WO2019188669A1 - Water absorbent resin particles and production method therefor - Google Patents

Water absorbent resin particles and production method therefor Download PDF

Info

Publication number
WO2019188669A1
WO2019188669A1 PCT/JP2019/011728 JP2019011728W WO2019188669A1 WO 2019188669 A1 WO2019188669 A1 WO 2019188669A1 JP 2019011728 W JP2019011728 W JP 2019011728W WO 2019188669 A1 WO2019188669 A1 WO 2019188669A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
absorbent resin
resin particles
silicon compound
fine particles
Prior art date
Application number
PCT/JP2019/011728
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 松原
宮島 徹
泰知 松山
Original Assignee
Sdpグローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sdpグローバル株式会社 filed Critical Sdpグローバル株式会社
Priority to CN201980018735.8A priority Critical patent/CN111868145B/en
Priority to JP2020510787A priority patent/JP7257090B2/en
Priority to CN202310838820.7A priority patent/CN116769269A/en
Publication of WO2019188669A1 publication Critical patent/WO2019188669A1/en
Priority to JP2023033551A priority patent/JP2023060178A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds

Definitions

  • the present invention relates to a water absorbent resin particle and a method for producing the same.
  • water-absorbing resins mainly composed of hydrophilic fibers such as pulp and acrylic acid (salt) are widely used as absorbents. From the viewpoint of improving QOL (Quality Of Life) in recent years, demand for these sanitary materials has been shifting to lighter and thinner ones, and accordingly, the use of hydrophilic fibers has been desired to be reduced. . For this reason, the water-absorbing resin itself is required to have the role of liquid diffusibility and initial absorption in the absorbent body, which has been carried out by hydrophilic fibers so far. A water-absorbing resin having high liquid permeability has been required.
  • Patent Document 1 a method using a lubricant
  • Patent Document 2 a method of setting a specific aspect ratio and particle diameter
  • Patent Document 2 does not mention or recognize any supply amount fluctuation in the feeder, and the method does not satisfy the performance related to the supply amount fluctuation.
  • JP 2014-237133 A Japanese Unexamined Patent Publication No. 2016-055193
  • An object of the present invention is to provide a water-absorbent resin with little fluctuation in the supply amount in the feeder in the production process.
  • the present invention is a water-absorbent resin particle comprising the crosslinked polymer (A) having the water-soluble vinyl monomer (a1) and the crosslinking agent (b) as essential structural units and the water-insoluble silicon compound fine particles (c).
  • the arithmetic average of the Si atom number concentration (atomic%) measured by scanning electron microscope-energy dispersive X-ray analysis at 20 analysis points is 0.5 to 5.0, and the Si atom number concentration A water-absorbent resin particle having a coefficient of variation of 0 to 40%;
  • the water-absorbent resin particles of the present invention and the water-absorbent resin particles obtained by the production method of the present invention have a low coefficient of variation in the number of Si atoms and a low coefficient of variation in the feed amount of the water-insoluble silicon compound fine particles on the surface. Reduce fluctuations in feeder supply.
  • the water-absorbent resin particles of the present invention include a crosslinked polymer (A) having water-soluble vinyl monomer (a1) and a crosslinking agent (b) as essential structural units, and water-insoluble silicon compound fine particles (c).
  • the water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and known monomers, for example, at least one water-soluble substituent and an ethylenic group disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 3648553 are disclosed.
  • Vinyl monomers having a saturated group for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers
  • anionic vinyl monomers disclosed in JP-A-2003-16583, paragraphs 0009 to 0024 nonionic Selected from the group consisting of a carboxylic group, a sulfo group, a phosphono group, a hydroxyl group, a carbamoyl group, an amino group and an ammonio group disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982
  • At least one Vinyl monomer having can be used.
  • anionic vinyl monomers carboxy (salt) groups, sulfo (salt) groups, amino groups, carbamoyl groups, ammonio groups or mono-, di- or tri-alkyl ammonio groups are preferred from the standpoint of absorption performance and the like.
  • Vinyl monomers having a group more preferred are vinyl monomers having a carboxy (salt) group or a carbamoyl group, particularly preferred are (meth) acrylic acid (salt) and (meth) acrylamide, and particularly preferred is (meth) acrylic acid. (Salt), and most preferred is acrylic acid (salt).
  • the “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”.
  • (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylate
  • (meth) acrylamide means acrylamide or methacrylamide.
  • the salt include alkali metal (such as lithium, sodium and potassium) salts, alkaline earth metal (such as magnesium and calcium) salts and ammonium (NH 4 ) salt.
  • alkali metal salts and ammonium salts are preferable from the viewpoint of absorption performance and the like, more preferable are alkali metal salts, and particularly preferable are sodium salts.
  • the structural unit of the crosslinked polymer (A) in addition to the water-soluble vinyl monomer (a1), other vinyl monomers (a2) copolymerizable with these can be used as the structural unit.
  • Other vinyl monomers (a2) may be used alone or in combination of two or more.
  • vinyl monomers (a2) that can be copolymerized are not particularly limited, and are known (for example, hydrophobic vinyl monomers disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883). 0025 paragraph and vinyl monomer disclosed in JP-A-2005-75982, paragraph 0058, etc.) can be used. Specifically, for example, the following vinyl monomers (i) to (iii) Can be used.
  • Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, and halogen substituted products of styrene such as vinylnaphthalene and dichlorostyrene.
  • C2-C20 aliphatic ethylenic monomer Alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkadienes (butadiene, isopren
  • monoethylenically unsaturated monomer such as pinene, limonene and indene
  • polyethylene vinyl monomer such as cyclopentadiene, bicyclopentadiene and ethylidene norbornene.
  • the content (mol%) of the other vinyl monomer (a2) unit is preferably 0 to 5, more preferably 0 to 5, based on the number of moles of the water-soluble vinyl monomer (a1) unit from the viewpoint of absorption performance and the like. 3, particularly preferably 0 to 2, particularly preferably 0 to 1.5. From the viewpoint of absorption performance and the like, the content of the other vinyl monomer (a2) units is most preferably 0 mol%.
  • the cross-linking agent (b) is not particularly limited and is known (for example, a cross-linking agent having two or more ethylenically unsaturated groups disclosed in Japanese Patent No. 3648553, paragraphs 0031 to 0034, and a water-soluble substituent.
  • a crosslinking agent having at least one functional group and having at least one ethylenically unsaturated group, and a crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent Japanese Patent Application Laid-Open No.
  • Crosslinking agents such as disclosed crosslinkable vinyl monomer can be used to.
  • a cross-linking agent having two or more ethylenically unsaturated groups is preferable, and more preferable is poly (meth) allyl ether of a polyhydric alcohol having 2 to 40 carbon atoms, carbon number (Meth) acrylates of 2 to 40 polyhydric alcohols, (meth) acrylamides of polyhydric alcohols having 2 to 40 carbon atoms, particularly preferred are polyallyl ethers of polyhydric alcohols having 2 to 40 carbon atoms, most preferred Pentaerythritol triallyl ether.
  • a crosslinking agent (b) may be used individually by 1 type, or may use 2 or more types together.
  • the content (mol%) of the crosslinking agent (b) unit is based on the total number of moles of the water-soluble vinyl monomer (a1) unit and (a1) to (a2) when the other vinyl monomer (a2) is used. 0.001 to 5 is preferable, 0.005 to 3 is more preferable, and 0.01 to 1 is particularly preferable. Within this range, the absorption performance is further improved.
  • Examples of the method for producing the crosslinked polymer (A) include known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization method, etc .; JP-A-55-133413, etc.), known suspension polymerization method and reverse phase suspension. If necessary, a hydrogel polymer (consisting of a crosslinked polymer and water) obtained by suspension polymerization (Japanese Patent Publication No. Sho 54-30710, Japanese Patent Publication No. 56-26909, Japanese Patent Publication No. 1-5808, etc.) is required. It can be obtained by heat drying and grinding.
  • the cross-linked polymer (A) may be a single type or a mixture of two or more types.
  • the solution polymerization method is preferable, and it is advantageous in terms of production cost because it is not necessary to use an organic solvent. Therefore, the aqueous solution polymerization method is particularly preferable, and the water retention amount is large and water-soluble.
  • An aqueous solution adiabatic polymerization method is most preferred because a water-absorbing resin with a small amount of components can be obtained and temperature control during polymerization is unnecessary.
  • a mixed solvent containing water and an organic solvent can be used.
  • the organic solvent include methanol, ethanol, acetone, methyl ethyl ketone, N, N-dimethylformamide, dimethyl sulfoxide, and two or more of these.
  • the amount (% by weight) of the organic solvent used is preferably 40 or less, more preferably 30 or less, based on the weight of water.
  • a conventionally known radical polymerization catalyst can be used, for example, an azo compound [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis (2-amidinopropane) hydrochloride.
  • Etc. inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, succinic acid peroxide, etc.
  • Oxides and di (2-ethoxyethyl) peroxydicarbonate, etc.] and redox catalysts alkali metal sulfites or bisulfites, ammonium sulfites, ammonium bisulfites, ascorbic acids and the like, and alkali metal persulfates, Oxidation of ammonium persulfate, hydrogen peroxide and organic peroxides And the like).
  • These catalysts may be used alone or in combination of two or more thereof.
  • the amount (% by weight) of the radical polymerization catalyst used is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. To 5 is preferable, and 0.001 to 2 is more preferable.
  • a polymerization control agent such as a chain transfer agent may be used in combination, and specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptan, alkyl halide, and thiocarbonyl compound. Etc. These polymerization control agents may be used alone or in combination of two or more thereof.
  • the amount (% by weight) of the polymerization control agent used is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. To 5 is preferable, and 0.001 to 2 is more preferable.
  • the polymerization may be performed in the presence of a conventionally known dispersant or surfactant, if necessary.
  • a conventionally known dispersant or surfactant if necessary.
  • polymerization can be carried out using a conventionally known hydrocarbon solvent such as xylene, normal hexane and normal heptane.
  • the polymerization start temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100 ° C., more preferably 2 to 80 ° C.
  • the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, particularly preferably based on the weight of the crosslinked polymer (A). Is 0-3, most preferably 0-1. Within this range, the absorption performance of the water-absorbent resin particles is further improved.
  • the water content (% by weight) after the distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, based on the weight of the crosslinked polymer (A). Most preferably, it is 3-8. Within this range, the absorption performance is further improved.
  • the crosslinked polymer (A) can obtain a water-containing gel-like product containing water (hereinafter abbreviated as a water-containing gel), and the water-containing gel is further dried to obtain the crosslinked polymer (A).
  • a water-containing gel a water-containing gel-like product containing water
  • the water-containing gel is further dried to obtain the crosslinked polymer (A).
  • an acid group-containing monomer such as acrylic acid or methacrylic acid
  • the hydrogel may be neutralized with a base.
  • the neutralization degree of the acid group is preferably 50 to 80 mol%.
  • the degree of neutralization is less than 50 mol%, the resulting water-containing gel polymer has high tackiness, and the workability during production and use may deteriorate. Furthermore, the water retention amount of the water-absorbing resin particles obtained may decrease.
  • the neutralization may be performed at any stage after the polymerization of the crosslinked polymer (A) in the production of the water-absorbent resin particles.
  • a method such as neutralization in the state of a hydrogel is preferable.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate and potassium carbonate can be usually used.
  • the hydrogel obtained by polymerization can be shredded as necessary.
  • the size (longest diameter) of the gel after chopping is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying process is further improved.
  • Shredding can be performed by a known method, and can be performed using a shredding device (for example, a bex mill, rubber chopper, pharma mill, mincing machine, impact pulverizer, and roll pulverizer).
  • a shredding device for example, a bex mill, rubber chopper, pharma mill, mincing machine, impact pulverizer, and roll pulverizer.
  • the content and water content of the organic solvent were measured using an infrared moisture meter [for example, JE400 manufactured by KETT Co., Ltd .: 120 ⁇ 5 ° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specification 100V , 40 W], from the weight loss of the measurement sample when heated.
  • an infrared moisture meter for example, JE400 manufactured by KETT Co., Ltd .: 120 ⁇ 5 ° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specification 100V , 40 W
  • a method of distilling off the solvent (including water) in the hydrogel As a method of distilling off the solvent (including water) in the hydrogel, a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C., a thin film drying method using a drum dryer or the like heated to 100 to 230 ° C. (Heating) reduced pressure drying method, freeze drying method, infrared drying method, decantation, filtration and the like can be applied.
  • the pulverization method is not particularly limited, and a pulverizer (for example, a hammer pulverizer, an impact pulverizer, a roll pulverizer, and a shet airflow pulverizer) can be used.
  • the pulverized crosslinked polymer can be adjusted in particle size by sieving or the like, if necessary.
  • the weight average particle diameter ( ⁇ m) of the crosslinked polymer (A) screened as necessary is preferably 100 to 800, more preferably 200 to 700, next preferably 250 to 600, particularly preferably 300 to 500, most preferably Preferably it is 350-450. Within this range, the absorption performance is further improved.
  • the weight average particle size was measured using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook, 6th edition (Mac Glow Hill Book, 1984). , Page 21). That is, JIS standard sieves are combined in the order of 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 250 ⁇ m, 150 ⁇ m, 125 ⁇ m, 75 ⁇ m and 45 ⁇ m, and a tray from the top. About 50 g of the measured particles are put in the uppermost screen and shaken for 5 minutes with a low-tap test sieve shaker.
  • the rate (% by weight) is preferably 3 or less, and more preferably 1 or less.
  • the content of the fine particles can be determined using a graph created when determining the above-mentioned weight average particle diameter.
  • the shape of the crosslinked polymer (A) is not particularly limited, and examples thereof include an irregular crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, from the viewpoint of good entanglement with the fibrous material in the use of paper diapers and the like and no fear of dropping off from the fibrous material, an irregular crushed shape is preferable.
  • the cross-linked polymer (A) may contain some other components such as a residual solvent and a residual cross-linking component as long as the performance is not impaired.
  • the water-absorbent resin particles of the present invention preferably have a structure in which the surface of the crosslinked polymer (A) is crosslinked with an organic surface crosslinking agent (e).
  • an organic surface crosslinking agent (e) By crosslinking the surface of the crosslinked polymer (A), the gel strength of the water-absorbent resin particles can be improved, and the desired water retention amount and the amount of absorption under load of the water-absorbent resin particles can be further satisfied.
  • the organic surface crosslinking agent (e) include known polyvalent glycidyl compounds, polyvalent amines, polyvalent aziridine compounds and polyvalent isocyanate compounds described in JP 59-189103 A, JP 58-180233 A.
  • polyhydric alcohols disclosed in JP-A-61-16903 silane coupling agents described in JP-A-61-211305 and JP-A-61-252212, and JP-A-5-508425.
  • organic surface crosslinking agents such as polyvalent oxazoline compounds described in JP-A No. 11-240959.
  • polyvalent glycidyl compounds, polyhydric alcohols and polyhydric amines are preferred, polyvalent glycidyl compounds and polyhydric alcohols are more preferred, and many are particularly preferred.
  • Valent glycidyl compounds most preferred are ethylene glycol diglycidyl ethers.
  • the organic surface crosslinking agent (e) may be used alone or in combination of two or more.
  • the amount (% by weight) of the organic surface cross-linking agent (e) is not particularly limited because it can be variously changed depending on the type of surface cross-linking agent, the conditions for cross-linking, the target performance, and the like. From the viewpoint of absorption characteristics, etc., it is preferably 0.001 to 3, more preferably 0.005 to 2, particularly preferably 0.01 to 1.5, based on the weight of the water absorbent resin particles.
  • Surface crosslinking of the crosslinked polymer (A) can be carried out by mixing the crosslinked polymer (A) and the organic surface crosslinking agent (e) and heating.
  • a mixing method of the crosslinked polymer (A) and the organic surface crosslinking agent (e) a cylindrical mixer, a screw mixer, a screw extruder, a turbulizer (registered trademark), a flexographic type vertical mixing Mixing machine, Nauter type mixer, double arm type kneader, fluid type mixer, V type mixer, minced mixer, ribbon type mixer, airflow type mixer, rotating disk type mixer, conical blender, roll mixer, etc. Examples thereof include a method of uniformly mixing the crosslinked polymer (A) and the organic surface crosslinking agent (e) using an apparatus. At this time, the organic surface cross-linking agent (e) may be diluted with water and / or an arbitrary solvent and used.
  • the temperature at which the cross-linked polymer (A) and the organic surface cross-linking agent (e) are mixed is not particularly limited, but is preferably 10 to 150 ° C, more preferably 20 to 100 ° C, and particularly preferably 25 to 80 ° C. is there.
  • the heating temperature is preferably 100 to 180 ° C., more preferably 110 to 175 ° C., and particularly preferably 120 to 170 ° C. from the viewpoint of breakage resistance of the resin particles. Heating at 180 ° C. or lower is advantageous in terms of equipment because indirect heating using steam is possible, and absorption performance may deteriorate at heating temperatures below 100 ° C.
  • the heating time can be appropriately set depending on the heating temperature, but is preferably 5 to 60 minutes, more preferably 10 to 40 minutes from the viewpoint of absorption performance.
  • the water-absorbing resin obtained by surface cross-linking can be further surface cross-linked using the same or different organic surface cross-linking agent as the organic surface cross-linking agent used first.
  • the particle size is adjusted by sieving as necessary.
  • the average particle size of the obtained particles is preferably 100 to 600 ⁇ m, more preferably 200 to 500 ⁇ m.
  • the content of fine particles is preferably small, the content of particles of 100 ⁇ m or less is preferably 3% by weight or less, and the content of particles of 150 ⁇ m or less is more preferably 3% by weight or less.
  • the water-absorbent resin particles of the present invention include water-insoluble silicon compound fine particles (c).
  • the water-insoluble silicon compound fine particles (c) include silicon dioxide such as fumed silica, wet silica, colloidal silica, and modified silica, and silicate fine particles such as talc, kaolin, zeolite, and montmorillonite. Fumed silica and colloidal silica are preferable from the viewpoints of properties, ease of handling, and absorption performance.
  • (C) may be used individually by 1 type, and may use 2 or more types together.
  • the water-insoluble silicon compound fine particles (c) in the present invention are preferably spherical or irregular particles having an average primary particle diameter of 1 to 100 nm. When the particles are spherical or amorphous, the powder flowability of the water-absorbent resin particles is improved.
  • the average primary particle diameter of the water-insoluble silicon compound fine particles (c) is preferably 2 to 80 nm, more preferably 3 to 60 nm, and particularly preferably 5 to 50 nm. If the average primary particle diameter is less than 1 nm, the absorption characteristics under load of the water-absorbent resin particles may be deteriorated. Moreover, when larger than 100 nm, the liquid permeability of a water-absorbent resin particle may deteriorate.
  • the average primary particle diameter of the water-insoluble silicon compound fine particles (c) may be measured by a conventionally known method. For example, individual particles of 100 or more particles from a 50,000-fold image with a transmission electron microscope are used. A method of measuring the particle diameter from the average of the longest diameter and the shortest diameter of the particle, obtaining an arithmetic average value thereof, a method using a scattering type particle size distribution measuring apparatus using dynamic light scattering or laser diffraction, and a spherical particle. In some cases, a method of calculating from the specific surface area by the BET method may be used. When using a commercial product, the catalog value can be used instead. In addition, when there is a significant difference depending on the measurement method when obtaining by measurement, the method using the transmission electron microscope described above is used.
  • the water absorbent resin particles of the present invention can be obtained by mixing the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c).
  • the mixing method includes a cylindrical mixer, a screw mixer, a screw extruder, a turbulizer (registered trademark), a flexo-mix vertical mixer, a nauter mixer, a double-arm kneader, and a fluid mixer. , V-type mixers, minced mixers, ribbon-type mixers, air-flow-type mixers, rotary disk-type mixers, conical blenders, roll mixers, and other known mixing devices.
  • a vertical mixer having a cylindrical mixing layer and rotating around a central axis is preferable.
  • the vertical type means that the rotation axis is in the vertical direction (vertical direction)
  • the horizontal type means that the rotation axis is in the horizontal direction.
  • a flexo-mix type vertical type mixer for example, a trade name
  • Flexomix FX, Flexomix FXD both manufactured by Hosokawa Micron Corporation
  • Turbulizer registered trademark
  • water-absorbing resin particles tend to accumulate in the lower part of the mixing tank, and mixing tends to be uneven. It is considered that the water-insoluble silicon compound fine particles (c) are difficult to spread on the surface of the crosslinked polymer (A) and can be uniformly mixed on the surface by mixing at high speed and turbulent flow.
  • Rotational speed at the time of mixing in the flexo-mix type vertical mixer is preferably 1000 to 4000 rpm, more preferably 2000 to 3000 rpm. If it is lower than 1000 rpm, uniform mixing cannot be performed, and if it is higher than 4000 rpm, the water-absorbent resin particles may be broken by impact and fine powder may be generated.
  • the feed amount of the water-absorbent resin particles to the flexographic type vertical mixer is preferably in a range not exceeding the processing capacity according to the model.
  • flexographic mix FXD100 is 50 to 100 kg / h. If it is lower than 50 kg / h, the amount of processing per unit time is small and inefficient, and if it exceeds 100 kg, troubles such as blockage occur.
  • the water-insoluble silicon compound fine particles (c) For mixing the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c), it is preferable to add the water-insoluble silicon compound fine particles (c) while stirring the crosslinked polymer (A).
  • the added water-insoluble silicon compound fine particles (c) may be added simultaneously with water and / or a solvent.
  • a dispersion in which the water-insoluble silicon compound fine particles (c) are dispersed in water and / or a solvent can be added. From the viewpoint, it is preferable to add a dispersion, and it is more preferable to add an aqueous dispersion. When adding a dispersion liquid, it is preferable to add by spraying or dripping.
  • the content of the water-insoluble silicon compound fine particles (c) contained in the dispersion is preferably 5 to 70% by weight based on the total weight of the dispersion. More preferably, it is 10 to 60% by weight.
  • the dispersion of the water-insoluble silicon compound fine particles (c) may be a dispersion obtained by directly granulating a raw material by reacting with water and / or a solvent by a conventionally known method.
  • a dispersion obtained by mechanical dispersion in a solvent may also be used. From the viewpoint of the stability of the dispersion, it is preferable to use a dispersion obtained by directly granulating raw materials in water and / or a solvent.
  • the dispersion of water-insoluble silicon compound fine particles (c) can be obtained as a commercial product as an aqueous colloidal solution (sol).
  • additives such as arbitrary stabilizers, may be contained in the dispersion liquid as needed.
  • stabilizers include commercially available surfactants and dispersants, commercially available acid compounds [phosphoric acid (salt), boric acid (salt), alkali metal (salt) and alkaline earth metal (salt), hydroxycarboxylic Acid (salt), fatty acid (salt), etc.].
  • the temperature at which the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c) are mixed is preferably 10 to 150 ° C., more preferably 20 to 100 ° C., and particularly preferably 25 to 80 from the viewpoint of absorption performance. ° C.
  • the heating temperature is preferably 25 to 180 ° C., more preferably 30 to 175 ° C., and particularly preferably 35 to 170 ° C. from the viewpoint of breakage resistance of the resin particles. Heating at 180 ° C. or lower is advantageous in terms of equipment because indirect heating using steam is possible. Moreover, when not heating, the water and solvent used together will remain excessively in the water-absorbent resin, and the absorption performance may deteriorate.
  • the amount of water and solvent remaining in the water absorbent resin is preferably 1 to 10 parts by weight per 100 parts by weight of the water absorbent resin.
  • the amount of water and solvent remaining in the water-absorbent resin can be obtained by the heat loss method in accordance with JIS K0067-1992 (chemical product weight loss and residue test method).
  • the heating time can be appropriately set depending on the heating temperature, but from the viewpoint of absorption performance, preferably 5 to 60 minutes, More preferably, it is 10 to 40 minutes.
  • the water-absorbent resin obtained by mixing the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c) is the same or different from the water-insoluble silicon compound fine particles used initially, Further surface treatment is possible.
  • the water-absorbent resin particles of the present invention may be used after mixing the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c), and sieving to adjust the particle size.
  • the average particle size of the particles obtained by adjusting the particle size is preferably 100 to 600 ⁇ m, more preferably 200 to 500 ⁇ m.
  • the content of fine particles is preferably small, the content of particles of 100 ⁇ m or less is preferably 3% by weight or less, and the content of particles of 150 ⁇ m or less is more preferably 3% by weight or less.
  • the content of the water-insoluble silicon compound fine particles (c) can be adjusted according to the use of the water absorbent resin particles, but based on the weight of the crosslinked polymer (A),
  • the content is preferably 0.01 to 1% by weight, more preferably 0.02 to 0.8% by weight, and particularly preferably 0.05 to 0.5% by weight. If it is more than this range, dust will be peeled off from the surface of the water-absorbent resin, and if it is less than this range, moisture absorption blocking tends to occur.
  • the arithmetic average of the Si atom number concentration (atomic%) can be adjusted by the content of the water-insoluble silicon compound fine particles (c) and the addition method.
  • the Si atom number concentration on the surface of the water-absorbent resin particles measured by scanning electron microscope-energy dispersive X-ray analysis is determined by measuring 20 random water-absorbent resin particles.
  • the surface of the water-absorbent resin particles is a surface observed by a scanning electron microscope-energy dispersive X-ray analysis, and the portion from the portion where the water-absorbent resin particles are exposed to the outside air to the inside of about 1 ⁇ m. Show.
  • the electron beam is squeezed under the conditions of an acceleration voltage of 15 eV and a magnification of 100 times, and the intensity of characteristic X-rays observed for each element is detected.
  • the composition of the measured electron beam irradiation region (the surface of the water-absorbent resin particles) can be determined. Since the Si atom number concentration on the surface of the water-absorbent resin particles may vary depending on individual water-absorbent resin particles, it is preferable to measure 20 random water-absorbent resin particles and obtain the arithmetic average value.
  • the arithmetic average of the Si atom number concentration (atomic%) measured by scanning electron microscope-energy dispersive X-ray analysis at an analysis point of 20 of the present invention is 0.5 to 5.0, and is a water-insoluble silicon compound It can adjust with content and addition method of microparticles
  • the amount is more than 5.0, dust is peeled off from the surface of the water-absorbent resin, and when the amount is less than 0.5, moisture absorption is easily blocked.
  • the water-insoluble silicon compound fine particles (c) adhere to the water-absorbent resin particles with a force acting on the powder such as van der Waals force, it is difficult to control the amount of adhesion after adhesion, and turbulent mixing From the viewpoint of adjusting the average Si atom number concentration, it is preferable to mix uniformly.
  • the variation coefficient of the Si atom number concentration measured by scanning electron microscope-energy dispersive X-ray analysis at an analysis point of 20 depends on the method of adding the water-insoluble silicon compound fine particles (c). Although controlled, it is 0 to 40%. From the viewpoint of feed amount control and production efficiency, it is preferably 1 to 30%, more preferably 1 to 25%, and particularly preferably 10 to 25%.
  • the variation coefficient of the Si atom number concentration is an index of the uniformity of Si atoms on the surface of the water-absorbent resin particles, and the lower the value, the more uniformly Si atoms, that is, the water-insoluble silicon compound fine particles (c) are added. If the coefficient of variation exceeds 40%, the feed amount varies, and the performance of the absorbent article varies, which is not preferable.
  • the water-absorbent resin particles of the present invention can be obtained by mixing the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c).
  • the surface of the crosslinked polymer (A) is an organic surface crosslinking agent (
  • the water-insoluble silicon compound fine particles (c) may be added at any stage before or after the surface crosslinking with the organic surface crosslinking agent (e).
  • the water-insoluble silicon compound fine particles (c) are preferably added simultaneously with or before the addition of the organic surface cross-linking agent (e), and the water-insoluble silicon compound fine particles (c) are added to the organic surface cross-linking agent ( More preferably, it is added simultaneously with the addition of e).
  • the water absorbent resin particles of the present invention may further contain a polyhydric alcohol (f) having 4 or less carbon atoms.
  • a polyhydric alcohol (f) having 4 or less carbon atoms include ethylene glycol, propylene glycol, 1,3-propanediol, glycerin, 1,4-butanediol and the like. Of these, propylene glycol and glycerin are preferable from the viewpoint of safety and availability, and propylene glycol is more preferable.
  • (F) may be used individually by 1 type, and may use 2 or more types together.
  • the use amount (% by weight) of the polyhydric alcohol (f) having 4 or less carbon atoms is preferably 0.05 to 5 based on the weight of the cross-linked polymer (A) from the viewpoint of absorption performance and liquid permeability. Preferably it is 0.1 to 3, particularly preferably 0.2 to 2.
  • the water-insoluble silicon compound fine particles (c) and the organic surface crosslinking agent (e) are preferably added simultaneously.
  • the wettability and permeability of the additive liquid with respect to the crosslinked polymer (A) can be improved, and Si atoms can be made uniform.
  • the water absorbent resin particles of the present invention may further contain a hydrophobic substance (g).
  • a hydrophobic substance (g1) containing a hydrocarbon group a hydrophobic substance (g2) containing a hydrocarbon group having a fluorine atom, and a hydrophobic substance (g3) having a polysiloxane structure Etc. are included.
  • Hydrophobic substances (g1) containing hydrocarbon groups include polyolefin resins, polyolefin resin derivatives, polystyrene resins, polystyrene resin derivatives, waxes, long chain fatty acid esters, long chain fatty acids and salts thereof, long chain aliphatic alcohols, long Chain aliphatic amides and mixtures of two or more thereof are included.
  • the polyolefin resin has a C2-4 olefin ⁇ ethylene, propylene, isobutylene, isoprene, etc. ⁇ as an essential constituent monomer (the olefin content is at least 50% by weight based on the weight of the polyolefin resin).
  • examples thereof include polymers having an average molecular weight of 1,000 to 1,000,000 ⁇ eg, polyethylene, polypropylene, polyisobutylene, poly (ethylene-isobutylene), isoprene, etc. ⁇ .
  • polystyrene resin derivative examples include polymers having a weight average molecular weight of 1,000 to 1,000,000 introduced by introducing a carboxyl group (—COOH), 1,3-oxo-2-oxapropylene (—COOCO—), etc.
  • a polyolefin resin for example, polyethylene heat Degradation, polypropylene thermal degradation, maleic acid modified polyethylene, chlorinated polyethylene, maleic acid modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleation Polybutadiene, ethylene-vinyl acetate copolymer, and maleated product of ethylene-vinyl acetate copolymer ⁇ .
  • a polyolefin resin for example, polyethylene heat Degradation, polypropylene thermal degradation, maleic acid modified polyethylene, chlorinated polyethylene, maleic acid modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleation Polybutadiene, ethylene-vinyl acetate copolymer, and maleated product of ethylene-vinyl acetate
  • polystyrene resin a polymer having a weight average molecular weight of 1,000 to 1,000,000 can be used. *
  • polystyrene resin derivative a polymer having a weight average molecular weight of 1,000 to 1,000,000 (for example, styrene-containing styrene as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative)).
  • waxes having a melting point of 50 to 200 ° C. for example, paraffin wax, beeswax, carnauba wax, beef tallow, etc.
  • Long chain fatty acid esters include esters of fatty acids having 8 to 30 carbon atoms and alcohols having 1 to 12 carbon atoms (for example, methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, methyl oleate, oleic acid) Ethyl, glycerin lauric acid monoester, glycerin stearic acid monoester, glycerin oleic acid monoester, pentaerythritol lauric acid monoester, pentaerythritol stearate monoester, pentaerythritol oleic acid monoester, sorbit lauric acid monoester, Sorbit stearic acid monoester, sorbit oleic acid monoester, sucrose palmitic acid monoester, sucrose palmitic acid diester, sucrose palmitic acid triester, sucrose stearic acid monoester
  • long-chain fatty acids and salts thereof include fatty acids having 8 to 30 carbon atoms (for example, lauric acid, palmitic acid, stearic acid, oleic acid, dimer acid, and behenic acid), and salts thereof include zinc, calcium, Examples thereof include salts with magnesium or aluminum (hereinafter abbreviated as Zn, Ca, Mg, Al, respectively) ⁇ for example, palmitic acid Ca, palmitic acid Al, stearic acid Ca, stearic acid Mg, stearic acid Al, etc. ⁇ .
  • Zn, Ca, Mg, Al magnesium or aluminum
  • Examples of the long-chain aliphatic alcohol include aliphatic alcohols having 8 to 30 carbon atoms (for example, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, etc.). From the viewpoint of the moisture resistance of the absorbent article, palmityl alcohol, stearyl alcohol, and oleyl alcohol are preferable, and stearyl alcohol is more preferable.
  • Examples of the long-chain aliphatic amide include an amidated product of a long-chain aliphatic primary amine having 8 to 30 carbon atoms and a carboxylic acid having a hydrocarbon group having 1 to 30 carbon atoms, ammonia, or a primary amine having 1 to 7 carbon atoms. And amidated product of a long chain fatty acid having 8 to 30 carbon atoms, a long chain aliphatic secondary amine having at least one aliphatic chain having 8 to 30 carbon atoms and a carboxylic acid having 1 to 30 carbon atoms, and Examples thereof include amidated products of secondary amines having two aliphatic hydrocarbon groups having 1 to 7 carbon atoms and long chain fatty acids having 8 to 30 carbon atoms.
  • a compound obtained by reacting a primary amine and a carboxylic acid 1: 1 is used. : Divided into those reacted in 2. Examples of the product reacted at 1: 1 include acetic acid N-octylamide, acetic acid N-hexacosylamide, heptacosanoic acid N-octylamide, heptacosanoic acid N-hexacosylamide and the like.
  • Examples of those reacted at 1: 2 include diacetate N-octylamide, diacetate N-hexacosylamide, diheptacosanoic acid N-octylamide, and diheptacosanoic acid N-hexacosylamide.
  • the primary amine and the carboxylic acid are reacted at 1: 2, the carboxylic acid used may be the same or different.
  • amidated products of ammonia or primary amines having 1 to 7 carbon atoms and long chain fatty acids having 8 to 30 carbon atoms include those obtained by reacting ammonia or primary amines with carboxylic acids in a 1: 1 ratio. Divided into reacted products.
  • the ones reacted in 1: 2 include dinonanoic acid amide, dinonanoic acid N-methylamide, dinonanoic acid N-heptylamide, dioctadecanoic acid amide, dioctadecanoic acid N-ethylamide, dioctadecanoic acid N-heptylamide, diheptacosanoic acid amide And diheptacosanoic acid N-methylamide, diheptacosanoic acid N-heptylamide, and diheptacosanoic acid N-hexacosylamide.
  • the carboxylic acid to be used may be the same or different.
  • amidated products of a long-chain aliphatic secondary amine having at least one aliphatic chain having 8 to 30 carbon atoms and a carboxylic acid having 1 to 30 carbon atoms include N-methyloctylamide acetate, N-methylhexacosyl acetate Amide, acetic acid N-octylhexacosylamide, acetic acid N-dihexacosylamide, heptacosanoic acid N-methyloctylamide, heptacosanoic acid N-methylhexacosylamide, heptacosanoic acid N-octylhexacosylamide and heptacosane Examples include acid N-dihexacosylamide.
  • amidated products of secondary amines having two aliphatic hydrocarbon groups having 1 to 7 carbon atoms and long chain fatty acids having 8 to 30 carbon atoms include nonanoic acid N-dimethylamide, nonanoic acid N-methylheptylamide, Nonanoic acid N-diheptylamide, heptacosanoic acid N-dimethylamide, heptacosanoic acid N-methylheptylamide, heptacosanoic acid N-diheptylamide and the like can be mentioned.
  • hydrophobic substance (g2) containing a hydrocarbon group having a fluorine atom examples include perfluoroalkane, perfluoroalkene, perfluoroaryl, perfluoroalkyl ether, perfluoroalkyl carboxylic acid, perfluoroalkyl alcohol, and those 2 A mixture of seeds or more is included.
  • hydrophobic substance (g3) having a polysiloxane structure examples include polydimethylsiloxane, polyether-modified polysiloxane ⁇ polyoxyethylene-modified polysiloxane and poly (oxyethylene / oxypropylene) -modified polysiloxane, etc. ⁇ , carboxy-modified polysiloxane, Epoxy-modified polysiloxane, amino-modified polysiloxane, alkoxy-modified polysiloxane and the like, and mixtures thereof are included.
  • the HLB value of the hydrophobic substance (g) is preferably 1 to 10, more preferably 2 to 8, particularly preferably 3 to 7. Within this range, the blocking resistance during initial swelling is further improved.
  • the HLB value means a hydrophilic-hydrophobic balance (HLB) value, and is determined by the Oda method (new introduction to surfactants, page 197, Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd., published in 1981). .
  • hydrophobic substance (g1) containing a hydrocarbon group is preferred, more preferably a long-chain fatty acid ester, a long-chain fatty acid and a salt thereof, Long chain aliphatic alcohols and long chain aliphatic amides, more preferably sorbite stearate, sucrose stearate, stearic acid, Mg stearate, Ca stearate, Zn stearate and Al stearate, particularly preferably Sucrose stearate and Mg stearate, most preferably sucrose stearate.
  • the amount of use (% by weight) of the hydrophobic substance (g) is preferably 0.001 to 1, more preferably, based on the weight of the crosslinked polymer (A) from the viewpoints of absorption performance and blocking resistance during initial swelling. Is 0.005 to 0.5, particularly preferably 0.01 to 0.3.
  • the hydrophobic substance (g) When the hydrophobic substance (g) is contained, it may be added in any step, but it is preferably added before the addition of the water-insoluble silicon compound fine particles (c) from the viewpoint of absorption performance.
  • the hydrophobic substance (g) In the case where the surface of A) has a structure crosslinked with the organic surface crosslinking agent (e), the hydrophobic substance (g) is further added before the surface crosslinking with the organic surface crosslinking agent (e). preferable.
  • the water-absorbent resin particles of the present invention may contain, as necessary, additives (for example, known preservatives, fungicides, antibacterial agents, oxidation agents (described in JP-A No. 2003-225565 and JP-A No. 2006-131767, etc.)) An inhibitor, an ultraviolet absorber, a chelating agent, a colorant, a fragrance, a deodorant, a liquid permeability improver, and an organic fibrous material).
  • the content (% by weight) of the additive is preferably 0.001 to 10, more preferably 0.01 to 5, particularly preferably based on the weight of the crosslinked polymer (A).
  • it is 0.05 to 1, most preferably 0.1 to 0.5.
  • the production method of the present invention is a method for producing the water-absorbent resin particles of the present invention, wherein the crosslinked polymer (A) having water-soluble vinyl monomer (a1) and crosslinking agent (b) as essential structural units and water-insoluble.
  • the crosslinked polymer (A) is preferably the water-insoluble silicon compound fine particles (c) or The aqueous colloidal solution of the water-insoluble silicon compound fine particles (c) and the surface cross-linking agent are added simultaneously.
  • Specific examples of the water-insoluble silicon compound fine particles (c) or the aqueous colloidal liquid of the water-insoluble silicon compound fine particles (c) are as described above.
  • the addition amount and addition method thereof are also as described above.
  • an aqueous colloidal solution of water-insoluble silicon compound fine particles (c), an organic surface crosslinking agent (e) is simultaneously added by spraying while being mixed by a flexographic type vertical mixer, and then heat-treated.
  • the water retention amount (g / g) of the water-absorbent resin particles of the present invention and the water-absorbent resin particles obtained by the production method of the present invention (hereinafter referred to as the water-absorbent resin particles of the present invention without distinguishing them) will be described later. 25 to 55 is preferable, 30 to 50 is more preferable, and 35 to 45 is particularly preferable. If the water retention amount is lower than this range, the diaper absorption amount is low, and if it is higher than this range, the absorption amount under load is low. The amount of water retention can be appropriately adjusted by the amount (% by weight) used of the crosslinking agent (b) and the organic surface crosslinking agent (e).
  • the gel flow rate (ml / min) of the water-absorbent resin particles of the present invention can be measured by the method disclosed in WO2016 / 143737, etc., and is preferably 5 to 300 from the viewpoint of the diaper absorption rate, 10 to 280 is more preferable, and 15 to 250 is particularly preferable. It is empirically known that the gel flow rate conflicts with the water retention amount, and there are cases where a high water retention amount is required and a high gel flow rate is required depending on the configuration of the diaper.
  • the apparent density (g / ml) of the water-absorbent resin particles of the present invention is preferably 0.50 to 0.80, more preferably 0.52 to 0.75, and particularly preferably 0.54 to 0.70. . Within this range, the anti-fogging property of the absorbent article is further improved.
  • the apparent density of the water absorbent resin particles is measured at 25 ° C. according to JIS K7365: 1999.
  • the moisture absorption blocking rate of the water-absorbent resin particles of the present invention can be measured by the method described later, and is preferably 0 to 50%, more preferably 0 to 30%, and particularly preferably 0 to 20%. Within this range, blocking problems are unlikely to occur regardless of the work environment.
  • An absorbent body can be obtained using the water-absorbent resin particles of the present invention.
  • water-absorbing resin particles may be used alone or may be used together with other materials as an absorber.
  • other materials include fibrous materials.
  • the structure and production method of the absorbent when used together with the fibrous material are the same as those known (JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.). is there.
  • Preferred as the fibrous material are cellulose fibers, organic synthetic fibers, and a mixture of cellulose fibers and organic synthetic fibers.
  • cellulosic fibers examples include natural fibers such as fluff pulp, and cellulosic chemical fibers such as viscose rayon, acetate, and cupra.
  • raw materials conifers, hardwoods, etc.
  • production methods chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.
  • bleaching methods etc. of this cellulose-based natural fiber.
  • organic synthetic fibers examples include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above fibers having different melting points). And a fiber obtained by compounding at least two of the above into a sheath core type, an eccentric type, a parallel type, and the like, a fiber obtained by blending at least two kinds of the above fibers, and a fiber obtained by modifying the surface layer of the above fibers).
  • fibrous materials preferred are cellulose-based natural fibers, polypropylene-based fibers, polyethylene-based fibers, polyester-based fibers, heat-fusible conjugate fibers, and mixed fibers thereof, and more preferable are obtained.
  • the fluff pulp, the heat-fusible conjugate fiber, and the mixed fiber thereof are preferable in that the water-absorbing agent has excellent shape retention after water absorption.
  • the length and thickness of the fibrous material are not particularly limited and can be suitably used as long as the length is 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier.
  • the shape is not particularly limited as long as it is fibrous, and examples thereof include a thin cylindrical shape, a split yarn shape, a staple shape, a filament shape, and a web shape.
  • the weight ratio of the water-absorbent resin particles to the fibers is preferably 40/60 to 90/10, more preferably Is 70/30 to 80/20.
  • An absorbent article can be obtained using the water absorbent resin of the present invention. Specifically, the absorber is used.
  • the absorbent article is applicable not only to sanitary articles such as paper diapers and sanitary napkins, but also to various uses such as absorption of various aqueous liquids described below, use as a retention agent, and use as a gelling agent.
  • the manufacturing method and the like of the absorbent article are the same as known ones (described in JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.).
  • ⁇ Measurement method of water retention amount> 1.00 g of a measurement sample is placed in a tea bag (20 cm long, 10 cm wide) made of a nylon net having a mesh size of 63 ⁇ m (JIS Z8801-1: 2006), and 1,000 ml of physiological saline (saline concentration 0.9%). The sample was immersed for 1 hour without stirring and then pulled up, suspended for 15 minutes and drained. Thereafter, each tea bag was placed in a centrifuge, centrifuged at 150 G for 90 seconds to remove excess physiological saline, and the weight (h1) including the tea bag was measured to obtain the water retention amount from the following formula. In addition, the temperature of the used physiological saline and measurement atmosphere was 25 degreeC +/- 2 degreeC. Water retention amount (g / g) (h1) ⁇ (h2) In addition, (h2) is the weight of the tea bag measured by the same operation as described above when there is no measurement sample.
  • ⁇ Measurement method of moisture absorption blocking rate> 10 g of the measurement sample passed through a 850 ⁇ m wire mesh (JIS Z8801-1: 2001) is uniformly placed in a 5 cm diameter aluminum cylindrical dish and placed in a constant temperature and humidity chamber of 40 ⁇ 1 ° C. and relative humidity of 80 ⁇ 5%. And left for 3 hours. After measuring the total weight (a) of the measurement sample after standing for 3 hours, the sample was tapped five times with a wire mesh (JIS Z8801-1: 2001) having an opening of 1400 ⁇ m, blocked by moisture absorption and having an opening of 1400 ⁇ m. The weight (b) of the resin particles remaining on the wire mesh was measured, and the moisture absorption blocking rate was determined from the following formula. Moisture absorption blocking rate (%) (b / a) ⁇ 100
  • Example 1 Acrylic acid (a1-1) ⁇ Mitsubishi Chemical Corporation, purity 100% ⁇ 131 parts, Cross-linking agent (b-1) ⁇ Pentaerythritol triallyl ether, Osaka Soda Co., Ltd. ⁇ 0.44 parts and deionized water 362 The part was kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.5 part of 1% aqueous hydrogen peroxide solution, 1 part of 2% aqueous ascorbic acid solution and 2% 2,2′-azobisamidinopropane Polymerization was initiated by adding and mixing 1 part of an aqueous dihydrochloride solution. After the temperature of the mixture reached 80 ° C., a water-containing gel was obtained by polymerization at 80 ⁇ 2 ° C. for about 5 hours.
  • this water-containing gel was shredded with a mincing machine (12VR-400K manufactured by ROYAL), and mixed and neutralized by adding 108 parts of a 48.5% aqueous sodium hydroxide solution to neutralize the gel (degree of neutralization: 72%). Further, the neutralized hydrogel was dried with a ventilation dryer ⁇ 200 ° C., wind speed 2 m / sec ⁇ to obtain a dried product. The dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), and then sieved to adjust the particle size to a particle size range of 710 to 150 ⁇ m to obtain a crosslinked polymer (A-1).
  • a mincing machine (12VR-400K manufactured by ROYAL
  • the neutralized hydrogel was dried with a ventilation dryer ⁇ 200 ° C., wind speed 2 m / sec ⁇ to obtain a dried product.
  • the dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), and then sieved to adjust
  • Klebosol 30cal25 (Merck colloidal silica, solid content 30%, average primary particle size 25 nm) 1.0 part, ethylene glycol diglycidyl ether 0.1 part as organic surface crosslinking agent (e), carbon number 4 or less
  • a liquid obtained by mixing 1.0 part of propylene glycol as a monohydric alcohol (f) and 1.6 parts of water is spray-added from a spray nozzle and mixed uniformly, and then heated at 130 ° C. for 30 minutes to obtain the water absorption Resin particles (P-1) were obtained.
  • the apparent density of (P-1) was 0.58 g / ml.
  • Example 2 While 100 parts of the crosslinked polymer (A-1) obtained in the same manner as in Example 1 was stirred at high speed (Flexomix FXD100 manufactured by Hosokawa Micron Corporation: rotation speed 3000 rpm, feed rate 50 kg / h) From a spray nozzle, a solution obtained by mixing 0.1 part of ethylene glycol diglycidyl ether as the agent (e), 1.0 part of propylene glycol as the polyhydric alcohol (f) having 4 or less carbon atoms, and 1.6 parts of water After spray addition, uniform mixing, heating at 130 ° C.
  • FXD100 manufactured by Hosokawa Micron Corporation: rotation speed 3000 rpm, feed rate 50 kg / h
  • Example 3 While 100 parts of the crosslinked polymer (A-1) obtained in the same manner as in Example 1 was stirred at high speed (Flexomix FXD100 manufactured by Hosokawa Micron Corporation: rotation speed 3000 rpm, feed rate 50 kg / h) From a spray nozzle, a solution obtained by mixing 0.1 part of ethylene glycol diglycidyl ether as the agent (e), 1.0 part of propylene glycol as the polyhydric alcohol (f) having 4 or less carbon atoms, and 1.6 parts of water After spray addition, uniform mixing, heating at 130 ° C.
  • Flexomix FXD100 manufactured by Hosokawa Micron Corporation: rotation speed 3000 rpm, feed rate 50 kg / h
  • Example 4 From Example 1, 0.1 part of ethylene glycol diglycidyl ether as the organic surface crosslinking agent (e) is 0.03 part, and 1.0 part of propylene glycol as the polyhydric alcohol (f) having 4 or less carbon atoms is 0.
  • the water-absorbent resin particles (P-4) of the present invention were obtained in the same manner except that 1.6 parts of water was changed to 0.80 parts at 60 parts.
  • the apparent density of (P-4) was 0.58 g / ml.
  • Example 5 From Example 1, 1.0 part of Klebosol 30cal25 (colloidal silica manufactured by Merck Co., Ltd., solid content 30%, average primary particle size 25 nm) as water-insoluble silicon compound fine particles (c) was changed to 0.17 part, and an organic surface crosslinking agent (e ) 0.1 part of ethylene glycol diglycidyl ether as 0.01), 1.0 part of propylene glycol as polyhydric alcohol (f) having 4 or less carbon atoms, 0.30 part, 1.6 parts of water
  • the water-absorbent resin particles (P-5) of the present invention were obtained in the same manner except that was changed to 0.30 part.
  • the apparent density of (P-5) was 0.59 g / ml.
  • Example 6 The same procedure as in Example 1 except that 1.0 part of Klebosol 30cal25 (Merck colloidal silica, solid content 30%, average primary particle size 25 nm) as water-insoluble silicon compound fine particles (c) was changed to 1.5 parts. Inventive water-absorbing resin particles (P-6) were obtained. The apparent density of (P-6) was 0.58 g / ml.
  • Example 7 (P-1) Put 100 parts by weight in a plastic bag and add 0.1 part Aerosil 200 (fumed silica manufactured by Nippon Aerosil Co., Ltd., average primary particle size 12 nm) as water-insoluble silicon compound fine particles (c). Then, the water-absorbent resin particles (P-7) of the present invention were obtained. The apparent density of (P-7) was 0.57 g / ml.
  • Example 8 Acrylic acid (a1-1) ⁇ manufactured by Mitsubishi Chemical Corporation, purity 100% ⁇ 155 parts, crosslinking agent (b-1) ⁇ pentaerythritol triallyl ether, Osaka Soda Co., Ltd. ⁇ 0.54 parts and deionized water 335 The part was kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.6 part of 1% aqueous hydrogen peroxide solution, 1.2 parts of 2% aqueous ascorbic acid solution and 2% 2,2′-azobis Polymerization was initiated by adding and mixing 8 parts of an amidinopropane dihydrochloride aqueous solution. After the temperature of the mixture reached 90 ° C., a water-containing gel was obtained by polymerization at 90 ⁇ 2 ° C. for about 5 hours.
  • this water-containing gel is shredded with a mincing machine (12 VR-400K manufactured by ROYAL), and then mixed and neutralized by adding 128 parts of 48.5% aqueous sodium hydroxide solution to neutralize the gel (degree of neutralization: 72%). Further, the neutralized hydrogel was dried with a ventilation dryer ⁇ 150 ° C., wind speed 2 m / sec ⁇ to obtain a dried product. The dried product was pulverized with a juicer mixer (OSTERIZER BLENDER manufactured by Oster) and then sieved to adjust the particle size to a particle size range of 710 to 150 ⁇ m to obtain a crosslinked polymer (A-2).
  • Comparative water-absorbing resin particles (R-6) were obtained in the same manner as in Example 1, except that Klebosol 30cal25 as the water-insoluble silicon compound fine particles (c) was not used.
  • the apparent density of (R 6) was 0.60 g / ml.
  • water-absorbent resin particles of the present invention have little fluctuation in the amount of feed in a supply device (feeder) in the production process, when applied to the production of various absorbers, production is stable.
  • Suitable for hygiene items such as adult paper diapers, napkins (sanitary napkins, etc.), paper towels, pads (pads for incontinence, surgical underpads, etc.) and pet sheets (pet urine absorbing sheets). Ideal for disposable diapers.
  • the water-absorbent resin particles of the present invention are not only sanitary products, but also pet urine absorbents, urine gelling agents for portable toilets, freshness preservation agents such as fruits and vegetables, meat and seafood drip absorbents, cold insulation agents, disposable warmers It is also useful for various uses such as battery gelling agents, water retention agents for plants and soil, anti-condensation agents, water-stopping materials and packing materials, and artificial snow.

Abstract

The present invention provides a water absorbent resin that can be supplied from a feeder in an amount with less variability in a production process. The present invention pertains to water absorbent resin particles containing a crosslinked polymer (A) containing a water-soluble vinyl monomer (a1) and a crosslinking agent (b) as essential constituent units, and fine water-insoluble silicon compound particles (c), wherein the arithmetic average of Si atomic concentrations (atomic%) as measured by scanning electron microscope-energy-dispersive X-ray spectroscopy at 20 analysis points is 0.5-5.0, and the variation coefficient of the Si atomic concentrations is 0-40%.

Description

吸水性樹脂粒子及びその製造方法Water-absorbent resin particles and method for producing the same
 本発明は吸水性樹脂粒子及びその製造方法に関する。 The present invention relates to a water absorbent resin particle and a method for producing the same.
 紙おむつ、生理用ナプキン、失禁パット等の衛生材料には、パルプ等の親水性繊維とアクリル酸(塩)等とを主原料とする吸水性樹脂が吸収体として幅広く利用されている。近年のQOL(Quality Of Life)向上の観点からこれら衛生材料はより軽量かつ薄型のものへと需要が遷移しており、これに伴って親水性繊維の使用量低減が望まれるようになってきた。そのため、これまで親水性繊維が担ってきた吸収体中での液拡散性や初期吸収の役割を吸水性樹脂それ自体に求められるようになり、加重下での吸液性及び膨潤したゲル間の通液性の高い吸水性樹脂が必要とされるようになった。 In hygienic materials such as paper diapers, sanitary napkins, and incontinence pads, water-absorbing resins mainly composed of hydrophilic fibers such as pulp and acrylic acid (salt) are widely used as absorbents. From the viewpoint of improving QOL (Quality Of Life) in recent years, demand for these sanitary materials has been shifting to lighter and thinner ones, and accordingly, the use of hydrophilic fibers has been desired to be reduced. . For this reason, the water-absorbing resin itself is required to have the role of liquid diffusibility and initial absorption in the absorbent body, which has been carried out by hydrophilic fibers so far. A water-absorbing resin having high liquid permeability has been required.
 一方で、紙おむつや生理用ナプキン等の吸収性物品の製造工程においては、吸水性樹脂の添加量にばらつきが生じると、吸収性物品の性能が変動することから、供給装置(以下、フィーダーともいう)、例えば、スクリューフィーダーやスプリングフィーダー、での供給量の変動が少ないことが望まれている。 On the other hand, in the manufacturing process of absorbent articles such as paper diapers and sanitary napkins, when the amount of water-absorbent resin added varies, the performance of the absorbent article fluctuates. ), For example, it is desired that fluctuations in the supply amount of a screw feeder or a spring feeder are small.
 ところで、粉体流動性を改良する手法として、滑剤を用いる方法(特許文献1)や特定のアスペクト比と粒子径とする方法(特許文献2)等が開示されている。しかしながら、フィーダーでの供給量変動については特許文献2はなんら言及、認識されておらず、また、その手法は供給量変動に関する性能を満足するものではなかった。 By the way, as a method for improving powder flowability, a method using a lubricant (Patent Document 1), a method of setting a specific aspect ratio and particle diameter (Patent Document 2), and the like are disclosed. However, Patent Document 2 does not mention or recognize any supply amount fluctuation in the feeder, and the method does not satisfy the performance related to the supply amount fluctuation.
特開2014-237133号公報JP 2014-237133 A 特開2016-055193号公報Japanese Unexamined Patent Publication No. 2016-055193
 本発明の目的は、製造工程においてフィーダーでの供給量変動の少ない吸水性樹脂を提供することである。 An object of the present invention is to provide a water-absorbent resin with little fluctuation in the supply amount in the feeder in the production process.
 本発明者は、吸水性樹脂粒子の表面に使用される、水不溶性ケイ素化合物微粒子の量および分布と吸水性樹脂のフィーダー供給量の変動に関係があることを見出した。従って、本発明は、水溶性ビニルモノマー(a1)と架橋剤(b)とを必須構成単位とする架橋重合体(A)と、水不溶性ケイ素化合物微粒子(c)とを含む吸水性樹脂粒子であって、走査型電子顕微鏡-エネルギー分散型X線分析により測定されるSi原子数濃度(atomic%)の分析点数20点での算術平均が0.5~5.0であり、Si原子数濃度の変動係数が0~40%である吸水性樹脂粒子;その製造方法である。 The present inventor has found that there is a relationship between the amount and distribution of the water-insoluble silicon compound fine particles used on the surface of the water-absorbent resin particles and fluctuations in the feeder supply amount of the water-absorbent resin. Accordingly, the present invention is a water-absorbent resin particle comprising the crosslinked polymer (A) having the water-soluble vinyl monomer (a1) and the crosslinking agent (b) as essential structural units and the water-insoluble silicon compound fine particles (c). The arithmetic average of the Si atom number concentration (atomic%) measured by scanning electron microscope-energy dispersive X-ray analysis at 20 analysis points is 0.5 to 5.0, and the Si atom number concentration A water-absorbent resin particle having a coefficient of variation of 0 to 40%;
 本発明の吸水性樹脂粒子及び本発明の製造方法により得られる吸水性樹脂粒子は、その表面の水不溶性ケイ素化合物微粒子の、Si原子数濃度の変動係数が低く、フィード量の変動係数が低くなり、フィーダーの供給量変動を少なくする。 The water-absorbent resin particles of the present invention and the water-absorbent resin particles obtained by the production method of the present invention have a low coefficient of variation in the number of Si atoms and a low coefficient of variation in the feed amount of the water-insoluble silicon compound fine particles on the surface. Reduce fluctuations in feeder supply.
 本発明の吸水性樹脂粒子は、水溶性ビニルモノマー(a1)と架橋剤(b)を必須構成単位とする架橋重合体(A)と、水不溶性ケイ素化合物微粒子(c)を含む。 The water-absorbent resin particles of the present invention include a crosslinked polymer (A) having water-soluble vinyl monomer (a1) and a crosslinking agent (b) as essential structural units, and water-insoluble silicon compound fine particles (c).
 本発明における水溶性ビニルモノマー(a1)としては特に限定はなく、公知のモノマー、例えば、特許第3648553号公報の0007~0023段落に開示されている少なくとも1個の水溶性置換基とエチレン性不飽和基とを有するビニルモノマー(例えばアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー)、特開2003-165883号公報の0009~0024段落に開示されているアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー並びに特開2005-75982号公報の0041~0051段落に開示されているカルボキシ基、スルホ基、ホスホノ基、水酸基、カルバモイル基、アミノ基及びアンモニオ基からなる群から選ばれる少なくとも1種を有するビニルモノマーが使用できる。 The water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and known monomers, for example, at least one water-soluble substituent and an ethylenic group disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 3648553 are disclosed. Vinyl monomers having a saturated group (for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers), anionic vinyl monomers disclosed in JP-A-2003-16583, paragraphs 0009 to 0024, nonionic Selected from the group consisting of a carboxylic group, a sulfo group, a phosphono group, a hydroxyl group, a carbamoyl group, an amino group and an ammonio group disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982 At least one Vinyl monomer having can be used.
 これらの内、吸収性能等の観点から好ましいのはアニオン性ビニルモノマー、カルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ-、ジ-若しくはトリ-アルキルアンモニオ基を有するビニルモノマー、更に好ましいのはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー、特に好ましいのは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、とりわけ好ましいのは(メタ)アクリル酸(塩)、最も好ましいのはアクリル酸(塩)である。 Of these, anionic vinyl monomers, carboxy (salt) groups, sulfo (salt) groups, amino groups, carbamoyl groups, ammonio groups or mono-, di- or tri-alkyl ammonio groups are preferred from the standpoint of absorption performance and the like. Vinyl monomers having a group, more preferred are vinyl monomers having a carboxy (salt) group or a carbamoyl group, particularly preferred are (meth) acrylic acid (salt) and (meth) acrylamide, and particularly preferred is (meth) acrylic acid. (Salt), and most preferred is acrylic acid (salt).
 なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩及びアンモニウム(NH)塩等が挙げられる。これらの塩の内、吸収性能等の観点から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましいのはアルカリ金属塩、特に好ましいのはナトリウム塩である。 The “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”. Moreover, (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylate, and (meth) acrylamide means acrylamide or methacrylamide. Examples of the salt include alkali metal (such as lithium, sodium and potassium) salts, alkaline earth metal (such as magnesium and calcium) salts and ammonium (NH 4 ) salt. Among these salts, alkali metal salts and ammonium salts are preferable from the viewpoint of absorption performance and the like, more preferable are alkali metal salts, and particularly preferable are sodium salts.
 架橋重合体(A)の構成単位として、水溶性ビニルモノマー(a1)の他に、これらと共重合可能なその他のビニルモノマー(a2)を構成単位とすることができる。その他のビニルモノマー(a2)は1種を単独で用いても、2種以上を併用してもよい。 As the structural unit of the crosslinked polymer (A), in addition to the water-soluble vinyl monomer (a1), other vinyl monomers (a2) copolymerizable with these can be used as the structural unit. Other vinyl monomers (a2) may be used alone or in combination of two or more.
 共重合可能なその他のビニルモノマー(a2)としては特に限定はなく、公知(例えば、特許第3648553号公報の0028~0029段落に開示されている疎水性ビニルモノマー、特開2003-165883号公報の0025段落及び特開2005-75982号公報の0058段落に開示されているビニルモノマー等)の疎水性ビニルモノマー等が使用でき、具体的には例えば下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン、並びにジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレン性モノマー
 アルケン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等);並びにアルカジエン(ブタジエン及びイソプレン等)等。
(iii)炭素数5~15の脂環式エチレン性モノマー
 モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等);並びにポリエチレン性ビニルモノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
Other vinyl monomers (a2) that can be copolymerized are not particularly limited, and are known (for example, hydrophobic vinyl monomers disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883). 0025 paragraph and vinyl monomer disclosed in JP-A-2005-75982, paragraph 0058, etc.) can be used. Specifically, for example, the following vinyl monomers (i) to (iii) Can be used.
(I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, and halogen substituted products of styrene such as vinylnaphthalene and dichlorostyrene.
(Ii) C2-C20 aliphatic ethylenic monomer Alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkadienes (butadiene, isoprene, etc.).
(Iii) alicyclic ethylenic monomer having 5 to 15 carbon atoms, monoethylenically unsaturated monomer (such as pinene, limonene and indene); and polyethylene vinyl monomer [such as cyclopentadiene, bicyclopentadiene and ethylidene norbornene].
 その他のビニルモノマー(a2)単位の含有量(モル%)は、吸収性能等の観点から、水溶性ビニルモノマー(a1)単位のモル数に基づいて、0~5が好ましく、更に好ましくは0~3、特に好ましくは0~2、とりわけ好ましくは0~1.5であり、吸収性能等の観点から、その他のビニルモノマー(a2)単位の含有量が0モル%であることが最も好ましい。 The content (mol%) of the other vinyl monomer (a2) unit is preferably 0 to 5, more preferably 0 to 5, based on the number of moles of the water-soluble vinyl monomer (a1) unit from the viewpoint of absorption performance and the like. 3, particularly preferably 0 to 2, particularly preferably 0 to 1.5. From the viewpoint of absorption performance and the like, the content of the other vinyl monomer (a2) units is most preferably 0 mol%.
 架橋剤(b)としては特に限定はなく公知(例えば、特許第3648553号公報の0031~0034段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも1個有してかつ少なくとも1個のエチレン性不飽和基を有する架橋剤及び水溶性置換基と反応し得る官能基を少なくとも2個有する架橋剤、特開2003-165883号公報の0028~0031段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、エチレン性不飽和基と反応性官能基とを有する架橋剤及び反応性置換基を2個以上有する架橋剤、特開2005-75982号公報の0059段落に開示されている架橋性ビニルモノマー並びに特開2005-95759号公報の0015~0016段落に開示されている架橋性ビニルモノマー)の架橋剤等が使用できる。これらの内、吸収性能等の観点から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、更に好ましいのは、炭素数2~40の多価アルコールのポリ(メタ)アリルエーテル、炭素数2~40の多価アルコールの(メタ)アクリレート、炭素数2~40の多価アルコールの(メタ)アクリルアミド、特に好ましいのは炭素数2~40の多価アルコールのポリアリルエーテル、最も好ましいのはペンタエリスリトールトリアリルエーテルである。架橋剤(b)は1種を単独で用いても、2種以上を併用してもよい。 The cross-linking agent (b) is not particularly limited and is known (for example, a cross-linking agent having two or more ethylenically unsaturated groups disclosed in Japanese Patent No. 3648553, paragraphs 0031 to 0034, and a water-soluble substituent. A crosslinking agent having at least one functional group and having at least one ethylenically unsaturated group, and a crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent, Japanese Patent Application Laid-Open No. 2003-165883 Crosslinkers having two or more ethylenically unsaturated groups, crosslinkers having ethylenically unsaturated groups and reactive functional groups, and crosslinkers having two or more reactive substituents disclosed in paragraphs 0028 to 0031 of , The cross-linkable vinyl monomer disclosed in paragraph 0059 of JP-A-2005-75982, and stages 0015 to 0016 of JP-A-2005-95759. Crosslinking agents such as disclosed crosslinkable vinyl monomer) can be used to. Among these, from the viewpoint of absorption performance and the like, a cross-linking agent having two or more ethylenically unsaturated groups is preferable, and more preferable is poly (meth) allyl ether of a polyhydric alcohol having 2 to 40 carbon atoms, carbon number (Meth) acrylates of 2 to 40 polyhydric alcohols, (meth) acrylamides of polyhydric alcohols having 2 to 40 carbon atoms, particularly preferred are polyallyl ethers of polyhydric alcohols having 2 to 40 carbon atoms, most preferred Pentaerythritol triallyl ether. A crosslinking agent (b) may be used individually by 1 type, or may use 2 or more types together.
 架橋剤(b)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位の、その他のビニルモノマー(a2)を用いる場合は(a1)~(a2)の合計モル数に基づいて、0.001~5が好ましく、更に好ましくは0.005~3、特に好ましくは0.01~1である。この範囲であると、吸収性能が更に良好となる。 The content (mol%) of the crosslinking agent (b) unit is based on the total number of moles of the water-soluble vinyl monomer (a1) unit and (a1) to (a2) when the other vinyl monomer (a2) is used. 0.001 to 5 is preferable, 0.005 to 3 is more preferable, and 0.01 to 1 is particularly preferable. Within this range, the absorption performance is further improved.
 架橋重合体(A)の製造方法としては、公知の溶液重合(断熱重合、薄膜重合及び噴霧重合法等;特開昭55-133413号公報等)や、公知の懸濁重合法や逆相懸濁重合(特公昭54-30710号公報、特開昭56-26909号公報及び特開平1-5808号公報等)によって得られる含水ゲル重合体(架橋重合体と水とからなる。)を必要により加熱乾燥、粉砕することで得ることができる。架橋重合体(A)は、1種単独でも良いし、2種以上の混合物であっても良い。 Examples of the method for producing the crosslinked polymer (A) include known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization method, etc .; JP-A-55-133413, etc.), known suspension polymerization method and reverse phase suspension. If necessary, a hydrogel polymer (consisting of a crosslinked polymer and water) obtained by suspension polymerization (Japanese Patent Publication No. Sho 54-30710, Japanese Patent Publication No. 56-26909, Japanese Patent Publication No. 1-5808, etc.) is required. It can be obtained by heat drying and grinding. The cross-linked polymer (A) may be a single type or a mixture of two or more types.
 重合方法の内、好ましいのは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、特に好ましいのは水溶液重合法であり、保水量が大きく、且つ水可溶性成分量の少ない吸水性樹脂が得られ、重合時の温度コントロールが不要である点から、水溶液断熱重合法が最も好ましい。 Among the polymerization methods, the solution polymerization method is preferable, and it is advantageous in terms of production cost because it is not necessary to use an organic solvent. Therefore, the aqueous solution polymerization method is particularly preferable, and the water retention amount is large and water-soluble. An aqueous solution adiabatic polymerization method is most preferred because a water-absorbing resin with a small amount of components can be obtained and temperature control during polymerization is unnecessary.
 水溶液重合を行う場合、水と有機溶媒とを含む混合溶媒を使用することができ、有機溶媒としては、メタノール、エタノール、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、ジメチルスルホキシド及びこれらの2種以上の混合物を挙げられる。
 水溶液重合を行う場合、有機溶媒の使用量(重量%)は、水の重量を基準として40以下が好ましく、更に好ましくは30以下である。
When aqueous solution polymerization is performed, a mixed solvent containing water and an organic solvent can be used. Examples of the organic solvent include methanol, ethanol, acetone, methyl ethyl ketone, N, N-dimethylformamide, dimethyl sulfoxide, and two or more of these. A mixture of
When aqueous solution polymerization is performed, the amount (% by weight) of the organic solvent used is preferably 40 or less, more preferably 30 or less, based on the weight of water.
 重合に触媒を用いる場合、従来公知のラジカル重合用触媒が使用可能であり、例えば、アゾ化合物[アゾビスイソブチロニトリル、アゾビスシアノ吉草酸及び2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド等]、無機過酸化物(過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等)、有機過酸化物[過酸化ベンゾイル、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド及びジ(2-エトキシエチル)パーオキシジカーボネート等]及びレドックス触媒(アルカリ金属の亜硫酸塩又は重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム及びアスコルビン酸等の還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素及び有機過酸化物等の酸化剤との組み合わせよりなるもの)等が挙げられる。これらの触媒は、単独で使用してもよく、これらの2種以上を併用しても良い。
 ラジカル重合触媒の使用量(重量%)は、水溶性ビニルモノマー(a1)の、その他のビニルモノマー(a2)を用いる場合は(a1)~(a2)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。
In the case of using a catalyst for the polymerization, a conventionally known radical polymerization catalyst can be used, for example, an azo compound [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis (2-amidinopropane) hydrochloride. Etc.], inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, succinic acid peroxide, etc. Oxides and di (2-ethoxyethyl) peroxydicarbonate, etc.] and redox catalysts (alkali metal sulfites or bisulfites, ammonium sulfites, ammonium bisulfites, ascorbic acids and the like, and alkali metal persulfates, Oxidation of ammonium persulfate, hydrogen peroxide and organic peroxides And the like). These catalysts may be used alone or in combination of two or more thereof.
The amount (% by weight) of the radical polymerization catalyst used is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. To 5 is preferable, and 0.001 to 2 is more preferable.
 重合時には、必要に応じて連鎖移動剤等の重合コントロール剤を併用しても良く、これらの具体例としては、次亜リン酸ナトリウム、亜リン酸ナトリウム、アルキルメルカプタン、ハロゲン化アルキル、チオカルボニル化合物等が挙げられる。これらの重合コントロール剤は、単独で使用してもよく、これらの2種以上を併用しても良い。
 重合コントロール剤の使用量(重量%)は、水溶性ビニルモノマー(a1)の、その他のビニルモノマー(a2)を用いる場合は(a1)~(a2)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。
At the time of polymerization, a polymerization control agent such as a chain transfer agent may be used in combination, and specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptan, alkyl halide, and thiocarbonyl compound. Etc. These polymerization control agents may be used alone or in combination of two or more thereof.
The amount (% by weight) of the polymerization control agent used is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. To 5 is preferable, and 0.001 to 2 is more preferable.
 重合方法として懸濁重合法又は逆相懸濁重合法をとる場合は、必要に応じて、従来公知の分散剤又は界面活性剤の存在下に重合を行っても良い。また、逆相懸濁重合法の場合、従来公知のキシレン、ノルマルヘキサン及びノルマルヘプタン等の炭化水素系溶媒を使用して重合を行うことができる。 When a suspension polymerization method or a reverse phase suspension polymerization method is used as the polymerization method, the polymerization may be performed in the presence of a conventionally known dispersant or surfactant, if necessary. In the case of the reverse phase suspension polymerization method, polymerization can be carried out using a conventionally known hydrocarbon solvent such as xylene, normal hexane and normal heptane.
 重合開始温度は、使用する触媒の種類によって適宜調整することができるが、0~100℃が好ましく、更に好ましくは2~80℃である。 The polymerization start temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100 ° C., more preferably 2 to 80 ° C.
 重合に溶媒(有機溶媒及び水等)を使用する場合、重合後に溶媒を留去することが好ましい。溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0~10が好ましく、更に好ましくは0~5、特に好ましくは0~3、最も好ましくは0~1である。この範囲であると、吸水性樹脂粒子の吸収性能が更に良好となる。 When a solvent (such as an organic solvent and water) is used for polymerization, it is preferable to distill off the solvent after polymerization. When the solvent contains an organic solvent, the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, particularly preferably based on the weight of the crosslinked polymer (A). Is 0-3, most preferably 0-1. Within this range, the absorption performance of the water-absorbent resin particles is further improved.
 溶媒に水を含む場合、留去後の水分(重量%)は、架橋重合体(A)の重量に基づいて、0~20が好ましく、更に好ましくは1~10、特に好ましくは2~9、最も好ましくは3~8である。この範囲であると、吸収性能が更に良好となる。 When water is contained in the solvent, the water content (% by weight) after the distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, based on the weight of the crosslinked polymer (A). Most preferably, it is 3-8. Within this range, the absorption performance is further improved.
 前記の重合方法により架橋重合体(A)が水を含んだ含水ゲル状物(以下、含水ゲルと略記する)を得ることができ、更に含水ゲルを乾燥することで架橋重合体(A)を得ることができる。
 水溶性ビニルモノマー(a1)としてアクリル酸やメタクリル酸等の酸基含有モノマーを用いる場合、含水ゲルを塩基で中和しても良い。酸基の中和度は、50~80モル%であることが好ましい。中和度が50モル%未満の場合、得られる含水ゲル重合体の粘着性が高くなり、製造時及び使用時の作業性が悪化する場合がある。更に得られる吸水性樹脂粒子の保水量が低下する場合がある。一方、中和度が80%を超える場合、得られた樹脂のpHが高くなり人体の皮膚に対する安全性が懸念される場合がある。
 なお、中和は、吸水性樹脂粒子の製造において、架橋重合体(A)の重合以降のいずれの段階で行ってもよく、例えば、含水ゲルの状態で中和する等の方法が好ましい例として例示される。
 中和する塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物や、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩を通常使用できる。
By the above polymerization method, the crosslinked polymer (A) can obtain a water-containing gel-like product containing water (hereinafter abbreviated as a water-containing gel), and the water-containing gel is further dried to obtain the crosslinked polymer (A). Obtainable.
When an acid group-containing monomer such as acrylic acid or methacrylic acid is used as the water-soluble vinyl monomer (a1), the hydrogel may be neutralized with a base. The neutralization degree of the acid group is preferably 50 to 80 mol%. When the degree of neutralization is less than 50 mol%, the resulting water-containing gel polymer has high tackiness, and the workability during production and use may deteriorate. Furthermore, the water retention amount of the water-absorbing resin particles obtained may decrease. On the other hand, when the degree of neutralization exceeds 80%, the pH of the obtained resin becomes high, and there is a concern that the safety of human skin may be concerned.
The neutralization may be performed at any stage after the polymerization of the crosslinked polymer (A) in the production of the water-absorbent resin particles. For example, a method such as neutralization in the state of a hydrogel is preferable. Illustrated.
As the base to be neutralized, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate and potassium carbonate can be usually used.
 重合によって得られる含水ゲルは、必要に応じて細断することができる。細断後のゲルの大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは1mm~1cmである。この範囲であると、乾燥工程での乾燥性が更に良好となる。 The hydrogel obtained by polymerization can be shredded as necessary. The size (longest diameter) of the gel after chopping is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying process is further improved.
 細断は、公知の方法で行うことができ、細断装置(例えば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機)等を使用して細断できる。 Shredding can be performed by a known method, and can be performed using a shredding device (for example, a bex mill, rubber chopper, pharma mill, mincing machine, impact pulverizer, and roll pulverizer).
 なお、有機溶媒の含有量及び水分は、赤外水分測定器[例えば、(株)KETT社製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W]により加熱したときの測定試料の重量減量から求められる。 In addition, the content and water content of the organic solvent were measured using an infrared moisture meter [for example, JE400 manufactured by KETT Co., Ltd .: 120 ± 5 ° C., 30 minutes, atmospheric humidity before heating 50 ± 10% RH, lamp specification 100V , 40 W], from the weight loss of the measurement sample when heated.
 含水ゲル中の溶媒(水を含む)を留去する方法としては、80~230℃の温度の熱風で留去(乾燥)する方法、100~230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用できる。 As a method of distilling off the solvent (including water) in the hydrogel, a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C., a thin film drying method using a drum dryer or the like heated to 100 to 230 ° C. (Heating) reduced pressure drying method, freeze drying method, infrared drying method, decantation, filtration and the like can be applied.
 含水ゲルを乾燥して架橋重合体(A)を得た後、更に粉砕することができる。粉砕方法については、特に限定はなく、粉砕装置(例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機)等が使用できる。粉砕された架橋重合体は、必要によりふるい分け等により粒度調整できる。 After drying the hydrogel to obtain the crosslinked polymer (A), it can be further pulverized. The pulverization method is not particularly limited, and a pulverizer (for example, a hammer pulverizer, an impact pulverizer, a roll pulverizer, and a shet airflow pulverizer) can be used. The pulverized crosslinked polymer can be adjusted in particle size by sieving or the like, if necessary.
 必要によりふるい分けされた架橋重合体(A)の重量平均粒子径(μm)は、100~800が好ましく、更に好ましくは200~700、次に好ましくは250~600、特に好ましくは300~500、最も好ましくは350~450である。この範囲であると、吸収性能が更に良好となる。 The weight average particle diameter (μm) of the crosslinked polymer (A) screened as necessary is preferably 100 to 800, more preferably 200 to 700, next preferably 250 to 600, particularly preferably 300 to 500, most preferably Preferably it is 350-450. Within this range, the absorption performance is further improved.
 なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンバニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、並びに受け皿、の順に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙[横軸がふるいの目開き(粒子径)、縦軸が重量分率]にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径とする。 The weight average particle size was measured using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook, 6th edition (Mac Glow Hill Book, 1984). , Page 21). That is, JIS standard sieves are combined in the order of 1000 μm, 850 μm, 710 μm, 500 μm, 425 μm, 355 μm, 250 μm, 150 μm, 125 μm, 75 μm and 45 μm, and a tray from the top. About 50 g of the measured particles are put in the uppermost screen and shaken for 5 minutes with a low-tap test sieve shaker. Weigh the measured particles on each sieve and pan, and calculate the weight fraction of the particles on each sieve with the total as 100% by weight. This value is the logarithmic probability paper [horizontal axis is sieve aperture (particle size ), The vertical axis is plotted in the weight fraction], and then a line connecting the points is drawn to obtain the particle diameter corresponding to the weight fraction of 50% by weight, which is defined as the weight average particle diameter.
 また、架橋重合体(A)に含まれる微粒子の含有量は少ない方が吸収性能が良好となるため、架橋重合体(A)の合計重量に占める106μm以下(好ましくは150μm以下)の微粒子の含有率(重量%)は3以下が好ましく、更に好ましくは1以下である。微粒子の含有量は、上記の重量平均粒子径を求める際に作成するグラフを用いて求めることができる。 Further, since the absorption performance is better when the content of the fine particles contained in the crosslinked polymer (A) is smaller, the inclusion of fine particles of 106 μm or less (preferably 150 μm or less) in the total weight of the crosslinked polymer (A). The rate (% by weight) is preferably 3 or less, and more preferably 1 or less. The content of the fine particles can be determined using a graph created when determining the above-mentioned weight average particle diameter.
 架橋重合体(A)の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 The shape of the crosslinked polymer (A) is not particularly limited, and examples thereof include an irregular crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, from the viewpoint of good entanglement with the fibrous material in the use of paper diapers and the like and no fear of dropping off from the fibrous material, an irregular crushed shape is preferable.
 なお、架橋重合体(A)は、その性能を損なわない範囲で残留溶媒や残存架橋成分等の他の成分を多少含んでも良い。 The cross-linked polymer (A) may contain some other components such as a residual solvent and a residual cross-linking component as long as the performance is not impaired.
 本発明の吸水性樹脂粒子は、架橋重合体(A)の表面が有機表面架橋剤(e)により架橋された構造を有することが好ましい。架橋重合体(A)の表面を架橋することにより吸水性樹脂粒子のゲル強度を向上させることができ、吸水性樹脂粒子の望ましい保水量と荷重下における吸収量とをより一層満足させることができる。有機表面架橋剤(e)としては、公知(特開昭59-189103号公報に記載の多価グリシジル化合物、多価アミン、多価アジリジン化合物及び多価イソシアネート化合物等、特開昭58-180233号公報及び特開昭61-16903号公報の多価アルコール、特開昭61-211305号公報及び特開昭61-252212号公報に記載のシランカップリング剤、特表平5-508425号公報に記載のアルキレンカーボネート、特開平11-240959号公報に記載の多価オキサゾリン化合物等)の有機表面架橋剤等が使用できる。これらの表面架橋剤のうち、経済性及び吸収特性の観点から、多価グリシジル化合物、多価アルコール及び多価アミンが好ましく、更に好ましいのは多価グリシジル化合物及び多価アルコール、特に好ましいのは多価グリシジル化合物、最も好ましいのはエチレングリコールジグリシジルエーテルである。有機表面架橋剤(e)は1種を単独で用いても良いし、2種以上を併用しても良い。 The water-absorbent resin particles of the present invention preferably have a structure in which the surface of the crosslinked polymer (A) is crosslinked with an organic surface crosslinking agent (e). By crosslinking the surface of the crosslinked polymer (A), the gel strength of the water-absorbent resin particles can be improved, and the desired water retention amount and the amount of absorption under load of the water-absorbent resin particles can be further satisfied. . Examples of the organic surface crosslinking agent (e) include known polyvalent glycidyl compounds, polyvalent amines, polyvalent aziridine compounds and polyvalent isocyanate compounds described in JP 59-189103 A, JP 58-180233 A. And polyhydric alcohols disclosed in JP-A-61-16903, silane coupling agents described in JP-A-61-211305 and JP-A-61-252212, and JP-A-5-508425. And organic surface crosslinking agents such as polyvalent oxazoline compounds described in JP-A No. 11-240959. Of these surface cross-linking agents, from the viewpoint of economy and absorption properties, polyvalent glycidyl compounds, polyhydric alcohols and polyhydric amines are preferred, polyvalent glycidyl compounds and polyhydric alcohols are more preferred, and many are particularly preferred. Valent glycidyl compounds, most preferred are ethylene glycol diglycidyl ethers. The organic surface crosslinking agent (e) may be used alone or in combination of two or more.
 表面架橋をする場合、有機表面架橋剤(e)の使用量(重量%)は、表面架橋剤の種類、架橋させる条件、目標とする性能等により種々変化させることができるため特に限定はないが、吸収特性の観点等から、吸水性樹脂粒子の重量に基づいて、0.001~3が好ましく、更に好ましくは0.005~2、特に好ましくは0.01~1.5である。 In the case of surface cross-linking, the amount (% by weight) of the organic surface cross-linking agent (e) is not particularly limited because it can be variously changed depending on the type of surface cross-linking agent, the conditions for cross-linking, the target performance, and the like. From the viewpoint of absorption characteristics, etc., it is preferably 0.001 to 3, more preferably 0.005 to 2, particularly preferably 0.01 to 1.5, based on the weight of the water absorbent resin particles.
 架橋重合体(A)の表面架橋は、架橋重合体(A)と有機表面架橋剤(e)とを混合し、加熱することで行うことができる。架橋重合体(A)と有機表面架橋剤(e)との混合方法としては、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー(登録商標)、フレキソミックス型縦型混合機、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、ミンチ混合機、リボン型混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等の混合装置を用いて架橋重合体(A)と有機表面架橋剤(e)とを均一混合する方法が挙げられる。この際、有機表面架橋剤(e)は、水及び/又は任意の溶剤で希釈して使用しても良い。 Surface crosslinking of the crosslinked polymer (A) can be carried out by mixing the crosslinked polymer (A) and the organic surface crosslinking agent (e) and heating. As a mixing method of the crosslinked polymer (A) and the organic surface crosslinking agent (e), a cylindrical mixer, a screw mixer, a screw extruder, a turbulizer (registered trademark), a flexographic type vertical mixing Mixing machine, Nauter type mixer, double arm type kneader, fluid type mixer, V type mixer, minced mixer, ribbon type mixer, airflow type mixer, rotating disk type mixer, conical blender, roll mixer, etc. Examples thereof include a method of uniformly mixing the crosslinked polymer (A) and the organic surface crosslinking agent (e) using an apparatus. At this time, the organic surface cross-linking agent (e) may be diluted with water and / or an arbitrary solvent and used.
 架橋重合体(A)と有機表面架橋剤(e)とを混合する際の温度は特に限定されないが、10~150℃が好ましく、更に好ましくは20~100℃、特に好ましくは25~80℃である。 The temperature at which the cross-linked polymer (A) and the organic surface cross-linking agent (e) are mixed is not particularly limited, but is preferably 10 to 150 ° C, more preferably 20 to 100 ° C, and particularly preferably 25 to 80 ° C. is there.
 架橋重合体(A)と有機表面架橋剤(e)とを混合した後、通常、加熱処理を行う。加熱温度は、樹脂粒子の耐壊れ性の観点から好ましくは100~180℃、更に好ましくは110~175℃、特に好ましくは120~170℃である。180℃以下の加熱であれば蒸気を利用した間接加熱が可能であり設備上有利であり、100℃未満の加熱温度では吸収性能が悪くなる場合がある。また、加熱時間は加熱温度により適宜設定することができるが、吸収性能の観点から、好ましくは5~60分、更に好ましくは10~40分である。表面架橋して得られる吸水性樹脂を、最初に用いた有機表面架橋剤と同種又は異種の有機表面架橋剤を用いて、更に表面架橋することも可能である。 After mixing the cross-linked polymer (A) and the organic surface cross-linking agent (e), heat treatment is usually performed. The heating temperature is preferably 100 to 180 ° C., more preferably 110 to 175 ° C., and particularly preferably 120 to 170 ° C. from the viewpoint of breakage resistance of the resin particles. Heating at 180 ° C. or lower is advantageous in terms of equipment because indirect heating using steam is possible, and absorption performance may deteriorate at heating temperatures below 100 ° C. The heating time can be appropriately set depending on the heating temperature, but is preferably 5 to 60 minutes, more preferably 10 to 40 minutes from the viewpoint of absorption performance. The water-absorbing resin obtained by surface cross-linking can be further surface cross-linked using the same or different organic surface cross-linking agent as the organic surface cross-linking agent used first.
 架橋重合体(A)の表面を有機表面架橋剤(e)により架橋した後、必要により篩別して粒度調整される。得られた粒子の平均粒経は、好ましくは100~600μm、更に好ましくは200~500μmである。微粒子の含有量は少ない方が好ましく、100μm以下の粒子の含有量は3重量%以下であることが好ましく、150μm以下の粒子の含有量が3重量%以下であることが更に好ましい。 After the surface of the crosslinked polymer (A) is crosslinked with the organic surface crosslinking agent (e), the particle size is adjusted by sieving as necessary. The average particle size of the obtained particles is preferably 100 to 600 μm, more preferably 200 to 500 μm. The content of fine particles is preferably small, the content of particles of 100 μm or less is preferably 3% by weight or less, and the content of particles of 150 μm or less is more preferably 3% by weight or less.
 本発明の吸水性樹脂粒子は、水不溶性ケイ素化合物微粒子(c)を含む。水不溶性ケイ素化合物微粒子(c)としては、フュームドシリカ、湿式シリカ、コロイダルシリカ、変性シリカ等の二酸化ケイ素や、タルク、カオリン、ゼオライトやモンモリロナイト等のケイ酸塩微粒子等が挙げられ、入手の容易性や扱いやすさ、吸収性能の観点から、フュームドシリカ及びコロイダルシリカが好ましい。(c)は1種を単独で用いても良いし、2種以上を併用しても良い。 The water-absorbent resin particles of the present invention include water-insoluble silicon compound fine particles (c). Examples of the water-insoluble silicon compound fine particles (c) include silicon dioxide such as fumed silica, wet silica, colloidal silica, and modified silica, and silicate fine particles such as talc, kaolin, zeolite, and montmorillonite. Fumed silica and colloidal silica are preferable from the viewpoints of properties, ease of handling, and absorption performance. (C) may be used individually by 1 type, and may use 2 or more types together.
 本発明における水不溶性ケイ素化合物微粒子(c)は、平均一次粒子径1~100nmの球状又は不定形の粒子であることが好ましい。球状又は不定形の粒子であると、吸水性樹脂粒子の粉体流動性が良好となる。水不溶性ケイ素化合物微粒子(c)の平均一次粒子径は、好ましくは2~80nmであり、更に好ましくは3~60nm、特に好ましくは5~50nmである。平均一次粒子径が1nmより小さいと吸水性樹脂粒子の荷重下での吸収特性が悪化する場合がある。また100nmより大きいと吸水性樹脂粒子の通液性が悪化する場合がある。 The water-insoluble silicon compound fine particles (c) in the present invention are preferably spherical or irregular particles having an average primary particle diameter of 1 to 100 nm. When the particles are spherical or amorphous, the powder flowability of the water-absorbent resin particles is improved. The average primary particle diameter of the water-insoluble silicon compound fine particles (c) is preferably 2 to 80 nm, more preferably 3 to 60 nm, and particularly preferably 5 to 50 nm. If the average primary particle diameter is less than 1 nm, the absorption characteristics under load of the water-absorbent resin particles may be deteriorated. Moreover, when larger than 100 nm, the liquid permeability of a water-absorbent resin particle may deteriorate.
 なお、水不溶性ケイ素化合物微粒子(c)の平均一次粒子径の測定は従来公知の方法で行えばよく、例えば、透過型電子顕微鏡での5万倍の画像から100個以上の粒子について個々の粒子の最長径と最短経との平均から粒子径を実測してその算術平均値を求める方法や、動的光散乱やレーザー回折法を用いた散乱式粒度分布測定装置を用いる方法、球状粒子である場合BET法による比表面積から算出する方法等が挙げられる。市販品を使用する場合には、そのカタログ値で代用できる。なお、測定により求める場合に測定方法により有意な相違がある場合は、上述の透過型電子顕微鏡を用いる方法による。 The average primary particle diameter of the water-insoluble silicon compound fine particles (c) may be measured by a conventionally known method. For example, individual particles of 100 or more particles from a 50,000-fold image with a transmission electron microscope are used. A method of measuring the particle diameter from the average of the longest diameter and the shortest diameter of the particle, obtaining an arithmetic average value thereof, a method using a scattering type particle size distribution measuring apparatus using dynamic light scattering or laser diffraction, and a spherical particle. In some cases, a method of calculating from the specific surface area by the BET method may be used. When using a commercial product, the catalog value can be used instead. In addition, when there is a significant difference depending on the measurement method when obtaining by measurement, the method using the transmission electron microscope described above is used.
 本発明の吸水性樹脂粒子は、架橋重合体(A)と水不溶性ケイ素化合物微粒子(c)とを混合することで得ることができる。混合方法としては、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー(登録商標)、フレキソミックス型縦型混合機、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、ミンチ混合機、リボン型混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等の公知の混合装置を用いて均一混合する方法が挙げられるが、Si原子数濃度の変動係数が低くなるという観点で、円筒状の混合層を持ち中央の軸を中心に回転する縦型混合機が好ましい。なお、縦型とは回転軸が上下方向(鉛直方向)であり横型とは回転軸が水平方向のものであり、縦型混合機の代表例としてフレキソミックス型縦型混合機(例えば、商品名:フレキソミックスFX、フレキソミックスFXD:いずれもホソカワミクロン社製)が挙げられ、横型混合機の代表例としてタービュライザー(登録商標)が挙げられる。フレキソミックス型縦型混合機では乱流混合効果が高く、混合が速やかに行われるため均一度が高くなると考えられる。横型混合機では混合槽の下部に吸水性樹脂粒子が溜まりやすく混合が不均一になりやすい。水不溶性ケイ素化合物微粒子(c)は架橋重合体(A)の表面で広がりにくく高速かつ乱流で混ぜることにより均一に表面に混ぜることができると考えられる。 The water absorbent resin particles of the present invention can be obtained by mixing the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c). The mixing method includes a cylindrical mixer, a screw mixer, a screw extruder, a turbulizer (registered trademark), a flexo-mix vertical mixer, a nauter mixer, a double-arm kneader, and a fluid mixer. , V-type mixers, minced mixers, ribbon-type mixers, air-flow-type mixers, rotary disk-type mixers, conical blenders, roll mixers, and other known mixing devices. From the viewpoint that the variation coefficient of the atomic number concentration is low, a vertical mixer having a cylindrical mixing layer and rotating around a central axis is preferable. Note that the vertical type means that the rotation axis is in the vertical direction (vertical direction) and the horizontal type means that the rotation axis is in the horizontal direction. As a representative example of the vertical type mixer, a flexo-mix type vertical type mixer (for example, a trade name) : Flexomix FX, Flexomix FXD: both manufactured by Hosokawa Micron Corporation), and a typical example of a horizontal mixer is Turbulizer (registered trademark). The flexo-mix type vertical mixer has a high turbulent mixing effect and is considered to increase the uniformity because the mixing is performed quickly. In a horizontal mixer, water-absorbing resin particles tend to accumulate in the lower part of the mixing tank, and mixing tends to be uneven. It is considered that the water-insoluble silicon compound fine particles (c) are difficult to spread on the surface of the crosslinked polymer (A) and can be uniformly mixed on the surface by mixing at high speed and turbulent flow.
 フレキソミックス型縦型混合機での混合時の回転速度は1000~4000rpmが好ましく、2000~3000rpmが更に好ましい。1000rpmより低いと均一混合できず、4000rpmより高いと、衝撃により吸水性樹脂粒子が壊れ微粉が発生する場合がある。 Rotational speed at the time of mixing in the flexo-mix type vertical mixer is preferably 1000 to 4000 rpm, more preferably 2000 to 3000 rpm. If it is lower than 1000 rpm, uniform mixing cannot be performed, and if it is higher than 4000 rpm, the water-absorbent resin particles may be broken by impact and fine powder may be generated.
 フレキソミックス型縦型混合機への吸水性樹脂粒子のフィード量は型式に応じた処理能力を超えない範囲が好ましい。例えば、フレキソミックスFXD100であれば50~100kg/hである。50kg/hより低いと単位時間当たりの処理量が少なく非効率であり、100kgを超えると閉塞等のトラブルが発生する。 The feed amount of the water-absorbent resin particles to the flexographic type vertical mixer is preferably in a range not exceeding the processing capacity according to the model. For example, flexographic mix FXD100 is 50 to 100 kg / h. If it is lower than 50 kg / h, the amount of processing per unit time is small and inefficient, and if it exceeds 100 kg, troubles such as blockage occur.
 架橋重合体(A)と水不溶性ケイ素化合物微粒子(c)との混合は、架橋重合体(A)の撹拌下に水不溶性ケイ素化合物微粒子(c)を加えることが好ましい。加えられる水不溶性ケイ素化合物微粒子(c)は、水及び/又は溶剤と同時に添加しても良い。水不溶性ケイ素化合物微粒子(c)を水及び/又は溶剤と同時に添加する場合、水不溶性ケイ素化合物微粒子(c)を水及び/又は溶剤に分散した分散液を添加することができ、作業性等の観点から分散液を添加することが好ましく、水分散液を添加することが更に好ましい。分散液を添加する場合、噴霧又は滴下して添加することが好ましい。 For mixing the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c), it is preferable to add the water-insoluble silicon compound fine particles (c) while stirring the crosslinked polymer (A). The added water-insoluble silicon compound fine particles (c) may be added simultaneously with water and / or a solvent. When the water-insoluble silicon compound fine particles (c) are added simultaneously with water and / or a solvent, a dispersion in which the water-insoluble silicon compound fine particles (c) are dispersed in water and / or a solvent can be added. From the viewpoint, it is preferable to add a dispersion, and it is more preferable to add an aqueous dispersion. When adding a dispersion liquid, it is preferable to add by spraying or dripping.
 水不溶性ケイ素化合物微粒子(c)の分散液を用いる場合、分散液に含まれる水不溶性ケイ素化合物微粒子(c)の含有量は、分散液の合計重量に対して5~70%重量%が好ましく、更に好ましくは10~60重量%である。 When the dispersion of water-insoluble silicon compound fine particles (c) is used, the content of the water-insoluble silicon compound fine particles (c) contained in the dispersion is preferably 5 to 70% by weight based on the total weight of the dispersion. More preferably, it is 10 to 60% by weight.
 水不溶性ケイ素化合物微粒子(c)の分散液は、従来公知の方法により水及び/又は溶剤中で素原料を反応させ直接造粒して得られる分散液を用いてもよいし、微粒子を水及び/又は溶剤中に機械的に分散して得られる分散液を用いてもよい。
 分散液の安定性の観点から、水及び/又は溶剤中で素原料を反応させ直接造粒して得られる分散液を用いることが好ましい。水不溶性ケイ素化合物微粒子(c)の分散液は、水性コロイド液(ゾル)として市販品を入手することができる。
 なお分散液には、必要に応じて任意の安定化剤等の添加剤が含まれていても良い。安定化剤としては、例えば、市販の界面活性剤や分散剤、市販の酸化合物[リン酸(塩)、ホウ酸(塩)、アルカリ金属(塩)及びアルカリ土類金属(塩)、ヒドロキシカルボン酸(塩)、脂肪酸(塩)等]が挙げられる。
The dispersion of the water-insoluble silicon compound fine particles (c) may be a dispersion obtained by directly granulating a raw material by reacting with water and / or a solvent by a conventionally known method. A dispersion obtained by mechanical dispersion in a solvent may also be used.
From the viewpoint of the stability of the dispersion, it is preferable to use a dispersion obtained by directly granulating raw materials in water and / or a solvent. The dispersion of water-insoluble silicon compound fine particles (c) can be obtained as a commercial product as an aqueous colloidal solution (sol).
In addition, additives, such as arbitrary stabilizers, may be contained in the dispersion liquid as needed. Examples of stabilizers include commercially available surfactants and dispersants, commercially available acid compounds [phosphoric acid (salt), boric acid (salt), alkali metal (salt) and alkaline earth metal (salt), hydroxycarboxylic Acid (salt), fatty acid (salt), etc.].
 架橋重合体(A)と水不溶性ケイ素化合物微粒子(c)を混合する際の温度は、吸収性能の観点から、10~150℃が好ましく、更に好ましくは20~100℃、特に好ましくは25~80℃である。 The temperature at which the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c) are mixed is preferably 10 to 150 ° C., more preferably 20 to 100 ° C., and particularly preferably 25 to 80 from the viewpoint of absorption performance. ° C.
 架橋重合体(A)と水不溶性ケイ素化合物微粒子(c)を混合した後、更に加熱処理を行ってもよい。加熱温度は、樹脂粒子の耐壊れ性の観点から好ましくは25~180℃、更に好ましくは30~175℃、特に好ましくは35~170℃である。180℃以下の加熱であれば蒸気を利用した間接加熱が可能であり設備上有利である。また、加熱を行わない場合、併用する水及び溶剤が吸水性樹脂中に過剰に残存することとなり、吸収性能が悪くなる場合がある。吸水性樹脂中に残存する水、溶剤の量としては、吸水性樹脂100重量部あたり、1~10重量部が好ましい。吸水性樹脂中に残存する水、溶剤の量は、JISK0067-1992(化学製品の減量及び残分試験法)に準拠し、加熱減量法により得ることができる。 After the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c) are mixed, a heat treatment may be further performed. The heating temperature is preferably 25 to 180 ° C., more preferably 30 to 175 ° C., and particularly preferably 35 to 170 ° C. from the viewpoint of breakage resistance of the resin particles. Heating at 180 ° C. or lower is advantageous in terms of equipment because indirect heating using steam is possible. Moreover, when not heating, the water and solvent used together will remain excessively in the water-absorbent resin, and the absorption performance may deteriorate. The amount of water and solvent remaining in the water absorbent resin is preferably 1 to 10 parts by weight per 100 parts by weight of the water absorbent resin. The amount of water and solvent remaining in the water-absorbent resin can be obtained by the heat loss method in accordance with JIS K0067-1992 (chemical product weight loss and residue test method).
 架橋重合体(A)と水不溶性ケイ素化合物微粒子(c)との混合後に加熱する場合、加熱時間は加熱温度により適宜設定することができるが、吸収性能の観点から、好ましくは5~60分、更に好ましくは10~40分である。架橋重合体(A)と水不溶性ケイ素化合物微粒子(c)とを混合して得られる吸水性樹脂を、最初に用いた水不溶性ケイ素化合物微粒子と同種又は異種の水不溶性ケイ素化合物微粒子を用いて、更に表面処理することも可能である。 In the case of heating after mixing the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c), the heating time can be appropriately set depending on the heating temperature, but from the viewpoint of absorption performance, preferably 5 to 60 minutes, More preferably, it is 10 to 40 minutes. The water-absorbent resin obtained by mixing the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c) is the same or different from the water-insoluble silicon compound fine particles used initially, Further surface treatment is possible.
 本発明の吸水性樹脂粒子は、架橋重合体(A)と水不溶性ケイ素化合物微粒子(c)との混合後に、篩別して粒度調整して用いても良い。粒度調整して得られた粒子の平均粒経は、好ましくは100~600μm、更に好ましくは200~500μmである。微粒子の含有量は少ない方が好ましく、100μm以下の粒子の含有量は3重量%以下であることが好ましく、150μm以下の粒子の含有量が3重量%以下であることが更に好ましい。 The water-absorbent resin particles of the present invention may be used after mixing the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c), and sieving to adjust the particle size. The average particle size of the particles obtained by adjusting the particle size is preferably 100 to 600 μm, more preferably 200 to 500 μm. The content of fine particles is preferably small, the content of particles of 100 μm or less is preferably 3% by weight or less, and the content of particles of 150 μm or less is more preferably 3% by weight or less.
 本発明の吸水性樹脂粒子において、水不溶性ケイ素化合物微粒子(c)の含有量は、吸水性樹脂粒子の用途に応じて調整することができるが、架橋重合体(A)の重量に基づいて、0.01~1重量%が好ましく、更に好ましくは0.02~0.8重量%、特に好ましくは0.05~0.5重量%である。この範囲より多いと吸水性樹脂表面から剥がれおちる粉塵が発生し、この範囲より少ないと吸湿ブロッキングしやすくなる。 In the water absorbent resin particles of the present invention, the content of the water-insoluble silicon compound fine particles (c) can be adjusted according to the use of the water absorbent resin particles, but based on the weight of the crosslinked polymer (A), The content is preferably 0.01 to 1% by weight, more preferably 0.02 to 0.8% by weight, and particularly preferably 0.05 to 0.5% by weight. If it is more than this range, dust will be peeled off from the surface of the water-absorbent resin, and if it is less than this range, moisture absorption blocking tends to occur.
 本発明の吸水性樹脂粒子において、Si原子数濃度(atomic%)の算術平均は、水不溶性ケイ素化合物微粒子(c)の含有量および添加方法により調整することができる。 In the water-absorbent resin particles of the present invention, the arithmetic average of the Si atom number concentration (atomic%) can be adjusted by the content of the water-insoluble silicon compound fine particles (c) and the addition method.
 本発明における走査型電子顕微鏡-エネルギー分散型X線分析の測定による吸水性樹脂粒子表面のSi原子数濃度は無作為の20個の吸水性樹脂粒子を測定して求める。なお、吸水性樹脂粒子表面とは、走査型電子顕微鏡-エネルギー分散型X線分析で観察される表面であり、吸水性樹脂粒子が外気にさらされている部分から1μm程度の内部までの部分を示す。 In the present invention, the Si atom number concentration on the surface of the water-absorbent resin particles measured by scanning electron microscope-energy dispersive X-ray analysis is determined by measuring 20 random water-absorbent resin particles. The surface of the water-absorbent resin particles is a surface observed by a scanning electron microscope-energy dispersive X-ray analysis, and the portion from the portion where the water-absorbent resin particles are exposed to the outside air to the inside of about 1 μm. Show.
 走査型電子顕微鏡-エネルギー分散型X線分析による測定では、加速電圧15eV、倍率を100倍の条件で電子ビームを絞り照射して、各元素について観測される特性X線の強度を検出することにより、測定している電子ビーム照射領域(吸水性樹脂粒子の表面)の組成を求めることができる。吸水性樹脂粒子表面のSi原子数濃度は、個々の吸水性樹脂粒子で変動する場合があるため、無作為の20個の吸水性樹脂粒子を測定して算術平均値として求めることが好ましい。 In the measurement by scanning electron microscope-energy dispersive X-ray analysis, the electron beam is squeezed under the conditions of an acceleration voltage of 15 eV and a magnification of 100 times, and the intensity of characteristic X-rays observed for each element is detected. The composition of the measured electron beam irradiation region (the surface of the water-absorbent resin particles) can be determined. Since the Si atom number concentration on the surface of the water-absorbent resin particles may vary depending on individual water-absorbent resin particles, it is preferable to measure 20 random water-absorbent resin particles and obtain the arithmetic average value.
 本発明の分析点数20点における走査型電子顕微鏡-エネルギー分散型X線分析により測定されるSi原子数濃度(atomic%)の算術平均は、0.5~5.0であり、水不溶性ケイ素化合物微粒子(c)の含有量および添加方法により調整することができる。フィード量の変動抑制、吸収性能の観点から、1.0~2.5が好ましい。5.0より多いと吸水性樹脂表面から剥がれおちる粉塵が発生し、0.5より少ないと吸湿ブロッキングしやすくなる。 The arithmetic average of the Si atom number concentration (atomic%) measured by scanning electron microscope-energy dispersive X-ray analysis at an analysis point of 20 of the present invention is 0.5 to 5.0, and is a water-insoluble silicon compound It can adjust with content and addition method of microparticles | fine-particles (c). From the viewpoint of suppressing fluctuations in the feed amount and absorption performance, 1.0 to 2.5 is preferable. When the amount is more than 5.0, dust is peeled off from the surface of the water-absorbent resin, and when the amount is less than 0.5, moisture absorption is easily blocked.
 吸水性樹脂粒子への水不溶性ケイ素化合物微粒子(c)の付着は、ファンデルワールス力等の粉体に働く力で付着するので、付着後に付着量を制御することは困難であり、乱流混合などにより均一に混合することがSi原子数濃度の平均を調整する観点から好ましい。 Since the water-insoluble silicon compound fine particles (c) adhere to the water-absorbent resin particles with a force acting on the powder such as van der Waals force, it is difficult to control the amount of adhesion after adhesion, and turbulent mixing From the viewpoint of adjusting the average Si atom number concentration, it is preferable to mix uniformly.
 本発明の吸水性樹脂粒子において、分析点数20点における走査型電子顕微鏡-エネルギー分散型X線分析により測定されるSi原子数濃度の変動係数は、水不溶性ケイ素化合物微粒子(c)の添加方法により制御されるが、0~40%である。フィード量制御、生産効率の観点から1~30%が好ましく、1~25%が更に好ましく、10~25%が特に好ましい。Si原子数濃度の変動係数は吸水性樹脂粒子の表面におけるSi原子の均一性の指標であり、低いほど均一にSi原子つまり水不溶性ケイ素化合物微粒子(c)が添加されていることを示す。変動係数が40%を超えると、フィード量のばらつきが発生し、吸収性物品の性能が変動するため好ましくない。 In the water-absorbent resin particles of the present invention, the variation coefficient of the Si atom number concentration measured by scanning electron microscope-energy dispersive X-ray analysis at an analysis point of 20 depends on the method of adding the water-insoluble silicon compound fine particles (c). Although controlled, it is 0 to 40%. From the viewpoint of feed amount control and production efficiency, it is preferably 1 to 30%, more preferably 1 to 25%, and particularly preferably 10 to 25%. The variation coefficient of the Si atom number concentration is an index of the uniformity of Si atoms on the surface of the water-absorbent resin particles, and the lower the value, the more uniformly Si atoms, that is, the water-insoluble silicon compound fine particles (c) are added. If the coefficient of variation exceeds 40%, the feed amount varies, and the performance of the absorbent article varies, which is not preferable.
 本発明の吸水性樹脂粒子は、架橋重合体(A)と、水不溶性ケイ素化合物微粒子(c)を混合することにより得ることができるが、架橋重合体(A)の表面が有機表面架橋剤(e)により架橋された構造を有する場合、水不溶性ケイ素化合物微粒子(c)の添加は、前記の有機表面架橋剤(e)での表面架橋の前、後のいずれの段階で行ってもよいが、均一性の観点から、水不溶性ケイ素化合物微粒子(c)は有機表面架橋剤(e)の添加と同時又は以前に添加することが好ましく、水不溶性ケイ素化合物微粒子(c)を有機表面架橋剤(e)の添加と同時に添加することが更に好ましい。 The water-absorbent resin particles of the present invention can be obtained by mixing the crosslinked polymer (A) and the water-insoluble silicon compound fine particles (c). The surface of the crosslinked polymer (A) is an organic surface crosslinking agent ( In the case of having a structure crosslinked by e), the water-insoluble silicon compound fine particles (c) may be added at any stage before or after the surface crosslinking with the organic surface crosslinking agent (e). From the viewpoint of uniformity, the water-insoluble silicon compound fine particles (c) are preferably added simultaneously with or before the addition of the organic surface cross-linking agent (e), and the water-insoluble silicon compound fine particles (c) are added to the organic surface cross-linking agent ( More preferably, it is added simultaneously with the addition of e).
 本発明の吸水性樹脂粒子は、更に炭素数4以下の多価アルコール(f)を含んでもよい。炭素数4以下の多価アルコール(f)としては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、グリセリン、1,4-ブタンジオール等が挙げられる。これらの内、安全性や入手の容易さの観点から、プロピレングリコール及びグリセリンが好ましく、更に好ましいのはプロピレングリコールである。(f)は1種を単独で用いても良いし、2種以上を併用しても良い。 The water absorbent resin particles of the present invention may further contain a polyhydric alcohol (f) having 4 or less carbon atoms. Examples of the polyhydric alcohol (f) having 4 or less carbon atoms include ethylene glycol, propylene glycol, 1,3-propanediol, glycerin, 1,4-butanediol and the like. Of these, propylene glycol and glycerin are preferable from the viewpoint of safety and availability, and propylene glycol is more preferable. (F) may be used individually by 1 type, and may use 2 or more types together.
 炭素数4以下の多価アルコール(f)の使用量(重量%)は、吸収性能及び通液性の観点から架橋重合体(A)の重量に基づいて、0.05~5が好ましく、更に好ましくは0.1~3、特に好ましくは0.2~2である。 The use amount (% by weight) of the polyhydric alcohol (f) having 4 or less carbon atoms is preferably 0.05 to 5 based on the weight of the cross-linked polymer (A) from the viewpoint of absorption performance and liquid permeability. Preferably it is 0.1 to 3, particularly preferably 0.2 to 2.
 炭素数4以下の多価アルコール(f)を含む場合、任意の工程で添加してもよいが、Si原子の均一性観点から、水不溶性ケイ素化合物微粒子(c)及び有機表面架橋剤(e)を同時に添加することが好ましい。(f)を用いることにより、架橋重合体(A)に対する添加液のぬれ性や浸透性を改善され、Si原子を均一にすることができる。 In the case of containing a polyhydric alcohol (f) having 4 or less carbon atoms, it may be added in any step, but from the viewpoint of uniformity of Si atoms, the water-insoluble silicon compound fine particles (c) and the organic surface crosslinking agent (e) Are preferably added simultaneously. By using (f), the wettability and permeability of the additive liquid with respect to the crosslinked polymer (A) can be improved, and Si atoms can be made uniform.
 本発明の吸水性樹脂粒子は、更に疎水性物質(g)を含有してもよい。疎水性物質(g)としては、炭化水素基を含有する疎水性物質(g1)、フッ素原子をもつ炭化水素基を含有する疎水性物質(g2)及びポリシロキサン構造をもつ疎水性物質(g3)等が含まれる。 The water absorbent resin particles of the present invention may further contain a hydrophobic substance (g). As the hydrophobic substance (g), a hydrophobic substance (g1) containing a hydrocarbon group, a hydrophobic substance (g2) containing a hydrocarbon group having a fluorine atom, and a hydrophobic substance (g3) having a polysiloxane structure Etc. are included.
 炭化水素基を含有する疎水性物質(g1)としては、ポリオレフィン樹脂、ポリオレフィン樹脂誘導体、ポリスチレン樹脂、ポリスチレン樹脂誘導体、ワックス、長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪族アルコール、長鎖脂肪族アミド及びこれらの2種以上の混合物等が含まれる。 Hydrophobic substances (g1) containing hydrocarbon groups include polyolefin resins, polyolefin resin derivatives, polystyrene resins, polystyrene resin derivatives, waxes, long chain fatty acid esters, long chain fatty acids and salts thereof, long chain aliphatic alcohols, long Chain aliphatic amides and mixtures of two or more thereof are included.
 ポリオレフィン樹脂としては、炭素数2~4のオレフィン{エチレン、プロピレン、イソブチレン及びイソプレン等}を必須構成単量体(オレフィンの含有量はポリオレフィン樹脂の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体{たとえば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(エチレン-イソブチレン)及びイソプレン等}が挙げられる。 The polyolefin resin has a C2-4 olefin {ethylene, propylene, isobutylene, isoprene, etc.} as an essential constituent monomer (the olefin content is at least 50% by weight based on the weight of the polyolefin resin). Examples thereof include polymers having an average molecular weight of 1,000 to 1,000,000 {eg, polyethylene, polypropylene, polyisobutylene, poly (ethylene-isobutylene), isoprene, etc.}.
 ポリオレフィン樹脂誘導体としては、ポリオレフィン樹脂にカルボキシ基(-COOH)や1,3-オキソ-2-オキサプロピレン(-COOCO-)等を導入した重量平均分子量1000~100万の重合体{たとえば、ポリエチレン熱減成体、ポリプロピレン熱減成体、マレイン酸変性ポリエチレン、塩素化ポリエチレン、マレイン酸変性ポリプロピレン、エチレン-アクリル酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、マレイン化ポリブタジエン、エチレン-酢酸ビニル共重合体及びエチレン-酢酸ビニル共重合体のマレイン化物等}が挙げられる。 Examples of the polyolefin resin derivative include polymers having a weight average molecular weight of 1,000 to 1,000,000 introduced by introducing a carboxyl group (—COOH), 1,3-oxo-2-oxapropylene (—COOCO—), etc. into a polyolefin resin {for example, polyethylene heat Degradation, polypropylene thermal degradation, maleic acid modified polyethylene, chlorinated polyethylene, maleic acid modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleation Polybutadiene, ethylene-vinyl acetate copolymer, and maleated product of ethylene-vinyl acetate copolymer}.
 ポリスチレン樹脂としては、重量平均分子量1000~100万の重合体等が使用できる。  As the polystyrene resin, a polymer having a weight average molecular weight of 1,000 to 1,000,000 can be used. *
ポリスチレン樹脂誘導体としては、スチレンを必須構成単量体(スチレンの含有量は、ポリスチレン誘導体の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体{たとえば、スチレン-無水マレイン酸共重合体、スチレン-ブタジエン共重合体及びスチレン-イソブチレン共重合体等}が挙げられる。 As the polystyrene resin derivative, a polymer having a weight average molecular weight of 1,000 to 1,000,000 (for example, styrene-containing styrene as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative)). Maleic anhydride copolymer, styrene-butadiene copolymer, styrene-isobutylene copolymer, etc.}.
 ワックスとしては、融点50~200℃のワックス{たとえば、パラフィンワックス、ミツロウ、カルナウバワックス及び牛脂等}が挙げられる。 Examples of the wax include waxes having a melting point of 50 to 200 ° C. (for example, paraffin wax, beeswax, carnauba wax, beef tallow, etc.).
 長鎖脂肪酸エステルとしては、炭素数8~30の脂肪酸と炭素数1~12のアルコールとのエステル{たとえば、ラウリン酸メチル、ラウリン酸エチル、ステアリン酸メチル、ステアリン酸エチル、オレイン酸メチル、オレイン酸エチル、グリセリンラウリン酸モノエステル、グリセリンステアリン酸モノエステル、グリセリンオレイン酸モノエステル、ペンタエリスリットラウリン酸モノエステル、ペンタエリスリットステアリン酸モノエステル、ペンタエリスリットオレイン酸モノエステル、ソルビットラウリン酸モノエステル、ソルビットステアリン酸モノエステル、ソルビットオレイン酸モノエステル、ショ糖パルミチン酸モノエステル、ショ糖パルミチン酸ジエステル、ショ糖パルミチン酸トリエステル、ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステル及び牛脂等}が挙げられる。 Long chain fatty acid esters include esters of fatty acids having 8 to 30 carbon atoms and alcohols having 1 to 12 carbon atoms (for example, methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, methyl oleate, oleic acid) Ethyl, glycerin lauric acid monoester, glycerin stearic acid monoester, glycerin oleic acid monoester, pentaerythritol lauric acid monoester, pentaerythritol stearate monoester, pentaerythritol oleic acid monoester, sorbit lauric acid monoester, Sorbit stearic acid monoester, sorbit oleic acid monoester, sucrose palmitic acid monoester, sucrose palmitic acid diester, sucrose palmitic acid triester, sucrose stearic acid monoester Ester, sucrose stearic acid diester, sucrose stearic acid triester, and beef tallow} and the like.
 長鎖脂肪酸及びその塩としては、炭素数8~30の脂肪酸{たとえば、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、ダイマー酸及びベヘニン酸等}が挙げられ、その塩としては亜鉛、カルシウム、マグネシウム又はアルミニウム(以下、それぞれZn、Ca、Mg、Alと略す)との塩{たとえば、パルミチン酸Ca、パルミチン酸Al、ステアリン酸Ca、ステアリン酸Mg、ステアリン酸Al等}が挙げられる。 Examples of long-chain fatty acids and salts thereof include fatty acids having 8 to 30 carbon atoms (for example, lauric acid, palmitic acid, stearic acid, oleic acid, dimer acid, and behenic acid), and salts thereof include zinc, calcium, Examples thereof include salts with magnesium or aluminum (hereinafter abbreviated as Zn, Ca, Mg, Al, respectively) {for example, palmitic acid Ca, palmitic acid Al, stearic acid Ca, stearic acid Mg, stearic acid Al, etc.}.
 長鎖脂肪族アルコールとしては、炭素数8~30の脂肪族アルコール{たとえば、ラウリルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコール等}が挙げられる。吸収性物品の耐モレ性の観点等から、パルミチルアルコール、ステアリルアルコール、オレイルアルコールが好ましく、さらに好ましくはステアリルアルコールである。 Examples of the long-chain aliphatic alcohol include aliphatic alcohols having 8 to 30 carbon atoms (for example, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, etc.). From the viewpoint of the moisture resistance of the absorbent article, palmityl alcohol, stearyl alcohol, and oleyl alcohol are preferable, and stearyl alcohol is more preferable.
 長鎖脂肪族アミドとしては、炭素数8~30の長鎖脂肪族一級アミンと炭素数1~30の炭化水素基を有するカルボン酸とのアミド化物、アンモニア又は炭素数1~7の1級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物、炭素数8~30の脂肪族鎖を少なくとも1つ有する長鎖脂肪族二級アミンと炭素数1~30のカルボン酸とのアミド化物及び炭素数1~7の脂肪族炭化水素基を2個有する二級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物が挙げられる。 Examples of the long-chain aliphatic amide include an amidated product of a long-chain aliphatic primary amine having 8 to 30 carbon atoms and a carboxylic acid having a hydrocarbon group having 1 to 30 carbon atoms, ammonia, or a primary amine having 1 to 7 carbon atoms. And amidated product of a long chain fatty acid having 8 to 30 carbon atoms, a long chain aliphatic secondary amine having at least one aliphatic chain having 8 to 30 carbon atoms and a carboxylic acid having 1 to 30 carbon atoms, and Examples thereof include amidated products of secondary amines having two aliphatic hydrocarbon groups having 1 to 7 carbon atoms and long chain fatty acids having 8 to 30 carbon atoms.
 炭素数8~30の長鎖脂肪族一級アミンと炭素数1~30の炭化水素基を有するカルボン酸とのアミド化物としては、1級アミンとカルボン酸とが1:1で反応した物と1:2で反応した物に分けられる。1:1で反応した物としては、酢酸N-オクチルアミド、酢酸N-ヘキサコシルアミド、ヘプタコサン酸N-オクチルアミド及びヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。1:2で反応したものとしては、二酢酸N-オクチルアミド、二酢酸N-ヘキサコシルアミド、ジヘプタコサン酸N-オクチルアミド及びジヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。なお、1級アミンとカルボン酸とが1:2で反応した物の場合、使用するカルボン酸は、同一でも異なっていてもよい。 As an amidation product of a long-chain aliphatic primary amine having 8 to 30 carbon atoms and a carboxylic acid having a hydrocarbon group having 1 to 30 carbon atoms, a compound obtained by reacting a primary amine and a carboxylic acid 1: 1 is used. : Divided into those reacted in 2. Examples of the product reacted at 1: 1 include acetic acid N-octylamide, acetic acid N-hexacosylamide, heptacosanoic acid N-octylamide, heptacosanoic acid N-hexacosylamide and the like. Examples of those reacted at 1: 2 include diacetate N-octylamide, diacetate N-hexacosylamide, diheptacosanoic acid N-octylamide, and diheptacosanoic acid N-hexacosylamide. In the case where the primary amine and the carboxylic acid are reacted at 1: 2, the carboxylic acid used may be the same or different.
 アンモニア又は炭素数1~7の1級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物としては、アンモニア又は1級アミンとカルボン酸とが1:1で反応した物と1:2で反応した物に分けられる。1:1で反応した物としては、ノナン酸アミド、ノナン酸メチルアミド、ノナン酸N-ヘプチルアミド、ヘプタコサン酸アミド、ヘプタコサン酸N-メチルアミド、ヘプタコサン酸N-ヘプチルアミド及びヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。1:2で反応したものとしては、ジノナン酸アミド、ジノナン酸N-メチルアミド、ジノナン酸N-ヘプチルアミド、ジオクタデカン酸アミド、ジオクタデカン酸N-エチルアミド、ジオクタデカン酸N-ヘプチルアミド、ジヘプタコサン酸アミド、ジヘプタコサン酸N-メチルアミド、ジヘプタコサン酸N-ヘプチルアミド及びジヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。なお、アンモニア又は1級アミンとカルボン酸とが1:2で反応した物としては、使用するカルボン酸は、同一でも異なっていてもよい。 Examples of amidated products of ammonia or primary amines having 1 to 7 carbon atoms and long chain fatty acids having 8 to 30 carbon atoms include those obtained by reacting ammonia or primary amines with carboxylic acids in a 1: 1 ratio. Divided into reacted products. Nonionic acid amide, nonanoic acid methylamide, nonanoic acid N-heptylamide, heptacosanoic acid amide, heptacosanoic acid N-methylamide, heptacosanoic acid N-heptylamide and heptacosanoic acid N-hexacosylamide Etc. The ones reacted in 1: 2 include dinonanoic acid amide, dinonanoic acid N-methylamide, dinonanoic acid N-heptylamide, dioctadecanoic acid amide, dioctadecanoic acid N-ethylamide, dioctadecanoic acid N-heptylamide, diheptacosanoic acid amide And diheptacosanoic acid N-methylamide, diheptacosanoic acid N-heptylamide, and diheptacosanoic acid N-hexacosylamide. In addition, as a thing which ammonia or primary amine and carboxylic acid reacted by 1: 2, the carboxylic acid to be used may be the same or different.
 炭素数8~30の脂肪族鎖を少なくとも1つ有する長鎖脂肪族二級アミンと炭素数1~30のカルボン酸とのアミド化物としては、酢酸N-メチルオクチルアミド、酢酸N-メチルヘキサコシルアミド、酢酸N-オクチルヘキサコシルアミド、酢酸N-ジヘキサコシルアミド、ヘプタコサン酸N-メチルオクチルアミド、ヘプタコサン酸N-メチルヘキサコシルアミド、ヘプタコサン酸N-オクチルヘキサコシルアミド及びヘプタコサン酸N-ジヘキサコシルアミド等が挙げられる。 Examples of amidated products of a long-chain aliphatic secondary amine having at least one aliphatic chain having 8 to 30 carbon atoms and a carboxylic acid having 1 to 30 carbon atoms include N-methyloctylamide acetate, N-methylhexacosyl acetate Amide, acetic acid N-octylhexacosylamide, acetic acid N-dihexacosylamide, heptacosanoic acid N-methyloctylamide, heptacosanoic acid N-methylhexacosylamide, heptacosanoic acid N-octylhexacosylamide and heptacosane Examples include acid N-dihexacosylamide.
 炭素数1~7の脂肪族炭化水素基を2個有する二級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物としては、ノナン酸N-ジメチルアミド、ノナン酸N-メチルヘプチルアミド、ノナン酸N-ジヘプチルアミド、ヘプタコサン酸N-ジメチルアミド、ヘプタコサン酸N-メチルヘプチルアミド及びヘプタコサン酸N-ジヘプチルアミド等が挙げられる。 Examples of amidated products of secondary amines having two aliphatic hydrocarbon groups having 1 to 7 carbon atoms and long chain fatty acids having 8 to 30 carbon atoms include nonanoic acid N-dimethylamide, nonanoic acid N-methylheptylamide, Nonanoic acid N-diheptylamide, heptacosanoic acid N-dimethylamide, heptacosanoic acid N-methylheptylamide, heptacosanoic acid N-diheptylamide and the like can be mentioned.
 フッ素原子をもつ炭化水素基を含有する疎水性物質(g2)としては、パーフルオロアルカン、パーフルオロアルケン、パーフルオロアリール、パーフルオロアルキルエーテル、パーフルオロアルキルカルボン酸、パーフルオロアルキルアルコール及びこれらの2種以上の混合物等が含まれる。 Examples of the hydrophobic substance (g2) containing a hydrocarbon group having a fluorine atom include perfluoroalkane, perfluoroalkene, perfluoroaryl, perfluoroalkyl ether, perfluoroalkyl carboxylic acid, perfluoroalkyl alcohol, and those 2 A mixture of seeds or more is included.
 ポリシロキサン構造をもつ疎水性物質(g3)としては、ポリジメチルシロキサン、ポリエーテル変性ポリシロキサン{ポリオキシエチレン変性ポリシロキサン及びポリ(オキシエチレン・オキシプロピレン)変性ポリシロキサン等}、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン、アミノ変性ポリシロキサン、アルコキシ変性ポリシロキサン等及びこれらの混合物等が含まれる。 Examples of the hydrophobic substance (g3) having a polysiloxane structure include polydimethylsiloxane, polyether-modified polysiloxane {polyoxyethylene-modified polysiloxane and poly (oxyethylene / oxypropylene) -modified polysiloxane, etc.}, carboxy-modified polysiloxane, Epoxy-modified polysiloxane, amino-modified polysiloxane, alkoxy-modified polysiloxane and the like, and mixtures thereof are included.
 疎水性物質(g)のHLB値は、1~10が好ましく、さらに好ましくは2~8、特に好ましくは3~7である。この範囲であると、初期膨潤時の耐ブロッキング性がさらに良好となる。なお、HLB値は、親水性-疎水性バランス(HLB)値を意味し、小田法(新・界面活性剤入門、197頁、藤本武彦、三洋化成工業株式会社発行、1981年発行)により求められる。 The HLB value of the hydrophobic substance (g) is preferably 1 to 10, more preferably 2 to 8, particularly preferably 3 to 7. Within this range, the blocking resistance during initial swelling is further improved. The HLB value means a hydrophilic-hydrophobic balance (HLB) value, and is determined by the Oda method (new introduction to surfactants, page 197, Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd., published in 1981). .
 疎水性物質(g)のうち、初期膨潤時の耐ブロッキング性の観点から、炭化水素基を含有する疎水性物質(g1)が好ましく、より好ましくは長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪族アルコール並びに長鎖脂肪族アミドであり、さらに好ましくはソルビットステアリン酸エステル、ショ糖ステアリン酸エステル、ステアリン酸、ステアリン酸Mg、ステアリン酸Ca、ステアリン酸Zn及びステアリン酸Al、特に好ましくはショ糖ステアリン酸エステル及びステアリン酸Mgであり、最も好ましくはショ糖ステアリン酸エステルである。 Of the hydrophobic substances (g), from the viewpoint of blocking resistance at the time of initial swelling, a hydrophobic substance (g1) containing a hydrocarbon group is preferred, more preferably a long-chain fatty acid ester, a long-chain fatty acid and a salt thereof, Long chain aliphatic alcohols and long chain aliphatic amides, more preferably sorbite stearate, sucrose stearate, stearic acid, Mg stearate, Ca stearate, Zn stearate and Al stearate, particularly preferably Sucrose stearate and Mg stearate, most preferably sucrose stearate.
 疎水性物質(g)の使用量(重量%)は、吸収性能及び初期膨潤時の耐ブロッキング性の観点から架橋重合体(A)の重量に基づいて、0.001~1が好ましく、更に好ましくは0.005~0.5、特に好ましくは0.01~0.3である。 The amount of use (% by weight) of the hydrophobic substance (g) is preferably 0.001 to 1, more preferably, based on the weight of the crosslinked polymer (A) from the viewpoints of absorption performance and blocking resistance during initial swelling. Is 0.005 to 0.5, particularly preferably 0.01 to 0.3.
 疎水性物質(g)を含む場合、任意の工程で添加してもよいが、吸収性能の観点から水不溶性ケイ素化合物微粒子(c)の添加より前に添加されることが好ましく、架橋重合体(A)の表面が有機表面架橋剤(e)により架橋された構造を有する場合、疎水性物質(g)は前記の有機表面架橋剤(e)での表面架橋の前に添加されることが更に好ましい。 When the hydrophobic substance (g) is contained, it may be added in any step, but it is preferably added before the addition of the water-insoluble silicon compound fine particles (c) from the viewpoint of absorption performance. In the case where the surface of A) has a structure crosslinked with the organic surface crosslinking agent (e), the hydrophobic substance (g) is further added before the surface crosslinking with the organic surface crosslinking agent (e). preferable.
 本発明の吸水性樹脂粒子は、必要に応じて、添加剤(例えば、公知(特開2003-225565号及び特開2006-131767号等に記載)の防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、キレート剤、着色剤、芳香剤、消臭剤、通液性向上剤及び有機質繊維状物等)を含むこともできる。これらの添加剤を含有させる場合、添加剤の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0.001~10が好ましく、更に好ましくは0.01~5、特に好ましくは0.05~1、最も好ましくは0.1~0.5である。 The water-absorbent resin particles of the present invention may contain, as necessary, additives (for example, known preservatives, fungicides, antibacterial agents, oxidation agents (described in JP-A No. 2003-225565 and JP-A No. 2006-131767, etc.)) An inhibitor, an ultraviolet absorber, a chelating agent, a colorant, a fragrance, a deodorant, a liquid permeability improver, and an organic fibrous material). When these additives are contained, the content (% by weight) of the additive is preferably 0.001 to 10, more preferably 0.01 to 5, particularly preferably based on the weight of the crosslinked polymer (A). Preferably it is 0.05 to 1, most preferably 0.1 to 0.5.
 本発明の製造方法は、本発明の吸水性樹脂粒子の製造方法であって、水溶性ビニルモノマー(a1)と架橋剤(b)とを必須構成単位とする架橋重合体(A)と水不溶性ケイ素化合物微粒子(c)とを、縦型混合機で乱流混合により混合する混合工程を有する。上記混合工程においては、好ましくはフレキソミックス型縦型混合機を使用する乱流混合により混合する。その際、前記架橋重合体(A)の表面が有機表面架橋剤(e)により架橋された構造を有する場合、前記架橋重合体(A)を、好ましくは、水不溶性ケイ素化合物微粒子(c)または水不溶性ケイ素化合物微粒子(c)の水性コロイド液と表面架橋剤を同時に添加する。水不溶性ケイ素化合物微粒子(c)または水不溶性ケイ素化合物微粒子(c)の水性コロイド液の具体例は前述の通りである。それらの添加量や添加方法等についても前述の通りであるが、通液性の観点から、架橋重合体(A)に水不溶性ケイ素化合物微粒子(c)の水性コロイド液、有機表面架橋剤(e)、炭素数4以下の多価アルコールをフレキソミックス型縦型混合機で混合しながらスプレーで同時に添加した後、加熱処理を行うことが更に好ましい。 The production method of the present invention is a method for producing the water-absorbent resin particles of the present invention, wherein the crosslinked polymer (A) having water-soluble vinyl monomer (a1) and crosslinking agent (b) as essential structural units and water-insoluble. A mixing step of mixing the silicon compound fine particles (c) with a vertical mixer by turbulent mixing; In the mixing step, the mixing is preferably performed by turbulent mixing using a flexographic type vertical mixer. At that time, when the surface of the crosslinked polymer (A) has a structure crosslinked by an organic surface crosslinking agent (e), the crosslinked polymer (A) is preferably the water-insoluble silicon compound fine particles (c) or The aqueous colloidal solution of the water-insoluble silicon compound fine particles (c) and the surface cross-linking agent are added simultaneously. Specific examples of the water-insoluble silicon compound fine particles (c) or the aqueous colloidal liquid of the water-insoluble silicon compound fine particles (c) are as described above. The addition amount and addition method thereof are also as described above. From the viewpoint of liquid permeability, an aqueous colloidal solution of water-insoluble silicon compound fine particles (c), an organic surface crosslinking agent (e It is more preferable that the polyhydric alcohol having 4 or less carbon atoms is simultaneously added by spraying while being mixed by a flexographic type vertical mixer, and then heat-treated.
 本発明の吸水性樹脂粒子及び本発明の製造方法により得られる吸水性樹脂粒子(以下、これらを区別せず本発明の吸水性樹脂粒子と称す)の保水量(g/g)は、後述する方法で測定することができ、25~55が好ましく、30~50が更に好ましく、35~45が特に好ましい。保水量がこの範囲より低いとオムツの吸収量が低くなり、この範囲より高いと荷重下での吸収量が低くなる。保水量は、架橋剤(b)、有機表面架橋剤(e)の使用量(重量%)で適宜調整することができる。 The water retention amount (g / g) of the water-absorbent resin particles of the present invention and the water-absorbent resin particles obtained by the production method of the present invention (hereinafter referred to as the water-absorbent resin particles of the present invention without distinguishing them) will be described later. 25 to 55 is preferable, 30 to 50 is more preferable, and 35 to 45 is particularly preferable. If the water retention amount is lower than this range, the diaper absorption amount is low, and if it is higher than this range, the absorption amount under load is low. The amount of water retention can be appropriately adjusted by the amount (% by weight) used of the crosslinking agent (b) and the organic surface crosslinking agent (e).
 本発明の吸水性樹脂粒子のゲル通液速度(ml/分)は、WO2016/143736等に開示される方法で測定することができ、オムツの吸収速度の観点から好ましくは5~300であり、10~280が更に好ましく、特に好ましくは、15~250である。ゲル通液速度は保水量と相反することが経験的に知られており、オムツの構成により高保水量が求められる場合と高ゲル通液速度が求められる場合とがある。 The gel flow rate (ml / min) of the water-absorbent resin particles of the present invention can be measured by the method disclosed in WO2016 / 143737, etc., and is preferably 5 to 300 from the viewpoint of the diaper absorption rate, 10 to 280 is more preferable, and 15 to 250 is particularly preferable. It is empirically known that the gel flow rate conflicts with the water retention amount, and there are cases where a high water retention amount is required and a high gel flow rate is required depending on the configuration of the diaper.
 本発明の吸水性樹脂粒子の見掛け密度(g/ml)は、0.50~0.80が好ましく、更に好ましくは0.52~0.75、特に好ましくは0.54~0.70である。この範囲であると、吸収性物品の耐カブレ性が更に良好となる。吸水性樹脂粒子の見掛け密度は、JIS K7365:1999に準拠して、25℃で測定される。 The apparent density (g / ml) of the water-absorbent resin particles of the present invention is preferably 0.50 to 0.80, more preferably 0.52 to 0.75, and particularly preferably 0.54 to 0.70. . Within this range, the anti-fogging property of the absorbent article is further improved. The apparent density of the water absorbent resin particles is measured at 25 ° C. according to JIS K7365: 1999.
 本発明の吸水性樹脂粒子の吸湿ブロッキング率は後述の方法で測定することができ、0~50%が好ましく、更に好ましくは0~30%、特に好ましくは0~20%である。この範囲であると、作業環境によらずブロッキングの問題が生じにくい。 The moisture absorption blocking rate of the water-absorbent resin particles of the present invention can be measured by the method described later, and is preferably 0 to 50%, more preferably 0 to 30%, and particularly preferably 0 to 20%. Within this range, blocking problems are unlikely to occur regardless of the work environment.
 本発明の吸水性樹脂粒子を用いて吸収体を得ることができる。吸収体としては、吸水性樹脂粒子を単独で用いても良く、他の材料と共に用いて吸収体としても良い。
 他の材料としては繊維状物等が挙げられる。繊維状物と共に用いた場合の吸収体の構造及び製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等)と同様である。
An absorbent body can be obtained using the water-absorbent resin particles of the present invention. As the absorber, water-absorbing resin particles may be used alone or may be used together with other materials as an absorber.
Examples of other materials include fibrous materials. The structure and production method of the absorbent when used together with the fibrous material are the same as those known (JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.). is there.
 上記繊維状物として好ましいのは、セルロース系繊維、有機系合成繊維及びセルロース系繊維と有機系合成繊維との混合物である。 Preferred as the fibrous material are cellulose fibers, organic synthetic fibers, and a mixture of cellulose fibers and organic synthetic fibers.
 セルロース系繊維としては、例えばフラッフパルプ等の天然繊維、ビスコースレーヨン、アセテート及びキュプラ等のセルロース系化学繊維が挙げられる。このセルロース系天然繊維の原料(針葉樹及び広葉樹等)、製造方法(ケミカルパルプ、セミケミカルパルプ、メカニカルパルプ及びCTMP等)及び漂白方法等は特に限定されない。 Examples of the cellulosic fibers include natural fibers such as fluff pulp, and cellulosic chemical fibers such as viscose rayon, acetate, and cupra. There are no particular restrictions on the raw materials (conifers, hardwoods, etc.), production methods (chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.), bleaching methods, etc. of this cellulose-based natural fiber.
 有機系合成繊維としては、例えばポリプロピレン系繊維、ポリエチレン系繊維、ポリアミド系繊維、ポリアクリロニトリル系繊維、ポリエステル系繊維、ポリビニルアルコール系繊維、ポリウレタン系繊維及び熱融着性複合繊維(融点の異なる上記繊維の少なくとも2種を鞘芯型、偏芯型、並列型等に複合化された繊維、上記繊維の少なくとも2種をブレンドした繊維及び上記繊維の表層を改質した繊維等)が挙げられる。 Examples of organic synthetic fibers include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above fibers having different melting points). And a fiber obtained by compounding at least two of the above into a sheath core type, an eccentric type, a parallel type, and the like, a fiber obtained by blending at least two kinds of the above fibers, and a fiber obtained by modifying the surface layer of the above fibers).
 これらの繊維状物の内で好ましいのは、セルロース系天然繊維、ポリプロピレン系繊維、ポリエチレン系繊維、ポリエステル系繊維、熱融着性複合繊維及びこれらの混合繊維であり、更に好ましいのは、得られた吸水剤の吸水後の形状保持性に優れるという点で、フラッフパルプ、熱融着性複合繊維及びこれらの混合繊維である。 Among these fibrous materials, preferred are cellulose-based natural fibers, polypropylene-based fibers, polyethylene-based fibers, polyester-based fibers, heat-fusible conjugate fibers, and mixed fibers thereof, and more preferable are obtained. The fluff pulp, the heat-fusible conjugate fiber, and the mixed fiber thereof are preferable in that the water-absorbing agent has excellent shape retention after water absorption.
 上記繊維状物の長さ、太さについては特に限定されず、長さは1~200mm、太さは0.1~100デニールの範囲であれば好適に使用することができる。形状についても繊維状であれば特に限定されず、細い円筒状、スプリットヤーン状、ステープル状、フィラメント状及びウェブ状等が例示される。 The length and thickness of the fibrous material are not particularly limited and can be suitably used as long as the length is 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier. The shape is not particularly limited as long as it is fibrous, and examples thereof include a thin cylindrical shape, a split yarn shape, a staple shape, a filament shape, and a web shape.
 吸水性樹脂粒子を、繊維状物と共に吸収体とする場合、吸水性樹脂粒子と繊維の重量比率(吸水性樹脂粒子の重量/繊維の重量)は40/60~90/10が好ましく、更に好ましくは70/30~80/20である。 When the water-absorbent resin particles are used as an absorbent together with the fibrous material, the weight ratio of the water-absorbent resin particles to the fibers (the weight of the water-absorbent resin particles / the weight of the fibers) is preferably 40/60 to 90/10, more preferably Is 70/30 to 80/20.
 本発明の吸水性樹脂を用いて吸収性物品を得ることができる。具体的には、上記吸収体を用いる。吸収性物品としては、紙おむつや生理用ナプキン等の衛生用品のみならず、後述する各種水性液体の吸収や保持剤用途、ゲル化剤用途等の各種用途に使用されるものとして適用可能である。吸収性物品の製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等に記載のもの)と同様である。 An absorbent article can be obtained using the water absorbent resin of the present invention. Specifically, the absorber is used. The absorbent article is applicable not only to sanitary articles such as paper diapers and sanitary napkins, but also to various uses such as absorption of various aqueous liquids described below, use as a retention agent, and use as a gelling agent. The manufacturing method and the like of the absorbent article are the same as known ones (described in JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.).
 以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、部は重量部、%は重量%を示す。なお、吸水性樹脂粒子の生理食塩水に対する保水量、荷重下吸収量、吸湿ブロッキング率、表面Si量、表面Si量の変動係数、フィード量およびフィード量の変動係数は以下の方法により測定した。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, parts indicate parts by weight and% indicates% by weight. The water retention amount of the water absorbent resin particles with respect to physiological saline, the absorption amount under load, the moisture absorption blocking rate, the surface Si amount, the variation coefficient of the surface Si amount, the feed amount and the variation coefficient of the feed amount were measured by the following methods.
<保水量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網で作製したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水(食塩濃度0.9%)1,000ml中に無撹拌下、1時間浸漬した後引き上げて、15分間吊るして水切りした。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバックを含めた重量(h1)を測定し次式から保水量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
保水量(g/g)=(h1)-(h2)
 なお、(h2)は、測定試料の無い場合について上記と同様の操作により計測したティーバックの重量である。
<Measurement method of water retention amount>
1.00 g of a measurement sample is placed in a tea bag (20 cm long, 10 cm wide) made of a nylon net having a mesh size of 63 μm (JIS Z8801-1: 2006), and 1,000 ml of physiological saline (saline concentration 0.9%). The sample was immersed for 1 hour without stirring and then pulled up, suspended for 15 minutes and drained. Thereafter, each tea bag was placed in a centrifuge, centrifuged at 150 G for 90 seconds to remove excess physiological saline, and the weight (h1) including the tea bag was measured to obtain the water retention amount from the following formula. In addition, the temperature of the used physiological saline and measurement atmosphere was 25 degreeC +/- 2 degreeC.
Water retention amount (g / g) = (h1) − (h2)
In addition, (h2) is the weight of the tea bag measured by the same operation as described above when there is no measurement sample.
<荷重下吸収量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網を底面に貼った円筒型プラスチックチューブ(内径:25mm、高さ:34mm)内に、30メッシュふるいと60メッシュふるいを用いて250~500μmの範囲にふるい分けした測定試料0.16gを秤量し、円筒型プラスチックチューブを垂直にしてナイロン網上に測定試料がほぼ均一厚さになるように整えた後、この測定試料の上に分銅(重量:210.6g、外径:24.5mm、)を乗せた。この円筒型プラスチックチューブ全体の重量(M1)を計量した後、生理食塩水(食塩濃度0.9%)60mlの入ったシャーレ(直径:12cm)の中に測定試料及び分銅の入った円筒型プラスチックチューブを垂直に立ててナイロン網側を下面にして浸し、60分静置した。60分後に、円筒型プラスチックチューブをシャーレから引き上げ、これを斜めに傾けて底部に付着した水を一箇所に集めて水滴として垂らすことで余分な水を除去した後、測定試料及び分銅の入った円筒型プラスチックチューブ全体の重量(M2)を計量し、次式から荷重下吸収量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
荷重下吸収量(g/g)={(M2)-(M1)}/0.16
<Measurement method of absorption under load>
Using a 30-mesh sieve and a 60-mesh sieve in a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) with a 63 μm mesh (JIS Z8801-1: 2006) nylon net attached to the bottom, 250-500 μm Weighing 0.16 g of the measurement sample screened in the range, aligning the cylindrical plastic tube vertically and adjusting the measurement sample to a substantially uniform thickness on a nylon mesh, and then weighing on the measurement sample (weight: 210.6 g, outer diameter: 24.5 mm). After measuring the weight (M1) of the entire cylindrical plastic tube, a cylindrical plastic containing a measurement sample and a weight in a petri dish (diameter: 12 cm) containing 60 ml of physiological saline (salt concentration 0.9%). The tube was set up vertically and immersed with the nylon mesh side as the bottom surface and allowed to stand for 60 minutes. After 60 minutes, the cylindrical plastic tube was pulled up from the petri dish, and the slant was tilted to collect the water adhering to the bottom in one place and dropped as water droplets. The weight (M2) of the entire cylindrical plastic tube was weighed, and the absorbed amount under load was determined from the following equation. In addition, the temperature of the used physiological saline and measurement atmosphere was 25 degreeC +/- 2 degreeC.
Absorption under load (g / g) = {(M2) − (M1)} / 0.16
 <吸湿ブロッキング率の測定法>
 目開き850μmの金網(JIS  Z8801-1:2001)をパスした測定試料10gを直径5cmのアルミ製の円柱皿に均一に入れ、40±1℃、相対湿度80±5%の恒温恒湿槽中で3時間静置した。3時間静置後の測定試料の総重量(a)を測定後、これを目開き1400μmの金網(JIS  Z8801-1:2001)で5回タッピングして篩い、吸湿によりブロッキングして目開き1400μmの金網上に残った樹脂粒子の重量(b)を測定し、次式から吸湿ブロッキング率を求めた。
吸湿ブロッキング率(%)=(b/a)×100
<Measurement method of moisture absorption blocking rate>
10 g of the measurement sample passed through a 850 μm wire mesh (JIS Z8801-1: 2001) is uniformly placed in a 5 cm diameter aluminum cylindrical dish and placed in a constant temperature and humidity chamber of 40 ± 1 ° C. and relative humidity of 80 ± 5%. And left for 3 hours. After measuring the total weight (a) of the measurement sample after standing for 3 hours, the sample was tapped five times with a wire mesh (JIS Z8801-1: 2001) having an opening of 1400 μm, blocked by moisture absorption and having an opening of 1400 μm. The weight (b) of the resin particles remaining on the wire mesh was measured, and the moisture absorption blocking rate was determined from the following formula.
Moisture absorption blocking rate (%) = (b / a) × 100
<Si原子数濃度の平均及びSi原子数濃度の変動係数の測定方法>
 カーボンテープを貼った試料台に30メッシュふるいと60メッシュふるいを用いて250~500μmの範囲にふるい分けした測定試料を10粒以上、粒子同士が重ならないように固定し、アメテック社製エネルギー分散型X線分析(EDS分析)装置OctaneEliteを付属した、FEI社製電界放出型走査電子顕微鏡「QuantaFEG250FEG」にセットした。加速電圧15eV、倍率を100倍にし、粒子1粒を画面に表示し、粒子内の範囲を面分析でEDS分析を行った。
 1種類の測定試料につき無作為に20粒の測定を行い、検出されたSi原子数%(atomic%)の算術平均値を測定試料のSi原子数濃度の平均とし、Si原子数%の標準偏差を平均値で除した値をSi原子数濃度の変動係数とした。
<Measuring method of average Si atom number concentration and variation coefficient of Si atom number concentration>
Fix 10 or more measurement samples that have been screened to a range of 250-500μm using a 30-mesh screen and a 60-mesh screen on a sample table with carbon tape, so that the particles do not overlap each other. It was set in a field emission type scanning electron microscope “Quanta FEG250 FEG” manufactured by FEI and equipped with a line analysis (EDS analysis) apparatus OctaneElite. The acceleration voltage was 15 eV, the magnification was 100 times, one particle was displayed on the screen, and the range within the particle was subjected to EDS analysis by surface analysis.
20 samples are randomly measured for one type of measurement sample, and the arithmetic average value of the detected number of Si atoms% (atomic%) is taken as the average of the Si atom number concentration of the measured sample, and the standard deviation of the number of Si atoms% The value obtained by dividing the value by the average value was taken as the variation coefficient of the Si atom number concentration.
<フィード量およびフィード量の変動係数の測定方法>
 アキュレートフィーダー(モデル100、軸:スプリングタイプ、クマエンジニアリング社製)のホッパーに測定試料500gを入れた。サンプル供給口の先に金属トレイを乗せた電子天秤を設置し、FeedRateを900にセットしサンプル供給を開始した。トレイへの積算供給量が50gになった時点から10秒ごとに供給量を記録し200秒間フィード量を記録した。200秒間の間に供給された量を1分あたりに換算した値をフィード量(g/min)、10秒ごとの供給量の標準偏差を平均値で割った値をフィード量の変動係数とした。
<Measuring method of feed amount and variation coefficient of feed amount>
500 g of a measurement sample was placed in a hopper of an accurate feeder (model 100, shaft: spring type, manufactured by Kuma Engineering Co., Ltd.). An electronic balance with a metal tray placed on the tip of the sample supply port was set, FeedRate was set to 900, and sample supply was started. The supply amount was recorded every 10 seconds from the time when the integrated supply amount to the tray reached 50 g, and the feed amount was recorded for 200 seconds. A value obtained by converting the amount supplied for 200 seconds per minute is the feed amount (g / min), and a value obtained by dividing the standard deviation of the supply amount every 10 seconds by the average value is defined as a variation coefficient of the feed amount. .
<実施例1>
 アクリル酸(a1-1){三菱化学株式会社製、純度100%}131部、架橋剤(b-1){ペンタエリスリトールトリアリルエーテル、株式会社大阪ソーダ製}0.44部及び脱イオン水362部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.5部、2%アスコルビン酸水溶液1部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液1部を添加・混合して重合を開始させた。混合物の温度が80℃に達した後、80±2℃で約5時間重合することにより含水ゲルを得た。
<Example 1>
Acrylic acid (a1-1) {Mitsubishi Chemical Corporation, purity 100%} 131 parts, Cross-linking agent (b-1) {Pentaerythritol triallyl ether, Osaka Soda Co., Ltd.} 0.44 parts and deionized water 362 The part was kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.5 part of 1% aqueous hydrogen peroxide solution, 1 part of 2% aqueous ascorbic acid solution and 2% 2,2′-azobisamidinopropane Polymerization was initiated by adding and mixing 1 part of an aqueous dihydrochloride solution. After the temperature of the mixture reached 80 ° C., a water-containing gel was obtained by polymerization at 80 ± 2 ° C. for about 5 hours.
 次にこの含水ゲルをミンチ機(ROYAL社製12VR-400K)で細断しながら、48.5%水酸化ナトリウム水溶液108部を添加して混合・中和し、中和ゲル(中和度:72%)を得た。更に中和した含水ゲルを通気型乾燥機{200℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、架橋重合体(A-1)を得た。 Next, this water-containing gel was shredded with a mincing machine (12VR-400K manufactured by ROYAL), and mixed and neutralized by adding 108 parts of a 48.5% aqueous sodium hydroxide solution to neutralize the gel (degree of neutralization: 72%). Further, the neutralized hydrogel was dried with a ventilation dryer {200 ° C., wind speed 2 m / sec} to obtain a dried product. The dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), and then sieved to adjust the particle size to a particle size range of 710 to 150 μm to obtain a crosslinked polymer (A-1).
 ついで、得られた架橋重合体(A-1)100部を高速攪拌(ホソカワミクロン社製フレキソミックスFXD100:回転数3000rpm、フィード速度50kg/h)しながら、これに水不溶性ケイ素化合物微粒子(c)としてのKlebosol30cal25(メルク社製コロイダルシリカ、固形分30%、平均一次粒径25nm)1.0部、有機表面架橋剤(e)としてのエチレングリコールジグリシジルエーテル0.1部、炭素数4以下の多価アルコール(f)としてのプロピレングリコール1.0部、及び水1.6部を混合した液をスプレーノズルから噴霧添加し、均一混合した後、130℃で30分間加熱して、本発明の吸水性樹脂粒子(P-1)を得た。なお、(P-1)の見かけ密度は0.58g/mlであった。 Subsequently, 100 parts of the resulting crosslinked polymer (A-1) was stirred at high speed (Flexomix FXD100 manufactured by Hosokawa Micron Corporation: rotation speed 3000 rpm, feed rate 50 kg / h), and water-insoluble silicon compound fine particles (c) were added thereto. Klebosol 30cal25 (Merck colloidal silica, solid content 30%, average primary particle size 25 nm) 1.0 part, ethylene glycol diglycidyl ether 0.1 part as organic surface crosslinking agent (e), carbon number 4 or less A liquid obtained by mixing 1.0 part of propylene glycol as a monohydric alcohol (f) and 1.6 parts of water is spray-added from a spray nozzle and mixed uniformly, and then heated at 130 ° C. for 30 minutes to obtain the water absorption Resin particles (P-1) were obtained. The apparent density of (P-1) was 0.58 g / ml.
<実施例2>
 実施例1と同様にして得られた架橋重合体(A-1)100部を高速攪拌(ホソカワミクロン社製フレキソミックスFXD100:回転数3000rpm、フィード速度50kg/h)しながら、これに、有機表面架橋剤(e)としてのエチレングリコールジグリシジルエーテル0.1部、炭素数4以下の多価アルコール(f)としてのプロピレングリコール1.0部、及び水1.6部を混合した液をスプレーノズルから噴霧添加し、均一混合した後、130℃で30分間加熱し、室温まで冷却した後、更に高速攪拌(ホソカワミクロン社製フレキソミックスFXD100:回転数3000rpm、フィード速度50kg/h)しながら水不溶性ケイ素化合物微粒子(c)としてのKlebosol30cal25(メルク社製コロイダルシリカ、固形分30%、平均一次粒径25nm)1.0部、炭素数4以下の多価アルコール(f)としてのプロピレングリコール0.5部、及び水0.5部を混合した液をスプレーノズルから噴霧添加し均一混合した後、80℃30分加熱して、本発明の吸水性樹脂粒子(P-2)を得た。なお、(P-2)の見かけ密度は0.58g/mlであった。
<Example 2>
While 100 parts of the crosslinked polymer (A-1) obtained in the same manner as in Example 1 was stirred at high speed (Flexomix FXD100 manufactured by Hosokawa Micron Corporation: rotation speed 3000 rpm, feed rate 50 kg / h) From a spray nozzle, a solution obtained by mixing 0.1 part of ethylene glycol diglycidyl ether as the agent (e), 1.0 part of propylene glycol as the polyhydric alcohol (f) having 4 or less carbon atoms, and 1.6 parts of water After spray addition, uniform mixing, heating at 130 ° C. for 30 minutes, cooling to room temperature, water-insoluble silicon compound while further stirring at high speed (Flexomix FXD100 manufactured by Hosokawa Micron Corporation: rotation speed 3000 rpm, feed rate 50 kg / h) Klebosol 30cal25 as a fine particle (c) Sprayed with a mixture of 1.0 part of mosquito, solid content 30%, average primary particle size 25 nm), 0.5 part of propylene glycol as polyhydric alcohol (f) having 4 or less carbon atoms, and 0.5 part of water After spray addition from a nozzle and mixing uniformly, the mixture was heated at 80 ° C. for 30 minutes to obtain water-absorbent resin particles (P-2) of the present invention. The apparent density of (P-2) was 0.58 g / ml.
<実施例3>
 実施例1と同様にして得られた架橋重合体(A-1)100部を高速攪拌(ホソカワミクロン社製フレキソミックスFXD100:回転数3000rpm、フィード速度50kg/h)しながら、これに、有機表面架橋剤(e)としてのエチレングリコールジグリシジルエーテル0.1部、炭素数4以下の多価アルコール(f)としてのプロピレングリコール1.0部、及び水1.6部を混合した液をスプレーノズルから噴霧添加し、均一混合した後、130℃で30分間加熱し、室温まで冷却した後、更に高速攪拌(ホソカワミクロン社製フレキソミックスFXD100:回転数3000rpm、フィード速度50kg/h)しながら水不溶性ケイ素化合物微粒子(c)としてのAerosil200(日本アエロジル社製ヒュームドシリカ、平均一次粒径12nm)0.1部を炭素数4以下の多価アルコール(f)としてのプロピレングリコール0.5部及び水0.5部を混合した液に分散した液をスプレーノズルから噴霧添加し均一混合した後、80℃30分加熱して、本発明の吸水性樹脂粒子(P-3)を得た。なお、(P-3)の見かけ密度は0.59g/mlであった。
<Example 3>
While 100 parts of the crosslinked polymer (A-1) obtained in the same manner as in Example 1 was stirred at high speed (Flexomix FXD100 manufactured by Hosokawa Micron Corporation: rotation speed 3000 rpm, feed rate 50 kg / h) From a spray nozzle, a solution obtained by mixing 0.1 part of ethylene glycol diglycidyl ether as the agent (e), 1.0 part of propylene glycol as the polyhydric alcohol (f) having 4 or less carbon atoms, and 1.6 parts of water After spray addition, uniform mixing, heating at 130 ° C. for 30 minutes, cooling to room temperature, water-insoluble silicon compound while further stirring at high speed (Flexomix FXD100 manufactured by Hosokawa Micron Corporation: rotation speed 3000 rpm, feed rate 50 kg / h) Aerosil 200 as fine particles (c) (Humedosil manufactured by Nippon Aerosil Co., Ltd.) The average primary particle size of 12 nm) is sprayed from a spray nozzle by dispersing 0.1 part of propylene glycol as a polyhydric alcohol (f) having 4 or less carbon atoms and 0.5 part of water. After the addition and uniform mixing, the mixture was heated at 80 ° C. for 30 minutes to obtain the water-absorbent resin particles (P-3) of the present invention. The apparent density of (P-3) was 0.59 g / ml.
<実施例4>
 実施例1から有機表面架橋剤(e)としてのエチレングリコールジグリシジルエーテル0.1部を0.03部に、炭素数4以下の多価アルコール(f)としてのプロピレングリコール1.0部を0.60部に、水1.6部を0.80部に変更した以外は同様に本発明の吸水性樹脂粒子(P-4)を得た。なお、(P-4)の見かけ密度は0.58g/mlであった。
<Example 4>
From Example 1, 0.1 part of ethylene glycol diglycidyl ether as the organic surface crosslinking agent (e) is 0.03 part, and 1.0 part of propylene glycol as the polyhydric alcohol (f) having 4 or less carbon atoms is 0. The water-absorbent resin particles (P-4) of the present invention were obtained in the same manner except that 1.6 parts of water was changed to 0.80 parts at 60 parts. The apparent density of (P-4) was 0.58 g / ml.
<実施例5>
 実施例1から水不溶性ケイ素化合物微粒子(c)としてのKlebosol30cal25(メルク社製コロイダルシリカ、固形分30%、平均一次粒径25nm)1.0部を0.17部に、有機表面架橋剤(e)としてのエチレングリコールジグリシジルエーテル0.1部を0.01部に、炭素数4以下の多価アルコール(f)としてのプロピレングリコール1.0部を0.30部に、水1.6部を0.30部に変更した以外は同様に本発明の吸水性樹脂粒子(P-5)を得た。なお、(P-5)の見かけ密度は0.59g/mlであった。
<Example 5>
From Example 1, 1.0 part of Klebosol 30cal25 (colloidal silica manufactured by Merck Co., Ltd., solid content 30%, average primary particle size 25 nm) as water-insoluble silicon compound fine particles (c) was changed to 0.17 part, and an organic surface crosslinking agent (e ) 0.1 part of ethylene glycol diglycidyl ether as 0.01), 1.0 part of propylene glycol as polyhydric alcohol (f) having 4 or less carbon atoms, 0.30 part, 1.6 parts of water The water-absorbent resin particles (P-5) of the present invention were obtained in the same manner except that was changed to 0.30 part. The apparent density of (P-5) was 0.59 g / ml.
<実施例6>
 実施例1から水不溶性ケイ素化合物微粒子(c)としてのKlebosol30cal25(メルク社製コロイダルシリカ、固形分30%、平均一次粒径25nm)1.0部を1.5部に変更した以外は同様に本発明の吸水性樹脂粒子(P-6)を得た。なお、(P-6)の見かけ密度は0.58g/mlであった。
<Example 6>
The same procedure as in Example 1 except that 1.0 part of Klebosol 30cal25 (Merck colloidal silica, solid content 30%, average primary particle size 25 nm) as water-insoluble silicon compound fine particles (c) was changed to 1.5 parts. Inventive water-absorbing resin particles (P-6) were obtained. The apparent density of (P-6) was 0.58 g / ml.
<実施例7>
 (P-1)100重量部をビニール袋に入れ、水不溶性ケイ素化合物微粒子(c)としてのAerosil200(日本アエロジル社製ヒュームドシリカ、平均一次粒径12nm)0.1部を加えてで揉みこむことでよく混合し本発明の吸水性樹脂粒子(P-7)を得た。なお、(P-7)の見かけ密度は0.57g/mlであった。
<Example 7>
(P-1) Put 100 parts by weight in a plastic bag and add 0.1 part Aerosil 200 (fumed silica manufactured by Nippon Aerosil Co., Ltd., average primary particle size 12 nm) as water-insoluble silicon compound fine particles (c). Then, the water-absorbent resin particles (P-7) of the present invention were obtained. The apparent density of (P-7) was 0.57 g / ml.
<実施例8>
 アクリル酸(a1-1){三菱化学株式会社製、純度100%}155部、架橋剤(b-1){ペンタエリスリトールトリアリルエーテル、株式会社大阪ソーダ製}0.54部及び脱イオン水335部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.6部、2%アスコルビン酸水溶液1.2部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液8部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより含水ゲルを得た。
<Example 8>
Acrylic acid (a1-1) {manufactured by Mitsubishi Chemical Corporation, purity 100%} 155 parts, crosslinking agent (b-1) {pentaerythritol triallyl ether, Osaka Soda Co., Ltd.} 0.54 parts and deionized water 335 The part was kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.6 part of 1% aqueous hydrogen peroxide solution, 1.2 parts of 2% aqueous ascorbic acid solution and 2% 2,2′-azobis Polymerization was initiated by adding and mixing 8 parts of an amidinopropane dihydrochloride aqueous solution. After the temperature of the mixture reached 90 ° C., a water-containing gel was obtained by polymerization at 90 ± 2 ° C. for about 5 hours.
 次にこの含水ゲルをミンチ機(ROYAL社製12VR-400K)で細断しながら、48.5%水酸化ナトリウム水溶液128部を添加して混合・中和し、中和ゲル(中和度:72%)を得た。更に中和した含水ゲルを通気型乾燥機{150℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、架橋重合体(A-2)を得た。 Next, this water-containing gel is shredded with a mincing machine (12 VR-400K manufactured by ROYAL), and then mixed and neutralized by adding 128 parts of 48.5% aqueous sodium hydroxide solution to neutralize the gel (degree of neutralization: 72%). Further, the neutralized hydrogel was dried with a ventilation dryer {150 ° C., wind speed 2 m / sec} to obtain a dried product. The dried product was pulverized with a juicer mixer (OSTERIZER BLENDER manufactured by Oster) and then sieved to adjust the particle size to a particle size range of 710 to 150 μm to obtain a crosslinked polymer (A-2).
 ついで、得られた架橋重合体(A-2)100部を高速攪拌(ホソカワミクロン社製フレキソミックスFXD100:回転数3000rpm、フィード速度50kg/h)しながら、これに水不溶性ケイ素化合物微粒子(c)としてのKlebosol30cal25(メルク社製コロイダルシリカ、固形分30%、平均一次粒径25nm)1.0部、有機表面架橋剤(e)としてのエチレングリコールジグリシジルエーテル0.12部、炭素数4以下の多価アルコール(f)としてのプロピレングリコール1.6部、及び水2.3部を混合した液をスプレーノズルから噴霧添加し、均一混合した後、140℃で30分間加熱して、本発明の吸水性樹脂粒子(P-8)を得た。なお、(P-8)の見かけ密度は0.60g/mlであった。 Next, 100 parts of the resulting crosslinked polymer (A-2) was stirred at high speed (Flexomix FXD100 manufactured by Hosokawa Micron Corporation: rotation speed 3000 rpm, feed rate 50 kg / h). Klebosol 30cal25 (Merck colloidal silica, solid content 30%, average primary particle size 25 nm) 1.0 part, 0.12 part of ethylene glycol diglycidyl ether as organic surface crosslinking agent (e), carbon number 4 or less A solution obtained by mixing 1.6 parts of propylene glycol as a monohydric alcohol (f) and 2.3 parts of water is sprayed from a spray nozzle and mixed uniformly, and then heated at 140 ° C. for 30 minutes to absorb the water absorption of the present invention. Resin particles (P-8) were obtained. The apparent density of (P-8) was 0.60 g / ml.
<比較例1>
 実施例1と同様にして得られた架橋重合体(A-1)100部を高速攪拌(ホソカワミクロン社製高速攪拌タービュライザー(登録商標。以下おなじ):回転数2000rpm、フィード速度50kg/h)しながら、これに水不溶性ケイ素化合物微粒子(c)としてのKlebosol30cal25(メルク社製コロイダルシリカ、固形分30%、平均一次粒径25nm)1.0部、有機表面架橋剤(e)としてのエチレングリコールジグリシジルエーテル0.1部、炭素数4以下の多価アルコール(f)としてのプロピレングリコール1.0部、及び水1.6部を混合した液を添加し、混合した後、130℃で30分間加熱して、比較用の吸水性樹脂粒子(R-1)を得た。なお、(R-1)の見かけ密度は0.57g/mlであった。
<Comparative Example 1>
100 parts of the crosslinked polymer (A-1) obtained in the same manner as in Example 1 was stirred at a high speed (high speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd. (registered trademark, the same applies hereinafter): rotational speed 2000 rpm, feed speed 50 kg / h) However, 1.0 part of Klebosol 30cal25 (Merck colloidal silica, solid content 30%, average primary particle size 25 nm) as water-insoluble silicon compound fine particles (c), and ethylene glycol as an organic surface cross-linking agent (e) A solution prepared by mixing 0.1 part of diglycidyl ether, 1.0 part of propylene glycol as polyhydric alcohol (f) having 4 or less carbon atoms, and 1.6 parts of water was added and mixed. Heating for a minute gave comparative water-absorbent resin particles (R-1). The apparent density of (R-1) was 0.57 g / ml.
<比較例2>
 実施例1と同様にして得られた架橋重合体(A-1)100部を(ホソカワミクロン社製高速攪拌タービュライザー:回転数2000rpm、フィード速度50kg/h)しながら、これに、有機表面架橋剤(e)としてのエチレングリコールジグリシジルエーテル0.1部、炭素数4以下の多価アルコール(f)としてのプロピレングリコール1.0部、及び水1.6部を混合した液を添加し、均一混合した後、130℃で30分間加熱し、室温まで冷却した後、更に高速攪拌(ホソカワミクロン社製高速攪拌タービュライザー:回転数2000rpm、フィード速度50kg/h)しながら水不溶性ケイ素化合物微粒子(c)としてのKlebosol30cal25(メルク社製コロイダルシリカ、固形分30%、平均一次粒径25nm)1.0部、炭素数4以下の多価アルコール(f)としてのプロピレングリコール0.5部、及び水0.5部を混合した液を混合した後、80℃30分加熱して、比較用の吸水性樹脂粒子(R-2)を得た。なお、(R-2)の見かけ密度は0.58g/mlであった。
<Comparative example 2>
While 100 parts of the crosslinked polymer (A-1) obtained in the same manner as in Example 1 was used (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd .: rotation speed 2000 rpm, feed rate 50 kg / h) A mixture of ethylene glycol diglycidyl ether 0.1 part as agent (e), propylene glycol 1.0 part as polyhydric alcohol (f) having 4 or less carbon atoms, and water 1.6 parts, After uniform mixing, the mixture was heated at 130 ° C. for 30 minutes, cooled to room temperature, and further water-insoluble silicon compound fine particles (high-speed stirring turbulizer manufactured by Hosokawa Micron Corporation: rotation speed 2000 rpm, feed rate 50 kg / h) c) Klebosol 30cal25 (Merck colloidal silica, solid content 30%, average primary particle size 25n) ) After mixing a liquid in which 1.0 part, 0.5 part of propylene glycol as a polyhydric alcohol (f) having 4 or less carbon atoms, and 0.5 part of water were mixed, the mixture was heated at 80 ° C. for 30 minutes for comparison. Water-absorbent resin particles (R-2) for use were obtained. The apparent density of (R-2) was 0.58 g / ml.
<比較例3>
 実施例1と同様にして得られた架橋重合体(A-1)100部を高速攪拌(ホソカワミクロン社製高速攪拌タービュライザー:回転数2000rpm、フィード速度50kg/h)しながら、これに、有機表面架橋剤(e)としてのエチレングリコールジグリシジルエーテル0.1部、炭素数4以下の多価アルコール(f)としてのプロピレングリコール1.0部、及び水1.6部を混合した液を添加し、均一混合した後、130℃で30分間加熱し、室温まで冷却した後、更に高速攪拌(ホソカワミクロン社製高速攪拌タービュライザー:回転数2000rpm、フィード速度50kg/h)しながら水不溶性ケイ素化合物微粒子(c)としてのAerosil200(日本アエロジル社製ヒュームドシリカ、平均一次粒径12nm)0.1部と、炭素数4以下の多価アルコール(f)としてのプロピレングリコール0.5部及び水0.5部を混合した液を混合した後、80℃30分加熱して、比較用の吸水性樹脂粒子(R-3)を得た。なお、(R-3)の見かけ密度は0.59g/mlであった。
<Comparative Example 3>
While 100 parts of the crosslinked polymer (A-1) obtained in the same manner as in Example 1 was stirred at a high speed (a high-speed stirring turbulator manufactured by Hosokawa Micron Co., Ltd .: rotation speed 2000 rpm, feed speed 50 kg / h), Add a mixture of ethylene glycol diglycidyl ether 0.1 part as surface cross-linking agent (e), propylene glycol 1.0 part as polyhydric alcohol (f) having 4 or less carbon atoms, and water 1.6 parts. After homogeneous mixing, heating at 130 ° C. for 30 minutes, cooling to room temperature, and further water-insoluble silicon compound with high-speed stirring (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd .: rotation speed 2000 rpm, feed rate 50 kg / h) Aerosil 200 as fine particles (c) (fumed silica manufactured by Nippon Aerosil Co., Ltd., average primary particle size 12 nm) And a liquid obtained by mixing 0.5 part of propylene glycol as polyhydric alcohol (f) having 4 or less carbon atoms and 0.5 part of water, and then heating at 80 ° C. for 30 minutes to obtain a water absorption for comparison. Resin particles (R-3) were obtained. The apparent density of (R-3) was 0.59 g / ml.
<比較例4>
 実施例1と同様にして得られた架橋重合体(A-1)100部を高速攪拌(ホソカワミクロン社製高速攪拌タービュライザー:回転数2000rpm、フィード速度50kg/h)しながら、これに、有機表面架橋剤(e)としてのエチレングリコールジグリシジルエーテル0.1部、炭素数4以下の多価アルコール(f)としてのプロピレングリコール1.0部、及び水1.6部を混合した液を添加し、均一混合した後、130℃で30分間加熱し、室温まで冷却した後、更に高速攪拌(ホソカワミクロン社製高速攪拌タービュライザー:回転数2000rpm、フィード速度50kg/h)しながら水不溶性ケイ素化合物微粒子(c)としてのAerosil200(日本アエロジル社製ヒュームドシリカ、平均一次粒径12nm)0.7部を混合した後、80℃30分加熱して、比較用の吸水性樹脂粒子(R-4)を得た。なお、(R-4)の見かけ密度は0.59g/mlであった。
<Comparative example 4>
While 100 parts of the crosslinked polymer (A-1) obtained in the same manner as in Example 1 was stirred at a high speed (a high-speed stirring turbulator manufactured by Hosokawa Micron Co., Ltd .: rotation speed 2000 rpm, feed speed 50 kg / h), Add a mixture of ethylene glycol diglycidyl ether 0.1 part as surface cross-linking agent (e), propylene glycol 1.0 part as polyhydric alcohol (f) having 4 or less carbon atoms, and water 1.6 parts. After homogeneous mixing, heating at 130 ° C. for 30 minutes, cooling to room temperature, and further water-insoluble silicon compound with high-speed stirring (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd .: rotation speed 2000 rpm, feed rate 50 kg / h) Aerosil 200 as fine particles (c) (fumed silica manufactured by Nippon Aerosil Co., Ltd., average primary particle size 12 nm) After mixing the parts, by heating 80 ° C. 30 minutes to obtain water absorbing resin particles for comparison (R-4). The apparent density of (R-4) was 0.59 g / ml.
<比較例5>
 実施例1と同様にして得られた架橋重合体(A-1)100部を高速攪拌(ホソカワミクロン社製高速攪拌タービュライザー:回転数2000rpm、フィード速度50kg/h)しながら、これに、有機表面架橋剤(e)としてのエチレングリコールジグリシジルエーテル0.1部、炭素数4以下の多価アルコール(f)としてのプロピレングリコール1.0部、及び水1.6部を混合した液を添加し、均一混合した後、130℃で30分間加熱し、室温まで冷却した後、更に高速攪拌(ホソカワミクロン社製高速攪拌タービュライザー:回転数2000rpm、フィード速度50kg/h)しながら水不溶性ケイ素化合物微粒子(c)としてのKlebosol30cal25(メルク社製コロイダルシリカ、固形分30%、平均一次粒径25nm)0.1部を混合した後、80℃30分加熱して、比較用の吸水性樹脂粒子(R-5)を得た。なお、(R-5)の見かけ密度は0.58g/mlであった。
<Comparative Example 5>
While 100 parts of the crosslinked polymer (A-1) obtained in the same manner as in Example 1 was stirred at a high speed (a high-speed stirring turbulator manufactured by Hosokawa Micron Co., Ltd .: rotation speed 2000 rpm, feed speed 50 kg / h), Add a mixture of ethylene glycol diglycidyl ether 0.1 part as surface cross-linking agent (e), propylene glycol 1.0 part as polyhydric alcohol (f) having 4 or less carbon atoms, and water 1.6 parts. After homogeneous mixing, heating at 130 ° C. for 30 minutes, cooling to room temperature, and further water-insoluble silicon compound with high-speed stirring (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd .: rotation speed 2000 rpm, feed rate 50 kg / h) Klebosol 30cal25 as fine particles (c) (Merck colloidal silica, solid content 30%, average primary particles) 25 nm) were mixed with 0.1 parts by heating 80 ° C. 30 minutes to obtain water absorbing resin particles for comparison (R-5). The apparent density of (R-5) was 0.58 g / ml.
<比較例6>
 実施例1において水不溶性ケイ素化合物微粒子(c)としてのKlebosol30cal25を用いなかった以外は同様にして比較用吸水性樹脂粒子(R-6)を得た。なお、(R=6)の見かけ密度は0.60g/mlであった。
<Comparative Example 6>
Comparative water-absorbing resin particles (R-6) were obtained in the same manner as in Example 1, except that Klebosol 30cal25 as the water-insoluble silicon compound fine particles (c) was not used. The apparent density of (R = 6) was 0.60 g / ml.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1~3、6、7及び比較例を通して保水量は良好であり有意な差は見られないが、実施例はSi原子数濃度の変動係数が低く、フィード量の変動係数が低く良好であった。実施例と比較例で混合方法を変えてSi原子数濃度の変動係数を変えた。一方、Si原子数濃度の変動係数が高い比較例1~4は、いずれも、フィード量の変動係数が高くなり、Si原子数濃度の変動係数を低くすることがフィード量の変動係数を低くすることに重要であると言える。また、比較例5および6はSi原子数濃度が低く、吸湿ブロッキング率が高い。さらに、実施例4,5、8で示すとおり、本発明の吸水性微粒子は幅広い保水量域においても、Si原子数濃度の変動係数を低くすることでフィード量の変動係数を低くすることができる。 From the results of Table 1, the water retention amount is good and no significant difference is seen through Examples 1 to 3, 6, 7 and Comparative Examples, but the Examples have a low coefficient of variation in the number of Si atoms, and the feed amount The coefficient of variation was low and good. The variation method of the Si atom number concentration was changed by changing the mixing method between the example and the comparative example. On the other hand, in Comparative Examples 1 to 4 where the variation coefficient of the Si atom number concentration is high, the variation coefficient of the feed amount is high, and lowering the variation coefficient of the Si atom number concentration lowers the variation coefficient of the feed amount. It is particularly important. Comparative Examples 5 and 6 have a low Si atom number concentration and a high moisture absorption blocking rate. Furthermore, as shown in Examples 4, 5, and 8, the water-absorbing fine particles of the present invention can reduce the variation coefficient of the feed amount by reducing the variation coefficient of the Si atom number concentration even in a wide water retention range. .
 本発明の吸水性樹脂粒子は、製造工程における供給装置(フィーダー)においてフィード量の変動が少ないため、各種の吸収体の製造に適用するに際して、生産が安定することから、紙おむつ(子供用紙おむつ及び大人用紙おむつ等)、ナプキン(生理用ナプキン等)、紙タオル、パッド(失禁者用パッド及び手術用アンダーパッド等)及びペットシート(ペット尿吸収シート)等の衛生用品に好適に用いられ、特に紙おむつに最適である。なお、本発明の吸水性樹脂粒子は衛生用品のみならず、ペット尿吸収剤、携帯トイレの尿ゲル化剤、青果物等の鮮度保持剤、肉類及び魚介類のドリップ吸収剤、保冷剤、使い捨てカイロ、電池用ゲル化剤、植物及び土壌等の保水剤、結露防止剤、止水材やパッキング材並びに人工雪等、種々の用途にも有用である。

 
Since the water-absorbent resin particles of the present invention have little fluctuation in the amount of feed in a supply device (feeder) in the production process, when applied to the production of various absorbers, production is stable. Suitable for hygiene items such as adult paper diapers, napkins (sanitary napkins, etc.), paper towels, pads (pads for incontinence, surgical underpads, etc.) and pet sheets (pet urine absorbing sheets). Ideal for disposable diapers. The water-absorbent resin particles of the present invention are not only sanitary products, but also pet urine absorbents, urine gelling agents for portable toilets, freshness preservation agents such as fruits and vegetables, meat and seafood drip absorbents, cold insulation agents, disposable warmers It is also useful for various uses such as battery gelling agents, water retention agents for plants and soil, anti-condensation agents, water-stopping materials and packing materials, and artificial snow.

Claims (13)

  1.  水溶性ビニルモノマー(a1)と架橋剤(b)とを必須構成単位とする架橋重合体(A)と、水不溶性ケイ素化合物微粒子(c)とを含む吸水性樹脂粒子であって、走査型電子顕微鏡-エネルギー分散型X線分析により測定されるSi原子数濃度(atomic%)の分析点数20点での算術平均が0.5~5.0であり、Si原子数濃度の変動係数が0~40%である吸水性樹脂粒子。 A water-absorbent resin particle comprising a crosslinked polymer (A) having a water-soluble vinyl monomer (a1) and a crosslinking agent (b) as essential constituent units, and water-insoluble silicon compound fine particles (c), wherein the scanning electron The arithmetic mean of Si atom number concentration (atomic%) measured by microscope-energy dispersive X-ray analysis at 20 analysis points is 0.5 to 5.0, and the variation coefficient of Si atom number concentration is 0 to Water-absorbent resin particles that are 40%.
  2.  水不溶性ケイ素化合物微粒子(c)が平均一次粒子径1~100nmの球状又は不定形の粒子である請求項1記載の吸水性樹脂粒子。 The water-absorbent resin particles according to claim 1, wherein the water-insoluble silicon compound fine particles (c) are spherical or amorphous particles having an average primary particle diameter of 1 to 100 nm.
  3.  架橋重合体(A)の重量に基づいて、水不溶性ケイ素化合物微粒子(c)の含有量が0.01~1重量%である請求項1又は2に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to claim 1 or 2, wherein the content of the water-insoluble silicon compound fine particles (c) is 0.01 to 1% by weight based on the weight of the crosslinked polymer (A).
  4.  架橋重合体(A)の表面が有機表面架橋剤(e)により架橋された構造を有する請求項1~3のいずれか1項に記載の吸水性樹脂粒子。 The water-absorbent resin particle according to any one of claims 1 to 3, wherein the surface of the crosslinked polymer (A) has a structure crosslinked by an organic surface crosslinking agent (e).
  5.  更に炭素数4以下の多価アルコール(f)を含有する請求項1~4のいずれか1項に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 4, further comprising a polyhydric alcohol (f) having 4 or less carbon atoms.
  6.  保水量が25~55g/gである請求項1~5のいずれか1項に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 5, wherein the water retention amount is 25 to 55 g / g.
  7.  請求項1~6のいずれかに記載の吸水性樹脂粒子の製造方法であって、水溶性ビニルモノマー(a1)と架橋剤(b)とを必須構成単位とする架橋重合体(A)と、水不溶性ケイ素化合物微粒子(c)を縦型混合機で乱流混合により混合する混合工程を有する、吸水性樹脂粒子の製造方法。 A method for producing the water-absorbent resin particles according to any one of claims 1 to 6, wherein the crosslinked polymer (A) comprises the water-soluble vinyl monomer (a1) and the crosslinking agent (b) as essential constituent units, A method for producing water-absorbing resin particles, comprising a mixing step of mixing water-insoluble silicon compound fine particles (c) by turbulent mixing with a vertical mixer.
  8.  架橋重合体(A)の重量に基づいて、水不溶性ケイ素化合物微粒子(c)の含有量が0.01~1重量%である請求項7に記載の吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to claim 7, wherein the content of the water-insoluble silicon compound fine particles (c) is 0.01 to 1% by weight based on the weight of the crosslinked polymer (A).
  9.  水不溶性ケイ素化合物微粒子(c)を水及び/又は溶剤に分散した分散液を噴霧して添加する請求項7又は8に記載の吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to claim 7 or 8, wherein the dispersion of water-insoluble silicon compound fine particles (c) dispersed in water and / or a solvent is sprayed and added.
  10.  混合工程がフレキソミックス型縦型混合機を使用する乱流混合により混合する請求項7~9のいずれか1項に記載の吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to any one of claims 7 to 9, wherein the mixing step is performed by turbulent mixing using a flexographic type vertical mixer.
  11.  請求項1~6のいずれか1項に記載の吸水性樹脂粒子を含有してなる吸収体。 An absorbent comprising the water-absorbent resin particles according to any one of claims 1 to 6.
  12.  さらに繊維状物を含有してなる請求項11記載の吸収体。 Furthermore, the absorber of Claim 11 formed by containing a fibrous material.
  13.  請求項11又は12記載の吸収体を備えてなる吸収性物品。
     

     
    An absorbent article comprising the absorber according to claim 11 or 12.


PCT/JP2019/011728 2018-03-29 2019-03-20 Water absorbent resin particles and production method therefor WO2019188669A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980018735.8A CN111868145B (en) 2018-03-29 2019-03-20 Water-absorbent resin particles and method for producing same
JP2020510787A JP7257090B2 (en) 2018-03-29 2019-03-20 Water-absorbing resin particles and method for producing the same
CN202310838820.7A CN116769269A (en) 2018-03-29 2019-03-20 Water-absorbent resin particles
JP2023033551A JP2023060178A (en) 2018-03-29 2023-03-06 Method for producing water-absorbing resin particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-064138 2018-03-29
JP2018064138 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019188669A1 true WO2019188669A1 (en) 2019-10-03

Family

ID=68059882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011728 WO2019188669A1 (en) 2018-03-29 2019-03-20 Water absorbent resin particles and production method therefor

Country Status (3)

Country Link
JP (2) JP7257090B2 (en)
CN (2) CN111868145B (en)
WO (1) WO2019188669A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059762A1 (en) * 2018-09-18 2020-03-26 株式会社日本触媒 Method for producing particulate water-absorbing agent and particulate water-absorbing agent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956849A (en) * 2021-10-14 2022-01-21 深圳市莱尔博克照明科技有限公司 Environment-friendly artificial snow and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247683A (en) * 1999-12-27 2001-09-11 Nippon Shokubai Co Ltd Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent and use thereof
JP2005097604A (en) * 2003-09-05 2005-04-14 Nippon Shokubai Co Ltd Method for producing particulate water-absorbing resin composition
JP2010522008A (en) * 2007-03-23 2010-07-01 キンバリー クラーク ワールドワイド インコーポレイテッド Absorbent article comprising a superpermeable superabsorbent polymer composition with high permeability
JP2010534504A (en) * 2007-07-27 2010-11-11 ザ プロクター アンド ギャンブル カンパニー Absorbent articles containing water-absorbing polymer particles, and methods for producing them
US20110257340A1 (en) * 2010-04-19 2011-10-20 Basf Se Process for Producing Water-Absorbing Polymer Particles
JP2015014002A (en) * 2009-03-04 2015-01-22 株式会社日本触媒 Water-absorbing resin production method
WO2017200085A1 (en) * 2016-05-20 2017-11-23 Sdpグローバル株式会社 Water-absorbing resin particles, process for producing same, and absorbent object and absorbent article both comprising or including same
JP2017213863A (en) * 2016-03-30 2017-12-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Fluid-absorbent article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6351218B2 (en) * 2013-07-12 2018-07-04 株式会社日本触媒 Water absorbing agent and method for producing the same
CN107428948A (en) * 2015-03-10 2017-12-01 三大雅株式会社 Manufacture method, waterborne liquid absorbent resin particle, absorber and the absorbent commodity of waterborne liquid absorbent resin particle
JP2017206646A (en) * 2016-05-20 2017-11-24 Sdpグローバル株式会社 Water-absorptive resin particles and absorber and absorptive article containing the same
JP6744792B2 (en) * 2016-09-08 2020-08-19 Sdpグローバル株式会社 Method for producing aqueous liquid-absorbent resin particles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247683A (en) * 1999-12-27 2001-09-11 Nippon Shokubai Co Ltd Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent and use thereof
JP2005097604A (en) * 2003-09-05 2005-04-14 Nippon Shokubai Co Ltd Method for producing particulate water-absorbing resin composition
JP2010522008A (en) * 2007-03-23 2010-07-01 キンバリー クラーク ワールドワイド インコーポレイテッド Absorbent article comprising a superpermeable superabsorbent polymer composition with high permeability
JP2010534504A (en) * 2007-07-27 2010-11-11 ザ プロクター アンド ギャンブル カンパニー Absorbent articles containing water-absorbing polymer particles, and methods for producing them
JP2015014002A (en) * 2009-03-04 2015-01-22 株式会社日本触媒 Water-absorbing resin production method
US20110257340A1 (en) * 2010-04-19 2011-10-20 Basf Se Process for Producing Water-Absorbing Polymer Particles
JP2017213863A (en) * 2016-03-30 2017-12-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Fluid-absorbent article
WO2017200085A1 (en) * 2016-05-20 2017-11-23 Sdpグローバル株式会社 Water-absorbing resin particles, process for producing same, and absorbent object and absorbent article both comprising or including same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059762A1 (en) * 2018-09-18 2020-03-26 株式会社日本触媒 Method for producing particulate water-absorbing agent and particulate water-absorbing agent

Also Published As

Publication number Publication date
JP2023060178A (en) 2023-04-27
CN111868145A (en) 2020-10-30
CN116769269A (en) 2023-09-19
CN111868145B (en) 2023-07-28
JP7257090B2 (en) 2023-04-13
JPWO2019188669A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
WO2016143736A1 (en) Process for producing aqueous-liquid-absorbing resin particles, aqueous-liquid-absorbing resin particles, absorbent, and absorbent article
WO2018147317A1 (en) Water-absorbent resin particles, and absorber and absorbent article in which same are used
JP2023060178A (en) Method for producing water-absorbing resin particle
WO2016143739A1 (en) Method for producing aqueous liquid absorbent resin particles, and absorbent body and absorbent article
JP2017206646A (en) Water-absorptive resin particles and absorber and absorptive article containing the same
JP7278443B2 (en) Absorbent article manufacturing method
JPWO2011052140A1 (en) Absorbent resin particles for waterstop tape and waterstop tape containing the same
JP2023099531A (en) Production method of water-absorbing resin particle
JPWO2016114245A1 (en) Absorbent articles
JP2011252080A (en) Method for producing absorbing resin particle
JP7165753B2 (en) Water-absorbing resin particles and method for producing the same
JP7094281B2 (en) Water-absorbent resin particles and their manufacturing method
JP2018039924A (en) Method for producing aqueous liquid absorptive resin particle
JP7108422B2 (en) Water-absorbing resin particles, absorbent body and absorbent article using the same, and method for producing water-absorbing resin particles
CN111094441B (en) Water-absorbent resin composition and method for producing same
JP6935996B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using them
WO2019188648A1 (en) Water absorbent resin particles and production method therefor
JP6979759B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using the same
JP2019218429A (en) Water-absorbing resin particles and absorbent article
JP7453918B2 (en) Water-absorbing resin particles and their manufacturing method
WO2024009541A1 (en) Method for producing water-absorbing resin composition
JP2018202165A (en) Absorbent article
JP2018202170A (en) Absorbent article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510787

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19778163

Country of ref document: EP

Kind code of ref document: A1