镓波片层112与衬底111通过厚度为3μm的环氧树脂层116粘接。低温砷化镓一般是指在温度低于600摄氏度的条件下生成的砷化镓,例如温度为200-300摄氏度。
如图3中所示,所述偶极天线113为两个对称排布的低温生长的砷化镓薄片,均呈T型。所述偶极天线113之间的最大间距Lm为200μm,最小间距Ls为5μm,所述偶极天线113的长度d为20μm,所述偶极天线113的厚度W为10μm。偶极天线113粘合在低温砷化镓波片层112上。电流探测装置15与所述偶极天线113连接,用于提取太赫兹波200驱动偶极天线113生成的载流子所形成的电流信号。
在一实施例中,所述绝缘层114为二氧化硅层,厚度为500nm。
在一实施例中,所述带孔金属板115为厚度300nm、边长2mm的铝片,所述铝片上设有边长20μm的方形孔,所述方形孔的中心对准所述偶极天线113的中心。可以理解,方形孔也可以是圆形孔等。偶极天线113的中心,是指两个T型低温砷化镓薄片的几何中心点,如图3中A所示位置。
上述太赫兹近场探测器在太赫兹时域光谱系统中工作的过程大致如下:探测光经过光纤传输后,被一对透镜扩束之后再聚焦于偶极天线上激发产生载流子。太赫兹波经过样本后,通过太赫兹近场探测器接收,并驱动载流子形成电流信号被电流探测装置提取。太赫兹近场探测器中的光电导天线与透镜组合在一起成为光电导探头并安装在调整架上,通过调整架调节样本与探头之间的距离,从而实现样品的三维太赫兹成像扫描。
本发明还提供一种上述的光电导天线的制作方法,步骤包括:
偶极天线的形成步骤,包括在半绝缘砷化镓衬底上形成隔断层,再在隔断层上低温生长砷化镓薄膜层,并蚀刻所述低温砷化镓薄膜层形成两个对称排布的T型结构;
低温砷化镓波片层粘合步骤,将经过所述形成步骤获得的偶极天线结构与低温砷化镓波片层粘合,且所述T型结构邻近所述低温砷化镓波片层;
衬底粘合步骤,将经过所述低温砷化镓波片层粘合步骤获得的结构与蓝宝石衬底通过环氧树脂层粘接;
绝缘层形成步骤,包括湿法刻蚀和反应离子刻蚀去除所述砷化镓衬底,并用氟化氢去除所述隔断层,然后在暴露出的低温生长的砷化镓薄膜层上沉积二氧化硅绝缘层;
带孔金属板形成步骤,将带孔金属板设置在所述绝缘层上。
在一实施例中,隔断层为厚度为100nm的砷化铝层。
在一实施例中,砷化镓衬底的厚度为650μm。低温砷化镓层的厚度为1.5μm。
在一实施例中,绝缘层形成步骤中,通过湿法刻蚀所述砷化镓衬底消减大约600μm,等快要接触到砷化铝层时,再用由SF6和SiCl4制成的混合试剂采用反应离子刻蚀法擦去剩下的50μm的砷化镓衬底。而砷化铝层则使用氟化氢擦去,最后暴露出低温生长的砷化镓薄膜层,厚度大约为1μm。
在一实施例中,通过沉积的方法将绝缘层设置在所述暴露的低温生长的砷化镓薄膜层上。绝缘层为厚度500nm的二氧化硅层。
在一实施例中,带孔金属板为厚度300nm,边长2mm的铝薄片,铝薄片上开一个边长为20μm的方形孔,孔中心对准偶极天线的中心,误差在正负2μm左右。
由于带孔铝薄片的使用导致背景噪声信号的大幅衰减,提高了近场探测的空间分辨率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种用于太赫兹近场探测的光电导天线,其特征在于,包括:
    衬底;
    低温砷化镓波片层,粘合在衬底上;
    偶极天线,为低温生长的砷化镓薄片并粘合在低温砷化镓波片层上;
    绝缘层,设置在偶极天线上;以及
    带孔金属板,设置在绝缘层上。
  2. 根据权利要求1所述的用于太赫兹近场探测的光电导天线,其特征在于,所述衬底为蓝宝石衬底。
  3. 根据权利要求1所述的用于太赫兹近场探测的光电导天线,其特征在于,所述低温砷化镓波片层为方形或者圆形。
  4. 根据权利要求1所述的用于太赫兹近场探测的光电导天线,其特征在于,所述低温砷化镓波片层与衬底通过光学胶层粘接。
  5. 根据权利要求1所述的用于太赫兹近场探测的光电导天线,其特征在于,所述偶极天线为两个对称排布的T型低温砷化镓薄片。
  6. 根据权利要求5所述的用于太赫兹近场探测的光电导天线,其特征在于,所述带孔金属板为铝片,所述铝片上设有孔,所述孔的中心对准所述偶极天线的中心。
  7. 根据权利要求1所述的用于太赫兹近场探测的光电导天线,其特征在于,所述绝缘层为二氧化硅层。
  8. 一种太赫兹近场探测器,用于收集透过样本的太赫兹波,其特征在于包括权利要求1-7项中任意一项所述的光电导天线,以及透镜和调整架,所述光电导天线与透镜集成在一起成为光电导探头,而光电导探头设置在调整架上,调整架能够调整样本与光电导探头之间的距离。
  9. 一种权利要求1-7项中任意一项所述的光电导天线的制作方法,步骤包括:
    偶极天线的形成步骤,包括在半绝缘砷化镓衬底上形成隔断层,再在隔断层上低温生长砷化镓薄膜层,并蚀刻所述砷化镓薄膜层形成两个对称排布的T型结构;
    低温砷化镓波片层粘合步骤,将经过所述形成步骤获得的偶极天线结构与低温砷化镓波片层粘合,且所述T型结构邻近所述低温砷化镓波片层;
    衬底粘合步骤,将经过所述粘合步骤获得的结构与蓝宝石衬底通过环氧树脂层粘接;
    绝缘层形成步骤,包括湿法刻蚀和反应离子刻蚀去除所述砷化镓衬底,并用氟化氢去除所述隔断层,然后在暴露出的低温生长的砷化镓薄膜层上沉积二氧化硅绝缘层;
    带孔金属板形成步骤,将带孔金属板设置在所述绝缘层上。
PCT/CN2016/094660 2016-05-24 2016-08-11 太赫兹近场探测器、光电导天线及其制作方法 WO2017201888A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16894813.1A EP3273529B1 (en) 2016-05-24 2016-08-11 Tetrahertz near-field detector, photoconductive antenna, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610349988.1 2016-05-24
CN201610349988.1A CN105870582B (zh) 2016-05-24 2016-05-24 太赫兹近场探测器、光电导天线及其制作方法

Publications (1)

Publication Number Publication Date
WO2017201888A1 true WO2017201888A1 (zh) 2017-11-30

Family

ID=56635927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094660 WO2017201888A1 (zh) 2016-05-24 2016-08-11 太赫兹近场探测器、光电导天线及其制作方法

Country Status (3)

Country Link
EP (1) EP3273529B1 (zh)
CN (1) CN105870582B (zh)
WO (1) WO2017201888A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374570A (zh) * 2018-11-02 2019-02-22 首都师范大学 一种太赫兹生物传感器件
CN110243470A (zh) * 2019-07-25 2019-09-17 桂林航天工业学院 一种灵敏度高的太赫兹近场探测器
CN113267465A (zh) * 2021-05-13 2021-08-17 重庆邮电大学 一种基于时域光谱技术的太赫兹双模式成像系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870582B (zh) * 2016-05-24 2017-07-18 深圳市太赫兹系统设备有限公司 太赫兹近场探测器、光电导天线及其制作方法
EP3546904A1 (en) * 2018-03-30 2019-10-02 Centre National De La Recherche Scientifique Generation and detection of terahertz radiation with an arbitrary polarization direction
CN109490241B (zh) * 2018-12-07 2021-08-10 江南大学 基于光电导天线阵列的快速动态太赫兹近场成像系统及其构建方法
CN111486976A (zh) * 2020-05-14 2020-08-04 电子科技大学 一种基于缺陷感应面的小型化太赫兹信号探测器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483350A (zh) * 2009-06-03 2012-05-30 皇家飞利浦电子股份有限公司 太赫兹频率范围天线
CN102692383A (zh) * 2011-03-23 2012-09-26 精工爱普生株式会社 太赫兹波检测装置、太赫兹滤波器、成像装置及计测装置
CN203365739U (zh) * 2013-05-30 2013-12-25 中国科学院西安光学精密机械研究所 一种太赫兹波发射/接收集成模块
CN105589119A (zh) * 2016-02-29 2016-05-18 中国科学院半导体研究所 带有dbr层的太赫兹光电导天线外延结构及制备方法
CN105870582A (zh) * 2016-05-24 2016-08-17 深圳市太赫兹系统设备有限公司 太赫兹近场探测器、光电导天线及其制作方法
CN205786306U (zh) * 2016-05-24 2016-12-07 深圳市太赫兹系统设备有限公司 太赫兹近场探测器及其光电导天线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615787B2 (en) * 2004-03-26 2009-11-10 Canon Kabushiki Kaisha Photo-semiconductor device and method of manufacturing the same
US8274058B1 (en) * 2006-01-25 2012-09-25 Sandia Corporation Integrated heterodyne terahertz transceiver
JP4807707B2 (ja) * 2007-11-30 2011-11-02 キヤノン株式会社 波形情報取得装置
KR20110061827A (ko) * 2009-12-02 2011-06-10 한국전자통신연구원 다결정 갈륨비소 박막을 포함하는 광전도체 소자 및 그 제조방법
KR101273525B1 (ko) * 2009-12-11 2013-06-14 한국전자통신연구원 광전도 안테나에 볼렌즈를 형성하는 테라헤르츠파 송수신 모듈 제조 방법
JP2014202539A (ja) * 2013-04-02 2014-10-27 パイオニア株式会社 テラヘルツ波計測装置
JP2016085396A (ja) * 2014-10-28 2016-05-19 セイコーエプソン株式会社 短光パルス発生装置、テラヘルツ波発生装置、カメラ、イメージング装置、および計測装置
CN104614315B (zh) * 2015-01-16 2017-05-17 北京科技大学 太赫兹吸收谱的测试样品架、切换式测试系统和测试方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483350A (zh) * 2009-06-03 2012-05-30 皇家飞利浦电子股份有限公司 太赫兹频率范围天线
CN102692383A (zh) * 2011-03-23 2012-09-26 精工爱普生株式会社 太赫兹波检测装置、太赫兹滤波器、成像装置及计测装置
CN203365739U (zh) * 2013-05-30 2013-12-25 中国科学院西安光学精密机械研究所 一种太赫兹波发射/接收集成模块
CN105589119A (zh) * 2016-02-29 2016-05-18 中国科学院半导体研究所 带有dbr层的太赫兹光电导天线外延结构及制备方法
CN105870582A (zh) * 2016-05-24 2016-08-17 深圳市太赫兹系统设备有限公司 太赫兹近场探测器、光电导天线及其制作方法
CN205786306U (zh) * 2016-05-24 2016-12-07 深圳市太赫兹系统设备有限公司 太赫兹近场探测器及其光电导天线

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374570A (zh) * 2018-11-02 2019-02-22 首都师范大学 一种太赫兹生物传感器件
CN109374570B (zh) * 2018-11-02 2023-11-21 首都师范大学 一种太赫兹生物传感器件
CN110243470A (zh) * 2019-07-25 2019-09-17 桂林航天工业学院 一种灵敏度高的太赫兹近场探测器
CN110243470B (zh) * 2019-07-25 2024-02-27 桂林航天工业学院 一种灵敏度高的太赫兹近场探测器
CN113267465A (zh) * 2021-05-13 2021-08-17 重庆邮电大学 一种基于时域光谱技术的太赫兹双模式成像系统及方法
CN113267465B (zh) * 2021-05-13 2023-04-18 重庆邮电大学 一种基于时域光谱技术的太赫兹双模式成像系统及方法

Also Published As

Publication number Publication date
EP3273529B1 (en) 2019-12-25
EP3273529A4 (en) 2018-08-08
CN105870582B (zh) 2017-07-18
EP3273529A1 (en) 2018-01-24
CN105870582A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2017201888A1 (zh) 太赫兹近场探测器、光电导天线及其制作方法
US10450650B2 (en) Method of manufacturing large area graphene and graphene-based photonics devices
US5294289A (en) Detection of interfaces with atomic resolution during material processing by optical second harmonic generation
US7898280B2 (en) Electrical characterization of semiconductor materials
US6734974B2 (en) Terahertz imaging with dynamic aperture
US20180053871A1 (en) Graphene-based detector for w-band and terahertz radiations
Zorabedian et al. Measurement of local stress in laser‐recrystallized lateral epitaxial silicon films over silicon dioxide using Raman scattering
CN102445711A (zh) 一种太赫兹波探测器
EP3039722B1 (en) Detection of terahertz radiation
RU2012128850A (ru) Тера- и гигагерцовый твердотельный миниатюрный спектрометр
JP2012505408A (ja) 電磁放射線を検出する装置および方法
Stenger et al. Thin film lithium tantalate (TFLT) pyroelectric detectors
CN110224034A (zh) 一种具有谐振选频功能的金属微腔红外探测器
Zhang et al. Interfacial stress characterization of GaN epitaxial layer with sapphire substrate by confocal Raman spectroscopy
CN112284510A (zh) 一种多层二维半导体中相干声学声子回波诱导与探测方法
Delaunay et al. Substrate removal for high quantum efficiency back side illuminated type-II InAs∕ GaSb photodetectors
CN115872349B (zh) 一种太赫兹探测器芯片的三维封装结构
But et al. Silicon based resonant power detector for 620 GHz
KR102098284B1 (ko) 반도체 물질의 전기광학적 특성 비접촉식 측정 시스템
JP6705672B2 (ja) 電磁波計測装置
Li et al. Responsivity performance of extended wavelength InGaAs shortwave infrared detector arrays
JP2001035894A (ja) 半導体ウェーハ特性の評価装置
TWI788105B (zh) 半導體晶圓檢測方法及半導體晶圓檢測裝置
CN113884471B (zh) 一种二维材料的晶向测试装置和方法
Xu et al. Performance enhanced terahertz imaging using a high-response thermomechanical microcantilever FPA

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016894813

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE