WO2024009541A1 - Method for producing water-absorbing resin composition - Google Patents

Method for producing water-absorbing resin composition Download PDF

Info

Publication number
WO2024009541A1
WO2024009541A1 PCT/JP2023/001939 JP2023001939W WO2024009541A1 WO 2024009541 A1 WO2024009541 A1 WO 2024009541A1 JP 2023001939 W JP2023001939 W JP 2023001939W WO 2024009541 A1 WO2024009541 A1 WO 2024009541A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin composition
drying
dryer
hydrogel
Prior art date
Application number
PCT/JP2023/001939
Other languages
French (fr)
Japanese (ja)
Inventor
佳嗣 松下
Original Assignee
Sdpグローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sdpグローバル株式会社 filed Critical Sdpグローバル株式会社
Publication of WO2024009541A1 publication Critical patent/WO2024009541A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/30Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotary or oscillating containers; with movement performed by rotary floors
    • F26B17/32Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotary or oscillating containers; with movement performed by rotary floors the movement being in a horizontal or slightly inclined plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/04Agitating, stirring, or scraping devices

Definitions

  • the present invention relates to a method for producing a water-absorbing resin composition.
  • water-absorbent resin compositions whose main ingredients are hydrophilic fibers such as pulp and acrylic acid (salt) are widely used as absorbents in sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads. .
  • sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads.
  • the demand for these sanitary materials has increased worldwide, and it can be said that it is necessary to improve productivity in order to meet this demand.
  • it is necessary to dry a large amount of water contained in the water-absorbing resin composition it is necessary to dry a large amount of water contained in the water-absorbing resin composition, and this drying process becomes a rate-limiting step, making it difficult to improve productivity.
  • the water-absorbing resin composition can be dried by polymerizing acrylic acid in an aqueous solution, then shredding the resulting hydrogel with a shredder, and drying it in a conveyor dryer, or by polymerizing acrylic acid in an aqueous solution, then A conventionally known method is to neutralize and shred the resulting hydrogel using a shredder, and dry it using a conveyor-type dryer as illustrated in FIG. 3 (for example, Patent Document 1 and Patent Document 2).
  • conveyor-type stationary drying requires layering and drying of hydrogels, which tends to cause uneven drying, resulting in undried matter, which increases equipment load in the crushing and classification processes that are the post-drying processes. Problems such as lower yields and lower yields occur. Therefore, when producing a water absorbent resin composition using a conveyor type dryer, excessive drying is required to suppress the generation of undried materials. Excessive drying requires a large amount of high-temperature gas and consumes a large amount of energy during drying, and there are also problems such as a decrease in the absorption performance of the resulting water-absorbing resin composition and the generation of colored foreign matter.
  • methods for drying the water-absorbing resin composition using a dryer other than a conveyor-type dryer include a method in which a water-containing gel is suspended by an air current and dried (Patent Document 3), a method in which a water-containing gel is dried in a rotary dryer (Patent Document 4, 5) has also been proposed.
  • hydrogels have a high cohesive property, some hydrogels coalesce and remain in the dryer due to decreased fluidity and adhesion to the dryer. Excessive heat exposure caused problems such as deterioration of water absorption performance and generation of colored foreign matter. In addition, when the drying temperature was lowered to avoid thermal deterioration, problems arose in that the production volume per unit time decreased due to a decrease in drying speed, and that undried gel adhered to the dryer, making continuous operation of the equipment difficult.
  • Patent Document 6 a method of adding a surfactant to a hydrogel and drying it has been proposed (Patent Document 6), but a dryer with low drying efficiency requires a large amount of surfactant material to be added. There were problems such as coloring due to thermal deterioration of the surfactant and deterioration of water absorption performance due to the addition of the surfactant.
  • Patent Document 7 As a measure to reduce colored foreign matter contained in water-absorbing resin compositions, a method of color-sorting and removing foreign matter (Patent Document 7) has been proposed, but it is difficult to suppress deterioration of water-absorbing performance, and manufacturing This made the process complicated.
  • An object of the present invention is to provide a water-absorbing resin composition that can contribute to reducing environmental impact by reducing the time required for the drying process, and can also reduce performance deterioration and generation of colored foreign matter caused by the drying process.
  • An object of the present invention is to provide a manufacturing method.
  • the present invention provides at least one monomer selected from the group consisting of a water-soluble unsaturated monocarboxylic acid (a1) and its salt, and a monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) upon hydrolysis.
  • a method for producing a synthetic resin composition comprising:
  • the dryer includes a rotary cylinder that can freely rotate around an axis, and a rotatable stirring shaft that is disposed in the direction of the axis and has a stirring rod, and the dryer has a rotating cylinder that performs a drying process within the rotary cylinder. It is a type dryer, In the drying step, the water-containing gel is dried in the rotary cylinder of the rotary dryer while being scraped up by rotating the rotary cylinder and the stirring rod. It is.
  • a water-absorbing resin composition can contribute to reducing environmental load by reducing the time required for the drying process, and can also reduce performance deterioration and generation of colored foreign matter caused by the drying process.
  • a manufacturing method can be provided.
  • FIG. 2 is a diagram schematically showing a part of a cross section in the axial direction of a rotary cylinder of a rotary dryer.
  • FIG. 2 is a diagram schematically showing a vertical cross section of the axis of a rotary cylinder of a rotary dryer.
  • FIG. 1 is a diagram schematically showing a cross section of a conventionally used conveyor dryer.
  • the method for producing the water absorbent resin composition of this embodiment is as follows: One or more monomers (A1) selected from the group consisting of a water-soluble unsaturated monocarboxylic acid (a1) and its salt, and a monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) upon hydrolysis; , an internal crosslinking agent (b), and a drying step of drying the hydrogel in a dryer.
  • A1 selected from the group consisting of a water-soluble unsaturated monocarboxylic acid (a1) and its salt, and a monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) upon hydrolysis
  • an internal crosslinking agent (b) an internal crosslinking agent
  • the dryer includes a rotary cylinder that can freely rotate around an axis, and a rotatable stirring shaft that is disposed in the direction of the axis and has a stirring rod, and the dryer has a rotating cylinder that performs a drying process within the rotary cylinder. It is a type dryer, In the drying step, the hydrogel is dried in the rotary cylinder of the rotary dryer while being scraped up by rotating the rotary cylinder and the stirring rod.
  • the method for producing a water-absorbing resin composition of the present embodiment it is possible to contribute to reducing the environmental load by reducing the time required for the drying process, and also to reduce performance deterioration and generation of colored foreign matter due to the drying process. can be reduced.
  • the method for producing a water-absorbing resin composition of the present embodiment includes a water-soluble unsaturated monocarboxylic acid (a1) and its salt, and a monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) by hydrolysis.
  • the method includes a polymerization step of obtaining a hydrogel containing a crosslinked polymer (A) having as constituent units one or more monomers (A1) selected from the group consisting of one or more monomers (A1) and an internal crosslinking agent (b).
  • the hydrogel can be obtained by polymerizing a monomer composition containing the monomer (A1) and the crosslinking agent (b).
  • the water-soluble unsaturated monocarboxylic acid (a1) can be used without particular limitation as long as it is a water-soluble unsaturated monocarboxylic acid.
  • the water-soluble unsaturated monocarboxylic acid (a1) is preferably at least one selected from the group consisting of acrylic acid, methacrylic acid, and crotonic acid, from the viewpoint of water absorption performance when crosslinked and ease of availability. , acrylic acid, and methacrylic acid are more preferred.
  • Examples of the salts of the water-soluble unsaturated monocarboxylic acid (a1) include alkali metal (lithium, sodium, potassium, etc.) salts, alkaline earth metal (magnesium, calcium, etc.) salts, and ammonium (NH 4 ) salts. .
  • alkali metal salts and ammonium salts are preferred, alkali metal salts are more preferred, and sodium salts are particularly preferred.
  • the monomer (a2) which becomes the water-soluble unsaturated monocarboxylic acid (a1) by hydrolysis can be used together with or instead of the water-soluble unsaturated monocarboxylic acid (a1).
  • the monomer (a2) is not particularly limited, and examples include monomers having one hydrolyzable substituent that becomes a carboxy group upon hydrolysis.
  • the hydrolyzable substituent includes a group containing an acid anhydride (1,3-oxo-1-oxapropylene group, -COO-CO-), a group containing an ester bond (alkyloxycarbonyl, vinyloxycarbonyl, allyl), and a group containing an ester bond (alkyloxycarbonyl, vinyloxycarbonyl, allyl).
  • Examples include oxycarbonyl or propenyloxycarbonyl, -COOR) and cyano group.
  • R is an alkyl group having 1 to 3 carbon atoms (methyl, ethyl, and propyl), vinyl, allyl, and propenyl.
  • water-soluble means that at least 100g is dissolved in 100g of water at 25°C.
  • hydrolyzability of the monomer (a2) means the property of being hydrolyzed by the action of water and, if necessary, a catalyst (acid, base, etc.) and becoming water-soluble.
  • the monomer (a2) may be hydrolyzed during polymerization, after polymerization, or both, but from the viewpoint of the absorption performance of the resulting water-absorbing resin composition, it is preferably after polymerization.
  • the monomer composition may contain another vinyl monomer (A2) that is copolymerizable with these monomers.
  • the vinyl monomer (A2) may be used alone or in combination of two or more.
  • the vinyl monomer (A2) is not particularly limited, and includes known hydrophobic vinyl monomers disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, paragraph 0025 of Japanese Patent Application Publication No. 2003-165883, and Hydrophobic vinyl monomers such as the vinyl monomers disclosed in paragraph 0058 of Publication No. 2005-75982 can be used, and specifically, for example, the following vinyl monomers (i) to (iii) can be used.
  • Aromatic ethylenic monomers having 8 to 30 carbon atoms Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, and halogen substituted products of styrene such as vinylnaphthalene and dichlorostyrene.
  • Aliphatic ethylenic monomers having 2 to 20 carbon atoms Alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkadienes (butadiene, isoprene, etc.).
  • the amount of the vinyl monomer (A2) in the monomer composition is preferably 0 to 5 parts by mole, more preferably 0 to 5 parts by mole, based on 100 parts by mole of the monomer (A1), from the viewpoint of absorption performance and the like.
  • the amount is 3 mol parts, particularly preferably 0 to 2 mol parts, particularly preferably 0 to 1.5 mol parts, and most preferably 0 mol parts from the viewpoint of absorption performance and the like.
  • the internal crosslinking agent (b) is not particularly limited and is known in the art (for example, a crosslinking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No.
  • a water-soluble substituent and Crosslinking agent having at least one reactive functional group and at least one ethylenically unsaturated group, and crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent JP 2003-165883A
  • Crosslinking agents, crosslinkable vinyl monomers disclosed in paragraph 0059 of JP-A No. 2005-75982 and cross-linkable vinyl monomers disclosed in paragraphs 0015 to 0016 of JP-A No. 2005-95759, etc. Can be used.
  • the internal crosslinking agent (b) is preferably a crosslinking agent having two or more ethylenically unsaturated groups, and from the viewpoint of reactivity with monomers and water absorption characteristics, a polyvalent (meth) having two or more ethylenically unsaturated groups.
  • allyl compounds and acrylamide compounds are preferred; poly(meth)allyl ethers of polyhydric alcohols such as alkylene glycols, trimethylolpropane, glycerin, pentaerythritol and sorbitol; ) Allyl compounds, and one or more selected from the group consisting of polyvalent (meth)acrylamide compounds having two or more (meth)acrylamide groups in one molecule are more preferred.
  • the internal crosslinking agent (b) may be used alone or in combination of two or more. From the viewpoint of reactivity, balance of water retention and absorption under load, it is more preferable to use poly(meth)allyl ether of polyhydric alcohol or polyhydric (meth)acrylamide compound.
  • the amount of the internal crosslinking agent (b) in the monomer composition is 100 mol parts of the monomer (A1), and (A1) when using other vinyl monomers (A2).
  • the amount is preferably 0.001 to 5 mol parts, more preferably 0.005 to 3 mol parts, particularly preferably 0.005 to 1 mol part, based on a total of 100 mol parts of (A2) and (A2).
  • a mixed solvent containing water and an organic solvent can be used.
  • the organic solvent include methanol, ethanol, acetone, methyl ethyl ketone, N,N-dimethylformamide, dimethyl sulfoxide, and mixtures of two or more thereof.
  • the amount (wt%) of the organic solvent used is preferably 40 or less, more preferably 30 or less, based on the weight of water.
  • the polymerization method is a suspension polymerization method or a reverse phase suspension polymerization method
  • the polymerization may be carried out in the presence of a conventionally known dispersant or surfactant, if necessary.
  • a conventionally known dispersant or surfactant if necessary.
  • reverse phase suspension polymerization polymerization can be carried out using conventionally known hydrocarbon solvents such as xylene, n-hexane, and n-heptane.
  • the aqueous solution polymerization method is preferable because it does not require the use of organic solvents and is advantageous in terms of production cost.
  • the aqueous adiabatic polymerization method is more preferable because it can be obtained easily and does not require temperature control during polymerization.
  • the weight percent concentration of the monomer composition containing the monomer (A1) and the internal crosslinking agent (b) during polymerization is preferably 15 to 55% based on the total weight of the polymerization solution at the start of polymerization. If it is lower than this range, productivity may deteriorate, and if it is higher than this range, sufficient gel strength may not be obtained.
  • a known radical initiator can be used if necessary.
  • Known radical initiators include azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2'-azobis(2-amidinopropane) hydrochloride, 2,2'-azobis[2-methyl-N- (2-hydroxyethyl)propionamide], etc.), inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, etc.] , cumene hydroperoxide, succinic acid peroxide and di(2-ethoxyethyl) peroxydicarbonate, etc.], redox catalysts (reduction of alkali metal sulfites or bisulfites, ammonium sulfite, ammonium bisulfite, ascorbic acid, etc.) alkali metal persulfate, ammonium persulfate, hydrogen peroxid
  • the amount of the radical initiator used is preferably 0.0005 to 5 parts by mole, more preferably 0.001 to 2 parts by mole, per 100 parts by mole of monomer (A1).
  • a polymer gel of the crosslinked polymer (A) having the monomer (A1) and the internal crosslinking agent (b) as constituent units is obtained, and this polymer gel can be shredded if necessary. Can be done.
  • the size of the gel after shredding (longest diameter) is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, particularly preferably 1 mm to 1 cm. Within this range, the drying properties in the drying step will be even better.
  • the hydrous gel can be shredded by a known method, using a shredding device (for example, a Bex mill, a rubber chopper, a Pharma mill, a mincing machine (meat chopper), an impact crusher, a roll crusher), etc. Can be used to shred. Further, if necessary, the polymer gel obtained as described above can be mixed with an alkali to neutralize it.
  • a shredding device for example, a Bex mill, a rubber chopper, a Pharma mill, a mincing machine (meat chopper), an impact crusher, a roll crusher
  • the alkali those known in the art (such as those disclosed in Japanese Patent No. 3205168) can be used.
  • lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable, more preferably sodium hydroxide and potassium hydroxide, and particularly preferably sodium hydroxide.
  • the neutralization rate is preferably 20 to 100 mol%, more preferably 50 to 80 mol%. If the degree of neutralization is less than 50 mol%, the resulting hydrogel polymer will have high stickiness, and workability during production and use may deteriorate. Furthermore, the water retention amount of the resulting water absorbent resin may be reduced. On the other hand, if the degree of neutralization exceeds 80%, the pH of the resulting resin may become high and there may be concerns about safety for human skin.
  • the method for producing a water absorbent resin composition may include a hydrophobic substance addition step of adding a hydrophobic substance (c) before the drying step.
  • the hydrophobic substance (c) can suppress blocking due to aggregation of the hydrogel particles obtained by shredding the hydrogel, and prevents the hydrogel particles from fusing together, resulting in the formation of the hydrogel during drying. Since the surface area of the drying agent is increased, drying performance can be improved. Furthermore, it is possible to prevent the hydrogel from adhering to the interior of the dryer, thereby suppressing deterioration of water absorption performance and generation of colored foreign matter.
  • the hydrophobic substance (c) includes a hydrophobic substance (c1) containing a hydrocarbon group having 8 to 30 carbon atoms, a hydrophobic substance (c2) which is an organic polysiloxane, and the like.
  • the hydrophobic substance (c1) includes polyolefin resins, polyolefin resin derivatives, polystyrene resins, polystyrene resin derivatives, waxes, long-chain fatty acid esters, long-chain fatty acids and their salts, long-chain aliphatic alcohols, long-chain aliphatic amides, and Mixtures of two or more of these are included.
  • the polyolefin resin has a weight of olefin having 2 to 4 carbon atoms ⁇ ethylene, propylene, isobutylene, isoprene, etc. ⁇ as an essential constituent monomer (olefin content is at least 50% by weight based on the weight of the polyolefin resin).
  • examples include polymers having an average molecular weight of 1,000 to 1,000,000 ⁇ eg, polyethylene, polypropylene, polyisobutylene, poly(ethylene-isobutylene), and isoprene, etc. ⁇ .
  • polyolefin resin derivatives include polymers with a weight average molecular weight of 1,000 to 1,000,000, which are obtained by introducing carboxyl groups (-COOH), 1,3-oxo-2-oxapropylene (-COOCO-), etc.
  • polyethylene thermal Degraded product for example, polyethylene thermal Degraded product, thermally degraded polypropylene, maleic acid-modified polyethylene, chlorinated polyethylene, maleic acid-modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleated polybutadiene, ethylene-vinyl acetate copolymer, maleated ethylene-vinyl acetate copolymer, etc.).
  • polystyrene resin a polymer having a weight average molecular weight of 1,000 to 1,000,000 can be used.
  • the polystyrene resin derivative is a polymer having a weight average molecular weight of 1,000 to 1,000,000 and containing styrene as an essential constituent monomer (styrene content is at least 50% by weight, based on the weight of the polystyrene derivative) ⁇ for example, styrene- Maleic anhydride copolymer, styrene-butadiene copolymer, styrene-isobutylene copolymer, etc. ⁇ .
  • waxes with a melting point of 50 to 200°C ⁇ for example, paraffin wax, beeswax, carnauba wax, beef tallow, etc. ⁇ .
  • Long-chain fatty acid esters include esters of fatty acids with 8 to 30 carbon atoms and alcohols with 1 to 12 carbon atoms ⁇ for example, methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, methyl oleate, oleic acid Ethyl, glycerin lauric acid monoester, glycerin stearic acid monoester, glycerin oleic acid monoester, pentaerythritol lauric acid monoester, pentaerythritol stearic acid monoester, pentaerythritol oleic acid monoester, sorbitol lauric acid monoester, Sorbitol stearate monoester, sorbitoleate monoester, sucrose palmitate monoester, sucrose palmitate diester, sucrose palmitate triester, sucrose stearate monoester, sucrose
  • Examples of long-chain fatty acids and their salts include fatty acids having 8 to 30 carbon atoms (for example, lauric acid, palmitic acid, stearic acid, oleic acid, dimer acid, and behenic acid), and examples of their salts include zinc, calcium, Examples include salts with magnesium or aluminum (hereinafter abbreviated as Zn, Ca, Mg, Al, respectively) ⁇ for example, Ca palmitate, Al palmitate, Ca stearate, Mg stearate, Al stearate, etc. ⁇ .
  • Zn, Ca, Mg, Al magnesium or aluminum
  • long-chain aliphatic alcohols include aliphatic alcohols having 8 to 30 carbon atoms (eg, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, etc.). From the viewpoint of leakage resistance of the absorbent article, palmityl alcohol, stearyl alcohol, and oleyl alcohol are preferred, and stearyl alcohol is more preferred.
  • Examples of the long-chain aliphatic amide include an amidation product of a long-chain aliphatic primary amine having 8 to 30 carbon atoms and a carboxylic acid having a hydrocarbon group having 1 to 30 carbon atoms, ammonia, or a primary amine having 1 to 7 carbon atoms. and a long-chain fatty acid having 8 to 30 carbon atoms; amidation products of a long-chain aliphatic secondary amine having at least one aliphatic chain having 8 to 30 carbon atoms and a carboxylic acid having 1 to 30 carbon atoms; and Examples include amidation products of secondary amines having two aliphatic hydrocarbon groups having 1 to 7 carbon atoms and long-chain fatty acids having 8 to 30 carbon atoms.
  • An amidated product of a long-chain aliphatic primary amine having 8 to 30 carbon atoms and a carboxylic acid having a hydrocarbon group having 1 to 30 carbon atoms includes a product obtained by reacting a primary amine and a carboxylic acid in a 1:1 ratio, and 1 :Divided into 2 reacted substances.
  • Examples of products reacted at a ratio of 1:1 include acetic acid N-octylamide, acetic acid N-hexacosylamide, heptacanoic acid N-octylamide, and heptacanoic acid N-hexacosylamide.
  • Examples of those reacted at a ratio of 1:2 include diacetic acid N-octylamide, diacetic acid N-hexacosylamide, diheptacanoic acid N-octylamide, and diheptacanoic acid N-hexacosylamide.
  • the carboxylic acids used may be the same or different.
  • amidated product of ammonia or a primary amine having 1 to 7 carbon atoms and a long chain fatty acid having 8 to 30 carbon atoms As the amidated product of ammonia or a primary amine having 1 to 7 carbon atoms and a long chain fatty acid having 8 to 30 carbon atoms, a 1:1 reaction of ammonia or a primary amine with a carboxylic acid and a 1:2 reaction of ammonia or a primary amine with a carboxylic acid are available. It can be divided into reactants.
  • Products reacted at a ratio of 1:1 include nonanoic acid amide, nonanoic acid methylamide, nonanoic acid N-heptylamide, heptacanoic acid amide, heptacanoic acid N-methylamide, heptacanoic acid N-heptylamide, and heptacosanoic acid N-hexacosylamide. etc.
  • Those reacted at a ratio of 1:2 include dinonanoic acid amide, dinonanoic acid N-methylamide, dinonanoic acid N-heptylamide, dioctadecanoic acid amide, dioctadecanoic acid N-ethylamide, dioctadecanoic acid N-heptylamide, diheptacanoic acid amide , diheptacosanoic acid N-methylamide, diheptacosanoic acid N-heptylamide, diheptacosanoic acid N-hexacosylamide, and the like.
  • the carboxylic acids used may be the same or different.
  • amidated products of long-chain aliphatic secondary amines having at least one aliphatic chain having 8 to 30 carbon atoms and carboxylic acids having 1 to 30 carbon atoms include acetic acid N-methyloctylamide, acetic acid N-methylhexacylamide, and acetic acid N-methyloctylamide.
  • amidated products of a secondary amine having two aliphatic hydrocarbon groups having 1 to 7 carbon atoms and a long chain fatty acid having 8 to 30 carbon atoms include nonanoic acid N-dimethylamide, nonanoic acid N-methylheptylamide, Examples include nonanoic acid N-diheptylamide, heptacanoic acid N-dimethylamide, heptacanoic acid N-methylheptylamide, and heptacosanoic acid N-diheptylamide.
  • hydrophobic substance (c2) examples include polydimethylsiloxane, polyether-modified polysiloxane ⁇ polyoxyethylene-modified polysiloxane and poly(oxyethylene/oxypropylene)-modified polysiloxane, etc. ⁇ , carboxy-modified polysiloxane, and epoxy-modified polysiloxane. , amino-modified polysiloxane, alkoxy-modified polysiloxane, and mixtures thereof.
  • the HLB value of the hydrophobic substance (c) is preferably 1 to 10, more preferably 2 to 8, particularly preferably 3 to 7. Within this range, the blocking resistance during initial swelling will be even better.
  • the HLB value means the hydrophilic-hydrophobic balance (HLB) value, which is determined by the Oda method (New Introduction to Surfactants, p. 197, Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd., 1981). .
  • the hydrophobic substance (c1) is preferable, and more preferably long-chain fatty acid esters, long-chain fatty acids and salts thereof, long-chain aliphatic alcohols and long-chain aliphatic amides, more preferably sorbitol stearate, sucrose stearate, stearic acid, Mg stearate, Ca stearate, Zn stearate and Al stearate, particularly preferably sucrose stearate ester and Mg stearate, most preferably sucrose stearate.
  • the amount of the hydrophobic substance (c) to be blended is 0.001 to 1.0 parts by weight based on 100 parts by weight of the crosslinked polymer (A) from the viewpoint of absorption performance and blocking resistance during initial swelling. It is preferably 0.005 to 0.5 parts by weight, particularly preferably 0.01 to 0.3 parts by weight.
  • the method for producing a water-absorbent resin composition of the present embodiment includes a drying step of drying the hydrogel with a dryer.
  • the dryer has a rotary cylinder that is rotatable around an axis, and a rotatable stirring shaft that is disposed in the direction of the axis and has a stirring rod, and the dryer has a rotating cylinder that performs drying processing within the rotary cylinder.
  • the hydrogel is dried in the rotary cylinder of the rotary dryer while being scraped up by rotating the rotary cylinder and the stirring rod.
  • the hydrogel is dried by heating the hydrogel within the rotating cylinder.
  • the heating means for the hydrogel is not limited as long as it can apply the amount of heat necessary for drying, and examples include heating means using convection heat transfer, conduction heat transfer, microwaves, infrared rays, etc. From the viewpoint of efficiency, heating by convection electric heating is preferred.
  • drying methods using convection heat transfer include a method of introducing a stream of air heated to a high temperature into the dryer.
  • the type of air flow is not limited, but air, nitrogen, etc. are preferable, and air is most preferable.
  • the temperature of the airflow is not limited, but hot air is preferred, and the temperature (°C) of the airflow at the inlet of the dryer is preferably 200 to 500, more preferably 250 to 500, from the viewpoint of drying efficiency, absorption performance, and coloring. 450, most preferably 300-400.
  • the absolute humidity (kg/kg) of the hot air at the dryer inlet is preferably 0.001 to 1.0 from the viewpoint of drying efficiency and coloring, more preferably 0.002 to 0.8, and most preferably 0.005 to 0. .6.
  • the wind speed (m/s) of the airflow is not particularly limited, but from the viewpoint of drying efficiency, absorption performance, and coloring, it is preferably from 1 to 30, more preferably from 1 to 20, and most preferably from 1 to 10.
  • the moving direction of the hot air in the rotating cylinder is the same as the moving direction of the hydrogel in the rotating cylinder.
  • FIG. 1 is a schematic diagram of the rotary dryer 100.
  • the rotary dryer 100 has a rotary cylinder 1 that is rotatable around an axis.
  • a part of the rotary cylinder 1 in the axial direction is shown in a cross-sectional view for explaining the inside of the rotary cylinder 1. As shown in FIG. 1
  • the rotary dryer 100 includes a hydrogel inlet 3 for injecting the hydrogel at one end of the rotary cylinder 1, and a hydrogel inlet 3 for injecting hot air above the hydrogel inlet 3 on the same end side. It has a hot air inlet 2.
  • the rotary dryer 100 has a dry polymer discharge port 8 on the other end side of the rotary cylinder 1 for discharging the dried polymer obtained by drying the hydrogel input from the hydrogel input port 3. , and has a hot air outlet 7 above the dry polymer outlet 8 for discharging the hot air input from the hot air inlet 2.
  • the inner diameter (diameter) of the rotary cylinder 1 is preferably 0.5 to 5.0 m, more preferably 1.0 to 4.0 m, and most preferably 2.0 to 3.5 m from the viewpoint of drying efficiency.
  • the length of the rotary cylinder 1 in the axial direction (long axis direction of the rotary cylinder 1) is preferably 1 to 20 m from the viewpoint of drying efficiency, more preferably 3 to 15 m, still more preferably 5 to 12 m, and most preferably Preferably it is 6 to 10 m.
  • the rotary cylinder 1 has a lifter 4 on its inner wall for scraping up the hydrogel.
  • a rotatable stirring shaft 6 is disposed inside the rotary cylinder 1 in the axial direction of the rotary cylinder 1, and the stirring shaft 6 has a plurality of stirring rods 5 for stirring up the hydrogel.
  • FIG. 2 is a diagram schematically showing a cross section of the rotary cylinder 1 in a direction perpendicular to its axis.
  • the lifter 4 extends from the inner wall of the rotary cylinder 1 toward the axis of the rotary cylinder 1 .
  • the rotary cylinder 1 rotates in one direction around its axis to scrape up the hydrogel with the lifter 4, and the stirring shaft 6 rotates to scrape the hydrogel with the stirring rod 5.
  • Stir up There is no particular restriction on the rotation direction of the rotary cylinder 1 and the stirring shaft 6, but for example, in FIG. It rotates in the stirring shaft rotation direction 9, which is the same direction as the rotation cylinder rotation direction 10.
  • the hydrous gel is crushed by the lifter 4 and the stirring rod 5, and the contact efficiency between the hydrous gel and the hot air is increased, and the drying efficiency is improved. do. Further, when the hydrophobic substance (c) is added in the hydrophobic substance addition step, the crushing efficiency of the hydrogel is further improved, and the drying efficiency is further improved.
  • the water content of the hydrogel charged into the rotary cylinder 1 is preferably 45 to 90%, more preferably 50 to 85%, and most preferably 60 to 80%. If the moisture content is high, drying performance deteriorates, causing problems such as the generation of foreign matter and post-drying processes. On the other hand, if the water content is low, the absorption performance will deteriorate. Note that the water content can be measured by the method described in Examples.
  • the lifter 4 extends from the inner wall of the rotary cylinder 1 toward the axis of the rotary cylinder 1.
  • the shape of the lifter 4 may be a flat lifter, a square lifter, or the like. From the viewpoint of stirring efficiency and drying efficiency, a flat lifter and/or a F-shaped lifter are preferable, and from the viewpoint of drying efficiency, a F-shaped lifter is more preferable.
  • the flat lifter means a flat plate-shaped lifter, and the F-shaped lifter means a flat lifter bent by more than 0° and less than 90°.
  • the lifter 4 in FIG. 2 is a square-shaped lifter.
  • the F-shaped lifter is preferably bent 10° to 60° forward in the rotational direction of the rotary cylinder 1 from the viewpoint of drying efficiency as well as raking efficiency.
  • the rotation speed (rpm) of the stirring shaft 6 when drying the hydrogel is preferably from 1 to 1000, more preferably from 10 to 500, particularly preferably from 50 to 1000, from the viewpoint of drying efficiency. It is 300.
  • the rotation speed (rpm) of the rotary cylinder 1 when drying the hydrogel is preferably from 0.1 to 20, more preferably from 0.5 to 15, particularly from the viewpoint of drying efficiency. Preferably it is 1-10.
  • the water content (weight %) of the hydrogel after drying is preferably 0 to 20, more preferably 1 to 15, particularly preferably 2 to 13, and most preferably 3 to 12. Within this range, quality problems such as poor pulverization can be further reduced in the pulverization process described below.
  • the method for producing a water absorbent resin composition of the present embodiment includes pulverizing the water absorbent resin composition obtained in the drying step to obtain a particulate water absorbent resin composition containing the crosslinked polymer (A). It may also include a pulverization step.
  • the pulverizing step there is no particular limitation on the method of pulverizing the water-absorbing resin composition containing the crosslinked polymer (A), and a pulverizing device (for example, a hammer-type pulverizer, an impact-type pulverizer, a roll-type pulverizer) is used.
  • a pulverizing device for example, a hammer-type pulverizer, an impact-type pulverizer, a roll-type pulverizer
  • Machines such as pulverizers and Schette airflow pulverizers can be used.
  • the particle size of the pulverized water-absorbing resin composition can be adjusted by sieving or the like, if necessary.
  • the method for producing a water absorbent resin composition of the present embodiment may include, after the polymerization step, a surface crosslinking step of crosslinking the surface of the crosslinked polymer (A) with a surface crosslinking agent (d).
  • the water absorbent resin composition obtained through the surface crosslinking step has a structure in which the surface of the crosslinked polymer (A) is crosslinked with a surface crosslinking agent (d).
  • a surface crosslinking agent d
  • crosslinking the surface of the crosslinked polymer (A) the gel strength of the water absorbent resin composition can be improved, and the desired water retention amount and absorption amount under load of the water absorbent resin composition are satisfied. be able to.
  • blocking on the surface of the water-absorbent resin composition is suppressed and uniform water absorption can be achieved, an improvement in decomposition efficiency can be expected when decomposing with an oxidizing agent.
  • the surface crosslinking agent (d) can be either an inorganic substance or an organic substance.
  • known compounds such as polyvalent glycidyl compounds, polyvalent amines, polyvalent aziridine compounds, and polyvalent isocyanate compounds described in JP-A-59-189103, JP-A-58-180233
  • organic surface crosslinking agents such as alkylene carbonates, polyvalent oxazoline compounds described in JP-A No.
  • surface crosslinking agents (d) polyhydric glycidyl compounds, polyhydric alcohols, and polyhydric amines are preferred from the viewpoint of economy and absorption characteristics, and polyhydric glycidyl compounds and polyhydric alcohols are more preferred, and polyhydric alcohols are particularly preferred.
  • the preferred are polyglycidyl compounds, most preferably ethylene glycol diglycidyl ether.
  • One type of surface crosslinking agent (d) may be used alone, or two or more types may be used in combination.
  • the amount (wt%) of the surface crosslinking agent (d) to be used is not particularly limited, as it can be varied depending on the type of surface crosslinking agent, conditions for crosslinking, target performance, etc., but from the viewpoint of absorption characteristics, etc. Based on the weight of the crosslinked polymer (A), it is preferably 0.001 to 3, more preferably 0.005 to 2, particularly preferably 0.01 to 1.5.
  • the surface crosslinking of the crosslinked polymer (A) can be performed by mixing the crosslinked polymer (A) and the surface crosslinking agent (d) and heating the mixture.
  • the method for mixing the crosslinked polymer (A) and the surface crosslinking agent (d) includes a cylindrical mixer, a screw mixer, a screw extruder, a turbulizer, a Nauta mixer, and a double-arm kneader.
  • the above-mentioned crosslinking is carried out using a mixing device such as a fluid mixer, a V-type mixer, a mincing mixer, a ribbon mixer, a fluid mixer, an air flow mixer, a rotating disk mixer, a conical blender, and a roll mixer.
  • a method of uniformly mixing the polymer (A) and the surface crosslinking agent (d) may be mentioned.
  • the surface crosslinking agent (d) may be used after being diluted with water and/or any solvent.
  • the temperature at which the crosslinked polymer (A) and the surface crosslinking agent (d) are mixed is not particularly limited, but is preferably 10 to 150°C, more preferably 20 to 100°C, particularly preferably 25 to 80°C. It is.
  • the heating temperature is preferably 100 to 180°C, more preferably 110 to 175°C, particularly preferably 120 to 170°C from the viewpoint of breakage resistance of the water absorbent resin composition. Heating at a temperature of 180° C. or lower allows indirect heating using steam and is advantageous in terms of equipment, whereas heating at a temperature of less than 100° C. may result in poor absorption performance. Further, the heating time can be appropriately set depending on the heating temperature, but from the viewpoint of absorption performance, it is preferably 5 to 60 minutes, more preferably 10 to 40 minutes. It is also possible to further surface crosslink the water-absorbing resin composition obtained by surface crosslinking using a surface crosslinking agent of the same type or different from the surface crosslinking agent used initially.
  • the average particle diameter of the obtained particles is preferably 100 to 600 ⁇ m, more preferably 200 to 500 ⁇ m.
  • the content of fine particles is preferably small, the content of particles of 100 ⁇ m or less is preferably 3% by weight or less, and the content of particles of 150 ⁇ m or less is more preferably 3% by weight or less.
  • the water-absorbing resin composition of the present embodiment is selected from the group consisting of a water-soluble unsaturated monocarboxylic acid (a1) and its salt, and a monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) by hydrolysis.
  • the number of colored foreign substances contained in the product is 50 or less.
  • the water absorbent resin composition can be manufactured by the method for manufacturing the water absorbent resin composition described above.
  • the amount of the vinyl monomer (A2) units in the crosslinked polymer (A) is determined to be 100 in total of the constituent units of the water-soluble unsaturated monocarboxylic acid (a1) and the constituent units of its salt. Based on the mole part, it is preferably 0 to 5 mole parts, more preferably 0 to 3 mole parts, particularly preferably 0 to 2 mole parts, particularly preferably 0 to 1.5 mole parts, and from the viewpoint of absorption performance etc. Therefore, it is most preferable that the content of the vinyl monomer (A2) unit is 0 part by mole.
  • the amount of the internal crosslinking agent (b) in the crosslinked polymer (A) is 100 in total of the constituent units of the water-soluble unsaturated monocarboxylic acid (a1) and the salt thereof. 100 molar parts, when using other vinyl monomers (A2), the total of the structural units of the water-soluble unsaturated monocarboxylic acid (a1) and its salt, and the structural units of the vinyl monomer (A2) 100
  • the amount is preferably 0.001 to 5 mol parts, more preferably 0.005 to 3 mol parts, particularly preferably 0.005 to 1 mol part.
  • the amount of the internal crosslinking agent other than the internal crosslinking agent (b) is preferably 0 to 50 parts by mole based on 100 parts by mole of the internal crosslinking agent (b) from the viewpoint of decomposition performance.
  • the water absorbent resin composition may contain the hydrophobic substance (c).
  • the content of the hydrophobic substance (c) in the solid content of the water-absorbing resin composition is determined by the absorption performance and the initial swelling resistance. From the viewpoint of blocking properties, it is preferably 0.001 to 1% by weight, more preferably 0.005 to 0.5% by weight, particularly preferably 0.01 to 0.3% by weight.
  • the solid content of the water-absorbing resin composition is determined by measuring 5 g of the water-absorbing resin composition at 150°C for 15 minutes using an infrared moisture meter (manufactured by Kett Scientific Research Institute Co., Ltd., FD-230). It can be determined by the following formula using the moisture content measured by heating and drying.
  • Solid weight of water-absorbing resin composition (g) Weight of water-absorbing resin composition (g) x ⁇ 100-water content (%) ⁇ /100
  • the water absorbent resin composition may contain the silicone compound.
  • the content of the silicone compound in the solid content of the water-absorbing resin composition is determined to prevent adhesion to manufacturing process equipment and piping between the equipment and to prevent breakage. From this point of view, it is preferably 0.0005 to 0.040% by weight, more preferably 0.010 to 0.030% by weight, and still more preferably 0.015 to 0.025% by weight.
  • the water-absorbing resin composition may contain a certain amount of other components such as a residual solvent and a residual crosslinking component within a range that does not impair its performance.
  • ingredients include preservatives, fungicides, antibacterial agents, ultraviolet absorbers, antioxidants, colorants, fragrances, deodorants, liquid permeability improvers, inorganic powders, and organic fibers. Examples include things like these. The amount thereof is usually 5% by weight or less based on the weight of the water absorbent resin composition.
  • the water absorbent resin composition preferably contains at least one typical element selected from the group consisting of iodine, tellurium, antimony, and bismuth as the other component.
  • the content of the typical element in the solid content of the water-absorbing resin composition is preferably 0.0005 to 0.1% by weight from the viewpoint of water absorption performance. , more preferably 0.001 to 0.05% by weight.
  • the shape of the water-absorbing resin composition there is no particular limitation on the shape of the water-absorbing resin composition, and examples thereof include amorphous crushed shapes, flaky shapes, pearl shapes, and rice grain shapes. Among these, amorphous crushed particles are preferable from the viewpoint of good entanglement with fibrous materials for use in disposable diapers, etc., and no fear of falling off from the fibrous materials.
  • the water retention amount (g/g) of the water absorbent resin composition can be measured by the method described below, and from the viewpoint of absorption amount, it is preferably 28 or more, more preferably 33 or more, and particularly preferably 35 or more. Further, from the viewpoint of stickiness, the upper limit is preferably 60 or less, more preferably 55 or less, and particularly preferably 50 or less.
  • the amount of water retained can be appropriately adjusted by the amounts (wt%) of the internal crosslinking agent (b) and the surface crosslinking agent (d).
  • the soluble content (wt%) of the water absorbent resin composition can be measured by the method described in Examples, and is preferably 20% based on the water absorbent resin composition from the viewpoint of liquid permeability and water absorption rate. more preferably less than 15%. If the soluble content exceeds 20%, the soluble content will not be eluted during water absorption, resulting in gel blocking, which will adversely affect liquid passing performance and water absorption capacity, which is not preferable.
  • the amount of soluble components is reduced by adjusting the type and amount of the internal crosslinking agent and the amount of water in the surface crosslinking agent.
  • the number of colored foreign substances contained in 200 g of the water-absorbing resin composition is preferably 50 or less, more preferably 30 or less, particularly preferably 20 from the viewpoint of reducing the foreign body sensation of disposable diapers, sanitary napkins, and incontinence products. less than or equal to The number of colored foreign substances contained in 200 g of the water absorbent resin composition can be measured by the method described in Examples.
  • the absorption amount under load (g/g) of the water-absorbent resin composition can be measured by the method described below, and is preferably 15 or more from the viewpoint of the absorption amount of a diaper under load, and 20 or more is more preferable. It is preferably 25 or more, particularly preferably 25 or more. It is empirically known that the amount of absorption under load is contradictory to the amount of water retained, and depending on the configuration of the diaper, there are cases where a high amount of water retention is required and cases where an amount of absorption under load is required.
  • An absorbent body can be obtained using the water absorbent resin composition.
  • the water-absorbing resin composition may be used alone or together with other materials to form an absorbent body.
  • the other materials include fibrous materials.
  • the structure and manufacturing method of the absorber when used with a fibrous material are the same as those known (Japanese Patent Laid-Open Nos. 2003-225565, 2006-131767, and 2005-097569, etc.). be.
  • Preferred as the fibrous material are cellulose fibers, organic synthetic fibers, and mixtures of cellulose fibers and organic synthetic fibers.
  • cellulose fibers include natural fibers such as fluff pulp, and cellulose chemical fibers such as viscose rayon, acetate, and cupro.
  • the raw materials softwood, hardwood, etc.
  • manufacturing method chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.
  • bleaching method, etc. of this cellulosic natural fiber are not particularly limited.
  • organic synthetic fibers include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above-mentioned fibers with different melting points).
  • examples include fibers in which at least two of the above fibers are combined into a sheath-core type, eccentric type, parallel type, etc., fibers in which at least two of the above fibers are blended, and fibers in which the surface layer of the above fibers is modified.
  • fibrous materials preferred are cellulose natural fibers, polypropylene fibers, polyethylene fibers, polyester fibers, heat-fusible composite fibers, and mixed fibers thereof, and more preferred are Fluff pulp, heat-fusible conjugate fibers, and mixed fibers thereof are used because they have excellent shape retention properties after water absorption.
  • the length and thickness of the above-mentioned fibrous material are not particularly limited, and it can be suitably used as long as the length is in the range of 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier.
  • the shape is not particularly limited as long as it is fibrous, and examples thereof include a thin cylinder, a split yarn, a staple, a filament, and a web.
  • the weight ratio of the water-absorbing resin particles to the fibers is 40/60 to 90/10.
  • the ratio is preferably 70/30 to 80/20.
  • An absorbent article can be obtained using the water absorbent resin composition. Specifically, the above absorber is used.
  • Absorbent products include not only sanitary products such as disposable diapers and sanitary napkins, but also anti-condensation agents, water retention agents for agriculture and gardening, residual soil solidification materials, disaster sandbags, waste blood solidification agents, disposable body warmers, ice packs, and alkaline batteries. It can be used for various purposes such as absorbing various aqueous liquids, holding agent, gelling agent, etc. in various industrial fields such as cosmetics, pet sheets, and cat litter.
  • the manufacturing method of the absorbent article is the same as known methods (those described in JP-A No. 2003-225565, JP-A No. 2006-131767, JP-A No. 2005-097569, etc.).
  • ⁇ Evaluation method> The water retention amount, the amount of absorption under load, and the absorption rate measured by the Vortex test method were each measured in a room at 25 ⁇ 2° C. and 50 ⁇ 10% humidity using the following methods. The temperature of the physiological saline used was adjusted in advance to 25°C ⁇ 2°C.
  • Weight ratio of particles having a particle diameter of 1.4 mm or more to the total weight of dry powder was determined using a low tap test sieve shaker and a standard sieve (JIS Z8801-1:2006) by Perry's Chemical Engineers. It was measured by the method described in Handbook, 6th Edition (McGraw-Hill Book Company, 1984, p. 21). That is, assemble JIS standard sieves in the order of 4.0 mm, 1.4 mm, 0.5 mm and a saucer from the top, put about 50 g of particles to be measured into the top sieve, and shake for 5 minutes with a low tap test sieve shaker.
  • the weight of the particles to be measured on each sieve and saucer was weighed, and the weight fraction of the particles on each sieve was determined with the total as 100% by weight.
  • the total weight fraction of particles having a diameter of 4.0 mm or more and 1.4 mm or more was taken as the weight fraction of particles having a particle diameter of 1.4 mm or more.
  • a blank test solution prepared by adding 30 g of ion-exchanged water to 20 g of 0.9% by weight saline was titrated with an N/50 KOH aqueous solution until the pH of the saline became 10. Then, the titration amount ([W KOH, b ] ml) of the N/50 aqueous KOH solution required to adjust the pH of the 0.9 wt % saline to 10 was obtained. Thereafter, a N/10 aqueous HCl solution was titrated until the pH of the saline solution became 2.7. Then, the titration amount ([W HCl,b ]ml) of the N/10 aqueous HCl solution required to adjust the pH of the 0.9 wt% saline solution to 2.7 was obtained.
  • the above measurement solution is subjected to the same operation as the above titration operation, and the titration amount of the N/50 KOH aqueous solution ([W KOH,S ] ml) necessary for the pH of the measurement solution to become 10 is determined.
  • a method for obtaining the titration amount ([W HCl,S ]ml) of the N/10 aqueous HCl solution necessary for the pH of the measurement solution to be 2.7 will be specifically explained.
  • the automatic powder inspection equipment is a CCD line sensor camera (2048 pixels), reflected illumination located parallel to the CCD line sensor camera, and transmitted illumination located on the opposite side of the CCD line sensor camera to inspect the sample supplied to the line. This is a device that can process images. (256-level gray scale, scan rate 75 ⁇ s, detection level 65, illuminance 200-255)
  • a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) with a nylon mesh with an opening of 63 ⁇ m (JIS Z8801-1:2006) attached to the bottom, and a 250 to 500 ⁇ m mesh were sieved using a 30 mesh sieve and a 60 mesh sieve.
  • a monomer aqueous solution was prepared by stirring and mixing 300 parts of acrylic acid (manufactured by Mitsubishi Chemical Corporation), 0.975 parts of pentaerythritol triallyl ether (manufactured by Daiso Corporation) as a crosslinking agent (b), and 691 parts of deionized water.
  • This mixed solution was put into a polymerization tank capable of adiabatic polymerization. By introducing nitrogen gas into the solution, the amount of dissolved oxygen in the solution was set to 0.2 ppm or less, and the solution temperature was set to 5°C.
  • the obtained hydrogel particles were dried using a rotary dryer having a stirring bar having the basic configuration shown in FIGS. 1 and 2.
  • the rotary cylinder of the rotary dryer has an F-shaped lifter on its inner wall.
  • Hydrous gel particles having the water content shown in Table 1 and hot air at 400° C. and an absolute humidity of 0.15 kg/kg were introduced from each inlet.
  • the rotating cylinder was rotated at 5 rpm in the bending direction of the F-shaped lifter, and the rotating shaft was rotated at 200 rpm in the same direction as the rotational direction of the rotating cylinder.
  • Continuous drying was performed with an average residence time of 20 minutes for the hydrogel particles, and the crosslinking weight was removed.
  • a dry powder (1) containing aggregate (A) was obtained.
  • the dry powder (1) was pulverized with a roll mill (RM-10 type roll pulverizer, Asano Iron Works Co., Ltd.) with a clearance of 0.35 mm, and then sieved to obtain powder with an opening of 710 to 150 ⁇ m.
  • the particle size was adjusted to within the range to obtain resin particles (A-1) containing the crosslinked polymer (A).
  • Example 2 A water absorbent resin composition (P-2) was obtained in the same manner as in Example 1, except that the hot air introduction temperature was changed to 250°C.
  • Example 3 A water absorbent resin composition (P-2) was obtained in the same manner as in Example 1, except that the hot air introduction temperature was changed to 450°C.
  • Example 4 In Example 1, a water-absorbing resin composition ( P-4) was obtained.
  • Example 5 a water-absorbing resin composition ( P-5) was obtained.
  • a monomer aqueous solution was prepared by stirring and mixing 200 parts of acrylic acid (manufactured by Mitsubishi Chemical Corporation), 0.65 parts of pentaerythritol triallyl ether (manufactured by Daiso Corporation) as a crosslinking agent (b), and 794 parts of deionized water.
  • This mixed solution was put into a polymerization tank capable of adiabatic polymerization. By introducing nitrogen gas into the solution, the amount of dissolved oxygen in the solution was set to 0.2 ppm or less, and the solution temperature was set to 5°C.
  • the obtained hydrogel particles were dried using a rotary dryer having a stirring bar having the basic configuration shown in FIGS. 1 and 2.
  • the rotary cylinder of the rotary dryer has an F-shaped lifter on its inner wall.
  • Hydrous gel particles having the water content shown in Table 1 and hot air at 400° C. and an absolute humidity of 0.15 kg/kg were introduced from each inlet.
  • the rotating cylinder was rotated at 5 rpm in the bending direction of the F-shaped lifter, and the rotating shaft was rotated at 200 rpm in the same direction as the rotational direction of the rotating cylinder.
  • Continuous drying was performed with an average residence time of 20 minutes for the hydrogel particles, and the crosslinking weight was removed.
  • a dry powder (2) containing aggregate (A) was obtained.
  • the dry powder (2) was pulverized with a roll mill (RM-10 type roll pulverizer, Asano Iron Works Co., Ltd.) with a clearance of 0.35 mm, and then sieved to obtain powder with a mesh size of 710 to 150 ⁇ m.
  • the particle size was adjusted to within the range to obtain resin particles (A-6) containing the crosslinked polymer (A).
  • Example 7 [Polymerization process] To a solution (A) in which 0.975 parts of polyethylene glycol diacrylate (weight average molecular weight 523) (manufactured by TCI) as a crosslinking agent (b) was added to 300 parts of acrylic acid (manufactured by Mitsubishi Chemical), 48% of the solution was added under ice cooling. A mixed solution was prepared by mixing the solution (B) obtained by diluting 247 parts of a 5% aqueous sodium hydroxide solution with 444 parts of deionized water under stirring while controlling the temperature so as not to exceed 40°C. was put into the polymerization tank.
  • a mixed solution was prepared by mixing the solution (B) obtained by diluting 247 parts of a 5% aqueous sodium hydroxide solution with 444 parts of deionized water under stirring while controlling the temperature so as not to exceed 40°C. was put into the polymerization tank.
  • the amount of dissolved oxygen in the solution was set to 0.2 ppm or less, and the solution temperature was set to 10°C.
  • 4.5 parts of 2% 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] aqueous solution, 1.20 parts of 1% hydrogen peroxide aqueous solution, and 2% ascorbic acid were added.
  • 2.25 parts of an acid aqueous solution was added and mixed to initiate polymerization. Polymerization was carried out while removing heat, and after the temperature reached approximately 90° C. and no exotherm due to reaction heat was observed, the polymer was further aged for 9 hours to obtain a hydrogel polymer.
  • the obtained hydrogel particles were dried using a rotary dryer having a stirring bar having the basic configuration shown in FIGS. 1 and 2.
  • the rotary cylinder of the rotary dryer has an F-shaped lifter on its inner wall.
  • Hydrous gel particles having the water content shown in Table 1 and hot air at 400° C. and an absolute humidity of 0.15 kg/kg were introduced from each inlet.
  • the rotating cylinder was rotated at 5 rpm in the bending direction of the F-shaped lifter, and the rotating shaft was rotated at 200 rpm in the same direction as the rotational direction of the rotating cylinder.
  • Continuous drying was performed with an average residence time of 20 minutes for the hydrogel particles, and the crosslinking weight was removed.
  • a dry powder (3) containing aggregate (A) was obtained.
  • the dry powder (3) was pulverized with a roll mill (RM-10 type roll pulverizer, Asano Iron Works Co., Ltd.) with a clearance of 0.35 mm, and then sieved to obtain powder with a mesh size of 710 to 150 ⁇ m.
  • the particle size was adjusted to within the range to obtain resin particles (A-7) containing the crosslinked polymer (A).
  • Example 8 [Polymerization process] To a solution (A) in which 1.3 parts of polyethylene glycol diacrylate (weight average molecular weight 523) (manufactured by TCI) as a crosslinking agent (b) was added to 400 parts of acrylic acid (manufactured by Mitsubishi Chemical), 48% of the solution was added under ice cooling. A mixed solution was prepared by mixing the solution (B) prepared by diluting 330 parts of a 5% aqueous sodium hydroxide solution with 258 parts of deionized water under stirring while controlling the temperature so as not to exceed 40°C. was put into the polymerization tank.
  • a mixed solution was prepared by mixing the solution (B) prepared by diluting 330 parts of a 5% aqueous sodium hydroxide solution with 258 parts of deionized water under stirring while controlling the temperature so as not to exceed 40°C. was put into the polymerization tank.
  • the amount of dissolved oxygen in the solution was set to 0.2 ppm or less, and the solution temperature was set to 10°C.
  • 6.0 parts of 2% 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] aqueous solution, 1.60 parts of 1% hydrogen peroxide aqueous solution, and 2% ascorbic acid were added.
  • Polymerization was started by adding and mixing 3.00 parts of an acid aqueous solution. Polymerization was carried out while removing heat, and after the temperature reached approximately 90° C. and no exotherm due to reaction heat was observed, the polymer was further aged for 9 hours to obtain a hydrogel polymer.
  • the obtained hydrogel particles were dried using a rotary dryer having a stirring bar having the basic configuration shown in FIGS. 1 and 2.
  • the rotary cylinder of the rotary dryer has an F-shaped lifter on its inner wall.
  • Hydrous gel particles having the water content shown in Table 1 and hot air at 400° C. and an absolute humidity of 0.15 kg/kg were introduced from each inlet.
  • the rotating cylinder was rotated at 5 rpm in the bending direction of the F-shaped lifter, and the rotating shaft was rotated at 200 rpm in the same direction as the rotational direction of the rotating cylinder.
  • Continuous drying was performed with an average residence time of 20 minutes for the hydrogel particles, and the crosslinking weight was removed.
  • a dry powder (4) containing aggregate (A) was obtained.
  • the dry powder (4) was pulverized with a roll mill (RM-10 type roll pulverizer, Asano Iron Works Co., Ltd.) with a clearance of 0.35 mm, and then sieved to obtain powder with a mesh size of 710 to 150 ⁇ m.
  • Resin particles (A-8) containing a crosslinked polymer were obtained by adjusting the particle size within the range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention is a method for producing a water-absorbing resin composition which involves a polymerization step for obtaining a water-containing gel which contains a cross-linked polymer (A), and a drying step for drying the water-containing gel in a dryer, said method being characterized in that: the dryer is a rotary dryer for performing a drying treatment inside a tumbling barrel, and has a tumbling barrel capable of rotating around an axis, and a stirring shaft which is capable of rotating, has a stirring rod, and is arranged in the axial direction; and the water-containing gel is lifted while being dried inside the tumbling barrel of the rotary dryer by rotating the tumbling barrel and stirring rod during the drying step. The present invention makes it possible to provide a method for producing a water-absorbing resin composition which makes it possible to contribute to a reduction in environmental burden by reducing the time which the drying step takes, and also to reduce the occurrence of discolored foreign matter and performance degradation caused by the drying step.

Description

吸水性樹脂組成物の製造方法Method for producing water absorbent resin composition
 本発明は、吸水性樹脂組成物の製造方法に関する。 The present invention relates to a method for producing a water-absorbing resin composition.
 現在、紙おむつ、生理用ナプキン、失禁パット等の衛生材料には、パルプ等の親水性繊維とアクリル酸(塩)等とを主原料とする吸水性樹脂組成物が吸収体として幅広く利用されている。近年、これらの衛生材料の需要が世界的に増加しており、その需要に対応するために生産性の向上が必要といえる。吸水性樹脂組成物の製造工程では、当該吸水性樹脂組成物に含まれる大量の水を乾燥させる必要があり、この乾燥工程が律速段階となり、生産性の向上が困難であった。 Currently, water-absorbent resin compositions whose main ingredients are hydrophilic fibers such as pulp and acrylic acid (salt) are widely used as absorbents in sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads. . In recent years, the demand for these sanitary materials has increased worldwide, and it can be said that it is necessary to improve productivity in order to meet this demand. In the manufacturing process of a water-absorbing resin composition, it is necessary to dry a large amount of water contained in the water-absorbing resin composition, and this drying process becomes a rate-limiting step, making it difficult to improve productivity.
 吸水性樹脂組成物の乾燥速度を速くするためには、乾燥温度を上げる方法がある。しかし、乾燥温度を上げると、高吸水性樹脂組成物の熱劣化により、吸水性能の低下や可溶分の増加が起こる。吸水性能が低下すると、肌に触れる衛生材料表面が乾きにくくなり、カブレの原因となる。また、可溶分が増加しても、衛生材料使用中のかぶれの原因となりうる。そのため、性能の劣化が小さい吸水性樹脂組成物製造に向け乾燥方法の改善が求められている。 In order to speed up the drying rate of the water-absorbing resin composition, there is a method of increasing the drying temperature. However, when the drying temperature is raised, the superabsorbent resin composition is thermally degraded, resulting in a decrease in water absorption performance and an increase in soluble content. When water absorption performance decreases, the surface of sanitary materials that come into contact with the skin becomes difficult to dry, leading to rashes. Moreover, even if the soluble content increases, it may cause rashes during use of sanitary materials. Therefore, there is a need for improved drying methods for producing water absorbent resin compositions with less deterioration in performance.
 吸水性樹脂組成物の乾燥方法として、アクリル酸塩を水溶液重合した後、得られる含水ゲルを細断機で細断し、コンベア式の乾燥機で乾燥する方法や、アクリル酸を水溶液重合した後、得られる含水ゲルの中和と細断とを細断機で行い、図3に例示されるようなコンベア式の乾燥機で乾燥する方法が従来から知られている(例えば、特許文献1及び特許文献2)。 The water-absorbing resin composition can be dried by polymerizing acrylic acid in an aqueous solution, then shredding the resulting hydrogel with a shredder, and drying it in a conveyor dryer, or by polymerizing acrylic acid in an aqueous solution, then A conventionally known method is to neutralize and shred the resulting hydrogel using a shredder, and dry it using a conveyor-type dryer as illustrated in FIG. 3 (for example, Patent Document 1 and Patent Document 2).
 しかし、コンベア式の静置乾燥は含水ゲルを積層して乾燥する必要があるため乾燥ムラが生じやすく、未乾燥物が発生し、乾燥後の工程である粉砕工程及び分級工程での設備負荷増加や収率低下といった問題が発生する。そのため、コンベア式の乾燥機で吸水性樹脂組成物を製造する場合、未乾燥物の発生を抑制するため過剰な乾燥が必要となる。過剰な乾燥を実施する場合、多量の高温ガスが必要であり乾燥時のエネルギー使用量が大きく、また得られる吸水性樹脂組成物の吸収性能低下や着色異物の発生といった課題があった。 However, conveyor-type stationary drying requires layering and drying of hydrogels, which tends to cause uneven drying, resulting in undried matter, which increases equipment load in the crushing and classification processes that are the post-drying processes. Problems such as lower yields and lower yields occur. Therefore, when producing a water absorbent resin composition using a conveyor type dryer, excessive drying is required to suppress the generation of undried materials. Excessive drying requires a large amount of high-temperature gas and consumes a large amount of energy during drying, and there are also problems such as a decrease in the absorption performance of the resulting water-absorbing resin composition and the generation of colored foreign matter.
 また、吸水性樹脂組成物をコンベア式の乾燥機以外で乾燥する方法として、含水ゲルを気流により浮遊させて乾燥する方法(特許文献3)、回転型乾燥機により乾燥する方法(特許文献4、5)も提案されている。 In addition, methods for drying the water-absorbing resin composition using a dryer other than a conveyor-type dryer include a method in which a water-containing gel is suspended by an air current and dried (Patent Document 3), a method in which a water-containing gel is dried in a rotary dryer (Patent Document 4, 5) has also been proposed.
 しかし、含水ゲルは凝集性が高いため、含水ゲルが合着し流動性の低下や乾燥機への付着により乾燥機内に留まることで、特許文献3、4の方法においても一部の含水ゲルが過剰に熱を受け吸水性能の劣化や着色異物の発生といった問題が生じた。また、熱劣化を避けるため乾燥温度を下げた場合、乾燥速度低下による単位時間あたりの生産量低下や未乾燥ゲルの乾燥機付着により設備の連続運転が困難となる問題が生じた。 However, since hydrogels have a high cohesive property, some hydrogels coalesce and remain in the dryer due to decreased fluidity and adhesion to the dryer. Excessive heat exposure caused problems such as deterioration of water absorption performance and generation of colored foreign matter. In addition, when the drying temperature was lowered to avoid thermal deterioration, problems arose in that the production volume per unit time decreased due to a decrease in drying speed, and that undried gel adhered to the dryer, making continuous operation of the equipment difficult.
 乾燥性を向上させるため、含水ゲルに界面活性剤を添加して乾燥する方法(特許文献6)も提案されているが、乾燥効率の低い乾燥機では界面活性材料の添加量が多量に必要となり、界面活性剤の熱劣化による着色や、界面活性剤添加による吸水性能が劣化するといった問題があった。 In order to improve drying performance, a method of adding a surfactant to a hydrogel and drying it has been proposed (Patent Document 6), but a dryer with low drying efficiency requires a large amount of surfactant material to be added. There were problems such as coloring due to thermal deterioration of the surfactant and deterioration of water absorption performance due to the addition of the surfactant.
 吸水性樹脂組成物中に含まれる着色異物を低減する方策として、異物を色彩選別して除去する方法(特許文献7)も提案されているが、吸水性能の劣化抑制は困難であり、また製造工程を複雑にするものであった。 As a measure to reduce colored foreign matter contained in water-absorbing resin compositions, a method of color-sorting and removing foreign matter (Patent Document 7) has been proposed, but it is difficult to suppress deterioration of water-absorbing performance, and manufacturing This made the process complicated.
特許第3297192号Patent No. 3297192 特許第5587384号Patent No. 5587384 特開2007-71415号JP2007-71415 特許第6913107号Patent No. 6913107 国際特許WO2020/144948号International patent WO2020/144948 特開2000-143720号JP2000-143720 特許第5271717号Patent No. 5271717
 本発明の目的は、乾燥工程にかかる時間を低減することで環境負荷低減に寄与することができ、かつ乾燥工程に起因する性能劣化および着色異物の発生を低減することができる吸水性樹脂組成物の製造方法を提供することである。 An object of the present invention is to provide a water-absorbing resin composition that can contribute to reducing environmental impact by reducing the time required for the drying process, and can also reduce performance deterioration and generation of colored foreign matter caused by the drying process. An object of the present invention is to provide a manufacturing method.
 本発明は、水溶性不飽和モノカルボン酸(a1)及びその塩、並びに加水分解により前記水溶性不飽和モノカルボン酸(a1)となるモノマー(a2)からなる群より選ばれる1種以上のモノマー(A1)と、内部架橋剤(b)と、を構成単位として有する架橋重合体(A)を含む含水ゲルを得る重合工程と、前記含水ゲルを乾燥機で乾燥させる乾燥工程と、を有する吸水性樹脂組成物の製造方法であって、
 前記乾燥機が、軸心周りに回転自在な回転筒と、当該軸心方向に配設され、撹拌棒を有する回転自在な撹拌軸と、を有し、前記回転筒内で乾燥処理を行う回転式乾燥機であり、
 前記乾燥工程において、前記回転式乾燥機の前記回転筒内で前記含水ゲルを前記回転筒及び前記撹拌棒を回転させてかき上げながら乾燥させることを特徴とする、吸水性樹脂組成物の製造方法である。
The present invention provides at least one monomer selected from the group consisting of a water-soluble unsaturated monocarboxylic acid (a1) and its salt, and a monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) upon hydrolysis. (A1) and an internal crosslinking agent (b) as structural units to obtain a hydrogel containing a crosslinked polymer (A); and a drying step of drying the hydrogel in a dryer. A method for producing a synthetic resin composition, comprising:
The dryer includes a rotary cylinder that can freely rotate around an axis, and a rotatable stirring shaft that is disposed in the direction of the axis and has a stirring rod, and the dryer has a rotating cylinder that performs a drying process within the rotary cylinder. It is a type dryer,
In the drying step, the water-containing gel is dried in the rotary cylinder of the rotary dryer while being scraped up by rotating the rotary cylinder and the stirring rod. It is.
 本発明によれば、乾燥工程にかかる時間を低減することで環境負荷低減に寄与することができ、かつ乾燥工程に起因する性能劣化および着色異物の発生を低減することができる吸水性樹脂組成物の製造方法を提供することができる。 According to the present invention, a water-absorbing resin composition can contribute to reducing environmental load by reducing the time required for the drying process, and can also reduce performance deterioration and generation of colored foreign matter caused by the drying process. A manufacturing method can be provided.
回転式乾燥機の回転筒の軸心方向の断面の一部を模式的に表した図。FIG. 2 is a diagram schematically showing a part of a cross section in the axial direction of a rotary cylinder of a rotary dryer. 回転式乾燥機の回転筒の軸心の垂直方向の断面を模式的に表した図。FIG. 2 is a diagram schematically showing a vertical cross section of the axis of a rotary cylinder of a rotary dryer. 従来から用いられるコンベア式乾燥機の断面を模式的に表した図。FIG. 1 is a diagram schematically showing a cross section of a conventionally used conveyor dryer.
<吸水性樹脂組成物の製造方法>
 本実施形態の吸水性樹脂組成物の製造方法は、
 水溶性不飽和モノカルボン酸(a1)及びその塩、並びに加水分解により前記水溶性不飽和モノカルボン酸(a1)となるモノマー(a2)からなる群より選ばれる1種以上のモノマー(A1)と、内部架橋剤(b)と、を構成単位として有する架橋重合体(A)を含む含水ゲルを得る重合工程と、前記含水ゲルを乾燥機で乾燥させる乾燥工程と、を有する吸水性樹脂組成物の製造方法であって、
 前記乾燥機が、軸心周りに回転自在な回転筒と、当該軸心方向に配設され、撹拌棒を有する回転自在な撹拌軸と、を有し、前記回転筒内で乾燥処理を行う回転式乾燥機であり、
 前記乾燥工程において、前記回転式乾燥機の前記回転筒内で前記含水ゲルを前記回転筒及び前記撹拌棒を回転させてかき上げながら乾燥させることを特徴とする。
<Method for manufacturing water absorbent resin composition>
The method for producing the water absorbent resin composition of this embodiment is as follows:
One or more monomers (A1) selected from the group consisting of a water-soluble unsaturated monocarboxylic acid (a1) and its salt, and a monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) upon hydrolysis; , an internal crosslinking agent (b), and a drying step of drying the hydrogel in a dryer. A method of manufacturing,
The dryer includes a rotary cylinder that can freely rotate around an axis, and a rotatable stirring shaft that is disposed in the direction of the axis and has a stirring rod, and the dryer has a rotating cylinder that performs a drying process within the rotary cylinder. It is a type dryer,
In the drying step, the hydrogel is dried in the rotary cylinder of the rotary dryer while being scraped up by rotating the rotary cylinder and the stirring rod.
 本実施形態の吸水性樹脂組成物の製造方法によれば、乾燥工程にかかる時間を低減することで環境負荷低減に寄与することができ、かつ乾燥工程に起因する性能劣化および着色異物の発生を低減することができる。 According to the method for producing a water-absorbing resin composition of the present embodiment, it is possible to contribute to reducing the environmental load by reducing the time required for the drying process, and also to reduce performance deterioration and generation of colored foreign matter due to the drying process. can be reduced.
〔重合工程〕
 本実施形態の吸水性樹脂組成物の製造方法は、水溶性不飽和モノカルボン酸(a1)及びその塩、並びに加水分解により前記水溶性不飽和モノカルボン酸(a1)となるモノマー(a2)からなる群より選ばれる1種以上のモノマー(A1)及び、内部架橋剤(b)と、を構成単位として有する架橋重合体(A)を含む含水ゲルを得る重合工程を有する。前記重合工程において、前記含水ゲルは、前記モノマー(A1)及び前記架橋剤(b)を含む単量体組成物を重合することにより得ることができる。
[Polymerization process]
The method for producing a water-absorbing resin composition of the present embodiment includes a water-soluble unsaturated monocarboxylic acid (a1) and its salt, and a monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) by hydrolysis. The method includes a polymerization step of obtaining a hydrogel containing a crosslinked polymer (A) having as constituent units one or more monomers (A1) selected from the group consisting of one or more monomers (A1) and an internal crosslinking agent (b). In the polymerization step, the hydrogel can be obtained by polymerizing a monomer composition containing the monomer (A1) and the crosslinking agent (b).
[モノマー(A1)]
(水溶性不飽和モノカルボン酸(a1)及びその塩)
 前記水溶性不飽和モノカルボン酸(a1)は、水溶性を有する不飽和モノカルボン酸であれば特に限定されずに用いることができる。前記水溶性不飽和モノカルボン酸(a1)は、架橋体にした際の吸水性能や入手の容易さの観点から、アクリル酸、メタクリル酸、及びクロトン酸からなる郡より選ばれる少なくとも1種が好ましく、アクリル酸、メタクリル酸がより好ましい。
[Monomer (A1)]
(Water-soluble unsaturated monocarboxylic acid (a1) and its salt)
The water-soluble unsaturated monocarboxylic acid (a1) can be used without particular limitation as long as it is a water-soluble unsaturated monocarboxylic acid. The water-soluble unsaturated monocarboxylic acid (a1) is preferably at least one selected from the group consisting of acrylic acid, methacrylic acid, and crotonic acid, from the viewpoint of water absorption performance when crosslinked and ease of availability. , acrylic acid, and methacrylic acid are more preferred.
 前記水溶性不飽和モノカルボン酸(a1)の塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩及びアンモニウム(NH)塩等が挙げられる。これらの塩の内、吸収性能等の観点から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましいのはアルカリ金属塩、特に好ましいのはナトリウム塩である。 Examples of the salts of the water-soluble unsaturated monocarboxylic acid (a1) include alkali metal (lithium, sodium, potassium, etc.) salts, alkaline earth metal (magnesium, calcium, etc.) salts, and ammonium (NH 4 ) salts. . Among these salts, from the viewpoint of absorption performance and the like, alkali metal salts and ammonium salts are preferred, alkali metal salts are more preferred, and sodium salts are particularly preferred.
(モノマー(a2))
 加水分解により前記水溶性不飽和モノカルボン酸(a1)となるモノマー(a2)を前記水溶性不飽和モノカルボン酸(a1)とともに、あるいはその代わりに使用することができる。前記モノマー(a2)は特に限定はなく、加水分解によりカルボキシ基となる加水分解性置換基を1個有するモノマー等が例示できる。前記加水分解性置換基としては、酸無水物を含む基(1,3-オキソ-1-オキサプロピレン基、-COO-CO-)、エステル結合を含む基(アルキルオキシカルボニル、ビニルオキシカルボニル、アリルオキシカルボニル又はプロペニルオキシカルボニル、-COOR)及びシアノ基等が挙げられる。なお、Rは炭素数1~3のアルキル基(メチル、エチル及びプロピル)、ビニル、アリル及びプロペニルである。
(Monomer (a2))
The monomer (a2) which becomes the water-soluble unsaturated monocarboxylic acid (a1) by hydrolysis can be used together with or instead of the water-soluble unsaturated monocarboxylic acid (a1). The monomer (a2) is not particularly limited, and examples include monomers having one hydrolyzable substituent that becomes a carboxy group upon hydrolysis. The hydrolyzable substituent includes a group containing an acid anhydride (1,3-oxo-1-oxapropylene group, -COO-CO-), a group containing an ester bond (alkyloxycarbonyl, vinyloxycarbonyl, allyl), and a group containing an ester bond (alkyloxycarbonyl, vinyloxycarbonyl, allyl). Examples include oxycarbonyl or propenyloxycarbonyl, -COOR) and cyano group. Note that R is an alkyl group having 1 to 3 carbon atoms (methyl, ethyl, and propyl), vinyl, allyl, and propenyl.
 なお、本明細書において、水溶性とは、25℃の水100gに少なくとも100g溶解することを意味する。また、前記モノマー(a2)における加水分解性とは、水及び必要により触媒(酸又は塩基等)の作用により加水分解され、水溶性になる性質を意味する。前記モノマー(a2)の加水分解は、重合中、重合後及びこれらの両方のいずれで行っても良いが、得られる吸水性樹脂組成物の吸収性能の観点から、重合後が好ましい。 In addition, in this specification, water-soluble means that at least 100g is dissolved in 100g of water at 25°C. Moreover, the hydrolyzability of the monomer (a2) means the property of being hydrolyzed by the action of water and, if necessary, a catalyst (acid, base, etc.) and becoming water-soluble. The monomer (a2) may be hydrolyzed during polymerization, after polymerization, or both, but from the viewpoint of the absorption performance of the resulting water-absorbing resin composition, it is preferably after polymerization.
 前記単量体組成物は、前記モノマー(A1)の他に、これらと共重合可能なその他のビニルモノマー(A2)を含有することができる。前記ビニルモノマー(A2)は1種を単独で用いても、2種以上を併用してもよい。 In addition to the monomer (A1), the monomer composition may contain another vinyl monomer (A2) that is copolymerizable with these monomers. The vinyl monomer (A2) may be used alone or in combination of two or more.
 前記ビニルモノマー(A2)としては特に限定はなく、公知(例えば、特許第3648553号公報の0028~0029段落に開示されている疎水性ビニルモノマー、特開2003-165883号公報の0025段落及び特開2005-75982号公報の0058段落に開示されているビニルモノマー等)の疎水性ビニルモノマー等が使用でき、具体的には例えば下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン、並びにジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレン性モノマー
 アルケン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等);並びにアルカジエン(ブタジエン及びイソプレン等)等。
(iii)炭素数5~15の脂環式エチレン性モノマー
 モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等);並びにポリエチレン性ビニルモノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
The vinyl monomer (A2) is not particularly limited, and includes known hydrophobic vinyl monomers disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, paragraph 0025 of Japanese Patent Application Publication No. 2003-165883, and Hydrophobic vinyl monomers such as the vinyl monomers disclosed in paragraph 0058 of Publication No. 2005-75982 can be used, and specifically, for example, the following vinyl monomers (i) to (iii) can be used.
(i) Aromatic ethylenic monomers having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, and halogen substituted products of styrene such as vinylnaphthalene and dichlorostyrene.
(ii) Aliphatic ethylenic monomers having 2 to 20 carbon atoms Alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkadienes (butadiene, isoprene, etc.).
(iii) Alicyclic ethylenic monomers having 5 to 15 carbon atoms, monoethylenically unsaturated monomers (pinene, limonene, indene, etc.); and polyethylenic vinyl monomers [cyclopentadiene, bicyclopentadiene, ethylidene norbornene, etc.].
 前記単量体組成物中の前記ビニルモノマー(A2)の物質量は、吸収性能等の観点から、前記モノマー(A1)100モル部に対して、0~5モル部が好ましく、更に好ましくは0~3モル部、特に好ましくは0~2モル部、とりわけ好ましくは0~1.5モル部であり、吸収性能等の観点から、0モル部であることが最も好ましい。 The amount of the vinyl monomer (A2) in the monomer composition is preferably 0 to 5 parts by mole, more preferably 0 to 5 parts by mole, based on 100 parts by mole of the monomer (A1), from the viewpoint of absorption performance and the like. The amount is 3 mol parts, particularly preferably 0 to 2 mol parts, particularly preferably 0 to 1.5 mol parts, and most preferably 0 mol parts from the viewpoint of absorption performance and the like.
[内部架橋剤(b)]
 前記内部架橋剤(b)としては特に限定はなく公知(例えば、特許第3648553号公報の0031~0034段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも1個有してかつ少なくとも1個のエチレン性不飽和基を有する架橋剤及び水溶性置換基と反応し得る官能基を少なくとも2個有する架橋剤、特開2003-165883号公報の0028~0031段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、エチレン性不飽和基と反応性官能基とを有する架橋剤及び反応性置換基を2個以上有する架橋剤、特開2005-75982号公報の0059段落に開示されている架橋性ビニルモノマー並びに特開2005-95759号公報の0015~0016段落に開示されている架橋性ビニルモノマー)の架橋剤等が使用できる。
[Internal crosslinking agent (b)]
The internal crosslinking agent (b) is not particularly limited and is known in the art (for example, a crosslinking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 3648553, a water-soluble substituent and Crosslinking agent having at least one reactive functional group and at least one ethylenically unsaturated group, and crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent, JP 2003-165883A A crosslinking agent having two or more ethylenically unsaturated groups, a crosslinking agent having an ethylenically unsaturated group and a reactive functional group, and a crosslinking agent having two or more reactive substituents disclosed in paragraphs 0028 to 0031 of the publication Crosslinking agents, crosslinkable vinyl monomers disclosed in paragraph 0059 of JP-A No. 2005-75982 and cross-linkable vinyl monomers disclosed in paragraphs 0015 to 0016 of JP-A No. 2005-95759, etc. Can be used.
 前記内部架橋剤(b)は、エチレン性不飽和基を2個以上有する架橋剤が好ましく、モノマーとの反応性および吸水特性の観点から、エチレン性不飽和基を2個以上有する多価(メタ)アリル化合物及びアクリルアミド化合物が好ましく、アルキレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール及びソルビトール等の多価アルコールのポリ(メタ)アリルエーテル、テトラアリロキシエタン並びにトリアリルイソシアヌレート等の多価(メタ)アリル化合物、1分子中に2つ以上の(メタ)アクリルアミド基を有する多価(メタ)アクリルアミド化合物からなる群より選ばれる1種以上がさらに好ましい。前記内部架橋剤(b)は1種を単独で用いても、2種以上を併用してもよい。反応性および、保水量および荷重下吸収量のバランスの観点から、多価アルコールのポリ(メタ)アリルエーテル、多価(メタ)アクリルアミド化合物を用いるのが更に好ましい。 The internal crosslinking agent (b) is preferably a crosslinking agent having two or more ethylenically unsaturated groups, and from the viewpoint of reactivity with monomers and water absorption characteristics, a polyvalent (meth) having two or more ethylenically unsaturated groups. ) allyl compounds and acrylamide compounds are preferred; poly(meth)allyl ethers of polyhydric alcohols such as alkylene glycols, trimethylolpropane, glycerin, pentaerythritol and sorbitol; ) Allyl compounds, and one or more selected from the group consisting of polyvalent (meth)acrylamide compounds having two or more (meth)acrylamide groups in one molecule are more preferred. The internal crosslinking agent (b) may be used alone or in combination of two or more. From the viewpoint of reactivity, balance of water retention and absorption under load, it is more preferable to use poly(meth)allyl ether of polyhydric alcohol or polyhydric (meth)acrylamide compound.
 前記単量体組成物中の前記内部架橋剤(b)の物質量は、吸収性能等の観点から、前記モノマー(A1)100モル部、その他のビニルモノマー(A2)を用いる場合は(A1)及び(A2)の合計100モル部に対して、0.001~5モル部が好ましく、更に好ましくは0.005~3モル部、特に好ましくは0.005~1モル部である。 From the viewpoint of absorption performance, etc., the amount of the internal crosslinking agent (b) in the monomer composition is 100 mol parts of the monomer (A1), and (A1) when using other vinyl monomers (A2). The amount is preferably 0.001 to 5 mol parts, more preferably 0.005 to 3 mol parts, particularly preferably 0.005 to 1 mol part, based on a total of 100 mol parts of (A2) and (A2).
 水溶液重合を行う場合、水と有機溶媒とを含む混合溶媒を使用することができる。有機溶媒としては、メタノール、エタノール、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、ジメチルスルホキシド及びこれらの2種以上の混合物を挙げられる。 When performing aqueous solution polymerization, a mixed solvent containing water and an organic solvent can be used. Examples of the organic solvent include methanol, ethanol, acetone, methyl ethyl ketone, N,N-dimethylformamide, dimethyl sulfoxide, and mixtures of two or more thereof.
 水溶液重合を行う場合、有機溶媒の使用量(重量%)は、水の重量を基準として40以下が好ましく、更に好ましくは30以下である。 When carrying out aqueous solution polymerization, the amount (wt%) of the organic solvent used is preferably 40 or less, more preferably 30 or less, based on the weight of water.
 重合方法が懸濁重合法又は逆相懸濁重合法である場合、必要に応じて、従来公知の分散剤又は界面活性剤の存在下に重合を行っても良い。また、逆相懸濁重合法の場合、従来公知のキシレン、ノルマルヘキサン及びノルマルヘプタン等の炭化水素系溶媒を使用して重合を行うことができる。 When the polymerization method is a suspension polymerization method or a reverse phase suspension polymerization method, the polymerization may be carried out in the presence of a conventionally known dispersant or surfactant, if necessary. Furthermore, in the case of reverse phase suspension polymerization, polymerization can be carried out using conventionally known hydrocarbon solvents such as xylene, n-hexane, and n-heptane.
 重合方法のうち、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、好ましいのは水溶液重合法であり、保水量が大きく、且つ水可溶性成分量の少ない水性液体吸収性樹脂が得られ、重合時の温度コントロールが不要である点から、水溶液断熱重合法が更に好ましい。 Among the polymerization methods, the aqueous solution polymerization method is preferable because it does not require the use of organic solvents and is advantageous in terms of production cost. The aqueous adiabatic polymerization method is more preferable because it can be obtained easily and does not require temperature control during polymerization.
 重合時のモノマー(A1)及び内部架橋剤(b)を含む単量体組成物の重量パーセント濃度は重合開始時の重合液の総重量に対して15~55%が好ましい。この範囲より低い場合には生産性が悪くなる場合があり、高い場合には十分なゲル強度を得ることができない場合がある。 The weight percent concentration of the monomer composition containing the monomer (A1) and the internal crosslinking agent (b) during polymerization is preferably 15 to 55% based on the total weight of the polymerization solution at the start of polymerization. If it is lower than this range, productivity may deteriorate, and if it is higher than this range, sufficient gel strength may not be obtained.
 前記モノマー(A1)の重合において、必要に応じて公知のラジカル開始剤を用いることが出来る。 In the polymerization of the monomer (A1), a known radical initiator can be used if necessary.
 公知のラジカル開始剤としては、アゾ化合物[アゾビスイソブチロニトリル、アゾビスシアノ吉草酸及び2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]等]、無機過酸化物(過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等)、有機過酸化物[過酸化ベンゾイル、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド及びジ(2-エトキシエチル)パーオキシジカーボネート等]、レドックス触媒(アルカリ金属の亜硫酸塩又は重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム及びアスコルビン酸等の還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素及び有機過酸化物等の酸化剤との組み合わせよりなるもの)、光ラジカル発生剤[2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1-ヒドロキシシクロヘキシル-フェニルケトン-ヒドロキシアルキルフェノン、α-アミノアルキルフェノン等]等があげられる。これらのラジカル開始剤は、単独で使用してもよく、これらの2種以上を併用しても良い。 Known radical initiators include azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2'-azobis(2-amidinopropane) hydrochloride, 2,2'-azobis[2-methyl-N- (2-hydroxyethyl)propionamide], etc.), inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, etc.] , cumene hydroperoxide, succinic acid peroxide and di(2-ethoxyethyl) peroxydicarbonate, etc.], redox catalysts (reduction of alkali metal sulfites or bisulfites, ammonium sulfite, ammonium bisulfite, ascorbic acid, etc.) alkali metal persulfate, ammonium persulfate, hydrogen peroxide, and an oxidizing agent such as an organic peroxide), a photoradical generator [2,4,6-trimethylbenzoyl-diphenyl-phosphine] oxide, 1-hydroxycyclohexyl-phenylketone-hydroxyalkylphenone, α-aminoalkylphenone, etc.]. These radical initiators may be used alone or in combination of two or more thereof.
 ラジカル開始剤の使用量は、モノマー(A1)100モル部に対して、0.0005~5モル部が好ましく、更に好ましくは0.001~2モル部である。 The amount of the radical initiator used is preferably 0.0005 to 5 parts by mole, more preferably 0.001 to 2 parts by mole, per 100 parts by mole of monomer (A1).
 前記の重合工程によって、前記モノマー(A1)及び前記内部架橋剤(b)を構成単位として有する架橋重合体(A)の重合ゲルが得られ、この重合ゲルは、必要に応じて細断することができる。細断後のゲルの大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは1mm~1cmである。この範囲であると、乾燥工程での乾燥性が更に良好となる。 Through the above polymerization step, a polymer gel of the crosslinked polymer (A) having the monomer (A1) and the internal crosslinking agent (b) as constituent units is obtained, and this polymer gel can be shredded if necessary. Can be done. The size of the gel after shredding (longest diameter) is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, particularly preferably 1 mm to 1 cm. Within this range, the drying properties in the drying step will be even better.
 前記含水ゲルの細断は、公知の方法で行うことができ、細断装置(例えば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機(ミートチョッパー)、衝撃式粉砕機及びロール式粉砕機)等を使用して細断できる。また、必要に応じて、上記のようにして得られる重合ゲルにアルカリを混合して中和することもできる。 The hydrous gel can be shredded by a known method, using a shredding device (for example, a Bex mill, a rubber chopper, a Pharma mill, a mincing machine (meat chopper), an impact crusher, a roll crusher), etc. Can be used to shred. Further, if necessary, the polymer gel obtained as described above can be mixed with an alkali to neutralize it.
 アルカリは、公知{特許第3205168号公報等}のものが使用できる。これらのうち、吸水性能の観点から、水酸化リチウム、水酸化ナトリウム及び水酸化カリウムが好ましく、さらに好ましくは水酸化ナトリウム及び水酸化カリウム、特に好ましくは水酸化ナトリウムである。中和率は、吸水性能やハンドリングの観点から、20~100モル%が好ましく、更に好ましくは、50~80モル%である。中和度が50モル%未満の場合、得られる含水ゲル重合体の粘着性が高くなり、製造時及び使用時の作業性が悪化する場合がある。更に得られる吸水性樹脂の保水量が低下する場合がある。一方、中和度が80%を超える場合、得られた樹脂のpHが高くなり人体の皮膚に対する安全性が懸念される場合がある。 As the alkali, those known in the art (such as those disclosed in Japanese Patent No. 3205168) can be used. Among these, from the viewpoint of water absorption performance, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable, more preferably sodium hydroxide and potassium hydroxide, and particularly preferably sodium hydroxide. From the viewpoint of water absorption performance and handling, the neutralization rate is preferably 20 to 100 mol%, more preferably 50 to 80 mol%. If the degree of neutralization is less than 50 mol%, the resulting hydrogel polymer will have high stickiness, and workability during production and use may deteriorate. Furthermore, the water retention amount of the resulting water absorbent resin may be reduced. On the other hand, if the degree of neutralization exceeds 80%, the pH of the resulting resin may become high and there may be concerns about safety for human skin.
〔疎水性物質添加工程〕
 前記吸水性樹脂組成物の製造方法は、乾燥工程より前に疎水性物質(c)を添加する疎水性物質添加工程を有してもよい。当該疎水性物質(c)は、前記含水ゲルを細断して得られる含水ゲル粒子同士の凝集によるブロッキングを抑制することができ、含水ゲル粒子同士が融着することなく、乾燥時の含水ゲルの表面積が向上するため乾燥性を向上することができる。また、前記含水ゲルが乾燥機内部に付着することを防ぐこともでき吸水性能の劣化や着色異物の発生を抑制することができる。
[Hydrophobic substance addition step]
The method for producing a water absorbent resin composition may include a hydrophobic substance addition step of adding a hydrophobic substance (c) before the drying step. The hydrophobic substance (c) can suppress blocking due to aggregation of the hydrogel particles obtained by shredding the hydrogel, and prevents the hydrogel particles from fusing together, resulting in the formation of the hydrogel during drying. Since the surface area of the drying agent is increased, drying performance can be improved. Furthermore, it is possible to prevent the hydrogel from adhering to the interior of the dryer, thereby suppressing deterioration of water absorption performance and generation of colored foreign matter.
 前記疎水性物質(c)としては、炭素数8~30の炭化水素基を含有する疎水性物質(c1)及び有機ポリシロキサンである疎水性物質(c2)等が含まれる。 The hydrophobic substance (c) includes a hydrophobic substance (c1) containing a hydrocarbon group having 8 to 30 carbon atoms, a hydrophobic substance (c2) which is an organic polysiloxane, and the like.
 前記疎水性物質(c1)としては、ポリオレフィン樹脂、ポリオレフィン樹脂誘導体、ポリスチレン樹脂、ポリスチレン樹脂誘導体、ワックス、長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪族アルコール、長鎖脂肪族アミド及びこれらの2種以上の混合物等が含まれる。 The hydrophobic substance (c1) includes polyolefin resins, polyolefin resin derivatives, polystyrene resins, polystyrene resin derivatives, waxes, long-chain fatty acid esters, long-chain fatty acids and their salts, long-chain aliphatic alcohols, long-chain aliphatic amides, and Mixtures of two or more of these are included.
 ポリオレフィン樹脂としては、炭素数2~4のオレフィン{エチレン、プロピレン、イソブチレン及びイソプレン等}を必須構成単量体(オレフィンの含有量はポリオレフィン樹脂の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体{たとえば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(エチレン-イソブチレン)及びイソプレン等}が挙げられる。 The polyolefin resin has a weight of olefin having 2 to 4 carbon atoms {ethylene, propylene, isobutylene, isoprene, etc.} as an essential constituent monomer (olefin content is at least 50% by weight based on the weight of the polyolefin resin). Examples include polymers having an average molecular weight of 1,000 to 1,000,000 {eg, polyethylene, polypropylene, polyisobutylene, poly(ethylene-isobutylene), and isoprene, etc.}.
 ポリオレフィン樹脂誘導体としては、ポリオレフィン樹脂にカルボキシ基(-COOH)や1,3-オキソ-2-オキサプロピレン(-COOCO-)等を導入した重量平均分子量1000~100万の重合体{たとえば、ポリエチレン熱減成体、ポリプロピレン熱減成体、マレイン酸変性ポリエチレン、塩素化ポリエチレン、マレイン酸変性ポリプロピレン、エチレン-アクリル酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、マレイン化ポリブタジエン、エチレン-酢酸ビニル共重合体及びエチレン-酢酸ビニル共重合体のマレイン化物等}が挙げられる。 Examples of polyolefin resin derivatives include polymers with a weight average molecular weight of 1,000 to 1,000,000, which are obtained by introducing carboxyl groups (-COOH), 1,3-oxo-2-oxapropylene (-COOCO-), etc. into polyolefin resins {for example, polyethylene thermal Degraded product, thermally degraded polypropylene, maleic acid-modified polyethylene, chlorinated polyethylene, maleic acid-modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleated polybutadiene, ethylene-vinyl acetate copolymer, maleated ethylene-vinyl acetate copolymer, etc.).
 ポリスチレン樹脂としては、重量平均分子量1000~100万の重合体等が使用できる。 As the polystyrene resin, a polymer having a weight average molecular weight of 1,000 to 1,000,000 can be used.
 ポリスチレン樹脂誘導体としては、スチレンを必須構成単量体(スチレンの含有量は、ポリスチレン誘導体の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体{たとえば、スチレン-無水マレイン酸共重合体、スチレン-ブタジエン共重合体及びスチレン-イソブチレン共重合体等}が挙げられる。 The polystyrene resin derivative is a polymer having a weight average molecular weight of 1,000 to 1,000,000 and containing styrene as an essential constituent monomer (styrene content is at least 50% by weight, based on the weight of the polystyrene derivative) {for example, styrene- Maleic anhydride copolymer, styrene-butadiene copolymer, styrene-isobutylene copolymer, etc.}.
 ワックスとしては、融点50~200℃のワックス{たとえば、パラフィンワックス、ミツロウ、カルナウバワックス及び牛脂等}が挙げられる。 Examples of the wax include waxes with a melting point of 50 to 200°C {for example, paraffin wax, beeswax, carnauba wax, beef tallow, etc.}.
 長鎖脂肪酸エステルとしては、炭素数8~30の脂肪酸と炭素数1~12のアルコールとのエステル{たとえば、ラウリン酸メチル、ラウリン酸エチル、ステアリン酸メチル、ステアリン酸エチル、オレイン酸メチル、オレイン酸エチル、グリセリンラウリン酸モノエステル、グリセリンステアリン酸モノエステル、グリセリンオレイン酸モノエステル、ペンタエリスリットラウリン酸モノエステル、ペンタエリスリットステアリン酸モノエステル、ペンタエリスリットオレイン酸モノエステル、ソルビットラウリン酸モノエステル、ソルビットステアリン酸モノエステル、ソルビットオレイン酸モノエステル、ショ糖パルミチン酸モノエステル、ショ糖パルミチン酸ジエステル、ショ糖パルミチン酸トリエステル、ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステル及び牛脂等}が挙げられる。 Long-chain fatty acid esters include esters of fatty acids with 8 to 30 carbon atoms and alcohols with 1 to 12 carbon atoms {for example, methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, methyl oleate, oleic acid Ethyl, glycerin lauric acid monoester, glycerin stearic acid monoester, glycerin oleic acid monoester, pentaerythritol lauric acid monoester, pentaerythritol stearic acid monoester, pentaerythritol oleic acid monoester, sorbitol lauric acid monoester, Sorbitol stearate monoester, sorbitoleate monoester, sucrose palmitate monoester, sucrose palmitate diester, sucrose palmitate triester, sucrose stearate monoester, sucrose stearate diester, sucrose stearate triester esters, beef tallow, etc.}.
 長鎖脂肪酸及びその塩としては、炭素数8~30の脂肪酸{たとえば、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、ダイマー酸及びベヘニン酸等}が挙げられ、その塩としては亜鉛、カルシウム、マグネシウム又はアルミニウム(以下、それぞれZn、Ca、Mg、Alと略す)との塩{たとえば、パルミチン酸Ca、パルミチン酸Al、ステアリン酸Ca、ステアリン酸Mg、ステアリン酸Al等}が挙げられる。 Examples of long-chain fatty acids and their salts include fatty acids having 8 to 30 carbon atoms (for example, lauric acid, palmitic acid, stearic acid, oleic acid, dimer acid, and behenic acid), and examples of their salts include zinc, calcium, Examples include salts with magnesium or aluminum (hereinafter abbreviated as Zn, Ca, Mg, Al, respectively) {for example, Ca palmitate, Al palmitate, Ca stearate, Mg stearate, Al stearate, etc.}.
 長鎖脂肪族アルコールとしては、炭素数8~30の脂肪族アルコール{たとえば、ラウリルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコール等}が挙げられる。吸収性物品の耐モレ性の観点等から、パルミチルアルコール、ステアリルアルコール、オレイルアルコールが好ましく、さらに好ましくはステアリルアルコールである。 Examples of long-chain aliphatic alcohols include aliphatic alcohols having 8 to 30 carbon atoms (eg, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, etc.). From the viewpoint of leakage resistance of the absorbent article, palmityl alcohol, stearyl alcohol, and oleyl alcohol are preferred, and stearyl alcohol is more preferred.
 長鎖脂肪族アミドとしては、炭素数8~30の長鎖脂肪族一級アミンと炭素数1~30の炭化水素基を有するカルボン酸とのアミド化物、アンモニア又は炭素数1~7の1級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物、炭素数8~30の脂肪族鎖を少なくとも1つ有する長鎖脂肪族二級アミンと炭素数1~30のカルボン酸とのアミド化物及び炭素数1~7の脂肪族炭化水素基を2個有する二級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物が挙げられる。 Examples of the long-chain aliphatic amide include an amidation product of a long-chain aliphatic primary amine having 8 to 30 carbon atoms and a carboxylic acid having a hydrocarbon group having 1 to 30 carbon atoms, ammonia, or a primary amine having 1 to 7 carbon atoms. and a long-chain fatty acid having 8 to 30 carbon atoms; amidation products of a long-chain aliphatic secondary amine having at least one aliphatic chain having 8 to 30 carbon atoms and a carboxylic acid having 1 to 30 carbon atoms; and Examples include amidation products of secondary amines having two aliphatic hydrocarbon groups having 1 to 7 carbon atoms and long-chain fatty acids having 8 to 30 carbon atoms.
 炭素数8~30の長鎖脂肪族一級アミンと炭素数1~30の炭化水素基を有するカルボン酸とのアミド化物としては、1級アミンとカルボン酸とが1:1で反応した物と1:2で反応した物に分けられる。1:1で反応した物としては、酢酸N-オクチルアミド、酢酸N-ヘキサコシルアミド、ヘプタコサン酸N-オクチルアミド及びヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。1:2で反応したものとしては、二酢酸N-オクチルアミド、二酢酸N-ヘキサコシルアミド、ジヘプタコサン酸N-オクチルアミド及びジヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。なお、1級アミンとカルボン酸とが1:2で反応した物の場合、使用するカルボン酸は、同一でも異なっていてもよい。 An amidated product of a long-chain aliphatic primary amine having 8 to 30 carbon atoms and a carboxylic acid having a hydrocarbon group having 1 to 30 carbon atoms includes a product obtained by reacting a primary amine and a carboxylic acid in a 1:1 ratio, and 1 :Divided into 2 reacted substances. Examples of products reacted at a ratio of 1:1 include acetic acid N-octylamide, acetic acid N-hexacosylamide, heptacanoic acid N-octylamide, and heptacanoic acid N-hexacosylamide. Examples of those reacted at a ratio of 1:2 include diacetic acid N-octylamide, diacetic acid N-hexacosylamide, diheptacanoic acid N-octylamide, and diheptacanoic acid N-hexacosylamide. In addition, in the case of a product obtained by reacting a primary amine and a carboxylic acid at a ratio of 1:2, the carboxylic acids used may be the same or different.
 アンモニア又は炭素数1~7の1級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物としては、アンモニア又は1級アミンとカルボン酸とが1:1で反応した物と1:2で反応した物に分けられる。1:1で反応した物としては、ノナン酸アミド、ノナン酸メチルアミド、ノナン酸N-ヘプチルアミド、ヘプタコサン酸アミド、ヘプタコサン酸N-メチルアミド、ヘプタコサン酸N-ヘプチルアミド及びヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。1:2で反応したものとしては、ジノナン酸アミド、ジノナン酸N-メチルアミド、ジノナン酸N-ヘプチルアミド、ジオクタデカン酸アミド、ジオクタデカン酸N-エチルアミド、ジオクタデカン酸N-ヘプチルアミド、ジヘプタコサン酸アミド、ジヘプタコサン酸N-メチルアミド、ジヘプタコサン酸N-ヘプチルアミド及びジヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。なお、アンモニア又は1級アミンとカルボン酸とが1:2で反応した物としては、使用するカルボン酸は、同一でも異なっていてもよい。 As the amidated product of ammonia or a primary amine having 1 to 7 carbon atoms and a long chain fatty acid having 8 to 30 carbon atoms, a 1:1 reaction of ammonia or a primary amine with a carboxylic acid and a 1:2 reaction of ammonia or a primary amine with a carboxylic acid are available. It can be divided into reactants. Products reacted at a ratio of 1:1 include nonanoic acid amide, nonanoic acid methylamide, nonanoic acid N-heptylamide, heptacanoic acid amide, heptacanoic acid N-methylamide, heptacanoic acid N-heptylamide, and heptacosanoic acid N-hexacosylamide. etc. Those reacted at a ratio of 1:2 include dinonanoic acid amide, dinonanoic acid N-methylamide, dinonanoic acid N-heptylamide, dioctadecanoic acid amide, dioctadecanoic acid N-ethylamide, dioctadecanoic acid N-heptylamide, diheptacanoic acid amide , diheptacosanoic acid N-methylamide, diheptacosanoic acid N-heptylamide, diheptacosanoic acid N-hexacosylamide, and the like. In addition, as a product obtained by reacting ammonia or a primary amine with a carboxylic acid at a ratio of 1:2, the carboxylic acids used may be the same or different.
 炭素数8~30の脂肪族鎖を少なくとも1つ有する長鎖脂肪族二級アミンと炭素数1~30のカルボン酸とのアミド化物としては、酢酸N-メチルオクチルアミド、酢酸N-メチルヘキサコシルアミド、酢酸N-オクチルヘキサコシルアミド、酢酸N-ジヘキサコシルアミド、ヘプタコサン酸N-メチルオクチルアミド、ヘプタコサン酸N-メチルヘキサコシルアミド、ヘプタコサン酸N-オクチルヘキサコシルアミド及びヘプタコサン酸N-ジヘキサコシルアミド等が挙げられる。 Examples of amidated products of long-chain aliphatic secondary amines having at least one aliphatic chain having 8 to 30 carbon atoms and carboxylic acids having 1 to 30 carbon atoms include acetic acid N-methyloctylamide, acetic acid N-methylhexacylamide, and acetic acid N-methyloctylamide. ruamide, acetic acid N-octylhexacosylamide, acetic acid N-dihexacosylamide, heptacanoic acid N-methyloctylamide, heptacanoic acid N-methylhexacosylamide, heptacanoic acid N-octylhexacosylamide and heptacosane Examples include acid N-dihexacosylamide and the like.
 炭素数1~7の脂肪族炭化水素基を2個有する二級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物としては、ノナン酸N-ジメチルアミド、ノナン酸N-メチルヘプチルアミド、ノナン酸N-ジヘプチルアミド、ヘプタコサン酸N-ジメチルアミド、ヘプタコサン酸N-メチルヘプチルアミド及びヘプタコサン酸N-ジヘプチルアミド等が挙げられる。 Examples of amidated products of a secondary amine having two aliphatic hydrocarbon groups having 1 to 7 carbon atoms and a long chain fatty acid having 8 to 30 carbon atoms include nonanoic acid N-dimethylamide, nonanoic acid N-methylheptylamide, Examples include nonanoic acid N-diheptylamide, heptacanoic acid N-dimethylamide, heptacanoic acid N-methylheptylamide, and heptacosanoic acid N-diheptylamide.
 前記疎水性物質(c2)としては、ポリジメチルシロキサン、ポリエーテル変性ポリシロキサン{ポリオキシエチレン変性ポリシロキサン及びポリ(オキシエチレン・オキシプロピレン)変性ポリシロキサン等}、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン、アミノ変性ポリシロキサン、アルコキシ変性ポリシロキサン等及びこれらの混合物等が含まれる。 Examples of the hydrophobic substance (c2) include polydimethylsiloxane, polyether-modified polysiloxane {polyoxyethylene-modified polysiloxane and poly(oxyethylene/oxypropylene)-modified polysiloxane, etc.}, carboxy-modified polysiloxane, and epoxy-modified polysiloxane. , amino-modified polysiloxane, alkoxy-modified polysiloxane, and mixtures thereof.
 前記疎水性物質(c)のHLB値は、1~10が好ましく、さらに好ましくは2~8、特に好ましくは3~7である。この範囲であると、初期膨潤時の耐ブロッキング性がさらに良好となる。なお、HLB値は、親水性-疎水性バランス(HLB)値を意味し、小田法(新・界面活性剤入門、197頁、藤本武彦、三洋化成工業株式会社発行、1981年発行)により求められる。 The HLB value of the hydrophobic substance (c) is preferably 1 to 10, more preferably 2 to 8, particularly preferably 3 to 7. Within this range, the blocking resistance during initial swelling will be even better. The HLB value means the hydrophilic-hydrophobic balance (HLB) value, which is determined by the Oda method (New Introduction to Surfactants, p. 197, Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd., 1981). .
 前記疎水性物質(c)のうち、初期膨潤時の耐ブロッキング性の観点から、前記疎水性物質(c1)が好ましく、より好ましくは長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪族アルコール並びに長鎖脂肪族アミドであり、さらに好ましくはソルビットステアリン酸エステル、ショ糖ステアリン酸エステル、ステアリン酸、ステアリン酸Mg、ステアリン酸Ca、ステアリン酸Zn及びステアリン酸Al、特に好ましくはショ糖ステアリン酸エステル及びステアリン酸Mgであり、最も好ましくはショ糖ステアリン酸エステルである。 Among the hydrophobic substances (c), from the viewpoint of anti-blocking property during initial swelling, the hydrophobic substance (c1) is preferable, and more preferably long-chain fatty acid esters, long-chain fatty acids and salts thereof, long-chain aliphatic alcohols and long-chain aliphatic amides, more preferably sorbitol stearate, sucrose stearate, stearic acid, Mg stearate, Ca stearate, Zn stearate and Al stearate, particularly preferably sucrose stearate ester and Mg stearate, most preferably sucrose stearate.
 前記疎水性物質(c)の配合量は、吸収性能及び初期膨潤時の耐ブロッキング性の観点から、前記架橋重合体(A)100重量部に対して、0.001~1.0重量部が好ましく、更に好ましくは0.005~0.5重量部、特に好ましくは0.01~0.3重量部である。 The amount of the hydrophobic substance (c) to be blended is 0.001 to 1.0 parts by weight based on 100 parts by weight of the crosslinked polymer (A) from the viewpoint of absorption performance and blocking resistance during initial swelling. It is preferably 0.005 to 0.5 parts by weight, particularly preferably 0.01 to 0.3 parts by weight.
〔乾燥工程〕
 本実施形態の吸水性樹脂組成物の製造方法は、前記含水ゲルを乾燥機で乾燥させる乾燥工程を有する。前記乾燥機は、軸心周りに回転自在な回転筒と、当該軸心方向に配設され、撹拌棒を有する回転自在な撹拌軸と、を有し、前記回転筒内で乾燥処理を行う回転式乾燥機であり、前記回転式乾燥機の前記回転筒内で前記含水ゲルを前記回転筒及び前記撹拌棒を回転させてかき上げながら乾燥させる。
[Drying process]
The method for producing a water-absorbent resin composition of the present embodiment includes a drying step of drying the hydrogel with a dryer. The dryer has a rotary cylinder that is rotatable around an axis, and a rotatable stirring shaft that is disposed in the direction of the axis and has a stirring rod, and the dryer has a rotating cylinder that performs drying processing within the rotary cylinder. The hydrogel is dried in the rotary cylinder of the rotary dryer while being scraped up by rotating the rotary cylinder and the stirring rod.
 前記乾燥工程において、前記含水ゲルの乾燥は、前記回転筒内で前記含水ゲルを加熱することによって行う。前記含水ゲルの加熱手段としては、乾燥に必要な熱量を加えることができる手段であれば制限はなく、例えば対流伝熱、伝導伝熱、マイクロ波、赤外線等による加熱手段が挙げられるが、乾燥効率の観点から対流電熱による加熱が好ましい。 In the drying step, the hydrogel is dried by heating the hydrogel within the rotating cylinder. The heating means for the hydrogel is not limited as long as it can apply the amount of heat necessary for drying, and examples include heating means using convection heat transfer, conduction heat transfer, microwaves, infrared rays, etc. From the viewpoint of efficiency, heating by convection electric heating is preferred.
 対流伝熱による乾燥方法としては高温に熱せられた気流を乾燥機内に導入する方法が挙げられる。気流の種類としては制限ないが、空気又は窒素等が好ましく、最も好ましくは空気である。気流は気流の温度には制限ないが、熱風が好ましく、乾燥機入口における気流の温度(℃)は、乾燥効率、吸収性能及び着色の観点等から、200~500が好ましく、さらに好ましくは250~450、最も好ましくは300~400である。乾燥機入口における熱風の絶対湿度(kg/kg)は乾燥効率及び着色の観点から0.001~1.0が好ましく、さらに好ましくは0.002~0.8、最も好ましくは0.005~0.6である。気流の風速(m/s)としては特に制限はないが、乾燥効率、吸収性能及び着色の観点等から、1~30が好ましく、さらに好ましくは1~20、最も好ましくは1~10である。 Examples of drying methods using convection heat transfer include a method of introducing a stream of air heated to a high temperature into the dryer. The type of air flow is not limited, but air, nitrogen, etc. are preferable, and air is most preferable. The temperature of the airflow is not limited, but hot air is preferred, and the temperature (°C) of the airflow at the inlet of the dryer is preferably 200 to 500, more preferably 250 to 500, from the viewpoint of drying efficiency, absorption performance, and coloring. 450, most preferably 300-400. The absolute humidity (kg/kg) of the hot air at the dryer inlet is preferably 0.001 to 1.0 from the viewpoint of drying efficiency and coloring, more preferably 0.002 to 0.8, and most preferably 0.005 to 0. .6. The wind speed (m/s) of the airflow is not particularly limited, but from the viewpoint of drying efficiency, absorption performance, and coloring, it is preferably from 1 to 30, more preferably from 1 to 20, and most preferably from 1 to 10.
 前記回転筒内の熱風の移動方向は、前記回転筒内の前記含水ゲルの移動方向と同じであることが好ましい。 It is preferable that the moving direction of the hot air in the rotating cylinder is the same as the moving direction of the hydrogel in the rotating cylinder.
 前記乾燥工程で用いられる前記回転式乾燥機の一例について図を参照しつつ説明する。 An example of the rotary dryer used in the drying process will be described with reference to the drawings.
 図1は、前記回転式乾燥機100の概略構成図である。前記回転式乾燥機100は、軸心周りに回転自在な回転筒1を有する。図1では、前記回転筒1の内部の説明のために前記回転筒1の軸心方向の一部を断面図で示している。 FIG. 1 is a schematic diagram of the rotary dryer 100. The rotary dryer 100 has a rotary cylinder 1 that is rotatable around an axis. In FIG. 1, a part of the rotary cylinder 1 in the axial direction is shown in a cross-sectional view for explaining the inside of the rotary cylinder 1. As shown in FIG.
 前記回転式乾燥機100は、前記回転筒1の一端側に前記含水ゲルを投入するための含水ゲル投入口3、及び、同端側の含水ゲル投入口3より上部に熱風を投入するための熱風投入口2を有する。前記回転式乾燥機100は、前記回転筒1の他端側に、前記含水ゲル投入口3から投入された含水ゲルを乾燥して得られる乾燥重合体を排出するための乾燥重合体排出口8、及び当該乾燥重合体排出口8の上部に前記熱風投入口2から投入された熱風を排出するための熱風排出口7を有する。 The rotary dryer 100 includes a hydrogel inlet 3 for injecting the hydrogel at one end of the rotary cylinder 1, and a hydrogel inlet 3 for injecting hot air above the hydrogel inlet 3 on the same end side. It has a hot air inlet 2. The rotary dryer 100 has a dry polymer discharge port 8 on the other end side of the rotary cylinder 1 for discharging the dried polymer obtained by drying the hydrogel input from the hydrogel input port 3. , and has a hot air outlet 7 above the dry polymer outlet 8 for discharging the hot air input from the hot air inlet 2.
 前記回転筒1の内径(直径)は、乾燥効率の観点から0.5~5.0mが好ましく、さらに好ましくは1.0~4.0m、最も好ましくは2.0~3.5mである。また、前記回転筒1の軸心方向(回転筒1の長軸方向)の長さは、乾燥効率の観点から1~20mが好ましく、より好ましくは3~15m、さらに好ましくは5~12m、最も好ましくは6~10mである。 The inner diameter (diameter) of the rotary cylinder 1 is preferably 0.5 to 5.0 m, more preferably 1.0 to 4.0 m, and most preferably 2.0 to 3.5 m from the viewpoint of drying efficiency. Further, the length of the rotary cylinder 1 in the axial direction (long axis direction of the rotary cylinder 1) is preferably 1 to 20 m from the viewpoint of drying efficiency, more preferably 3 to 15 m, still more preferably 5 to 12 m, and most preferably Preferably it is 6 to 10 m.
 前記回転筒1は、その内壁に、前記含水ゲルをかき上げるためのリフター4を有する。前記回転筒1の内部には、当該回転筒1の軸心方向に、回転自在な撹拌軸6が配設され、当該撹拌軸6は、含水ゲルをかき上げるための撹拌棒5を複数有する。 The rotary cylinder 1 has a lifter 4 on its inner wall for scraping up the hydrogel. A rotatable stirring shaft 6 is disposed inside the rotary cylinder 1 in the axial direction of the rotary cylinder 1, and the stirring shaft 6 has a plurality of stirring rods 5 for stirring up the hydrogel.
 図2は、前記回転筒1の軸心に対して垂直方向の断面を模式的に表した図である。前記リフター4は、前記回転筒1の内壁から前記回転筒1の軸心側に延出する。前記乾燥工程において、前記回転筒1は、軸心を中心に一方向に回転して前記リフター4で含水ゲルをかき上げると共に、前記撹拌軸6は、回転して前記撹拌棒5で含水ゲルをかき上げる。前記回転筒1及び前記撹拌軸6の回転方向に特に制限は無いが、例えば、図2において、前記回転筒1が回転筒回転方向10が示す矢印の方向に回転する場合、前記撹拌軸6は前記回転筒回転方向10と同一方向である撹拌軸回転方向9に回転する。前記回転筒1と前記回転軸6が同一方向に回転することにより、前記リフター4や前記撹拌棒5で前記含水ゲルが破砕され、前記含水ゲルと熱風との接触効率が上がり、乾燥効率が向上する。また、前記疎水性物質添加工程で前記疎水性物質(c)を添加した場合、前記含水ゲルの破砕効率がさらに向上し、乾燥効率がさらに向上する。 FIG. 2 is a diagram schematically showing a cross section of the rotary cylinder 1 in a direction perpendicular to its axis. The lifter 4 extends from the inner wall of the rotary cylinder 1 toward the axis of the rotary cylinder 1 . In the drying step, the rotary cylinder 1 rotates in one direction around its axis to scrape up the hydrogel with the lifter 4, and the stirring shaft 6 rotates to scrape the hydrogel with the stirring rod 5. Stir up. There is no particular restriction on the rotation direction of the rotary cylinder 1 and the stirring shaft 6, but for example, in FIG. It rotates in the stirring shaft rotation direction 9, which is the same direction as the rotation cylinder rotation direction 10. By rotating the rotating cylinder 1 and the rotating shaft 6 in the same direction, the hydrous gel is crushed by the lifter 4 and the stirring rod 5, and the contact efficiency between the hydrous gel and the hot air is increased, and the drying efficiency is improved. do. Further, when the hydrophobic substance (c) is added in the hydrophobic substance addition step, the crushing efficiency of the hydrogel is further improved, and the drying efficiency is further improved.
 前記乾燥工程において、前記回転筒1に投入される前記含水ゲルの含水率は、45~90%であることが好ましく、さらに好ましくは50~85%、最も好ましくは60~80%である。含水率が高いと乾燥性が悪化し、異物の発生や乾燥の後工程で問題が発生する。一方含水率が低い場合、吸収性能が悪化する。なお、含水率は、実施例に記載の方法により測定することができる。 In the drying step, the water content of the hydrogel charged into the rotary cylinder 1 is preferably 45 to 90%, more preferably 50 to 85%, and most preferably 60 to 80%. If the moisture content is high, drying performance deteriorates, causing problems such as the generation of foreign matter and post-drying processes. On the other hand, if the water content is low, the absorption performance will deteriorate. Note that the water content can be measured by the method described in Examples.
 前記リフター4は、前記回転筒1の内壁から前記回転筒1の軸心側に延出する。前記リフター4の形状に特に制限は無く、フラット型リフターやへ字型リフター等であってよい。撹拌効率および乾燥性の観点からフラット型リフター及び/又はへ字型リフターが好ましく、乾燥効率の観点からへ字型リフターがさらに好ましい。なお、フラット型リフターとは平坦な板状のリフターを意味し、へ字型リフターとはフラット型リフターを0°超90°以下折り曲げたものを意味する。図2におけるリフター4はへ字型リフターである。へ字型リフターは、掻き上げ効率に伴う乾燥効率の観点から前記回転筒1の回転方向の前方に10°~60°屈曲したものが好ましい。 The lifter 4 extends from the inner wall of the rotary cylinder 1 toward the axis of the rotary cylinder 1. There is no particular restriction on the shape of the lifter 4, and it may be a flat lifter, a square lifter, or the like. From the viewpoint of stirring efficiency and drying efficiency, a flat lifter and/or a F-shaped lifter are preferable, and from the viewpoint of drying efficiency, a F-shaped lifter is more preferable. Note that the flat lifter means a flat plate-shaped lifter, and the F-shaped lifter means a flat lifter bent by more than 0° and less than 90°. The lifter 4 in FIG. 2 is a square-shaped lifter. The F-shaped lifter is preferably bent 10° to 60° forward in the rotational direction of the rotary cylinder 1 from the viewpoint of drying efficiency as well as raking efficiency.
 前記乾燥工程において、前記含水ゲルを乾燥させる際の前記撹拌軸6の回転数(rpm)は、乾燥効率の観点等から、1~1000が好ましく、さらに好ましくは10~500、特に好ましくは50~300である。 In the drying step, the rotation speed (rpm) of the stirring shaft 6 when drying the hydrogel is preferably from 1 to 1000, more preferably from 10 to 500, particularly preferably from 50 to 1000, from the viewpoint of drying efficiency. It is 300.
 前記乾燥工程において、前記含水ゲルを乾燥させる際の前記回転筒1の回転数(rpm)は、乾燥効率の観点等から、0.1~20が好ましく、さらに好ましくは0.5~15、特に好ましくは1~10である。 In the drying step, the rotation speed (rpm) of the rotary cylinder 1 when drying the hydrogel is preferably from 0.1 to 20, more preferably from 0.5 to 15, particularly from the viewpoint of drying efficiency. Preferably it is 1-10.
 前記含水ゲルの乾燥後の含水率(重量%)は、0~20が好ましく、更に好ましくは1~15、特に好ましくは2~13、最も好ましくは3~12である。この範囲であると、後述する粉砕工程において、粉砕不良等の品質トラブルを更に低減できる。 The water content (weight %) of the hydrogel after drying is preferably 0 to 20, more preferably 1 to 15, particularly preferably 2 to 13, and most preferably 3 to 12. Within this range, quality problems such as poor pulverization can be further reduced in the pulverization process described below.
〔粉砕工程〕
 本実施形態の吸水性樹脂組成物の製造方法は、前記乾燥工程で得られた吸水性樹脂組成物を粉砕し、前記架橋重合体(A)を含有する粒子状の吸水性樹脂組成物を得る粉砕工程を有していてもよい。
[Crushing process]
The method for producing a water absorbent resin composition of the present embodiment includes pulverizing the water absorbent resin composition obtained in the drying step to obtain a particulate water absorbent resin composition containing the crosslinked polymer (A). It may also include a pulverization step.
 前記粉砕工程において、前記架橋重合体(A)を含有する吸水性樹脂組成物を粉砕する方法については、特に限定はなく、粉砕装置(例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機)等が使用できる。粉砕された吸水性樹脂組成物は、必要によりふるい分け等により粒度調整できる。 In the pulverizing step, there is no particular limitation on the method of pulverizing the water-absorbing resin composition containing the crosslinked polymer (A), and a pulverizing device (for example, a hammer-type pulverizer, an impact-type pulverizer, a roll-type pulverizer) is used. Machines such as pulverizers and Schette airflow pulverizers can be used. The particle size of the pulverized water-absorbing resin composition can be adjusted by sieving or the like, if necessary.
〔表面架橋工程〕
 本実施形態の吸水性樹脂組成物の製造方法は、前記重合工程の後、前記架橋重合体(A)の表面を表面架橋剤(d)によって架橋する表面架橋工程を有してもよい。
[Surface crosslinking process]
The method for producing a water absorbent resin composition of the present embodiment may include, after the polymerization step, a surface crosslinking step of crosslinking the surface of the crosslinked polymer (A) with a surface crosslinking agent (d).
 前記表面架橋工程を経て得られた吸水性樹脂組成物は、前記架橋重合体(A)の表面が表面架橋剤(d)により架橋された構造を有する。前記架橋重合体(A)の表面を架橋することにより前記吸水性樹脂組成物のゲル強度を向上させることができ、前記吸水性樹脂組成物の望ましい保水量と荷重下における吸収量とを満足させることができる。また、吸水性樹脂組成物の表面のブロッキングが抑制され、均一吸水が達成できるので酸化剤で分解する際にも、分解効率の向上が期待できる。 The water absorbent resin composition obtained through the surface crosslinking step has a structure in which the surface of the crosslinked polymer (A) is crosslinked with a surface crosslinking agent (d). By crosslinking the surface of the crosslinked polymer (A), the gel strength of the water absorbent resin composition can be improved, and the desired water retention amount and absorption amount under load of the water absorbent resin composition are satisfied. be able to. Furthermore, since blocking on the surface of the water-absorbent resin composition is suppressed and uniform water absorption can be achieved, an improvement in decomposition efficiency can be expected when decomposing with an oxidizing agent.
 前記表面架橋剤(d)は、無機物でも有機物でも用いることができる。前記表面架橋剤(d)としては、公知(特開昭59-189103号公報に記載の多価グリシジル化合物、多価アミン、多価アジリジン化合物及び多価イソシアネート化合物等、特開昭58-180233号公報及び特開昭61-16903号公報の多価アルコール、特開昭61-211305号公報及び特開昭61-252212号公報に記載のシランカップリング剤、特表平5-508425号公報に記載のアルキレンカーボネート、特開平11-240959号公報に記載の多価オキサゾリン化合物等)の有機表面架橋剤等が使用できる。これらの表面架橋剤(d)のうち、経済性及び吸収特性の観点から、多価グリシジル化合物、多価アルコール及び多価アミンが好ましく、更に好ましいのは多価グリシジル化合物及び多価アルコール、特に好ましいのは多価グリシジル化合物、最も好ましいのはエチレングリコールジグリシジルエーテルである。表面架橋剤(d)は1種を単独で用いても良いし、2種以上を併用しても良い。 The surface crosslinking agent (d) can be either an inorganic substance or an organic substance. As the surface crosslinking agent (d), known compounds (such as polyvalent glycidyl compounds, polyvalent amines, polyvalent aziridine compounds, and polyvalent isocyanate compounds described in JP-A-59-189103, JP-A-58-180233) can be used. Polyhydric alcohols described in Japanese Patent Publication No. 61-16903, silane coupling agents described in Japanese Patent Application Publication No. 61-211305 and Japanese Patent Application Publication No. 61-252212, and described in Japanese Patent Publication No. 5-508425. organic surface crosslinking agents such as alkylene carbonates, polyvalent oxazoline compounds described in JP-A No. 11-240959, etc.) can be used. Among these surface crosslinking agents (d), polyhydric glycidyl compounds, polyhydric alcohols, and polyhydric amines are preferred from the viewpoint of economy and absorption characteristics, and polyhydric glycidyl compounds and polyhydric alcohols are more preferred, and polyhydric alcohols are particularly preferred. The preferred are polyglycidyl compounds, most preferably ethylene glycol diglycidyl ether. One type of surface crosslinking agent (d) may be used alone, or two or more types may be used in combination.
 前記表面架橋剤(d)の使用量(重量%)は、表面架橋剤の種類、架橋させる条件、目標とする性能等により種々変化させることができるため特に限定はないが、吸収特性の観点等から、架橋重合体(A)の重量に基づいて、0.001~3が好ましく、更に好ましくは0.005~2、特に好ましくは0.01~1.5である。 The amount (wt%) of the surface crosslinking agent (d) to be used is not particularly limited, as it can be varied depending on the type of surface crosslinking agent, conditions for crosslinking, target performance, etc., but from the viewpoint of absorption characteristics, etc. Based on the weight of the crosslinked polymer (A), it is preferably 0.001 to 3, more preferably 0.005 to 2, particularly preferably 0.01 to 1.5.
 前記架橋重合体(A)の表面架橋は、前記架橋重合体(A)と前記表面架橋剤(d)とを混合し、加熱することで行うことができる。前記架橋重合体(A)と前記表面架橋剤(d)との混合方法としては、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、ミンチ混合機、リボン型混合機、流動式混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等の混合装置を用いて前記架橋重合体(A)と前記表面架橋剤(d)とを均一混合する方法が挙げられる。この際、前記表面架橋剤(d)は、水及び/又は任意の溶剤で希釈して使用しても良い。 The surface crosslinking of the crosslinked polymer (A) can be performed by mixing the crosslinked polymer (A) and the surface crosslinking agent (d) and heating the mixture. The method for mixing the crosslinked polymer (A) and the surface crosslinking agent (d) includes a cylindrical mixer, a screw mixer, a screw extruder, a turbulizer, a Nauta mixer, and a double-arm kneader. The above-mentioned crosslinking is carried out using a mixing device such as a fluid mixer, a V-type mixer, a mincing mixer, a ribbon mixer, a fluid mixer, an air flow mixer, a rotating disk mixer, a conical blender, and a roll mixer. A method of uniformly mixing the polymer (A) and the surface crosslinking agent (d) may be mentioned. At this time, the surface crosslinking agent (d) may be used after being diluted with water and/or any solvent.
 前記架橋重合体(A)と前記表面架橋剤(d)とを混合する際の温度は特に限定されないが、10~150℃が好ましく、更に好ましくは20~100℃、特に好ましくは25~80℃である。 The temperature at which the crosslinked polymer (A) and the surface crosslinking agent (d) are mixed is not particularly limited, but is preferably 10 to 150°C, more preferably 20 to 100°C, particularly preferably 25 to 80°C. It is.
 前記架橋重合体(A)と前記表面架橋剤(d)とを混合した後、通常、加熱処理を行う。加熱温度は、吸水性樹脂組成物の耐壊れ性の観点から好ましくは100~180℃、更に好ましくは110~175℃、特に好ましくは120~170℃である。180℃以下の加熱であれば蒸気を利用した間接加熱が可能であり設備上有利であり、100℃未満の加熱温度では吸収性能が悪くなる場合がある。また、加熱時間は加熱温度により適宜設定することができるが、吸収性能の観点から、好ましくは5~60分、更に好ましくは10~40分である。表面架橋して得られる吸水性樹脂組成物を、最初に用いた表面架橋剤と同種又は異種の表面架橋剤を用いて、更に表面架橋することも可能である。 After mixing the crosslinked polymer (A) and the surface crosslinking agent (d), a heat treatment is usually performed. The heating temperature is preferably 100 to 180°C, more preferably 110 to 175°C, particularly preferably 120 to 170°C from the viewpoint of breakage resistance of the water absorbent resin composition. Heating at a temperature of 180° C. or lower allows indirect heating using steam and is advantageous in terms of equipment, whereas heating at a temperature of less than 100° C. may result in poor absorption performance. Further, the heating time can be appropriately set depending on the heating temperature, but from the viewpoint of absorption performance, it is preferably 5 to 60 minutes, more preferably 10 to 40 minutes. It is also possible to further surface crosslink the water-absorbing resin composition obtained by surface crosslinking using a surface crosslinking agent of the same type or different from the surface crosslinking agent used initially.
 前記架橋重合体(A)の表面を前記表面架橋剤(d)により架橋した後、必要により篩別して粒度調整する。得られた粒子の平均粒経は、好ましくは100~600μm、更に好ましくは200~500μmである。微粒子の含有量は少ない方が好ましく、100μm以下の粒子の含有量は3重量%以下であることが好ましく、150μm以下の粒子の含有量が3重量%以下であることが更に好ましい。 After the surface of the crosslinked polymer (A) is crosslinked with the surface crosslinking agent (d), it is sieved if necessary to adjust the particle size. The average particle diameter of the obtained particles is preferably 100 to 600 μm, more preferably 200 to 500 μm. The content of fine particles is preferably small, the content of particles of 100 μm or less is preferably 3% by weight or less, and the content of particles of 150 μm or less is more preferably 3% by weight or less.
<吸水性樹脂組成物>
 本実施形態の吸水性樹脂組成物は、水溶性不飽和モノカルボン酸(a1)及びその塩、並びに加水分解により前記水溶性不飽和モノカルボン酸(a1)となるモノマー(a2)からなる群より選ばれる1種以上のモノマー(A1)と、内部架橋剤(b)と、を構成単位として有する架橋重合体(A)を含有する吸水性樹脂組成物であって、前記吸水性樹脂組成物200gに含まれる着色異物の数が50個以下である。当該吸水性樹脂組成物は、前記吸水性樹脂組成物の製造方法で製造することができる。
<Water absorbent resin composition>
The water-absorbing resin composition of the present embodiment is selected from the group consisting of a water-soluble unsaturated monocarboxylic acid (a1) and its salt, and a monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) by hydrolysis. A water absorbent resin composition containing a crosslinked polymer (A) having one or more selected monomers (A1) and an internal crosslinking agent (b) as constituent units, the water absorbent resin composition comprising 200 g of the water absorbent resin composition. The number of colored foreign substances contained in the product is 50 or less. The water absorbent resin composition can be manufactured by the method for manufacturing the water absorbent resin composition described above.
 前記架橋重合体(A)における前記ビニルモノマー(A2)単位の物質量は、吸収性能等の観点から、前記水溶性不飽和モノカルボン酸(a1)の構成単位及びその塩の構成単位の合計100モル部に対して、0~5モル部が好ましく、更に好ましくは0~3モル部、特に好ましくは0~2モル部、とりわけ好ましくは0~1.5モル部であり、吸収性能等の観点から、前記ビニルモノマー(A2)単位の含有量が0モル部であることが最も好ましい。 From the viewpoint of absorption performance, etc., the amount of the vinyl monomer (A2) units in the crosslinked polymer (A) is determined to be 100 in total of the constituent units of the water-soluble unsaturated monocarboxylic acid (a1) and the constituent units of its salt. Based on the mole part, it is preferably 0 to 5 mole parts, more preferably 0 to 3 mole parts, particularly preferably 0 to 2 mole parts, particularly preferably 0 to 1.5 mole parts, and from the viewpoint of absorption performance etc. Therefore, it is most preferable that the content of the vinyl monomer (A2) unit is 0 part by mole.
 前記架橋重合体(A)における前記内部架橋剤(b)の物質量は、吸収性能等の観点から、前記水溶性不飽和モノカルボン酸(a1)の構成単位及びその塩の構成単位の合計100モル部100モル部、その他のビニルモノマー(A2)を用いる場合は前記水溶性不飽和モノカルボン酸(a1)の構成単位及びその塩の構成単位、並びにビニルモノマー(A2)の構成単位の合計100モル部に対して、0.001~5モル部が好ましく、更に好ましくは0.005~3モル部、特に好ましくは0.005~1モル部である。 From the viewpoint of absorption performance, etc., the amount of the internal crosslinking agent (b) in the crosslinked polymer (A) is 100 in total of the constituent units of the water-soluble unsaturated monocarboxylic acid (a1) and the salt thereof. 100 molar parts, when using other vinyl monomers (A2), the total of the structural units of the water-soluble unsaturated monocarboxylic acid (a1) and its salt, and the structural units of the vinyl monomer (A2) 100 The amount is preferably 0.001 to 5 mol parts, more preferably 0.005 to 3 mol parts, particularly preferably 0.005 to 1 mol part.
 前記内部架橋剤(b)以外の内部架橋剤の物質量は、内部架橋剤(b)100モル部に対して、分解性能の観点から0~50モル部が好ましい。 The amount of the internal crosslinking agent other than the internal crosslinking agent (b) is preferably 0 to 50 parts by mole based on 100 parts by mole of the internal crosslinking agent (b) from the viewpoint of decomposition performance.
 前記吸水性樹脂組成物は、前記疎水性物質(c)を含有してもよい。前記吸水性樹脂組成物が前記疎水性物質(c)を含有する場合、前記吸水性樹脂組成物の固形分中の前記疎水性物質(c)の含有量は、吸収性能及び初期膨潤時の耐ブロッキング性の観点から0.001~1重量%が好ましく、更に好ましくは0.005~0.5重量%、特に好ましくは0.01~0.3重量%である。なお、本明細書において、吸水性樹脂組成物の固形分は、赤外線水分計(株式会社ケット科学研究所社製、FD-230)を用いて、吸水性樹脂組成物5gを150℃、15分間、加熱乾燥して測定される含水率を用いて下記式にて求めることができる。
吸水性樹脂組成物の固形分重量(g)=吸水性樹脂組成物重量(g)×{100-含水率(%)}/100
The water absorbent resin composition may contain the hydrophobic substance (c). When the water-absorbing resin composition contains the hydrophobic substance (c), the content of the hydrophobic substance (c) in the solid content of the water-absorbing resin composition is determined by the absorption performance and the initial swelling resistance. From the viewpoint of blocking properties, it is preferably 0.001 to 1% by weight, more preferably 0.005 to 0.5% by weight, particularly preferably 0.01 to 0.3% by weight. In this specification, the solid content of the water-absorbing resin composition is determined by measuring 5 g of the water-absorbing resin composition at 150°C for 15 minutes using an infrared moisture meter (manufactured by Kett Scientific Research Institute Co., Ltd., FD-230). It can be determined by the following formula using the moisture content measured by heating and drying.
Solid weight of water-absorbing resin composition (g) = Weight of water-absorbing resin composition (g) x {100-water content (%)}/100
 前記吸水性樹脂組成物は、前記シリコーン化合物を含有してもよい。前記吸水性樹脂組成物が前記シリコーン化合物を含有する場合、前記吸水性樹脂組成物の固形分中の前記シリコーン化合物の含有量は、製造工程装置や装置間の配管への付着防止および壊れ防止の観点から、好ましくは0.0005~0.040重量%であり、より好ましくは0.010~0.030重量%、更に好ましくは0.015~0.025重量%である。 The water absorbent resin composition may contain the silicone compound. When the water-absorbing resin composition contains the silicone compound, the content of the silicone compound in the solid content of the water-absorbing resin composition is determined to prevent adhesion to manufacturing process equipment and piping between the equipment and to prevent breakage. From this point of view, it is preferably 0.0005 to 0.040% by weight, more preferably 0.010 to 0.030% by weight, and still more preferably 0.015 to 0.025% by weight.
 前記吸水性樹脂組成物は、その性能を損なわない範囲で残留溶媒や残存架橋成分等の他の成分を多少含んでも良い。 The water-absorbing resin composition may contain a certain amount of other components such as a residual solvent and a residual crosslinking component within a range that does not impair its performance.
 前記他の成分のその他の例としては、防腐剤、防かび剤、抗菌剤、紫外線吸収剤、酸化防止剤、着色剤、芳香剤、消臭剤、通液性向上剤、無機質粉末及び有機質繊維状物等が挙げられる。その量は前記吸水性樹脂組成物の重量に基づいて、通常、5重量%以下である。 Other examples of the other ingredients include preservatives, fungicides, antibacterial agents, ultraviolet absorbers, antioxidants, colorants, fragrances, deodorants, liquid permeability improvers, inorganic powders, and organic fibers. Examples include things like these. The amount thereof is usually 5% by weight or less based on the weight of the water absorbent resin composition.
 前記吸水性樹脂組成物は、吸水性能の観点から、前記他の成分として、好ましくはヨウ素、テルル、アンチモン及びビスマスからなる群から選ばれる少なくとも1種の典型元素を含むことが好ましい。前記吸水性樹脂組成物が当該典型元素を含む場合、前記吸水性樹脂組成物の固形分中の当該典型元素の含有量は、吸水性能の観点から、0.0005~0.1重量%が好ましく、0.001~0.05重量%がより好ましい。 From the viewpoint of water absorption performance, the water absorbent resin composition preferably contains at least one typical element selected from the group consisting of iodine, tellurium, antimony, and bismuth as the other component. When the water-absorbing resin composition contains the typical element, the content of the typical element in the solid content of the water-absorbing resin composition is preferably 0.0005 to 0.1% by weight from the viewpoint of water absorption performance. , more preferably 0.001 to 0.05% by weight.
 前記吸水性樹脂組成物の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 There is no particular limitation on the shape of the water-absorbing resin composition, and examples thereof include amorphous crushed shapes, flaky shapes, pearl shapes, and rice grain shapes. Among these, amorphous crushed particles are preferable from the viewpoint of good entanglement with fibrous materials for use in disposable diapers, etc., and no fear of falling off from the fibrous materials.
 前記吸水性樹脂組成物の保水量(g/g)は、後述する方法で測定することができ、吸収量の観点から好ましくは28以上であり、33以上が更に好ましく、35以上が特に好ましい。また、上限値は、べとつきの観点から、60以下が好ましく、55以下がさらに好ましく、50以下が特に好ましい。保水量は、内部架橋剤(b)、表面架橋剤(d)の使用量(重量%)で適宜調整することができる。 The water retention amount (g/g) of the water absorbent resin composition can be measured by the method described below, and from the viewpoint of absorption amount, it is preferably 28 or more, more preferably 33 or more, and particularly preferably 35 or more. Further, from the viewpoint of stickiness, the upper limit is preferably 60 or less, more preferably 55 or less, and particularly preferably 50 or less. The amount of water retained can be appropriately adjusted by the amounts (wt%) of the internal crosslinking agent (b) and the surface crosslinking agent (d).
 前記吸水性樹脂組成物の可溶分(重量%)は、実施例に記載の方法で測定することができ、通液性能や吸水速度の観点から好ましくは吸水性樹脂組成物に対して20%未満であり、15%未満がさらに好ましい。可溶分が20%を超えると吸水時に可溶分が溶出していまい、ゲルブロッキングが生じ、通液性能や吸水倍率に悪影響を与えることとなり好ましくない。本発明では、内部架橋剤の種類や添加量、表面架橋剤の水分量を調整することで、可溶分の量を低減されている。 The soluble content (wt%) of the water absorbent resin composition can be measured by the method described in Examples, and is preferably 20% based on the water absorbent resin composition from the viewpoint of liquid permeability and water absorption rate. more preferably less than 15%. If the soluble content exceeds 20%, the soluble content will not be eluted during water absorption, resulting in gel blocking, which will adversely affect liquid passing performance and water absorption capacity, which is not preferable. In the present invention, the amount of soluble components is reduced by adjusting the type and amount of the internal crosslinking agent and the amount of water in the surface crosslinking agent.
 前記吸水性樹脂組成物200gに含まれる着色異物の数は、紙おむつ、生理用ナプキン、失禁製品の異物感低減の観点から好ましくは50個以下であり、30個以下が更に好ましく、特に好ましくは20個以下である。前記吸水性樹脂組成物200gに含まれる着色異物の数は、実施例に記載の方法で測定することができる。 The number of colored foreign substances contained in 200 g of the water-absorbing resin composition is preferably 50 or less, more preferably 30 or less, particularly preferably 20 from the viewpoint of reducing the foreign body sensation of disposable diapers, sanitary napkins, and incontinence products. less than or equal to The number of colored foreign substances contained in 200 g of the water absorbent resin composition can be measured by the method described in Examples.
 前記吸水性樹脂組成物の荷重下吸収量(g/g)は、後述する方法で測定することができ、荷重下でのオムツの吸収量の観点から好ましくは15以上であり、20以上が更に好ましく、特に好ましくは、25以上である。荷重下吸収量は保水量と相反することが経験的に知られており、オムツの構成により高保水量が求められる場合と荷重下吸収量が求められる場合とがある。 The absorption amount under load (g/g) of the water-absorbent resin composition can be measured by the method described below, and is preferably 15 or more from the viewpoint of the absorption amount of a diaper under load, and 20 or more is more preferable. It is preferably 25 or more, particularly preferably 25 or more. It is empirically known that the amount of absorption under load is contradictory to the amount of water retained, and depending on the configuration of the diaper, there are cases where a high amount of water retention is required and cases where an amount of absorption under load is required.
<吸収体>
 前記吸水性樹脂組成物を用いて吸収体を得ることができる。吸収体としては、前記吸水性樹脂組成物を単独で用いても良く、他の材料と共に用いて吸収体としても良い。当該他の材料としては繊維状物等が挙げられる。繊維状物と共に用いた場合の吸収体の構造及び製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等)と同様である。
<Absorber>
An absorbent body can be obtained using the water absorbent resin composition. As the absorbent body, the water-absorbing resin composition may be used alone or together with other materials to form an absorbent body. Examples of the other materials include fibrous materials. The structure and manufacturing method of the absorber when used with a fibrous material are the same as those known (Japanese Patent Laid-Open Nos. 2003-225565, 2006-131767, and 2005-097569, etc.). be.
 上記繊維状物として好ましいのは、セルロース系繊維、有機系合成繊維及びセルロース系繊維と有機系合成繊維との混合物である。 Preferred as the fibrous material are cellulose fibers, organic synthetic fibers, and mixtures of cellulose fibers and organic synthetic fibers.
 セルロース系繊維としては、例えばフラッフパルプ等の天然繊維、ビコースレーヨン、アセテート及びキュプラ等のセルロース系化学繊維が挙げられる。このセルロース系天然繊維の原料(針葉樹及び広葉樹等)、製造方法(ケミカルパルプ、セミケミカルパルプ、メカニカルパルプ及びCTMP等)及び漂白方法等は特に限定されない。 Examples of cellulose fibers include natural fibers such as fluff pulp, and cellulose chemical fibers such as viscose rayon, acetate, and cupro. The raw materials (softwood, hardwood, etc.), manufacturing method (chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.), bleaching method, etc. of this cellulosic natural fiber are not particularly limited.
 有機系合成繊維としては、例えばポリプロピレン系繊維、ポリエチレン系繊維、ポリアミド系繊維、ポリアクリロニトリル系繊維、ポリエステル系繊維、ポリビニルアルコール系繊維、ポリウレタン系繊維及び熱融着性複合繊維(融点の異なる上記繊維の少なくとも2種を鞘芯型、偏芯型、並列型等に複合化された繊維、上記繊維の少なくとも2種をブレンドした繊維及び上記繊維の表層を改質した繊維等)が挙げられる。 Examples of organic synthetic fibers include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above-mentioned fibers with different melting points). Examples include fibers in which at least two of the above fibers are combined into a sheath-core type, eccentric type, parallel type, etc., fibers in which at least two of the above fibers are blended, and fibers in which the surface layer of the above fibers is modified.
 これらの繊維状物の内で好ましいのは、セルロース系天然繊維、ポリプロピレン系繊維、ポリエチレン系繊維、ポリエステル系繊維、熱融着性複合繊維及びこれらの混合繊維であり、更に好ましいのは、得られた吸水剤の吸水後の形状保持性に優れるという点で、フラッフパルプ、熱融着性複合繊維及びこれらの混合繊維である。 Among these fibrous materials, preferred are cellulose natural fibers, polypropylene fibers, polyethylene fibers, polyester fibers, heat-fusible composite fibers, and mixed fibers thereof, and more preferred are Fluff pulp, heat-fusible conjugate fibers, and mixed fibers thereof are used because they have excellent shape retention properties after water absorption.
 上記繊維状物の長さ、太さについては特に限定されず、長さは1~200mm、太さは0.1~100デニールの範囲であれば好適に使用することができる。形状についても繊維状であれば特に限定されず、細い円筒状、スプリットヤーン状、ステープル状、フィラメント状及びウェブ状等が例示される。 The length and thickness of the above-mentioned fibrous material are not particularly limited, and it can be suitably used as long as the length is in the range of 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier. The shape is not particularly limited as long as it is fibrous, and examples thereof include a thin cylinder, a split yarn, a staple, a filament, and a web.
 前記吸水性樹脂粒子を、繊維状物と共に吸収体とする場合、前記吸水性樹脂粒子と繊維の重量比率(吸水性樹脂粒子の重量/繊維状物の重量)は40/60~90/10が好ましく、更に好ましくは70/30~80/20である。 When the water-absorbing resin particles are used as an absorber together with a fibrous material, the weight ratio of the water-absorbing resin particles to the fibers (weight of water-absorbing resin particles/weight of fibrous material) is 40/60 to 90/10. The ratio is preferably 70/30 to 80/20.
<吸収性物品>
 前記吸水性樹脂組成物を用いて吸収性物品を得ることができる。具体的には、上記吸収体を用いる。吸収性物品としては、紙おむつや生理用ナプキン等の衛生用品のみならず、結露防止剤、農業・園芸用保水剤、残土固化材、災害土嚢、廃血液固化剤、使い捨てカイロ、保冷剤、アルカリ電池用、化粧品、ペットシート、猫砂用等の各種産業分野用における各種水性液体の吸収や保持剤用途、ゲル化剤用途等の各種用途に使用されるものとして適用可能である。吸収性物品の製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等に記載のもの)と同様である。
<Absorbent article>
An absorbent article can be obtained using the water absorbent resin composition. Specifically, the above absorber is used. Absorbent products include not only sanitary products such as disposable diapers and sanitary napkins, but also anti-condensation agents, water retention agents for agriculture and gardening, residual soil solidification materials, disaster sandbags, waste blood solidification agents, disposable body warmers, ice packs, and alkaline batteries. It can be used for various purposes such as absorbing various aqueous liquids, holding agent, gelling agent, etc. in various industrial fields such as cosmetics, pet sheets, and cat litter. The manufacturing method of the absorbent article is the same as known methods (those described in JP-A No. 2003-225565, JP-A No. 2006-131767, JP-A No. 2005-097569, etc.).
 以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、部は重量部、%は重量%を示す。 The present invention will be further explained below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, parts refer to parts by weight, and % refers to % by weight, unless otherwise specified.
<評価方法>
 保水量、荷重下吸収量、及びVortex試験方で測定された吸収速度は、25±2℃、湿度50±10%の室内でそれぞれ以下の方法で測定した。なお、使用する生理食塩水の温度は予め25℃±2℃に調整して使用した。
<Evaluation method>
The water retention amount, the amount of absorption under load, and the absorption rate measured by the Vortex test method were each measured in a room at 25±2° C. and 50±10% humidity using the following methods. The temperature of the physiological saline used was adjusted in advance to 25°C±2°C.
〔含水率〕
 赤外線水分計(たとえば、株式会社ケット科学研究所社製、FD-230)を用いて、測定試料5gを150℃、15分間、加熱乾燥して、その前後の重量差から算出した。
[Moisture content]
Using an infrared moisture meter (for example, FD-230, manufactured by Kett Scientific Research Institute), 5 g of the measurement sample was heated and dried at 150° C. for 15 minutes, and the weight was calculated from the difference in weight before and after drying.
〔乾燥粉体の全重量に対する1.4mm以上の粒子径を有する粒子の重量割合〕
 乾燥粉体の全重量に対する1.4mm以上の粒子径を有する粒子の重量割合は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンパニー、1984、21頁)に記載の方法で測定した。すなわち、JIS標準ふるいを、上から4.0mm、1.4mm、0.5mm並びに受け皿の順に組み合わせ、最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせた。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求めた。4.0mm以上及び1.4mm以上粒子の合計重量分率を1.4mm以上の粒子径を有する粒子の重量割合とした。
[Weight ratio of particles having a particle diameter of 1.4 mm or more to the total weight of dry powder]
The weight ratio of particles having a particle size of 1.4 mm or more to the total weight of the dry powder was determined using a low tap test sieve shaker and a standard sieve (JIS Z8801-1:2006) by Perry's Chemical Engineers. It was measured by the method described in Handbook, 6th Edition (McGraw-Hill Book Company, 1984, p. 21). That is, assemble JIS standard sieves in the order of 4.0 mm, 1.4 mm, 0.5 mm and a saucer from the top, put about 50 g of particles to be measured into the top sieve, and shake for 5 minutes with a low tap test sieve shaker. I let it happen. The weight of the particles to be measured on each sieve and saucer was weighed, and the weight fraction of the particles on each sieve was determined with the total as 100% by weight. The total weight fraction of particles having a diameter of 4.0 mm or more and 1.4 mm or more was taken as the weight fraction of particles having a particle diameter of 1.4 mm or more.
〔0.9重量%生理食塩水に対する保水量の測定方法〕
 目開き63μm(JIS Z8801-1:2006)のナイロン網で作製したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水(食塩濃度0.9%)1,000ml中に無撹拌下、1時間浸漬した後引き上げて、15分間吊るして水切りした。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバッグを含めた重量(h1)を測定し次式から保水量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
保水量(g/g)=(h1)-(h2)
 なお、(h2)は、測定試料の無い場合について上記と同様の操作により計測したティーバッグの重量である。
[Method for measuring water retention amount for 0.9% by weight physiological saline]
Put 1.00 g of the measurement sample into a tea bag (length 20 cm, width 10 cm) made of nylon mesh with an opening of 63 μm (JIS Z8801-1:2006), and add it to 1,000 ml of physiological saline (salt concentration 0.9%). After being immersed in water for 1 hour without stirring, the sample was taken out and hung for 15 minutes to drain. Thereafter, each tea bag was placed in a centrifuge, centrifuged at 150G for 90 seconds to remove excess physiological saline, the weight (h1) including the tea bag was measured, and the water retention amount was determined from the following formula. Note that the temperature of the physiological saline used and the measurement atmosphere was 25°C±2°C.
Water retention amount (g/g) = (h1) - (h2)
In addition, (h2) is the weight of the tea bag measured by the same operation as above in the case where there is no measurement sample.
〔可溶分の測定方法〕
 300mlのプラスチック容器に0.9重量%食塩水100gをはかり取り、その食塩水に吸水性樹脂粒子1.2gを加え、ラップでシールして3時間、500rpmでスターラーを回転させ攪拌して、吸水性樹脂粒子の可溶分が抽出された可溶分抽出液を調製した。そして、この可溶分抽出液を、ADVANTEC東洋株式会社製の濾紙(品名;JIS P 3801、No.2、厚さ0.26mm、保留粒子径5μm)を用いて、濾過した。そして、得られた濾液の20gをはかり取り、イオン交換水30gを加えて測定溶液とした。
[Method for measuring soluble content]
Weigh out 100 g of 0.9% saline in a 300 ml plastic container, add 1.2 g of water-absorbing resin particles to the saline, seal with plastic wrap, and stir for 3 hours by rotating a stirrer at 500 rpm to absorb water. A soluble content extract from which the soluble content of the resin particles was extracted was prepared. Then, this soluble extract was filtered using a filter paper manufactured by ADVANTEC Toyo Co., Ltd. (product name: JIS P 3801, No. 2, thickness 0.26 mm, retained particle size 5 μm). Then, 20 g of the obtained filtrate was weighed out and 30 g of ion-exchanged water was added thereto to obtain a measurement solution.
 まず、0.9重量%食塩水20gにイオン交換水30gを加えた空試験溶液について、該食塩水のpHが10になるまで、N/50のKOH水溶液の滴定を行った。そして、0.9重量%食塩水のpHが10になるのに必要な、N/50のKOH水溶液の滴定量([WKOH,b]ml)を得た。その後、該食塩水のpHが2.7になるまで、N/10のHCl水溶液の滴定を行った。そして、0.9重量%食塩水のpHが2.7になるのに必要な、N/10のHCl水溶液の滴定量([WHCl,b]ml)を得た。 First, a blank test solution prepared by adding 30 g of ion-exchanged water to 20 g of 0.9% by weight saline was titrated with an N/50 KOH aqueous solution until the pH of the saline became 10. Then, the titration amount ([W KOH, b ] ml) of the N/50 aqueous KOH solution required to adjust the pH of the 0.9 wt % saline to 10 was obtained. Thereafter, a N/10 aqueous HCl solution was titrated until the pH of the saline solution became 2.7. Then, the titration amount ([W HCl,b ]ml) of the N/10 aqueous HCl solution required to adjust the pH of the 0.9 wt% saline solution to 2.7 was obtained.
 次に、上記測定溶液について、上記の滴定操作と同様な操作を行い、測定溶液のpHが10になるのに必要な、N/50のKOH水溶液の滴定量([WKOH,S]ml)、及び、測定溶液のpHが2.7になるのに必要な、N/10のHCl水溶液の滴定量([WHCl,S]ml)を得る方法を具体的に説明する。 Next, the above measurement solution is subjected to the same operation as the above titration operation, and the titration amount of the N/50 KOH aqueous solution ([W KOH,S ] ml) necessary for the pH of the measurement solution to become 10 is determined. , and a method for obtaining the titration amount ([W HCl,S ]ml) of the N/10 aqueous HCl solution necessary for the pH of the measurement solution to be 2.7 will be specifically explained.
 例えば、アクリル酸とそのナトリウム塩とからなる吸水性樹脂粒子の場合、未中和アクリル酸物質量nCOOHは、
COOH(mol)=(WKOH,S-WKOH,b)×(1/50)/1000×5
また、総アクリル酸物質量ntotは、
tot(mol)=(WHCl,S-WHCl,b)×(1/10)/1000×5
また、中和アクリル酸物質量nCOONaは、
COONa(mol)=ntot-nCOOH
さらに、未中和アクリル酸重量mCOOHは、
COOH(g)=nCOOH×72
また、中和アクリル酸物質量mCOONaは、
COONa(g)=nCOONa×94
 以上及び試料として用いた吸水性樹脂粒子の含水率([WH2O]重量%)をもとに、以下の計算式により、吸水性樹脂粒子の可溶分量を算出することができる。
可溶分量(重量%)={(mCOOH+mCOONa)×100}/{1.2×(100-WH2O)}
For example, in the case of water-absorbing resin particles consisting of acrylic acid and its sodium salt, the amount of unneutralized acrylic acid substance n COOH is:
n COOH (mol) = (W KOH, S - W KOH, b ) x (1/50)/1000 x 5
In addition, the total amount of acrylic acid substances n tot is
n tot (mol) = (W HCl, S - W HCl, b ) x (1/10)/1000 x 5
In addition, the amount of neutralized acrylic acid substance n COONa is
n COONa (mol)=n tot -n COOH
Furthermore, the unneutralized acrylic acid weight m COOH is
m COOH (g)=n COOH ×72
In addition, the amount of neutralized acrylic acid substance m COONa is
m COONa (g)=n COONa ×94
Based on the above and the water content ([W H2O ] weight %) of the water-absorbing resin particles used as a sample, the soluble content of the water-absorbing resin particles can be calculated using the following formula.
Soluble content (wt%) = {(m COOH + m COONa ) x 100}/{1.2 x (100-W H2O )}
〔吸水性樹脂組成物200g中の着色異物の数〕
 秤量した試料200gを0.5LのSUSホッパーに投入し、振動フィーダーで毎分70gの試料を粉体自動検査装置に供給し(供給幅25mm)、画像処理にて異物含有量を測定した。なお粉体自動検査装置とはCCDラインセンサカメラ(2048画素)とCCDラインセンサカメラと並行に位置する反射照明およびCCDラインセンサカメラの反対側に配置されている透過照明によりラインに供給された試料を画像処理可能な装置である。(256段調グレースケール、スキャンレート75μ秒、検出レベル65、照明照度200~255)
[Number of colored foreign substances in 200g of water absorbent resin composition]
200 g of the weighed sample was put into a 0.5 L SUS hopper, and 70 g of the sample was fed per minute to an automatic powder inspection device using a vibrating feeder (feeding width 25 mm), and the foreign matter content was measured by image processing. The automatic powder inspection equipment is a CCD line sensor camera (2048 pixels), reflected illumination located parallel to the CCD line sensor camera, and transmitted illumination located on the opposite side of the CCD line sensor camera to inspect the sample supplied to the line. This is a device that can process images. (256-level gray scale, scan rate 75 μs, detection level 65, illuminance 200-255)
〔荷重下吸収量の測定方法〕
 目開き63μm(JIS Z8801-1:2006)のナイロン網を底面に貼った円筒型プラスチックチューブ(内径:25mm、高さ:34mm)内に、30メッシュふるいと60メッシュふるいを用いて250~500μmの範囲にふるい分けした測定試料0.16gを秤量し、円筒型プラスチックチューブを垂直にしてナイロン網上に測定試料がほぼ均一厚さになるように整えた後、この測定試料の上に分銅(重量:210.6g、外径:24.5mm、)を乗せた。この円筒型プラスチックチューブ全体の重量(M1)を計量した後、生理食塩水(食塩濃度0.9%)60mlの入ったシャーレ(直径:12cm)の中に測定試料及び分銅の入った円筒型プラスチックチューブを垂直に立ててナイロン網側を下面にして浸し、60分静置した。60分後に、円筒型プラスチックチューブをシャーレから引き上げ、これを斜めに傾けて底部に付着した水を一箇所に集めて水滴として垂らすことで余分な水を除去した後、測定試料及び分銅の入った円筒型プラスチックチューブ全体の重量(M2)を計量し、次式から荷重下吸収量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
荷重下吸収量(g/g)={(M2)-(M1)}/0.16
[Method of measuring absorption under load]
A cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) with a nylon mesh with an opening of 63 μm (JIS Z8801-1:2006) attached to the bottom, and a 250 to 500 μm mesh were sieved using a 30 mesh sieve and a 60 mesh sieve. Weigh 0.16 g of the measurement sample that has been sieved into a wide area, arrange the cylindrical plastic tube vertically on the nylon net so that the measurement sample has an approximately uniform thickness, and place a weight (weight: 210.6 g, outer diameter: 24.5 mm) was loaded. After weighing the entire weight (M1) of this cylindrical plastic tube, place the cylindrical plastic tube containing the measurement sample and weight in a petri dish (diameter: 12 cm) containing 60 ml of physiological saline (salt concentration 0.9%). The tube was immersed in an upright vertical position with the nylon mesh side facing down, and left to stand for 60 minutes. After 60 minutes, remove the cylindrical plastic tube from the Petri dish, tilt it diagonally, collect the water that has adhered to the bottom in one place, and let it drip as drops to remove excess water. The weight (M2) of the entire cylindrical plastic tube was measured, and the amount of absorption under load was determined from the following formula. Note that the temperature of the physiological saline used and the measurement atmosphere was 25°C±2°C.
Absorption amount under load (g/g) = {(M2)-(M1)}/0.16
<実施例1>
〔重合工程〕
 アクリル酸(三菱化学社製)300部、架橋剤(b)としてのペンタエリスリトールトリアリルエーテル(ダイソー社製)0.975部、及び脱イオン水691部を攪拌・混合してモノマー水溶液を調製し、この混合液を断熱重合可能な重合槽に投入した。溶液中に窒素ガスを導入することにより、溶液中の溶存酸素量を0.2ppm以下とし、溶液温度を5℃とした。この重合溶液に、2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]水溶液4.5部、1%過酸化水素水溶液1.2部及び2%アスコルビン酸水溶液2.25部を添加・混合して重合を開始させた。重合開始を示す温度上昇が確認され約90℃に達した後、更に9時間熟成して含水ゲル状重合体を得た。
<Example 1>
[Polymerization process]
A monomer aqueous solution was prepared by stirring and mixing 300 parts of acrylic acid (manufactured by Mitsubishi Chemical Corporation), 0.975 parts of pentaerythritol triallyl ether (manufactured by Daiso Corporation) as a crosslinking agent (b), and 691 parts of deionized water. This mixed solution was put into a polymerization tank capable of adiabatic polymerization. By introducing nitrogen gas into the solution, the amount of dissolved oxygen in the solution was set to 0.2 ppm or less, and the solution temperature was set to 5°C. To this polymerization solution, 4.5 parts of 2% 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] aqueous solution, 1.2 parts of 1% hydrogen peroxide aqueous solution, and 2% ascorbic acid were added. 2.25 parts of an acid aqueous solution was added and mixed to initiate polymerization. After a temperature rise indicating the start of polymerization was confirmed and reached approximately 90°C, the mixture was further aged for 9 hours to obtain a hydrogel polymer.
〔ゲル細断工程〕
 重合工程で得られた含水ゲルをミンチ機で混練細断しながら48.5%水酸化ナトリウム水溶液247部を添加して混合し、ミンチ機で3回細断後、細断ゲルを得た。引き続きゲルブロッキング防止剤(c-1){ショ糖ステアリン酸エステル}0.6部を添加して混合し、更にミンチ機で1回細断して、含水ゲル粒子を得た。
[Gel shredding process]
While kneading and shredding the hydrous gel obtained in the polymerization step using a mincer, 247 parts of a 48.5% aqueous sodium hydroxide solution was added and mixed, and the mixture was shredded three times using a mincer to obtain a shredded gel. Subsequently, 0.6 part of gel blocking inhibitor (c-1) {sucrose stearate} was added and mixed, and the mixture was further shredded once with a mincer to obtain hydrogel particles.
〔乾燥工程〕
 得られた含水ゲル粒子を、図1および2に示される基本構成を備えた撹拌棒を有する回転式乾燥機を用いて乾燥した。当該回転式乾燥機に係る回転筒はその内壁にへ字型リフターを有している。表1に記載の含水率を有する含水ゲル粒子及び絶対湿度0.15kg/kg、400℃の熱風を各投入口から投入した。回転筒はへ字型リフターの屈曲方向に5rpmで、回転軸は回転筒の回転方向と同一方向に200rpmで、それぞれ回転させながら含水ゲル粒子の平均滞留時間20分で連続乾燥を行い、架橋重合体(A)を含有する乾燥粉体(1)を得た。
[Drying process]
The obtained hydrogel particles were dried using a rotary dryer having a stirring bar having the basic configuration shown in FIGS. 1 and 2. The rotary cylinder of the rotary dryer has an F-shaped lifter on its inner wall. Hydrous gel particles having the water content shown in Table 1 and hot air at 400° C. and an absolute humidity of 0.15 kg/kg were introduced from each inlet. The rotating cylinder was rotated at 5 rpm in the bending direction of the F-shaped lifter, and the rotating shaft was rotated at 200 rpm in the same direction as the rotational direction of the rotating cylinder. Continuous drying was performed with an average residence time of 20 minutes for the hydrogel particles, and the crosslinking weight was removed. A dry powder (1) containing aggregate (A) was obtained.
 続いて、前記乾燥粉体(1)をロールミル(RM-10型ロール式粉砕機、株式会社浅野鐵工所)でクリアランス0.35mmにて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整し、架橋重合体(A)を含む樹脂粒子(A-1)を得た。 Subsequently, the dry powder (1) was pulverized with a roll mill (RM-10 type roll pulverizer, Asano Iron Works Co., Ltd.) with a clearance of 0.35 mm, and then sieved to obtain powder with an opening of 710 to 150 μm. The particle size was adjusted to within the range to obtain resin particles (A-1) containing the crosslinked polymer (A).
〔表面架橋工程〕
 ついで、得られた前記樹脂粒子(A-1)100部を高速攪拌(細川ミクロン社製高速攪拌タービュライザー:回転数2000rpm)しながら、表面架橋剤(d)としてのエチレングリコールジグリシジルエーテル0.05部、プロピレングリコール0.5部、及び水1.7部を混合した混合液を添加し、均一混合した後、140℃で40分間加熱して、粒子状の吸水性樹脂組成物(P-1)を得た。
[Surface crosslinking process]
Next, 100 parts of the obtained resin particles (A-1) were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd.: rotation speed 2000 rpm), and 0% of ethylene glycol diglycidyl ether was added as the surface crosslinking agent (d). 0.05 parts of water, 0.5 parts of propylene glycol, and 1.7 parts of water were added, mixed uniformly, and heated at 140°C for 40 minutes to form particulate water absorbent resin composition (P -1) was obtained.
<実施例2>
 実施例1において、熱風の導入温度を250℃に変更した以外は、実施例1と同様にして、吸水性樹脂組成物(P-2)を得た。
<Example 2>
A water absorbent resin composition (P-2) was obtained in the same manner as in Example 1, except that the hot air introduction temperature was changed to 250°C.
<実施例3>
 実施例1において、熱風の導入温度を450℃に変更した以外は、実施例1と同様にして、吸水性樹脂組成物(P-2)を得た。
<Example 3>
A water absorbent resin composition (P-2) was obtained in the same manner as in Example 1, except that the hot air introduction temperature was changed to 450°C.
<実施例4>
 実施例1において、疎水性物質(c-1){ショ糖ステアリン酸エステル}の0.6部を0.03部に変更した以外は、実施例1と同様にして、吸水性樹脂組成物(P-4)を得た。
<Example 4>
In Example 1, a water-absorbing resin composition ( P-4) was obtained.
<実施例5>
 実施例1において、疎水性物質(c-1){ショ糖ステアリン酸エステル}の0.6部を1.5部に変更した以外は、実施例1と同様にして、吸水性樹脂組成物(P-5)を得た。
<Example 5>
In Example 1, a water-absorbing resin composition ( P-5) was obtained.
<実施例6>
〔重合工程〕
 アクリル酸(三菱化学社製)200部、架橋剤(b)としてのペンタエリスリトールトリアリルエーテル(ダイソー社製)0.65部、及び脱イオン水794部を攪拌・混合してモノマー水溶液を調製し、この混合液を断熱重合可能な重合槽に投入した。溶液中に窒素ガスを導入することにより、溶液中の溶存酸素量を0.2ppm以下とし、溶液温度を5℃とした。この重合溶液に、2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]水溶液3.0部、1%過酸化水素水溶液0.8部及び2%アスコルビン酸水溶液1.50部を添加・混合して重合を開始させた。重合開始を示す温度上昇が確認され約90℃に達した後、更に9時間熟成して含水ゲル状重合体を得た。
<Example 6>
[Polymerization process]
A monomer aqueous solution was prepared by stirring and mixing 200 parts of acrylic acid (manufactured by Mitsubishi Chemical Corporation), 0.65 parts of pentaerythritol triallyl ether (manufactured by Daiso Corporation) as a crosslinking agent (b), and 794 parts of deionized water. This mixed solution was put into a polymerization tank capable of adiabatic polymerization. By introducing nitrogen gas into the solution, the amount of dissolved oxygen in the solution was set to 0.2 ppm or less, and the solution temperature was set to 5°C. To this polymerization solution, 3.0 parts of 2% 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] aqueous solution, 0.8 part of 1% hydrogen peroxide aqueous solution, and 2% ascorbic acid were added. Polymerization was initiated by adding and mixing 1.50 parts of an acid aqueous solution. After a temperature rise indicating the start of polymerization was confirmed and reached approximately 90°C, the mixture was further aged for 9 hours to obtain a hydrogel polymer.
〔ゲル細断工程〕
 重合工程で得られた含水ゲルをミンチ機で混練細断しながら48.5%水酸化ナトリウム水溶液165部を添加して混合し、ミンチ機で3回細断後、細断ゲルを得た。引き続き疎水性物質(c-1){ショ糖ステアリン酸エステル}0.4部を添加して混合し、更にミンチ機で1回細断して、含水ゲル粒子を得た。
[Gel shredding process]
While kneading and shredding the hydrous gel obtained in the polymerization step using a mincer, 165 parts of a 48.5% aqueous sodium hydroxide solution was added and mixed, and the mixture was shredded three times using a mincer to obtain a shredded gel. Subsequently, 0.4 part of hydrophobic substance (c-1) {sucrose stearate} was added and mixed, and the mixture was further shredded once with a mincer to obtain hydrogel particles.
〔乾燥工程〕
 得られた含水ゲル粒子を、図1および2に示される基本構成を備えた撹拌棒を有する回転式乾燥機を用いて乾燥した。当該回転式乾燥機に係る回転筒はその内壁にへ字型リフターを有している。表1に記載の含水率を有する含水ゲル粒子及び絶対湿度0.15kg/kg、400℃の熱風を各投入口から投入した。回転筒はへ字型リフターの屈曲方向に5rpmで、回転軸は回転筒の回転方向と同一方向に200rpmで、それぞれ回転させながら含水ゲル粒子の平均滞留時間20分で連続乾燥を行い、架橋重合体(A)を含有する乾燥粉体(2)を得た。
[Drying process]
The obtained hydrogel particles were dried using a rotary dryer having a stirring bar having the basic configuration shown in FIGS. 1 and 2. The rotary cylinder of the rotary dryer has an F-shaped lifter on its inner wall. Hydrous gel particles having the water content shown in Table 1 and hot air at 400° C. and an absolute humidity of 0.15 kg/kg were introduced from each inlet. The rotating cylinder was rotated at 5 rpm in the bending direction of the F-shaped lifter, and the rotating shaft was rotated at 200 rpm in the same direction as the rotational direction of the rotating cylinder. Continuous drying was performed with an average residence time of 20 minutes for the hydrogel particles, and the crosslinking weight was removed. A dry powder (2) containing aggregate (A) was obtained.
 続いて、前記乾燥粉体(2)をロールミル(RM-10型ロール式粉砕機、株式会社浅野鐵工所)でクリアランス0.35mmにて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整し、架橋重合体(A)を含む樹脂粒子(A-6)を得た。 Subsequently, the dry powder (2) was pulverized with a roll mill (RM-10 type roll pulverizer, Asano Iron Works Co., Ltd.) with a clearance of 0.35 mm, and then sieved to obtain powder with a mesh size of 710 to 150 μm. The particle size was adjusted to within the range to obtain resin particles (A-6) containing the crosslinked polymer (A).
〔表面架橋工程〕
 ついで、前記樹脂粒子(A-6)100部を高速攪拌(細川ミクロン社製高速攪拌タービュライザー:回転数2000rpm)しながら、表面架橋剤(d)としてのエチレングリコールジグリシジルエーテル0.05部、プロピレングリコール0.5部、及び水1.7部を混合した混合液を添加し、均一混合した後、140℃で40分間加熱して、粒子状の吸水性樹脂組成物(P-6)を得た。
[Surface crosslinking process]
Next, while stirring 100 parts of the resin particles (A-6) at high speed (High speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd.: rotation speed 2000 rpm), 0.05 part of ethylene glycol diglycidyl ether as the surface crosslinking agent (d) was added. , 0.5 parts of propylene glycol, and 1.7 parts of water were added, mixed uniformly, and heated at 140° C. for 40 minutes to form a particulate water-absorbing resin composition (P-6). I got it.
<実施例7>
〔重合工程〕
 アクリル酸(三菱化学製)300部に架橋剤(b)としてのポリエチレングリコールジアクリレート(重量平均分子量523)(TCI社製)0.975部を添加した溶液(A)に、氷冷下、48.5%水酸化ナトリウム水溶液247部を脱イオン水444部で希釈した溶液(B)を攪拌下、40℃を超えないように温度管理をしながら混合して混合液を調製し、この混合液を重合槽に投入した。溶液中に窒素ガスを導入することにより、溶液中の溶存酸素量を0.2ppm以下とし、溶液温度を10℃とした。この重合溶液に、2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]水溶液4.5部、1%過酸化水素水溶液1.20部及び2%アスコルビン酸水溶液2.25部を添加・混合して重合を開始させた。除熱を行いながら重合を行い約90℃に達し、反応熱による発熱が見られなくなった後、更に9時間熟成して含水ゲル状重合体を得た。
<Example 7>
[Polymerization process]
To a solution (A) in which 0.975 parts of polyethylene glycol diacrylate (weight average molecular weight 523) (manufactured by TCI) as a crosslinking agent (b) was added to 300 parts of acrylic acid (manufactured by Mitsubishi Chemical), 48% of the solution was added under ice cooling. A mixed solution was prepared by mixing the solution (B) obtained by diluting 247 parts of a 5% aqueous sodium hydroxide solution with 444 parts of deionized water under stirring while controlling the temperature so as not to exceed 40°C. was put into the polymerization tank. By introducing nitrogen gas into the solution, the amount of dissolved oxygen in the solution was set to 0.2 ppm or less, and the solution temperature was set to 10°C. To this polymerization solution, 4.5 parts of 2% 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] aqueous solution, 1.20 parts of 1% hydrogen peroxide aqueous solution, and 2% ascorbic acid were added. 2.25 parts of an acid aqueous solution was added and mixed to initiate polymerization. Polymerization was carried out while removing heat, and after the temperature reached approximately 90° C. and no exotherm due to reaction heat was observed, the polymer was further aged for 9 hours to obtain a hydrogel polymer.
〔ゲル細断工程〕
 重合工程で得られた含水ゲルをミンチ機で混練細断しながら3回細断後、細断ゲルを得た。引き続き疎水性物質(c-1){ショ糖ステアリン酸エステル}0.6部を添加して混合し、更にミンチ機で1回細断して、含水ゲル粒子を得た。
[Gel shredding process]
The hydrous gel obtained in the polymerization step was kneaded and shredded using a mincer and shredded three times to obtain shredded gel. Subsequently, 0.6 part of hydrophobic substance (c-1) {sucrose stearate} was added and mixed, and the mixture was further shredded once using a mincer to obtain hydrogel particles.
〔乾燥工程〕
 得られた含水ゲル粒子を、図1および2に示される基本構成を備えた撹拌棒を有する回転式乾燥機を用いて乾燥した。当該回転式乾燥機に係る回転筒は、その内壁にへ字型リフターを有している。表1に記載の含水率を有する含水ゲル粒子及び絶対湿度0.15kg/kg、400℃の熱風を各投入口から投入した。回転筒はへ字型リフターの屈曲方向に5rpmで、回転軸は回転筒の回転方向と同一方向に200rpmで、それぞれ回転させながら含水ゲル粒子の平均滞留時間20分で連続乾燥を行い、架橋重合体(A)を含有する乾燥粉体(3)を得た。
[Drying process]
The obtained hydrogel particles were dried using a rotary dryer having a stirring bar having the basic configuration shown in FIGS. 1 and 2. The rotary cylinder of the rotary dryer has an F-shaped lifter on its inner wall. Hydrous gel particles having the water content shown in Table 1 and hot air at 400° C. and an absolute humidity of 0.15 kg/kg were introduced from each inlet. The rotating cylinder was rotated at 5 rpm in the bending direction of the F-shaped lifter, and the rotating shaft was rotated at 200 rpm in the same direction as the rotational direction of the rotating cylinder. Continuous drying was performed with an average residence time of 20 minutes for the hydrogel particles, and the crosslinking weight was removed. A dry powder (3) containing aggregate (A) was obtained.
 続いて、前記乾燥粉体(3)をロールミル(RM-10型ロール式粉砕機、株式会社浅野鐵工所)でクリアランス0.35mmにて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整し、架橋重合体(A)を含む樹脂粒子(A-7)を得た。 Subsequently, the dry powder (3) was pulverized with a roll mill (RM-10 type roll pulverizer, Asano Iron Works Co., Ltd.) with a clearance of 0.35 mm, and then sieved to obtain powder with a mesh size of 710 to 150 μm. The particle size was adjusted to within the range to obtain resin particles (A-7) containing the crosslinked polymer (A).
〔表面架橋工程〕
 ついで、前記樹脂粒子(A-7)100部を高速攪拌(細川ミクロン社製高速攪拌タービュライザー:回転数2000rpm)しながら、表面架橋剤(d)としてのエチレングリコールジグリシジルエーテル0.05部、プロピレングリコール0.5部、及び水1.7部を混合した混合液を添加し、均一混合した後、140℃で40分間加熱して、粒子状の吸水性樹脂組成物(P-7)を得た。
[Surface crosslinking process]
Next, while stirring 100 parts of the resin particles (A-7) at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd.: rotation speed 2000 rpm), 0.05 part of ethylene glycol diglycidyl ether as the surface crosslinking agent (d) was added. , 0.5 parts of propylene glycol, and 1.7 parts of water were added, mixed uniformly, and heated at 140°C for 40 minutes to form a particulate water-absorbing resin composition (P-7). I got it.
<実施例8>
〔重合工程〕
 アクリル酸(三菱化学製)400部に架橋剤(b)としてのポリエチレングリコールジアクリレート(重量平均分子量523)(TCI社製)1.3部を添加した溶液(A)に、氷冷下、48.5%水酸化ナトリウム水溶液330部を脱イオン水258部で希釈した溶液(B)を攪拌下、40℃を超えないように温度管理をしながら混合して混合液を調製し、この混合液を重合槽に投入した。溶液中に窒素ガスを導入することにより、溶液中の溶存酸素量を0.2ppm以下とし、溶液温度を10℃とした。この重合溶液に、2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]水溶液6.0部、1%過酸化水素水溶液1.60部及び2%アスコルビン酸水溶液3.00部を添加・混合して重合を開始させた。除熱を行いながら重合を行い約90℃に達し、反応熱による発熱が見られなくなった後、更に9時間熟成して含水ゲル状重合体を得た。
<Example 8>
[Polymerization process]
To a solution (A) in which 1.3 parts of polyethylene glycol diacrylate (weight average molecular weight 523) (manufactured by TCI) as a crosslinking agent (b) was added to 400 parts of acrylic acid (manufactured by Mitsubishi Chemical), 48% of the solution was added under ice cooling. A mixed solution was prepared by mixing the solution (B) prepared by diluting 330 parts of a 5% aqueous sodium hydroxide solution with 258 parts of deionized water under stirring while controlling the temperature so as not to exceed 40°C. was put into the polymerization tank. By introducing nitrogen gas into the solution, the amount of dissolved oxygen in the solution was set to 0.2 ppm or less, and the solution temperature was set to 10°C. To this polymerization solution, 6.0 parts of 2% 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] aqueous solution, 1.60 parts of 1% hydrogen peroxide aqueous solution, and 2% ascorbic acid were added. Polymerization was started by adding and mixing 3.00 parts of an acid aqueous solution. Polymerization was carried out while removing heat, and after the temperature reached approximately 90° C. and no exotherm due to reaction heat was observed, the polymer was further aged for 9 hours to obtain a hydrogel polymer.
〔ゲル細断工程〕
 重合工程で得られた含水ゲルをミンチ機で混練細断しながら3回細断後、細断ゲルを得た。引き続き疎水性物質(c-1){ショ糖ステアリン酸エステル}0.8部を添加して混合し、更にミンチ機で1回細断して、含水ゲル粒子を得た。
[Gel shredding process]
The hydrous gel obtained in the polymerization step was kneaded and shredded using a mincer and shredded three times to obtain shredded gel. Subsequently, 0.8 part of hydrophobic substance (c-1) {sucrose stearate} was added and mixed, and the mixture was further shredded once with a mincer to obtain hydrogel particles.
〔乾燥工程〕
 得られた含水ゲル粒子を、図1および2に示される基本構成を備えた撹拌棒を有する回転式乾燥機を用いて乾燥した。当該回転式乾燥機に係る回転筒はその内壁にへ字型リフターを有している。表1に記載の含水率を有する含水ゲル粒子及び絶対湿度0.15kg/kg、400℃の熱風を各投入口から投入した。回転筒はへ字型リフターの屈曲方向に5rpmで、回転軸は回転筒の回転方向と同一方向に200rpmで、それぞれ回転させながら含水ゲル粒子の平均滞留時間20分で連続乾燥を行い、架橋重合体(A)を含有する乾燥粉体(4)を得た。
[Drying process]
The obtained hydrogel particles were dried using a rotary dryer having a stirring bar having the basic configuration shown in FIGS. 1 and 2. The rotary cylinder of the rotary dryer has an F-shaped lifter on its inner wall. Hydrous gel particles having the water content shown in Table 1 and hot air at 400° C. and an absolute humidity of 0.15 kg/kg were introduced from each inlet. The rotating cylinder was rotated at 5 rpm in the bending direction of the F-shaped lifter, and the rotating shaft was rotated at 200 rpm in the same direction as the rotational direction of the rotating cylinder. Continuous drying was performed with an average residence time of 20 minutes for the hydrogel particles, and the crosslinking weight was removed. A dry powder (4) containing aggregate (A) was obtained.
 続いて、前記乾燥粉体(4)をロールミル(RM-10型ロール式粉砕機、株式会社浅野鐵工所)でクリアランス0.35mmにて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整し、架橋重合体を含む樹脂粒子(A-8)を得た。 Subsequently, the dry powder (4) was pulverized with a roll mill (RM-10 type roll pulverizer, Asano Iron Works Co., Ltd.) with a clearance of 0.35 mm, and then sieved to obtain powder with a mesh size of 710 to 150 μm. Resin particles (A-8) containing a crosslinked polymer were obtained by adjusting the particle size within the range.
(表面架橋工程)
 ついで、前記樹脂粒子(A-8)100部を高速攪拌(細川ミクロン社製高速攪拌タービュライザー:回転数2000rpm)しながら、表面架橋剤(d)としてのエチレングリコールジグリシジルエーテル0.05部、プロピレングリコール0.5部、及び水1.7部を混合した混合液を添加し、均一混合した後、140℃で40分間加熱して、粒子状の吸水性樹脂組成物(P-8)を得た。
(Surface crosslinking process)
Next, while stirring 100 parts of the resin particles (A-8) at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd.: rotation speed 2000 rpm), 0.05 part of ethylene glycol diglycidyl ether as the surface crosslinking agent (d) was added. , 0.5 parts of propylene glycol, and 1.7 parts of water were added, mixed uniformly, and heated at 140°C for 40 minutes to form a particulate water-absorbing resin composition (P-8). I got it.
<比較例1>
 実施例1において、撹拌棒を有しない回転式乾燥機を使用した以外は、実施例1と同様にして、吸水性樹脂組成物(R-1)を得た。
<Comparative example 1>
A water absorbent resin composition (R-1) was obtained in the same manner as in Example 1, except that a rotary dryer without a stirring bar was used.
<比較例2>
 実施例1において、回転筒及び撹拌棒を回転させずに乾燥した以外は、実施例1と同様にして、吸水性樹脂組成物(R-2)を得た。
<Comparative example 2>
A water-absorbing resin composition (R-2) was obtained in the same manner as in Example 1, except that drying was performed without rotating the rotary cylinder and stirring rod.
<比較例3>
 実施例1において、図3に例示するコンベア式の乾燥機を使用した以外は、実施例1と同様にして、吸水性樹脂組成物(R-3)を得た。
<Comparative example 3>
A water absorbent resin composition (R-3) was obtained in the same manner as in Example 1, except that the conveyor type dryer illustrated in FIG. 3 was used.
 前記吸水性樹脂組成物(P-1)~(P-8)、(R-1)~(R-3)の評価結果を下記表1に示す。 The evaluation results of the water absorbent resin compositions (P-1) to (P-8) and (R-1) to (R-3) are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示される結果から、本発明の吸水性樹脂組成物の製造方法によれば、乾燥後の含水率が少なく、乾燥工程後の粉砕工程でのトラブルが生じにくく、得られた吸水性樹脂組成物は着色異物が少なく、優れた吸水性能を有していることが分かる。これは、本発明の製造方法が乾燥時の熱効率が高く、吸水性樹脂の熱劣化が抑制されたためと推測される。 From the results shown in Table 1, according to the method for producing a water absorbent resin composition of the present invention, the water content after drying is low, troubles are less likely to occur in the pulverization process after the drying process, and the obtained water absorbent resin It can be seen that the composition has few colored foreign substances and has excellent water absorption performance. This is presumably because the manufacturing method of the present invention has high thermal efficiency during drying, and thermal deterioration of the water absorbent resin is suppressed.
1 回転筒
2 熱風投入口
3 含水ゲル投入口
4 リフター
5 撹拌棒
6 撹拌軸
7 熱風排出口
8 乾燥重合体排出口
9 攪拌軸回転方向
10 回転筒回転方向
11 通気ベルト
12 含水ゲル
13 乾燥室
14 通気方向
15 通気ベルトの移動方向
16 含水ゲル乾燥物
 
1 Rotating tube 2 Hot air inlet 3 Hydrogel inlet 4 Lifter 5 Stirring rod 6 Stirring shaft 7 Hot air outlet 8 Dry polymer outlet 9 Stirring shaft rotation direction 10 Rotating tube rotation direction 11 Venting belt 12 Hydrogel 13 Drying chamber 14 Ventilation direction 15 Movement direction of ventilation belt 16 Dry hydrogel

Claims (8)

  1.  水溶性不飽和モノカルボン酸(a1)及びその塩、並びに加水分解により前記水溶性不飽和モノカルボン酸(a1)となるモノマー(a2)からなる群より選ばれる1種以上のモノマー(A1)と、内部架橋剤(b)と、を構成単位として有する架橋重合体(A)を含む含水ゲルを得る重合工程と、前記含水ゲルを乾燥機で乾燥させる乾燥工程と、を有する吸水性樹脂組成物の製造方法であって、
     前記乾燥機が、軸心周りに回転自在な回転筒と、当該軸心方向に配設され、撹拌棒を有する回転自在な撹拌軸と、を有し、前記回転筒内で乾燥処理を行う回転式乾燥機であり、
     前記乾燥工程において、前記回転式乾燥機の前記回転筒内で前記含水ゲルを前記回転筒及び前記撹拌棒を回転させてかき上げながら乾燥させることを特徴とする、吸水性樹脂組成物の製造方法。
    One or more monomers (A1) selected from the group consisting of a water-soluble unsaturated monocarboxylic acid (a1) and its salt, and a monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) upon hydrolysis; , an internal crosslinking agent (b), and a drying step of drying the hydrogel in a dryer. A method of manufacturing,
    The dryer includes a rotary cylinder that can freely rotate around an axis, and a rotatable stirring shaft that is disposed in the direction of the axis and has a stirring rod, and the dryer has a rotating cylinder that performs a drying process within the rotary cylinder. It is a type dryer,
    In the drying step, the water-containing gel is dried in the rotary cylinder of the rotary dryer while being scraped up by rotating the rotary cylinder and the stirring rod. .
  2.  前記回転式乾燥機が、前記回転筒の内壁から前記回転筒の軸心側に延出するリフターを有し、
     前記乾燥工程において、前記回転筒を回転させて前記リフターで前記含水ゲルをかき上げながら乾燥させることを特徴とする、請求項1に記載の吸水性樹脂組成物の製造方法。
    The rotary dryer has a lifter extending from the inner wall of the rotary cylinder toward the axis of the rotary cylinder,
    2. The method for producing a water-absorbing resin composition according to claim 1, wherein in the drying step, the hydrogel is dried while being rotated by the rotary tube and the hydrogel is scraped up by the lifter.
  3.  前記リフターが、フラット型リフター、及びへ字型リフターからなる群から選ばれるリフターにより含水ゲルをかき上げることを特徴とする請求項2に記載の吸水性樹脂組成物の製造方法。 3. The method for producing a water-absorbing resin composition according to claim 2, wherein the lifter is selected from the group consisting of a flat lifter and a C-shaped lifter to lift up the hydrogel.
  4.  前記乾燥工程において、前記回転筒内に熱風を通気させ、当該熱風による対流伝熱によって前記含水ゲルを乾燥させることを特徴とする、請求項1に記載の吸水性樹脂組成物の製造方法。 The method for producing a water-absorbing resin composition according to claim 1, wherein in the drying step, hot air is passed through the rotating cylinder, and the hydrogel is dried by convection heat transfer by the hot air.
  5.  前記熱風を前記回転筒内に供給する際の当該熱風の供給温度が、200~500℃である、請求項4に記載の吸水性樹脂組成物の製造方法。 The method for producing a water-absorbing resin composition according to claim 4, wherein the hot air is supplied at a temperature of 200 to 500°C when the hot air is supplied into the rotating cylinder.
  6.  前記乾燥工程より前に、前記含水ゲルに疎水性物質(c)を添加する疎水性物質添加工程を有する、請求項1~5の何れか1項に記載の吸水性樹脂組成物の製造方法。 The method for producing a water-absorbing resin composition according to any one of claims 1 to 5, comprising a hydrophobic substance addition step of adding a hydrophobic substance (c) to the hydrogel before the drying step.
  7.  前記疎水性物質(c)が炭素数8~30の炭化水素基を含有する疎水性物質(c1)及び/又は有機ポリシロキサンである疎水性物質(c2)である、請求項6に記載の吸水性樹脂組成物の製造方法。 The water absorption according to claim 6, wherein the hydrophobic substance (c) is a hydrophobic substance (c1) containing a hydrocarbon group having 8 to 30 carbon atoms and/or a hydrophobic substance (c2) that is an organic polysiloxane. A method for producing a synthetic resin composition.
  8.  前記疎水性物質(c)の配合量が、前記架橋重合体(A)100重量部に対して0.001~1.0重量部である、請求項6に記載の製造方法。
     
    The manufacturing method according to claim 6, wherein the amount of the hydrophobic substance (c) is 0.001 to 1.0 parts by weight based on 100 parts by weight of the crosslinked polymer (A).
PCT/JP2023/001939 2022-07-07 2023-01-23 Method for producing water-absorbing resin composition WO2024009541A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-109853 2022-07-07
JP2022-109806 2022-07-07
JP2022-109810 2022-07-07
JP2022109806 2022-07-07
JP2022109810 2022-07-07
JP2022109853 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024009541A1 true WO2024009541A1 (en) 2024-01-11

Family

ID=89452930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001939 WO2024009541A1 (en) 2022-07-07 2023-01-23 Method for producing water-absorbing resin composition

Country Status (1)

Country Link
WO (1) WO2024009541A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027158A (en) * 1973-07-13 1975-03-20
JPS63108093U (en) * 1986-12-27 1988-07-12
JPH11292919A (en) * 1998-04-07 1999-10-26 Nippon Shokubai Co Ltd Production of water-absorbing resin
JP2007162376A (en) * 2005-12-15 2007-06-28 Nippo Corporation:Kk Dryer for reclamation
WO2017221911A1 (en) * 2016-06-20 2017-12-28 株式会社日本触媒 Method for producing water absorbent
WO2018092863A1 (en) * 2016-11-16 2018-05-24 株式会社日本触媒 Production method for water-absorbing resin powder, and device and method for drying particulate hydrous gel
WO2019221236A1 (en) * 2018-05-16 2019-11-21 株式会社日本触媒 Water absorbent resin powder, and production method therefor
WO2019221154A1 (en) * 2018-05-16 2019-11-21 株式会社日本触媒 Method for producing water-absorbent resin particles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027158A (en) * 1973-07-13 1975-03-20
JPS63108093U (en) * 1986-12-27 1988-07-12
JPH11292919A (en) * 1998-04-07 1999-10-26 Nippon Shokubai Co Ltd Production of water-absorbing resin
JP2007162376A (en) * 2005-12-15 2007-06-28 Nippo Corporation:Kk Dryer for reclamation
WO2017221911A1 (en) * 2016-06-20 2017-12-28 株式会社日本触媒 Method for producing water absorbent
WO2018092863A1 (en) * 2016-11-16 2018-05-24 株式会社日本触媒 Production method for water-absorbing resin powder, and device and method for drying particulate hydrous gel
WO2018092864A1 (en) * 2016-11-16 2018-05-24 株式会社日本触媒 Production method for water-absorbing resin powder, and production device for same
WO2019221236A1 (en) * 2018-05-16 2019-11-21 株式会社日本触媒 Water absorbent resin powder, and production method therefor
WO2019221154A1 (en) * 2018-05-16 2019-11-21 株式会社日本触媒 Method for producing water-absorbent resin particles

Similar Documents

Publication Publication Date Title
JP6722654B2 (en) Aqueous liquid absorbent resin particle production method, aqueous liquid absorbent resin particle, absorbent body and absorbent article
US4666983A (en) Absorbent article
WO2018147317A1 (en) Water-absorbent resin particles, and absorber and absorbent article in which same are used
JPS6116903A (en) Water-absorbent
WO2016143739A1 (en) Method for producing aqueous liquid absorbent resin particles, and absorbent body and absorbent article
EP3957679A1 (en) Method for producing water-absorbing resin particles
JP2023060178A (en) Method for producing water-absorbing resin particle
JP3175790B2 (en) Method for producing particulate hydrogel polymer and water absorbent resin
JP7108422B2 (en) Water-absorbing resin particles, absorbent body and absorbent article using the same, and method for producing water-absorbing resin particles
JPWO2020137241A1 (en) Water-absorbent resin particles and their manufacturing method
WO2024009541A1 (en) Method for producing water-absorbing resin composition
JP7165753B2 (en) Water-absorbing resin particles and method for producing the same
JP7128980B1 (en) Method for producing water absorbent resin composition, water absorbent resin composition, absorbent body using the same, and absorbent article
CN113166432A (en) Water-absorbent resin particles easily subjected to dehydration treatment and process for producing the same
JP7139540B1 (en) Method for producing water absorbent resin composition, water absorbent resin composition, absorbent body using the same, and absorbent article
JP4704559B2 (en) Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent, and use thereof
JP6935996B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using them
JP7291686B2 (en) Water-absorbing resin particles and method for producing the same
JP6979759B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using the same
JP2018039924A (en) Method for producing aqueous liquid absorptive resin particle
WO2018225815A1 (en) Water absorbent resin particles and production method therefor
WO2019059019A1 (en) Water-absorbing resin composition and production method therefor
JP7453918B2 (en) Water-absorbing resin particles and their manufacturing method
JPH03285919A (en) Production of highly water-absorbing resin
JP7339253B2 (en) Water absorbent resin particles, absorbent body and absorbent article containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835084

Country of ref document: EP

Kind code of ref document: A1