WO2017200085A1 - Water-absorbing resin particles, process for producing same, and absorbent object and absorbent article both comprising or including same - Google Patents

Water-absorbing resin particles, process for producing same, and absorbent object and absorbent article both comprising or including same Download PDF

Info

Publication number
WO2017200085A1
WO2017200085A1 PCT/JP2017/018819 JP2017018819W WO2017200085A1 WO 2017200085 A1 WO2017200085 A1 WO 2017200085A1 JP 2017018819 W JP2017018819 W JP 2017018819W WO 2017200085 A1 WO2017200085 A1 WO 2017200085A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin particles
vinyl monomer
absorbent resin
acid
Prior art date
Application number
PCT/JP2017/018819
Other languages
French (fr)
Japanese (ja)
Inventor
恵 冨岡
祐介 上田
一裕 高橋
Original Assignee
Sdpグローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sdpグローバル株式会社 filed Critical Sdpグローバル株式会社
Priority to CN201780027739.3A priority Critical patent/CN109071830A/en
Priority to JP2018518382A priority patent/JPWO2017200085A1/en
Publication of WO2017200085A1 publication Critical patent/WO2017200085A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to water-absorbent resin particles, a method for producing the same, an absorbent body containing the same, and an absorbent article.
  • absorbent polymers mainly absorbent fibers such as pulp and acrylic acid (salt)
  • SAP Super Absorbent Polymer
  • the demand for these sanitary materials is shifting to lighter and thinner ones.
  • QOL Quality Of Life
  • SAP itself is required to fulfill the role that hydrophilic fibers have played in the absorber.
  • an important function of diapers is leakage reduction due to high-speed absorption of urine.
  • the conventional absorbent has a high urine absorption rate due to the presence of a physical space (called “Void”) between the bulky hydrophilic fibers.
  • Vaid a physical space between the bulky hydrophilic fibers.
  • the SAP particles are not spaced apart.
  • the absorption rate of urine is low with little Void.
  • absorbent bodies have high urine diffusibility due to capillary action due to hydrophilic fibers, and can diffuse urine throughout the absorbent body, whereas absorbent bodies with a high SAP ratio have a capillary force.
  • absorbent bodies with a high SAP ratio have a capillary force.
  • the urine diffusibility in the absorber is significantly reduced. This decrease in diffusibility is a serious cause of diaper leakage coupled with the decrease in the absorption rate described above.
  • the surface of the water-absorbent resin particles obtained by polymerization is cross-linked with an aqueous solution containing a specific organic cross-linking agent compound and an aqueous solution containing a specific cation to deform the surface of the swollen gel.
  • a method of efficiently forming a gel gap by suppressing for example, see Patent Document 1.
  • An object of the present invention is to provide water-absorbing resin particles capable of achieving both absorption speed and liquid permeability between swollen gels without reducing water-absorbing performance, and a method for producing the same.
  • the first aspect of the present invention is the crosslinking of a monomer composition comprising a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis and an internal crosslinking agent (b).
  • An absorbent body comprising the water-absorbent resin particles and a fibrous material; an absorbent article comprising the absorbent body.
  • the second aspect of the present invention is a method for producing the water-absorbent resin particles of the first aspect of the present invention, which comprises the crosslinked polymer (A) and an inorganic acid (c) having a proton of pKa 4.5 to 10
  • the resin particles (B) are subjected to surface crosslinking with a surface crosslinking agent (d) at a water content of 3 to 8% by weight.
  • the third aspect of the present invention is the crosslinking of a monomer composition comprising a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis and an internal crosslinking agent (b).
  • a water-absorbent resin comprising a step of surface-crosslinking the surface of a resin particle (B) containing a polymer (A) and phosphoric acid (c1) and / or phosphate (c2) with a surface-crosslinking agent (d)
  • a method for producing particles In the above production method, the centrifugal retention amount of physiological saline is 29 to 40 g / g, the gel bed permeability at 0 psi swelling pressure is 40 darcies or more, and the absorption rate under no load measured by the Demand Wettability test method Is 15 seconds or less, and it is suitable as a method for producing water-absorbent resin particles having an absorption rate measured by the Vortex test method of 50 seconds or less.
  • the water-absorbent resin particles produced by the water-absorbent resin particles of the present invention and the production method of the present invention (also referred to as the production method of the present invention without distinguishing the second invention and the third invention),
  • the above-described configuration solves the above-described problems and has excellent characteristics described in detail below.
  • thin hygienic materials and absorbent articles with a high water-absorbing resin ratio because they have a high absorption rate despite having a high absorption rate and excellent liquid permeability between swollen gels. When applied to, it exhibits stable and excellent absorption performance (for example, liquid diffusibility, absorption speed, and amount of absorption) in any state, and is less prone to fog.
  • the water-soluble vinyl monomer (a1) is not particularly limited and is publicly known (for example, Japanese Patent No. 3648553). No.
  • vinyl monomers having at least one water-soluble substituent and an ethylenically unsaturated group for example, anionic vinyl monomers, nonionic vinyl monomers, cationic vinyl monomers), JP, Anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers disclosed in paragraphs 0009 to 0024 of 2003-16583, and carboxy groups disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982 , Sulfo group, phosphono group, hydroxyl group, carbamoyl group, amino And vinyl monomers such as vinyl monomers) may be used with at least one selected from the group consisting of ammonio group.
  • the vinyl monomer (a2) (hereinafter also referred to as a hydrolyzable vinyl monomer (a2)) that becomes a water-soluble vinyl monomer (a2) by hydrolysis is not particularly limited, and is publicly known (for example, Patent No. 3648553, 0024- A vinyl monomer having at least one hydrolyzable substituent which becomes a water-soluble substituent by hydrolysis as disclosed in paragraph 0025, at least one of those disclosed in paragraphs 0052 to 0055 of JP-A-2005-75982; Vinyl monomers of hydrolyzable substituents (vinyl monomers having 1,3-oxo-2-oxapropylene (—CO—O—CO—) group, acyl group, cyano group, etc.) can be used.
  • the water-soluble vinyl monomer is a concept well known to those skilled in the art, but when expressed using numerical values, for example, it means a vinyl monomer that dissolves at least 100 g in 100 g of water at 25 ° C.
  • Hydrolysis is a concept well-known to those skilled in the art. More specifically, hydrolysis means, for example, hydrolysis by the action of water and, if necessary, a catalyst (an acid or a base). Hydrolysis of the hydrolyzable vinyl monomer (a2) may be performed either during polymerization, after polymerization, or both of them, but from the viewpoint of the absorption performance of the resulting water-absorbent resin composition, it is preferably after polymerization.
  • the water-soluble vinyl monomer (a1) is preferable from the viewpoint of absorption characteristics.
  • the water-soluble vinyl monomer (a1) is preferably an anionic vinyl monomer, more preferably a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group, or a mono-, di- or tri-alkyl. It is a vinyl monomer having an ammonio group.
  • a vinyl monomer having a carboxy (salt) group or a carbamoyl group is more preferable, (meth) acrylic acid (salt) and (meth) acrylamide, more preferably (meth) acrylic acid (salt), Most preferred is acrylic acid (salt).
  • the “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”.
  • (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylate
  • (meth) acrylamide means acrylamide or methacrylamide.
  • the salt include an alkali metal (such as lithium, sodium and potassium) salt, an alkaline earth metal (such as magnesium and calcium) salt or an ammonium (NH 4 ) salt.
  • alkali metal salts and ammonium salts are preferable from the viewpoint of absorption characteristics and the like, more preferably alkali metal salts, and particularly preferably sodium salts.
  • the monomer composition contains either the water-soluble vinyl monomer (a1) or the hydrolyzable vinyl monomer (a2) as a constituent component
  • one type may be used alone, or two or more types as necessary. May be a component.
  • the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent components.
  • the molar ratio (a1 / a2) of these is preferably 75/25 to 99/1, more preferably 85/15 to 95/5, particularly preferably 90/10 to 93/7, and most preferably 91/9 to 92/8. Within this range, the absorption performance is further improved.
  • the monomer composition may contain, in addition to the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), other vinyl monomers (a3) copolymerizable therewith. it can.
  • vinyl monomers (a3) that can be copolymerized are not particularly limited, and are known (for example, hydrophobic vinyl monomers disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, Japanese Patent Laid-Open No. 2003-165883, Hydrophobic vinyl monomers (vinyl monomers disclosed in paragraph 0058 of JP-A-2005-75982) can be used, and the following vinyl monomers (i) to (iii) can be used.
  • Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, and halogen substituted products of styrene such as vinylnaphthalene and dichlorostyrene.
  • the content (mol%) of the other vinyl monomer (a3) unit is that of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit. Based on the number of moles, it is preferably 0.01 to 5, more preferably 0.05 to 3, then preferably 0.08 to 2, particularly preferably 0.1 to 1.5. In spite of the above, it is most preferable that the content of other vinyl monomer (a3) units is 0 mol% from the viewpoint of absorption characteristics and the like.
  • the internal cross-linking agent (b) is not particularly limited, and is known (for example, a cross-linking agent having two or more ethylenically unsaturated groups disclosed in Japanese Patent No. 3648553, paragraphs 0031 to 0034, a water-soluble substituent, Cross-linking agent having at least one functional group capable of reacting and having at least one ethylenically unsaturated group, cross-linking agent having at least two functional groups capable of reacting with a water-soluble substituent, and JP-A-2003-165883
  • a crosslinking agent having two or more ethylenically unsaturated groups is preferable, more preferably a poly (meth) allyl ether of a polyol having 2 to 10 carbon atoms, particularly preferably triallyl cyanide.
  • the content (% by weight) of the internal crosslinking agent (b) contained in the monomer composition is such that other vinyl monomers (a3) of the water-soluble vinyl monomer (a1) and hydrolyzable vinyl monomer (a2) are also used.
  • the total weight of (a1) to (a3) is preferably 0.05 to 0.7, more preferably 0.1 to 0.6, and particularly preferably 0.15 to 0.5. is there. Within this range, the water-soluble content is reduced and the absorption characteristics are further improved.
  • a known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization method and the like; JP-A-55-133413, etc.) using the monomer composition described above, It can be produced in the same manner as known reverse phase suspension polymerization (Japanese Patent Publication No. 54-30710, Japanese Patent Application Laid-Open No. 56-26909, Japanese Patent Application Laid-Open No. 1-5808, etc.).
  • the solution polymerization method is preferable, and an aqueous solution polymerization method is particularly preferable because it is not necessary to use an organic solvent and is advantageous in terms of production cost.
  • a polymerization control agent represented by a chain transfer agent may be used in combination as necessary.
  • Specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptan, alkyl halide, thiol. Examples include carbonyl compounds.
  • These polymerization control agents may be used alone or in combination of two or more thereof.
  • the amount (% by weight) of the polymerization control agent used is that of the water-soluble vinyl monomer (a1) and hydrolyzable vinyl monomer (a2), and when other vinyl monomers (a3) are also used (a1) to (a3). Based on the total weight, 0.0005 to 5 is preferable, and 0.001 to 2 is more preferable.
  • the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, particularly preferably based on the weight of the crosslinked polymer (A). Is 0-3, most preferably 0-1. Within this range, the absorption performance of the water-absorbent resin particles is further improved.
  • the water content (% by weight) after the distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, based on the weight of the crosslinked polymer (A). Most preferably, it is 3-8. Within this range, the absorption performance and the breakability of the crosslinked polymer (A) after drying are further improved.
  • a water-containing gel composed of the crosslinked polymer (A) and water is obtained by an aqueous solution polymerization method.
  • the obtained water-containing gel can be chopped and used as necessary.
  • the size (longest diameter) of the gel after chopping is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the later-described solvent (including water) can be easily distilled off, which is preferable.
  • Shredding can be performed by a known method, and can be performed using a shredding device (for example, a bex mill, rubber chopper, pharma mill, mincing machine, impact crusher, and roll crusher).
  • a shredding device for example, a bex mill, rubber chopper, pharma mill, mincing machine, impact crusher, and roll crusher.
  • the content of the organic solvent and the water content are infrared moisture measuring devices (JE400 manufactured by KETT Co., Ltd.): 120 ⁇ 5 ° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specification 100V, 40W) is obtained from the weight loss of the measurement sample before and after heating.
  • JE400 manufactured by KETT Co., Ltd. 120 ⁇ 5 ° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specification 100V, 40W
  • a method of distilling off the solvent including water
  • a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C. a thin film drying method using a drum dryer heated to 100 to 230 ° C., (heating ) Vacuum drying, freeze drying, infrared drying, decantation, filtration, etc. can be applied.
  • the crosslinked polymer (A) may be one kind or a mixture of two or more kinds.
  • the inorganic acid (c) has a proton with a pKa of 4.5 to 10, and from the viewpoint of absorption characteristics, the pKa of the proton is preferably 5.5 to 8.5, more preferably 6.5 to 7.5.
  • the inorganic acid (c) include phosphoric acid, phosphorous acid, tungstophosphoric acid, polyphosphoric acid, triphosphoric acid, cyclophosphoric acid, carbonic acid, sulfuric acid, sulfurous acid, hypochlorous acid, silicic acid and the like and salts thereof.
  • the salt is not particularly limited, and specific examples include salts with metals, ammonium, alkylammonium and the like.
  • the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8.
  • metals belonging to Group 1A, 3A or 3B are more preferable, and sodium and potassium belonging to Group 1A are most preferable from the viewpoint of absorption characteristics and the like.
  • the inorganic acid (c) is preferably an inorganic acid that is difficult to function as a chain transfer agent or a salt thereof from the viewpoint of uniformity of surface cross-linking, absorption characteristics, and the like, and the inorganic acid (c) is strong as a chain transfer agent.
  • the molecular weight decreases and the water-soluble component increases, which is not preferable from the viewpoint of uniformity of surface cross-linking and absorption characteristics.
  • phosphoric acid (c1), phosphorous acid, tungstophosphoric acid, polyphosphoric acid, triphosphoric acid, cyclophosphoric acid and salts thereof are more preferred, and phosphoric acid (c1), phosphorous acid and their salts are particularly preferred.
  • Phosphoric acid (c1) is orthophosphoric acid
  • phosphate (c2) includes alkali metal phosphates (trilithium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, phosphoric acid Potassium dihydrogen, dipotassium hydrogen phosphate and tripotassium phosphate), alkaline earth metal phosphates (monomagnesium phosphate, dimagnesium phosphate, trimagnesium phosphate, calcium dihydrogen phosphate, monohydrogen phosphate) Calcium, tricalcium phosphate, etc.), ammonium phosphate (NH 4 ) salts (ammonium dihydrogen phosphate, diammonium hydrogen phosphate, etc.) and the like. From the viewpoint of absorption characteristics, alkali metal phosphates and phosphoric acid An ammonium salt is preferable, an alkali metal phosphate is
  • the content (% by weight) of the inorganic acid (c) contained in the water-absorbent resin particles of the first present invention is such that the water-soluble vinyl monomer (a1) and the vinyl monomer (a1) by hydrolysis become a water-soluble vinyl monomer (a1) ( a2), when other vinyl monomer (a3) is also used, it is 0.004 to 2.4 based on the total weight of (a1) to (a3) and the internal crosslinking agent (b), more preferably 0.01 to 1.2. Within this range, the absorption characteristics are further improved.
  • the content (% by weight) of the inorganic acid (c) contained in the water-absorbent resin particles of the first invention is the total weight of the inorganic acid (c) used and the weight of the crosslinked polymer (A) or the crosslinked polymer. It can be calculated using the weight of the monomer composition used to obtain (A). In addition, when the hydrate of inorganic acid (c) is used, the weight of inorganic acid (c) shall not contain hydration water.
  • the content (% by weight) of phosphoric acid (c1) and phosphate (c2) depends on the cross-linked polymer (A).
  • the total weight of (a1) to (a3) and the internal crosslinking agent (b) Based on this, 0.008 to 1.4 is preferable, and 0.01 to 1.2 is more preferable. Within this range, the absorption characteristics are further improved.
  • the contents (wt%) of phosphoric acid (c1) and phosphate (c2) contained in the water-absorbent resin particles can be calculated in the same manner as described above. Similarly to the above, when a hydrate is used, the weight of phosphoric acid (c1) and phosphate (c2) does not include hydration water.
  • the water-absorbent resin particles of the first present invention are not limited as long as the crosslinked polymer (A) and the inorganic acid (c) are contained, and a preferable method for obtaining the water-absorbent resin particles is a water-soluble resin particle.
  • a monomer composition comprising, as essential constituents, a water-soluble vinyl monomer (a1) by hydrolysis and a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) and an internal cross-linking agent (b) as inorganic constituents (c) (Hereinafter also referred to as a polymerization method), a method of mixing a hydrogel containing the crosslinked polymer (A) and an inorganic acid (c) (hereinafter also referred to as a mixing method). ).
  • the water-absorbent resin particles obtained by the polymerization method and the mixing method are preferable from the viewpoint of absorption characteristics because the inorganic acid (c) exists without being unevenly distributed inside the crosslinked polymer (A).
  • the said polymerization method can be performed by superposing
  • a method of performing aqueous solution polymerization in the presence of the inorganic acid (c) is preferable.
  • the inorganic acid (c) is polymerized by the above-mentioned method in the presence of the monomer composition, the hydrate can be used as the inorganic acid (c).
  • the mixing method can be performed by mixing an inorganic acid (c) with the water-containing gel obtained by aqueous polymerization of the monomer composition.
  • the water-containing gel and the inorganic acid (c) can be mixed by mixing the water-containing gel and the inorganic acid (c) with a known stirring and mixing device (Henschel mixer, planetary mixer, universal mixer, etc.).
  • a stirring and mixing device Henschel mixer, planetary mixer, universal mixer, etc.
  • it can also carry out by putting a water-containing gel and an inorganic acid (c) into a cutting device simultaneously.
  • the inorganic acid (c) is mixed with the hydrated gel, the hydrate can be used as the inorganic acid (c).
  • the product (hydrogel) obtained by the polymerization method or the mixing method can be used for the production of water-absorbent resin particles by pulverization after drying.
  • the pulverization method is not particularly limited, and a pulverizer (for example, a hammer pulverizer, an impact pulverizer, a roll pulverizer, and a shet airflow pulverizer) can be used. After pulverization, if necessary, the particle size can be adjusted by sieving or the like.
  • the weight average particle diameter ( ⁇ m) of the water-absorbent resin particles obtained after sieving is preferably 100 to 800, more preferably 200 to 700, and then preferably 250. To 600, particularly preferably 300 to 500, most preferably 350 to 450. Within this range, the absorption performance is further improved.
  • the weight average particle size was measured using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook, 6th edition (Mac Glow Hill Book, 1984). , Page 21). That is, JIS standard sieves are combined in the order of 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 250 ⁇ m, 150 ⁇ m, 125 ⁇ m, 75 m and 45 ⁇ m, and a tray from the top. About 50 g of the measured particles are put in the uppermost screen and shaken for 5 minutes with a low-tap test sieve shaker.
  • the content of the fine particles contained in the water absorbent resin particles is 106 ⁇ m or less (preferably 150 ⁇ m or less) of the fine particles contained in the water absorbent resin particles from the viewpoint of absorption performance. Based on this, it is preferably 3% by weight or less, more preferably 1% by weight or less.
  • the content of the fine particles can be determined using a plot created when determining the above weight average particle diameter.
  • the apparent density (unit: g / ml, the same applies hereinafter) of the water-absorbent resin particles is preferably 0.54 to 0.70, more preferably 0.56 to 0.65, and particularly preferably 0.58 to 0.00. 60. Within this range, the absorption performance is further improved.
  • the apparent density is measured at 25 ° C. according to JIS K7365: 1999.
  • the shape of the water-absorbent resin particles is not particularly limited, and examples thereof include an irregularly crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, from the viewpoint of good entanglement with the fibrous material in the use of paper diapers and the like and no fear of dropping off from the fibrous material, an irregular crushed shape is preferable.
  • the water-absorbent resin particles of the first present invention preferably have a surface cross-linked structure with a surface cross-linking agent (d).
  • the surface cross-linking agent (d) known ones (polyvalent glycidyl compounds, polyvalent amines, polyvalent aziridines, polyvalent isocyanates and the like described in JP-A No. 59-189103) can be used.
  • these surface cross-linking agents (d) a polyvalent glycidyl compound is preferred from the viewpoint of economy and absorption characteristics, and ethylene glycol diglycidyl ether is most preferred.
  • the amount (% by weight) of the surface cross-linking agent (d) is not particularly limited because it can be variously changed depending on the type of the surface cross-linking agent (d), the cross-linking conditions, the target performance, etc.
  • 0.03 to 0.5 is preferable, more preferably 0.05 to 0.3, and particularly preferably 0.08 to 0.2.
  • the water-absorbent resin particles are reduced in the amount of water-soluble polymer that is a water-soluble polymer by adjusting the amount of internal cross-linking agent added and, if applicable, the amount of water before surface cross-linking. It is desirable.
  • the water-absorbent resin particles have a water-soluble content reduced to 20% or less.
  • the soluble content exceeds 20%, the soluble content is not eluted at the time of water absorption, gel blocking occurs, and the liquid permeability and water absorption capacity are adversely affected. From the viewpoint of liquid permeability, it is preferably 10% or less, more preferably 5% or less.
  • the water-soluble component can be measured by the following method.
  • ⁇ Water-soluble content> In a 300 ml plastic container, 100 g of 0.9 wt% saline is weighed, 1.2 g of the water-absorbent resin composition is added to the saline, sealed with a wrap, and stirred for 3 hours by rotating a stirrer at 500 rpm. A water-soluble extract from which the water-soluble component of the water-absorbent resin composition is extracted is prepared. And this water-soluble extract is filtered using the filter paper made from ADVANTEC Toyo Co., Ltd. (product name; JIS P 3801, No. 2, thickness 0.26 mm, reserved particle diameter 5 ⁇ m).
  • a N / 50 KOH aqueous solution is titrated with respect to a blank test solution obtained by adding 30 g of ion-exchanged water to 20 g of 0.9 wt% saline until the pH of the saline becomes 10. Then, a titration amount ([W KOH, b ] ml) of an N / 50 aqueous KOH solution necessary for the pH of the 0.9 wt% saline solution to be 10 is obtained. Then, titration of N / 20 HCl aqueous solution is performed until the pH of the saline solution becomes 2.7. Then, a titration amount of N / 10 HCl aqueous solution ([W HCl, b ] ml) necessary for the pH of the 0.9 wt% saline solution to be 2.7 is obtained.
  • the above measurement solution is subjected to the same operation as the above titration operation, and a titration amount of N / 50 KOH aqueous solution necessary for the measurement solution to have a pH of 10 ([W KOH, S ] ml).
  • a titration amount of N / 50 KOH aqueous solution necessary for the measurement solution to have a pH of 10 [W KOH, S ] ml.
  • the centrifugal retention amount (centrifugal retention capacity: hereinafter also referred to as CRC) (g / g) is 25 or more from the viewpoint of water absorption characteristics and other physical properties. Is preferable, 27 or more is more preferable, and 29 or more is further more preferable. Further, the upper limit is preferably 40 or less, and more preferably 38 or less. CRC (g / g) can be measured by the method described later.
  • the gel bed permeability (hereinafter also referred to as GBP) (darcies) at 0 psi swelling pressure of the absorbent resin particles is 5 or more from the viewpoint of water absorption characteristics and other physical properties. Is more preferable, 30 or more is more preferable, and 40 or more is still more preferable. GBP (darcies) can be measured by the method described later.
  • an absorption rate under no load (hereinafter also referred to as an absorption rate (T1)) measured by a demand wettability test method (hereinafter also referred to as a DW test) of the absorbent resin particles. Is 15 seconds or less from the viewpoint of water absorption characteristics and other physical properties.
  • the absorption rate (T1) can be measured by the method described later.
  • the absorption rate of the absorbent resin particles measured by the Vortex test method (hereinafter also referred to as absorption rate (Vortex)) can be measured by the method described later. From the viewpoint of the relationship with other physical properties, it is 50 seconds or less.
  • the resin particles (B) containing the crosslinked polymer (A) and the inorganic acid (c) are contained at a water content of 3 to 8% by weight.
  • the surface crosslinking with the surface crosslinking agent (d) preferably contains, for example, a crosslinked polymer (A) and an inorganic acid (c), for example, phosphoric acid (c1) and / or phosphate (c2).
  • the resin particles (B) to be subjected to surface cross-linking with the surface cross-linking agent (d) can be performed. If the inorganic acid (c) is added at the time of surface cross-linking, absorption characteristics such as liquid permeability and blocking properties are inferior.
  • the surface cross-linking step can be performed by mixing the resin particles (B) and the surface cross-linking agent (d) and further heating, and is known (for example, Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883). , Surface crosslinking treatment methods described in JP-A-2005-75982 and JP-A-2005-95759.
  • an aqueous solution of the surface cross-linking agent (d) is sprayed on the surface of the resin particles (B) while stirring the resin particles (B), and then in a stirred state or a stationary state.
  • a method of heating to 100 to 200 ° C. (preferably 120 ° C. to 160 ° C.) can be mentioned.
  • the concentration of the surface cross-linking agent (d) contained in the aqueous solution to be sprayed can be adjusted depending on the type of the surface cross-linking agent (d).
  • the amount of the aqueous solution to be sprayed is preferably 0.5 to 15% by weight based on the weight of the resin particles (B) from the viewpoint of the uniformity of surface crosslinking.
  • step of surface cross-linking spraying an aqueous solution of the surface cross-linking agent (d) onto the resin particles (B) under stirring is carried out by using a known fluid humidifying and mixing granulator [Flexomix (manufactured by Hosokawa Micron) and Shugi Flexomix (manufactured by Paulek Co., Ltd.) etc.] and a known powder mixer [V-type mixer, Henschel mixer and turbulizer (manufactured by Hosokawa Micron Co., Ltd.), etc.] Can be used.
  • a known fluid humidifying and mixing granulator [Flexomix (manufactured by Hosokawa Micron) and Shugi Flexomix (manufactured by Paulek Co., Ltd.) etc.]
  • a known powder mixer [V-type mixer, Henschel mixer and turbulizer (manufactured by Hosokawa Micron Co., Ltd.), etc.] Can be used.
  • heating to 100 to 200 ° C. in a stirred state means that the resin particles (B) sprayed with the surface cross-linking agent are mixed with a known stirrer equipped with a heating device (such as a two-arm kneader). It can carry out by stirring while heating using.
  • a known stirrer equipped with a heating device such as a two-arm kneader. It can carry out by stirring while heating using.
  • heating to 100 to 200 ° C. in a stationary state can be performed using a known heat drying apparatus (such as a circulating dryer).
  • the heating time is usually 3 to 60 minutes, preferably 10 to 40 minutes.
  • the resin particles (B) are mixed with the surface crosslinking agent (d).
  • a method of immersing in an aqueous solution can also be used.
  • the surface cross-linking can be performed by a method of heating with stirring thereafter.
  • the particle size may be adjusted by further sieving.
  • the average particle size of the particles obtained by adjusting the particle size is preferably 100 to 600 ⁇ m, more preferably 200 to 500 ⁇ m.
  • the content of fine particles is preferably small, the content of particles of 100 ⁇ m or less is preferably 3% by weight or less, and the content of particles of 150 ⁇ m or less is more preferably 3% by weight or less.
  • a step of adjusting the water content of the resin particles (B) containing the crosslinked polymer (A) and the inorganic acid (c) to 3 to 8% by weight before the surface crosslinking step. Can have.
  • the water content of the resin particles after the moisture adjustment step is preferably 4 to 8% by weight, particularly preferably 6 to 8% by weight, from the viewpoint of water absorption characteristics, based on the weight of the resin particles (B).
  • the moisture content is adjusted by adjusting temperature conditions and process time during the drying process and the pulverization process. More preferably, from the viewpoint of productivity, by adjusting the drying temperature and the drying speed in the drying step, the target moisture content is adjusted.
  • the water-absorbent resin particles of the present invention may further contain a polyvalent metal salt (e).
  • the production method of the present invention may further include a step of mixing with the polyvalent metal salt (e). good.
  • the polyvalent metal salt (e) include salts of at least one metal selected from the group consisting of magnesium, calcium, zirconium, aluminum, and titanium with the above inorganic acid or organic acid.
  • an inorganic acid salt of aluminum and an inorganic acid salt of titanium are preferable from the viewpoint of availability and solubility, and aluminum sulfate, aluminum chloride, potassium aluminum sulfate and sulfuric acid are more preferable.
  • Sodium aluminum particularly preferred are aluminum sulfate and sodium aluminum sulfate, and most preferred is sodium aluminum sulfate. These may be used alone or in combination of two or more.
  • the use amount (% by weight) of the polyvalent metal salt (e) is preferably 0.05 to 5, more preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the water-absorbent resin from the viewpoints of absorption performance and blocking resistance. 3, particularly preferably 0.2 to 2.
  • the step of mixing with the polyvalent metal salt (e) is performed before the surface cross-linking step, after the surface cross-linking step, And at the same time as the surface cross-linking step.
  • the mixing method of the polyvalent metal salt (e) includes a cylindrical mixer, a screw mixer, a screw extruder, a turbulator, a nauter mixer, a double-arm kneader, a fluid mixer, and a V mixer. And a uniform mixing method using a known mixing device such as a machine, a minced mixer, a ribbon mixer, a fluid mixer, an airflow mixer, a rotating disk mixer, a conical blender and a roll mixer.
  • the temperature during mixing is not particularly limited, but is preferably 10 to 150 ° C, more preferably 20 to 100 ° C, and particularly preferably 25 to 80 ° C.
  • the temperature at the time of mixing is not particularly limited, but can be performed under the same conditions as the step of surface cross-linking with the surface cross-linking agent (d).
  • the particle size may be further adjusted after the step of mixing with the polyvalent metal salt (e).
  • the water-absorbing resin particles of the present invention may further contain water-insoluble inorganic particles (f).
  • the production method of the present invention further mixes the water-insoluble inorganic particles (f) and the water-absorbing resin particles.
  • the process of carrying out may be included.
  • water-insoluble inorganic particles (f) examples include colloidal silica, fumed silica, clay and talc. Colloidal silica and silica are preferable and more preferable from the viewpoints of availability, ease of handling, and absorption performance. Is colloidal silica.
  • One type of water-insoluble inorganic particles (f) may be used alone, or two or more types may be used in combination.
  • the amount (% by weight) of the water-insoluble inorganic particles (f) used is preferably from 0.01 to 5, more preferably from 0.05 to 1, particularly preferably from 100 parts by weight of the water-absorbent resin from the viewpoint of absorption performance. Is 0.1 to 0.5.
  • the water-insoluble inorganic particles (f) When the water-insoluble inorganic particles (f) are contained, it is preferable to mix the water-absorbing resin particles and the water-insoluble inorganic particles (f), and the mixing is performed in the same manner as the mixing of the polyvalent metal salt (e). The conditions are the same.
  • a step of adjusting the particle size of the water-absorbent resin particles may be performed.
  • the particle size adjustment can be performed in the same manner as the particle size adjustment of the resin particles (B), and the particle size after the particle size adjustment is also the same.
  • the production method of the present invention has a centrifugal retention amount (centrifugation retention capacity: hereinafter referred to as CRC) of 29 to 40 g / g, and gel bed permeability (hereinafter also referred to as GBP) at 0 psi swelling pressure. ) Is 40 darcies or more, the absorption rate under no load (hereinafter, also referred to as absorption rate (T1)) measured by the demand wettability test method (hereinafter also referred to as DW test) is 15 seconds or less, Water-absorbing resin particles having an absorption rate (hereinafter also referred to as absorption rate (Vortex)) measured by the Vortex test method of 50 seconds or less can be produced.
  • CRC centrifugal retention capacity
  • GBP gel bed permeability
  • Centrifugal holding capacity, gel bed permeability at 0 psi swelling pressure, absorption rate under no load measured by Demand Wettability test method and absorption rate measured by Vortex test method are 25 ⁇ 2 ° C., humidity 50 ⁇ 10%
  • the temperature of the physiological saline used is adjusted to 25 ° C. ⁇ 2 ° C. in advance.
  • ⁇ Absorption rate under no load measured in Demand Wettability test> When measured by the DW method described in JP-A-2014-005472 using 0.50 g of water-absorbent resin particles and physiological saline, the amount of absorption (ml / g) from the start of water absorption is 2.0. The time required to become the absorption rate under no load measured in the Demand Wettability test. Note that the DW test is to determine the ability to suck up the water-absorbent resin under no load on a measurement table connected to a burette and a conduit.
  • the water-absorbent resin particles of the present invention may contain, as necessary, additives (for example, known preservatives, fungicides, antibacterial agents, oxidation agents (described in JP-A No. 2003-225565 and JP-A No. 2006-131767, etc.)) Inhibitors, ultraviolet absorbers, colorants, fragrances, deodorants, liquid permeability improvers, organic fibrous materials, etc.) can also be used.
  • the content (% by weight) of the additive is preferably 0.001 to 10, more preferably 0.01 to 5, particularly preferably based on the weight of the resin particles (B). Is 0.05 to 1, most preferably 0.1 to 0.5.
  • the water-absorbent resin particles of the present invention may have a physiological saline pH of 5.80 to 7.20 when the water-absorbent resin particles are contained at 0.5% by weight based on the weight of the physiological saline. Preferably, it is 5.80 to 6.50. Within this range, it is preferable because it becomes weakly acidic and is less prone to fog.
  • the water-absorbent resin particles which are the water-absorbent resin particles of the present invention, exhibit stable and excellent absorption performance (liquid diffusivity, absorption speed, and amount of absorption) in any state regardless of load or non-load. In addition, the anti-fogging property of the absorbent article is improved.
  • the apparent density (g / ml) of the water absorbent resin particles of the present invention is preferably 0.54 to 0.70, more preferably 0.56 to 0.65, and particularly preferably 0.58 to 0.60. . Within this range, the anti-fogging property of the absorbent article is further improved.
  • the apparent density can be measured in the same manner as in the case of the resin particles (B).
  • the shape of the water-absorbent resin particles is not particularly limited, and examples thereof include an irregularly crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, from the viewpoint of good entanglement with the fibrous material in the use of paper diapers and the like and no fear of dropping off from the fibrous material, an irregular crushed shape is preferable.
  • the water-absorbent resin particles obtained by the method for producing the water-absorbent resin particles of the present invention or the water-absorbent resin particles of the present invention (hereinafter also referred to simply as the water-absorbent resin particles or the water-absorbent resin particles of the present invention, without distinguishing both). ) May be used alone as an absorber, or may be used together with other materials as an absorber.
  • the other material is preferably a fibrous material.
  • the structure and production method of the absorbent when used together with the fibrous material are the same as those known (JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.). is there.
  • Preferred as the fibrous material are cellulose fibers, organic synthetic fibers, and a mixture of cellulose fibers and organic synthetic fibers.
  • cellulosic fibers examples include natural fibers such as fluff pulp, and cellulosic chemical fibers such as viscose rayon, acetate, and cupra.
  • raw materials conifers, hardwoods, etc.
  • production methods chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.
  • bleaching methods etc. of this cellulose-based natural fiber.
  • organic synthetic fibers examples include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above fibers having different melting points). And a fiber obtained by compounding at least two of the above into a sheath core type, an eccentric type, a parallel type, and the like, a fiber obtained by blending at least two kinds of the above fibers, and a fiber obtained by modifying the surface layer of the above fibers).
  • fibrous materials preferred are cellulose-based natural fibers, polypropylene-based fibers, polyethylene-based fibers, polyester-based fibers, heat-fusible conjugate fibers, and mixed fibers thereof, and more preferable are obtained.
  • the fluff pulp, the heat-fusible conjugate fiber, and the mixed fiber thereof are preferable in that the water-absorbing agent has excellent shape retention after water absorption.
  • the length and thickness of the fibrous material are not particularly limited and can be suitably used as long as the length is 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier.
  • the shape is not particularly limited as long as it is fibrous, and examples thereof include a thin cylindrical shape, a split yarn shape, a staple shape, a filament shape, and a web shape.
  • the weight ratio of the water absorbent resin particles to the fibrous material is 40/60. Is preferably 90/10, more preferably 70 / 30-80 / 20.
  • the absorber of the present invention contains the water-absorbing resin particles described above.
  • the absorber of the present invention may be an absorber containing water-absorbing resin particles alone, or may be an absorber containing water-absorbing resin particles and a fibrous material.
  • the absorbent body of the present invention can be used as an absorbent article.
  • Absorbent articles include not only sanitary articles such as disposable diapers and sanitary napkins, but also various uses such as absorption and retention of various aqueous liquids, gelling agents (eg, pet urine absorbent, urine gel for portable toilets) Fresheners for fruits and vegetables, drip absorbent for meat and seafood, cold insulation, disposable warmers, gelling agents for batteries, water retention agents for plants and soil, anti-condensation agents, water-stopping materials, packing materials, artificial snow Etc.).
  • gelling agents eg, pet urine absorbent, urine gel for portable toilets
  • Fresheners for fruits and vegetables drip absorbent for meat and seafood, cold insulation, disposable warmers, gelling agents for batteries, water retention agents for plants and soil, anti-condensation agents, water-stopping materials, packing materials, artificial snow Etc.
  • the manufacturing method and the like of the absorbent article are the same as known ones (described in JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.).
  • Example 2 “Pentaerythritol triallyl ether 0.68 part” was changed to “Pentaerythritol 0.2 part” and “Sodium hydrogen sulfite 0.02 part” was changed to “Phosphoric acid (manufactured by Kanto Chemical Co., Inc., purity 85%, and so on) ”1.9 parts”, “water content 6%” is changed to “water content 8%”, and “ethylene glycol diglycidyl ether 4% 2% aqueous solution” is changed to “ethylene glycol diglycidyl”.
  • the water-absorbent resin particles (2) of the present invention were obtained in the same manner as in Example 1 except for changing to "6.6 parts of a 3% aqueous solution of ether".
  • Example 3 “Pentaerythritol triallyl ether 0.68 parts” was changed to “Pentaerythritol triallyl ether 0.82 parts”, “Sodium hydrogen sulfite 0.02 parts” was changed to “Sodium hydrogen sulfite 0.008 parts”, “Moisture amount 6%” was changed to “Moisture amount 4%” and “2 parts aqueous solution of ethylene glycol diglycidyl ether 4 parts” was changed to “5 parts 1% aqueous solution of ethylene glycol diglycidyl ether” Except for the above, water-absorbent resin particles (3) of the present invention were obtained in the same manner as Example 1.
  • Example 4 “Pentaerythritol triallyl ether 0.68 parts” was changed to “pentaerythritol triallyl ether 0.14 parts”, “1.9 parts phosphoric acid” was changed to “3.8 parts phosphoric acid”, “ “6%” was changed to “3% moisture” and “4 parts 2% aqueous solution of ethylene glycol diglycidyl ether” was changed to “7.4 parts 4% aqueous solution of ethylene glycol diglycidyl ether”. Except for the above, water-absorbent resin particles (4) of the present invention were obtained in the same manner as Example 2.
  • Example 5 In the same manner as in Example 1 except that “pentaerythritol triallyl ether 0.68 part” was changed to “pentaerythritol 0.95 part” and “sodium bisulfite 0.02 part” was not added. Gel (2) was obtained.
  • the water-containing gel (2) is shredded with a mincing machine (12VR-400K manufactured by ROYAL), mixed and neutralized by adding 180 parts of a 30% aqueous sodium hydroxide solution, followed by fluorophosphoric acid (Sigma) -1.9 parts of 1% aqueous solution (Aldrich, 70% purity, the same applies hereinafter) was added and mixed to obtain a chopped gel. Further, the chopped gel was dried with a ventilation band dryer (140 ° C., wind speed 2 m / sec) to obtain a dried product.
  • a ventilation band dryer 140 ° C., wind speed 2 m / sec
  • the dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster) and then sieved to adjust the particle size to a particle size range of 710 to 150 ⁇ m to obtain resin particles (B2) having a moisture content of 6%. .
  • Example 8 Water-absorbent resin particles (8) of the present invention were obtained in the same manner as in Example 3 except that "sodium bisulfite 0.08 part” was changed to "sodium hydrogen sulfite 0.05 part".
  • Example 9 Water-absorbing resin particles (9) of the present invention were obtained in the same manner as in Example 3 except that “3.8 parts of phosphoric acid” was changed to “4.0 parts of phosphoric acid”.
  • Example 12 “Pentaerythritol triallyl ether 0.68 parts” was changed from “pentaerythritol triallyl ether 0.82 parts”, “0.016 parts phosphoric acid” to “0.013 parts phosphoric acid”, “ The water-absorbent resin particles (12) of the present invention were the same as in Example 10 except that “4 parts of 2% aqueous solution of ethylene glycol diglycidyl ether” was changed to “5 parts of 1% aqueous solution of ethylene glycol diglycidyl ether”. Got.
  • Example 14 Hydrous gel in the same manner as in Example 10 except that "pentaerythritol triallyl ether 0.68 part” was changed to “pentaerythritol 0.95 part” and "phosphoric acid 0.016 part” was not added. (4) was obtained.
  • this hydrogel (4) is shredded with a mincing machine (12 VR-400K manufactured by ROYAL), mixed and neutralized by adding 180 parts of 30% aqueous sodium hydroxide, followed by 1% of phosphoric acid. 1.6 parts of an aqueous solution was added and mixed to obtain a chopped gel. Further, the chopped gel was dried with a ventilation band dryer (140 ° C., wind speed 2 m / sec) to obtain a dried product. The dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), and then sieved to adjust the particle size to a particle size range of 710 to 150 ⁇ m to obtain resin particles (B5).
  • Example 15 “Pentaerythritol triallyl ether 0.95 part” was changed to “pentaerythritol triallyl ether 0.068 part” and “0.7% aqueous solution of polyglycerol polyglycidyl ether 4.3 parts” changed to “polyglycerol polyglycidyl A water absorbent resin particle (15) of the present invention was obtained in the same manner as in Example 14 except that it was changed to 9.1 parts of a 5.5% aqueous solution of ether.
  • Example 16 “Pentaerythritol triallyl ether 0.2 part” was changed to “pentaerythritol triallyl ether 0.4 part” and “sodium dihydrogen phosphate dihydrate 2.1 parts” changed to “sodium dihydrogen phosphate 2 parts”. Except that it was changed to “0.88 parts of hydrate” and “6.6 parts of 3% aqueous solution of ethylene glycol diglycidyl ether” was changed to “5.6 parts of 2.5% aqueous solution of ethylene glycol diglycidyl ether”. Were the same as in Example 11 to obtain water-absorbent resin particles (16) of the present invention.
  • DW test ⁇ Absorption rate under no load measured by DW test> Measurement was performed by the above-described method using 0.50 g of each water-absorbent resin particle obtained in Examples 1 to 16 and Comparative Examples 1 to 5 and physiological saline.
  • the DW test is to determine the ability to suck up the water-absorbent resin under no load on a measurement table connected to a burette and a conduit.
  • the water-absorbent resin particles in the present invention have a high centrifugal retention amount of physiological saline, a gel bed permeability at 0 psi swelling pressure of 40 darcies or more, and under no load as measured by the Demand Wettability test method.
  • the absorption rate was 15 seconds or less, and the absorption rate measured by the Vortex test method was 50 seconds or less.
  • CRC centrifugal retention amount
  • GBP liquid permeability
  • the water-absorbent resin composition of the present invention has the characteristics that it is possible to achieve both liquid permeability between swollen gels and absorption performance under load, and blocking and discoloration during storage are unlikely to occur. Because of the above effects, the water-absorbent resin composition of the present invention can be used for absorbent articles having a large absorption amount and excellent reversibility and surface dryness when applied to various absorbers. It is suitably used for articles.

Abstract

Provided are water-absorbing resin particles which retain the intact water-absorbing performance and can attain both absorption rate and liquid permeation through swelled gel particles. The present invention is: water-absorbing resin particles which comprise a crosslinked polymer (A) of a monomer composition that comprises an internal crosslinking agent (b) and a water-soluble vinyl monomer (a1) and/or a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) upon hydrolysis, and which further include an inorganic acid (c) containing one or more protons and having a pKa of 4.5-10, and which have a water-soluble content of 20% or less; a process for producing the water-absorbing resin particles which includes a step in which the surface of resin particles (B) that comprise the crosslinked polymer (A) and the inorganic acid (c) and that have a water content of 3-8 wt% is crosslinked with a surface-crosslinking agent (d); and an absorbent object comprising the water-absorbing resin particles.

Description

吸水性樹脂粒子、その製造方法、これを含有してなる吸収体及び吸収性物品Water-absorbent resin particles, method for producing the same, absorbent body containing the same, and absorbent article
 本発明は、吸水性樹脂粒子、その製造方法、これを含有してなる吸収体及び吸収性物品に関する。 The present invention relates to water-absorbent resin particles, a method for producing the same, an absorbent body containing the same, and an absorbent article.
 紙おむつ、生理用ナプキン、失禁パット等の衛生材料には、吸収体として、パルプ等の親水性繊維とアクリル酸(塩)等を主原料とする吸水性樹脂(Super Absorbent Polymerを略してSAPとも言う。)との組合せが、幅広く利用されている。近年のQOL(Quality Of Life)向上の観点から、これら衛生材料は、より軽量かつ薄型のものへと需要が遷移している。これに伴って親水性繊維の使用量低減が望まれるようになってきた。そのため、吸収体中で、これまで親水性繊維が担ってきた役割をSAP自体が果たすことを求められるようになっている。例えば、オムツの重要な機能として尿の高速吸収による漏れ低減がある。従来の吸収体は、嵩高い親水性繊維間に存在する物理的空間(Voidと呼ぶ)の存在により尿の吸収速度が速いが、上述のSAP比率の高い吸収体においては、SAP粒子どうしが隙間の少ない充填構造を形成するために、Voidが少なく尿の吸収速度が遅いという問題点がある。 For sanitary materials such as disposable diapers, sanitary napkins and incontinence pads, absorbent polymers (mainly absorbent fibers such as pulp and acrylic acid (salt)) as absorbents (Super Absorbent Polymer is also abbreviated as SAP) )) Is widely used. From the viewpoint of improving QOL (Quality Of Life) in recent years, the demand for these sanitary materials is shifting to lighter and thinner ones. Along with this, it has been desired to reduce the amount of hydrophilic fibers used. Therefore, SAP itself is required to fulfill the role that hydrophilic fibers have played in the absorber. For example, an important function of diapers is leakage reduction due to high-speed absorption of urine. The conventional absorbent has a high urine absorption rate due to the presence of a physical space (called “Void”) between the bulky hydrophilic fibers. However, in the above-described absorbent with a high SAP ratio, the SAP particles are not spaced apart. In order to form a filling structure with a small amount of voids, there is a problem that the absorption rate of urine is low with little Void.
 また、従来の吸収体は、親水性繊維による毛管現象により、尿拡散性が高く、吸収体全体に尿を拡散させることが可能であるのに対して、SAP比率の高い吸収体は、毛管力が低い上に膨潤ゲルによる尿の拡散阻害があるため、吸収体中における尿の拡散性は著しく低下する。この拡散性の低下は、上述の吸収速度の低下と相まってオムツ漏れの深刻な原因となる。 In addition, conventional absorbent bodies have high urine diffusibility due to capillary action due to hydrophilic fibers, and can diffuse urine throughout the absorbent body, whereas absorbent bodies with a high SAP ratio have a capillary force. In addition to the low urine diffusion inhibition of urine by swelling gel, the urine diffusibility in the absorber is significantly reduced. This decrease in diffusibility is a serious cause of diaper leakage coupled with the decrease in the absorption rate described above.
 拡散性の低下を防ぐ方法として、重合によって得られた吸水性樹脂粒子の表面を特定の有機架橋剤化合物を含む水溶液と特定のカチオンを含む水溶液とを用いて架橋し、膨潤ゲル表面の変形を抑制することでゲル間隙を効率的に形成する方法が知られている(例えば、特許文献1参照)。 As a method for preventing a decrease in diffusibility, the surface of the water-absorbent resin particles obtained by polymerization is cross-linked with an aqueous solution containing a specific organic cross-linking agent compound and an aqueous solution containing a specific cation to deform the surface of the swollen gel. There is known a method of efficiently forming a gel gap by suppressing (for example, see Patent Document 1).
 しかし特許文献1に記載の方法では、吸収体の吸収速度と膨潤ゲル間の通液性は改善するが、架橋密度が高くなることで吸水性樹脂の吸水性能の低下を招き、衛生材料・吸水性物品の長時間使用や、使用中のカブレ防止を妨げる原因となる。 However, in the method described in Patent Document 1, although the absorption rate of the absorbent body and the liquid permeability between the swollen gels are improved, the water-absorbing performance of the water-absorbent resin is lowered due to the increase in the cross-linking density. This may interfere with long-term use of the product and prevention of fog during use.
国際公開第00/53664号パンフレットInternational Publication No. 00/53664 Pamphlet
 本発明の目的は、吸水性能を低下させることなく、吸収速度及び膨潤ゲル間の通液性の両立が可能な吸水性樹脂粒子及びその製造方法を提供することである。 An object of the present invention is to provide water-absorbing resin particles capable of achieving both absorption speed and liquid permeability between swollen gels without reducing water-absorbing performance, and a method for producing the same.
 第一の本発明は、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに内部架橋剤(b)を含む単量体組成物の架橋重合体(A)とpKa4.5~10のプロトンを持つ無機酸(c)とを含有し、水可溶分が20重量%以下である吸水性樹脂粒子;及び前記吸水性樹脂粒子を含有してなる吸収体、なかでも、前記吸水性樹脂粒子と繊維状物とを含有してなる吸収体;前記吸収体を備えてなる吸収性物品である。
 第二の本発明は、第一の本発明の吸水性樹脂粒子の製造方法であって、前記架橋重合体(A)とpKa4.5~10のプロトンを持つ無機酸(c)とを含有する樹脂粒子(B)を、その水分量3~8重量%で、表面架橋剤(d)で表面架橋する工程を有する製造方法である。
 第三の本発明は、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに内部架橋剤(b)を含む単量体組成物の架橋重合体(A)とリン酸(c1)及び/又はリン酸塩(c2)とを含有する樹脂粒子(B)の表面を、表面架橋剤(d)で表面架橋する工程を有する、吸水性樹脂粒子の製造方法である。上記製造方法は、生理食塩水の遠心保持量が29~40g/gであり、0psi膨潤圧力でのゲルベッド透過率が40darcies以上であり、Demand Wettability試験法で測定された無荷重下での吸収速度が15秒以下であり、Vortex試験法で測定された吸収速度が50秒以下である吸水性樹脂粒子の製造方法として好適である。
The first aspect of the present invention is the crosslinking of a monomer composition comprising a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis and an internal crosslinking agent (b). A water-absorbing resin particle containing a polymer (A) and an inorganic acid (c) having a proton of pKa 4.5 to 10 and having a water-soluble content of 20% by weight or less; and the water-absorbing resin particle An absorbent body comprising the water-absorbent resin particles and a fibrous material; an absorbent article comprising the absorbent body.
The second aspect of the present invention is a method for producing the water-absorbent resin particles of the first aspect of the present invention, which comprises the crosslinked polymer (A) and an inorganic acid (c) having a proton of pKa 4.5 to 10 In this production method, the resin particles (B) are subjected to surface crosslinking with a surface crosslinking agent (d) at a water content of 3 to 8% by weight.
The third aspect of the present invention is the crosslinking of a monomer composition comprising a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis and an internal crosslinking agent (b). A water-absorbent resin comprising a step of surface-crosslinking the surface of a resin particle (B) containing a polymer (A) and phosphoric acid (c1) and / or phosphate (c2) with a surface-crosslinking agent (d) A method for producing particles. In the above production method, the centrifugal retention amount of physiological saline is 29 to 40 g / g, the gel bed permeability at 0 psi swelling pressure is 40 darcies or more, and the absorption rate under no load measured by the Demand Wettability test method Is 15 seconds or less, and it is suitable as a method for producing water-absorbent resin particles having an absorption rate measured by the Vortex test method of 50 seconds or less.
 本発明の吸水性樹脂粒子、及び本発明の製造方法(第二の本発明、第三の本発明を区別せずに本発明の製造方法ともいう。)で製造された吸水性樹脂粒子は、上述の構成により、上記課題を解決し、以下で詳述する優れた特性を有する。なかでも、吸収速度が速く、かつ、膨潤ゲル間の通液性が非常に優れているにもかかわらず高い吸水性能も同時に有することから、吸水性樹脂比率の高い薄型の衛生材料・吸収性物品に適用したとき、どのような状態においても安定して優れた吸収性能(たとえば液拡散性、吸収速度、及び吸収量)を発揮し、カブレが生じにくい。 The water-absorbent resin particles produced by the water-absorbent resin particles of the present invention and the production method of the present invention (also referred to as the production method of the present invention without distinguishing the second invention and the third invention), The above-described configuration solves the above-described problems and has excellent characteristics described in detail below. Among them, thin hygienic materials and absorbent articles with a high water-absorbing resin ratio because they have a high absorption rate despite having a high absorption rate and excellent liquid permeability between swollen gels. When applied to, it exhibits stable and excellent absorption performance (for example, liquid diffusibility, absorption speed, and amount of absorption) in any state, and is less prone to fog.
 本発明の吸水性樹脂粒子、本発明の製造方法(以下、併せて、本発明ともいう。)において、水溶性ビニルモノマー(a1)としては特に限定はなく、公知(たとえば、特許第3648553号公報の0007~0023段落に開示されている少なくとも1個の水溶性置換基とエチレン性不飽和基とを有するビニルモノマー(例えばアニオン性ビニルモノマー、非イオン性ビニルモノマー、カチオン性ビニルモノマー)、特開2003-165883号公報の0009~0024段落に開示されているアニオン性ビニルモノマー、非イオン性ビニルモノマー、カチオン性ビニルモノマー、特開2005-75982号公報の0041~0051段落に開示されているカルボキシ基、スルホ基、ホスホノ基、水酸基、カルバモイル基、アミノ基及びアンモニオ基からなる群から選ばれる少なくとも1種を有するビニルモノマー)のビニルモノマー等が使用できる。 In the water-absorbent resin particles of the present invention and the production method of the present invention (hereinafter also referred to as the present invention), the water-soluble vinyl monomer (a1) is not particularly limited and is publicly known (for example, Japanese Patent No. 3648553). No. 0007-0023, vinyl monomers having at least one water-soluble substituent and an ethylenically unsaturated group (for example, anionic vinyl monomers, nonionic vinyl monomers, cationic vinyl monomers), JP, Anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers disclosed in paragraphs 0009 to 0024 of 2003-16583, and carboxy groups disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982 , Sulfo group, phosphono group, hydroxyl group, carbamoyl group, amino And vinyl monomers such as vinyl monomers) may be used with at least one selected from the group consisting of ammonio group.
 加水分解により水溶性ビニルモノマー(a2)となるビニルモノマー(a2)(以下、加水分解性ビニルモノマー(a2)ともいう。)は特に限定はなく、公知(たとえば、特許第3648553号公報の0024~0025段落に開示されている加水分解により水溶性置換基となる加水分解性置換基を少なくとも1個有するビニルモノマー、特開2005-75982号公報の0052~0055段落に開示されている少なくとも1個の加水分解性置換基(1,3-オキソ-2-オキサプロピレン(-CO-O-CO-)基、アシル基及びシアノ基等)を有するビニルモノマー)のビニルモノマー等が使用できる。なお、水溶性ビニルモノマーとは、当業者に周知の概念であるが、数値を用いて表すなら、例えば、25℃の水100gに少なくとも100g溶解するビニルモノマーを意味する。また、加水分解は、当業者に周知の概念であるが、より具体的に表すなら、例えば、水及び必要により触媒(酸又は塩基等)の作用により加水分解されることを意味する。加水分解性ビニルモノマー(a2)の加水分解は、重合中、重合後及びこれらの両方のいずれで行っても良いが、得られる吸水性樹脂組成物の吸収性能の観点から、重合後が好ましい。 The vinyl monomer (a2) (hereinafter also referred to as a hydrolyzable vinyl monomer (a2)) that becomes a water-soluble vinyl monomer (a2) by hydrolysis is not particularly limited, and is publicly known (for example, Patent No. 3648553, 0024- A vinyl monomer having at least one hydrolyzable substituent which becomes a water-soluble substituent by hydrolysis as disclosed in paragraph 0025, at least one of those disclosed in paragraphs 0052 to 0055 of JP-A-2005-75982; Vinyl monomers of hydrolyzable substituents (vinyl monomers having 1,3-oxo-2-oxapropylene (—CO—O—CO—) group, acyl group, cyano group, etc.) can be used. The water-soluble vinyl monomer is a concept well known to those skilled in the art, but when expressed using numerical values, for example, it means a vinyl monomer that dissolves at least 100 g in 100 g of water at 25 ° C. Hydrolysis is a concept well-known to those skilled in the art. More specifically, hydrolysis means, for example, hydrolysis by the action of water and, if necessary, a catalyst (an acid or a base). Hydrolysis of the hydrolyzable vinyl monomer (a2) may be performed either during polymerization, after polymerization, or both of them, but from the viewpoint of the absorption performance of the resulting water-absorbent resin composition, it is preferably after polymerization.
 これらのうち、吸収特性の観点等から、水溶性ビニルモノマー(a1)が好ましい。水溶性ビニルモノマー(a1)としては、好ましくはアニオン性ビニルモノマー、より好ましくはカルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ-、ジ-若しくはトリ-アルキルアンモニオ基を有するビニルモノマーである。これらのなかでは、より好ましくはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー、さらに好ましくは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、特に好ましくは(メタ)アクリル酸(塩)、最も好ましくはアクリル酸(塩)である。 Of these, the water-soluble vinyl monomer (a1) is preferable from the viewpoint of absorption characteristics. The water-soluble vinyl monomer (a1) is preferably an anionic vinyl monomer, more preferably a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group, or a mono-, di- or tri-alkyl. It is a vinyl monomer having an ammonio group. Among these, a vinyl monomer having a carboxy (salt) group or a carbamoyl group is more preferable, (meth) acrylic acid (salt) and (meth) acrylamide, more preferably (meth) acrylic acid (salt), Most preferred is acrylic acid (salt).
 なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩又はアンモニウム(NH)塩等が含まれる。これらの塩のうち、吸収特性の観点等から、アルカリ金属塩及びアンモニウム塩が好ましく、さらに好ましくはアルカリ金属塩、特に好ましくはナトリウム塩である。 The “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”. Moreover, (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylate, and (meth) acrylamide means acrylamide or methacrylamide. Examples of the salt include an alkali metal (such as lithium, sodium and potassium) salt, an alkaline earth metal (such as magnesium and calcium) salt or an ammonium (NH 4 ) salt. Among these salts, alkali metal salts and ammonium salts are preferable from the viewpoint of absorption characteristics and the like, more preferably alkali metal salts, and particularly preferably sodium salts.
 単量体組成物が水溶性ビニルモノマー(a1)又は加水分解性ビニルモノマー(a2)のいずれかを構成成分とする場合、1種類を単独で構成成分としてもよく、また、必要により2種以上を構成成分としてもよい。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成成分とする場合も同様である。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成成分とする場合、これらの含有モル比(a1/a2)は、75/25~99/1が好ましく、さらに好ましくは85/15~95/5、特に好ましくは90/10~93/7、最も好ましくは91/9~92/8である。この範囲であると、吸収性能がさらに良好となる。 When the monomer composition contains either the water-soluble vinyl monomer (a1) or the hydrolyzable vinyl monomer (a2) as a constituent component, one type may be used alone, or two or more types as necessary. May be a component. The same applies when the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent components. In the case where the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent components, the molar ratio (a1 / a2) of these is preferably 75/25 to 99/1, more preferably 85/15 to 95/5, particularly preferably 90/10 to 93/7, and most preferably 91/9 to 92/8. Within this range, the absorption performance is further improved.
 前記の単量体組成物には、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の他に、これらと共重合可能なその他のビニルモノマー(a3)を構成成分とすることができる。 The monomer composition may contain, in addition to the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), other vinyl monomers (a3) copolymerizable therewith. it can.
 共重合可能なその他のビニルモノマー(a3)としては特に限定はなく、公知(たとえば、特許第3648553号公報の0028~0029段落に開示されている疎水性ビニルモノマー、特開2003-165883号公報、特開2005-75982号公報の0058段落に開示されているビニルモノマー)の疎水性ビニルモノマー等が使用でき、下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン及びジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレンモノマー
 アルケン[エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等];並びにアルカジエン[ブタジエン及びイソプレン等]等。
(iii)炭素数5~15の脂環式エチレンモノマー
 モノエチレン性不飽和モノマー[ピネン、リモネン及びインデン等];並びにポリエチレン性ビニル重合性モノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
Other vinyl monomers (a3) that can be copolymerized are not particularly limited, and are known (for example, hydrophobic vinyl monomers disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, Japanese Patent Laid-Open No. 2003-165883, Hydrophobic vinyl monomers (vinyl monomers disclosed in paragraph 0058 of JP-A-2005-75982) can be used, and the following vinyl monomers (i) to (iii) can be used.
(I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, and halogen substituted products of styrene such as vinylnaphthalene and dichlorostyrene.
(Ii) C2-C20 aliphatic ethylene monomer Alkene [ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.]; and alkadiene [butadiene, isoprene, etc.], etc.
(Iii) Cycloaliphatic ethylene monomer having 5 to 15 carbon atoms Monoethylenically unsaturated monomer [pinene, limonene, indene and the like]; Polyethylene vinyl polymerizable monomer [cyclopentadiene, bicyclopentadiene, ethylidene norbornene and the like] and the like.
 その他のビニルモノマー(a3)を構成成分とする場合、その他のビニルモノマー(a3)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位のモル数に基づいて、0.01~5が好ましく、さらに好ましくは0.05~3、次に好ましくは0.08~2、特に好ましくは0.1~1.5である。なお、上述にもかかわらず、吸収特性の観点等から、その他のビニルモノマー(a3)単位の含有量が0モル%であることが最も好ましい。 When the other vinyl monomer (a3) is used as a constituent component, the content (mol%) of the other vinyl monomer (a3) unit is that of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit. Based on the number of moles, it is preferably 0.01 to 5, more preferably 0.05 to 3, then preferably 0.08 to 2, particularly preferably 0.1 to 1.5. In spite of the above, it is most preferable that the content of other vinyl monomer (a3) units is 0 mol% from the viewpoint of absorption characteristics and the like.
 内部架橋剤(b)としては特に限定はなく、公知(たとえば、特許第3648553号公報の0031~0034段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも1個有してかつ少なくとも1個のエチレン性不飽和基を有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも2個有する架橋剤、特開2003-165883号公報の0028~0031段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、エチレン性不飽和基と反応性官能基とを有する架橋剤、反応性置換基を2個以上有する架橋剤、特開2005-75982号公報の0059段落に開示されている架橋性ビニルモノマー、特開2005-95759号公報の0015~0016段落に開示されている架橋性ビニルモノマー)の架橋剤が使用できる。これらのうち、吸収特性の観点等から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、さらに好ましくは炭素数2~10のポリオールのポリ(メタ)アリルエーテル、特に好ましくはトリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリロキシエタン、トリメチロールプロパンジアリルエーテル及びペンタエリスリトールトリアリルエーテル、最も好ましくはペンタエリスリトールトリアリルエーテルである。 The internal cross-linking agent (b) is not particularly limited, and is known (for example, a cross-linking agent having two or more ethylenically unsaturated groups disclosed in Japanese Patent No. 3648553, paragraphs 0031 to 0034, a water-soluble substituent, Cross-linking agent having at least one functional group capable of reacting and having at least one ethylenically unsaturated group, cross-linking agent having at least two functional groups capable of reacting with a water-soluble substituent, and JP-A-2003-165883 The crosslinking agent having two or more ethylenically unsaturated groups, the crosslinking agent having an ethylenically unsaturated group and a reactive functional group, and two or more reactive substituents disclosed in paragraphs 0028 to 0031 of the publication Cross-linking agent, cross-linkable vinyl monomer disclosed in paragraph 0059 of JP-A-2005-75982, stages 0015 to 0016 of JP-A-2005-95759 Crosslinking agent of the crosslinkable vinyl monomer) as disclosed in can be used. Of these, from the viewpoint of absorption characteristics, a crosslinking agent having two or more ethylenically unsaturated groups is preferable, more preferably a poly (meth) allyl ether of a polyol having 2 to 10 carbon atoms, particularly preferably triallyl cyanide. Nurate, triallyl isocyanurate, tetraallyloxyethane, trimethylolpropane diallyl ether and pentaerythritol triallyl ether, most preferably pentaerythritol triallyl ether.
 単量体組成物に含まれる内部架橋剤(b)の含有量(重量%)は、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の、その他のビニルモノマー(a3)も使用する場合は(a1)~(a3)の、合計重量に基づいて、0.05~0.7が好ましく、さらに好ましくは0.1~0.6、特に好ましくは0.15~0.5である。この範囲であると、水可溶分が減少し、吸収特性がさらに良好となる。 The content (% by weight) of the internal crosslinking agent (b) contained in the monomer composition is such that other vinyl monomers (a3) of the water-soluble vinyl monomer (a1) and hydrolyzable vinyl monomer (a2) are also used. In this case, the total weight of (a1) to (a3) is preferably 0.05 to 0.7, more preferably 0.1 to 0.6, and particularly preferably 0.15 to 0.5. is there. Within this range, the water-soluble content is reduced and the absorption characteristics are further improved.
 架橋重合体(A)の製造方法としては、前記の単量体組成物を用いて公知の溶液重合(断熱重合、薄膜重合及び噴霧重合法等;特開昭55-133413号公報等)や、公知の逆相懸濁重合(特公昭54-30710号公報、特開昭56-26909号公報及び特開平1-5808号公報等)と同様にして製造することができる。重合方法のうち、好ましくは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、特に好ましくは水溶液重合法である。 As a method for producing the crosslinked polymer (A), a known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization method and the like; JP-A-55-133413, etc.) using the monomer composition described above, It can be produced in the same manner as known reverse phase suspension polymerization (Japanese Patent Publication No. 54-30710, Japanese Patent Application Laid-Open No. 56-26909, Japanese Patent Application Laid-Open No. 1-5808, etc.). Among the polymerization methods, the solution polymerization method is preferable, and an aqueous solution polymerization method is particularly preferable because it is not necessary to use an organic solvent and is advantageous in terms of production cost.
 重合時には、必要に応じて連鎖移動剤に代表される重合コントロール剤を併用しても良く、これらの具体例としては、次亜リン酸ナトリウム、亜リン酸ナトリウム、アルキルメルカプタン、ハロゲン化アルキル、チオカルボニル化合物等が挙げられる。これらの重合コントロール剤は、単独で使用しても良く、これらの2種以上を併用しても良い。重合コントロール剤の使用量(重量%)は、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の、その他のビニルモノマー(a3)も使用する場合は(a1)~(a3)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。 At the time of polymerization, a polymerization control agent represented by a chain transfer agent may be used in combination as necessary. Specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptan, alkyl halide, thiol. Examples include carbonyl compounds. These polymerization control agents may be used alone or in combination of two or more thereof. The amount (% by weight) of the polymerization control agent used is that of the water-soluble vinyl monomer (a1) and hydrolyzable vinyl monomer (a2), and when other vinyl monomers (a3) are also used (a1) to (a3). Based on the total weight, 0.0005 to 5 is preferable, and 0.001 to 2 is more preferable.
 重合に溶媒(有機溶媒、水等)を使用する場合、重合後に溶媒を留去することが好ましい。溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0~10が好ましく、さらに好ましくは0~5、特に好ましくは0~3、最も好ましくは0~1である。この範囲であると、吸水性樹脂粒子の吸収性能がさらに良好となる。 When a solvent (organic solvent, water, etc.) is used for the polymerization, it is preferable to distill off the solvent after the polymerization. When the solvent contains an organic solvent, the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, particularly preferably based on the weight of the crosslinked polymer (A). Is 0-3, most preferably 0-1. Within this range, the absorption performance of the water-absorbent resin particles is further improved.
 溶媒に水を含む場合、留去後の水分(重量%)は、架橋重合体(A)の重量に基づいて、0~20が好ましく、さらに好ましくは1~10、特に好ましくは2~9、最も好ましくは3~8である。この範囲であると、吸収性能及び乾燥後の架橋重合体(A)の壊れ性がさらに良好となる。 When water is contained in the solvent, the water content (% by weight) after the distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, based on the weight of the crosslinked polymer (A). Most preferably, it is 3-8. Within this range, the absorption performance and the breakability of the crosslinked polymer (A) after drying are further improved.
 水溶液重合法によって架橋重合体(A)と水とからなる含水ゲルが得られる。得られた含水ゲルは、必要に応じて細断して用いることができる。細断後のゲルの大きさ(最長径)は50μm~10cmが好ましく、さらに好ましくは100μm~2cm、特に好ましくは1mm~1cmである。この範囲であると、後述する溶媒(水を含む。)の留去が容易となり好ましい。 A water-containing gel composed of the crosslinked polymer (A) and water is obtained by an aqueous solution polymerization method. The obtained water-containing gel can be chopped and used as necessary. The size (longest diameter) of the gel after chopping is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the later-described solvent (including water) can be easily distilled off, which is preferable.
 細断は、公知の方法で行うことができ、細断装置(たとえば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機)等を使用して細断できる。 Shredding can be performed by a known method, and can be performed using a shredding device (for example, a bex mill, rubber chopper, pharma mill, mincing machine, impact crusher, and roll crusher).
 なお、有機溶媒の含有量及び水分量は、赤外水分測定器((株)KETT社製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W)により加熱したときの加熱前後の測定試料の重量減量から求められる。 In addition, the content of the organic solvent and the water content are infrared moisture measuring devices (JE400 manufactured by KETT Co., Ltd.): 120 ± 5 ° C., 30 minutes, atmospheric humidity before heating 50 ± 10% RH, lamp specification 100V, 40W) is obtained from the weight loss of the measurement sample before and after heating.
 溶媒(水を含む。)を留去する方法としては、80~230℃の温度の熱風で留去(乾燥)する方法、100~230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用できる。 As a method of distilling off the solvent (including water), a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C., a thin film drying method using a drum dryer heated to 100 to 230 ° C., (heating ) Vacuum drying, freeze drying, infrared drying, decantation, filtration, etc. can be applied.
 本発明において、架橋重合体(A)は1種でもよいし、2種以上の混合物であってもよい。 In the present invention, the crosslinked polymer (A) may be one kind or a mixture of two or more kinds.
 第一の本発明において、無機酸(c)は、pKa4.5~10のプロトンを有しており、吸収特性の観点から、プロトンのpKaは5.5~8.5が好ましく、更に好ましくは、6.5~7.5である。
 無機酸(c)としては、リン酸、亜リン酸、タングストリン酸、ポリリン酸、トリリン酸、シクロリン酸、炭酸、硫酸、亜硫酸、次亜塩素酸、ケイ酸等及びこれらの塩が挙げられる。
 塩としては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム等との塩が挙げられる。金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの金属の中でも、吸収特性の観点等から、1A、3A又は3B族に属する金属が更に好ましく、1A族に属するナトリウム、カリウムが最も好ましい。
In the first invention, the inorganic acid (c) has a proton with a pKa of 4.5 to 10, and from the viewpoint of absorption characteristics, the pKa of the proton is preferably 5.5 to 8.5, more preferably 6.5 to 7.5.
Examples of the inorganic acid (c) include phosphoric acid, phosphorous acid, tungstophosphoric acid, polyphosphoric acid, triphosphoric acid, cyclophosphoric acid, carbonic acid, sulfuric acid, sulfurous acid, hypochlorous acid, silicic acid and the like and salts thereof.
The salt is not particularly limited, and specific examples include salts with metals, ammonium, alkylammonium and the like. Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8. Among these metals, metals belonging to Group 1A, 3A or 3B are more preferable, and sodium and potassium belonging to Group 1A are most preferable from the viewpoint of absorption characteristics and the like.
 無機酸(c)は、表面架橋の均一性、吸収特性の観点等から、連鎖移動剤として機能しにくい無機酸及びこれらの塩であることが好ましく、無機酸(c)が連鎖移動剤として強く機能する場合、分子量が低下し水可溶分が増加するため、表面架橋の均一性、吸収特性の観点等から好ましくない。好ましい剤としては、リン酸(c1)、亜リン酸、タングストリン酸、ポリリン酸、トリリン酸、シクロリン酸及びそれらの塩が更に好ましく、特に好ましくはリン酸(c1)、亜リン酸及びそれらの塩、最も好ましくはリン酸(c1)及びその塩(c2)である。リン酸(c1)はオルトリン酸であり、リン酸塩(c2)としては、リン酸アルカリ金属塩(リン酸三リチウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム及びリン酸三カリウム等)、リン酸アルカリ土類金属塩(リン酸一マグネシウム、リン酸二マグネシウム、リン酸三マグネシウム、リン酸二水素カルシウム、リン酸一水素カルシウム及びリン酸三カルシウム等)、リン酸アンモニウム(NH)塩(リン酸二水素アンモニウム及びリン酸水素二アンモニウム等)等が挙げられ、吸収特性の観点等から、リン酸アルカリ金属及びリン酸アンモニウム塩が好ましく、さらに好ましくはリン酸アルカリ金属塩、特に好ましくはリン酸ナトリウム塩である。 The inorganic acid (c) is preferably an inorganic acid that is difficult to function as a chain transfer agent or a salt thereof from the viewpoint of uniformity of surface cross-linking, absorption characteristics, and the like, and the inorganic acid (c) is strong as a chain transfer agent. When functioning, the molecular weight decreases and the water-soluble component increases, which is not preferable from the viewpoint of uniformity of surface cross-linking and absorption characteristics. As preferred agents, phosphoric acid (c1), phosphorous acid, tungstophosphoric acid, polyphosphoric acid, triphosphoric acid, cyclophosphoric acid and salts thereof are more preferred, and phosphoric acid (c1), phosphorous acid and their salts are particularly preferred. A salt, most preferably phosphoric acid (c1) and a salt thereof (c2). Phosphoric acid (c1) is orthophosphoric acid, and phosphate (c2) includes alkali metal phosphates (trilithium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, phosphoric acid Potassium dihydrogen, dipotassium hydrogen phosphate and tripotassium phosphate), alkaline earth metal phosphates (monomagnesium phosphate, dimagnesium phosphate, trimagnesium phosphate, calcium dihydrogen phosphate, monohydrogen phosphate) Calcium, tricalcium phosphate, etc.), ammonium phosphate (NH 4 ) salts (ammonium dihydrogen phosphate, diammonium hydrogen phosphate, etc.) and the like. From the viewpoint of absorption characteristics, alkali metal phosphates and phosphoric acid An ammonium salt is preferable, an alkali metal phosphate is more preferable, and a sodium phosphate is particularly preferable.
 第一の本発明の吸水性樹脂粒子に含まれる無機酸(c)の含有量(重量%)は、水溶性ビニルモノマー(a1)、加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)、その他のビニルモノマー(a3)も使用する場合は(a1)~(a3)、及び内部架橋剤(b)の合計重量に基づいて、0.004~2.4であり、さらに好ましくは0.01~1.2である。この範囲であると、吸収特性がさらに良好となる。
 第一の本発明の吸水性樹脂粒子に含まれる無機酸(c)の含有量(重量%)は、用いた無機酸(c)の合計重量と架橋重合体(A)の重量または架橋重合体(A)を得るために用いた単量体組成物の重量とを用いて計算することが出来る。
 なお、無機酸(c)の水和物を用いた場合、無機酸(c)の重量には水和水を含まないものとする。
The content (% by weight) of the inorganic acid (c) contained in the water-absorbent resin particles of the first present invention is such that the water-soluble vinyl monomer (a1) and the vinyl monomer (a1) by hydrolysis become a water-soluble vinyl monomer (a1) ( a2), when other vinyl monomer (a3) is also used, it is 0.004 to 2.4 based on the total weight of (a1) to (a3) and the internal crosslinking agent (b), more preferably 0.01 to 1.2. Within this range, the absorption characteristics are further improved.
The content (% by weight) of the inorganic acid (c) contained in the water-absorbent resin particles of the first invention is the total weight of the inorganic acid (c) used and the weight of the crosslinked polymer (A) or the crosslinked polymer. It can be calculated using the weight of the monomer composition used to obtain (A).
In addition, when the hydrate of inorganic acid (c) is used, the weight of inorganic acid (c) shall not contain hydration water.
 吸水性樹脂粒子にリン酸(c1)及びリン酸塩(c2)を含有する場合、リン酸(c1)及びリン酸塩(c2)の含有量(重量%)は、架橋重合体(A)に用いた水溶性ビニルモノマー(a1)、加水分解性ビニルモノマー(a2)、その他のビニルモノマー(a3)も使用する場合は(a1)~(a3)、及び内部架橋剤(b)の合計重量に基づいて、0.008~1.4が好ましく、さらに好ましくは0.01~1.2である。この範囲であると、吸収特性がさらに良好となる。
 なお、吸水性樹脂粒子に含まれるリン酸(c1)及びリン酸塩(c2)の含有量(重量%)は、上述と同様にして計算することが出来る。また、上述と同様に、水和物を用いた場合、リン酸(c1)及びリン酸塩(c2)の重量には水和水を含まないものとする。
When the water-absorbent resin particles contain phosphoric acid (c1) and phosphate (c2), the content (% by weight) of phosphoric acid (c1) and phosphate (c2) depends on the cross-linked polymer (A). When the water-soluble vinyl monomer (a1), hydrolyzable vinyl monomer (a2), and other vinyl monomer (a3) used are also used, the total weight of (a1) to (a3) and the internal crosslinking agent (b) Based on this, 0.008 to 1.4 is preferable, and 0.01 to 1.2 is more preferable. Within this range, the absorption characteristics are further improved.
The contents (wt%) of phosphoric acid (c1) and phosphate (c2) contained in the water-absorbent resin particles can be calculated in the same manner as described above. Similarly to the above, when a hydrate is used, the weight of phosphoric acid (c1) and phosphate (c2) does not include hydration water.
 第一の本発明の吸水性樹脂粒子は、前記の架橋重合体(A)と無機酸(c)とを含んでいれば制限はなく、吸水性樹脂粒子を得るための好ましい方法としては、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)及び内部架橋剤(b)を必須構成成分とする単量体組成物を無機酸(c)の存在下で重合する方法(以下、重合法ともいう。)、及び前記の架橋重合体(A)を含む含水ゲルと無機酸(c)とを混合する方法等(以下、混合法ともいう。)が挙げられる。
 前記の重合法及び混合法により得られた吸水性樹脂粒子は、無機酸(c)が架橋重合体(A)の内部に偏在することなく存在するため吸収特性の観点から好ましい。
The water-absorbent resin particles of the first present invention are not limited as long as the crosslinked polymer (A) and the inorganic acid (c) are contained, and a preferable method for obtaining the water-absorbent resin particles is a water-soluble resin particle. A monomer composition comprising, as essential constituents, a water-soluble vinyl monomer (a1) by hydrolysis and a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) and an internal cross-linking agent (b) as inorganic constituents (c) (Hereinafter also referred to as a polymerization method), a method of mixing a hydrogel containing the crosslinked polymer (A) and an inorganic acid (c) (hereinafter also referred to as a mixing method). ).
The water-absorbent resin particles obtained by the polymerization method and the mixing method are preferable from the viewpoint of absorption characteristics because the inorganic acid (c) exists without being unevenly distributed inside the crosslinked polymer (A).
 前記重合法は、無機酸(c)を前記の単量体組成物と共存させて前記の方法で重合することで行うことができる。なかでも無機酸(c)の存在下で水溶液重合する方法が好ましい。
 無機酸(c)を前記の単量体組成物と共存させて前記の方法で重合する場合、無機酸(c)としては、その水和物を用いることが出来る。
The said polymerization method can be performed by superposing | polymerizing by the said method coexisting the inorganic acid (c) with the said monomer composition. In particular, a method of performing aqueous solution polymerization in the presence of the inorganic acid (c) is preferable.
When the inorganic acid (c) is polymerized by the above-mentioned method in the presence of the monomer composition, the hydrate can be used as the inorganic acid (c).
 前記混合法は、前記の単量体組成物を水溶液重合して得られた前記の含水ゲルに無機酸(c)を混合することで行うことができる。
 含水ゲルと無機酸(c)との混合は、含水ゲルと無機酸(c)とを公知の撹拌混合装置(ヘンシェルミキサー、プラネタリミキサー及び万能混合装置等)で混合することで行うことができる。また、含水ゲルを裁断装置で裁断する場合、含水ゲルと無機酸(c)とを同時に裁断装置にいれることでも行うことができる。
 前記の含水ゲルに無機酸(c)を混合する場合、無機酸(c)としては、その水和物を用いることが出来る。
The mixing method can be performed by mixing an inorganic acid (c) with the water-containing gel obtained by aqueous polymerization of the monomer composition.
The water-containing gel and the inorganic acid (c) can be mixed by mixing the water-containing gel and the inorganic acid (c) with a known stirring and mixing device (Henschel mixer, planetary mixer, universal mixer, etc.). Moreover, when cutting a water-containing gel with a cutting device, it can also carry out by putting a water-containing gel and an inorganic acid (c) into a cutting device simultaneously.
When the inorganic acid (c) is mixed with the hydrated gel, the hydrate can be used as the inorganic acid (c).
 重合法又は混合法で得られた産物(含水ゲル)は、乾燥後に粉砕して吸水性樹脂粒子の製造に用いることができる。粉砕方法については、特に限定はなく、粉砕装置(たとえば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機)等が使用できる。粉砕した後、更に必要によりふるい分け等により粒度調整して用いることができる。 The product (hydrogel) obtained by the polymerization method or the mixing method can be used for the production of water-absorbent resin particles by pulverization after drying. The pulverization method is not particularly limited, and a pulverizer (for example, a hammer pulverizer, an impact pulverizer, a roll pulverizer, and a shet airflow pulverizer) can be used. After pulverization, if necessary, the particle size can be adjusted by sieving or the like.
 ふるい分けして粒度調整を行った場合、ふるい分けを行った後に得られた吸水性樹脂粒子の重量平均粒子径(μm)は、100~800が好ましく、さらに好ましくは200~700、次に好ましくは250~600、特に好ましくは300~500、最も好ましくは350~450である。この範囲であると、吸収性能がさらに良好となる。 When the particle size is adjusted by sieving, the weight average particle diameter (μm) of the water-absorbent resin particles obtained after sieving is preferably 100 to 800, more preferably 200 to 700, and then preferably 250. To 600, particularly preferably 300 to 500, most preferably 350 to 450. Within this range, the absorption performance is further improved.
 なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンバニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75m及び45μm、並びに受け皿の順に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙(横軸がふるいの目開き(粒子径)、縦軸が重量分率)にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径とする。 The weight average particle size was measured using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook, 6th edition (Mac Glow Hill Book, 1984). , Page 21). That is, JIS standard sieves are combined in the order of 1000 μm, 850 μm, 710 μm, 500 μm, 425 μm, 355 μm, 250 μm, 150 μm, 125 μm, 75 m and 45 μm, and a tray from the top. About 50 g of the measured particles are put in the uppermost screen and shaken for 5 minutes with a low-tap test sieve shaker. Weigh the measured particles on each sieve and the pan, and calculate the weight fraction of the particles on each sieve with the total as 100% by weight. This value is logarithmic probability paper (the horizontal axis is the sieve aperture (particle size ), The vertical axis is plotted in terms of weight fraction), and then a line connecting the points is drawn to determine the particle diameter corresponding to the weight fraction of 50% by weight, which is defined as the weight average particle diameter.
 また、吸水性樹脂粒子に含まれる微粒子の含有量は、吸収性能の観点から、吸水性樹脂粒子に含まれる106μm以下(好ましくは150μm以下)の微粒子の含有量は吸水性樹脂粒子の合計重量に基づいて3重量%以下が好ましく、さらに好ましくは1重量%以下である。微粒子の含有量は、上記の重量平均粒径を求める際に作成するプロットを用いて求めることができる。 In addition, the content of the fine particles contained in the water absorbent resin particles is 106 μm or less (preferably 150 μm or less) of the fine particles contained in the water absorbent resin particles from the viewpoint of absorption performance. Based on this, it is preferably 3% by weight or less, more preferably 1% by weight or less. The content of the fine particles can be determined using a plot created when determining the above weight average particle diameter.
 吸水性樹脂粒子の見掛け密度(単位はg/ml。以下同様。)は、0.54~0.70が好ましく、さらに好ましくは0.56~0.65、特に好ましくは0.58~0.60である。この範囲であると、吸収性能がさらに良好となる。なお、見掛け密度は、JIS K7365:1999に準拠して、25℃で測定される。 The apparent density (unit: g / ml, the same applies hereinafter) of the water-absorbent resin particles is preferably 0.54 to 0.70, more preferably 0.56 to 0.65, and particularly preferably 0.58 to 0.00. 60. Within this range, the absorption performance is further improved. The apparent density is measured at 25 ° C. according to JIS K7365: 1999.
 吸水性樹脂粒子の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 The shape of the water-absorbent resin particles is not particularly limited, and examples thereof include an irregularly crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, from the viewpoint of good entanglement with the fibrous material in the use of paper diapers and the like and no fear of dropping off from the fibrous material, an irregular crushed shape is preferable.
 第一の本発明の吸水性樹脂粒子は、好ましくは、表面架橋剤(d)による表面架橋構造を有する。 The water-absorbent resin particles of the first present invention preferably have a surface cross-linked structure with a surface cross-linking agent (d).
 表面架橋剤(d)としては、公知のもの(特開昭59-189103号公報に記載の多価グリシジル化合物、多価アミン、多価アジリジン及び多価イソシアネート等)が使用できる。これらの表面架橋剤(d)のうち、経済性及び吸収特性の観点から、多価グリシジル化合物が好ましく、最も好ましくはエチレングリコールジグリシジルエーテルである。 As the surface cross-linking agent (d), known ones (polyvalent glycidyl compounds, polyvalent amines, polyvalent aziridines, polyvalent isocyanates and the like described in JP-A No. 59-189103) can be used. Of these surface cross-linking agents (d), a polyvalent glycidyl compound is preferred from the viewpoint of economy and absorption characteristics, and ethylene glycol diglycidyl ether is most preferred.
 表面架橋剤(d)の使用量(重量%)は、表面架橋剤(d)の種類、架橋させる条件及び目標とする性能等により種々変化させることができるため特に限定はないが、吸収特性の観点等から、架橋重合体(A)に用いた水溶性ビニルモノマー(a1)、加水分解性ビニルモノマー(a2)及び内部架橋剤(b)の、その他のビニルモノマー(a3)も使用する場合は(a1)~(a3)の、合計重量に基づいて、0.03~0.5が好ましく、さらに好ましくは0.05~0.3、特に好ましくは0.08~0.2である。 The amount (% by weight) of the surface cross-linking agent (d) is not particularly limited because it can be variously changed depending on the type of the surface cross-linking agent (d), the cross-linking conditions, the target performance, etc. When using other vinyl monomers (a3) of the water-soluble vinyl monomer (a1), hydrolyzable vinyl monomer (a2) and internal cross-linking agent (b) used in the crosslinked polymer (A) from the viewpoint, etc. Based on the total weight of (a1) to (a3), 0.03 to 0.5 is preferable, more preferably 0.05 to 0.3, and particularly preferably 0.08 to 0.2.
 本発明において、吸水性樹脂粒子は、内部架橋剤添加量及び、該当する場合は表面架橋前の、水分量を調整することで水溶性重合体である水可溶分の量が低減されていることが望ましい。第一の本発明において、吸水性樹脂粒子は、水可溶分の量が20%以下に低減されている。第一の本発明において、水可溶分が20%を超えると吸水時に可溶分が溶出していまい、ゲルブロッキングが生じ、通液性や吸水倍率に悪影響を与えることとなる。通液性の観点から、好ましくは10%以下、更に好ましくは5%以下である。水可溶分は以下の方法で測定することができる。 In the present invention, the water-absorbent resin particles are reduced in the amount of water-soluble polymer that is a water-soluble polymer by adjusting the amount of internal cross-linking agent added and, if applicable, the amount of water before surface cross-linking. It is desirable. In the first invention, the water-absorbent resin particles have a water-soluble content reduced to 20% or less. In the first aspect of the present invention, if the water-soluble content exceeds 20%, the soluble content is not eluted at the time of water absorption, gel blocking occurs, and the liquid permeability and water absorption capacity are adversely affected. From the viewpoint of liquid permeability, it is preferably 10% or less, more preferably 5% or less. The water-soluble component can be measured by the following method.
<水可溶分量>
 300mlのプラスチック容器に0.9重量%食塩水100gをはかり取り、その食塩水に吸水性樹脂組成物1.2gを加え、ラップでシールして3時間、500rpmでスターラーを回転させ攪拌して、吸水性樹脂組成物の水可溶分が抽出された水可溶分抽出液を調製する。そして、この水可溶分抽出液を、ADVANTEC東洋株式会社製の濾紙(品名;JIS P 3801、No.2、厚さ0.26mm、保留粒子径5μm)を用いて、濾過する。そして、得られた濾液の20gをはかり取り、イオン交換水30gを加えて測定溶液とする。以下、測定溶液について、吸水性樹脂組成物の水可溶分量を測定する方法を説明する。
<Water-soluble content>
In a 300 ml plastic container, 100 g of 0.9 wt% saline is weighed, 1.2 g of the water-absorbent resin composition is added to the saline, sealed with a wrap, and stirred for 3 hours by rotating a stirrer at 500 rpm. A water-soluble extract from which the water-soluble component of the water-absorbent resin composition is extracted is prepared. And this water-soluble extract is filtered using the filter paper made from ADVANTEC Toyo Co., Ltd. (product name; JIS P 3801, No. 2, thickness 0.26 mm, reserved particle diameter 5 μm). Then, 20 g of the obtained filtrate is weighed, and 30 g of ion exchange water is added to obtain a measurement solution. Hereinafter, a method for measuring the water-soluble content of the water-absorbent resin composition for the measurement solution will be described.
 まず、0.9重量%食塩水20gにイオン交換水30gを加えた空試験溶液について、該食塩水のpHが10になるまで、N/50のKOH水溶液の滴定を行う。そして、0.9重量%食塩水のpHが10になるのに必要な、N/50のKOH水溶液の滴定量([WKOH,b]ml)を得る。その後、該食塩水のpHが2.7になるまで、N/20のHCl水溶液の滴定を行う。そして、そして、0.9重量%食塩水のpHが2.7になるのに必要な、N/10のHCl水溶液の滴定量([WHCl,b]ml)を得る。 First, a N / 50 KOH aqueous solution is titrated with respect to a blank test solution obtained by adding 30 g of ion-exchanged water to 20 g of 0.9 wt% saline until the pH of the saline becomes 10. Then, a titration amount ([W KOH, b ] ml) of an N / 50 aqueous KOH solution necessary for the pH of the 0.9 wt% saline solution to be 10 is obtained. Then, titration of N / 20 HCl aqueous solution is performed until the pH of the saline solution becomes 2.7. Then, a titration amount of N / 10 HCl aqueous solution ([W HCl, b ] ml) necessary for the pH of the 0.9 wt% saline solution to be 2.7 is obtained.
 次に、上記測定溶液について、上記の滴定操作と同様な操作を行い、測定溶液のpHが10になるのに必要な、N/50のKOH水溶液の滴定量([WKOH,S]ml)、及び、測定溶液のpHが2.7になるのに必要な、N/10のHCl水溶液の滴定量([WHCl,S]ml)を得る方法を具体的に説明する。 Next, the above measurement solution is subjected to the same operation as the above titration operation, and a titration amount of N / 50 KOH aqueous solution necessary for the measurement solution to have a pH of 10 ([W KOH, S ] ml). A method for obtaining a titration amount ([W HCl, S ] ml) of an HCl aqueous solution of N / 10 necessary for the measurement solution to have a pH of 2.7 will be described in detail.
 例えば、アクリル酸とそのナトリウム塩とからなる吸水性樹脂組成物の場合、未中和アクリル酸物質量nCOOHは、
COOH(mol)=(WKOH,S-WKOH,b)×(1/50)/1000×5
また、総アクリル酸物質量ntotは、
tot(mol)=(WHCl,S-WHCl,b)×(1/10)/1000×5
また、中和アクリル酸物質量nCOONaは、
COONa(mol)=ntot-nCOOH
さらに、未中和アクリル酸重量mCOOHは、
COOH(g)=nCOOH×72
また、中和アクリル酸物質量mCOONaは、
COONa(g)=nCOONa×94
 以上及び試料として用いた吸水性樹脂組成物の水分量([WH2O]重量%)をもとに、以下の計算式により、吸水性樹脂組成物の水可溶分量を算出することができる。
水可溶分量(重量%)={(mCOOH+mCOONa)×100}/{1.2×(100-WH2O)}
For example, in the case of a water absorbent resin composition comprising acrylic acid and its sodium salt, the amount of unneutralized acrylic acid substance n COOH is
n COOH (mol) = (W KOH, S −W KOH, b ) × (1/50) / 1000 × 5
In addition, the total acrylic acid substance amount n tot is
n tot (mol) = (W HCl, S −W HCl, b ) × (1/10) / 1000 × 5
In addition, the amount of neutralized acrylic acid substance n COONa is
n COONa (mol) = n tot −n COOH
Furthermore, the weight of unneutralized acrylic acid m COOH is
m COOH (g) = n COOH × 72
Further, the neutralized acrylic acid material amount m COONa is
m COONa (g) = n COONa x 94
Based on the above and the water content of the water-absorbent resin composition used as a sample ([W H2O ] wt%), the water-soluble content of the water-absorbent resin composition can be calculated by the following calculation formula.
Water-soluble amount (% by weight) = {(m COOH + m COONa ) × 100} / {1.2 × (100−W H2O )}
 本発明の吸水性樹脂粒子において、生理食塩水の遠心保持量(Centrifuge Retention Capacity:以下、CRCともいう。)(g/g)は、吸水特性及び他の物性との関係の観点から、25以上が好ましく、27以上が更に好ましく、29以上がより更に好ましい。また、上限値は、40以下が好ましく、38以下が更に好ましい。CRC(g/g)は、後述する方法で測定することができる。 In the water-absorbent resin particles of the present invention, the centrifugal retention amount (centrifugal retention capacity: hereinafter also referred to as CRC) (g / g) is 25 or more from the viewpoint of water absorption characteristics and other physical properties. Is preferable, 27 or more is more preferable, and 29 or more is further more preferable. Further, the upper limit is preferably 40 or less, and more preferably 38 or less. CRC (g / g) can be measured by the method described later.
 本発明の吸水性樹脂粒子において、吸収性樹脂粒子の0psi膨潤圧力でのゲルベッド透過率(以下、GBPともいう。)(darcies)は、吸水特性及び他の物性との関係の観点から、5以上が好ましく、30以上が更に好ましく、40以上がより更に好ましい。GBP(darcies)は、後述する方法で測定することができる。 In the water absorbent resin particles of the present invention, the gel bed permeability (hereinafter also referred to as GBP) (darcies) at 0 psi swelling pressure of the absorbent resin particles is 5 or more from the viewpoint of water absorption characteristics and other physical properties. Is more preferable, 30 or more is more preferable, and 40 or more is still more preferable. GBP (darcies) can be measured by the method described later.
 本発明の吸水性樹脂粒子において、吸収性樹脂粒子のDemand Wettability試験法(以下、DW試験ともいう。)で測定された無荷重下での吸収速度(以下、吸収速度(T1)ともいう。)は、吸水特性及び他の物性との関係の観点から、15秒以下である。吸収速度(T1)は、後述する方法で測定することができる。 In the water-absorbent resin particles of the present invention, an absorption rate under no load (hereinafter also referred to as an absorption rate (T1)) measured by a demand wettability test method (hereinafter also referred to as a DW test) of the absorbent resin particles. Is 15 seconds or less from the viewpoint of water absorption characteristics and other physical properties. The absorption rate (T1) can be measured by the method described later.
 本発明の吸水性樹脂粒子において、吸収性樹脂粒子のVortex試験法で測定された吸収速度(以下、吸収速度(Vortex)ともいう。)は、後述する方法で測定することができ、吸水特性及び他の物性との関係の観点から、50秒以下である。 In the water-absorbent resin particles of the present invention, the absorption rate of the absorbent resin particles measured by the Vortex test method (hereinafter also referred to as absorption rate (Vortex)) can be measured by the method described later. From the viewpoint of the relationship with other physical properties, it is 50 seconds or less.
 第二の本発明である、上記樹脂粒子の製造方法において、前記架橋重合体(A)と前記無機酸(c)とを含有する樹脂粒子(B)を、その水分量3~8重量%で、表面架橋剤(d)で表面架橋する工程を有する。表面架橋剤(d)による表面架橋は、好ましくは、例えば、架橋重合体(A)と、無機酸(c)、例えば、リン酸(c1)及び/又はリン酸塩(c2)、とを含有する樹脂粒子(B)を、表面架橋剤(d)により表面架橋する工程で行うことができる。表面架橋時に無機酸(c)を添加すると、通液性やブロッキング性等の吸収特性が劣ることとなるため好ましくない。 In the method for producing resin particles according to the second aspect of the present invention, the resin particles (B) containing the crosslinked polymer (A) and the inorganic acid (c) are contained at a water content of 3 to 8% by weight. And a step of surface cross-linking with the surface cross-linking agent (d). The surface crosslinking with the surface crosslinking agent (d) preferably contains, for example, a crosslinked polymer (A) and an inorganic acid (c), for example, phosphoric acid (c1) and / or phosphate (c2). The resin particles (B) to be subjected to surface cross-linking with the surface cross-linking agent (d) can be performed. If the inorganic acid (c) is added at the time of surface cross-linking, absorption characteristics such as liquid permeability and blocking properties are inferior.
 表面架橋する工程は、樹脂粒子(B)と表面架橋剤(d)とを混合し、更に加熱することで行うことができ、公知(たとえば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報及び特開2005-95759号公報に記載の表面架橋処理方法)の方法で行うことができる。 The surface cross-linking step can be performed by mixing the resin particles (B) and the surface cross-linking agent (d) and further heating, and is known (for example, Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883). , Surface crosslinking treatment methods described in JP-A-2005-75982 and JP-A-2005-95759.
 表面架橋する工程として好ましい方法としては、樹脂粒子(B)を撹拌しながら、表面架橋剤(d)の水溶液を樹脂粒子(B)の表面に噴霧し、その後撹拌した状態または静置した状態で100~200℃(好ましくは120℃~160℃)に加熱する方法が挙げられる。
 表面架橋剤(d)の水溶液を樹脂粒子(B)の表面に噴霧する場合、噴霧する水溶液に含まれる表面架橋剤(d)の濃度は、表面架橋剤(d)の種類により調整することができるが、吸収特性の観点等から、0.1~10重量%であることが好ましい。
 噴霧する水溶液の液量は、表面架橋の均一性の観点から、樹脂粒子(B)の重量に基づいて、0.5~15重量%であることが好ましい。
 表面架橋する工程のうち、撹拌下にある樹脂粒子(B)に表面架橋剤(d)の水溶液を噴霧することは、公知の流動式加湿混合造粒装置[フレキソミックス(ホソカワミクロン社製)及びシュギフレキソミックス((株)パウレック製)等]及び公知の粉体混合機[V型混合機、ヘンシェルミキサー及びタービュライザー(ホソカワミクロン(株)製)等]に公知の噴霧装置を取り付けた混合装置等を用いて行うことができる。
As a preferable method for the surface cross-linking step, an aqueous solution of the surface cross-linking agent (d) is sprayed on the surface of the resin particles (B) while stirring the resin particles (B), and then in a stirred state or a stationary state. A method of heating to 100 to 200 ° C. (preferably 120 ° C. to 160 ° C.) can be mentioned.
When the aqueous solution of the surface cross-linking agent (d) is sprayed on the surface of the resin particles (B), the concentration of the surface cross-linking agent (d) contained in the aqueous solution to be sprayed can be adjusted depending on the type of the surface cross-linking agent (d). However, it is preferably 0.1 to 10% by weight from the viewpoint of absorption characteristics.
The amount of the aqueous solution to be sprayed is preferably 0.5 to 15% by weight based on the weight of the resin particles (B) from the viewpoint of the uniformity of surface crosslinking.
In the step of surface cross-linking, spraying an aqueous solution of the surface cross-linking agent (d) onto the resin particles (B) under stirring is carried out by using a known fluid humidifying and mixing granulator [Flexomix (manufactured by Hosokawa Micron) and Shugi Flexomix (manufactured by Paulek Co., Ltd.) etc.] and a known powder mixer [V-type mixer, Henschel mixer and turbulizer (manufactured by Hosokawa Micron Co., Ltd.), etc.] Can be used.
 表面架橋する工程のうち、撹拌した状態で100~200℃に加熱することは、表面架橋剤を噴霧した樹脂粒子(B)を、加熱装置を付属した公知の撹拌装置(双腕型ニーダー等)を用いて加熱しながら撹拌することで行うことができる。
 表面架橋する工程のうち、静置した状態で100~200℃に加熱することは、公知の加熱乾燥装置(循風乾燥機等)を用いて行うことができる。
 100~200℃に加熱する場合の加熱時間は、通常3~60分であり、好ましくは10~40分である。
Of the steps of surface cross-linking, heating to 100 to 200 ° C. in a stirred state means that the resin particles (B) sprayed with the surface cross-linking agent are mixed with a known stirrer equipped with a heating device (such as a two-arm kneader). It can carry out by stirring while heating using.
Of the step of surface cross-linking, heating to 100 to 200 ° C. in a stationary state can be performed using a known heat drying apparatus (such as a circulating dryer).
When heating to 100 to 200 ° C., the heating time is usually 3 to 60 minutes, preferably 10 to 40 minutes.
 なお、樹脂粒子(B)と表面架橋剤(d)とを混合する方法としては、表面架橋剤(d)の水溶液を噴霧する方法以外に、樹脂粒子(B)を表面架橋剤(d)の水溶液に浸漬する方法を用いることもできる。樹脂粒子(B)を表面架橋剤(d)の水溶液に浸漬した場合、その後撹拌しながら加熱する方法で表面架橋を行うことができる。 In addition, as a method of mixing the resin particles (B) and the surface crosslinking agent (d), in addition to the method of spraying an aqueous solution of the surface crosslinking agent (d), the resin particles (B) are mixed with the surface crosslinking agent (d). A method of immersing in an aqueous solution can also be used. When the resin particles (B) are immersed in an aqueous solution of the surface cross-linking agent (d), the surface cross-linking can be performed by a method of heating with stirring thereafter.
 本発明の製造方法においては、表面架橋する工程を行った後、更に篩別して粒度調整しても良い。粒度調整して得られた粒子の平均粒経は、好ましくは100~600μm、更に好ましくは200~500μmである。微粒子の含有量は少ない方が好ましく、100μm以下の粒子の含有量は3重量%以下であることが好ましく、150μm以下の粒子の含有量が3重量%以下であることが更に好ましい。 In the production method of the present invention, after the surface cross-linking step, the particle size may be adjusted by further sieving. The average particle size of the particles obtained by adjusting the particle size is preferably 100 to 600 μm, more preferably 200 to 500 μm. The content of fine particles is preferably small, the content of particles of 100 μm or less is preferably 3% by weight or less, and the content of particles of 150 μm or less is more preferably 3% by weight or less.
 上記本発明の製造方法においては、表面架橋工程前に、架橋重合体(A)と無機酸(c)とを含有する樹脂粒子(B)の水分量を3~8重量%に調整する工程を有することができる。適当な水分量を有する樹脂粒子を無機酸(c)の存在下で表面架橋することで、高い吸水特性を示す吸水性樹脂粒子をえることができる。水分調整工程後における樹脂粒子の水分量は、樹脂粒子(B)の重量に基づいて、吸水特性の観点から好ましくは4~8重量%、特に好ましくは、6~8重量%である。 In the production method of the present invention, a step of adjusting the water content of the resin particles (B) containing the crosslinked polymer (A) and the inorganic acid (c) to 3 to 8% by weight before the surface crosslinking step. Can have. By subjecting the resin particles having an appropriate amount of water to surface crosslinking in the presence of the inorganic acid (c), water-absorbing resin particles exhibiting high water absorption characteristics can be obtained. The water content of the resin particles after the moisture adjustment step is preferably 4 to 8% by weight, particularly preferably 6 to 8% by weight, from the viewpoint of water absorption characteristics, based on the weight of the resin particles (B).
 水分量の調整は、乾燥工程、粉砕工程時の温度条件や工程時間を調整することで行うことが好ましい。更に好ましくは、生産性の観点から乾燥工程において乾燥温度、乾燥速度を調整することで、目的となる水分量に調整することである。 It is preferable to adjust the moisture content by adjusting temperature conditions and process time during the drying process and the pulverization process. More preferably, from the viewpoint of productivity, by adjusting the drying temperature and the drying speed in the drying step, the target moisture content is adjusted.
 本発明の吸水性樹脂粒子は、更に多価金属塩(e)を含有してもよく、このために、本発明の製造方法は、更に多価金属塩(e)と混合する工程を含んでも良い。多価金属塩(e)を含有することで、吸水性樹脂粒子の耐ブロッキング性及び通液性が向上する。多価金属塩(e)としては、マグネシウム、カルシウム、ジルコニウム、アルミニウム及びチタニウムからなる群から選ばれる少なくとも1種の金属と前記の無機酸又は有機酸との塩が挙げられる。
 多価金属塩(e)としては、入手の容易性や溶解性の観点から、アルミニウムの無機酸塩及びチタニウムの無機酸塩が好ましく、更に好ましいのは硫酸アルミニウム、塩化アルミニウム、硫酸カリウムアルミニウム及び硫酸ナトリウムアルミニウム、特に好ましいのは硫酸アルミニウム及び硫酸ナトリウムアルミニウム、最も好ましいのは硫酸ナトリウムアルミニウムである。これらは1種を単独で用いても良いし、2種以上を併用しても良い。
The water-absorbent resin particles of the present invention may further contain a polyvalent metal salt (e). For this reason, the production method of the present invention may further include a step of mixing with the polyvalent metal salt (e). good. By containing the polyvalent metal salt (e), the blocking resistance and liquid permeability of the water-absorbent resin particles are improved. Examples of the polyvalent metal salt (e) include salts of at least one metal selected from the group consisting of magnesium, calcium, zirconium, aluminum, and titanium with the above inorganic acid or organic acid.
As the polyvalent metal salt (e), an inorganic acid salt of aluminum and an inorganic acid salt of titanium are preferable from the viewpoint of availability and solubility, and aluminum sulfate, aluminum chloride, potassium aluminum sulfate and sulfuric acid are more preferable. Sodium aluminum, particularly preferred are aluminum sulfate and sodium aluminum sulfate, and most preferred is sodium aluminum sulfate. These may be used alone or in combination of two or more.
 多価金属塩(e)の使用量(重量%)は、吸収性能及び耐ブロッキング性の観点から吸水性樹脂100重量部に対して、0.05~5が好ましく、更に好ましくは0.1~3、特に好ましくは0.2~2である。 The use amount (% by weight) of the polyvalent metal salt (e) is preferably 0.05 to 5, more preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the water-absorbent resin from the viewpoints of absorption performance and blocking resistance. 3, particularly preferably 0.2 to 2.
 本発明の製造方法が多価金属塩(e)と混合する工程を含む場合、多価金属塩(e)と混合する工程は、前記の表面架橋する工程の前、表面架橋する工程の後、及び表面架橋する工程と同時のいずれにおいても行うことができる。 When the production method of the present invention includes a step of mixing with the polyvalent metal salt (e), the step of mixing with the polyvalent metal salt (e) is performed before the surface cross-linking step, after the surface cross-linking step, And at the same time as the surface cross-linking step.
 多価金属塩(e)の混合方法としては、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、ミンチ混合機、リボン型混合機、流動式混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等の公知の混合装置を用いて均一混合する方法が挙げられる。
 表面架橋する工程の前又は後に混合する場合、混合する際の温度は特に限定されないが、10~150℃が好ましく、更に好ましくは20~100℃、特に好ましくは25~80℃である。
 表面架橋する工程と同時に混合する場合、混合する際の温度は特に限定されないが、前記の表面架橋剤(d)により表面架橋する工程と同様の条件で行うことができる。
 本発明の製造方法において、多価金属塩(e)と混合する工程を行った後、更に粒度調整を行っても良い。
The mixing method of the polyvalent metal salt (e) includes a cylindrical mixer, a screw mixer, a screw extruder, a turbulator, a nauter mixer, a double-arm kneader, a fluid mixer, and a V mixer. And a uniform mixing method using a known mixing device such as a machine, a minced mixer, a ribbon mixer, a fluid mixer, an airflow mixer, a rotating disk mixer, a conical blender and a roll mixer.
When mixing before or after the surface cross-linking step, the temperature during mixing is not particularly limited, but is preferably 10 to 150 ° C, more preferably 20 to 100 ° C, and particularly preferably 25 to 80 ° C.
When mixing at the same time as the surface cross-linking step, the temperature at the time of mixing is not particularly limited, but can be performed under the same conditions as the step of surface cross-linking with the surface cross-linking agent (d).
In the production method of the present invention, the particle size may be further adjusted after the step of mixing with the polyvalent metal salt (e).
 本発明の吸水性樹脂粒子は、更に水不溶性無機粒子(f)を含有してもよく、このために、本発明の製造方法は、更に水不溶性無機粒子(f)と吸水性樹脂粒子を混合する工程を含んでも良い。水不溶性無機粒子(f)を混合することで吸水性樹脂粒子の表面が水不溶性無機粒子(f)で表面処理されることにより、吸水性樹脂粒子の耐ブロッキング性及び通液性が向上する。 The water-absorbing resin particles of the present invention may further contain water-insoluble inorganic particles (f). For this reason, the production method of the present invention further mixes the water-insoluble inorganic particles (f) and the water-absorbing resin particles. The process of carrying out may be included. By mixing the water-insoluble inorganic particles (f), the surface of the water-absorbent resin particles is surface-treated with the water-insoluble inorganic particles (f), thereby improving the blocking resistance and liquid permeability of the water-absorbent resin particles.
 水不溶性無機粒子(f)としては、コロイダルシリカ、フュームドシリカ、クレー及びタルク等が挙げられ、入手の容易性や扱いやすさ、吸収性能の観点から、コロイダルシリカ及びシリカが好ましく、更に好ましいのはコロイダルシリカである。水不溶性無機粒子(f)は1種を単独で用いても良いし、2種以上を併用しても良い。 Examples of the water-insoluble inorganic particles (f) include colloidal silica, fumed silica, clay and talc. Colloidal silica and silica are preferable and more preferable from the viewpoints of availability, ease of handling, and absorption performance. Is colloidal silica. One type of water-insoluble inorganic particles (f) may be used alone, or two or more types may be used in combination.
 水不溶性無機粒子(f)の使用量(重量%)は、吸収性能の観点から吸水性樹脂100重量部に対して、0.01~5が好ましく、更に好ましくは0.05~1、特に好ましくは0.1~0.5である。 The amount (% by weight) of the water-insoluble inorganic particles (f) used is preferably from 0.01 to 5, more preferably from 0.05 to 1, particularly preferably from 100 parts by weight of the water-absorbent resin from the viewpoint of absorption performance. Is 0.1 to 0.5.
 水不溶性無機粒子(f)を含む場合、吸水性樹脂粒子と水不溶性無機粒子(f)とを混合することが好ましく、混合は、前記の多価金属塩(e)の混合と同様の方法で行うことができ、その条件も同様である。 When the water-insoluble inorganic particles (f) are contained, it is preferable to mix the water-absorbing resin particles and the water-insoluble inorganic particles (f), and the mixing is performed in the same manner as the mixing of the polyvalent metal salt (e). The conditions are the same.
 水不溶性無機粒子(f)を混合する工程を行った後、吸水性樹脂粒子を粒度調整する工程を行っても良い。粒度調整は樹脂粒子(B)の粒度調整と同様に行うことができ、粒度調整後の粒径も同様である。 After the step of mixing the water-insoluble inorganic particles (f), a step of adjusting the particle size of the water-absorbent resin particles may be performed. The particle size adjustment can be performed in the same manner as the particle size adjustment of the resin particles (B), and the particle size after the particle size adjustment is also the same.
 本発明の製造方法は、生理食塩水の遠心保持量(Centrifuge Retention Capacity:以下、CRCともいう。)が29~40g/gであり、0psi膨潤圧力でのゲルベッド透過率(以下、GBPともいう。)が40darcies以上であり、Demand Wettability試験法(以下、DW試験ともいう。)で測定された無荷重下での吸収速度(以下、吸収速度(T1)ともいう。)が15秒以下であり、Vortex試験法で測定された吸収速度(以下、吸収速度(Vortex)ともいう。)が50秒以下である吸水性樹脂粒子を製造することができる。 The production method of the present invention has a centrifugal retention amount (centrifugation retention capacity: hereinafter referred to as CRC) of 29 to 40 g / g, and gel bed permeability (hereinafter also referred to as GBP) at 0 psi swelling pressure. ) Is 40 darcies or more, the absorption rate under no load (hereinafter, also referred to as absorption rate (T1)) measured by the demand wettability test method (hereinafter also referred to as DW test) is 15 seconds or less, Water-absorbing resin particles having an absorption rate (hereinafter also referred to as absorption rate (Vortex)) measured by the Vortex test method of 50 seconds or less can be produced.
 遠心保持容量、0psi膨潤圧力でのゲルベッド透過率、Demand Wettability試験法で測定された無荷重下での吸収速度及びVortex試験方で測定された吸収速度は、25±2℃、湿度50±10%の室内でそれぞれ以下の方法で測定される。なお、使用する生理食塩水の温度は予め25℃±2℃に調整して使用する。 Centrifugal holding capacity, gel bed permeability at 0 psi swelling pressure, absorption rate under no load measured by Demand Wettability test method and absorption rate measured by Vortex test method are 25 ± 2 ° C., humidity 50 ± 10% Each of the rooms is measured by the following method. The temperature of the physiological saline used is adjusted to 25 ° C. ± 2 ° C. in advance.
<生理食塩水の遠心保持量>
 特許第5236668号明細書に記載されたCRC試験方法に準じて測定され、吸水性樹脂粒子0.200gを、生理食塩水(0.9質量%塩化ナトリウム水溶液)に無加圧下で30分間、自由膨潤させ、次いで、遠心分離機で水切りし、水切り後においても吸水性樹脂粒子が保持する生理食塩水の量(単位;[g/g])を測定する。なお、CRCが高いほど吸水性樹脂粒子の吸水性能が高いことを意味する。
<Amount of centrifugal saline retained>
Measured according to the CRC test method described in Japanese Patent No. 5236668, and 0.200 g of water-absorbent resin particles were freely added to physiological saline (0.9 mass% sodium chloride aqueous solution) for 30 minutes under no pressure. Swell, then drain with a centrifuge and measure the amount of saline (unit: [g / g]) retained by the water-absorbent resin particles after draining. In addition, it means that the water absorption performance of a water absorbing resin particle is so high that CRC is high.
<0psiでの膨潤圧力でのゲルベッド透過率試験>
 特許第5236668号明細書に記載された0psi膨潤圧力でのGBP試験方法に準じて測定される(単位;[darcies])。なお、GBPが高いほど吸水性樹脂粒子の吸収速度と膨潤ゲル間の通液性に優れることを意味する。
<Gel bed permeability test at swelling pressure at 0 psi>
Measured according to the GBP test method at 0 psi swelling pressure described in Japanese Patent No. 5236668 (unit: [darcies]). In addition, it means that it is excellent in the absorption rate of a water absorbing resin particle, and the liquid permeability between swelling gel, so that GBP is high.
<Demand Wettability試験で測定された無荷重下での吸収速度>
 吸水性樹脂粒子0.50gと生理食塩水とを用いて特開2014-005472号明細書に記載されたDW法で測定した場合に、吸水開始からの吸収量(ml/g)が2.0となるまでに要する時間をDemand Wettability試験で測定された無荷重下での吸収速度とする。なお、DW試験はビュレットと導管とに接続された測定台上で、無荷重下における吸水性樹脂の吸い上げ能力を判断するものである。
<Absorption rate under no load measured in Demand Wettability test>
When measured by the DW method described in JP-A-2014-005472 using 0.50 g of water-absorbent resin particles and physiological saline, the amount of absorption (ml / g) from the start of water absorption is 2.0. The time required to become the absorption rate under no load measured in the Demand Wettability test. Note that the DW test is to determine the ability to suck up the water-absorbent resin under no load on a measurement table connected to a burette and a conduit.
<Vortex試験で測定される吸収速度>
 吸水性樹脂粒子2.000gが、JIS R 3503に規定する底面が平らな100mlのトールビーカー内で毎分600回の回転数で撹拌されている生理食塩水50gを吸収し終わるまでに必要とした時間(単位:秒)をJIS K7224-1996に準拠して測定し、Vortex試験で測定される吸収速度とする。
<Absorption rate measured by Vortex test>
Necessary until 2.000 g of water-absorbent resin particles have absorbed 50 g of physiological saline stirred at 600 rpm in a 100 ml tall beaker with a flat bottom as defined in JIS R 3503. The time (unit: second) is measured according to JIS K7224-1996, and the absorption rate is measured by the Vortex test.
 本発明の吸水性樹脂粒子は、必要に応じて、添加剤(例えば、公知(特開2003-225565号及び特開2006-131767号等に記載)の防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、着色剤、芳香剤、消臭剤、通液性向上剤及び有機質繊維状物等)を使用することもできる。これらの添加剤を使用する場合、添加剤の含有量(重量%)は、樹脂粒子(B)の重量に基づいて、0.001~10が好ましく、更に好ましくは0.01~5、特に好ましくは0.05~1、最も好ましくは0.1~0.5である。 The water-absorbent resin particles of the present invention may contain, as necessary, additives (for example, known preservatives, fungicides, antibacterial agents, oxidation agents (described in JP-A No. 2003-225565 and JP-A No. 2006-131767, etc.)) Inhibitors, ultraviolet absorbers, colorants, fragrances, deodorants, liquid permeability improvers, organic fibrous materials, etc.) can also be used. When these additives are used, the content (% by weight) of the additive is preferably 0.001 to 10, more preferably 0.01 to 5, particularly preferably based on the weight of the resin particles (B). Is 0.05 to 1, most preferably 0.1 to 0.5.
 本発明の吸水性樹脂粒子は、吸水性樹脂粒子を、生理食塩水の重量に基づいて0.5重量%含有させた場合の生理食塩水のpHが5.80~7.20であることが好ましく、5.80~6.50であることがより好ましい。この範囲内であると、弱酸性となり、よりカブレが生じにくくなるため好ましい。 The water-absorbent resin particles of the present invention may have a physiological saline pH of 5.80 to 7.20 when the water-absorbent resin particles are contained at 0.5% by weight based on the weight of the physiological saline. Preferably, it is 5.80 to 6.50. Within this range, it is preferable because it becomes weakly acidic and is less prone to fog.
 本発明の吸水性樹脂粒子である吸水性樹脂粒子は、荷重下非荷重下を問わずどのような状態においても安定して優れた吸収性能(液拡散性、吸収速度、及び吸収量)を発揮し、吸収性物品の耐カブレ性が良好となる。 The water-absorbent resin particles, which are the water-absorbent resin particles of the present invention, exhibit stable and excellent absorption performance (liquid diffusivity, absorption speed, and amount of absorption) in any state regardless of load or non-load. In addition, the anti-fogging property of the absorbent article is improved.
 本発明の吸水性樹脂粒子の見掛け密度(g/ml)は、0.54~0.70が好ましく、さらに好ましくは0.56~0.65、特に好ましくは0.58~0.60である。この範囲であると、吸収性物品の耐カブレ性がさらに良好となる。なお、見掛け密度は樹脂粒子(B)の場合と同様にして測定できる。 The apparent density (g / ml) of the water absorbent resin particles of the present invention is preferably 0.54 to 0.70, more preferably 0.56 to 0.65, and particularly preferably 0.58 to 0.60. . Within this range, the anti-fogging property of the absorbent article is further improved. The apparent density can be measured in the same manner as in the case of the resin particles (B).
 吸水性樹脂粒子の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 The shape of the water-absorbent resin particles is not particularly limited, and examples thereof include an irregularly crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, from the viewpoint of good entanglement with the fibrous material in the use of paper diapers and the like and no fear of dropping off from the fibrous material, an irregular crushed shape is preferable.
 本発明の吸水性樹脂粒子の製造方法で得られる吸水性樹脂粒子又は本発明の吸水性樹脂粒子(以下、両者を区別することなく、単に吸水性樹脂粒子又は本発明の吸水性樹脂粒子ともいう)は、単独で吸収体として用いても良く、他の材料と共に用いて吸収体としても良い。
 他の材料として好ましくは繊維状物が挙げられる。繊維状物と共に用いた場合の吸収体の構造及び製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等)と同様である。
The water-absorbent resin particles obtained by the method for producing the water-absorbent resin particles of the present invention or the water-absorbent resin particles of the present invention (hereinafter also referred to simply as the water-absorbent resin particles or the water-absorbent resin particles of the present invention, without distinguishing both). ) May be used alone as an absorber, or may be used together with other materials as an absorber.
The other material is preferably a fibrous material. The structure and production method of the absorbent when used together with the fibrous material are the same as those known (JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.). is there.
 上記繊維状物として好ましいのは、セルロース系繊維、有機系合成繊維及びセルロース系繊維と有機系合成繊維との混合物である。 Preferred as the fibrous material are cellulose fibers, organic synthetic fibers, and a mixture of cellulose fibers and organic synthetic fibers.
 セルロース系繊維としては、例えばフラッフパルプ等の天然繊維、ビスコースレーヨン、アセテート及びキュプラ等のセルロース系化学繊維が挙げられる。このセルロース系天然繊維の原料(針葉樹及び広葉樹等)、製造方法(ケミカルパルプ、セミケミカルパルプ、メカニカルパルプ及びCTMP等)及び漂白方法等は特に限定されない。 Examples of the cellulosic fibers include natural fibers such as fluff pulp, and cellulosic chemical fibers such as viscose rayon, acetate, and cupra. There are no particular restrictions on the raw materials (conifers, hardwoods, etc.), production methods (chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.), bleaching methods, etc. of this cellulose-based natural fiber.
 有機系合成繊維としては、例えばポリプロピレン系繊維、ポリエチレン系繊維、ポリアミド系繊維、ポリアクリロニトリル系繊維、ポリエステル系繊維、ポリビニルアルコール系繊維、ポリウレタン系繊維及び熱融着性複合繊維(融点の異なる上記繊維の少なくとも2種を鞘芯型、偏芯型、並列型等に複合化された繊維、上記繊維の少なくとも2種をブレンドした繊維及び上記繊維の表層を改質した繊維等)が挙げられる。 Examples of organic synthetic fibers include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above fibers having different melting points). And a fiber obtained by compounding at least two of the above into a sheath core type, an eccentric type, a parallel type, and the like, a fiber obtained by blending at least two kinds of the above fibers, and a fiber obtained by modifying the surface layer of the above fibers).
 これらの繊維状物の内で好ましいのは、セルロース系天然繊維、ポリプロピレン系繊維、ポリエチレン系繊維、ポリエステル系繊維、熱融着性複合繊維及びこれらの混合繊維であり、更に好ましいのは、得られた吸水剤の吸水後の形状保持性に優れるという点で、フラッフパルプ、熱融着性複合繊維及びこれらの混合繊維である。 Among these fibrous materials, preferred are cellulose-based natural fibers, polypropylene-based fibers, polyethylene-based fibers, polyester-based fibers, heat-fusible conjugate fibers, and mixed fibers thereof, and more preferable are obtained. The fluff pulp, the heat-fusible conjugate fiber, and the mixed fiber thereof are preferable in that the water-absorbing agent has excellent shape retention after water absorption.
 上記繊維状物の長さ、太さについては特に限定されず、長さは1~200mm、太さは0.1~100デニールの範囲であれば好適に使用することができる。形状についても繊維状であれば特に限定されず、細い円筒状、スプリットヤーン状、ステープル状、フィラメント状及びウェブ状等が例示される。 The length and thickness of the fibrous material are not particularly limited and can be suitably used as long as the length is 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier. The shape is not particularly limited as long as it is fibrous, and examples thereof include a thin cylindrical shape, a split yarn shape, a staple shape, a filament shape, and a web shape.
 前記の吸水性樹脂粒子と繊維状物とを含有してなる吸収体の場合、吸水性樹脂粒子と繊維状物の重量比率(吸水性樹脂粒子の重量/繊維状物の重量)は40/60~90/10が好ましく、更に好ましくは70/30~80/20である。 In the case of the absorbent body containing the water absorbent resin particles and the fibrous material, the weight ratio of the water absorbent resin particles to the fibrous material (weight of the water absorbent resin particles / weight of the fibrous material) is 40/60. Is preferably 90/10, more preferably 70 / 30-80 / 20.
 本発明の吸収体は、前記の吸水性樹脂粒子を含有してなる。本発明の吸収体は、吸水性樹脂粒子を単独で含有してなる吸収体であってもよく、あるいは吸水性樹脂粒子と繊維状物とを含有してなる吸収体であってもよい。本発明の吸収体は、吸収性物品として用いることができる。吸収性物品としては、紙おむつや生理用ナプキン等の衛生用品のみならず、各種水性液体の吸収や保持剤用途、ゲル化剤用途等の各種用途(例えば、ペット尿吸収剤、携帯トイレの尿ゲル化剤、青果物の鮮度保持剤、肉類や魚介類のドリップ吸収剤、保冷剤、使い捨てカイロ、電池用ゲル化剤、植物や土壌の保水剤、結露防止剤、止水材、パッキン材、人工雪など)に使用されるものとして適用可能である。吸収性物品の製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等に記載のもの)と同様である。 The absorber of the present invention contains the water-absorbing resin particles described above. The absorber of the present invention may be an absorber containing water-absorbing resin particles alone, or may be an absorber containing water-absorbing resin particles and a fibrous material. The absorbent body of the present invention can be used as an absorbent article. Absorbent articles include not only sanitary articles such as disposable diapers and sanitary napkins, but also various uses such as absorption and retention of various aqueous liquids, gelling agents (eg, pet urine absorbent, urine gel for portable toilets) Fresheners for fruits and vegetables, drip absorbent for meat and seafood, cold insulation, disposable warmers, gelling agents for batteries, water retention agents for plants and soil, anti-condensation agents, water-stopping materials, packing materials, artificial snow Etc.). The manufacturing method and the like of the absorbent article are the same as known ones (described in JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.).
 以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
<実施例1>
 アクリル酸(三菱化学株式会社製、純度100%、以下同様である)135部、ペンタエリスリトールトリアリルエーテル(ダイソ-株式会社製、以下同様である)0.68部、亜硫酸水素ナトリウム(和光純薬株式会社製、純度66%、以下同様である)0.02部及び脱イオン水363部を撹拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.5部、2%アスコルビン酸水溶液1部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液0.3部を添加・混合して重合を開始させた。混合物の温度が80℃に達した後、80±2℃で約5時間重合することにより含水ゲル(1)を得た。
<Example 1>
Acrylic acid (manufactured by Mitsubishi Chemical Corporation, purity 100%, the same shall apply hereinafter) 135 parts, pentaerythritol triallyl ether (manufactured by Daiso Corporation, the same shall apply hereinafter) 0.68 parts, sodium bisulfite (Wako Pure Chemical Industries, Ltd.) 0.02 part (manufactured by Co., Ltd., the same applies hereinafter) and 363 parts deionized water were kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.5 part of 1% aqueous hydrogen peroxide solution, 1 part of 2% aqueous ascorbic acid solution and 2% 2,2′-azobisamidinopropane Polymerization was initiated by adding and mixing 0.3 parts of a dihydrochloride aqueous solution. After the temperature of the mixture reached 80 ° C., polymerization was carried out at 80 ± 2 ° C. for about 5 hours to obtain a hydrogel (1).
 次に得られた含水ゲル(1)全量をミンチ機(ROYAL社製12VR-400K)で細断しながら、30%水酸化ナトリウム水溶液180部を添加して混合・中和し、細断ゲルを得た。さらに細断ゲルを通気型バンド乾燥機(140℃、風速2m/秒)で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、水分量が6%の樹脂粒子(B1)を得た。 Next, while chopping the entire amount of the obtained hydrogel (1) with a mincing machine (12VR-400K manufactured by ROYAL), adding and mixing and neutralizing 180 parts of a 30% aqueous sodium hydroxide solution, Obtained. Further, the chopped gel was dried with a ventilation band dryer (140 ° C., wind speed 2 m / sec) to obtain a dried product. The dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster Co., Ltd.) and sieved to adjust the particle size to a particle size range of 710 to 150 μm to obtain resin particles (B1) having a moisture content of 6%. .
 得られた樹脂粒子(B1)100部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらエチレングリコールジグリシジルエーテル(ナガセ化成工業社製、デナコールEX-810)の2%水溶液4部をスプレー噴霧しながら加えて混合し、循風乾燥機(タバイエスペック株式会社社製)内に140℃で30分間静置して表面架橋を行い、本発明の吸水性樹脂粒子(1)を得た。 2 parts aqueous solution of ethylene glycol diglycidyl ether (manufactured by Nagase Kasei Kogyo Co., Ltd., Denacol EX-810) while stirring 100 parts of the obtained resin particles (B1) at a high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm) 4 parts are added while being sprayed and mixed, and the mixture is allowed to stand at 140 ° C. for 30 minutes in an air circulation dryer (manufactured by Tabai Espec Co., Ltd.) for surface cross-linking so that the water-absorbent resin particles (1) of the present invention Got.
<実施例2>
 「ペンタエリスリトールトリアリルエーテル0.68部」を「ペンタエリスリトール0.2部」に変更し、「亜硫酸水素ナトリウム0.02部」を「リン酸(関東化学株式会社製、純度85%、以下同様である)1.9部」に変更し、「水分量が6%」を「水分量が8%」に変更し、「エチレングリコールジグリシジルエーテルの2%水溶液4部」を「エチレングリコールジグリシジルエーテルの3%水溶液6.6部」に変更したこと以外は実施例1と同様にして、本発明の吸水性樹脂粒子(2)を得た。
<Example 2>
“Pentaerythritol triallyl ether 0.68 part” was changed to “Pentaerythritol 0.2 part” and “Sodium hydrogen sulfite 0.02 part” was changed to “Phosphoric acid (manufactured by Kanto Chemical Co., Inc., purity 85%, and so on) ”1.9 parts”, “water content 6%” is changed to “water content 8%”, and “ethylene glycol diglycidyl ether 4% 2% aqueous solution” is changed to “ethylene glycol diglycidyl”. The water-absorbent resin particles (2) of the present invention were obtained in the same manner as in Example 1 except for changing to "6.6 parts of a 3% aqueous solution of ether".
<実施例3>
 「ペンタエリスリトールトリアリルエーテル0.68部」を「ペンタエリスリトールトリアリルエーテル0.82部」に変更し、「亜硫酸水素ナトリウム0.02部」を「亜硫酸水素ナトリウム0.008部」に変更し、「水分量が6%」を「水分量が4%」に変更し、「エチレングリコールジグリシジルエーテルの2%水溶液4部」を「エチレングリコールジグリシジルエーテルの1%水溶液5部」に変更したこと以外は実施例1と同様にして、本発明の吸水性樹脂粒子(3)を得た。
<Example 3>
“Pentaerythritol triallyl ether 0.68 parts” was changed to “Pentaerythritol triallyl ether 0.82 parts”, “Sodium hydrogen sulfite 0.02 parts” was changed to “Sodium hydrogen sulfite 0.008 parts”, “Moisture amount 6%” was changed to “Moisture amount 4%” and “2 parts aqueous solution of ethylene glycol diglycidyl ether 4 parts” was changed to “5 parts 1% aqueous solution of ethylene glycol diglycidyl ether” Except for the above, water-absorbent resin particles (3) of the present invention were obtained in the same manner as Example 1.
<実施例4>
 「ペンタエリスリトールトリアリルエーテル0.68部」を「ペンタエリスリトールトリアリルエーテル0.14部」に変更し、「リン酸1.9部」を「リン酸3.8部」に変更し、「水分量が6%」を「水分量が3%」に変更し、「エチレングリコールジグリシジルエーテルの2%水溶液4部」を「エチレングリコールジグリシジルエーテルの4%水溶液7.4部」に変更したこと以外は実施例2と同様にして、本発明の吸水性樹脂粒子(4)を得た。
<Example 4>
“Pentaerythritol triallyl ether 0.68 parts” was changed to “pentaerythritol triallyl ether 0.14 parts”, “1.9 parts phosphoric acid” was changed to “3.8 parts phosphoric acid”, “ “6%” was changed to “3% moisture” and “4 parts 2% aqueous solution of ethylene glycol diglycidyl ether” was changed to “7.4 parts 4% aqueous solution of ethylene glycol diglycidyl ether”. Except for the above, water-absorbent resin particles (4) of the present invention were obtained in the same manner as Example 2.
<実施例5>
 「ペンタエリスリトールトリアリルエーテル0.68部」を「ペンタエリスリトール0.95部」に変更し、「亜硫酸水素ナトリウム0.02部」を添加していないこと以外は実施例1と同様にして、含水ゲル(2)を得た。
<Example 5>
In the same manner as in Example 1 except that “pentaerythritol triallyl ether 0.68 part” was changed to “pentaerythritol 0.95 part” and “sodium bisulfite 0.02 part” was not added. Gel (2) was obtained.
 次にこの含水ゲル(2)をミンチ機(ROYAL社製12VR-400K)で細断しながら、30%水酸化ナトリウム水溶液180部を添加して混合・中和し、続いてフルオロリン酸(Sigma-Aldrich社製、純度70%、以下同様である)1%水溶液1.9部を添加して混合し、細断ゲルを得た。さらに細断ゲルを通気型バンド乾燥機(140℃、風速2m/秒)で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、水分量が6%の樹脂粒子(B2)を得た。 Next, the water-containing gel (2) is shredded with a mincing machine (12VR-400K manufactured by ROYAL), mixed and neutralized by adding 180 parts of a 30% aqueous sodium hydroxide solution, followed by fluorophosphoric acid (Sigma) -1.9 parts of 1% aqueous solution (Aldrich, 70% purity, the same applies hereinafter) was added and mixed to obtain a chopped gel. Further, the chopped gel was dried with a ventilation band dryer (140 ° C., wind speed 2 m / sec) to obtain a dried product. The dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster) and then sieved to adjust the particle size to a particle size range of 710 to 150 μm to obtain resin particles (B2) having a moisture content of 6%. .
 得られた樹脂粒子(B2)100部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらポリグリセロールポリグリシジルエーテル(ナガセ化成工業社、デナコールEX-512)の0.7%水溶液4.3部をスプレー噴霧しながら加えて混合し、循風乾燥機(タバイエスペック株式会社社製)内に140℃で30分間静置して表面架橋を行い、本発明の吸水性樹脂粒子(5)を得た。 0.7% of polyglycerol polyglycidyl ether (Nagase Kasei Kogyo Co., Ltd., Denacol EX-512) while 100 parts of the obtained resin particles (B2) were stirred at a high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm). 4.3 parts of the aqueous solution was added while being sprayed and mixed, and the mixture was allowed to stand at 140 ° C. for 30 minutes in a circulating air dryer (manufactured by Tabai Espec Co., Ltd.) for surface cross-linking, and the water-absorbent resin particles of the present invention (5) was obtained.
<実施例6>
 「ペンタエリスリトールトリアリルエーテル0.95部」を「ペンタエリスリトールトリアリルエーテル0.068部」に変更し、「フルオロリン酸(Sigma-Aldrich社製、純度70%、以下同様である)1%水溶液1.9部」を「ケイ酸(Sigma-Aldrich社製、以下同様である)1%水溶液1.3部」に変更し、「ポリグリセロールポリグリシジルエーテルの0.7%水溶液4.3部」を「ポリグリセロールポリグリシジルエーテルの5.5%水溶液9.1部」に変更したこと以外は実施例5と同様にして、本発明の吸水性樹脂粒子(6)を得た。
<Example 6>
“0.95 parts of pentaerythritol triallyl ether” was changed to “0.068 parts of pentaerythritol triallyl ether” and “1% aqueous solution of fluorophosphoric acid (manufactured by Sigma-Aldrich, purity 70%, the same shall apply hereinafter) "1.9 parts" was changed to "1.3 parts of 1% aqueous solution of silicic acid (manufactured by Sigma-Aldrich, the same shall apply hereinafter)" and "4.3 parts of 0.7% aqueous solution of polyglycerol polyglycidyl ether" Was changed to “9.1 parts of a 5.5% aqueous solution of polyglycerol polyglycidyl ether” in the same manner as in Example 5 to obtain water absorbent resin particles (6) of the present invention.
<実施例7>
 「ペンタエリスリトールトリアリルエーテル0.68部」を「ペンタエリスリトールトリアリルエーテル0.4部」に変更し、「亜硫酸水素ナトリウム0.02部」を「リン酸二水素ナトリウム二水和物(東北化学工業株式会社製、以下同様である)0.088部」に変更し、「水分量が6%」を「水分量が7%」に変更し、「エチレングリコールジグリシジルエーテルの2%水溶液4部」を「エチレングリコールジグリシジルエーテルの2.5%水溶液5.6部」に変更したこと以外は実施例1と同様にして、本発明の吸水性樹脂粒子(7)を得た。
<Example 7>
“Pentaerythritol triallyl ether 0.68 parts” was changed to “pentaerythritol triallyl ether 0.4 parts” and “sodium hydrogen sulfite 0.02 parts” was changed to “sodium dihydrogen phosphate dihydrate (Tohoku Chemical) Changed to "0.088 parts" manufactured by Kogyo Co., Ltd., and "Moisture amount 6%" was changed to "Moisture amount 7%". "Ethylene glycol diglycidyl ether 2% aqueous solution 4 parts Was changed to “5.6 parts of a 2.5% aqueous solution of ethylene glycol diglycidyl ether” in the same manner as in Example 1 to obtain water absorbent resin particles (7) of the present invention.
<実施例8>
 「亜硫酸水素ナトリウム0.08部」を「亜硫酸水素ナトリウム0.05部」に変更したこと以外は実施例3と同様にして、本発明の吸水性樹脂粒子(8)を得た。
<Example 8>
Water-absorbent resin particles (8) of the present invention were obtained in the same manner as in Example 3 except that "sodium bisulfite 0.08 part" was changed to "sodium hydrogen sulfite 0.05 part".
<実施例9>
 「リン酸3.8部」を「リン酸4.0部」に変更したこと以外は実施例3と同様にして、本発明の吸水性樹脂粒子(9)を得た。
<Example 9>
Water-absorbing resin particles (9) of the present invention were obtained in the same manner as in Example 3 except that “3.8 parts of phosphoric acid” was changed to “4.0 parts of phosphoric acid”.
<比較例1>
 「亜硫酸水素ナトリウム0.02部」を添加していないこと以外は実施例1と同様にして、樹脂粒子(B3)を得た。
<Comparative Example 1>
Resin particles (B3) were obtained in the same manner as in Example 1 except that 0.02 part of sodium hydrogen sulfite was not added.
 得られた樹脂粒子(B3)100部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらリン酸(c1)(リン酸、関東化学株式会社製、純度85%)の1%水溶液1.2部をスプレー噴霧しながら加えて混合し、続いてエチレングリコールジグリシジルエーテル(ナガセ化成工業社製、デナコールEX-810)の2%水溶液4部をスプレー噴霧しながら加えて混合し、循風乾燥機(タバイエスペック株式会社社製)内に140℃で30分間静置して表面架橋を行い、比較用の吸水性樹脂粒子(1)を得た。 1 part of phosphoric acid (c1) (phosphoric acid, manufactured by Kanto Chemical Co., Inc., purity 85%) while stirring 100 parts of the obtained resin particles (B3) at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm) Add 1.2 parts of a 2% aqueous solution while spraying and mix, and then add and mix 4 parts of a 2% aqueous solution of ethylene glycol diglycidyl ether (Nagase Chemical Industries, Denacol EX-810) while spraying. Then, it was allowed to stand at 140 ° C. for 30 minutes in a circulating air dryer (manufactured by Tabai Espec Co., Ltd.) for surface crosslinking to obtain comparative water-absorbent resin particles (1).
<比較例2>
 比較例1と同様にして得られた樹脂粒子(B3)100部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながら、ナトリウムミョウバン(昭和化学株式会社製)2%含むエチレングリコールジグリシジルエーテル(ナガセ化成工業社製、デナコールEX-810)の2%水溶液5部をスプレー噴霧しながら加えて混合し、循風乾燥機(タバイエスペック株式会社社製)内に140℃で30分間静置して表面架橋を行い、比較用の吸水性樹脂粒子(2)を得た。
<Comparative Example 2>
Ethylene containing 2% of sodium alum (manufactured by Showa Chemical Co., Ltd.) with 100 parts of the resin particles (B3) obtained in the same manner as in Comparative Example 1 while stirring at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm) 5 parts of a 2% aqueous solution of glycol diglycidyl ether (Nagase Kasei Kogyo Co., Ltd., Denacol EX-810) was added while being sprayed and mixed, and the mixture was mixed at 140 ° C. in a circulating air dryer (manufactured by Tabai Espec Co., Ltd.) for 30 minutes. The mixture was allowed to stand still for surface crosslinking to obtain comparative water absorbent resin particles (2).
<比較例3>
 「ペンタエリスリトールトリアリルエーテル0.68部」を「ペンタエリスリトールトリアリルエーテル0.068部」に変更し、「エチレングリコールジグリシジルエーテルの2%水溶液4部」を「エチレングリコールジグリシジルエーテルの4%水溶液0.75部」に変更した以外は比較例1と同様にして、比較用の吸水性樹脂粒子(3)を得た。
<Comparative Example 3>
“Pentaerythritol triallyl ether 0.68 parts” was changed to “pentaerythritol triallyl ether 0.068 parts” and “2 parts aqueous solution of ethylene glycol diglycidyl ether 4 parts” changed to “ethylene glycol diglycidyl ether 4% Comparative water-absorbent resin particles (3) were obtained in the same manner as in Comparative Example 1 except that the amount was changed to “0.75 part of aqueous solution”.
<実施例10>
 アクリル酸(三菱化学株式会社製、純度100%、以下同様である)135部、ペンタエリスリトールトリアリルエーテル(ダイソ-株式会社製、以下同様である)0.68部、リン酸(関東化学株式会社製、純度85%、以下同様である)0.016部及び脱イオン水363部を撹拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.5部、2%アスコルビン酸水溶液1部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液0.3部を添加・混合して重合を開始させた。混合物の温度が80℃に達した後、80±2℃で約5時間重合することにより含水ゲル(3)を得た。
<Example 10>
Acrylic acid (manufactured by Mitsubishi Chemical Corporation, purity 100%, the same shall apply hereinafter) 135 parts, pentaerythritol triallyl ether (manufactured by Daiso Corporation, the same shall apply hereinafter) 0.68 parts, phosphoric acid (Kanto Chemical Co., Ltd.) Manufactured, purity 85%, the same applies hereinafter) 0.016 part and 363 parts deionized water were kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.5 part of 1% aqueous hydrogen peroxide solution, 1 part of 2% aqueous ascorbic acid solution and 2% 2,2′-azobisamidinopropane Polymerization was initiated by adding and mixing 0.3 parts of a dihydrochloride aqueous solution. After the temperature of the mixture reached 80 ° C., polymerization was carried out at 80 ± 2 ° C. for about 5 hours to obtain a hydrogel (3).
 次に得られた含水ゲル(3)全量をミンチ機(ROYAL社製12VR-400K)で細断しながら、30%水酸化ナトリウム水溶液180部を添加して混合・中和し、細断ゲルを得た。さらに細断ゲルを通気型バンド乾燥機(140℃、風速2m/秒)で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、樹脂粒子(B4)を得た。 Next, while shredding the entire amount of the obtained hydrogel (3) with a mincing machine (12VR-400K, manufactured by ROYAL), adding and mixing and neutralizing 180 parts of a 30% aqueous sodium hydroxide solution, Obtained. Further, the chopped gel was dried with a ventilation band dryer (140 ° C., wind speed 2 m / sec) to obtain a dried product. The dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster) and then sieved to adjust the particle size to a particle size range of 710 to 150 μm to obtain resin particles (B4).
 得られた樹脂粒子(B4)100部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらエチレングリコールジグリシジルエーテル(ナガセ化成工業社製、デナコールEX-810)の2%水溶液4部をスプレー噴霧しながら加えて混合し、循風乾燥機(タバイエスペック株式会社社製)内に140℃で30分間静置して表面架橋を行い、本発明の吸水性樹脂粒子(10)を得た。 2 parts aqueous solution of ethylene glycol diglycidyl ether (manufactured by Nagase Kasei Kogyo Co., Ltd., Denacol EX-810) while stirring 100 parts of the obtained resin particles (B4) at a high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm) 4 parts are added while being sprayed and mixed, and the mixture is allowed to stand at 140 ° C. for 30 minutes in an air circulation dryer (manufactured by Tabai Espec Co., Ltd.) for surface cross-linking to obtain the water absorbent resin particles (10) of the present invention. Got.
<実施例11>
 「ペンタエリスリトールトリアリルエーテル0.68部」をから「ペンタエリスリトール0.2部」に変更し、「リン酸(関東化学株式会社製、純度85%0.016部」を「リン酸二水素ナトリウム二水和物(東北化学工業株式会社製、以下同様である)2.1部」に変更し、「エチレングリコールジグリシジルエーテルの2%水溶液4部」を「エチレングリコールジグリシジルエーテルの3%水溶液6.6部」に変更したこと以外は実施例10と同様にして、本発明の吸水性樹脂粒子(11)を得た。
<Example 11>
“Pentaerythritol triallyl ether 0.68 part” is changed to “Pentaerythritol 0.2 part” and “Phosphoric acid (manufactured by Kanto Chemical Co., Inc., purity 85% 0.016 part)” is changed to “Sodium dihydrogen phosphate” "Dihydrate (manufactured by Tohoku Chemical Co., Ltd., the same shall apply hereinafter)" is changed to 2.1 parts ". Except having changed to "6.6 parts", it carried out similarly to Example 10, and obtained the water absorbing resin particle (11) of this invention.
<実施例12>
 「ペンタエリスリトールトリアリルエーテル0.68部」をから「ペンタエリスリトールトリアリルエーテル0.82部」に変更し、「リン酸0.016部」を「リン酸0.013部」に変更し、「エチレングリコールジグリシジルエーテルの2%水溶液4部」を「エチレングリコールジグリシジルエーテルの1%水溶液5部」に変更したこと以外は実施例10と同様にして、本発明の吸水性樹脂粒子(12)を得た。
<Example 12>
“Pentaerythritol triallyl ether 0.68 parts” was changed from “pentaerythritol triallyl ether 0.82 parts”, “0.016 parts phosphoric acid” to “0.013 parts phosphoric acid”, “ The water-absorbent resin particles (12) of the present invention were the same as in Example 10 except that “4 parts of 2% aqueous solution of ethylene glycol diglycidyl ether” was changed to “5 parts of 1% aqueous solution of ethylene glycol diglycidyl ether”. Got.
<実施例13>
 「ペンタエリスリトールトリアリルエーテル0.2部」を「ペンタエリスリトールトリアリルエーテル0.14部」に変更し、「リン酸二水素ナトリウム二水和物2.1部」を「リン酸二水素ナトリウム二水和物2.5部」に変更し、「エチレングリコールジグリシジルエーテルの3%水溶液6.6部」を「エチレングリコールジグリシジルエーテルの4%水溶液7.4部」に変更したこと以外は実施例11と同様にして、本発明の吸水性樹脂粒子(13)を得た。
<Example 13>
“Pentaerythritol triallyl ether 0.2 part” was changed to “pentaerythritol triallyl ether 0.14 part” and “sodium dihydrogen phosphate dihydrate 2.1 parts” changed to “sodium dihydrogen phosphate 2 parts”. Except for changing to "2.5 parts hydrate" and changing "6.6 parts of 3% aqueous solution of ethylene glycol diglycidyl ether" to "7.4 parts of 4% aqueous solution of ethylene glycol diglycidyl ether" In the same manner as in Example 11, water absorbent resin particles (13) of the present invention were obtained.
<実施例14>
 「ペンタエリスリトールトリアリルエーテル0.68部」を「ペンタエリスリトール0.95部」に変更し、「リン酸0.016部」を添加していないこと以外は実施例10と同様にして、含水ゲル(4)を得た。
<Example 14>
Hydrous gel in the same manner as in Example 10 except that "pentaerythritol triallyl ether 0.68 part" was changed to "pentaerythritol 0.95 part" and "phosphoric acid 0.016 part" was not added. (4) was obtained.
 次にこの含水ゲル(4)をミンチ機(ROYAL社製12VR-400K)で細断しながら、30%水酸化ナトリウム水溶液180部を添加して混合・中和し、続いてリン酸の1%水溶液1.6部添加して混合し、細断ゲルを得た。さらに細断ゲルを通気型バンド乾燥機(140℃、風速2m/秒)で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、樹脂粒子(B5)を得た。 Next, this hydrogel (4) is shredded with a mincing machine (12 VR-400K manufactured by ROYAL), mixed and neutralized by adding 180 parts of 30% aqueous sodium hydroxide, followed by 1% of phosphoric acid. 1.6 parts of an aqueous solution was added and mixed to obtain a chopped gel. Further, the chopped gel was dried with a ventilation band dryer (140 ° C., wind speed 2 m / sec) to obtain a dried product. The dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), and then sieved to adjust the particle size to a particle size range of 710 to 150 μm to obtain resin particles (B5).
 得られた樹脂粒子(B5)100部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらポリグリセロールポリグリシジルエーテル(ナガセ化成工業社、デナコールEX-512)の0.7%水溶液4.3部をスプレー噴霧しながら加えて混合し、循風乾燥機(タバイエスペック株式会社社製)内に140℃で30分間静置して表面架橋を行い、本発明の吸水性樹脂粒子(14)を得た。 0.7% of polyglycerol polyglycidyl ether (Nagase Kasei Kogyo Co., Ltd., Denacol EX-512) while stirring 100 parts of the obtained resin particles (B5) at a high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm). 4.3 parts of the aqueous solution was added while being sprayed and mixed, and the mixture was allowed to stand at 140 ° C. for 30 minutes in a circulating air dryer (manufactured by Tabai Espec Co., Ltd.) for surface cross-linking, and the water-absorbent resin particles of the present invention (14) was obtained.
<実施例15>
 「ペンタエリスリトールトリアリルエーテル0.95部」を「ペンタエリスリトールトリアリルエーテル0.068部」に変更し、「ポリグリセロールポリグリシジルエーテルの0.7%水溶液4.3部」を「ポリグリセロールポリグリシジルエーテルの5.5%水溶液9.1部」に変更したこと以外は実施例14と同様にして、本発明の吸水性樹脂粒子(15)を得た。
<Example 15>
“Pentaerythritol triallyl ether 0.95 part” was changed to “pentaerythritol triallyl ether 0.068 part” and “0.7% aqueous solution of polyglycerol polyglycidyl ether 4.3 parts” changed to “polyglycerol polyglycidyl A water absorbent resin particle (15) of the present invention was obtained in the same manner as in Example 14 except that it was changed to 9.1 parts of a 5.5% aqueous solution of ether.
<実施例16>
 「ペンタエリスリトールトリアリルエーテル0.2部」を「ペンタエリスリトールトリアリルエーテル0.4部」に変更し、「リン酸二水素ナトリウム二水和物2.1部」を「リン酸二水素ナトリウム二水和物0.88部」に変更し、「エチレングリコールジグリシジルエーテルの3%水溶液6.6部」を「エチレングリコールジグリシジルエーテルの2.5%水溶液5.6部」に変更したこと以外は実施例11と同様にして、本発明の吸水性樹脂粒子(16)を得た。
<Example 16>
“Pentaerythritol triallyl ether 0.2 part” was changed to “pentaerythritol triallyl ether 0.4 part” and “sodium dihydrogen phosphate dihydrate 2.1 parts” changed to “sodium dihydrogen phosphate 2 parts”. Except that it was changed to “0.88 parts of hydrate” and “6.6 parts of 3% aqueous solution of ethylene glycol diglycidyl ether” was changed to “5.6 parts of 2.5% aqueous solution of ethylene glycol diglycidyl ether”. Were the same as in Example 11 to obtain water-absorbent resin particles (16) of the present invention.
<比較例4>
 「リン酸0.016部」を添加していないこと以外は実施例10と同様にして、樹脂粒子(B6)を得た。
<Comparative Example 4>
Resin particles (B6) were obtained in the same manner as in Example 10 except that 0.016 part of phosphoric acid was not added.
 得られた樹脂粒子(B6)100部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらリン酸(c1)(リン酸、関東化学株式会社製、純度85%)の1%水溶液1.2部をスプレー噴霧しながら加えて混合し、続いてエチレングリコールジグリシジルエーテル(ナガセ化成工業社製、デナコールEX-810)の2%水溶液4部をスプレー噴霧しながら加えて混合し、循風乾燥機(タバイエスペック株式会社社製)内に140℃で30分間静置して表面架橋を行い、比較用の吸水性樹脂粒子(4)を得た。 1 part of phosphoric acid (c1) (phosphoric acid, manufactured by Kanto Chemical Co., Inc., purity: 85%) while stirring 100 parts of the obtained resin particles (B6) at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm) Add 1.2 parts of a 2% aqueous solution while spraying and mix, and then add and mix 4 parts of a 2% aqueous solution of ethylene glycol diglycidyl ether (Nagase Chemical Industries, Denacol EX-810) while spraying. Then, it was allowed to stand at 140 ° C. for 30 minutes in an air circulation dryer (manufactured by Tabai Espec Co., Ltd.) for surface crosslinking to obtain comparative water-absorbent resin particles (4).
<比較例5>
 比較例4と同様にして得られた樹脂粒子(B6)100部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながら、ナトリウムミョウバン(昭和化学株式会社製)2%含むエチレングリコールジグリシジルエーテル(ナガセ化成工業社製、デナコールEX-810)の2%水溶液5部をスプレー噴霧しながら加えて混合し、循風乾燥機(タバイエスペック株式会社社製)内に140℃で30分間静置して表面架橋を行い、比較用の吸水性樹脂粒子(5)を得た。
<Comparative Example 5>
Ethylene containing 2% of sodium alum (manufactured by Showa Chemical Co., Ltd.) while stirring 100 parts of the resin particles (B6) obtained in the same manner as in Comparative Example 4 at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm) 5 parts of a 2% aqueous solution of glycol diglycidyl ether (Nagase Kasei Kogyo Co., Ltd., Denacol EX-810) was added while being sprayed and mixed, and the mixture was mixed at 140 ° C. in a circulating air dryer (manufactured by Tabai Espec Co., Ltd.) for 30 minutes. The mixture was allowed to stand still for surface crosslinking to obtain comparative water absorbent resin particles (5).
 実施例1~16及び比較例1~5で得たそれぞれの吸水性樹脂粒子について、生理食塩水の遠心保持容量(CRC)、0psi膨潤圧力でのゲルベッド透過率[GBP(0psi膨潤圧力)]、DW試験法で測定された無荷重下での吸収速度[吸収速度(T1)]、Vortex試験法で測定された吸収速度[吸収速度(Vortex)]を以下の方法で測定し、表1、2に記載した。また、実施例1~9、比較例1~3で得たそれぞれの吸水性樹脂粒子について、水可溶分量を上述の方法で測定し、表1に記載した。 For each water-absorbent resin particle obtained in Examples 1 to 16 and Comparative Examples 1 to 5, the physiological saline centrifugal retention capacity (CRC), gel bed permeability at 0 psi swelling pressure [GBP (0 psi swelling pressure)], The absorption rate under the no load [absorption rate (T1)] measured by the DW test method and the absorption rate [absorption rate (Vortex)] measured by the Vortex test method were measured by the following methods. It was described in. The water-soluble resin particles obtained in Examples 1 to 9 and Comparative Examples 1 to 3 were measured for water-soluble content by the method described above and are shown in Table 1.
<生理食塩水の遠心保持容量>
 実施例1~16及び比較例1~5で得た吸水性樹脂粒子0.200gを用いて、上述の方法で測定した。この値が高いほど吸水性樹脂の吸水性能が高いことを意味する。
<Centrifuged retention capacity of physiological saline>
Using 0.200 g of the water-absorbing resin particles obtained in Examples 1 to 16 and Comparative Examples 1 to 5, the measurement was performed by the method described above. The higher this value, the higher the water absorption performance of the water absorbent resin.
<0psiでの膨潤圧力でのゲルベッド透過率試験>
 実施例1~16及び比較例1~5で得た吸水性樹脂粒子を用いて、上述の方法で測定した。この値が高いほど吸収体の吸収速度と膨潤ゲル間の通液性に優れることを意味する。
<Gel bed permeability test at swelling pressure at 0 psi>
Using the water-absorbent resin particles obtained in Examples 1 to 16 and Comparative Examples 1 to 5, measurement was performed by the method described above. The higher this value, the better the absorption rate of the absorber and the liquid permeability between the swollen gels.
<DW試験で測定された無荷重下での吸収速度>
 実施例1~16及び比較例1~5で得たそれぞれの吸水性樹脂粒子0.50gと生理食塩水とを用いて、上述の方法で測定した。DW試験はビュレットと導管とに接続された測定台上で、無荷重下における吸水性樹脂の吸い上げ能力を判断するものである。
<Absorption rate under no load measured by DW test>
Measurement was performed by the above-described method using 0.50 g of each water-absorbent resin particle obtained in Examples 1 to 16 and Comparative Examples 1 to 5 and physiological saline. The DW test is to determine the ability to suck up the water-absorbent resin under no load on a measurement table connected to a burette and a conduit.
<Vortex試験で測定される吸収速度>
 実施例1~16及び比較例1~5で得たそれぞれの吸水性樹脂粒子を用いて、上述の方法で測定した。
<Absorption rate measured by Vortex test>
Using the water-absorbent resin particles obtained in Examples 1 to 16 and Comparative Examples 1 to 5, measurement was performed by the method described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表1、2から、本発明における吸水性樹脂粒子は、生理食塩水の遠心保持量が高く、0psi膨潤圧力でのゲルベッド透過率が40darcies以上であり、Demand Wettability試験法で測定された無荷重下での吸収速度が15秒以下であり、Vortex試験法で測定された吸収速度が50秒以下であった。そして、比較例の樹脂粒子に比べて、生理食塩水の遠心保持量(CRC)及びVortex試験の吸収速度において有意な差が無い場合であっても、膨潤ゲル間の通液性(GBP)において有意に優れていた。また、比較例3によれば、水可溶分量が、20%を超えると、通液性や吸水倍率に悪影響を与え、吸収性能が悪い。DW試験の吸収速度(この値が小さいほど、吸収性能に優れる)も高い性能であることを示していた。従って、吸収速度が速く、かつ、膨潤ゲル
間の通液性が非常に優れているにもかかわらず高い吸水性能も同時に有することが判った。
From Tables 1 and 2, the water-absorbent resin particles in the present invention have a high centrifugal retention amount of physiological saline, a gel bed permeability at 0 psi swelling pressure of 40 darcies or more, and under no load as measured by the Demand Wettability test method. The absorption rate was 15 seconds or less, and the absorption rate measured by the Vortex test method was 50 seconds or less. And even if there is no significant difference in the centrifugal retention amount (CRC) of physiological saline and the absorption rate of the Vortex test compared to the resin particles of the comparative example, in the liquid permeability (GBP) between the swollen gels. It was significantly better. Moreover, according to Comparative Example 3, when the water-soluble content exceeds 20%, the liquid permeability and the water absorption capacity are adversely affected and the absorption performance is poor. The absorption rate in the DW test (the smaller the value, the better the absorption performance) was shown to be high. Therefore, it was found that the absorption speed is high and the liquid permeability between the swollen gels is very excellent, but at the same time it has high water absorption performance.
 本発明の吸水性樹脂組成物は、膨潤したゲル間の通液性及び荷重下での吸収性能の両立が可能であり、かつ保管時のブロッキングや変色が起こりにくいという特長がある。以上の効果を奏することから、本発明の吸水性樹脂組成物は、各種の吸収体に適用することにより、吸収量が多く、逆戻り性や表面ドライ感に優れた吸収性物品に利用でき、衛生用品に好適に用いられる。 The water-absorbent resin composition of the present invention has the characteristics that it is possible to achieve both liquid permeability between swollen gels and absorption performance under load, and blocking and discoloration during storage are unlikely to occur. Because of the above effects, the water-absorbent resin composition of the present invention can be used for absorbent articles having a large absorption amount and excellent reversibility and surface dryness when applied to various absorbers. It is suitably used for articles.

Claims (26)

  1.  水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに内部架橋剤(b)を含む単量体組成物の架橋重合体(A)と、pKa4.5~10のプロトンを持つ無機酸(c)を含有し、水可溶分が20%以下である吸水性樹脂粒子。 A crosslinked polymer (A) of a monomer composition comprising a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis and an internal crosslinking agent (b); Water-absorbent resin particles containing an inorganic acid (c) having a proton of pKa 4.5 to 10 and having a water-soluble content of 20% or less.
  2.  無機酸(c)がリン酸、亜リン酸、タングストリン酸、ポリリン酸、トリリン酸、シクロリン酸、炭酸、亜硫酸、次亜塩素酸、ケイ酸およびそれらの塩からなる群から選ばれる少なくとも1種の無機酸である請求項1に記載の吸水性樹脂粒子。 The inorganic acid (c) is at least one selected from the group consisting of phosphoric acid, phosphorous acid, tungstophosphoric acid, polyphosphoric acid, triphosphoric acid, cyclophosphoric acid, carbonic acid, sulfurous acid, hypochlorous acid, silicic acid, and salts thereof The water-absorbent resin particle according to claim 1, which is an inorganic acid.
  3.  無機酸(c)がリン酸、亜リン酸、タングストリン酸、ポリリン酸、トリリン酸、およびそれらの塩からなる群から選ばれる少なくとも1種である請求項1または2に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to claim 1 or 2, wherein the inorganic acid (c) is at least one selected from the group consisting of phosphoric acid, phosphorous acid, tungstophosphoric acid, polyphosphoric acid, triphosphoric acid, and salts thereof. .
  4.  無機酸(c)の合計含有量が、水溶性ビニルモノマー(a1)、加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)及び内部架橋剤(b)の合計重量に基づいて、0.004~2.4重量%である請求項1~3のいずれかに記載の吸水性樹脂粒子。 The total content of the inorganic acid (c) is based on the total weight of the water-soluble vinyl monomer (a1), the vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis, and the internal crosslinking agent (b). The water-absorbent resin particle according to any one of claims 1 to 3, which is 0.004 to 2.4% by weight.
  5.  生理食塩水の遠心保持量が29~40g/gである請求項1~4のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 4, wherein the physiological saline has a centrifugal retention amount of 29 to 40 g / g.
  6.  0psi膨潤圧力でのゲルベッド透過率が40darcies以上である請求項1~5のいずれかに記載の吸水性樹脂粒子。 6. The water-absorbent resin particles according to claim 1, wherein the gel bed permeability at 0 psi swelling pressure is 40 darcies or more.
  7.  Demand Wettability試験法で測定された無荷重下での吸収速度が15秒以下である請求項1~6のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 6, wherein the absorption rate under no load as measured by the Demand Wettability test method is 15 seconds or less.
  8.  Vortex試験法で測定された吸収速度が50秒以下である請求項1~7のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 7, wherein the absorption rate measured by the Vortex test method is 50 seconds or less.
  9.  内部架橋剤(b)の重量割合が、水溶性ビニルモノマー(a1)、加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)及び内部架橋剤(b)の合計重量に基づいて、0.05~0.7重量%である請求項1~8のいずれかに記載の吸水性樹脂粒子。 Based on the total weight of the water-soluble vinyl monomer (a1), the vinyl monomer (a2) that becomes the water-soluble vinyl monomer (a1) by hydrolysis, and the internal crosslinking agent (b), The water-absorbent resin particle according to any one of claims 1 to 8, which is 0.05 to 0.7% by weight.
  10.  請求項1~9のいずれかに記載の吸水性樹脂粒子を含有してなる吸収体。 An absorbent comprising the water-absorbent resin particles according to any one of claims 1 to 9.
  11.  さらに繊維状物を含有してなる請求項10記載の吸収体。 The absorbent body according to claim 10, further comprising a fibrous material.
  12.  請求項10又は11に記載の吸収体を備えてなる吸収性物品。 An absorbent article comprising the absorber according to claim 10 or 11.
  13.  請求項1~9のいずれかに記載の樹脂粒子の製造方法であって、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに内部架橋剤(b)を含む単量体組成物の架橋重合体(A)とpKa4.5~10のプロトンを持つ無機酸(c)とを含有する樹脂粒子(B)を、その水分量3~8重量%で、表面架橋剤(d)で表面架橋する工程を有する吸水性樹脂粒子の製造方法。 The method for producing resin particles according to any one of claims 1 to 9, wherein the water-soluble vinyl monomer (a1) and / or the vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis and internal crosslinking Resin particles (B) containing a cross-linked polymer (A) of a monomer composition containing an agent (b) and an inorganic acid (c) having a proton of pKa 4.5 to 10 are mixed with a water content of 3 to 8 A method for producing water-absorbing resin particles having a step of surface cross-linking with a surface cross-linking agent (d) at a weight percent.
  14.  表面架橋剤(d)の重量割合が、水溶性ビニルモノマー(a1)、加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)及び内部架橋剤(b)の合計重量に基づいて、0.03~0.5重量%である請求項13に記載の吸水性樹脂粒子の製造方法。 Based on the total weight of the water-soluble vinyl monomer (a1), the vinyl monomer (a2) that becomes the water-soluble vinyl monomer (a1) by hydrolysis, and the internal crosslinking agent (b), the weight ratio of the surface cross-linking agent (d) The method for producing water-absorbent resin particles according to claim 13, wherein the content is 0.03 to 0.5% by weight.
  15.  内部架橋剤(b)の重量割合が、水溶性ビニルモノマー(a1)、加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)及び内部架橋剤(b)の合計重量に基づいて、0.05~0.7重量%である請求項13又は14に記載の吸水性樹脂粒子の製造方法。 Based on the total weight of the water-soluble vinyl monomer (a1), the vinyl monomer (a2) that becomes the water-soluble vinyl monomer (a1) by hydrolysis, and the internal crosslinking agent (b), The method for producing water-absorbent resin particles according to claim 13 or 14, wherein the content is 0.05 to 0.7% by weight.
  16.  生理食塩水の遠心保持量が29~40g/gであり、0psi膨潤圧力でのゲルベッド透過率が40darcies以上であり、Demand Wettability試験法で測定された無荷重下での吸収速度が15秒以下であり、Vortex試験法で測定された吸収速度が50秒以下である吸水性樹脂粒子の製造方法である請求項13~15のいずれかに記載の吸水性樹脂粒子の製造方法。 The physiological saline centrifugal retention is 29-40 g / g, the gel bed permeability at 0 psi swelling pressure is 40 darcies or more, and the absorption rate under no load measured by the Demand Wettability test method is 15 seconds or less. The method for producing water-absorbent resin particles according to any one of claims 13 to 15, which is a method for producing water-absorbent resin particles having an absorption rate measured by the Vortex test method of 50 seconds or less.
  17.  水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに内部架橋剤(b)を含む単量体組成物の架橋重合体(A)とリン酸(c1)及び/又はリン酸塩(c2)とを含有する樹脂粒子(B)の表面を、表面架橋剤(d)で表面架橋する工程を有する、吸水性樹脂粒子の製造方法。 Water-soluble vinyl monomer (a1) and / or cross-linked polymer (A) and phosphorus of monomer composition containing vinyl monomer (a2) which becomes water-soluble vinyl monomer (a1) by hydrolysis and internal cross-linking agent (b) A method for producing water-absorbing resin particles, comprising a step of surface-crosslinking the surfaces of resin particles (B) containing an acid (c1) and / or a phosphate (c2) with a surface-crosslinking agent (d).
  18.  表面架橋剤(d)が多価グリシジル化合物である請求項17に記載の吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to claim 17, wherein the surface cross-linking agent (d) is a polyvalent glycidyl compound.
  19.  リン酸(c1)及びリン酸塩(c2)の合計含有量が、水溶性ビニルモノマー(a1)、加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)及び内部架橋剤(b)の合計重量に基づいて、0.008~1.4重量%である請求項17又は18に記載の吸水性樹脂粒子の製造方法。 The total content of phosphoric acid (c1) and phosphate (c2) is a water-soluble vinyl monomer (a1), a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis, and an internal crosslinking agent (b) The method for producing water-absorbent resin particles according to claim 17 or 18, wherein the water-absorbent resin particle content is 0.008 to 1.4% by weight based on the total weight of the water.
  20.  表面架橋剤(d)の重量割合が、水溶性ビニルモノマー(a1)、加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)及び内部架橋剤(b)の合計重量に基づいて、0.03~0.5重量%である請求項17~19のいずれかに記載の吸水性樹脂粒子の製造方法。 Based on the total weight of the water-soluble vinyl monomer (a1), the vinyl monomer (a2) that becomes the water-soluble vinyl monomer (a1) by hydrolysis, and the internal crosslinking agent (b), the weight ratio of the surface cross-linking agent (d) The method for producing water-absorbent resin particles according to any one of claims 17 to 19, wherein the content is 0.03 to 0.5% by weight.
  21.  内部架橋剤(b)の重量割合が、水溶性ビニルモノマー(a1)、加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)及び内部架橋剤(b)の合計重量に基づいて、0.05~0.7重量%である請求項17~20のいずれかに記載の吸水性樹脂粒子の製造方法。 Based on the total weight of the water-soluble vinyl monomer (a1), the vinyl monomer (a2) that becomes the water-soluble vinyl monomer (a1) by hydrolysis, and the internal crosslinking agent (b), The method for producing water-absorbent resin particles according to any one of claims 17 to 20, wherein the content is 0.05 to 0.7% by weight.
  22.  水溶性ビニルモノマー(a1)が(メタ)アクリル酸である請求項17~21のいずれかに記載の吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to any one of claims 17 to 21, wherein the water-soluble vinyl monomer (a1) is (meth) acrylic acid.
  23.  生理食塩水の遠心保持量が29~40g/gであり、0psi膨潤圧力でのゲルベッド透過率が40darcies以上であり、Demand Wettability試験法で測定された無荷重下での吸収速度が15秒以下であり、Vortex試験法で測定された吸収速度が50秒以下である吸水性樹脂粒子の製造方法である請求項17~22のいずれかに記載の吸水性樹脂粒子の製造方法。 The physiological saline centrifugal retention is 29-40 g / g, the gel bed permeability at 0 psi swelling pressure is 40 darcies or more, and the absorption rate under no load measured by the Demand Wettability test method is 15 seconds or less. The method for producing water-absorbent resin particles according to any one of claims 17 to 22, which is a method for producing water-absorbent resin particles having an absorption rate measured by the Vortex test method of 50 seconds or less.
  24.  生理食塩水の遠心保持量が29~40g/gであり、0psi膨潤圧力でのゲルベッド透過率が40darcies以上であり、Demand Wettability試験法で測定された無荷重下での吸収速度が15秒以下であり、Vortex試験法で測定された吸収速度が50秒以下である請求項1~4のいずれかに記載の吸水性樹脂粒子、を含有してなる吸収体。 The physiological saline centrifugal retention is 29-40 g / g, the gel bed permeability at 0 psi swelling pressure is 40 darcies or more, and the absorption rate under no load measured by the Demand Wettability test method is 15 seconds or less. An absorbent comprising the water-absorbent resin particles according to any one of claims 1 to 4, wherein the absorption rate measured by the Vortex test method is 50 seconds or less.
  25.  さらに繊維状物を含有してなる請求項24記載の吸収体。 The absorbent body according to claim 24, further comprising a fibrous material.
  26.  請求項24又は25に記載の吸収体を備えてなる吸収性物品。 An absorbent article comprising the absorber according to claim 24 or 25.
PCT/JP2017/018819 2016-05-20 2017-05-19 Water-absorbing resin particles, process for producing same, and absorbent object and absorbent article both comprising or including same WO2017200085A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780027739.3A CN109071830A (en) 2016-05-20 2017-05-19 Water-absorbent besin particles, contain absorber and absorbent commodity made of the water-absorbent besin particles at its manufacturing method
JP2018518382A JPWO2017200085A1 (en) 2016-05-20 2017-05-19 Water-absorbent resin particles, method for producing the same, absorbent comprising the same and absorbent article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-101442 2016-05-20
JP2016101442 2016-05-20
JP2016199024 2016-10-07
JP2016-199024 2016-10-07

Publications (1)

Publication Number Publication Date
WO2017200085A1 true WO2017200085A1 (en) 2017-11-23

Family

ID=60325359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018819 WO2017200085A1 (en) 2016-05-20 2017-05-19 Water-absorbing resin particles, process for producing same, and absorbent object and absorbent article both comprising or including same

Country Status (3)

Country Link
JP (1) JPWO2017200085A1 (en)
CN (1) CN109071830A (en)
WO (1) WO2017200085A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135532A (en) * 2012-11-21 2018-08-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing surface-post-crosslinked water-absorbent polymer particles
JP2019141754A (en) * 2018-02-16 2019-08-29 Sdpグローバル株式会社 Water-absorbing resin particle, absorber and absorbing article using the same, and production method of water-absorbing resin particle
WO2019188669A1 (en) * 2018-03-29 2019-10-03 Sdpグローバル株式会社 Water absorbent resin particles and production method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215193B2 (en) * 2019-01-28 2023-01-31 セイコーエプソン株式会社 Liquid absorber and liquid ejector
CN113544169A (en) * 2019-03-08 2021-10-22 住友精化株式会社 Water-absorbent resin particles, method for producing same, absorbent body, absorbent article, and method for adjusting permeation rate
JP6959475B2 (en) * 2019-04-09 2021-11-02 株式会社日本触媒 Cement Additives, Cement Admixtures, Cement Compositions, Molds, and Methods for Strengthening Molds

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433158A (en) * 1987-07-29 1989-02-03 Nippon Synthetic Chem Ind Highly water-absorptive resin composition
JPH02196806A (en) * 1988-10-27 1990-08-03 Mitsui Toatsu Chem Inc Production of granular polymer
JPH03179008A (en) * 1989-12-08 1991-08-05 Nippon Shokubai Kagaku Kogyo Co Ltd Production of water-absorptive resin of excellent durability
JPH08508517A (en) * 1992-12-30 1996-09-10 ケミッシェ・ファブリク・ストックハウゼン・ゲーエムベーハー Powdery polymers capable of absorbing aqueous liquids and blood under load, a process for their production, and their use in textile construction for personal hygiene
JP2000230129A (en) * 1998-12-11 2000-08-22 Nippon Shokubai Co Ltd Water-absorbent composition
JP2003052742A (en) * 2001-08-09 2003-02-25 San-Dia Polymer Ltd Absorbent and absorptive structure using the same
JP2008535640A (en) * 2005-04-12 2008-09-04 株式会社日本触媒 Particulate water-absorbing agent comprising polyacrylic acid (salt) water-absorbing resin as a main component, method for producing the same, absorbent body and absorbent article using the particulate water-absorbing agent
WO2009005114A1 (en) * 2007-07-04 2009-01-08 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent and method for producing the same
WO2011040530A1 (en) * 2009-09-30 2011-04-07 株式会社日本触媒 Particulate water absorbent and method for producing same
JP2012143755A (en) * 2004-03-29 2012-08-02 Nippon Shokubai Co Ltd Particulate water absorbing agent with water absorbing resin as main component
WO2013002387A1 (en) * 2011-06-29 2013-01-03 株式会社日本触媒 Polyacrylic acid (salt) water-absorbent resin powder, and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654039A (en) * 1985-06-18 1987-03-31 The Proctor & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
JPS6321902A (en) * 1986-07-11 1988-01-29 株式会社日本触媒 Absorbable article
JP2001258934A (en) * 2000-03-17 2001-09-25 Sanyo Chem Ind Ltd Water absorbent, its manufacturing method, and absorptive article
JP4326752B2 (en) * 2001-06-08 2009-09-09 株式会社日本触媒 Method for producing water-absorbing agent
EP1714985A4 (en) * 2003-12-25 2009-12-23 Sumitomo Seika Chemicals Method for producing water-absorbing resin
WO2008055856A1 (en) * 2006-11-09 2008-05-15 Basf Se Process for producing superabsorbents
CN101765637B (en) * 2007-07-25 2014-06-25 住友精化株式会社 Method for production of water-absorbable resin, and water-absorbable resin produced by the method
JP5448699B2 (en) * 2008-10-14 2014-03-19 Sdpグローバル株式会社 Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article
WO2010057912A1 (en) * 2008-11-21 2010-05-27 Basf Se Method for producing permeable water-absorbing polymer particles through polymerization of drops of a monomer solution

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433158A (en) * 1987-07-29 1989-02-03 Nippon Synthetic Chem Ind Highly water-absorptive resin composition
JPH02196806A (en) * 1988-10-27 1990-08-03 Mitsui Toatsu Chem Inc Production of granular polymer
JPH03179008A (en) * 1989-12-08 1991-08-05 Nippon Shokubai Kagaku Kogyo Co Ltd Production of water-absorptive resin of excellent durability
JPH08508517A (en) * 1992-12-30 1996-09-10 ケミッシェ・ファブリク・ストックハウゼン・ゲーエムベーハー Powdery polymers capable of absorbing aqueous liquids and blood under load, a process for their production, and their use in textile construction for personal hygiene
JP2000230129A (en) * 1998-12-11 2000-08-22 Nippon Shokubai Co Ltd Water-absorbent composition
JP2003052742A (en) * 2001-08-09 2003-02-25 San-Dia Polymer Ltd Absorbent and absorptive structure using the same
JP2012143755A (en) * 2004-03-29 2012-08-02 Nippon Shokubai Co Ltd Particulate water absorbing agent with water absorbing resin as main component
JP2008535640A (en) * 2005-04-12 2008-09-04 株式会社日本触媒 Particulate water-absorbing agent comprising polyacrylic acid (salt) water-absorbing resin as a main component, method for producing the same, absorbent body and absorbent article using the particulate water-absorbing agent
WO2009005114A1 (en) * 2007-07-04 2009-01-08 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent and method for producing the same
WO2011040530A1 (en) * 2009-09-30 2011-04-07 株式会社日本触媒 Particulate water absorbent and method for producing same
WO2013002387A1 (en) * 2011-06-29 2013-01-03 株式会社日本触媒 Polyacrylic acid (salt) water-absorbent resin powder, and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135532A (en) * 2012-11-21 2018-08-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing surface-post-crosslinked water-absorbent polymer particles
JP2019141754A (en) * 2018-02-16 2019-08-29 Sdpグローバル株式会社 Water-absorbing resin particle, absorber and absorbing article using the same, and production method of water-absorbing resin particle
JP7108422B2 (en) 2018-02-16 2022-07-28 Sdpグローバル株式会社 Water-absorbing resin particles, absorbent body and absorbent article using the same, and method for producing water-absorbing resin particles
WO2019188669A1 (en) * 2018-03-29 2019-10-03 Sdpグローバル株式会社 Water absorbent resin particles and production method therefor
JPWO2019188669A1 (en) * 2018-03-29 2021-03-18 Sdpグローバル株式会社 Water-absorbent resin particles and their manufacturing method
JP7257090B2 (en) 2018-03-29 2023-04-13 Sdpグローバル株式会社 Water-absorbing resin particles and method for producing the same

Also Published As

Publication number Publication date
JPWO2017200085A1 (en) 2019-04-18
CN109071830A (en) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2017200085A1 (en) Water-absorbing resin particles, process for producing same, and absorbent object and absorbent article both comprising or including same
JP6093751B2 (en) Method for producing polyacrylic acid (salt) water absorbent resin powder and polyacrylic acid (salt) water absorbent resin powder
JP6151790B2 (en) Particulate water-absorbing agent mainly composed of water-absorbing resin and method for producing the same
EP2891520B1 (en) Particulate water-absorbing agent and method for manufacturing same
KR102577371B1 (en) Process for producing aqueous-liquid-absorbing resin particles, aqueous-liquid-absorbing resin particles, absorbent, and absorbent article
JP4150252B2 (en) Method for producing water absorbent resin
WO2016111223A1 (en) Water absorbent agent and method for producing same, evaluation method, and measurement method
WO2013002387A1 (en) Polyacrylic acid (salt) water-absorbent resin powder, and method for producing same
WO2012043821A1 (en) Particulate water absorbent and production method for same
WO2018147317A1 (en) Water-absorbent resin particles, and absorber and absorbent article in which same are used
WO2011078298A1 (en) Water-absorbable polyacrylic acid resin powder, and process for production thereof
AU2915500A (en) Powdery, cross-linked polymers which absorb aqueous liquids and blood, method for the production thereof and their use
WO2016158976A1 (en) Particulate water-absorbing agent
JP2002538275A (en) Powdery crosslinked absorbent polymer for absorbing aqueous liquids and blood, process for its production and use
JP2004508432A (en) Powdery crosslinked polymer that absorbs aqueous liquids and blood
WO2015133440A1 (en) Method for producing polyacrylic acid (salt)-based water-absorbable resin
JP7239276B2 (en) Water-absorbing resin particles and method for producing the same
CA2873361A1 (en) Compounded surface treated carboxyalkylated starch polycrylate composites
US20180044487A1 (en) Method for producing aqueous-liquid absorbent resin particles, absorbent body, and absorbent article
JP7150701B2 (en) Method for manufacturing high absorber
WO2017057706A1 (en) Water absorbent resin particles and method for producing same
JPWO2020096003A1 (en) Manufacturing method of particulate water absorbent and particulate water absorbent
JP7291686B2 (en) Water-absorbing resin particles and method for producing the same
JP2012077157A (en) Water-absorbing resin and method for manufacturing the same
JP5684995B2 (en) Absorbent resin composition, absorbent body containing the same, and absorbent article

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799509

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799509

Country of ref document: EP

Kind code of ref document: A1