WO2017200312A1 - 자석 매립형 모터 및 이를 이용한 압축기 - Google Patents

자석 매립형 모터 및 이를 이용한 압축기 Download PDF

Info

Publication number
WO2017200312A1
WO2017200312A1 PCT/KR2017/005157 KR2017005157W WO2017200312A1 WO 2017200312 A1 WO2017200312 A1 WO 2017200312A1 KR 2017005157 W KR2017005157 W KR 2017005157W WO 2017200312 A1 WO2017200312 A1 WO 2017200312A1
Authority
WO
WIPO (PCT)
Prior art keywords
fastening holes
rotor
magnet
steel plate
embedded motor
Prior art date
Application number
PCT/KR2017/005157
Other languages
English (en)
French (fr)
Inventor
무카이카츠히사
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017012626A external-priority patent/JP2017212867A/ja
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP17799669.1A priority Critical patent/EP3442096B2/en
Priority to KR1020187022343A priority patent/KR102399935B1/ko
Priority to US16/303,132 priority patent/US10998783B2/en
Publication of WO2017200312A1 publication Critical patent/WO2017200312A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/008Enclosed motor pump units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/008Prime movers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a magnet embedded motor and a compressor using the same.
  • a magnet embedded motor using reluctance torque in addition to magnet torque is used.
  • the magnet embedded motor is provided with a skewed rotor to achieve low cogging torque.
  • such a rotor has a top element in which steel sheets are laminated and a bottom element in which steel sheets are laminated.
  • the rotor is fixed by a bolt or the like by rotating the bottom element with respect to the top element. It is comprised so that short skew angle (theta) may be formed.
  • each steel plate which comprises the upper element and the lower element has the same shape, and is laminated
  • each steel plate has a plurality of bolt holes formed at equal intervals along the circumferential direction about the rotation axis of the rotor, and each of these bolt holes has a circumference from a predetermined reference position. It is formed at a position changed in ⁇ / 2 in the same direction along the direction.
  • One aspect of the present invention disclosed to solve the above problems is a magnet-embedded motor capable of forming a single skew by stacking the steel sheets without opposing the front and back, or by forming a single skew by stacking steel sheets that can easily distinguish the front and back; We propose a compressor using this.
  • the magnet-embedded motor includes a rotor formed by stacking a plurality of steel sheets having the same shape, and the rotor includes an upper element stacked by stacking the front and back surfaces of the plurality of steel sheets, And a lower element in which front and rear surfaces of a plurality of steel sheets are stacked opposite to the steel plates of the upper element. Further, each steel sheet of the upper element and the lower element has a predetermined skew angle ⁇ s formed between adjacent stages along the axial direction. It is characterized in that a plurality of fastening holes are formed.
  • the plurality of fastening holes are formed at predetermined intervals along the circumferential direction with respect to the rotation axis of the rotor, and any one of the gaps between the adjacent fastening holes is a dimension different from the other gaps.
  • the plurality of fastening holes are formed at positions where the skew angle ⁇ s is changed one by one in the circumferential direction.
  • the plurality of fastening holes are fastened by fastening members, and the fastening members are made of bolts or rivets.
  • 2n fastening holes are formed in the steel plate, and the n fastening holes formed continuously or the n fastening holes formed every other have 2n fastening holes along the circumferential direction about the rotation axis of the rotor, and the like. It is characterized in that it is formed at a position where the skew angle ⁇ s is changed in the same direction along the circumferential direction from the reference position when formed at intervals.
  • n fastening holes are formed in the steel plate, and two fastening holes adjacent to each other have an angle formed by a line connecting the centers of the two fastening holes and the rotational axis of the rotor with (360 / n) °- ⁇ s. It is formed so that n-2 fastening holes except two fastening holes are formed at equal intervals along the circumferential direction centering on the rotating shaft of a rotor.
  • the steel sheet is characterized in that one or a plurality of oil passage holes through which the oil for compressor passes is formed, and the oil passage holes formed in each steel sheet overlap with each other by passing bolts or rivets through the fastening holes.
  • the rotor is characterized in that two-stage, three-stage or four-stage skew is formed.
  • the rotor is characterized in that the number of poles p and the number of slots s are set in a relationship of 1: 3 or 1: 6.
  • the skew angle ⁇ s is determined by at least one of the following [Equations 1] to [Equation 4].
  • LCM (s ⁇ p) is the least common multiple of s and p.
  • the magnet-embedded motor includes a rotor formed by stacking a plurality of steel sheets having the same shape, and the rotor includes an upper end element in which the front and back sides of the plurality of steel sheets are aligned and stacked, And a lower element having the front and back sides of the plurality of steel sheets stacked opposite to the steel plate of the upper element, wherein each steel sheet of the upper element and the lower element has a plurality of predetermined skew angles ⁇ s formed between the upper element and the lower element. It characterized in that the fastening hole is formed.
  • the cogging torque can be reduced by stacking the steel sheets without inverting the front and back, or by forming the short skew by stacking the steel sheets that can easily distinguish the front and back.
  • the cogging torque can be reduced by stacking the steel sheets without inverting the front and back, or by forming the short skew by stacking the steel sheets that can easily distinguish the front and back.
  • the 6th and 12th orders of the dq coordinates in the harmonic components low torque ripple and high efficiency can be achieved, and controllability can be improved.
  • FIGS. 2A and 2B are schematic configuration diagrams showing a steel sheet according to a modification of the first and second embodiments of the present invention.
  • FIG 3 is a schematic view showing the configuration of a rotor according to a third embodiment of the present invention.
  • FIG. 4 is a schematic view showing the configuration of a rotor according to a third embodiment of the present invention.
  • FIG. 5 is a schematic view showing a steel sheet according to a third embodiment of the present invention.
  • FIG. 6 is a schematic view showing a steel sheet according to a modification of the third embodiment of the present invention.
  • FIG. 7 is a schematic view showing a steel sheet according to another modification of the third embodiment of the present invention.
  • FIG. 8 is a schematic view showing a steel sheet according to still another modification of the third embodiment of the present invention.
  • FIG. 9 is a schematic view showing a steel sheet according to still another modification of the third embodiment of the present invention.
  • FIG. 10 is a schematic view showing a steel sheet according to still another modification of the third embodiment of the present invention.
  • first may be referred to as the second component
  • second component may also be referred to as the first component.
  • the term “and / or” includes any combination of a plurality of related items or any item of a plurality of related items.
  • the magnet-embedded motor according to the first embodiment of the present invention is, for example, used in a compressor of a refrigeration cycle, and has a configuration of distribution ranges in which the relationship between the pole number p and the slot number s is 1: 3. .
  • the rotor constituting such a magnet-embedded motor is formed with multi-stage skew, and a predetermined skew angle ⁇ s is formed between the stages adjacent to each other along the axial direction.
  • a magnet-embedded motor having a configuration of pole number p and slot number s has a minimum common multiple of s and p (hereinafter, referred to as 'LCM (s ⁇ p)') in the number of coggings per rotation of the rotor.
  • the skew angle ⁇ s may be an angle represented by the formula (2).
  • the harmonic component in the induced voltage of the magnet-embedded motor becomes the periodic angle ⁇ v represented by the formula (3).
  • the skew angle ⁇ s may be an angle represented by equation (4) in order to cancel the harmonic component.
  • harmonic components that cause torque ripple are the sixth and twelfth components in the dq coordinate.
  • the sixth component in the dq coordinate corresponds to the fifth and seventh component in the xy coordinate
  • the twelfth component in the dq coordinate corresponds to the eleventh and thirteenth components in the xy coordinate. do.
  • ⁇ s1 10 ° (corresponds to phase 120 °)
  • skewing by 10 ° corresponds to changing the phase to 240 °, which is equivalent to changing the phase by 120 °.
  • the 12th order of harmonic components can also be canceled by setting the skew angle ⁇ s to 10 °.
  • the skew angle ⁇ s is determined by the following equation (5).
  • the sixth and twelfth orders of the components may be canceled.
  • the harmonic components of the cogging torque and the induced voltage can be drastically reduced.
  • FIGS. 2A and 2B are schematic configuration diagrams showing a steel sheet according to a modification of the first and second embodiments of the present invention.
  • the magnet-embedded motor according to the second embodiment of the present invention has a configuration in which the relationship between the number of poles p and the number of slots s is 1: 6.
  • the skew angle ⁇ s is set to 10 ° (ie, twice the value obtained by the formula (2))
  • the sixth order of the harmonic components can be canceled, and cogging is performed in the same manner as in the first embodiment.
  • the 12th order of the torque and harmonic components can be canceled.
  • the skew angle ⁇ s is determined by the following equation (6).
  • the sixth and twelfth orders of the components may be canceled.
  • magnet embedded motor according to the present invention is not limited to the first and second embodiments.
  • three-step skew is formed in the rotor, but four-step skew may be formed in the rotor.
  • the skew angle ⁇ s can be determined by the following equation (7) to cancel the sixth and twelfth orders of the cogging torque and harmonic components.
  • the skew angle ⁇ s can be determined by the following equation (8) to cancel the sixth and twelfth orders of the cogging torque and harmonic components.
  • the skew angle ⁇ s may be determined by the following equation (9) when the number of poles p and the number of slots s are 1: 3 or 1: 6.
  • the rotor in which the two-step skew as described above was formed it can be comprised so that it may have a slot combination shown by following formula (10).
  • the rotor in the 1st and 2nd embodiment of this invention may be formed by laminating
  • each steel plate 13 has the fastening hole group 133X which consists of the fastening hole 133 of the same number as the number of steps, as shown to FIG. 2A.
  • Each fastening hole 133 is formed at a position where the skew angle ⁇ s has been changed in the circumferential direction one by one, and is formed at a position symmetrical with respect to the reference line L passing through the center C of the steel plate 13.
  • the steel plate 13 has a plurality of fastening hole groups 133X, and each fastening hole group 133X is comprised of three fastening holes 133 equal to the number of stages.
  • Each of the fastening holes 133 is formed such that the angle formed by the adjacent line segments among the line segments connecting the center C of the steel plate 13 and the center of the fastening holes 133 is 10 degrees.
  • each fastening hole group 133X is composed of four fastening holes 133, and each fastening hole 133 has one circumferential direction. Therefore, what is necessary is just to form in the position changed by 7.5 degree.
  • each steel plate 13 has the same shape, for example, a cutting die or a mold for manufacturing the steel plate 13 can be commonized, and the rotor described above can be reduced while the cost is reduced and the manufacturing process can be simplified.
  • the skew angle ⁇ s can be formed.
  • each steel plate 13 is symmetrical with respect to the reference line L passing through the center C of the steel plate 13, the shape in plan view of the steel plate 13 is different from the surface. It becomes the same shape on the back surface, and can simplify management of the steel plate 13.
  • the magnet-embedded motor according to the third embodiment of the present invention is provided with, for example, a rotor that is used for a compressor in a refrigeration cycle and has skewed therein.
  • FIG. 3 is a schematic diagram showing the configuration of a rotor according to the third embodiment of the present invention
  • FIG. 4 is a schematic diagram showing the configuration of a rotor according to the third embodiment of the present invention
  • FIG. 5 is a third diagram of the present invention. It is a schematic diagram which shows the steel plate by embodiment.
  • a predetermined short skew angle ⁇ is formed, and as shown in FIGS. 3 and 4, the iron core 10, the permanent magnet 20, and the end plate ( ⁇ ⁇ , 30, and a fastening member 40.
  • the permanent magnet 20 is embedded in each of the plurality of magnet buried grooves 10a formed in the iron core 10, and is provided at equal intervals along the circumferential direction around the rotation axis X of the rotor 100.
  • this is a sintered magnet such as a ferrite magnet or a rare earth magnet.
  • the end plate 30 is to prevent the permanent magnet 20 embedded in the magnet buried groove 10a from being pulled out, and is disposed to face the upper and lower ends of the iron core 10.
  • the fastening member 40 fastens and fixes the iron core 10 and the end plate 30, and here, for example, bolts, nuts, etc. made of SUS are used. It is also possible to use a rivet as the fastening member 40.
  • the iron core 10 is formed by stacking a plurality of steel sheets 13 and an upper element 11 stacked with a plurality of steel sheets 13. It consists of the lower element 12, and these upper element 11 and the lower element 12 are fastened and fixed by the fastening member 40. As shown in FIG.
  • the number of sheets of the steel plate 13 which comprises the upper element 11 and the number of sheets of the steel plate 13 which comprise a lower end are the same number. Thereby, the primary component of cogging torque can fully be reduced. However, there may be some errors in the number of sheets of steel sheet 13 constituting the upper element 11 and the number of sheets of steel sheet 13 constituting the lower end.
  • the many steel plate 13 which comprises the lower element 12 has the same shape as the steel plate 13 of the upper element 11, and reverses the steel plate 13 and front and back of the upper element 11, respectively. It is stacked.
  • Each steel plate 13 has a roughly disk shape having a predetermined thickness dimension, and is, for example, a non-oriented electromagnetic steel sheet manufactured using a common cutting die or a common mold.
  • each steel sheet 13 as shown in Figure 5, a plurality of magnet buried holes 132 for forming a shaft hole 131 for inserting the shaft and the magnet buried groove 10a described above. And a plurality of fastening holes 133 for inserting the fastening member 40 therethrough.
  • the holes 131, 132, and 133 are formed to penetrate in the thickness direction of the steel plate 13.
  • the shaft hole 131 is formed in the center of the steel plate 13, and has a substantially circular shape with a predetermined diameter dimension. More specifically, the center of the shaft hole 131 and the center C of the steel plate 13 coincide with each other, and the center of rotation of the rotor 100 passes through the center thereof.
  • the magnet embedding hole 132 usually has a flux barrier and is formed at equal intervals along the circumferential direction about the rotation axis X of the rotor 100.
  • the even-numbered magnet buried holes 132 are arranged around the center C of the steel plate 13 at equal intervals along the circumferential direction, and more specifically, six magnet buried holes. 132 is formed.
  • the fastening hole 133 has a substantially circular shape formed at predetermined intervals along the circumferential direction about the rotation axis X of the rotor 100.
  • 2n pieces that is, even number of fastening holes 133 are arranged around the center of the steel plate 13 at predetermined intervals along the circumferential direction.
  • the magnet buried holes 132 and the same number of six fastening holes 133 are formed.
  • 133a, 133b, 133c, 133d, 133e, and 133f are written along the circumferential direction. do.
  • the fastening hole 133 of 3rd Embodiment of this invention passes the bolt which is the fastening member 40 demonstrated above through each fastening hole 133 of the laminated steel plate 13, and the upper element of the iron core 10.
  • the short skew angle of 5 degrees is formed between 11 and the lower end element 12, and it is formed so that any one space
  • the three fastening holes 133a, 133c, and 133e arranged every other one of the six fastening holes 133 described above are configured to rotate the six fastening holes 133.
  • the remaining three fastening holes 133b, 133d, and 133f are formed at the reference position B in the case where they are arranged at equal intervals along the circumferential direction about the rotation axis X of the 100, and are arranged every other one. It is formed at a position where the short skew angle ⁇ (in this embodiment, 5 °) is changed in the same direction along the circumferential direction from the reference position B.
  • the quasi-position B is a position set so that the relative positional relationship of the closest reference position B with respect to each magnet embedding hole 132 may become the same.
  • the reference position B of the third embodiment of the present invention is located between the magnet embedding hole 132 and the shaft hole 131, and the center of each magnet embedding hole 132 and the center C of the steel plate 13. ), The distance from the center C of the steel plate 13 to the respective reference position B is set to be the same on the line segment L connecting.
  • half of the fastening holes 133a, 133c, and 133e arranged every other of the six fastening holes 133 have their respective centers O and the reference position B. Are formed to coincide with each other, and the remaining half of the fastening holes 133b, 133d, and 133f are, for example, 5 ° from the respective center O and the reference position B along the rotational direction of the rotor 100, for example. The changed positions are formed to coincide.
  • the fastening holes 133b and 133d formed at intervals between the fastening holes 133 adjacent to each other i.e., the fastening holes 133a, 133c and 133e formed at the reference position B and the position changed by 5 ° from the reference position B.
  • 133f has two kinds of intervals: a first interval and a second interval different from the first interval.
  • each fastening hole 133 is arrange
  • FIG. 6 is a schematic view showing a steel sheet according to a modification of the third embodiment of the present invention.
  • fastening holes 133 are formed in the order of the fastening holes 133a, 133b, 133c, 133d, 133e, and 133f along the circumferential direction.
  • six fastening holes 133 are formed in the order of fastening holes 133a, 133f, 133e, 133d, 133c, and 133b along the circumferential direction.
  • the skew angle is 5 degrees, and the angle formed by the fastening holes 133 adjacent to each other and the center C of the steel sheet is 55 degrees or 65 degrees.
  • the rotor 100 which concerns on this embodiment reverses the steel plate 13 which comprises the upper element 11, and the steel plate 13 which comprises the lower element 12 from both sides.
  • a short skew angle of 5 ° is formed between the upper element 11 and the lower element 12.
  • the plurality of fastening holes 133 are arranged non-symmetrically, and the distance between the fastening holes 133 adjacent to each other is different from the first interval and the first interval. Since it becomes 2nd space
  • the front and back of the steel plate 13 can be easily aligned, and the steel plate 13 becomes easy to manage.
  • each steel plate 13 has the same shape, for example, a cutting die, a metal mold
  • this invention is not limited to the said 3rd Embodiment. This will be described with reference to FIGS. 7 to 10.
  • FIG. 7 is a schematic diagram showing a steel sheet according to another modification of the third embodiment of the present invention
  • FIG. 8 is a schematic diagram showing a steel sheet according to still another modification of the third embodiment of the present invention.
  • Fig. 10 is a schematic diagram showing a steel plate according to still another modification of the third embodiment of the present invention
  • Fig. 10 is a schematic diagram showing a steel plate according to still another modification of the third embodiment of the present invention.
  • the fastening hole 133 of the present embodiment has a position where n fastening holes 133 formed every other of the 2n fastening holes 133 are changed in the same direction along the circumferential direction from the reference position B.
  • n consecutive fastening holes 133 of 2n may be formed so that (theta) may change in the same direction along the circumferential direction from the reference position B.
  • FIG. 7 n consecutive fastening holes 133 of 2n may be formed so that (theta) may change in the same direction along the circumferential direction from the reference position B.
  • the steel plate 13 has a continuous half of the fastening holes 133a, 133b, and 133c among the six fastening holes 133, and their respective centers O and reference positions B.
  • the other half of the fastening holes 133d, 133e, and 133f are changed by 5 ° along the rotational direction of the rotor 100, for example, from their respective centers O and the reference position B. The positions are formed to coincide.
  • the steel plate 13 has n fastening holes 133, and two fastening holes 133 adjacent to each other each have a center of the two fastening holes 133 and the rotor 100. Is formed so that the angle formed by the line connecting the rotation axis (X) of () is (360 / n) °- ⁇ , and the n-2 fastening holes 133 excluding the two fastening holes 133 are located in the rotor 100. It may be formed at equal intervals along the circumferential direction about the rotation axis X of the.
  • the fastening hole 133a is formed so that the center O may coincide with the reference position B.
  • the fastening holes 133b, 133c, 133d, 133e, and 133f have their respective centers changed in the same direction along the 1 °, 2 °, 3 °, 4 °, and 5 ° circumferential directions from the reference position B, respectively. It is formed at the position.
  • the plurality of fastening holes 133 are arranged in a non-symmetrical manner, and the distance between the fastening holes 133 adjacent to each other is only a gap between the fastening holes 133a and the fastening holes 133f. It becomes shorter, and it becomes easier to separate the front and back of the steel plate 13 compared with the case where the fastening hole 133 is formed at equal intervals along the circumferential direction like the conventional one.
  • the steel plate 13 was provided with four fastening holes 133, for example. It may be.
  • each steel plate 13 may be provided with the some oil passage hole 134 through which the oil for compressors passes.
  • the oil passage holes 134 are formed at equal intervals along the circumferential direction about the rotation axis X of the rotor 100.
  • the magnet embedding hole 132 and the same number of oil passage holes 134 are formed.
  • the oil passage hole 134 formed in each steel plate 13 coincides and overlaps by passing the fastening member 40 through the fastening hole 133 formed in each steel plate 13 laminated
  • the rotor of this embodiment had six permanent magnets, the number of permanent magnets is not limited to the above-mentioned embodiment, Four may be sufficient.
  • the rotor of this embodiment formed the 5th stage skew between the upper element and the lower element
  • the skew angle is not limited to the said embodiment, For example, 7.5 degrees etc. may be sufficient.
  • variable magnetic flux control can be effectively performed.
  • the present invention can realize various motor specifications by changing the skew angle ⁇ , and since the development of a new motor is not necessary, the cost can be reduced, which is very useful for industrial use. Most likely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

본 발명은 강판을 표리 반대로 하지 않고 적층시켜 단 스큐를 형성할 수 있게 하거나 또는 표리를 용이하게 분별할 수 있는 강판을 적층시켜 단 스큐를 형성함으로써 코깅 토크를 저감하고, 고조파 성분에 있어서의 dq 좌표의 6차 및 12차 양쪽 모두를 저감하여 저토크 리플화 및 고효율화를 도모함과 함께 제어성을 향상시킬 수 있도록 한다. 이를 위해 본 발명은 축 방향을 따라 인접하는 단의 사이에 소정의 스큐각 θs가 형성된 로터를 가지는 자석 매립형 모터로서, 로터는 동일한 형상을 갖는 다수의 강판을 적층하여 형성되며, 각 강판은 단수와 동일한 수의 체결 구멍으로 이루어지는 체결 구멍군을 가지고 있고, 체결군을 구성하는 각 체결 구멍이 1개씩 둘레 방향을 따라 스큐각 θs 변화된 위치에 형성되어 있다.

Description

자석 매립형 모터 및 이를 이용한 압축기
본 발명은 자석 매립형 모터 및 이를 이용한 압축기에 관한 것이다.
고효율 모터로서 마그넷 토크 외에 릴럭턴스 토크(reluctance torque)를 이용한 자석 매립형 모터가 사용되고 있다.
자석 매립형 모터는 저 코깅 토크화(low cogging torque)를 도모하기 위하여 스큐(skew)가 형성된 로터를 구비하고 있다.
이러한 로터는 특허문헌 1에 나타낸 바와 같이, 강판을 적층시킨 상단 요소와, 강판을 적층시킨 하단 요소를 가지고, 예를 들면, 하단 요소를 상단 요소에 대해서 회전시켜 볼트 등으로 고정하는 것에 의하여 소정의 단(段) 스큐각 θ가 형성되도록 구성되어 있다. 보다 상세하게는, 상단 요소 및 하단 요소를 구성하는 각 강판은 모두 동일한 형상을 가지고, 상단 요소를 구성하는 강판과, 하단 요소를 구성하는 강판이 표리(表裏) 반대가 되도록 적층되어 있다.
이와 같이, 소정의 단 스큐각 θ을 형성하기 위하여 각 강판은, 로터의 회전축을 중심으로 둘레 방향을 따라 등 간격으로 형성된 복수의 볼트 구멍을 가지고 있고, 이들 각 볼트 구멍이 소정의 기준 위치로부터 둘레 방향을 따른 동일 방향으로 θ/2 변화된 위치에 형성되어 있다.
그러나, 특허문헌 1(일본 공개특허공보 2013-132138호)과 같은 구성에서는 각 볼트 구멍이 둘레 방향을 따라 등 간격으로 형성되어 있으므로, 강판이 앞을 향하고 있는지, 뒤를 향하고 있는지 언뜻 보기만 해서는 분별하는 것이 어렵다. 이러한 점에서, 예를 들면, 다수의 강판을 표리 정렬시켜 관리하기 위해서는, 표리를 분별하기 위한 시간이 소요되고, 만일 표리가 정렬되지 않은 상태로 관리되고 있다면, 강판을 적층할 때에 표리를 잘못 적층하게 되는 문제가 발생할 수 있다.
상술한 문제를 해결하기 위하여 개시된 본 발명의 일 측면은 강판을 표리 반대로 하지 않고 적층시켜 단 스큐를 형성하거나 또는 표리를 용이하게 분별할 수 있는 강판을 적층시켜 단 스큐를 형성할 수 있는 자석 매립형 모터 및 이를 이용한 압축기를 제안한다.
이를 위해 본 발명의 일 측면에 의한 자석 매립형 모터는, 동일한 형상을 가지는 다수의 강판을 적층하여 형성된 로터를 포함하고, 로터는, 다수의 강판의 표리(表裏)를 정렬시켜 적층한 상단 요소와, 다수의 강판의 표리를 상단 요소의 강판과 반대로 하여 적층한 하단 요소;를 더 포함하고, 상단 요소와 하단 요소의 각 강판에는, 축 방향을 따라 인접하는 단의 사이에 소정의 스큐각 θs가 형성되게 복수의 체결 구멍이 형성되어 있는 것을 특징으로 한다.
복수의 체결 구멍은, 로터의 회전축을 중심으로 둘레 방향을 따라 소정 간격으로 형성되어 있고, 서로 이웃한 체결 구멍의 간격 중 어느 하나의 간격이 다른 간격과 상이한 치수인 것을 특징으로 한다.
또한, 복수의 체결 구멍은, 둘레 방향을 따라 1개씩 스큐각 θs가 변화된 위치에 형성되어 있는 것을 특징으로 한다.
또한, 복수의 체결 구멍은, 체결 부재에 의해 체결되고, 체결 부재는, 볼트 또는 리벳으로 이루어진 것을 특징으로 한다.
강판에는, 2n개의 체결 구멍이 형성되어 있고, 연속해서 형성되어 있는 n개의 체결 구멍 또는 1개 걸러 형성되어 있는 n개의 체결 구멍은, 2n개의 체결 구멍을 로터의 회전축을 중심으로 둘레 방향을 따라 등 간격으로 형성한 경우의 기준 위치로부터 둘레 방향을 따른 동일 방향으로 스큐각 θs 변화된 위치에 형성되어 있는 것을 특징으로 한다.
또한, 강판에는, n개의 체결 구멍이 형성되어 있고, 서로 이웃한 2개의 체결 구멍은, 2개의 체결 구멍의 중심 각각과 로터의 회전축을 잇는 선분이 이루는 각도가 (360/n)° - θs가 되도록 형성되고, 2개의 체결 구멍을 제외한 n-2개의 체결 구멍은, 로터의 회전축을 중심으로 둘레 방향을 따라 등 간격으로 형성되어 있는 것을 특징으로 한다.
강판에는, 압축기용 오일이 통과하는 하나 또는 복수의 오일 통과 구멍이 형성되어 있고, 체결 구멍에 볼트 또는 리벳을 통과시켜 각 강판에 형성된 오일 통과 구멍이 서로 겹치도록 구성되어 있는 것을 특징으로 한다.
소정의 스큐각 θs는, θ = 0°인 경우의 유기 전압에 대한 저감률에 기초하여 설정되어 있는 것을 특징으로 한다.
로터는, 2단, 3단 또는 4단 스큐가 형성되어 있는 것을 특징으로 한다.
또한, 로터는, 극수 p와 슬롯수 s가 1 : 3 또는 1 : 6의 관계로 설정되어 있는 것을 특징으로 한다.
스큐각 θs는, 아래의 [식 1] ~ [식 4] 중 적어도 하나에 의해 결정되는 것을 특징으로 한다.
[식 1] θs = 120° / LCM (s×p)
[식 2] θs= 240° / LCM (s×p)
[식 3] θs = 90°/ LCM (s×p)
[식 4] θs=180°/LCM (s×p)
여기에서, LCM (s×p)는 s와 p의 최소 공배수이다.
그리고, 본 발명의 다른 측면에 의한 자석 매립형 모터는, 동일한 형상을 가지는 다수의 강판을 적층하여 형성된 로터를 포함하고, 로터는, 다수의 강판의 표리(表裏)를 정렬시켜 적층한 상단 요소와, 다수의 강판의 표리를 상단 요소의 강판과 반대로 하여 적층한 하단 요소;를 더 포함하고, 상단 요소와 하단 요소의 각 강판에는, 상단 요소와 하단 요소의 사이에 소정의 스큐각 θs가 형성되게 복수의 체결 구멍이 형성되어 있는 것을 특징으로 한다.
제안된 자석 매립형 모터 및 이를 이용한 압축기에 의하면, 강판을 표리 반대로 하지 않고 적층시켜 단 스큐를 형성할 수 있게 하거나 또는 표리를 용이하게 분별할 수 있는 강판을 적층시켜 단 스큐를 형성함으로써 코깅 토크를 저감하고, 고조파 성분에 있어서의 dq 좌표의 6차 및 12차 양쪽 모두를 저감하여 저토크 리플화 및 고효율화를 도모함과 함께 제어성을 향상시킬 수 있다.
도 1은 본 발명의 제1실시 형태에 의한 자석 매립형 모터의 실험 결과를 도시한 도면이다.
도 2A 및 도 2B는 본 발명의 제1 및 제2실시 형태의 변형 예에 의한 강판을 도시한 개략적인 구성도이다.
도 3은 본 발명의 제3실시 형태에 의한 로터의 구성을 도시한 개략도이다.
도 4는 본 발명의 제3실시 형태에 의한 로터의 구성을 도시한 개략도이다.
도 5는 본 발명의 제3실시 형태에 의한 강판을 도시한 개략도이다.
도 6은 본 발명의 제3실시 형태의 변형예에 의한 강판을 도시한 개략도이다.
도 7은 본 발명의 제3실시 형태의 다른 변형예에 의한 강판을 도시한 개략도이다.
도 8은 본 발명의 제3실시 형태의 또 다른 변형예에 의한 강판을 도시한 개략도이다.
도 9는 본 발명의 제3실시 형태의 또 다른 변형예에 의한 강판을 도시한 개략도이다.
도 10은 본 발명의 제3실시 형태의 또 다른 변형예에 의한 강판을 도시한 개략도이다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예이며, 본 출원의 출원 시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.
또한, 본 명세서에서 사용한 용어는 실시예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및/또는 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는다.
또한, 본 명세서에서 사용한 "제1", "제2" 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지는 않으며, 상기 용어들은 하나의 구성 요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1구성 요소는 제2구성 요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1구성 요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
이하에서는 본 발명에 의한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.
먼저, 본 발명에 의한 자석 매립형 모터의 제1실시 형태에 대하여 설명한다.
도 1은 본 발명의 제1실시 형태에 의한 자석 매립형 모터의 실험 결과를 도시한 도면이다.
본 발명의 제1실시 형태에 의한 자석 매립형 모터는, 예를 들면, 냉동 사이클의 압축기에 이용되고, 극수 p와 슬롯수 s의 관계가 1:3이며, 분포권(分布捲)의 구성을 가지는 것이다.
이러한 자석 매립형 모터를 구성하는 로터는 다단 스큐가 형성되어 있어, 축 방향을 따라 서로 인접하는 단의 사이에 소정의 스큐각 θs가 형성되어 있다.
이하에서는, 3단 스큐가 형성된 로터에 대하여 설명한다.
일반적으로, 극수 p, 슬롯수 s의 구성을 갖는 자석 매립형 모터는, 로터 1회전당 코깅의 수가 s와 p의 최소 공배수(이하, ‘LCM (s×p)’ 라고 기재한다)가 된다.
따라서, 코깅의 주기 각도 θc는 식 (1)로 나타낼 수 있다.
Θc = 360° / LCM (s×p) …··· (1)
본 발명의 제1실시 형태와 같이, 3단 스큐가 형성된 로터를 이용한 경우, 코깅을 캔슬하기 위해서는, 스큐각 θs를 식 (2)로 나타나는 각도로 하면 된다.
Θs = θc / 3 = 120° / LCM (s×p) …··· (2)
한편, 자석 매립형 모터의 유기 전압에 있어서의 고조파 성분은, 식 (3)으로 나타나는 주기 각도 θv가 된다.
Θv = 360° / (p*×차수) = 720° / (p×차수) …··· (3)
p*는 극대수이며, p* = p / 2이다.
본 발명의 제1실시 형태와 같이, 3단 스큐가 형성된 로터를 이용한 경우, 고조파 성분을 캔슬하기 위해서는, 스큐각 θs를 식 (4)로 나타나는 각도로 하면 된다.
Θs = 720° / (p×차수×3) ···…(4)
여기에서, 토크 리플의 원인이 되는 고조파 성분은, dq 좌표에 있어서의 6차 성분 및 12차 성분이다.
또한, dq 좌표에 있어서의 6차 성분은 xy 좌표에 있어서의 5차 성분 및 7차 성분에 상당하고, dq 좌표에 있어서의 12차 성분은 xy 좌표에 있어서의 11차 성분 및 13차 성분에 상당한다.
위에서 설명한 식 (2) 및 식 (4)로부터 코깅을 캔슬하기 위한 스큐각 θs1과, 고조파 성분의 6차를 캔슬하기 위한 스큐각 θs2와, 고조파 성분의 12차를 캔슬하기 위한 스큐각 θs3을 구할 수 있다.
예를 들면, 극수가 4, 슬롯수가 12인 경우는,
θs1 = 10° (위상 120°에 해당)
θs2 = 10° (위상 120°에 해당)
θs3 = 5° (위상 120°에 해당)
가 된다.
따라서, 스큐각 θs를 10°로 하면, 코깅을 캔슬함과 함께 고조파 성분의 6차를 캔슬할 수 있다.
또한, 고조파 성분의 12차에 관해서는, 10° 스큐시키는 것이 위상을 240°로 변화시키는 것에 해당하고, 이것은 위상을 120° 변화시키는 것과 동일하다. 이 결과, 스큐각 θs를 10°로 설정함으로써 고조파 성분의 12차도 캔슬할 수 있다.
이에 따라, 3단 스큐가 형성된 로터를 가지는 자석 매립형 모터로서, 극수 p와 슬롯수 s가 1:3의 관계인 경우는, 스큐각 θs를 아래의 식 (5)에 의해 결정하면, 코깅 토크와 고조파 성분의 6차 및 12차를 캔슬할 수 있다.
Θs = 120° / LCM (p×s) ···… (5)
스큐각 θs를 위에서 설명한 바와 같이 결정한 본 발명의 제1실시 형태에 의한 자석 매립형 모터라면, 도 1에 도시한 바와 같이, 코깅 토크 및 유기 전압의 고조파 성분을 비약적으로 저감시킬 수 있다.
다음, 본 발명에 의한 자석 매립형 모터의 제2실시 형태에 대하여 설명한다.
도 2A 및 도 2B는 본 발명의 제1 및 제2실시 형태의 변형 예에 의한 강판을 도시한 개략적인 구성도이다.
본 발명의 제2실시 형태에 의한 자석 매립형 모터는, 극수 p와 슬롯수 s의 관계가 1:6인 구성을 가지는 것이다.
여기에서, 제1실시 형태와 마찬가지로, 식 (2) 및 식 (4)로부터 스큐각 θs1, θs2, θs3을 구한다.
예를 들면, 극수가 4, 슬롯수가 24인 경우,
θs1 = 5° (위상 120°에 해당)
θs2 = 10° (위상 120°에 해당)
θs3 = 5° (위상 120°에 해당)
가 된다.
이 결과, 스큐각 θs를 5°로 설정하면, 코깅 토크와 고조파 성분의 12차를 캔슬할 수 있지만, 고조파 성분의 6차를 캔슬할 수는 없다. 왜냐하면, 고조파 성분의 6차에 관해서는, 5° 스큐시키는 것이 위상을 60°로 변화시키는 것에 해당하고, 위상 120°에 미치지 못하기 때문이다.
따라서, 스큐각 θs를 10° (즉, 식 (2)에 의해 얻어진 값의 2배)로 설정하면, 고조파 성분의 6차를 캔슬할 수 있고, 또한 제1실시 형태와 동일한 방식에 의해, 코깅 토크 및 고조파 성분의 12차를 캔슬할 수 있다.
이상으로부터, 3단 스큐가 형성된 로터를 갖는 자석 매립형 모터로서, 극수 p와 슬롯수 s가 1:6의 관계인 경우는, 스큐각 θs를 하기의 식 (6)에 의해 결정하면, 코깅 토크 및 고조파 성분의 6차 및 12차를 캔슬할 수 있다.
Θs = 240° / LCM (p×s) ···… (6)
또한, 본 발명에 의한 자석 매립형 모터는 제1 및 제2실시 형태에 한정되는 것은 아니다.
제1실시 형태 및 제2실시 형태에서는 로터에 3단 스큐가 형성되어 있었지만, 로터에 4단 스큐가 형성되어 있어도 된다.
구체적으로는, 극수 p와 슬롯수 s가 1:3의 관계인 경우, 스큐각 θs를 하기의 식 (7)에 의해 결정하면, 코깅 토크 및 고조파 성분의 6차 및 12차를 캔슬할 수 있다.
Θs = 90° / LCM (p×s) ···… (7)
또한, 극수 p와 슬롯수 s가 1:6의 관계인 경우, 스큐각 θs를 아래의 식 (8)에 의해 결정하면, 코깅 토크 및 고조파 성분의 6차 및 12차를 캔슬할 수 있다.
Θs = 180° / LCM(p×s) ···… (8)
또한, 2단 스큐가 형성된 로터를 갖는 자석 매립형 모터로서, 극수 p와 슬롯수 s가 1:3 또는 1:6의 관계인 경우, 스큐각 θs를 아래의 식 (9)에 의해 결정하면 된다.
Θs = 180° / LCM (p×s) ···… (9)
이로써, 코깅 토크 및 고조파 성분의 1차를 캔슬할 수 있다.
또한, 위에서 설명한 바와 같은 2단 스큐가 형성된 로터에 있어서, 아래의 식 (10)에 나타내는 슬롯 조합을 가지도록 구성할 수 있다.
차수 × P* = LCM (s×p)
이렇게 하면, 고조파 성분의 특히 6차 또는 12차를 캔슬할 수 있다.
또한, 본 발명의 제1 및 제2실시 형태에 있어서의 로터가 동일한 형상을 갖는 다수의 강판을 적층하여 형성된 것이어도 된다.
보다 구체적으로, 각 강판(13)은, 도 2A에 도시한 바와 같이, 단수와 동일한 수의 체결 구멍(133)으로 이루어지는 체결 구멍군(133X)을 가지고 있다.
각 체결 구멍(133)은 1개씩 둘레 방향을 따라 위에서 설명한 스큐각 θs 변화된 위치에 형성됨과 함께 강판(13)의 중심(C)을 통과하는 기준선(L)에 대해서 대칭인 위치에 형성되어 있다.
여기에서, 강판(13)은 복수의 체결 구멍군(133X)을 가지고 있고, 각 체결 구멍군(133X)은 단수와 동일한 3개의 체결 구멍(133)으로 이루어진다.
그리고, 각 체결 구멍(133)은 강판(13)의 중심(C)과 각 체결 구멍(133)의 중심을 잇는 선분 중, 서로 이웃하는 선분이 이루는 각도가 10도가 되도록 형성되어 있다.
또한, 4단 스큐가 형성된 로터에 있어서는, 도 2B에 도시한 바와 같이, 각 체결 구멍군(133X)은 4개의 체결 구멍(133)으로 이루어지고, 각 체결 구멍(133)이 1개씩 둘레 방향을 따라 7.5도 변화된 위치에 형성되어 있으면 된다.
이러한 구성이면, 각 강판(13)이 동일한 형상을 가지므로 강판(13)을 제조하기 위한 예를 들면, 절단 다이나 금형 등을 공통화시킬 수 있어 저비용화 및 제조 공정의 간소화를 도모하면서도 로터에 위에서 설명한 스큐각 θs를 형성할 수 있다.
또한, 각 강판(13)에 형성된 체결 구멍(133)이 강판(13)의 중심(C)을 지나는 기준선(L)에 대해서 대칭이 되므로, 강판(13)의 평면에서 볼 때의 형상이 표면과 이면에서 동일한 형상이 되어 강판(13)의 관리를 간소화할 수 있다.
다음, 본 발명에 의한 자석 매립형 모터의 제3실시 형태에 대하여 설명한다.
본 발명의 제3실시 형태에 의한 자석 매립형 모터는, 예를 들면, 냉동 사이클의 압축기에 이용되고, 스큐가 형성된 로터를 구비한 것이다.
이하에서는, 제3실시 형태에 의한 본 발명의 특징 부분인 로터에 대하여 도 3 내지 도 5를 참조하여 설명한다.
도 3은 본 발명의 제3실시 형태에 의한 로터의 구성을 도시한 개략도이고, 도 4는 본 발명의 제3실시 형태에 의한 로터의 구성을 도시한 개략도이고, 도 5는 본 발명의 제3실시 형태에 의한 강판을 도시한 개략도이다.
본 발명의 제3실시 형태에 의한 로터(100)는 소정의 단 스큐각 θ가 형성된 것이며, 도 3 및 도 4에 도시한 바와 같이, 철심(10)과, 영구자석(20)과, 단판(端板, 30)과, 체결 부재(40)를 구비하여 이루어진다.
이하에서는, 소정의 단 스큐각 θ가 5°인 로터(100)에 대하여 설명한다.
영구자석(20)은 철심(10)에 형성된 복수의 자석 매립홈(10a) 각각에 매립되어 있고, 로터(100)의 회전축(X)을 중심으로 둘레 방향을 따라 등 간격으로 설치되어 있다. 구체적으로 이 것은, 예를 들면 페라이트 자석이나 희토류 자석 등의 소결 자석이다.
단판(30)은 자석 매립홈(10a)에 매립된 영구자석(20)의 빠짐을 방지하는 것이며, 철심(10)의 상단 및 하단에 대향하여 배치되어 있다.
체결 부재(40)는 철심(10) 및 단판(30)을 체결하여 고정하는 것이며, 여기에서는, 예를 들면 SUS제의 볼트나 너트 등을 이용한 것이다. 또한 체결 부재(40)로서 리벳을 이용할 수도 있다.
이하, 철심(10)에 대하여 상세하게 설명한다.
본 발명의 제3실시 형태에 의한 철심(10)은 도 3 및 도 4에 도시한 바와 같이, 다수의 강판(13)을 적층시킨 상단 요소(11)와, 다수의 강판(13)을 적층시킨 하단 요소(12)로 구성되어 있고, 이들 상단 요소(11) 및 하단 요소(12)가 체결 부재(40)에 의해 체결되어 고정되어 있다.
또한 본 발명의 제3실시 형태에서는, 상단 요소(11)를 구성하는 강판(13)의 매수와 하단을 구성하는 강판(13)의 매수는 동일한 매수이다. 이로써, 코깅 토크의 1차 성분을 충분히 저감시킬 수 있다. 단, 상단 요소(11)를 구성하는 강판(13)의 매수와 하단을 구성하는 강판(13)의 매수에 약간의 오차는 있어도 된다.
상단 요소(11)를 구성하는 다수의 강판(13)은, 모두 동일한 형상을 가지고, 표리를 정렬시켜 적층되어 있다.
또, 하단 요소(12)를 구성하는 다수의 강판(13)은, 모두 상단 요소(11)의 강판(13)과 동일한 형상을 가지고, 상단 요소(11)의 강판(13)과 표리를 반대로 하여 적층되어 있다.
각 강판(13)은, 소정의 두께 치수를 가진 개략 원판 형상을 갖는 것이며, 여기에서는, 예를 들면 공통의 절단 다이 혹은 공통의 금형을 이용해 제조된 무방향성 전자강판 등이다.
보다 구체적으로 각 강판(13)은, 도 5에 도시한 바와 같이, 샤프트를 삽입 관통시키기 위한 샤프트 구멍(131)과, 위에서 설명한 자석 매립홈(10a)을 형성하는 복수의 자석 매립 구멍(132)과, 체결 부재(40)를 삽입 관통시키기 위한 복수의 체결 구멍(133)이 형성된 것이다. 또한 각 구멍(131, 132, 133)은 강판(13)의 두께 방향으로 관통하여 형성되어 있다.
샤프트 구멍(131)은 강판(13)의 중앙에 형성되어 있고, 소정의 직경 치수를 가진 대략 원형상을 가지는 것이다. 보다 상세하게는, 샤프트 구멍(131)의 중심과 강판(13)의 중심(C)이 일치함과 함께 이들의 중심을 로터(100)의 회전축(X)이 통과하도록 구성되어 있다.
자석 매립 구멍(132)은 통상 플럭스 배리어를 가지고, 로터(100)의 회전축(X)을 중심으로 둘레 방향을 따라 등 간격으로 형성되어 있다. 본 발명의 제3실시 형태에서는, 짝수개의 자석 매립 구멍(132)이 강판(13)의 중심(C)의 주위에 둘레 방향을 따라 등 간격으로 배치되어 있고, 보다 구체적으로는 6개의 자석 매립 구멍(132)이 형성되어 있다.
체결 구멍(133)은 로터(100)의 회전축(X)을 중심으로 둘레 방향을 따라 소정의 간격으로 형성된 대략 원형상을 가지는 것이다. 본 발명의 제3실시 형태에서는, 2n개(n은, 자연수) 즉 짝수개의 체결 구멍(133)이 강판(13)의 중심 주위에 둘레 방향을 따라 소정의 간격으로 배치되어 있다.
여기에서는, 자석 매립 구멍(132)과 동수의 6개의 체결 구멍(133)이 형성되어 있고, 이하, 이것들을 구별하는 경우는, 둘레 방향을 따라 133a, 133b, 133c, 133d, 133e, 133f라고 표기한다.
그리고, 본 발명의 제3실시 형태의 체결 구멍(133)은, 적층된 강판(13)의 각 체결 구멍(133)에 위에서 설명한 체결 부재(40)인 볼트를 통과시킴으로써 철심(10)의 상단 요소(11) 및 하단 요소(12)의 사이에 5°의 단 스큐각이 형성되고, 또한 서로 이웃한 체결 구멍(133)의 간격 중 어느 1개의 간격이 다른 간격과 상이한 치수가 되도록 형성되어 있다.
보다 상세하게는, 도 5에 도시한 바와 같이, 위에서 설명한 6개의 체결 구멍(133) 중 1개 걸러 배치되어 있는 3개의 체결 구멍(133a, 133c, 133e)이 6개의 체결 구멍(133)을 로터(100)의 회전축(X)을 중심으로 둘레 방향을 따라 등 간격으로 배치한 경우의 기준 위치(B)에 형성되어 있고, 1개 걸러 배치된 나머지 3개의 체결 구멍(133b, 133d, 133f)이 기준 위치(B)로부터 둘레 방향을 따른 동일 방향으로 단 스큐각 θ(본 실시형태에서는, 5°) 변화된 위치에 형성되어 있다.
여기에서, 준 위치(B)는 각 자석 매립 구멍(132)에 대해서 가장 가까운 기준 위치(B)의 상대적인 위치 관계가 모두 동일해지도록 설정된 위치이다.
본 발명의 제3실시 형태의 기준 위치(B)는, 자석 매립 구멍(132)과 샤프트 구멍(131)의 사이에 위치하고, 각 자석 매립 구멍(132)의 중심과 강판(13)의 중심(C)을 잇는 선분(L) 상에 있어서, 강판(13)의 중심(C)으로부터 각 기준 위치(B)까지의 거리가 동일해지도록 설정되어 있다.
즉, 본 발명의 제3실시 형태에서는, 6개의 체결 구멍(133) 중 1개 걸러 배치된 반수의 체결 구멍(133a, 133c, 133e)이 이들의 각 중심(O)과 상기 기준 위치(B)가 일치하도록 형성되어 있고, 나머지 반수의 체결 구멍(133b, 133d, 133f)이, 이들의 각 중심(O)과 상기 기준 위치(B)로부터 예를 들면 로터(100)의 회전 방향을 따라 5° 변화된 위치가 일치하도록 형성되어 있다.
이로써, 서로 이웃한 체결 구멍(133)의 간격, 즉, 기준 위치(B)에 형성된 체결 구멍(133a, 133c, 133e)과 기준 위치(B)로부터 5° 변화된 위치에 형성된 체결 구멍(133b, 133d, 133f)의 간격은, 제1 간격과, 제1 간격과는 다른 제2 간격의 2가지가 된다.
또한, 위에서 설명한 구성에 의해 각 체결 구멍(133)은, 강판(13)의 중심을 통과하는 직선에 대해서 비선대칭으로 배치되게 된다.
계속해서, 위에서 설명한 강판(13)을 적층시키는 것에 의해 5°의 단 스큐각이 형성되는 공정에 대하여 도 6을 참조하여 설명한다.
도 6은 본 발명의 제3실시 형태의 변형예에 의한 강판을 도시한 개략도이다.
도 6에서, 바깥(表)을 향하고 있는 강판(13)은, 6개의 체결 구멍(133)이 둘레 방향을 따라 체결 구멍 133a, 133b, 133c, 133d, 133e, 133f의 순서로 형성되어 있고, 속(裏)을 향하고 있는 강판(13)은, 6개의 체결 구멍(133)이 둘레 방향을 따라 체결 구멍 133a, 133f, 133e, 133d, 133c, 133b의 순서로 형성되어 있다.
본 실시 형태에서는, 단 스큐각이 5°이며, 서로 이웃하는 체결 구멍(133)과 강판의 중심(C)이 이루는 각도는, 55° 또는 65°가 된다.
여기에서, 속(裏)을 향하고 있는 강판(13) 위에, 바깥(表)을 향하고 있는 강판을 겹치면, 도 6의 중단에 도시한 바와 같이, 각 강판(13)에 형성된 자석 매립 구멍(132)은 일치한다.
한편, 각 강판(13)에 형성된 체결 구멍(133)에 관해서는, 위에서 설명한 바와 같이, 기준 위치(B)에 형성된 133a, 133c, 133e는 일치하고, 기준 위치(B)로부터 5° 변화된 위치에 형성되어 있는 체결 구멍(133b, 133d, 133f)은 일치하지 않는다.
이 상태로부터, 예를 들면 속(裏)을 향하고 있는 강판(13)을 둘레 방향을 따라 시계 방향으로 5° 회전시키면, 도 6의 하단에 도시한 바와 같이, 각 강판(13)에 형성된 각 체결 구멍(133)이 모두 일치함과 함께 바깥(表)을 향하고 있는 강판(13)에 형성된 각 자석 매립 구멍(132)과 속(裏)을 향하고 있는 강판(13)에 형성된 각 자석 매립 구멍(132)이 각각 5° 스큐한다.
이와 같이, 본 실시 형태에 의한 로터(100)는, 상단 요소(11)를 구성하는 강판(13)과, 하단 요소(12)를 구성하는 강판(13)을 표리(表裏) 반대로 함과 함께 각 강판(13)에 형성된 체결 구멍(133)을 정렬시켜 체결 부재를 통과시킴으로써 상단 요소(11)와 하단 요소(12)의 사이에 5°의 단 스큐각이 형성된다.
이와 같이 구성된 본 실시 형태에 의한 자석 매립형 모터에 의하면, 복수의 체결 구멍(133)이 비선대칭으로 배치되어 있고, 서로 이웃한 체결 구멍(133)의 간격이 제1 간격과 제1 간격과는 다른 제2 간격이 되므로, 종래와 같이 체결 구멍(133)이 둘레 방향을 따라 등 간격으로 형성되어 있는 경우에 비해, 강판(13)의 표리(表裏)를 분별하는 것이 용이해진다.
이로써, 강판(13)을 적층할 때에, 표리(表裏)를 잘못 적층하게 될 가능성이 낮고, 소정의 단 스큐각 θ을 형성함으로써, 코깅 토크를 확실히 저감시킬 수 있다.
또한, 강판(13)의 표리(表裏)를 분별하는 것이 용이하기 때문에 강판(13)의 표리(表裏)를 용이하게 정렬시킬 수 있어, 강판(13)을 관리하기 용이해진다.
또한, 각 강판(13)이 동일한 형상을 가지므로, 강판(13)을 제조하기 위한 예를 들면 절단 다이나 금형 등을 공통화시킬 수 있어, 저비용화 및 제조 공정의 간소화를 도모할 수 있다.
또한, 본 발명은 상기 제3실시 형태에 한정되는 것은 아니다. 이를 도 7 내지 도 10을 참조하여 설명한다.
도 7은 본 발명의 제3실시 형태의 다른 변형예에 의한 강판을 도시한 개략도이고, 도 8은 본 발명의 제3실시 형태의 또 다른 변형예에 의한 강판을 도시한 개략도이고, 도 9는 본 발명의 제3실시 형태의 또 다른 변형예에 의한 강판을 도시한 개략도이고, 도 10은 본 발명의 제3실시 형태의 또 다른 변형예에 의한 강판을 도시한 개략도이다.
본 실시 형태의 체결 구멍(133)은, 2n개의 체결 구멍(133) 중 1개 걸러 형성되어 있는 n개의 체결 구멍(133)이 기준 위치(B)로부터 둘레 방향을 따른 동일 방향으로 θ 변화된 위치에 형성되어 있었지만, 도 7에 도시한 바와 같이, 2n개 중 연속한 n개의 체결 구멍(133)이, 기준 위치(B)로부터 둘레방향을 따른 동일 방향으로 θ 변화되도록 형성되어 있어도 된다.
즉, 도 7에 도시한 바와 같이, 강판(13)은 6개의 체결 구멍(133) 중 연속한 반수의 체결 구멍(133a, 133b, 133c)은, 이들의 각 중심(O)과 기준 위치(B)가 일치하도록 형성되어 있고, 나머지 반수의 체결 구멍(133d, 133e, 133f)은 이들의 각 중심(O)과 기준 위치(B)로부터 예를 들면 로터(100)의 회전 방향을 따라 5° 변화된 위치가 일치하도록 형성되어 있다.
또한, 도 8에 도시한 바와 같이, 강판(13)이 n개의 체결 구멍(133)을 가지고, 서로 이웃한 2개의 체결 구멍(133)이 2개의 체결 구멍(133)의 중심 각각과 로터(100)의 회전축(X)을 잇는 선분이 이루는 각도가 (360/n)° - θ가 되도록 형성되어 있으며, 2개의 체결 구멍(133)을 제외한 n-2개의 체결 구멍(133)이 로터(100)의 회전축(X)을 중심으로 둘레 방향을 따라 등 간격으로 형성되어 있는 것이어도 된다.
보다 구체적으로는, 도 8에 도시한 바와 같이, 체결 구멍(133a)은 그 중심(O)이 기준 위치(B)와 일치하도록 형성되어 있다. 또한, 체결 구멍(133b, 133c, 133d, 133e, 133f)은 각각 그들의 각 중심이 기준 위치(B)로부터, 1°, 2°, 3°, 4°, 5° 둘레 방향을 따른 동일 방향으로 변화된 위치에 형성되어 있다.
이로써, 체결 구멍(133a)과 체결 구멍(133f)의 사이는, 강판의 중심(C)을 기 준으로 55° 열려 있고, 체결 구멍(133a)과 체결 구멍(133b)의 사이, 체결 구멍(133b)과 체결 구멍(133c)의 사이, 체결 구멍(133c)과 체결 구멍(133d)의 사이, 체결 구멍(133d)과 체결 구멍(133e)의 사이, 체결 구멍(133e)과 체결 구멍(133f)의 사이는, 모두 강판의 중심(C)을 기준으로 61° 열려 있다.
위에서 설명한 구성에 의하면, 복수의 체결 구멍(133)이 비선대칭으로 배치되어 있고, 서로 이웃하는 체결 구멍(133)의 간격이 체결 구멍(133a)과 체결 구멍(133f)의 간격만 그 이외의 간격보다 짧아져, 종래와 같이 체결 구멍(133)이 둘레 방향을 따라 등 간격으로 형성되어 있는 경우에 비해, 강판(13)의 표리를 분별하는 것이 용이해진다.
또한, 본 실시 형태의 강판(13)은, 6개의 체결 구멍(133)이 형성되어 있었지만, 강판(13)은, 예를 들면 도 9에 도시한 바와 같이, 4개의 체결 구멍(133)이 형성된 것이어도 된다.
또한, 도 10에 도시한 바와 같이, 각 강판(13)은, 압축기용 오일이 통과하는 복수의 오일 통과 구멍(134)이 형성되어 있는 것이어도 된다.
보다 상세하게는, 강판(13)은 오일 통과 구멍(134)이 로터(100)의 회전축(X)을 중심으로 둘레 방향을 따라 등 간격으로 형성되어 있다.
여기에서는, 자석 매립 구멍(132)과 동수의 오일 통과 구멍(134)이 형성되어 있다.
이로써, 적층된 각 강판(13)에 형성된 체결 구멍(133)에 체결 부재(40)를 통과시킴으로써 각 강판(13)에 형성된 오일 통과 구멍(134)이 일치하여 겹쳐진다.
이로써, 소정의 단 스큐각 θ을 형성하면서도 오일이 통과하는 유로를 좁히지 않고, 위에서 설명한 자석 매립형 모터를 압축기에 이용한 경우, 오일 순환율(OCR)의 악화를 억제할 수 있어, 성적 계수(COP)나 에너지 효율비(EER)의 저하를 방지할 수 있다.
또한, 본 실시 형태의 로터는, 6개의 영구자석을 가지는 것이었지만, 영구자석의 수는 위의 실시 형태로 한정되지 않고, 4개 등이어도 된다.
또한, 본 실시 형태의 로터는, 상단 요소와 하단 요소의 사이에 5°의 단 스큐가 형성된 것이었지만, 단 스큐각은 상기 실시형태로 한정되지 않고, 예를 들면 7.5° 등이어도 된다.
또한, 본 발명의 제3실시 형태의 강판을 이용하여 3단 이상의 스큐를 형성한 경우, 코깅 토크를 저감하면서 고조파 성분의 6차 또는 12차 중 한쪽만을 저감시킬 수 있고, 6차 또는 12차 양쪽 모두를 저감시킬 수 없다.
게다가, 본 발명의 제3실시 형태의 로터는, 단 스큐각 θ을 원하는 값으로 설정할 수 있도록 구성되어 있는 점에서, 단 스큐각 θ이 θ=0°인 경우의 유기 전압에 대한 저감률에 근거하여 설정되어 있는 것이 바람직하다.
여기에서, 단 스큐각 θ과 유기 전압의 저감률의 관계를 아래의 [표 1]에 나타낸다.
단 스큐각(˚) 유기 전압의 저감률(%)
0 100.00
10 99.91
20 98.97
30 97.18
40 94.56
50 91.13
60 86.94
70 82.02
80 76.44
90 70.27
100 63.57
110 56.43
120 48.91
130 41.11
140 33.07
150 24.89
160 16.61
170 8.30
180 0.00
[표 1]에서 알 수 있듯이, 예를 들면 고회전형의 모터 설계에는 단 스큐각 θ을 크게 하여 유기 전압을 저감시키는 것이 바람직한다. 한편, 유기 전압을 약간 저감시키고 싶은 경우, 종래라면 권선이나 자석의 그레이드 변경을 실시하고 있었지만, 본 발명의 제3실시 형태의 로터를 이용하면 단 스큐각 θ을 약간 변경함으로써 대응할 수 있다.
이와 같이, 본 발명의 제3실시 형태의 로터를 이용하여 모터 설계를 일단 행하면, 단 스큐각 θ을 변경하는 것에 의하여 다양한 모터 사양을 실현할 수 있어, 신규 모터의 개발이 필요하지 않기 때문에 원가저감을 도모할 수 있다.
또한, 모터의 동작 중에 단 스큐각 θ을 변경할 수 있도록 구성함으로써 가변 자속 제어를 효과적으로 행할 수 있게 된다.
그 밖에 본 발명은 상기 각 실시 예에 한정되지 않으며 또 각 실시 예에 기재된 구성을 조합할 수도 있고, 그 취지를 일탈하지 않는 범위에서 여러 가지로 변형할 수 있음은 말할 필요도 없다.
이상 설명한 바와 같이, 본 발명은 단 스큐각 θ을 변경하는 것에 의하여 다양한 모터 사양을 실현할 수 있어, 신규 모터의 개발이 필요하지 않기 때문에 원가저감을 도모할 수 있는 점에서, 매우 유용하여 산업상 이용가능성이 높다.

Claims (13)

  1. 동일한 형상을 가지는 다수의 강판을 적층하여 형성된 로터를 포함하고,
    상기 로터는,
    상기 다수의 강판의 표리(表裏)를 정렬시켜 적층한 상단 요소와,
    상기 다수의 강판의 표리를 상기 상단 요소의 강판과 반대로 하여 적층한 하단 요소;를 더 포함하고,
    상기 상단 요소와 상기 하단 요소의 각 강판에는,
    축 방향을 따라 인접하는 단의 사이에 소정의 스큐각 θs가 형성되게 복수의 체결 구멍이 형성되어 있는 자석 매립형 모터.
  2. 제1항에 있어서,
    상기 복수의 체결 구멍은,
    상기 로터의 회전축을 중심으로 둘레 방향을 따라 소정 간격으로 형성되어 있고,
    서로 이웃한 상기 체결 구멍의 간격 중 어느 하나의 간격이 다른 간격과 상이한 치수인 자석 매립형 모터.
  3. 제2항에 있어서,
    상기 복수의 체결 구멍은,
    상기 둘레 방향을 따라 1개씩 상기 스큐각 θs가 변화된 위치에 형성되어 있는 자석 매립형 모터.
  4. 제3항에 있어서,
    상기 복수의 체결 구멍은,
    체결 부재에 의해 체결되고,
    상기 체결 부재는,
    볼트 또는 리벳으로 이루어진 자석 매립형 모터.
  5. 제4항에 있어서,
    상기 강판에는, 2n개의 체결 구멍이 형성되어 있고,
    연속해서 형성되어 있는 n개의 체결 구멍 또는 1개 걸러 형성되어 있는 n개의 체결 구멍은, 상기 2n개의 체결 구멍을 상기 로터의 회전축을 중심으로 둘레 방향을 따라 등 간격으로 형성한 경우의 기준 위치로부터 상기 둘레 방향을 따른 동일 방향으로 스큐각 θs 변화된 위치에 형성되어 있는 자석 매립형 모터.
  6. 제4항에 있어서,
    상기 강판에는, n개의 체결 구멍이 형성되어 있고,
    서로 이웃한 2개의 체결 구멍은, 상기 2개의 체결 구멍의 중심 각각과 상기 로터의 회전축을 잇는 선분이 이루는 각도가 (360/n)° - θs가 되도록 형성되고,
    상기 2개의 체결 구멍을 제외한 n-2개의 체결 구멍은, 상기 로터의 회전축을 중심으로 둘레 방향을 따라 등 간격으로 형성되어 있는 자석 매립형 모터.
  7. 제4항에 있어서,
    상기 강판에는,
    압축기용 오일이 통과하는 하나 또는 복수의 오일 통과 구멍이 형성되어 있고,
    상기 체결 구멍에 상기 볼트 또는 리벳을 통과시켜 상기 각 강판에 형성된 상기 오일 통과 구멍이 서로 겹치도록 구성되어 있는 자석 매립형 모터.
  8. 제4항에 있어서,
    상기 소정의 스큐각 θs는,
    θ = 0°인 경우의 유기 전압에 대한 저감률에 기초하여 설정되어 있는 자석 매립형 모터.
  9. 제1항에 있어서,
    상기 로터는,
    2단, 3단 또는 4단 스큐가 형성되어 있는 자석 매립형 모터.
  10. 제9항에 있어서,
    상기 로터는,
    극수 p와 슬롯수 s가 1 : 3 또는 1 : 6의 관계로 설정되어 있는 자석 매립형 모터.
  11. 제10항에 있어서,
    상기 스큐각 θs는,
    아래의 [식 1] ~ [식 4] 중 적어도 하나에 의해 결정되는 자석 매립형 모터.
    [식 1] θs = 120° / LCM (s×p)
    [식 2] θs= 240° / LCM (s×p)
    [식 3] θs = 90°/ LCM (s×p)
    [식 4] θs=180°/LCM (s×p)
    여기에서, LCM (s×p)는 s와 p의 최소 공배수이다.
  12. 제1항 내지 제11항 중 어느 한 항에 기재된 자석 매립형 모터를 이용한 압축기.
  13. 동일한 형상을 가지는 다수의 강판을 적층하여 형성된 로터를 포함하고,
    상기 로터는,
    상기 다수의 강판의 표리(表裏)를 정렬시켜 적층한 상단 요소와,
    상기 다수의 강판의 표리를 상기 상단 요소의 강판과 반대로 하여 적층한 하단 요소;를 더 포함하고,
    상기 상단 요소와 상기 하단 요소의 각 강판에는,
    상기 상단 요소와 상기 하단 요소의 사이에 소정의 스큐각 θs가 형성되게 복수의 체결 구멍이 형성되어 있는 자석 매립형 모터.
PCT/KR2017/005157 2016-05-19 2017-05-18 자석 매립형 모터 및 이를 이용한 압축기 WO2017200312A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17799669.1A EP3442096B2 (en) 2016-05-19 2017-05-18 Magnet-embedded motor and compressor using same
KR1020187022343A KR102399935B1 (ko) 2016-05-19 2017-05-18 자석 매립형 모터 및 이를 이용한 압축기
US16/303,132 US10998783B2 (en) 2016-05-19 2017-05-18 Magnet-embedded motor with a shew angle forward therein and compressor using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016100756 2016-05-19
JP2016-100756 2016-05-19
JP2017012626A JP2017212867A (ja) 2016-05-19 2017-01-27 埋込磁石型モータ及びこれを用いた圧縮機
JP2017-012626 2017-01-27

Publications (1)

Publication Number Publication Date
WO2017200312A1 true WO2017200312A1 (ko) 2017-11-23

Family

ID=60325274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005157 WO2017200312A1 (ko) 2016-05-19 2017-05-18 자석 매립형 모터 및 이를 이용한 압축기

Country Status (2)

Country Link
KR (1) KR102399935B1 (ko)
WO (1) WO2017200312A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684317B (zh) * 2018-08-13 2020-02-01 國立中山大學 偏移式電機轉子及其鐵芯
CN111480281A (zh) * 2017-12-18 2020-07-31 日本电产株式会社 电磁钢板、转子铁芯、转子以及马达

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274826A (ja) * 2003-03-06 2004-09-30 Fuji Electric Systems Co Ltd 回転子ブロックおよび回転子
JP2009131051A (ja) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp 回転電機
KR20100057935A (ko) * 2008-11-24 2010-06-03 한국전기연구원 영구자석 전동기의 스큐용 회전자 및 제조방법
JP2012050253A (ja) * 2010-08-27 2012-03-08 Nippon Densan Corp 回転電機
JP2013132138A (ja) * 2011-12-21 2013-07-04 Daikin Ind Ltd ロータ及びその製造方法
CN203850942U (zh) 2014-05-28 2014-09-24 华域汽车电动系统有限公司 单一冲片构成的分四段斜极永磁电机转子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004248442A (ja) * 2003-02-14 2004-09-02 Nippon Yusoki Co Ltd 直流ブラシレスモータ
JP5309630B2 (ja) * 2008-03-14 2013-10-09 パナソニック株式会社 永久磁石埋込形電動機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274826A (ja) * 2003-03-06 2004-09-30 Fuji Electric Systems Co Ltd 回転子ブロックおよび回転子
JP2009131051A (ja) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp 回転電機
KR20100057935A (ko) * 2008-11-24 2010-06-03 한국전기연구원 영구자석 전동기의 스큐용 회전자 및 제조방법
JP2012050253A (ja) * 2010-08-27 2012-03-08 Nippon Densan Corp 回転電機
JP2013132138A (ja) * 2011-12-21 2013-07-04 Daikin Ind Ltd ロータ及びその製造方法
CN203850942U (zh) 2014-05-28 2014-09-24 华域汽车电动系统有限公司 单一冲片构成的分四段斜极永磁电机转子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3442096A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111480281A (zh) * 2017-12-18 2020-07-31 日本电产株式会社 电磁钢板、转子铁芯、转子以及马达
CN111480281B (zh) * 2017-12-18 2022-07-26 日本电产株式会社 电磁钢板、转子铁芯、转子以及马达
TWI684317B (zh) * 2018-08-13 2020-02-01 國立中山大學 偏移式電機轉子及其鐵芯

Also Published As

Publication number Publication date
KR102399935B1 (ko) 2022-05-20
KR20180138199A (ko) 2018-12-28

Similar Documents

Publication Publication Date Title
WO2017078431A1 (en) Motor
WO2017200312A1 (ko) 자석 매립형 모터 및 이를 이용한 압축기
WO2013147550A1 (ko) 3결선 구조의 스테이터, 이를 이용한 bldc 모터 및 그의 구동방법
US10998783B2 (en) Magnet-embedded motor with a shew angle forward therein and compressor using same
WO2016036107A1 (ko) 자속 집중형 폴 피스를 갖는 마그네틱 기어 및 폴 피스가 로터들의 외측에 구비되는 마그네틱 기어
WO2017164715A1 (ko) 다층 인쇄회로기판을 이용한 적층형 스테이터, 이를 이용한 단상 모터와 쿨링 팬
WO2011049298A2 (ko) 선형 전동기
WO2018147610A1 (ko) 스테이터 및 이를 포함하는 모터
WO2018044141A1 (ko) 로터 위치 감지장치 및 이를 포함하는 모터
WO2017188659A1 (ko) 파워 터미널 및 이를 포함하는 모터
WO2017003033A1 (ko) 외륜 회전자형 스위치드 릴럭턴스 모터
WO2020055150A1 (ko) 모터
WO2017204425A1 (ko) 비균일 자극 길이를 가지는 영구자석 전기기기
WO2013085231A1 (ko) 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
WO2019045305A1 (ko) 스테이터 및 이를 포함하는 모터
WO2019151783A1 (ko) 토크리플 감소를 위한 듀얼 로터 타입 모터 및 이를 포함하는 압축기
WO2019164046A1 (ko) 내진 다면 블록 및 그를 이용한 내진 다면 블록 시스템
WO2019151660A1 (ko) 로터 및 이를 구비하는 모터
WO2020159252A1 (ko) 트랜스포머
WO2022092870A1 (ko) 모터
WO2020149626A1 (ko) 로터 및 이를 포함하는 모터
WO2016108614A1 (ko) 전동기의 회전자
WO2020145538A1 (ko) 모터
WO2024106841A1 (ko) 모터
WO2020055132A1 (ko) 모터

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187022343

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017799669

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017799669

Country of ref document: EP

Effective date: 20181109

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799669

Country of ref document: EP

Kind code of ref document: A1