WO2017201784A1 - 透镜光栅、3d显示器及电子装置 - Google Patents

透镜光栅、3d显示器及电子装置 Download PDF

Info

Publication number
WO2017201784A1
WO2017201784A1 PCT/CN2016/086720 CN2016086720W WO2017201784A1 WO 2017201784 A1 WO2017201784 A1 WO 2017201784A1 CN 2016086720 W CN2016086720 W CN 2016086720W WO 2017201784 A1 WO2017201784 A1 WO 2017201784A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
substrate
liquid crystal
concave spherical
Prior art date
Application number
PCT/CN2016/086720
Other languages
English (en)
French (fr)
Inventor
谢畅
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/111,014 priority Critical patent/US20170371169A1/en
Publication of WO2017201784A1 publication Critical patent/WO2017201784A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B2005/1804Transmission gratings

Definitions

  • the present invention relates to the technical field of liquid crystal display, and in particular to a lens grating, a 3D display, and an electronic device.
  • the naked-eye 3D display technology can realize the effect of displaying 3D images when viewing characters and pictures without using special glasses, and the technology is closer to the user's daily use habits, so the naked-eye 3D display technology has also become a trend of development in the future.
  • a naked-eye 3D display device it is generally displayed in a two-view area, and the viewing angle range is narrow.
  • the observer can only see the 3D display image in the two areas, when the human eye is not in the two areas, only Can see 2D images or ghosts, even without seeing images. Therefore, there is a need to provide a liquid crystal display device having a wide viewing angle range.
  • Another object of the present invention is to provide a 3D display using the above lens grating.
  • Another object of the present invention is to provide an electronic device using the above 3D display.
  • the present invention provides a lens grating, comprising: a first substrate and a second substrate disposed opposite to each other, a first electrode layer on the first substrate, a resin layer on the first electrode layer, and a a second electrode layer on the second substrate, and a liquid crystal layer sandwiched between the resin layer and the second electrode layer, wherein the resin layer is provided with a plurality of concave spherical surfaces facing one side of the liquid crystal layer .
  • the concave spherical surface is a concave hemispherical surface.
  • the plurality of concave spherical surfaces are connected end to end.
  • the plurality of concave spherical surfaces have the same radius and are between 2.5 um and 25 um.
  • the first electrode layer is a common electrode layer
  • the second electrode layer is a pixel electrode layer.
  • the present invention provides a 3D display comprising a lens grating, a liquid crystal panel and a backlight module which are sequentially stacked, the lens grating comprising: a first substrate and a second substrate disposed opposite each other, and a first on the first substrate An electrode layer, a resin layer on the first electrode layer, a second electrode layer on the second substrate, and a negative liquid crystal layer sandwiched between the resin layer and the second electrode layer, A side of the resin layer facing the negative liquid crystal layer is provided with a plurality of concave spherical surfaces.
  • the concave spherical surface is a concave hemispherical surface.
  • the plurality of concave spherical surfaces are connected end to end.
  • the plurality of concave spherical surfaces have the same radius and are between 2.5 um and 25 um.
  • the present invention provides an electronic device, including a 3D display, comprising a lens grating, a liquid crystal panel, and a backlight module, which are sequentially stacked, wherein the lens grating includes: a first substrate and a second substrate disposed opposite to each other, a first electrode layer on the first substrate, a resin layer on the first electrode layer, a second electrode layer on the second substrate, and a second layer sandwiched between the resin layer and the second A negative liquid crystal layer between the electrode layers, a side of the resin layer facing the negative liquid crystal layer is provided with a plurality of concave spherical surfaces.
  • the concave spherical surface is a concave hemispherical surface.
  • the plurality of concave spherical surfaces are connected end to end.
  • the plurality of concave spherical surfaces have the same radius and are between 2.5 um and 25 um.
  • the first electrode layer is a common electrode layer
  • the second electrode layer is a pixel electrode layer.
  • the lens grating of the present invention by providing a plurality of concave spherical surfaces on the side of the resin layer close to the liquid crystal layer, the thickness of the liquid crystal layer at the concave spherical surface is gradually changed from thick to thin from the center to the periphery.
  • the viewer can view from a top, bottom, left or right or oblique angle, and can display a wide viewing angle, thereby expanding the viewing angle range of the 3D effect and improving the 3D stereoscopic display effect.
  • the 3D display and electronic device of the present invention have a large viewing angle range and a preferred 3D stereoscopic display effect.
  • 1 is a schematic view showing the structure of a 3D display of the present invention.
  • FIG. 2 is a schematic view showing the structure of a lens grating of the 3D display of FIG. 1.
  • Fig. 3 is a plan view of the lens grating resin layer shown in Fig. 2;
  • FIG. 4 is a schematic view of the optical path when the lens grating electrode of FIG. 2 is connected to a voltage.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined.
  • the ground connection, or the integral connection may be a mechanical connection; it may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • the 3D display 500 includes a lens grating 100, a liquid crystal panel 200, and a backlight module 300 which are sequentially stacked.
  • the lens grating 100 includes a first substrate 10, a first electrode layer 11, a resin layer 12, a liquid crystal layer 30, a second electrode layer 21, and a second substrate 20.
  • the first substrate 10 and the second substrate 20 are oppositely disposed.
  • the first electrode layer 11 is located on a side of the first substrate 10 adjacent to the second substrate 20, and the resin layer 12 is stacked on the first electrode layer 11.
  • the second electrode layer 21 is located on a side of the second substrate 20 adjacent to the first substrate 10, and the liquid crystal layer 30 is sandwiched between the resin layer 12 and the second electrode layer 21.
  • the liquid crystal molecules in the liquid crystal layer 30 are negative liquid crystals. That is, the liquid crystal layer 30 is a negative liquid crystal layer. More specifically, a plurality of concave spherical surfaces 120 are provided on one side of the resin layer 12 facing the liquid crystal layer 30. The center of the concave spherical surface 120 is biased toward the liquid crystal layer 30.
  • the negative liquid crystal when the first electrode layer 11 and the second electrode layer 21 are not applied with voltage, the negative liquid crystal has no initial orientation, and is in an isotropic state, and the light passes through the isotropic state of the liquid crystal layer. No optical focusing occurs on the lens grating 100, and this is a 2D display state.
  • the first electrode layer 11 and the second electrode layer 21 when the first electrode layer 11 and the second electrode layer 21 are applied with a voltage, the negative liquid crystal molecules are subjected to an electric field force and are gradually arranged horizontally. At this time, the concave spherical surface 120 on the resin layer 12 is designed to be concave.
  • the intermediate portion of the spherical surface 120 is larger than the thickness of the peripheral portion, and the intermediate portion of the concave spherical surface 120 can accommodate more negative liquid crystal molecules, and the peripheral portion of the concave spherical surface 120 has a small cell thickness and can accommodate negative liquid crystal molecules. less. That is to say, at this time, the thickness of the liquid crystal layer 30 in each of the concave spherical surfaces 120 in the lens grating 100 is a gradient state from thick to thin from the center to the periphery. At this time, light rays (the dotted arrows in Fig. 3 indicate optical paths) are optically focused by the liquid crystal layer 30 which is arranged in a gradation, and are in a 3D display state.
  • the thickness of the liquid crystal molecular layer is from the center to the periphery (360 degrees without dead angle), it shows a gradual change from thick to thin, and the viewer can display a wide viewing angle regardless of whether the viewer views from up, down, left or right or obliquely. State, so this design can expand the range of viewing angles of 3D effects and improve the 3D stereoscopic display.
  • the liquid crystal display panel 200 includes a plurality of pixel regions (not shown), each of which includes a plurality of sub-pixel regions (not shown). In order to ensure a better 3D display effect, it should be ensured that each sub-pixel region of the liquid crystal panel 200 corresponds to one or more concave spherical surfaces 120.
  • the plurality of concave spherical surfaces 120 should be connected end to end. In other words, there is no space between adjacent concave spherical surfaces 120.
  • the concave spherical surface 120 is a concave hemispherical surface. That is to say, the depth of the concave spherical surface 120 at this time is its radius value.
  • the size of the radius r of each concave spherical surface 120 can be set as needed.
  • the radius r of the concave spherical surface 120 should satisfy 2.5 um ⁇ r ⁇ 25 um.
  • the radius r of each concave spherical surface 120 is the same.
  • the first substrate 10 is a color filter substrate
  • the first electrode layer 11 is a common electrode layer
  • the second substrate 20 is an array substrate
  • the second electrode layer 21 is a pixel. Electrode layer.
  • the materials of the first substrate 10 and the second substrate 20 may be glass or other transparent materials. For example, it is PET, APET, PC, PMMA or glass, and those skilled in the art can select a suitable material according to actual needs.
  • the resin layer 12 is a UV resin layer. This is because the production efficiency of the UV resin layer is higher, the production efficiency of the entire columnar grating film can be improved, and the organic volatile matter of the UV resin layer is small, and the environmental impact is not adversely affected.
  • the present invention also provides an electronic device employing any of the above-described 3D displays 500.
  • the electronic device may include, but is not limited to, an electronic paper, a liquid crystal television, a mobile phone, a digital photo frame, a tablet computer, and the like, or any product or component having a display function.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种透镜光栅(100),包括:相对设置的第一基板(10)和第二基板(20)、位于所述第一基板(10)上的第一电极层(11)、位于所述第一电极层(11)上的树脂层(12)、位于所述第二基板(20)上的第二电极层(21)、及夹在所述树脂层(12)和所述第二电极层(21)之间的液晶层(30),所述树脂层(12)面向所述液晶层(30)的一侧设有多个凹形球面(120)。透镜光栅(100)中,通过在树脂层(12)上靠近液晶层(30)的一侧设置多个凹形球面(120)的方法,使得凹形球面(120)处的液晶层(30)的厚度由中心到周边呈现从厚到薄的渐变状态,观看者从上下左右或者斜向角度来观看,均能呈现宽视角的状态,从而达到扩大3D效果可视角度范围,提高了3D立体显示效果。3D显示器(500)和电子装置具有较大的可视角范围和较佳的3D立体显示效果。

Description

透镜光栅、3D显示器及电子装置
本发明要求2016年5月26日递交的发明名称为“透镜光栅、3D显示器及电子装置”的申请号201610361769.5的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及液晶显示的技术领域,具体是涉及一种透镜光栅、3D显示器及电子装置。
背景技术
裸眼3D显示技术能够实现在不使用专用眼镜的情况下,观看文字及图画时呈现出3D影像的效果,给技术更接近用户日常使用习惯,因而裸眼3D显示技术也成为未来的发展的趋势。
目前,对于裸眼3D显示装置来说,一般都是两视点区域显示,视角范围较窄,观察者只能在这两个区域内看到3D显示影像,当人眼不在这两个区域后,只能看到2D影像或重影,甚至于看不到影像。因此,亟需提供一种具有大视角范围的液晶显示装置。
发明内容
本发明的目的在于提供一种透镜光栅,使用该透镜光栅能够扩大3D显示器的视角范围,提升图像的显示效果。
本发明的另一目的在于提供一种采用上述透镜光栅的3D显示器。
本发明的另一目的在于提供一种采用上述3D显示器的电子装置。
为了实现上述目的,本发明实施方式提供如下技术方案:
本发明提供一种透镜光栅,其中,包括:相对设置的第一基板和第二基板、位于所述第一基板上的第一电极层、位于所述第一电极层上的树脂层、位于所述第二基板上的第二电极层、及夹在所述树脂层和所述第二电极层之间的液晶层,所述树脂层面向所述液晶层的一侧设有多个凹形球面。
其中,所述凹形球面为凹形半球面。
其中,所述多个凹形球面首尾相连。
其中,所述多个凹形球面的半径大小相同且介于2.5um~25um之间。
其中,所述第一电极层为公共电极层,所述第二电极层为像素电极层。
本发明提供一种3D显示器,包括依次层叠设置的透镜光栅、液晶面板和背光模组,所述透镜光栅包括:相对设置的第一基板和第二基板、位于所述第一基板上的第一电极层、位于所述第一电极层上的树脂层、位于所述第二基板上的第二电极层、及夹在所述树脂层和所述第二电极层之间的负性液晶层,所述树脂层面向所述负性液晶层的一侧设有多个凹形球面。
其中,所述凹形球面为凹形半球面。
其中,所述多个凹形球面首尾相连。
其中,所述多个凹形球面的半径大小相同且介于2.5um~25um之间。
本发明提供一种电子装置,包括3D显示器,所述3D显示器包括依次层叠设置的透镜光栅、液晶面板和背光模组,其中,所述透镜光栅包括:相对设置的第一基板和第二基板、位于所述第一基板上的第一电极层、位于所述第一电极层上的树脂层、位于所述第二基板上的第二电极层、及夹在所述树脂层和所述第二电极层之间的负性液晶层,所述树脂层面向所述负性液晶层的一侧设有多个凹形球面。
其中,所述凹形球面为凹形半球面。
其中,所述多个凹形球面首尾相连。
其中,所述多个凹形球面的半径大小相同且介于2.5um~25um之间。
其中,所述第一电极层为公共电极层,所述第二电极层为像素电极层。
本发明实施例具有如下优点或有益效果:
本发明的透镜光栅中,通过在树脂层上靠近液晶层的一侧设置多个凹形球面的方法,使得凹形球面处的液晶层的厚度由中心到周边呈现从厚到薄的渐变状态,观看者从上下左右或者斜向角度来观看,均能呈现宽视角的状态,从而达到扩大3D效果可视角度范围,提高了3D立体显示效果。本发明的3D显示器和电子装置具有较大的可视角范围和较佳的3D立体显示效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明3D显示器结构示意图。
图2是图1所述的3D显示器的透镜光栅结构示意图。
图3是图2所述的透镜光栅树脂层俯视图。
图4是图2所述的透镜光栅电极层接电压时光路示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本发明,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸地连接,或者一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。若本说明书中出现“工序”的用语,其不仅是指独立的工序,在与其它工序无法明确区别时,只要能实现该工序所预期的作用则也包括在本用语中。另外,本说明书中用“~”表示的数值范围是指将“~”前后记载的数值分别作为最小值及最大值包括在内的范围。在附图中,结构相似或相同的用相同的标号表示。
请参阅图1和图2,本发明的一个实施例中,3D显示器500包括依次层叠设置的透镜光栅100、液晶面板200和背光模组300。所述透镜光栅100包括第一基板10、第一电极层11、树脂层12、液晶层30、第二电极层21和第二基板20。其中,所述第一基板10和所述第二基板20相对设置。所述第一电极层11位于所述第一基板10上靠近所述第二基板20的一侧,所述树脂层12层叠设置在所述第一电极层11之上。所述第二电极层21位于所述第二基板20上靠近所述第一基板10的一侧,所述液晶层30夹在所述树脂层12和所述第二电极层21之间。所述液晶层30中的液晶分子为负性液晶。也就是说所述液晶层30为负性液晶层。进一步具体的,树脂层12面向所述液晶层30的一侧设有多个凹形球面120。所述凹形球面120的圆心偏向所述液晶层30。
具体的,请参阅图2,当第一电极层11和第二电极层21不加电压时,由于负性液晶没分子有初始取向,处于各向同性状态,光线通过各向同性状态的液晶层,在透镜光栅100上不会发生光学聚焦,此时为2D显示状态。请参阅图3,当第一电极层11和第二电极层21加电压时,负性液晶分子受到电场力的作用,逐渐水平排列,此时树脂层12上的凹形球面120设计,凹形球面120的中间区域比周边区域的盒厚大,凹形球面120的中间区域可以容纳较多的负性液晶分子,凹形球面120的周边区域的盒厚较小,可以容纳的负性液晶分子少。也就是说,此时透镜光栅100中每个凹形球面120中的液晶层30厚度均由中心到周边呈现从厚到薄的渐变状态。此时,光线(图3中虚线箭头表示光路)通过渐变排列的液晶层30,发生光学聚焦,呈3D显示状态。同时,由于液晶分子层厚度从中心到周边的各个方向(360度无死角),均呈现从厚到薄的渐变状态,无论观看者从上下左右或者斜向角度来观看,均能呈现宽视角的状态,所以该设计可以扩大3D效果可视角度范围,提高了3D立体显示效果。
可以理解的是,液晶显示面板200包括多个像素区域(图未示出),每个像素区域均包括多个子像素区域(图未示出)。为了保证较佳的3D显示效果,应保证液晶面板200的每个子像素区域都对应一个或多个凹形球面120。
进一步的,为了使得显示的图像连贯性较好,以获得较佳的显示效果。优选的,所述多个凹形球面120应当首尾相连.换而言之,相邻连个凹形球面120之间没有间隔。
优选的,为了最大程度扩大视角,应保证所述凹形球面120为凹形半球面。也就是说,此时凹形球面120的深度为其半径值。
可以理解的是,每个凹形球面120的半径r的大小可根据需要设定。凹形球面120的半径r的值越小,对于视角的调节越精确,对远视或者近视的改善效果越好。优选的,为保证每个子像素区域内对应至少一个所述凹形球面120,所述凹形球面120的半径r,应满足2.5um≤r≤25um。此外,为了使得显示的图像比较均匀,应保证每个凹形球面120的半径r的大小相同。
本发明具体的实施例中,所述第一基板10为彩膜基板,所述第一电极层11为公共电极层,所述第二基板20为阵列基板,所述第二电极层21为像素电极层。进一步具体的,第一基板10和第二基板20的材料可以为玻璃或其他透明材料。例如:为PET、APET、PC、PMMA或玻璃,本领域技术人员可以根据实际的需要选自合适的材料。
优选的,本发明的一个优选的实施例中,所述树脂层12为UV树脂层。这是因为UV树脂层的生产效率更高,能够提高整个柱状光栅膜的生产效率,同时UV树脂层的有机挥发分少,不会对环境产生不良影响。
本发明还提供一种电子装置,该电子装置采用上述任意一种3D显示器500。该电子装置可以包括但不限于为:电子纸、液晶电视、移动电话、数码相框、平板电脑等任何具有显示功能的产品或部件。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (14)

  1. 一种透镜光栅,其中,包括:相对设置的第一基板和第二基板、位于所述第一基板上的第一电极层、位于所述第一电极层上的树脂层、位于所述第二基板上的第二电极层、及夹在所述树脂层和所述第二电极层之间的液晶层,所述树脂层面向所述液晶层的一侧设有多个凹形球面。
  2. 如权利要求1所述的透镜光栅,其中,所述凹形球面为凹形半球面。
  3. 如权利要求1所述的透镜光栅,其中,所述多个凹形球面首尾相连。
  4. 如权利要求1所述的透镜光栅,其中,所述多个凹形球面的半径大小相同且介于2.5um~25um之间。
  5. 如权利要求1所述的透镜光栅,其中,所述第一电极层为公共电极层,所述第二电极层为像素电极层。
  6. 一种3D显示器,包括依次层叠设置的透镜光栅、液晶面板和背光模组,其中,所述透镜光栅包括:相对设置的第一基板和第二基板、位于所述第一基板上的第一电极层、位于所述第一电极层上的树脂层、位于所述第二基板上的第二电极层、及夹在所述树脂层和所述第二电极层之间的负性液晶层,所述树脂层面向所述负性液晶层的一侧设有多个凹形球面。
  7. 如权利要求6所述的3D显示器,其中,所述凹形球面为凹形半球面。
  8. 如权利要求6所述的3D显示器,其中,所述多个凹形球面首尾相连。
  9. 如权利要求6所述的3D显示器,其中,所述多个凹形球面的半径大小相同且介于2.5um~25um之间。
  10. 一种电子装置,包括3D显示器,所述3D显示器包括依次层叠设置的透镜光栅、液晶面板和背光模组,其中,所述透镜光栅包括:相对设置的第一基板和第二基板、位于所述第一基板上的第一电极层、位于所述第一电极层上的树脂层、位于所述第二基板上的第二电极层、及夹在所述树脂层和所述第二电极层之间的负性液晶层,所述树脂层面向所述负性液晶层的一侧设有多个 凹形球面。
  11. 如权利要求10所述的电子装置,其中,所述凹形球面为凹形半球面。
  12. 如权利要求10所述的电子装置,其中,所述多个凹形球面首尾相连。
  13. 如权利要求10所述的电子装置,其中,所述多个凹形球面的半径大小相同且介于2.5um~25um之间。
  14. 如权利要求10所述的电子装置,其中,所述第一电极层为公共电极层,所述第二电极层为像素电极层。
PCT/CN2016/086720 2016-05-26 2016-06-22 透镜光栅、3d显示器及电子装置 WO2017201784A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/111,014 US20170371169A1 (en) 2016-05-26 2016-06-22 Lens grates, three dimensional (3d) display devices, and electronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610361769.5 2016-05-26
CN201610361769.5A CN106054415A (zh) 2016-05-26 2016-05-26 透镜光栅、3d显示器及电子装置

Publications (1)

Publication Number Publication Date
WO2017201784A1 true WO2017201784A1 (zh) 2017-11-30

Family

ID=57174758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086720 WO2017201784A1 (zh) 2016-05-26 2016-06-22 透镜光栅、3d显示器及电子装置

Country Status (3)

Country Link
US (1) US20170371169A1 (zh)
CN (1) CN106054415A (zh)
WO (1) WO2017201784A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079224A (zh) * 2020-08-11 2022-02-22 奇景光电股份有限公司 光学元件和晶圆级光学模块

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107632451B (zh) * 2017-10-26 2020-05-12 京东方科技集团股份有限公司 一种显示面板、显示装置及显示方法
CN109116616A (zh) * 2018-08-27 2019-01-01 上海天马微电子有限公司 一种液晶显示面板、三维打印装置及其制作方法
CN112397560B (zh) * 2020-11-10 2022-09-27 武汉华星光电半导体显示技术有限公司 裸眼3d显示面板及其制备方法
CN114236897B (zh) * 2021-12-14 2022-10-04 武汉华星光电技术有限公司 显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069650A (en) * 1996-11-14 2000-05-30 U.S. Philips Corporation Autostereoscopic display apparatus
CN1892289A (zh) * 2005-07-07 2007-01-10 三星电子株式会社 2维-3维可切换裸眼式立体显示装置
CN101387758A (zh) * 2007-09-14 2009-03-18 北京超多维科技有限公司 2d-3d可转换立体显示装置
CN101881848A (zh) * 2010-07-01 2010-11-10 深圳超多维光电子有限公司 一种双折射透镜光栅的制造及检测装置以及方法
CN102967893A (zh) * 2012-11-23 2013-03-13 深圳超多维光电子有限公司 一种透镜光栅、立体显示装置
KR20130064333A (ko) * 2011-12-08 2013-06-18 엘지디스플레이 주식회사 무안경 방식의 2차원/3차원 영상 표시장치
CN103592772A (zh) * 2012-08-16 2014-02-19 乐金显示有限公司 立体图像显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281795B2 (en) * 2014-12-29 2019-05-07 Lg Display Co., Ltd. Liquid crystal lens film structure, method of fabricating the same and image display device with the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069650A (en) * 1996-11-14 2000-05-30 U.S. Philips Corporation Autostereoscopic display apparatus
CN1892289A (zh) * 2005-07-07 2007-01-10 三星电子株式会社 2维-3维可切换裸眼式立体显示装置
CN101387758A (zh) * 2007-09-14 2009-03-18 北京超多维科技有限公司 2d-3d可转换立体显示装置
CN101881848A (zh) * 2010-07-01 2010-11-10 深圳超多维光电子有限公司 一种双折射透镜光栅的制造及检测装置以及方法
KR20130064333A (ko) * 2011-12-08 2013-06-18 엘지디스플레이 주식회사 무안경 방식의 2차원/3차원 영상 표시장치
CN103592772A (zh) * 2012-08-16 2014-02-19 乐金显示有限公司 立体图像显示装置
CN102967893A (zh) * 2012-11-23 2013-03-13 深圳超多维光电子有限公司 一种透镜光栅、立体显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079224A (zh) * 2020-08-11 2022-02-22 奇景光电股份有限公司 光学元件和晶圆级光学模块
CN114079224B (zh) * 2020-08-11 2024-02-06 奇景光电股份有限公司 光学元件和晶圆级光学模块

Also Published As

Publication number Publication date
US20170371169A1 (en) 2017-12-28
CN106054415A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
TWI714990B (zh) 顯示裝置
WO2017201784A1 (zh) 透镜光栅、3d显示器及电子装置
JP5749960B2 (ja) 表示装置および電子機器
US10718944B2 (en) Near-eye display device with phase modulation
TWI382207B (zh) 彩色濾光基板、多視液晶顯示裝置及彩色濾光基板的製作方法
JP2015187736A (ja) 光学装置及びその光学装置を組み込んだ自動立体視ディスプレイ装置
JP2008191325A (ja) 表示装置
JP2008242307A (ja) マイクロレンズアレイ付き液晶表示パネル
WO2018045832A1 (zh) 虚拟曲面显示面板、显示装置及显示方法
CN107329309B (zh) 显示模式控制装置及其控制方法、显示装置
WO2017215397A1 (zh) 虚拟曲面显示面板及显示装置
US20210088808A1 (en) Multi-view display device
WO2016115784A1 (zh) 基板、光栅以及显示面板
WO2016123955A1 (zh) 一种电致变色光栅、显示面板及显示装置
CN105208255A (zh) 摄像头组件
WO2017201783A1 (zh) 透镜光栅及3d显示器
US9374573B2 (en) Three-dimensional image display device
US9494814B2 (en) Multi panel display device
CN109164587A (zh) 一种显示装置用立体显示光学膜片
US20130033749A1 (en) Stereo display device and switching panel used in stereo display device
WO2021087882A1 (zh) 显示面板及显示面板的制作方法
CN109407391B (zh) 透明液晶显示装置
TW201018994A (en) Liquid crystal three-dimensional display device
KR20200009166A (ko) 증강 현실 제공 장치와 그의 구동방법
EP4239377A1 (en) Lens array and display device including the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15111014

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902773

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902773

Country of ref document: EP

Kind code of ref document: A1