TW201018994A - Liquid crystal three-dimensional display device - Google Patents

Liquid crystal three-dimensional display device Download PDF

Info

Publication number
TW201018994A
TW201018994A TW97143762A TW97143762A TW201018994A TW 201018994 A TW201018994 A TW 201018994A TW 97143762 A TW97143762 A TW 97143762A TW 97143762 A TW97143762 A TW 97143762A TW 201018994 A TW201018994 A TW 201018994A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
substrate
display device
stereoscopic display
pixel
Prior art date
Application number
TW97143762A
Other languages
Chinese (zh)
Other versions
TWI370290B (en
Inventor
Cheng-Huan Chen
Yi-Pai Huang
Han-Ping Shieh
Shang-Chih Chuang
Chi-Lin Wu
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW097143762A priority Critical patent/TWI370290B/en
Publication of TW201018994A publication Critical patent/TW201018994A/en
Application granted granted Critical
Publication of TWI370290B publication Critical patent/TWI370290B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

The present invention related to a liquid crystal three-dimensional display device which comprises a first substrate formed plurality second pixel. Each second pixel comprises a switch component, storage electric capacity and a pervious to light zone which set in the corner of the second pixel area. The below surface of the pervious to light zone corresponds to a second substrate. To place between the top surface of the first substrate and the below surface of the second substrate which is the liquid crystal layer. The slope barrier is set at the outer of the second substrate and to produce at least one second pixel of the complete pervious to light zone and to be next to the second pixel of the storage electric capacity.

Description

201018994 九、發明說明: 【發明所屬之技術領域】 本發明係種液晶立體顯示裝置的結構,特別是一種 具有斜向電容結構之晝素的液晶立體顯示裝置的結構。 【先前技術】 自立體顯示器之原理自係彻雙眼視差而產生視覺深度 的效果。在硬體實現上,自立體顯示器產生立體影像之方式多 為使用一般二維(two dimensi〇n,2D)平面顯示器,外加空 間分割畫素或以時間多工之方式在各視角方向產不同之影 像。即為以多個不同視角方向之2D影像組合成—立體影像。 由於目前之平面顯示器響應速度尚不足以因應時間多工之需 求,因此目前商品化之立體(threedimensi〇n,3D)顯示器, 多為空間多工類型之自立體顯示器1〇,、1〇,,。分割各視域畫素 之方式包括:微柱狀透鏡陣列121 (Lenticular Array)與視 差遮罩122 (Parallax Barrier)等二種主要方式,分別如圖 1(a)以及圖1(b)所示之示意圖。微柱狀透鏡陣列121之自立 ® 體顯示^ 10’係细光折射原理將各視軸對應液晶顯示器^ 之晝素發出之光導向各視域區域,例如將左眼之影像導至觀看 者左眼,右眼像導至右眼,雖然效率較視差遮罩之自立體顯示 器咼’但雜散光導致之3D影像品質劣化較嚴重;視差遮罩eg 之自立體顯示器10”則是用遮擂之方式達到觀看者兩眼看到不 同影像之目的,例如左眼像傳播至右眼之光線被視差遮罩阻 檔,效率低但雜散光之影響較小。 無論是微柱狀透鏡陣列或視差遮罩之自立體顯示器,均是 割畫素來產生立體視域’但也導致立體解析度降低進而影響影 4 201018994 ,品質’如圖2(a)與(b)係六健點自立體顯示器之示意圖, 立體顯4 20 ’包括顯示㈣與視差遮罩22,因為六個視 點的自立II顯示器20必須輸入六個不同方位的影像資訊,所 ^我們把晝素分成六區晝素(pixel),包括:pixei !、_ 的二4、ΗΧ61 5以及PiXel 6 ’因此每個視點 的影像解析度會是原來螢幕解析度的1/6。立體影像則是由經 人類大腦融合兩張2D _Μ成,如圖2⑹所示,觀察者左 眼是看到PiXel 3所組成的影像,右眼是看到pixei 4所組成 的影像,經大腦融合而成一個3D的立體影像。 .因此目前立體顯示器推廣之主要瓶頸在於無法以現有之 技術與普及化之價格提供優f之立體畫像,而能夠刺激消費者 對立體顯之渴m諸多解決立爾降侧題之方 案中,以傾斜微柱狀透鏡陣列與視差遮罩而將解析度之下降均 分於垂直與水平方向之方式最為普遍。 在液晶顯示器(Licluid Crystal Display,LCD)中,每 =個晝素又由紅(red,R)、綠(_η,G)、藍⑸此,B) 二種不同顏色的次畫素(sub_pixel)所組成所以PM 1 包3 了 R卜G1與B1三個次畫素。因微柱狀透鏡陣列或視差遮 罩可以擺垂直的(straight)或是斜一個角度(slanted),如圖 3(a)與3(b)所示’分別為六個視點之垂直開口視差遮罩與斜 向開口視差遮罩之示意圖。如果將微柱狀透鏡陣列或視差遮罩 擺成垂直的’則每個視點的影像解析度為與LCD解析度比,在 ,平方向降六倍’在垂直方向不變;如果是斜一個角度的,則 每個視點的影像购度域LGD珊度比,在水平方向降三 倍,在垂直方向降二倍。如下表i所示係以解析度64〇χ驗 5 201018994 480之2. 83"液晶顯示器為例’人眼對水平的解析度比較敏 感,所以-衫視闕立體顯的之設計都砂斜向式的微柱 狀透鏡陣列或視差遮罩為主。 表1 ---Resolution nf view Numbers of views: 6 Straight Slanted ~106xRGBx480 ~213xRGBx240 習知之液晶顯示器之每-次畫素,包括:關元件(圖未 示)、儲存電容(Storage Capacitor,cs) 4卜突起物(Bump) 42、透光區以及對向的彩色縣層。其帽存電容可以利用間 極線(Gate Line)來設計儲存電容(Cs 〇n Gate),或是共通 線(Common Line)來設計儲存電容(Cs 〇n c〇_n)。但不管 是那一種設計,習知液晶顯示器之儲存電容的位置皆未考慮到 在自立體顯示器中的應用,因此配合微柱狀透鏡陣列或視差遮 罩製作成立體顯示器後’其光使用效率與立體影像品質均因面 板畫素特性與參數未此配合差視差遮罩的透光451與不透光 452處的位置而未最佳化,如圖4所示,係習知液晶顯示器畫 素搭配斜向開口視差遮罩之示意圖,造成漏光、亮度下降等問 題,進而影響到影像品質。 【發明内容】 本發明之一目的在於提供一種液晶立體顯示裝置的結 構,可以使各視點亮度均勻,並提高影像亮度及品質。 本發明之一目的在於提供一種液晶立體顯示裝置的結 構’包括.具有上表面以及下表面之第一基板,第一基板之上 表面具有複數個次晝素,每個次晝素包括:開關元件、設於次 201018994 畫素角落之儲存電容’以及透光區;具有上下二讎面的第二 基板’在下表面有相對於次畫素的複數個濾光區;夾置於第一 基板上表面以及第二基板下表面之間的液晶層;以及設置於第 一基板上表面之外侧的斜向遮罩,斜向遮罩露出至少一個次畫 素之全部透光區以及此一次晝素的鄰接次畫素之全部儲存電 容。 本發明之一目的在於提供一種液晶立體顯示裝置的結 構,包括:具有上表面以及下表面之第一基板,第一基板之上 表面具有複數個次畫素,每個次晝素包括:開關元件、設於次 畫素角落之儲存電容、透光區,以及凸起物設於該透光區之區 域内;具有上下二個表面的第二基板,在下表面有相對於次晝 素的複數個具有濾光層的濾光區,濾光層可以是紅色、綠色或 藍色’且相鄰濾光區之濾光層的顏色不同;第一基板之上表面 以及第一基板之下表面分別具有一配向層,液晶層夹置於該第 一基板與第二基板的配向層之間;於該第二基板上表面之外 側’設置可以是微柱狀透鏡陣列或視差遮罩的斜向遮罩,斜向 遮罩係露出至少一個次晝素之全部透光區以及此一次畫素的 鄰接次畫素之全部儲存電容;以及設置於該第一基板下表面外 側之光源。 【實施方式】 以下係以不同實施例說明本發明’所述之組成、排列及步 驟等,用以說明實施之内容’僅為例示而非用以限制本發明。 另外,所揭露之内容中使用”及/或”是為了簡要;,,覆蓋” 或”之上”的敘述,則可包含該直接接觸以及沒有直接觸等二 201018994 請參圖5,係本發明液晶顯示器畫素搭配斜向開口視差遮 ,之示意圖。本發明之自立體液晶顯示器,包括:液晶面板、 老光模組’以及可以選用以折射率為1· 4〜1. 6之穿透性材質製 成的微柱狀透鏡陣列或由亮暗交錯的狹縫所構成之視差遮罩 的斜向遮罩等元件組立而成。其中,液晶面板係在二片玻璃材 質製成的第一基板與第二基板中間,注入垂直式排列 (Vertical Alignment)液晶模式的液晶分子,再予以止封成為 液晶層所構成,其中第一基板外侧設有做為光源的背光模組’ 而斜向遮罩則設於第二基板的外侧。各次晝素的開關元件和儲 存電容的位置,配合斜向遮罩的方向,故使儲存電容的位置在 視差遮罩不透光部分452之下方’讓透光部份與次晝素的透光 部份451相對,用以減少光能量之損失。 配合圖6(a),以薄膜液晶顯示器的單一次畫素為例,說 明本發明之次晝素結構,該次晝素係第一基板與第二基板已組 立完成的俯視圖。係在第一基板上形成包括:薄膜電晶體做為 開關元件、以銦錫氧化物(Indium Tin Oxide,ΙΤ0)或銦鋅 氧化物(Indium Zinc Oxide ’ IZ0)等透明導電材料所形成的 透光區’以及藉由閘極線或共通線,在透光區的角落形成之不 透明的儲存電容61 ’在本實施例中儲存電容61的位置係位於 透光區的右上角,最後在第一基板上再形成一層配向層 (Alignment Layer);第二基板上相對應第一基板之次畫素的 位置’會形成以R、G、B三種顏色依序排列的彩色濾光層63, 且顏色與顏色之間具有不透光層(Black Matrix,BM),完成 後再形成第二基板的配向層;夾置於二基板間的液晶分子,則 會依配向層形成一預傾角。再如圖6(b)所示,以薄膜液晶顯 8 201018994 示器的單-畫素為例,進-步說明本發明之晝素結構内次畫素 與斜向遮罩_ _。由分別具有R、G、B三種不随色彩色 濾光層之三個相鄰的次畫素組成一個畫素,在本實施中,使用 由左上向右下傾斜的斜向遮罩,右側的藍色次畫素會完全被遮 罩覆蓋住不會露出來,綠色次畫素的透光區可以全部露出來, 但位於透光區右上角的儲存電容仍會被遮罩覆蓋,故能增加透 光率,左侧紅色次畫素會因為遮罩傾斜的關係,所以露出的是 不透光的齡電容’因此可⑽免雜色光線的干擾。 ❹ 1間多工自立體顯示器之3D畫素係由各視域可見之次畫 素組合而成,由於各次畫素理想上僅能在相對應之視域或視角 看到’因而各-人畫素朝非對應視域發出之光均為無效之能量。 目此’本發赚了藉纽變液祕批畫素之齡電容擺放的 位置設計外,由於各次晝素所對應之視域與視角不同,因而不 論使用不同液晶模態或不同配向等方式,其視角特性均應設計 優化於不同方向。以六個視域之立體顯示器為例,因為立體晝 素包含六個次畫素,分別對應於不同視域,各次晝素視角特性 馨 則優化於對應之視域’因此使用微柱狀透鏡陣列時可減少雜散 光對立體影像品質之影響’而在使用視差遮罩時可在不增加交 互漏光(cross talk)之前提下增加視差遮罩之開口率而提高 整體顯示器之光效率。 如圖3(b)所示之六個視域之立體顯示器為例,以正向作 最佳化的情況下,由於各個視點所對應的液晶穿透率不同,所 以會造成各個視角的亮度不均,如圖7(a);但如果讓各個次 晝素有不同之液晶配向,可以使得各次晝素具有不同之視角特 性,如下表2。畫素1是由R,G,B三個sub-pixel構成,所 9 201018994 以在晝素1的次晝素的液晶導向的Φ皆為290。,測量結果則 如圖7(b)所示’各液晶畫素光學特性在對應的各個視角的亮 度都會提升。 表2 畫素1 畫素2 畫素3 畫素4 畫素5 畫素6 液晶導向Φ(度) 290 281 275 95 104 110 雖然本發明已以較佳實施例揭露如上,然其並非用以限定 本發明,任何熟習此項技藝者,在不脫離本發之精神和範圍 内,可做各種變動、修改及潤飾,因此本發明之保缚營 後附之申請專利範圍所界定者為準。 °[Technical Field] The present invention relates to a structure of a liquid crystal stereoscopic display device, and more particularly to a structure of a liquid crystal stereoscopic display device having a rectangular capacitor structure. [Prior Art] The principle of the stereoscopic display is self-tracking and binocular parallax to produce a visual depth effect. In hardware implementation, the way to generate stereoscopic images from a stereoscopic display is mostly to use a two-dimensional (2D) flat-panel display, plus space-divided pixels or different time-division methods in different viewing directions. image. That is, the 2D images in a plurality of different viewing angle directions are combined into a stereoscopic image. Since the current flat panel display response speed is not enough to meet the demand for time multiplexing, the current three-dimensional three-dimensional (3D) display is mostly a spatial multiplex type self-stereoscopic display, 1〇, . The manner of dividing each view pixel includes two main modes, a Lenticular Array 121 and a Parallel Barrier 122, as shown in FIG. 1(a) and FIG. 1(b), respectively. Schematic diagram. The self-aligning body display of the micro-lenticular lens array 121 is based on the principle of fine light refraction. The light emitted by the visual axis corresponding to the liquid crystal display is directed to each viewing area, for example, the image of the left eye is directed to the viewer. The eye, the right eye is guided to the right eye, although the efficiency is higher than that of the parallax mask from the stereoscopic display 但', but the 3D image quality deterioration caused by stray light is more serious; the parallax mask eg self-stereoscopic display 10" is concealed The way to achieve the purpose of the viewer seeing different images, for example, the light of the left eye image propagating to the right eye is blocked by the parallax mask, and the efficiency is low but the influence of stray light is small. Whether it is a micro cylindrical lens array or a parallax mask The self-stereoscopic display is a cut-off view to generate a stereoscopic field of view, but it also causes a decrease in stereoscopic resolution and thus affects the shadow 4 201018994. The quality 'as shown in Fig. 2(a) and (b) is a schematic diagram of a six-point self-stereoscopic display. The stereo display 4 20 'includes the display (4) and the parallax mask 22, because the six-point stand-alone II display 20 has to input image information of six different orientations, and we divide the pixels into six-region pixels, including: Pixei !, _ 2, ΗΧ 61 5 and PiXel 6 'The image resolution of each viewpoint will be 1/6 of the original screen resolution. The stereo image is composed of two 2D _ 融合 into the human brain, as shown in the figure 2 (6), the observer's left eye is the image of PiXel 3, the right eye is the image of pixei 4, and the brain is fused to form a 3D stereo image. Therefore, the main bottleneck of stereo display promotion It is impossible to provide a three-dimensional portrait of the superior technology at the price of the existing technology and the popularization, and it can stimulate the consumer to thirst for the stereoscopic display. In the scheme of solving the Lier downside problem, the tilted micro-cylindrical lens array and the parallax cover are used. The cover is the most common way to divide the resolution into vertical and horizontal directions. In a liquid crystal display (LCD), each pixel is red (red, R), green (_η, G). ), blue (5) this, B) two sub-pixels of different colors (sub_pixel), so PM 1 packs 3 R, G1 and B1 three sub-pixels. Because micro-lenticular lens array or parallax mask can be placed Straight or oblique (slanted), as shown in Figures 3(a) and 3(b), respectively, a schematic diagram of a vertical aperture parallax mask and a diagonal opening parallax mask for six viewpoints. If a micro-lenticular lens array or parallax mask is used Vertically placed 'the resolution of each viewpoint is the ratio of the resolution of the LCD, which is six times lower in the flat direction' in the vertical direction; if it is obliquely an angle, the image purchase domain of each viewpoint LGD Shandu ratio, three times in the horizontal direction and two times in the vertical direction. The following table i shows the resolution of 64 〇χ test 5 201018994 480 of 2. 83 " LCD display as an example of 'human eye to horizontal The resolution is relatively sensitive, so the design of the stereoscopic display is dominated by a sand-oriented micro-cylindrical lens array or a parallax mask. Table 1 ---Resolution nf view Numbers of views: 6 Straight Slanted ~106xRGBx480 ~213xRGBx240 The per-pixel of the conventional liquid crystal display, including: off components (not shown), storage capacitors (Storage Capacitor, cs) 4 Bump 42, light transmission area and opposite color county. The cap capacitor can be designed using a Gate Line to design a storage capacitor (Cs 〇n Gate) or a common line (Common Line) to design a storage capacitor (Cs 〇n c〇_n). However, no matter which design, the position of the storage capacitor of the conventional liquid crystal display does not take into account the application in the self-stereoscopic display, so the light-using efficiency is matched with the micro-cylindrical lens array or the parallax mask. The quality of the stereoscopic image is not optimized due to the panel pixel characteristics and parameters, and the position of the light-transmissive 451 and the opaque 452 of the differential parallax mask is not optimized. As shown in FIG. 4, the conventional liquid crystal display pixel matching is used. The schematic diagram of the oblique opening parallax mask causes problems such as light leakage and brightness degradation, which in turn affects image quality. SUMMARY OF THE INVENTION An object of the present invention is to provide a structure of a liquid crystal stereoscopic display device which can make the brightness of each viewpoint uniform, and improve image brightness and quality. An object of the present invention is to provide a structure of a liquid crystal stereoscopic display device comprising: a first substrate having an upper surface and a lower surface, the upper surface of the first substrate having a plurality of secondary halogens, each of the secondary elements comprising: a switching element a storage capacitor 'and a light-transmissive region at a corner of the 201018994 pixel; a second substrate having a top and bottom surface having a plurality of filter regions on the lower surface with respect to the sub-pixel; sandwiching the upper surface of the first substrate And a liquid crystal layer between the lower surface of the second substrate; and an oblique mask disposed on an outer side of the upper surface of the first substrate, the oblique mask exposing all of the light transmissive regions of the at least one sub-pixel and the abutting of the primary pixel All storage capacitors of the secondary pixels. An object of the present invention is to provide a liquid crystal stereoscopic display device comprising: a first substrate having an upper surface and a lower surface, the upper surface of the first substrate having a plurality of sub-pixels, each of the sub-systems comprising: a switching element a storage capacitor disposed in a corner of the sub-pixel, a light-transmitting region, and a protrusion disposed in the region of the light-transmitting region; a second substrate having upper and lower surfaces, and a plurality of lower surfaces on the lower surface a filter region having a filter layer, the filter layer may be red, green or blue' and the color of the filter layer of the adjacent filter region is different; the upper surface of the first substrate and the lower surface of the first substrate respectively have An alignment layer, the liquid crystal layer is sandwiched between the alignment layers of the first substrate and the second substrate; and the outer surface of the upper surface of the second substrate is disposed as an oblique mask which may be a micro-cylindrical lens array or a parallax mask And the oblique mask exposes all of the light transmissive regions of the at least one secondary pixel and all storage capacitors of the adjacent sub-pixels of the primary pixel; and a light source disposed outside the lower surface of the first substrate. The following is a description of the composition, the arrangement, the steps, and the like of the present invention in various embodiments. The description of the present invention is merely illustrative and not intended to limit the invention. In addition, the use of "and/or" in the disclosure is for the sake of brevity; the description of "over" or "over" may include the direct contact and no direct contact, etc. 201018994, please refer to FIG. 5, which is the present invention. The penetration of the liquid crystal display pixel with the oblique opening parallax, the self-stereoscopic liquid crystal display of the present invention, including: the liquid crystal panel, the old light module 'and the refractive index of 1. 4~1. A micro-cylindrical lens array made of a material or an oblique mask made of a parallax mask composed of bright and dark interlaced slits, wherein the liquid crystal panel is a first substrate made of two glass materials. In the middle of the second substrate, liquid crystal molecules of a vertical alignment liquid crystal mode are injected, and then sealed to form a liquid crystal layer, wherein a backlight module as a light source is disposed outside the first substrate and an oblique mask is disposed. The position of the switching element and the storage capacitor of each pixel is matched with the direction of the oblique mask, so that the position of the storage capacitor is below the opaque portion 452 of the parallax mask. 'Let the light-transmitting portion oppose the light-transmitting portion 451 of the secondary halogen to reduce the loss of light energy. With FIG. 6(a), the single-pixel of the thin-film liquid crystal display is taken as an example to illustrate the present invention. The halogen structure is a top view in which the first substrate and the second substrate are assembled. The first substrate is formed on the first substrate, including a thin film transistor as a switching element, and an indium tin oxide (Indium Tin Oxide, ΙΤ0). Or a light-transmissive region formed by a transparent conductive material such as Indium Zinc Oxide ' IZ0 and an opaque storage capacitor 61 ' formed at a corner of the light-transmitting region by a gate line or a common line In the embodiment, the storage capacitor 61 is located at the upper right corner of the transparent region, and finally an Alignment Layer is formed on the first substrate; the position of the secondary pixel corresponding to the first substrate on the second substrate is Forming a color filter layer 63 arranged in three colors of R, G, and B, and having an opaque layer (Black Matrix, BM) between the color and the color, and forming an alignment layer of the second substrate after completion; Liquid crystal molecules between two substrates , a pretilt angle is formed according to the alignment layer. Then, as shown in FIG. 6(b), the single-pixel of the thin film liquid crystal display 8 201018994 is taken as an example to further illustrate the sub painting of the halogen structure of the present invention. Prime and oblique mask _ _. consists of three adjacent sub-pixels of R, G, B, respectively, which do not follow the color filter layer. In this embodiment, the tilt from top left to bottom right is used. The oblique mask, the blue sub-pixel on the right side will be completely covered by the mask and will not be exposed. The transparent area of the green sub-pixel can be exposed, but the storage capacitor in the upper right corner of the transparent area will still be Covered by the mask, it can increase the light transmittance. The red sub-pixel on the left side will be exposed to the opaque age capacitor because of the tilt relationship of the mask. Therefore, (10) can avoid the interference of variegated light. 3 A 3D pixel of a multiplexed self-stereoscopic display is composed of sub-pixels visible in each field of view. Since each pixel is ideally only visible in the corresponding field of view or perspective, thus each person The light emitted by the pixels towards the non-corresponding field of view is an invalid energy. In this case, the original position earned the position design of the capacitors placed in the age of the dynasty. Because the fields of view and the angle of view corresponding to each element are different, regardless of the use of different liquid crystal modes or different alignments, etc. In terms of mode, the viewing angle characteristics should be designed and optimized in different directions. Take a three-view stereoscopic display as an example, because the steric element contains six sub-pixels, which correspond to different fields of view, and each pixel view feature is optimized for the corresponding field of view. Therefore, the micro-lenticular lens is used. In the array, the effect of stray light on the quality of the stereo image can be reduced. When the parallax mask is used, the aperture ratio of the parallax mask can be increased to increase the light efficiency of the overall display without increasing the cross talk. As shown in the example of the three-view stereoscopic display shown in FIG. 3(b), in the case of optimizing in the forward direction, since the liquid crystal transmittances of the respective viewpoints are different, the brightness of each viewing angle is not caused. All, as shown in Fig. 7(a); however, if each sub-halogen has different liquid crystal alignment, each pixel can have different viewing angle characteristics, as shown in Table 2 below. The pixel 1 is composed of three sub-pixels of R, G, and B, and the Φ of the liquid crystal guided by the sub-halogen of the halogen 1 is 290. The measurement result is as shown in Fig. 7(b). The optical characteristics of each liquid crystal pixel are improved in the brightness of the corresponding respective viewing angles. Table 2 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Liquid crystal guide Φ (degrees) 290 281 275 95 104 110 Although the present invention has been disclosed above in the preferred embodiment, it is not intended to be limiting In the present invention, any variation, modification, and refinement may be made without departing from the spirit and scope of the present invention, and the scope of the patent application of the present invention is subject to the scope of the patent application. °

【圖式簡單說明】 圖1(a)係微柱狀透鏡陣列自立體顯示器之示意圖 圖1(b)係視差遮罩自立體顯示器之示意圖 圖2(a)與(b)係六個視點自立體顯示器之示意圖 圖3(a)係六個視點垂直開口視差遮罩之示意圖 圖3(b)係六個視點斜向開口視差遮罩之示意圖 圖4係習知就顯科4素餘斜向開σ視差 圖5係本發明液晶顯示器畫素搭配斜向開口視差遮罩之示意圖 圖6(a)係本發明液晶顯示器次畫素之示意圖 、 =6(b)係本發晶顯示时素搭配斜向開口視差遮罩之示 意圖 口視差遮罩之視角 圖7(a)係習知液晶顯示器畫素搭配斜向開 示意圖 口視差遮罩之視 本發雜晶啦^素搭配斜向開 201018994 【主要元件符號說明】 10, 、 10” 多工類型之自立體顯示器 11 液晶顯不器 121 微柱狀透鏡陣列 122 視差遮罩 20 立體顯示器 21 包括顯示器 22 視差遮罩 41 儲存電容 42 突起物 451 視差遮罩的透光處 452 視差遮罩的不透光處 61 儲存電容 63 彩色濾光層 11BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1(a) is a schematic view of a micro-cylindrical lens array from a stereoscopic display. Fig. 1(b) is a schematic diagram of a parallax mask from a stereoscopic display. Figs. 2(a) and (b) are six viewpoints. 3(a) is a schematic diagram of a six-view vertical opening parallax mask. FIG. 3(b) is a schematic diagram of a six-view oblique opening parallax mask. FIG. 4 is a conventional example. σ disparity diagram 5 is a schematic diagram of a liquid crystal display pixel of the present invention with a diagonal opening parallax mask. FIG. 6( a ) is a schematic diagram of a sub-pixel of the liquid crystal display of the present invention, and =6(b) Oblique opening parallax mask schematic view parallax mask perspective view 7 (a) is a conventional liquid crystal display pixel with oblique opening schematic mouth parallax mask of the view of the hair crystals ^ Su with diagonal opening 201018994 Main component symbol description] 10, 10" multiplex type self-stereoscopic display 11 liquid crystal display 121 micro cylindrical lens array 122 parallax mask 20 stereoscopic display 21 including display 22 parallax mask 41 storage capacitor 42 protrusion 451 parallax The light transmission area of the mask 452 Opaque area of the parallax mask 61 Storage capacitor 63 Color filter layer 11

Claims (1)

201018994 十、申請專利範圍: 1. 一種液晶立體顯示裝置的結構,包括: 一第一基板,具有一上表面以及一下表面,該第一基板之上 表面具有複數個次晝素,該每一次畫素包括:一開關元件、 一透光區以及一儲存電容’其中該電容係設於次畫素之一角 落; 一第二基板,具有一上表面以及一下表面,該第二基板之下 表面具有複數個濾光區,每一該濾光區係相對於該第一基板 Φ 之每一該次畫素; 一液晶層’夾置於該第一基板之上表面以及第二基板之下表 面之間;以及 一斜向遮罩’係設置於該第二基板上表面之外側; 其中’該斜向遮罩係露出至少一該次晝素之全部透光區以及 其鄰接次畫素之全部儲存電容。 2·如申請專利範圍第1項所述液晶立體顯示裝置的結構,更包 括一光源,係設置於該第一基板下表面之外侧。 φ 3.如申睛專利範圍第1項所述液晶立體顯示裝置的結構,其中 每一該濾光區係具有一濾光層。 4. 如申請專利範圍第3項所述液晶立體顯示裝置的結構,其中 該濾光層係可選自一紅色濾層、一綠色濾層或一藍色濾層。 5. 如申請專利範圍第3項所述液晶立體顯示裝置的結構,其中 二相鄰濾光區之濾光層的顏色不同。 6. 如申請專利範圍第1項所述液晶立體顯示裝置的結構,其中 該次晝素更具有一凸起物(protrusion),該凸起物係設於 該透光區之區域内。 12 201018994 7. 如申請專利範圍第6項所述液晶立體顯示裝置的結構,其中 該液晶層之液晶分子係由垂直式排列液晶模式所組成/、 8. 如申請專利範圍第丨項所述液晶立體顯示裝置的結構,其中 該第基板之上表面以及第二基板之下表面分別具有一配 向層。 - 9·如申請專利範圍第丨項所述液晶立體顯示装置的結構,其中 該斜向遮罩係為一微柱狀透鏡陣列。 、 10. 如申請專利範圍第9項所述液晶立體顯示裝置的結構,其中 該微柱狀透鏡陣列係由折射率為L4〜1.6之穿透性材質 組成。 11. 如申請專利範圍第1項所述液晶立體顯示裝置的結構,其中 該斜向遮罩係為一視差遮罩。 、 12. 如申請專利範圍第11項所述液晶立體顯示裝置的結構,其 中該視差遮罩係由亮暗交錯的狹縫所組成。 13. 如申請專利範圍第η項所述液晶立體顯示裝置的結構,其 中該視差遮罩係具有一狹縫。 、 14·如申請專利範圍第3項所述液晶立體顯示裝置的結構,其中 二相鄰之該次畫素液晶層配向角度不同。 、 13201018994 X. Patent application scope: 1. The structure of a liquid crystal stereoscopic display device, comprising: a first substrate having an upper surface and a lower surface, the upper surface of the first substrate having a plurality of secondary halogens, each drawing The element includes: a switching element, a light transmitting region, and a storage capacitor, wherein the capacitor is disposed at a corner of the sub-pixel; a second substrate having an upper surface and a lower surface, the lower surface of the second substrate having a plurality of filter regions, each of the filter regions being opposite to each of the second pixels of the first substrate Φ; a liquid crystal layer 'interposed on the upper surface of the first substrate and the lower surface of the second substrate And an oblique mask disposed on an outer side of the upper surface of the second substrate; wherein the oblique mask exposes at least one of the entire light-transmissive region of the secondary pixel and all of its adjacent sub-pixels capacitance. 2. The structure of the liquid crystal stereoscopic display device according to claim 1, further comprising a light source disposed on an outer side of the lower surface of the first substrate. Φ 3. The structure of the liquid crystal stereoscopic display device according to claim 1, wherein each of the filter regions has a filter layer. 4. The structure of a liquid crystal stereoscopic display device according to claim 3, wherein the filter layer is selected from a red filter layer, a green filter layer or a blue filter layer. 5. The structure of a liquid crystal stereoscopic display device according to claim 3, wherein the color filter layers of the two adjacent filter regions are different in color. 6. The structure of the liquid crystal stereoscopic display device according to claim 1, wherein the secondary element further has a protrusion disposed in a region of the light transmitting region. The structure of the liquid crystal stereoscopic display device according to claim 6, wherein the liquid crystal molecules of the liquid crystal layer are composed of a vertical alignment liquid crystal mode, and 8. The liquid crystal according to the scope of the patent application. The structure of the stereoscopic display device, wherein the upper surface of the first substrate and the lower surface of the second substrate respectively have an alignment layer. The structure of the liquid crystal stereoscopic display device according to the above aspect of the invention, wherein the oblique mask is a micro-cylindrical lens array. 10. The structure of a liquid crystal stereoscopic display device according to claim 9, wherein the micro-cylindrical lens array is composed of a penetrating material having a refractive index of L4 to 1.6. 11. The structure of a liquid crystal stereoscopic display device according to claim 1, wherein the oblique mask is a parallax mask. 12. The structure of a liquid crystal stereoscopic display device according to claim 11, wherein the parallax barrier is composed of slits which are staggered in light and dark. 13. The structure of a liquid crystal stereoscopic display device according to claim n, wherein the parallax barrier has a slit. 14. The structure of the liquid crystal stereoscopic display device according to claim 3, wherein the adjacent pixels of the sub-pixel liquid crystal layers have different alignment angles. , 13
TW097143762A 2008-11-12 2008-11-12 Liquid crystal three-dimensional display device TWI370290B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097143762A TWI370290B (en) 2008-11-12 2008-11-12 Liquid crystal three-dimensional display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097143762A TWI370290B (en) 2008-11-12 2008-11-12 Liquid crystal three-dimensional display device

Publications (2)

Publication Number Publication Date
TW201018994A true TW201018994A (en) 2010-05-16
TWI370290B TWI370290B (en) 2012-08-11

Family

ID=44831541

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097143762A TWI370290B (en) 2008-11-12 2008-11-12 Liquid crystal three-dimensional display device

Country Status (1)

Country Link
TW (1) TWI370290B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106297611A (en) * 2015-06-05 2017-01-04 北京智谷睿拓技术服务有限公司 Display control method and device
US10884691B2 (en) 2015-06-05 2021-01-05 Beijing Zhigu Rui Tuo Tech Co., Ltd Display control methods and apparatuses
US10885818B2 (en) 2015-06-05 2021-01-05 Beijing Zhigu Rui Tuo Tech Co., Ltd Display control methods and apparatuses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106297611A (en) * 2015-06-05 2017-01-04 北京智谷睿拓技术服务有限公司 Display control method and device
US10884691B2 (en) 2015-06-05 2021-01-05 Beijing Zhigu Rui Tuo Tech Co., Ltd Display control methods and apparatuses
US10885818B2 (en) 2015-06-05 2021-01-05 Beijing Zhigu Rui Tuo Tech Co., Ltd Display control methods and apparatuses
US11288988B2 (en) 2015-06-05 2022-03-29 Beijing Zhigu Rui Tuo Tech Co., Ltd Display control methods and apparatuses

Also Published As

Publication number Publication date
TWI370290B (en) 2012-08-11

Similar Documents

Publication Publication Date Title
CN102279469B (en) Parallax system, panel, device, display method and computer readable medium
TWI418886B (en) Pixel structure, 3d image/multiple view liquid crystal display device and method of manufacturing the same
TWI259912B (en) 3D image display device
US8908113B2 (en) Three-dimensional image display apparatus
US11002983B2 (en) Switching parallax barrier comprising a plurality of first and second electrodes respectively on a blocking region and a transmitting region and 3D display device having the same
KR101331900B1 (en) 3-dimension display device using light controlling film
TW201137397A (en) Stereoscopic image displaying apparatus
TWI467237B (en) Stereoscopic display and stereoscopic display device
KR100580632B1 (en) Display capable of displaying 2D 3D image selectively
US20130107146A1 (en) Display apparatus
EP3893040A1 (en) Display panel, display device and display method
US20130250408A1 (en) Auto-stereoscopic display apparatus
CN103513311B (en) A kind of 3 D grating and bore hole 3D display device
TWI485475B (en) Display device
US20120026586A1 (en) Display device and phase retardation film
TWI399570B (en) 3d display and 3d display system
JP6010375B2 (en) Display device
CN202693951U (en) Stereo display device
US9759925B2 (en) Three-dimensional image display apparatus
TW201018994A (en) Liquid crystal three-dimensional display device
TWI432782B (en) Stereo display device and switching panel used in stereo display device
TWI407147B (en) 2d and 3d switchable autostereoscopic display and active scattering lens thereof
CN102890363B (en) Liquid crystal display and device for displaying stereoscopic images
JP2002311419A (en) Transparent substrate for liquid crystal display panel, liquid crystal display panel and stereoscopic video display device
JP2013235159A (en) Display device, barrier device, and electronic apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees