WO2019188648A1 - Water absorbent resin particles and production method therefor - Google Patents

Water absorbent resin particles and production method therefor Download PDF

Info

Publication number
WO2019188648A1
WO2019188648A1 PCT/JP2019/011665 JP2019011665W WO2019188648A1 WO 2019188648 A1 WO2019188648 A1 WO 2019188648A1 JP 2019011665 W JP2019011665 W JP 2019011665W WO 2019188648 A1 WO2019188648 A1 WO 2019188648A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin particles
absorbent resin
weight
particles
Prior art date
Application number
PCT/JP2019/011665
Other languages
French (fr)
Japanese (ja)
Inventor
泰知 松山
宮島 徹
佑介 松原
Original Assignee
Sdpグローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sdpグローバル株式会社 filed Critical Sdpグローバル株式会社
Priority to JP2020510775A priority Critical patent/JP7291686B2/en
Priority to CN201980018707.6A priority patent/CN111868144B/en
Publication of WO2019188648A1 publication Critical patent/WO2019188648A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a water-absorbent resin particle and a method for producing the same.
  • hydrophilic fibers such as pulp and a water-absorbent resin mainly composed of acrylic acid (salt) is widely used as an absorbent.
  • QOL quality of life
  • the demand for these sanitary materials has been shifting to lighter and thinner materials, and accordingly, the use of hydrophilic fibers has been desired to be reduced.
  • the water-absorbing resin itself has been required to have the role of liquid diffusibility and initial absorption in the absorbent body, which has been carried out by hydrophilic fibers so far. It is requested.
  • a method for improving the absorption rate a method of physically increasing the surface area of the water-absorbing resin is generally used.
  • a method of decreasing the apparent density by increasing the drying speed of the water absorbent resin Patent Document 1
  • a method of decreasing the apparent density by internally foaming in the drying step of the water absorbent resin Patent Document 3
  • Patent Document 3 A technique for granulating water-absorbing resin particles is also known.
  • the mechanical strength of the particles is weak, and fine powder is easily generated in the manufacturing process of the diaper. The fine powder causes gel blocking during the diaper manufacturing process, which causes a problem of clogging of the process.
  • Patent Document 4 a method of improving the absorption rate by reducing the particle size of the water-absorbent resin particles in the sieving step (Patent Document 4) is also known, but when the particle size of the water-absorbent resin is reduced, the moisture absorption resistance decreases, Similar to the above, there is a problem that causes clogging of the process in the diaper manufacturing process.
  • An object of the present invention is to provide water-absorbing resin particles having both an apparent density and an absorption speed without reducing mechanical strength.
  • particles having a particle defect degree (CONV) defined by the following formula (1) of 1% or less among particles screened in a range of 300 to 600 ⁇ m using a JIS standard sieve are 50% by volume. % Or less and particles having a particle defect degree (CONV) of 8% or more are water-absorbent resin particles having a volume ratio of 5% or less.
  • CONV (%) ⁇ B / (A + B) ⁇ ⁇ 100 (1)
  • CONV represents the particle defect degree
  • A represents the projected area of the target particle obtained by the image analysis method
  • B represents a value obtained by subtracting the projected area of the target particle indicated by A from the projected area surrounded by the envelope connecting the convex portions of the target particle obtained by the image analysis method.
  • the present invention provides a monomer composition comprising a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis and an internal crosslinking agent (b) as essential constituent units.
  • the water-absorbent resin particles of the present invention and the water-absorbent resin particles obtained by the production method of the present invention are formed by forming irregularities on the surface of the water-absorbent resin particles and with respect to particles at a certain controlled ratio.
  • the apparent density and the absorption speed can be compatible without reducing the mechanical strength. Therefore, a diaper can be manufactured stably even under high humidity, and exhibits excellent absorption performance (for example, liquid diffusibility, absorption speed, absorption amount, etc.) even in various usage situations.
  • the water-absorbent resin particles of the present invention are particles having a particle deficiency (CONV) defined by the following formula (1) of 1% or less among particles screened in a range of 300 to 600 ⁇ m using a JIS standard sieve.
  • the volume ratio is 50% or less.
  • the volume ratio of particles having a particle defect degree of 8% or more is 5% or less.
  • CONV (%) ⁇ B / (A + B) ⁇ ⁇ 100 (1)
  • CONV represents the degree of particle defect
  • A represents the projected area of the target particle obtained by the image analysis method
  • B represents the envelope connecting the convex portions of the target particle obtained by the image analysis method.
  • FIG. 1 is a schematic diagram for explaining a method for obtaining a particle defect degree.
  • the projected area (A) of the target particle is obtained from the “particle projected area” in FIG.
  • the projection area (A + B) surrounded by the envelope connecting the convex portions of the particle projection area is obtained as an area including the A portion which is the projection area (A) of the target particle and the B portion which is the missing portion. It is done. From these values, the area of part B is obtained.
  • the volume ratio of particles having a particle defect degree of 1% or less is 50% or less among the particles screened in the range of 300 to 600 ⁇ m using a JIS standard sieve, the proportion of particles having a smooth surface is small. Since the water-absorbent resin particles have sufficient irregularities, it exhibits good absorption performance, exhibits excellent absorption performance when made into an absorbent article, is less likely to cause leakage, and has good anti-fogging properties. Preferably it is 46% or less, More preferably, it is 40% or less. On the other hand, the larger the value of the particle deficiency, the more the unevenness of the particles and the faster the absorption speed.
  • the breakage of the water-absorbent resin particles increases and the fine powder increases in the diaper manufacturing process.
  • the volume ratio of particles having a particle defect degree of 8% or more is 5% or less, preferably 3% or less, more preferably 2% or less.
  • grain defect degree of 8% or more is 5% or less.
  • the water-absorbent resin particles of the present invention may be of any type as long as they have the above-mentioned characteristics, but preferably the water-soluble vinyl monomer (a1) and / or the water-soluble vinyl monomer (a1) by hydrolysis. It is a crosslinked polymer (A) obtained by polymerizing a monomer composition having the vinyl monomer (a2) and the internal crosslinking agent (b) as essential constituent units, and more preferably contains a crosslinked polymer (A). Water-absorbent resin particles obtained by surface-crosslinking the surface of the resin particles (B) to be surface-treated with the surface cross-linking agent (c).
  • the water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and known monomers, for example, at least one water-soluble substituent and an ethylenic group disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 3648553 are disclosed.
  • Vinyl monomers having a saturated group for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers
  • anionic vinyl monomers disclosed in JP-A-2003-16583, paragraphs 0009 to 0024 nonionic Selected from the group consisting of a carboxylic group, a sulfo group, a phosphono group, a hydroxyl group, a carbamoyl group, an amino group and an ammonio group disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982
  • At least one Vinyl monomer having can be used.
  • a vinyl monomer (a2) (hereinafter also referred to as a hydrolyzable vinyl monomer (a2)) that becomes a water-soluble vinyl monomer (a1) by hydrolysis is not particularly limited, and is known (for example, 0024 to 0025 of Japanese Patent No. 3648553).
  • a vinyl monomer of a degradable substituent (a vinyl monomer having a 1,3-oxo-2-oxapropylene (—CO—O—CO—) group, an acyl group, a cyano group, etc.)) can be used.
  • the water-soluble vinyl monomer means a vinyl monomer having a property of dissolving at least 100 g in 100 g of water at 25 ° C.
  • the term “hydrolyzable” refers to the property of being hydrolyzed by the action of 50 ° C. water and, if necessary, the catalyst (acid or base) to make it water-soluble.
  • the hydrolysis of the hydrolyzable vinyl monomer may be performed either during polymerization, after polymerization, or both of them, but is preferably after polymerization from the viewpoint of the molecular weight of the water-absorbent resin particles obtained.
  • the water-soluble vinyl monomer (a1) is preferable from the viewpoint of absorption characteristics.
  • the water-soluble vinyl monomer (a1) is preferably an anionic vinyl monomer, more preferably a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group, or a mono-, di- or tri-alkyl. It is a vinyl monomer having an ammonio group.
  • a vinyl monomer having a carboxy (salt) group or a carbamoyl group is more preferable, (meth) acrylic acid (salt) and (meth) acrylamide, more preferably (meth) acrylic acid (salt), Most preferred is acrylic acid (salt).
  • the “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”.
  • (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylate
  • (meth) acrylamide means acrylamide or methacrylamide.
  • the salt include an alkali metal (such as lithium, sodium and potassium) salt, an alkaline earth metal (such as magnesium and calcium) salt or an ammonium (NH 4 ) salt.
  • alkali metal salts and ammonium salts are preferable from the viewpoint of absorption characteristics and the like, more preferably alkali metal salts, and particularly preferably sodium salts.
  • the water-soluble vinyl monomer (a1) or the hydrolyzable vinyl monomer (a2) When either the water-soluble vinyl monomer (a1) or the hydrolyzable vinyl monomer (a2) is used as a structural unit, each may be used alone as a structural unit, or two or more kinds may be used as a structural unit as necessary. The same applies when the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units.
  • the molar ratio (a1 / a2) of these is preferably 75/25 to 99/1, more preferably 85/15 to 95/5, particularly preferably 90/10 to 93/7, and most preferably 91/9 to 92/8. Within this range, the absorption performance is further improved.
  • crosslinked polymer (A) in addition to the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), other vinyl monomers (a3) copolymerizable therewith are used as the structural unit. Can do.
  • vinyl monomers (a3) that can be copolymerized are not particularly limited and are known (for example, hydrophobic vinyl monomers disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, Japanese Patent Laid-Open No. 2003-165883, (Vinyl monomers disclosed in paragraph 0058 of JP-A-2005-75982) can be used, and the following vinyl monomers (i) to (iii) can be used.
  • Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, and halogen substituted products of styrene such as vinylnaphthalene and dichlorostyrene.
  • the content (mol%) of the other vinyl monomer (a3) unit is that of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit. Based on the number of moles, it is preferably 0.01 to 5, more preferably 0.05 to 3, even more preferably 0.08 to 2, and particularly preferably 0.1 to 1.5. In spite of the above, it is most preferable that the content of other vinyl monomer (a3) units is 0 mol% from the viewpoint of absorption characteristics and the like.
  • the internal cross-linking agent (b) (hereinafter, also simply referred to as cross-linking agent (b)) is not particularly limited, and is known (for example, 2 ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 3648553). At least one functional group capable of reacting with a water-soluble substituent, having at least one functional group capable of reacting with a water-soluble substituent, and having at least one functional group capable of reacting with a water-soluble substituent.
  • a crosslinking agent having two or more ethylenically unsaturated groups is preferable, and more preferable is triallyl cyanurate, triallyl isocyanurate, and a poly (poly (2) having 2 to 10 carbon atoms).
  • Meta) allyl ethers particularly preferred are triallyl cyanurate, triallyl isocyanurate, tetraallyloxyethane and pentaerythritol triallyl ether, most preferred pentaerythritol triallyl ether.
  • a crosslinking agent (b) may be used individually by 1 type, or may use 2 or more types together.
  • the content (mol%) of the crosslinking agent (b) unit is (a1) to when the other vinyl monomer (a3) of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit is used. Based on the total number of moles of (a3), 0.001 to 5 is preferable, 0.005 to 3 is more preferable, and 0.01 to 1 is particularly preferable. Within this range, the absorption performance is further improved.
  • Examples of the method for producing the crosslinked polymer (A) include known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization method, etc .; JP-A-55-133413, etc.), known suspension polymerization method and reverse phase suspension. If necessary, a hydrogel polymer (consisting of a crosslinked polymer and water) obtained by suspension polymerization (Japanese Patent Publication No. Sho 54-30710, Japanese Patent Publication No. 56-26909, Japanese Patent Publication No. 1-5808, etc.) is required. It can be obtained by heat drying and grinding.
  • the cross-linked polymer (A) may be a single type or a mixture of two or more types.
  • the solution polymerization method is preferable, and it is advantageous in terms of production cost because it is not necessary to use an organic solvent. Therefore, the aqueous solution polymerization method is particularly preferable, and the water retention amount is large and water-soluble.
  • An aqueous solution adiabatic polymerization method is most preferred because a water-absorbing resin with a small amount of components can be obtained and temperature control during polymerization is unnecessary.
  • a mixed solvent containing water and an organic solvent can be used.
  • the organic solvent include methanol, ethanol, acetone, methyl ethyl ketone, N, N-dimethylformamide, dimethyl sulfoxide, and two or more of these.
  • the amount (% by weight) of the organic solvent used is preferably 40 or less, more preferably 30 or less, based on the weight of water.
  • a conventionally known radical polymerization catalyst can be used, for example, an azo compound [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis (2-amidinopropane) hydrochloride.
  • Etc. inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, succinic acid peroxide, etc.
  • Oxides and di (2-ethoxyethyl) peroxydicarbonate, etc.] and redox catalysts alkali metal sulfites or bisulfites, ammonium sulfites, ammonium bisulfites, ascorbic acids and the like, and alkali metal persulfates, Oxidation of ammonium persulfate, hydrogen peroxide and organic peroxides And the like.
  • redox catalysts alkali metal sulfites or bisulfites, ammonium sulfites, ammonium bisulfites, ascorbic acids and the like, and alkali metal persulfates, Oxidation of ammonium persulfate, hydrogen peroxide and organic peroxides And the like.
  • the amount (% by weight) of the radical polymerization catalyst used is that of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), in the case of using other vinyl monomers (a3) (a1) to (a3), Based on the total weight, it is preferably 0.0005 to 5, more preferably 0.001 to 2.
  • the polymerization method is a suspension polymerization method or a reverse phase suspension polymerization method
  • the polymerization may be performed in the presence of a conventionally known dispersant or surfactant, if necessary.
  • a conventionally known dispersant or surfactant if necessary.
  • polymerization can be carried out using a conventionally known hydrocarbon solvent such as xylene, normal hexane and normal heptane.
  • the polymerization start temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100 ° C., more preferably 5 to 80 ° C.
  • the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, particularly preferably based on the weight of the crosslinked polymer (A). Is 0-3, most preferably 0-1. Within this range, the absorption performance of the water-absorbent resin particles is further improved.
  • the water content (% by weight) after the distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, based on the weight of the crosslinked polymer (A). Most preferably, it is 3-8. Within this range, the absorption performance is further improved.
  • the content and water content of the organic solvent were measured using an infrared moisture meter [JE400 manufactured by KETT Co., Ltd .: 120 ⁇ 5 ° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specifications 100V, 40W ] Is obtained from the weight loss of the measurement sample when heated.
  • the water-containing gel polymer obtained by polymerization can be kneaded and shredded and dried to obtain a crosslinked polymer (A).
  • the kneading chopping in the present invention is a step of making the hydrated gel fine while repeating the cutting of the hydrated gel by shearing force (shear) and the coalescence of the cut hydrated gel particles.
  • a hydrogel in which the gel particles are aggregated is obtained, and irregularities can be formed on the surface of the water-absorbent resin particles.
  • the size (longest diameter) of the gel after kneading is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying process is further improved.
  • the kneading shredding can be performed by a known method, and kneading shredding using a kneading shredding device (for example, a kneader, a universal mixer, a uniaxial or biaxial kneading extruder, a mincing machine, and a meat chopper). I can decline.
  • the temperature of the hydrogel during kneading is preferably 40 to 120 ° C, more preferably 60 to 100 ° C.
  • the kneading shredding may be performed a plurality of times, and the number of kneading shredding is preferably 1 to 4 times, more preferably 2 to 3 times. is there.
  • the kneading shredding apparatus in the case of processing a plurality of times may be the same type or a combination of different types.
  • the hydrogel polymer obtained by polymerization is preferably subdivided before kneading and chopping.
  • the subdivision is a step of cutting the water-containing gel into fine pieces while maintaining the structure inside the water-containing gel, and is different from the kneading chopping described above from the viewpoint of the internal structure.
  • a frozen water-containing gel is pulverized (for example, a hammer-type pulverizer, an impact-type pulverizer, a roll-type pulverizer, and a shet airflow-type pulverizer).
  • the size (longest diameter) of the gel after subdivision is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, and particularly preferably 500 ⁇ m to 1 cm.
  • an alkali is added to the crosslinked polymer (A) containing an acid group obtained after polymerization in the form of a hydrogel. It can also be neutralized.
  • the degree of neutralization of the acid groups of the crosslinked polymer (A) is preferably 50 to 80 mol% with respect to the total number of moles of acid groups. When the degree of neutralization is less than 50 mol%, the resulting water-containing gel polymer has high tackiness, the workability during production and use deteriorates, or the water retention amount of the resulting water-absorbent resin particles decreases. There is.
  • the degree of neutralization exceeds 80 mol%, the pH of the obtained water-absorbent resin is increased, and there is a concern about the safety of human skin, or the liquid permeability of the water-absorbent resin particles may be lowered.
  • the alkali those known in the art ⁇ Japanese Patent No. 3205168 etc. ⁇ can be used. Among these, from the viewpoint of water absorption performance, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable, sodium hydroxide and potassium hydroxide are more preferable, and sodium hydroxide is particularly preferable.
  • the method of adding alkali from the viewpoint of uniformity of neutralization, preferably before the step of kneading the hydrated gel or during the step of kneading the hydrated gel, more preferably the step of kneading the hydrated gel It is preferable to add an alkali before, more preferably, after the step of subdividing the hydrated gel and before the step of kneading and chopping the hydrated gel.
  • an alkali it can add as the aqueous solution of the said alkali.
  • a method of distilling off the solvent (including water) in the hydrogel As a method of distilling off the solvent (including water) in the hydrogel, a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C., a thin film drying method using a drum dryer or the like heated to 100 to 230 ° C. (Heating) reduced pressure drying method, freeze drying method, infrared drying method, decantation, filtration and the like can be applied.
  • the kneaded hydrated gel is chopped and then dried to obtain a crosslinked polymer (A), which can be further pulverized.
  • the pulverization method is not particularly limited, and a pulverizer (for example, a hammer pulverizer, an impact pulverizer, a roll pulverizer, and a shet airflow pulverizer) can be used.
  • the pulverized crosslinked polymer can be adjusted in particle size by sieving or the like, if necessary.
  • the weight average particle diameter ( ⁇ m) of the crosslinked polymer (A) screened as necessary is preferably 100 to 800, more preferably 200 to 700, next preferably 250 to 600, particularly preferably 300 to 500, most preferably Preferably it is 350-450. Within this range, the absorption performance is further improved.
  • the weight average particle size was measured using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook, 6th edition (Mac Glow Hill Book, 1984). , Page 21). That is, JIS standard sieves are combined in the order of 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 250 ⁇ m, 150 ⁇ m, 125 ⁇ m, 75 ⁇ m and 45 ⁇ m, and a tray from the top. About 50 g of the measured particles are put in the uppermost screen and shaken for 5 minutes with a low-tap test sieve shaker.
  • the content (% by weight) of fine particles of 150 ⁇ m or less in the total weight of the crosslinked polymer (A) is 3.0 or less is preferable, More preferably, it is 1.0 or less.
  • the content of the fine particles can be determined using a graph created when determining the above-mentioned weight average particle diameter.
  • the shape of the crosslinked polymer (A) is not particularly limited, and examples thereof include an irregular crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, from the viewpoint of good entanglement with the fibrous material for use as a disposable diaper and no fear of dropping off from the fibrous material, an irregularly crushed shape is preferable.
  • the crosslinked polymer (A) or the polymer gel may be treated with a hydrophobic substance as required by the method described in JP2013-231199A.
  • the crosslinked polymer (A) is preferably surface-crosslinked.
  • the gel strength can be further improved, and the water retention amount and the absorption amount under load that are desirable in actual use can be satisfied.
  • a method of surface cross-linking the cross-linked polymer (A) a conventionally known method, for example, after forming a water-absorbing resin in the form of particles, mixing a surface cross-linking agent (c), a mixed solution of water and a solvent, and heating reaction The method of doing is mentioned.
  • the mixing method include spraying the mixed solution onto the crosslinked polymer (A) or dipping the crosslinked polymer (A) into the mixed solution.
  • the crosslinked polymer (A) is mixed with the crosslinked polymer (A). In this method, the mixed solution is sprayed and mixed.
  • Examples of the surface cross-linking agent (c) include polyglycidyl compounds such as ethylene glycol diglycidyl ether, glycerol diglycidyl ether and polyglycerol polyglycidyl ether, polyhydric alcohols such as glycerin and ethylene glycol, ethylene carbonate, polyamine and polyvalent A metal compound etc. are mentioned. Among these, a polyglycidyl compound is preferable in that a crosslinking reaction can be performed at a relatively low temperature. These surface crosslinking agents may be used alone or in combination of two or more.
  • the amount of the surface crosslinking agent (c) used is preferably 0.001 to 5% by weight, more preferably 0.005 to 2% by weight, based on the weight of the water-absorbent resin before crosslinking.
  • the amount of the surface cross-linking agent (c) used is less than 0.001% by weight, the degree of surface cross-linking is insufficient, and the effect of improving the amount of absorption under load may be insufficient.
  • the amount of the surface cross-linking agent (c) used exceeds 5% by weight, the degree of cross-linking of the surface becomes excessive, and the water retention amount may decrease.
  • the amount of water used for surface crosslinking is preferably 0.5 to 10% by weight, more preferably 1 to 7% by weight, based on the weight of the water absorbent resin before crosslinking.
  • the amount of water used is less than 0.5% by weight, the degree of penetration of the surface cross-linking agent (c) into the water-absorbent resin particles becomes insufficient, and the effect of improving the amount of absorption under load may be poor.
  • the amount of water used exceeds 10% by weight, penetration of the surface cross-linking agent (c) into the inside becomes excessive, and although an improvement in the amount of absorption under load is observed, the amount of water retained may decrease.
  • the solvent used in combination with water at the time of surface cross-linking conventionally known solvents can be used, the degree of penetration of the surface cross-linking agent (c) into the water-absorbent resin particles, and the reactivity of the surface cross-linking agent (c).
  • it is preferably a hydrophilic organic solvent that can be dissolved in water such as methanol, diethylene glycol, and propylene glycol.
  • a solvent may be used independently and may use 2 or more types together.
  • the amount of the solvent used can be appropriately adjusted depending on the type of the solvent, but is preferably 1 to 10% by weight based on the weight of the water-absorbent resin before surface crosslinking.
  • the ratio of the solvent to water can be arbitrarily adjusted, but it is preferably 20 to 80% by weight, more preferably 30 to 70% by weight based on the weight.
  • a mixed solution of the surface cross-linking agent (c), water and a solvent is mixed with water-absorbent resin particles by a conventionally known method, and a heating reaction is performed.
  • the reaction temperature is preferably 100 to 230 ° C, more preferably 120 to 180 ° C.
  • the reaction time can be appropriately adjusted depending on the reaction temperature, but it is preferably 3 to 60 minutes, more preferably 10 to 45 minutes.
  • the particulate water-absorbing resin obtained by surface cross-linking can be further subjected to surface cross-linking using the same or different type of surface cross-linking agent as the first used surface cross-linking agent.
  • the particle size may be adjusted by sieving if necessary.
  • the water-absorbent resin particles of the present invention may further contain a polyvalent metal salt (d).
  • the production method of the present invention described later further comprises a step of mixing with the polyvalent metal salt (d). May be included.
  • the polyvalent metal salt (d) include a salt of at least one metal selected from the group consisting of magnesium, calcium, zirconium, aluminum, and titanium and the above inorganic acid or organic acid.
  • inorganic acid salts of aluminum and inorganic acid salts of titanium are preferable, and aluminum sulfate, aluminum chloride, potassium aluminum sulfate and sulfuric acid are more preferable.
  • Sodium aluminum particularly preferred are aluminum sulfate and sodium aluminum sulfate, and most preferred is sodium aluminum sulfate. These may be used alone or in combination of two or more.
  • the use amount (% by weight) of the polyvalent metal salt (d) is preferably 0.01 to 5 based on the weight of the crosslinked polymer (A) from the viewpoint of absorption performance and anti-blocking property, more preferably 0. 05 to 4, particularly preferably 0.1 to 3.
  • timing which mixes with a polyvalent metal salt (d) it mixes after drying the said hydrogel polymer and obtaining the crosslinked polymer from a viewpoint of absorption performance and blocking resistance. preferable.
  • the surface of the water-absorbent resin particles of the present invention can be further coated with an inorganic powder (D).
  • the inorganic powder (D) include hydrophilic inorganic particles (D1) and hydrophobic inorganic particles (D2).
  • the hydrophilic inorganic particles (D1) include particles such as glass, silica gel, silica, and clay.
  • the hydrophobic inorganic particles (D2) include particles of carbon fiber, kaolin, talc, mica, bentonite, sericite, asbestos, shirasu, and the like. Of these, hydrophilic inorganic particles (D1) are preferred, and silica is most preferred.
  • the shape of the hydrophilic inorganic particles (D1) and the hydrophobic inorganic particles (D2) may be any of an irregular shape (crushed shape), a true spherical shape, a film shape, a rod shape, a fiber shape, etc., but an irregular shape (crushed shape).
  • a true spherical shape is preferable, and a true spherical shape is more preferable.
  • the content (% by weight) of the inorganic powder (D) is preferably 0.01 to 3.0, more preferably 0.05 to 1.0, and then preferably based on the weight of the crosslinked polymer (A). Is 0.1 to 0.8, particularly preferably 0.2 to 0.7, and most preferably 0.3 to 0.6. Within this range, the anti-fogging property of the absorbent article is further improved.
  • the water-absorbent resin particles of the present invention may contain other additives (for example, known preservatives, fungicides, antibacterial agents, antioxidants, ultraviolet rays (for example, JP-A-2003-225565, JP-A-2006-131767, etc.)
  • the content (% by weight) of the additive is preferably 0.001 to 10, more preferably 0.01 to 5, particularly preferably based on the weight of the crosslinked polymer (A1).
  • it is 0.05 to 1, most preferably 0.1 to 0.5.
  • the weight average particle diameter ( ⁇ m) of the water-absorbent resin particles of the present invention is preferably 100 to 800, more preferably 200 to 700, next preferably 250 to 600, particularly preferably 300 to 500, most preferably 350 to 450. If it is larger than this range, the absorption rate may be slow, and if it is smaller than this range, the liquid permeability is deteriorated to cause spot absorption and gel blocking, and both easily cause liquid leakage.
  • the content of fine particles is preferably small, and the content of particles of 150 ⁇ m or less is preferably 3.0% by weight or less, more preferably 1.0% by weight or less. When there are many fine particles, spot absorption and gel blocking may occur, which may easily cause leakage, and may cause clogging of the process in the diaper manufacturing process.
  • the weight ratio of particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water-absorbent resin particles of the present invention is preferably 50% by weight or more, more preferably 60% by weight, and particularly preferably 70% by weight.
  • the upper limit is preferably as high as possible, but is not particularly limited, but is preferably 100% by weight or less, more preferably 90% by weight or less from the viewpoint of productivity.
  • the particle shape of the water-absorbent resin particles of the present invention is not particularly limited, and examples thereof include an irregular crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, from the viewpoint of good entanglement with the fibrous material for use as a disposable diaper and no fear of dropping off from the fibrous material, an irregularly crushed shape is preferable.
  • the apparent density (g / ml) of the water absorbent resin particles of the present invention is preferably 0.5 to 0.7, more preferably 0.52 to 0.69, and particularly preferably 0.54 to 0.68. . Within this range, the anti-fogging property of the absorbent article is further improved.
  • the apparent density of the water absorbent resin particles is measured at 25 ° C. according to JIS K7365: 1999.
  • the water-absorbent resin particles of the present invention preferably have a 0.9% by weight physiological saline water retention of 30 to 50 g / g.
  • the water retention amount can be measured by the method described later, and is preferably 33 to 49 g / g, more preferably 36 to 48 g / g, further preferably 39 to 47 g / g, from the viewpoint of suppressing leakage of the absorbent article. Particularly preferred. If it is less than 30 g / g, leakage is likely to occur during repeated use. Moreover, since it will become easy to block when it exceeds 50 g / g, it is not preferable.
  • the amount of water retention can be appropriately adjusted by the kind and amount of the crosslinking agent (b) and the surface crosslinking agent (c). Therefore, for example, when it is necessary to increase the water retention amount, it can be easily realized by reducing the amount of the crosslinking agent (b) and the surface crosslinking agent (c) used.
  • the water-absorbent resin particles of the present invention preferably have an absorption rate (seconds) measured by the vortex method of 50 or less and an absorption rate (seconds) measured by the lockup method of 130 or less.
  • the vortex method can be measured by the method described later, and is preferably 48 or less, more preferably 46 or less, and particularly preferably 44 or less from the viewpoint of suppressing leakage of the absorbent article.
  • the lock-up method can be measured by the method described later, and is preferably 130 or less, more preferably 120 or less, and particularly preferably 110 or less from the viewpoint of suppressing leakage of the absorbent article.
  • the water-absorbent resin particles of the present invention preferably have an absorption amount under load of 10 to 27 g / g.
  • the amount of absorption under load can be measured by the method described later, and is preferably 13 to 27, more preferably 16 to 27, and particularly preferably 19 to 27 from the viewpoint of absorption characteristics.
  • the gel flow rate (ml / min) of the water-absorbent resin particles of the present invention is preferably 5 to 250.
  • the gel flow rate can be measured by the method described later, and is more preferably 10 to 230, and particularly preferably 30 to 210, from the viewpoint of absorption characteristics.
  • the amount (%) of increase in the fine particle content after the breakability test of the water-absorbent resin particles of the present invention is preferably 0.0 to 3.0.
  • the amount of increase in the content of fine particles after the breakability test can be measured by the method described later. From the viewpoint of mechanical strength, it is more preferably 0.0 to 2.0, particularly preferably 0.0 to 1.5. It is.
  • the water-absorbent resin particles of the present invention include a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis and an internal crosslinking agent (b) as essential constituent units.
  • It is preferably produced by a method for producing water-absorbent resin particles, comprising a step of kneading and chopping, and a step of surface-crosslinking the surface of the resin particles (B) containing the crosslinked polymer (A) with a surface crosslinking agent (c). be able to.
  • a method for producing water-absorbent resin particles comprising a step of kneading and chopping, and a step of surface-crosslinking the surface of the resin particles (B) containing the crosslinked polymer (A) with a surface crosslinking agent (c).
  • the absorber of the present invention contains the water absorbent resin particles of the present invention.
  • water-absorbing resin particles may be used alone or may be used together with other materials as an absorber. Examples of other materials include fibrous materials.
  • fibrous materials The structure and production method of the absorbent when used together with the fibrous material are the same as those known (JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.). is there.
  • Preferred as the fibrous material are cellulose fibers, organic synthetic fibers, and a mixture of cellulose fibers and organic synthetic fibers.
  • cellulosic fibers examples include natural fibers such as fluff pulp, and cellulosic chemical fibers such as viscose rayon, acetate, and cupra.
  • raw materials conifers, hardwoods, etc.
  • production methods chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.
  • bleaching methods etc. of this cellulose-based natural fiber.
  • organic synthetic fibers examples include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above fibers having different melting points). And a fiber obtained by compounding at least two of the above into a sheath core type, an eccentric type, a parallel type, and the like, a fiber obtained by blending at least two kinds of the above fibers, and a fiber obtained by modifying the surface layer of the above fibers).
  • fibrous materials preferred are cellulose-based natural fibers, polypropylene-based fibers, polyethylene-based fibers, polyester-based fibers, heat-fusible conjugate fibers, and mixed fibers thereof, and more preferable are obtained.
  • the fluff pulp, the heat-fusible conjugate fiber, and the mixed fiber thereof are preferable in that the water-absorbing agent has excellent shape retention after water absorption.
  • the length and thickness of the fibrous material are not particularly limited and can be suitably used as long as the length is 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier.
  • the shape is not particularly limited as long as it is fibrous, and examples thereof include a thin cylindrical shape, a split yarn shape, a staple shape, a filament shape, and a web shape.
  • the weight ratio of the water-absorbent resin particles to the fibers is preferably 40/60 to 90/10, more preferably Is 70/30 to 80/20.
  • the absorbent article of the present invention uses the above absorber.
  • the absorbent article is applicable not only to sanitary articles such as disposable diapers and sanitary napkins, but also to those used for various uses such as absorbent and retention agents for various aqueous liquids and gelling agents described later.
  • the manufacturing method and the like of the absorbent article are the same as known ones (described in JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.).
  • ⁇ Measurement method of water retention amount> 1.00 g of a measurement sample is placed in a tea bag (20 cm long, 10 cm wide) made of a nylon net having a mesh size of 63 ⁇ m (JIS Z8801-1: 2006), and 1,000 ml of physiological saline (saline concentration 0.9%). The sample was immersed for 1 hour without stirring and then pulled up, suspended for 15 minutes and drained. Thereafter, each tea bag was placed in a centrifuge, centrifuged at 150 G for 90 seconds to remove excess physiological saline, and the weight (h1) including the tea bag was measured to obtain the water retention amount from the following formula. In addition, the temperature of the used physiological saline and measurement atmosphere was 25 degreeC +/- 2 degreeC. Water retention amount (g / g) (h1) ⁇ (h2) (H2) is the weight of the tea bag measured by the same operation as described above when there is no measurement sample.
  • ⁇ Absorption rate measured by vortex method Physiological salt in which 2.000 g of a measurement sample screened in the range of 300 to 600 ⁇ m using a standard sieve is stirred at a rotation speed of 600 rotations per minute in a 100 ml tall beaker having a flat bottom as defined in JIS R 3503
  • the time (unit: second) required to absorb 50 g of water was measured according to JIS K7224-1996, and the absorption rate was measured by the vortex method.
  • the end point is the point at which the fluid does not ooze from the surface of the water-absorbent resin, and this time (unit: seconds) is the lock-up method.
  • ⁇ Measurement method of absorption under load Measurement using a standard sieve in a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) with a nylon mesh of 63 ⁇ m mesh (JIS Z8801-1: 2006) pasted on the bottom. Weigh 0.16 g of sample, arrange the cylindrical plastic tube vertically and arrange the measurement sample on the nylon net so as to have a substantially uniform thickness, and then place a weight on the measurement sample (weight: 310.6 g, outer Diameter: 24.5 mm).
  • Example 1 Acrylic acid (a1) ⁇ Mitsubishi Chemical Co., Ltd., purity 100% ⁇ 131 parts, Internal crosslinking agent (b-1) ⁇ Pentaerythritol triallyl ether, Osaka Soda Co., Ltd. ⁇ 0.44 parts and 362 parts of deionized water was kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.5 part of 1% aqueous hydrogen peroxide solution, 1 part of 2% aqueous ascorbic acid solution and 2% 2,2′-azobisamidinopropane Polymerization was started by adding and mixing 0.1 part of a dihydrochloride aqueous solution. After the temperature of the mixture reached 80 ° C., a water-containing gel was obtained by polymerization at 80 ⁇ 2 ° C. for about 5 hours.
  • this hydrogel was subdivided into about 1 mm square with scissors, and 162 parts of 45% aqueous sodium hydroxide solution was added. Further, after kneading and cutting four times at a gel temperature of 80 ° C. with a mincing machine (ROYAL 12VR-400K) having a diameter of 16 mm, the dried product is obtained by drying with a ventilation dryer ⁇ 150 ° C., wind speed 2 m / sec ⁇ . It was.
  • the dried product is pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), the dried product is screened and adjusted to a particle size range of 710 to 150 ⁇ m (400 ⁇ m as a weight average particle size) to include crosslinked polymer particles Resin particles were obtained.
  • Example 2 Water-absorbent resin particles (P-2) were obtained in the same manner as in Example 1 except that the hydrogel was subdivided into 5 mm squares with scissors. The weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (P-2) was 70% by weight.
  • Example 3 The water-absorbing property was the same as in Example 1 except that the neutralized hydrous gel was kneaded and chopped four times at a gel temperature of 80 ° C with a minced machine (ROYAL 12VR-400K) having a diameter of 8 mm. Resin particles (P-3) were obtained. The weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (P-3) was 70% by weight.
  • Example 4 The water-absorbing property was the same as in Example 1 except that the neutralized hydrogel was kneaded and chopped twice at a gel temperature of 80 ° C. with a minced machine (ROYAL 12VR-400K) having a diameter of 16 mm. Resin particles (P-4) were obtained. The weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (P-4) was 71% by weight.
  • Water-absorbent resin particles (P-5) were obtained in the same manner as in Example 1 except that the hydrogel kneading shredding temperature was set to 60 ° C.
  • the weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (P-5) was 71% by weight.
  • Water-absorbent resin particles (P-6) were obtained in the same manner as in Example 1 except that the kneading shredding temperature of the hydrogel was set to 100 ° C.
  • the weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (P-6) was 71% by weight.
  • Example 7 The hydrogel subdivision size is about 1 mm square to about 5 mm square, the diameter of the minced machine 16 mm is 8 mm, and the hydrogel kneading shredding temperature 80 ° C. is 100 ° C.
  • Water-absorbing resin particles (P-7) were obtained. The weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (P-7) was 71% by weight.
  • Example 8 Acrylic acid (a1) ⁇ Mitsubishi Chemical Co., Ltd., purity 100% ⁇ 131 parts, Internal crosslinking agent (b-1) ⁇ Pentaerythritol triallyl ether, Osaka Soda Co., Ltd. ⁇ 0.44 parts and 362 parts of deionized water was kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.5 part of 1% aqueous hydrogen peroxide solution, 1 part of 2% aqueous ascorbic acid solution and 2% 2,2′-azobisamidinopropane Polymerization was started by adding and mixing 0.1 part of a dihydrochloride aqueous solution. After the temperature of the mixture reached 80 ° C., a water-containing gel was obtained by polymerization at 80 ⁇ 2 ° C. for about 5 hours.
  • this hydrogel was subdivided into about 5 mm squares with scissors, and 162 parts of 45% aqueous sodium hydroxide solution was added. Furthermore, after kneading and chopping four times at a gel temperature of 100 ° C. with a mincing machine (ROYAL 12VR-400K) having a diameter of 8 mm, a kneader (desktop kneader PNV-1, Co., Ltd.) The whole amount was charged into Irie Shokai, and dried for 60 minutes at a rotation speed of 40 rpm and a jacket temperature of 180 ° C. to obtain a dried product containing a crosslinked polymer.
  • a mincing machine ROYAL 12VR-400K
  • the dried product is pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), the dried product is screened and adjusted to a particle size range of 710 to 150 ⁇ m (400 ⁇ m as a weight average particle size) to include crosslinked polymer particles Resin particles were obtained.
  • this hydrogel was subdivided into approximately 1 mm squares with scissors, kneaded and cut four times at a gel temperature of 80 ° C. with a minced machine (ROYAL 12VR-400K) having a diameter of 16 mm, and then ventilated dryer ⁇ 150 ° C. And dried at a wind speed of 2 m / sec ⁇ to obtain a dried product.
  • a juicer mixer Olesterizer BLENDER manufactured by Oster
  • the dried product is screened and adjusted to a particle size range of 710 to 150 ⁇ m (400 ⁇ m as a weight average particle size) to include crosslinked polymer particles Resin particles were obtained.
  • Example 10 Water-absorbent resin particles (P-10) were obtained in the same manner as in Example 9, except that the hydrogel was subdivided into 5 mm squares with scissors. The weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (P-10) was 71% by weight.
  • Example 11 Except that the hydrogel subdivided into approximately 1 mm square was kneaded and shredded four times at a gel temperature of 80 ° C with a minced machine (ROYAL 12VR-400K) having a diameter of 8 mm. Thus, water-absorbing resin particles (P-11) were obtained. The weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (P-11) was 70% by weight.
  • Example 12 Except that the hydrogel subdivided into approximately 1 mm square was kneaded and cut twice at a gel temperature of 80 ° C with a minced machine (ROYAL 12VR-400K) having a 16 mm diameter. Thus, water absorbent resin particles (P-12) were obtained. The weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (P-12) was 71% by weight.
  • Example 1 The neutralized water-containing gel was dried with a ventilation dryer ⁇ 150 ° C, wind speed 2 m / sec ⁇ without kneading and chopping with a minced machine (ROYAL 12VR-400K) to obtain a dried product. Except that, comparative water-absorbent resin particles (R-1) were obtained in the same manner as in Example 1. The weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (R-1) was 71% by weight.
  • Example 2 The hydrogel subdivided into approximately 1 mm square was kneaded and chopped with a minced machine (ROYAL 12VR-400K), and dried with a ventilation dryer ⁇ 150 ° C, wind speed 2 m / sec ⁇ and dried.
  • a comparative water-absorbent resin particle (R-2) was obtained in the same manner as in Example 9, except that the product was obtained.
  • the weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (R-2) was 71% by weight.
  • UV irradiation is performed by a UV irradiation device (irradiation amount: 2 mW / cm 2 ), and UV polymerization is performed for 2 minutes.
  • a UV irradiation device irradiation amount: 2 mW / cm 2
  • UV polymerization is performed for 2 minutes.
  • the hydrated gel polymer was transferred to a cutting machine and then cut to 0.2 cm. At this time, the water content of the cut hydrogel polymer was 50% by weight.
  • the hydrogel polymer was dried for 30 minutes with a hot air dryer at a temperature of 160 ° C. to obtain a dried product.
  • the dried product is pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), the dried product is screened and adjusted to a particle size range of 710 to 150 ⁇ m (400 ⁇ m as a weight average particle size) to include crosslinked polymer particles Resin particles were obtained.
  • Water-absorbing resin particles (R-4) for comparison were obtained by tracing the method disclosed in paragraphs 0075 to 0077 of JP-A-2018-16750. Namely, acrylic acid (a1) ⁇ Mitsubishi Chemical Co., Ltd., purity 100% ⁇ 270 parts, internal cross-linking agent (b-1) ⁇ pentaerythritol triallyl ether, Osaka Soda Co., Ltd. ⁇ 0.98 parts and ion-exchanged water 712 parts were kept at 3 ° C. with stirring and mixing.
  • Klebosol 30cal25 (colloidal silica manufactured by AZ Material Co., Ltd.) 1.0 part as water-insoluble inorganic fine particles and 1.7 parts of ion-exchanged water, and sodium aluminum sulfate 12 hydrate as inorganic acid salt
  • a mixture of 0.6 part of the product, 0.6 part of propylene glycol and 1.5 part of ion-exchanged water was added at the same time, mixed uniformly, then heated at 135 ° C. for 30 minutes, and surface-crosslinked resin particles (R-4) was obtained.
  • the weight ratio of the particles having a particle diameter of 300 to 600 ⁇ m to the total weight of the water absorbent resin particles (R-4) was 71% by weight.
  • Example 1 the water-absorbing resin particles obtained in Example 1, Example 8, Comparative Example 4 and Comparative Example 5 were used, and the breakability was as follows. The increase in fine particle content after the test was evaluated.
  • the air line is opened at a pressure of 0.2 MPa, and after air blowing for 10 minutes, the measurement sample is taken out, sieved with a 150 ⁇ m JIS standard sieve (JIS Z8801-1: 2006), and the weight of particles of 150 ⁇ m or less relative to the total weight. The percentage (%) was taken as the amount of increase in the fine particle content.
  • Table 2 shows the evaluation results of the increase in the fine particle content after the breakage test for the water absorbent resin particles (P-1), (P-8), (R-4), and (R-5).
  • the water-absorbent resin particles of the present invention have a volume ratio of 50% or less in terms of the volume ratio of the particles having a particle deficiency of 1% or less compared to the water-absorbent resin particles of Comparative Examples 1 to 3. It can be seen that the absorption rate measured by the vortex method and the lock-up method is greatly improved.
  • Comparative Examples 4 and 5 the proportion of particles having a particle defect degree of 8% or more does not satisfy the requirements of the present invention.
  • Comparative Examples 4 and 5 are not inferior to the Examples in the performance listed in Table 1, as shown in Table 2, the increase in the content of fine particles after the breakability test is large.
  • the water absorbent resin particles of the present invention have a particle defect degree of 8% or more compared to the water absorbent resin particles of Comparative Examples 4 and 5. It can be seen that the ratio of the particles is 5% or less by volume ratio, the increase in the fine particle content after the breakability test is suppressed, and the decrease in mechanical strength can be suppressed. Furthermore, since there is no large difference in apparent density and average particle diameter in the whole Examples and Comparative Examples, and no difference due to the polymerization method, it can be seen that the shape of the particle surface greatly contributes to the absorption rate.
  • the water-absorbent resin particles of the present invention form irregularities on the surface of the water-absorbent resin particles, and are formed with respect to particles at a constant controlled ratio, so that the apparent density and absorption are reduced without reducing the mechanical strength. Since both speeds are compatible, it can be used for absorbent articles with high absorption speed, excellent reversibility and surface dryness without causing troubles in the manufacturing process of various absorbent bodies, and is suitably used for sanitary goods.

Abstract

Provided are water absorbent resin particles that have both a high apparent density and a high absorption rate without causing a reduction in mechanical strength. The present invention is water absorbent resin particles in which, with respect to sieved particles in the range of 300-600 μm, the volume ratio of particles having a particle defective degree (CONV) defined by formula (1) of 1% or less, is 50% or less, and the volume ratio of particles having a CONV of 8% or more, is 5% or less. (1): CONV (%) = {B/(A + B)} × 100 (A represents the projected area of a particle of interest obtained by an image analysis method, and B represents a value obtained by subtracting the projected area represented by A from a projected area surrounded by an envelope connecting protruding portions of the particle of interest obtained by an image analysis method.)

Description

吸水性樹脂粒子及びその製造方法Water-absorbent resin particles and method for producing the same
 本発明は吸水性樹脂粒子及びその製造方法に関するものである。 The present invention relates to a water-absorbent resin particle and a method for producing the same.
 紙おむつ、生理用ナプキン、失禁パット等の衛生材料には、パルプ等の親水性繊維とアクリル酸(塩)等を主原料とする吸水性樹脂との混合物が吸収体として幅広く利用されている。近年のQOL(quality of life)向上の観点からこれら衛生材料はより軽量かつ薄型のものへと需要が遷移しており、これに伴って親水性繊維の使用量低減が望まれるようになってきた。そのため、これまで親水性繊維が担ってきた吸収体中での液拡散性や初期吸収の役割を吸水性樹脂それ自体に求められるようになり、通液性と吸収速度が共に高い吸水性樹脂が要望されている。 For hygiene materials such as paper diapers, sanitary napkins, and incontinence pads, a mixture of hydrophilic fibers such as pulp and a water-absorbent resin mainly composed of acrylic acid (salt) is widely used as an absorbent. From the viewpoint of improving QOL (quality of life) in recent years, the demand for these sanitary materials has been shifting to lighter and thinner materials, and accordingly, the use of hydrophilic fibers has been desired to be reduced. . For this reason, the water-absorbing resin itself has been required to have the role of liquid diffusibility and initial absorption in the absorbent body, which has been carried out by hydrophilic fibers so far. It is requested.
 吸収速度を向上させる手法として、吸水性樹脂の表面積を物理的に大きくする方法が一般的である。例えば吸水性樹脂の乾燥速度を上げて見掛け密度を低下させる方法(特許文献1)や吸水性樹脂の乾燥工程で内部発泡させ見掛け密度を低下させる方法(特許文献2)が知られている。また、吸水性樹脂粒子を造粒する手法(特許文献3)も知られている。しかし、いずれも粒子の機械的強度が弱く、おむつの製造工程で微粉を生じやすい。その微粉がおむつ製造工程中にゲルブロッキングを起こすことで工程の詰まりの原因となる問題がある。更に、篩分工程で吸水性樹脂粒子の粒度を小さくすることで吸収速度を向上させる方法(特許文献4)も知られているが、吸水性樹脂の粒度を小さくすると耐吸湿性が低下し、上記同様おむつ製造工程での工程の詰まりの原因となる問題がある。 As a method for improving the absorption rate, a method of physically increasing the surface area of the water-absorbing resin is generally used. For example, a method of decreasing the apparent density by increasing the drying speed of the water absorbent resin (Patent Document 1) and a method of decreasing the apparent density by internally foaming in the drying step of the water absorbent resin are known. A technique (Patent Document 3) for granulating water-absorbing resin particles is also known. However, in any case, the mechanical strength of the particles is weak, and fine powder is easily generated in the manufacturing process of the diaper. The fine powder causes gel blocking during the diaper manufacturing process, which causes a problem of clogging of the process. Furthermore, a method of improving the absorption rate by reducing the particle size of the water-absorbent resin particles in the sieving step (Patent Document 4) is also known, but when the particle size of the water-absorbent resin is reduced, the moisture absorption resistance decreases, Similar to the above, there is a problem that causes clogging of the process in the diaper manufacturing process.
特開2013-132434号公報JP 2013-132434 A 特表2015-508836号公報Special table 2015-508836 gazette 特表2008-533213号公報Special table 2008-533213 特開2006-143972号公報JP 2006-143972 A
 本発明の目的は、機械的強度を落とすことなく、見掛け密度と吸収速度を両立した吸水性樹脂粒子を提供することである。 An object of the present invention is to provide water-absorbing resin particles having both an apparent density and an absorption speed without reducing mechanical strength.
 本発明は、JIS標準ふるいを用いて300~600μmの範囲にふるい分けた粒子のうち、下記(1)式で定義される粒子欠損度(CONV)が1%以下である粒子が、体積比で50%以下であり、粒子欠損度(CONV)が8%以上である粒子が、体積比で5%以下である、吸水性樹脂粒子である。
CONV(%)={B/(A+B)}×100 (1) 式(1)中、CONVは、粒子欠損度を表し、Aは、画像解析法により得られる対象粒子の投影面積を表し、Bは、画像解析法により得られる対象粒子の凸部を結んだ包絡線で囲まれた投影面積からAで示す対象粒子の投影面積を引いた値を表す。 また、本発明は、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに内部架橋剤(b)を必須構成単位とする単量体組成物を重合して架橋重合体(A)の含水ゲルを得る重合工程と、架橋重合体(A)の含水ゲルを細分する工程と、細分したゲルをゲル温度40℃~120℃で混練細断する工程と、架橋重合体(A)を含有する樹脂粒子(B)の表面を表面架橋剤(c)で表面架橋する工程とを有する、吸水性樹脂粒子の製造方法である。
In the present invention, particles having a particle defect degree (CONV) defined by the following formula (1) of 1% or less among particles screened in a range of 300 to 600 μm using a JIS standard sieve are 50% by volume. % Or less and particles having a particle defect degree (CONV) of 8% or more are water-absorbent resin particles having a volume ratio of 5% or less.
CONV (%) = {B / (A + B)} × 100 (1) In the formula (1), CONV represents the particle defect degree, A represents the projected area of the target particle obtained by the image analysis method, and B Represents a value obtained by subtracting the projected area of the target particle indicated by A from the projected area surrounded by the envelope connecting the convex portions of the target particle obtained by the image analysis method. In addition, the present invention provides a monomer composition comprising a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis and an internal crosslinking agent (b) as essential constituent units. A polymerization step for polymerizing the product to obtain a hydrogel of the crosslinked polymer (A), a step of subdividing the hydrogel of the crosslinked polymer (A), and kneading and chopping the subdivided gel at a gel temperature of 40 ° C to 120 ° C And a step of surface-crosslinking the surface of the resin particles (B) containing the crosslinked polymer (A) with a surface crosslinking agent (c).
 本発明の吸水性樹脂粒子及び本発明の製造方法で得られる吸水性樹脂粒子は、吸水性樹脂粒子の表面に凹凸を形成し、しかも一定の制御された割合の粒子に対して形成することで、機械的強度を落とすことなく、見掛け密度と吸収速度を両立することができる。そのため、高湿度下でもおむつを安定に製造することができ、様々の使用状況においても安定して優れた吸収性能(例えば液拡散性、吸収速度及び吸収量等)を発揮する。 The water-absorbent resin particles of the present invention and the water-absorbent resin particles obtained by the production method of the present invention are formed by forming irregularities on the surface of the water-absorbent resin particles and with respect to particles at a certain controlled ratio. The apparent density and the absorption speed can be compatible without reducing the mechanical strength. Therefore, a diaper can be manufactured stably even under high humidity, and exhibits excellent absorption performance (for example, liquid diffusibility, absorption speed, absorption amount, etc.) even in various usage situations.
粒子欠損度(CONV)を求める方法を説明する模式図である。(1)は粒子投影エリアを示す。(2)は粒子投影エリアの凸部を結んだ包絡線で囲まれた投影面積を示す。It is a schematic diagram explaining the method of calculating | requiring a particle | grain defect | deletion degree (CONV). (1) shows a particle projection area. (2) shows a projection area surrounded by an envelope connecting the convex portions of the particle projection area. ゲル通液速度を測定するための濾過円筒管の断面図を模式的に表した図である。It is the figure which represented typically the cross-sectional view of the filtration cylindrical tube for measuring a gel flow rate. ゲル通液速度を測定するための加圧軸及びおもりを模式的に表した斜視図である。It is the perspective view which represented typically the pressurization axis | shaft for measuring a gel liquid flow rate, and a weight.
 本発明の吸水性樹脂粒子は、JIS標準ふるいを用いて300~600μmの範囲にふるい分けた粒子のうち、下記(1)式で定義される粒子欠損度(CONV)が1%以下である粒子が、体積比で50%以下である。また、300~600μmの範囲にふるい分けた粒子のうち、粒子欠損度が8%以上である粒子の体積比が5%以下である。
CONV(%)={B/(A+B)}×100 (1)
 式(1)中、CONVは、粒子欠損度を表し、Aは、画像解析法により得られる対象粒子の投影面積を表し、Bは、画像解析法により得られる対象粒子の凸部を結んだ包絡線で囲まれた投影面積からAで示す対象粒子の投影面積を引いた値を表し、粒子の欠損部の面積を表す。なお、粒子欠損度は、0%以上100%未満であり、0%に近いほど粒子に凹凸がなく、なめらかな表面であることを意味する。
 図1は、粒子欠損度を求める方法を説明する模式図である。対象粒子の投影面積(A)が、図1の「粒子投影エリア」から求められる。次に、粒子投影エリアの凸部を結んだ包絡線で囲まれた投影面積(A+B)が、対象粒子の投影面積(A)であるA部と欠損部であるB部を含んだ面積として求められる。これらの値からB部の面積が求められる。
The water-absorbent resin particles of the present invention are particles having a particle deficiency (CONV) defined by the following formula (1) of 1% or less among particles screened in a range of 300 to 600 μm using a JIS standard sieve. The volume ratio is 50% or less. Further, among the particles screened in the range of 300 to 600 μm, the volume ratio of particles having a particle defect degree of 8% or more is 5% or less.
CONV (%) = {B / (A + B)} × 100 (1)
In Formula (1), CONV represents the degree of particle defect, A represents the projected area of the target particle obtained by the image analysis method, and B represents the envelope connecting the convex portions of the target particle obtained by the image analysis method. This represents a value obtained by subtracting the projected area of the target particle indicated by A from the projected area surrounded by the line, and represents the area of the missing portion of the particle. The degree of particle deficiency is 0% or more and less than 100%, and the closer to 0%, the smoother the surface with less irregularities in the particles.
FIG. 1 is a schematic diagram for explaining a method for obtaining a particle defect degree. The projected area (A) of the target particle is obtained from the “particle projected area” in FIG. Next, the projection area (A + B) surrounded by the envelope connecting the convex portions of the particle projection area is obtained as an area including the A portion which is the projection area (A) of the target particle and the B portion which is the missing portion. It is done. From these values, the area of part B is obtained.
 JIS標準ふるいを用いて300~600μmの範囲にふるい分けた粒子のうち、上記粒子欠損度が1%以下である粒子の体積比が50%以下であれば、なめらかな表面を持つ粒子の割合が小さく、吸水性樹脂粒子が十分な凹凸を有しているため、良好な吸収性能を発揮し、吸収性物品にしたときに優れた吸収性能を発揮し、モレが生じにくく耐カブレ性が良好となり、好ましくは46%以下であり、より好ましくは40%以下である。一方、粒子欠損度は値が大きいほど粒子の凹凸が増し吸収速度は速くなるが、吸水性樹脂粒子の壊れ性が増し、オムツ製造工程で微粉が増加するため、JIS標準ふるいを用いて300~600μmの範囲にふるい分けた粒子のうち、粒子欠損度が8%以上である粒子の体積比が5%以下であり、好ましくは3%以下、より好ましくは2%以下である。また、粒子欠損度が8%以上である粒子の全粒子に対する体積比が5%以下であることが好ましい。このことにより、吸水性樹脂粒子の機械的強度を落とすことを抑制することができる。 If the volume ratio of particles having a particle defect degree of 1% or less is 50% or less among the particles screened in the range of 300 to 600 μm using a JIS standard sieve, the proportion of particles having a smooth surface is small. Since the water-absorbent resin particles have sufficient irregularities, it exhibits good absorption performance, exhibits excellent absorption performance when made into an absorbent article, is less likely to cause leakage, and has good anti-fogging properties. Preferably it is 46% or less, More preferably, it is 40% or less. On the other hand, the larger the value of the particle deficiency, the more the unevenness of the particles and the faster the absorption speed. However, the breakage of the water-absorbent resin particles increases and the fine powder increases in the diaper manufacturing process. Among the particles screened in the range of 600 μm, the volume ratio of particles having a particle defect degree of 8% or more is 5% or less, preferably 3% or less, more preferably 2% or less. Moreover, it is preferable that the volume ratio with respect to all the particles of the particle | grain defect degree of 8% or more is 5% or less. Thereby, it can suppress that the mechanical strength of a water-absorbent resin particle falls.
 本発明の吸水性樹脂粒子としては、上述の特性を有するかぎり如何なる種類のものであってもよいが、好ましくは、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに内部架橋剤(b)を必須構成単位とする単量体組成物を重合してなる架橋重合体(A)であり、さらに好ましくは架橋重合体(A)を含有する樹脂粒子(B)の表面を表面架橋剤(c)で表面架橋してなる吸水性樹脂粒子である。 The water-absorbent resin particles of the present invention may be of any type as long as they have the above-mentioned characteristics, but preferably the water-soluble vinyl monomer (a1) and / or the water-soluble vinyl monomer (a1) by hydrolysis. It is a crosslinked polymer (A) obtained by polymerizing a monomer composition having the vinyl monomer (a2) and the internal crosslinking agent (b) as essential constituent units, and more preferably contains a crosslinked polymer (A). Water-absorbent resin particles obtained by surface-crosslinking the surface of the resin particles (B) to be surface-treated with the surface cross-linking agent (c).
 本発明における水溶性ビニルモノマー(a1)としては特に限定はなく、公知のモノマー、例えば、特許第3648553号公報の0007~0023段落に開示されている少なくとも1個の水溶性置換基とエチレン性不飽和基とを有するビニルモノマー(例えばアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー)、特開2003-165883号公報の0009~0024段落に開示されているアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー並びに特開2005-75982号公報の0041~0051段落に開示されているカルボキシ基、スルホ基、ホスホノ基、水酸基、カルバモイル基、アミノ基及びアンモニオ基からなる群から選ばれる少なくとも1種を有するビニルモノマーが使用できる。 The water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and known monomers, for example, at least one water-soluble substituent and an ethylenic group disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 3648553 are disclosed. Vinyl monomers having a saturated group (for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers), anionic vinyl monomers disclosed in JP-A-2003-16583, paragraphs 0009 to 0024, nonionic Selected from the group consisting of a carboxylic group, a sulfo group, a phosphono group, a hydroxyl group, a carbamoyl group, an amino group and an ammonio group disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982 At least one Vinyl monomer having can be used.
 加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)(以下、加水分解性ビニルモノマー(a2)ともいう。)は特に限定はなく公知(たとえば、特許第3648553号公報の0024~0025段落に開示されている加水分解により水溶性置換基となる加水分解性置換基を少なくとも1個有するビニルモノマー、特開2005-75982号公報の0052~0055段落に開示されている少なくとも1個の加水分解性置換基(1,3-オキソ-2-オキサプロピレン(-CO-O-CO-)基、アシル基及びシアノ基等)を有するビニルモノマー)のビニルモノマー等が使用できる。なお、水溶性ビニルモノマーとは、25℃の水100gに少なくとも100g溶解する性質を持つビニルモノマーを意味する。また、加水分解性とは、50℃の水及び必要により触媒(酸又は塩基等)の作用により加水分解され水溶性になる性質を意味する。加水分解性ビニルモノマーの加水分解は、重合中、重合後及びこれらの両方のいずれでもよいが、得られる吸水性樹脂粒子の分子量の観点等から重合後が好ましい。 A vinyl monomer (a2) (hereinafter also referred to as a hydrolyzable vinyl monomer (a2)) that becomes a water-soluble vinyl monomer (a1) by hydrolysis is not particularly limited, and is known (for example, 0024 to 0025 of Japanese Patent No. 3648553). A vinyl monomer having at least one hydrolyzable substituent which becomes a water-soluble substituent by hydrolysis disclosed in paragraphs, and at least one hydrolyzate disclosed in paragraphs 0052 to 0055 of JP-A-2005-75982. A vinyl monomer of a degradable substituent (a vinyl monomer having a 1,3-oxo-2-oxapropylene (—CO—O—CO—) group, an acyl group, a cyano group, etc.)) can be used. The water-soluble vinyl monomer means a vinyl monomer having a property of dissolving at least 100 g in 100 g of water at 25 ° C. The term “hydrolyzable” refers to the property of being hydrolyzed by the action of 50 ° C. water and, if necessary, the catalyst (acid or base) to make it water-soluble. The hydrolysis of the hydrolyzable vinyl monomer may be performed either during polymerization, after polymerization, or both of them, but is preferably after polymerization from the viewpoint of the molecular weight of the water-absorbent resin particles obtained.
 これらのうち、吸収特性の観点等から、水溶性ビニルモノマー(a1)が好ましい。水溶性ビニルモノマー(a1)としては、好ましくはアニオン性ビニルモノマー、より好ましくはカルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ-、ジ-若しくはトリ-アルキルアンモニオ基を有するビニルモノマーである。これらのなかでは、より好ましくはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー、さらに好ましくは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、特に好ましくは(メタ)アクリル酸(塩)、最も好ましくはアクリル酸(塩)である。 Of these, the water-soluble vinyl monomer (a1) is preferable from the viewpoint of absorption characteristics. The water-soluble vinyl monomer (a1) is preferably an anionic vinyl monomer, more preferably a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group, or a mono-, di- or tri-alkyl. It is a vinyl monomer having an ammonio group. Among these, a vinyl monomer having a carboxy (salt) group or a carbamoyl group is more preferable, (meth) acrylic acid (salt) and (meth) acrylamide, more preferably (meth) acrylic acid (salt), Most preferred is acrylic acid (salt).
 なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩又はアンモニウム(NH)塩等が含まれる。これらの塩のうち、吸収特性の観点等から、アルカリ金属塩及びアンモニウム塩が好ましく、さらに好ましくはアルカリ金属塩、特に好ましくはナトリウム塩である。 The “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”. Moreover, (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylate, and (meth) acrylamide means acrylamide or methacrylamide. Examples of the salt include an alkali metal (such as lithium, sodium and potassium) salt, an alkaline earth metal (such as magnesium and calcium) salt or an ammonium (NH 4 ) salt. Among these salts, alkali metal salts and ammonium salts are preferable from the viewpoint of absorption characteristics and the like, more preferably alkali metal salts, and particularly preferably sodium salts.
 水溶性ビニルモノマー(a1)又は加水分解性ビニルモノマー(a2)のいずれかを構成単位とする場合、それぞれ単独で構成単位としてもよく、また、必要により2種以上を構成単位としてもよい。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合も同様である。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合、これらの含有モル比(a1/a2)は、75/25~99/1が好ましく、さらに好ましくは85/15~95/5、特に好ましくは90/10~93/7、最も好ましくは91/9~92/8である。この範囲であると、吸収性能がさらに良好となる。 When either the water-soluble vinyl monomer (a1) or the hydrolyzable vinyl monomer (a2) is used as a structural unit, each may be used alone as a structural unit, or two or more kinds may be used as a structural unit as necessary. The same applies when the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units. When the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as structural units, the molar ratio (a1 / a2) of these is preferably 75/25 to 99/1, more preferably 85/15 to 95/5, particularly preferably 90/10 to 93/7, and most preferably 91/9 to 92/8. Within this range, the absorption performance is further improved.
 架橋重合体(A)の構成単位として、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の他に、これらと共重合可能なその他のビニルモノマー(a3)を構成単位とすることができる。 As a structural unit of the crosslinked polymer (A), in addition to the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), other vinyl monomers (a3) copolymerizable therewith are used as the structural unit. Can do.
 共重合可能なその他のビニルモノマー(a3)としては特に限定はなく公知(たとえば、特許第3648553号公報の0028~0029段落に開示されている疎水性ビニルモノマー、特開2003-165883号公報、特開2005-75982号公報の0058段落に開示されているビニルモノマー)の疎水性ビニルモノマー等が使用でき、下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン及びジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレンモノマー
 アルケン[エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等];並びにアルカジエン[ブタジエン及びイソプレン等]等。
(iii)炭素数5~15の脂環式エチレンモノマー
 モノエチレン性不飽和モノマー[ピネン、リモネン及びインデン等];並びにポリエチレン性ビニル重合性モノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
Other vinyl monomers (a3) that can be copolymerized are not particularly limited and are known (for example, hydrophobic vinyl monomers disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, Japanese Patent Laid-Open No. 2003-165883, (Vinyl monomers disclosed in paragraph 0058 of JP-A-2005-75982) can be used, and the following vinyl monomers (i) to (iii) can be used.
(I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, and halogen substituted products of styrene such as vinylnaphthalene and dichlorostyrene.
(Ii) C2-C20 aliphatic ethylene monomer Alkene [ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.]; and alkadiene [butadiene, isoprene, etc.], etc.
(Iii) Cycloaliphatic ethylene monomer having 5 to 15 carbon atoms Monoethylenically unsaturated monomer [pinene, limonene, indene and the like]; Polyethylene vinyl polymerizable monomer [cyclopentadiene, bicyclopentadiene, ethylidene norbornene and the like] and the like.
 その他のビニルモノマー(a3)を構成単位とする場合、その他のビニルモノマー(a3)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位のモル数に基づいて、0.01~5が好ましく、さらに好ましくは0.05~3、よりさらに好ましくは0.08~2、特に好ましくは0.1~1.5である。なお、上述にもかかわらず、吸収特性の観点等から、その他のビニルモノマー(a3)単位の含有量が0モル%であることが最も好ましい。 When the other vinyl monomer (a3) is used as a constituent unit, the content (mol%) of the other vinyl monomer (a3) unit is that of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit. Based on the number of moles, it is preferably 0.01 to 5, more preferably 0.05 to 3, even more preferably 0.08 to 2, and particularly preferably 0.1 to 1.5. In spite of the above, it is most preferable that the content of other vinyl monomer (a3) units is 0 mol% from the viewpoint of absorption characteristics and the like.
 内部架橋剤(b)(以下、単に架橋剤(b)ともいう)としては特に限定はなく公知(例えば、特許第3648553号公報の0031~0034段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも1個有してかつ少なくとも1個のエチレン性不飽和基を有する架橋剤及び水溶性置換基と反応し得る官能基を少なくとも2個有する架橋剤、特開2003-165883号公報の0028~0031段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、エチレン性不飽和基と反応性官能基とを有する架橋剤及び反応性置換基を2個以上有する架橋剤、特開2005-75982号公報の0059段落に開示されている架橋性ビニルモノマー並びに特開2005-95759号公報の0015~0016段落に開示されている架橋性ビニルモノマー)の架橋剤等が使用できる。これらの内、吸収性能等の観点から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、更に好ましいのはトリアリルシアヌレート、トリアリルイソシアヌレート及び炭素数2~10のポリオールのポリ(メタ)アリルエーテル、特に好ましいのはトリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリロキシエタン及びペンタエリスリトールトリアリルエーテル、最も好ましいのはペンタエリスリトールトリアリルエーテルである。架橋剤(b)は1種を単独で用いても、2種以上を併用してもよい。 The internal cross-linking agent (b) (hereinafter, also simply referred to as cross-linking agent (b)) is not particularly limited, and is known (for example, 2 ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 3648553). At least one functional group capable of reacting with a water-soluble substituent, having at least one functional group capable of reacting with a water-soluble substituent, and having at least one functional group capable of reacting with a water-soluble substituent. A cross-linking agent having two, a cross-linking agent having two or more ethylenically unsaturated groups, and a cross-linking having an ethylenically unsaturated group and a reactive functional group disclosed in paragraphs 0028 to 0031 of JP-A No. 2003-165883 And a crosslinking agent having two or more reactive substituents, a crosslinkable vinyl monomer disclosed in paragraph 0059 of JP-A-2005-75982, and JP-A-2005-2005 Crosslinking agents such 5759 JP-0015-0016 crosslinking vinyl monomers disclosed in paragraph) may be used. Among these, from the viewpoint of absorption performance and the like, a crosslinking agent having two or more ethylenically unsaturated groups is preferable, and more preferable is triallyl cyanurate, triallyl isocyanurate, and a poly (poly (2) having 2 to 10 carbon atoms). Meta) allyl ethers, particularly preferred are triallyl cyanurate, triallyl isocyanurate, tetraallyloxyethane and pentaerythritol triallyl ether, most preferred pentaerythritol triallyl ether. A crosslinking agent (b) may be used individually by 1 type, or may use 2 or more types together.
 架橋剤(b)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位の、その他のビニルモノマー(a3)を用いる場合は(a1)~(a3)の、合計モル数に基づいて、0.001~5が好ましく、更に好ましくは0.005~3、特に好ましくは0.01~1である。この範囲であると、吸収性能が更に良好となる。 The content (mol%) of the crosslinking agent (b) unit is (a1) to when the other vinyl monomer (a3) of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit is used. Based on the total number of moles of (a3), 0.001 to 5 is preferable, 0.005 to 3 is more preferable, and 0.01 to 1 is particularly preferable. Within this range, the absorption performance is further improved.
 架橋重合体(A)の製造方法としては、公知の溶液重合(断熱重合、薄膜重合及び噴霧重合法等;特開昭55-133413号公報等)や、公知の懸濁重合法や逆相懸濁重合(特公昭54-30710号公報、特開昭56-26909号公報及び特開平1-5808号公報等)によって得られる含水ゲル重合体(架橋重合体と水とからなる。)を必要により加熱乾燥、粉砕することで得ることができる。架橋重合体(A)は、1種単独でも良いし、2種以上の混合物であっても良い。 Examples of the method for producing the crosslinked polymer (A) include known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization method, etc .; JP-A-55-133413, etc.), known suspension polymerization method and reverse phase suspension. If necessary, a hydrogel polymer (consisting of a crosslinked polymer and water) obtained by suspension polymerization (Japanese Patent Publication No. Sho 54-30710, Japanese Patent Publication No. 56-26909, Japanese Patent Publication No. 1-5808, etc.) is required. It can be obtained by heat drying and grinding. The cross-linked polymer (A) may be a single type or a mixture of two or more types.
 重合方法の内、好ましいのは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、特に好ましいのは水溶液重合法であり、保水量が大きく、且つ水可溶性成分量の少ない吸水性樹脂が得られ、重合時の温度コントロールが不要である点から、水溶液断熱重合法が最も好ましい。 Among the polymerization methods, the solution polymerization method is preferable, and it is advantageous in terms of production cost because it is not necessary to use an organic solvent. Therefore, the aqueous solution polymerization method is particularly preferable, and the water retention amount is large and water-soluble. An aqueous solution adiabatic polymerization method is most preferred because a water-absorbing resin with a small amount of components can be obtained and temperature control during polymerization is unnecessary.
 水溶液重合を行う場合、水と有機溶媒とを含む混合溶媒を使用することができ、有機溶媒としては、メタノール、エタノール、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、ジメチルスルホキシド及びこれらの2種以上の混合物を挙げられる。
 水溶液重合を行う場合、有機溶媒の使用量(重量%)は、水の重量を基準として40以下が好ましく、更に好ましくは30以下である。
When aqueous solution polymerization is performed, a mixed solvent containing water and an organic solvent can be used. Examples of the organic solvent include methanol, ethanol, acetone, methyl ethyl ketone, N, N-dimethylformamide, dimethyl sulfoxide, and two or more of these. A mixture of
When aqueous solution polymerization is performed, the amount (% by weight) of the organic solvent used is preferably 40 or less, more preferably 30 or less, based on the weight of water.
 重合に触媒を用いる場合、従来公知のラジカル重合用触媒が使用可能であり、例えば、アゾ化合物[アゾビスイソブチロニトリル、アゾビスシアノ吉草酸及び2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド等]、無機過酸化物(過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等)、有機過酸化物[過酸化ベンゾイル、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド及びジ(2-エトキシエチル)パーオキシジカーボネート等]及びレドックス触媒(アルカリ金属の亜硫酸塩又は重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム及びアスコルビン酸等の還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素及び有機過酸化物等の酸化剤との組み合わせよりなるもの)等が挙げられる。これらの触媒は、単独で使用してもよく、これらの2種以上を併用しても良い。
 ラジカル重合触媒の使用量(重量%)は、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の、その他のビニルモノマー(a3)を用いる場合は(a1)~(a3)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。
In the case of using a catalyst for the polymerization, a conventionally known radical polymerization catalyst can be used, for example, an azo compound [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis (2-amidinopropane) hydrochloride. Etc.], inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, succinic acid peroxide, etc. Oxides and di (2-ethoxyethyl) peroxydicarbonate, etc.] and redox catalysts (alkali metal sulfites or bisulfites, ammonium sulfites, ammonium bisulfites, ascorbic acids and the like, and alkali metal persulfates, Oxidation of ammonium persulfate, hydrogen peroxide and organic peroxides And the like). These catalysts may be used alone or in combination of two or more thereof.
The amount (% by weight) of the radical polymerization catalyst used is that of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), in the case of using other vinyl monomers (a3) (a1) to (a3), Based on the total weight, it is preferably 0.0005 to 5, more preferably 0.001 to 2.
 重合方法が懸濁重合法又は逆相懸濁重合法である場合、必要に応じて、従来公知の分散剤又は界面活性剤の存在下に重合を行っても良い。また、逆相懸濁重合法の場合、従来公知のキシレン、ノルマルヘキサン及びノルマルヘプタン等の炭化水素系溶媒を使用して重合を行うことができる。 When the polymerization method is a suspension polymerization method or a reverse phase suspension polymerization method, the polymerization may be performed in the presence of a conventionally known dispersant or surfactant, if necessary. In the case of the reverse phase suspension polymerization method, polymerization can be carried out using a conventionally known hydrocarbon solvent such as xylene, normal hexane and normal heptane.
 重合開始温度は、使用する触媒の種類によって適宜調整することができるが、0~100℃が好ましく、更に好ましくは5~80℃である。 The polymerization start temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100 ° C., more preferably 5 to 80 ° C.
 重合に溶媒(有機溶媒及び水等)を使用する場合、重合後に溶媒を留去することが好ましい。溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0~10が好ましく、更に好ましくは0~5、特に好ましくは0~3、最も好ましくは0~1である。この範囲であると、吸水性樹脂粒子の吸収性能が更に良好となる。 When a solvent (such as an organic solvent and water) is used for polymerization, it is preferable to distill off the solvent after polymerization. When the solvent contains an organic solvent, the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, particularly preferably based on the weight of the crosslinked polymer (A). Is 0-3, most preferably 0-1. Within this range, the absorption performance of the water-absorbent resin particles is further improved.
 溶媒に水を含む場合、留去後の水分(重量%)は、架橋重合体(A)の重量に基づいて、0~20が好ましく、更に好ましくは1~10、特に好ましくは2~9、最も好ましくは3~8である。この範囲であると、吸収性能が更に良好となる。 When water is contained in the solvent, the water content (% by weight) after the distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, based on the weight of the crosslinked polymer (A). Most preferably, it is 3-8. Within this range, the absorption performance is further improved.
 なお、有機溶媒の含有量及び水分は、赤外水分測定器[(株)KETT社製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W]により加熱したときの測定試料の重量減量から求められる。 In addition, the content and water content of the organic solvent were measured using an infrared moisture meter [JE400 manufactured by KETT Co., Ltd .: 120 ± 5 ° C., 30 minutes, atmospheric humidity before heating 50 ± 10% RH, lamp specifications 100V, 40W ] Is obtained from the weight loss of the measurement sample when heated.
 重合によって得られる含水ゲル重合体は、混練細断後、乾燥することで架橋重合体(A)を得ることができる。本発明において混練細断とは、剪断力(シア)により含水ゲルの切断と切断された含水ゲル粒子の合着を繰り返しながら含水ゲルを細かくする工程であり、本混練細断工程により微細な含水ゲル粒子が凝集した含水ゲルが得られ、吸水性樹脂粒子の表面に凹凸を形成することができる。混練細断後のゲルの大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは1mm~1cmである。この範囲であると、乾燥工程での乾燥性が更に良好となる。 The water-containing gel polymer obtained by polymerization can be kneaded and shredded and dried to obtain a crosslinked polymer (A). The kneading chopping in the present invention is a step of making the hydrated gel fine while repeating the cutting of the hydrated gel by shearing force (shear) and the coalescence of the cut hydrated gel particles. A hydrogel in which the gel particles are aggregated is obtained, and irregularities can be formed on the surface of the water-absorbent resin particles. The size (longest diameter) of the gel after kneading is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying process is further improved.
 混練細断は、公知の方法で行うことができ、混練細断装置(例えば、ニーダー、万能混合機、一軸又は二軸の混練押し出し機、ミンチ機およびミートチョッパー等)等を使用して混練細断できる。混練細断時の含水ゲルの温度は、好ましくは40~120℃、より好ましくは60~100℃である。この範囲であると混練細断装置内での含水ゲルの付着を防ぎ、含水ゲルを均一に処理することができるため、前述した吸水性樹脂粒子の粒子欠損度が均一になりやすくなる。また、吸水性樹脂粒子の凹凸を全体的に均一に形成する観点から、混練細断は複数回行ってもよく、混練細断回数は1~4回が好ましく、より好ましくは2~3回である。なお、複数回処理する場合の混練細断装置は、同種類であっても、異なる種類を組み合わせてもよい。 The kneading shredding can be performed by a known method, and kneading shredding using a kneading shredding device (for example, a kneader, a universal mixer, a uniaxial or biaxial kneading extruder, a mincing machine, and a meat chopper). I can decline. The temperature of the hydrogel during kneading is preferably 40 to 120 ° C, more preferably 60 to 100 ° C. Within this range, adhesion of the water-containing gel in the kneading shredding device can be prevented and the water-containing gel can be treated uniformly, so that the degree of particle deficiency of the water-absorbent resin particles described above tends to be uniform. Further, from the viewpoint of uniformly forming the unevenness of the water-absorbent resin particles as a whole, the kneading shredding may be performed a plurality of times, and the number of kneading shredding is preferably 1 to 4 times, more preferably 2 to 3 times. is there. In addition, the kneading shredding apparatus in the case of processing a plurality of times may be the same type or a combination of different types.
 また、重合によって得られる含水ゲル重合体は混練細断する前に細分することが好ましい。本発明において細分とは、含水ゲル内部の構造を維持したまま含水ゲルを切断して細かくする工程であり、内部構造の観点から前述した混練細断とは異なる。混練細断工程前に細分することで、混練細断工程時、含水ゲルにかかる過剰な応力を緩和し、含水ゲル重合体の劣化を抑制することができるため、吸収性能が良好となり、前述した吸水性樹脂粒子の粒子欠損度の極端な上昇を防止することが可能となる。 The hydrogel polymer obtained by polymerization is preferably subdivided before kneading and chopping. In the present invention, the subdivision is a step of cutting the water-containing gel into fine pieces while maintaining the structure inside the water-containing gel, and is different from the kneading chopping described above from the viewpoint of the internal structure. By subdividing before the kneading shredding step, excessive stress applied to the water-containing gel during the kneading shredding step can be relaxed and deterioration of the water-containing gel polymer can be suppressed. It is possible to prevent an extreme increase in the degree of particle deficiency of the water absorbent resin particles.
 細分の方法については特に限定はなく、例えばはさみで細分してもよいし、凍結した含水ゲルを粉砕装置(例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機)で粉砕してもよい。 There is no particular limitation on the method of subdividing, for example, it may be subdivided with scissors, or a frozen water-containing gel is pulverized (for example, a hammer-type pulverizer, an impact-type pulverizer, a roll-type pulverizer, and a shet airflow-type pulverizer). ).
 細分後のゲルの大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは500μm~1cmである。 The size (longest diameter) of the gel after subdivision is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 500 μm to 1 cm.
 水溶性ビニルモノマー(a1)としてアクリル酸やメタクリル酸等の酸基含有モノマーを用いる場合、重合後に得られた酸基を含有する架橋重合体(A)を含水ゲルの状態でアルカリを添加して中和することもできる。架橋重合体(A)の酸基の中和度は、酸基の合計モル数に対して、50~80モル%であることが好ましい。中和度が50モル%未満の場合、得られる含水ゲル重合体の粘着性が高くなり、製造時及び使用時の作業性が悪化したり、得られる吸水性樹脂粒子の保水量が低下する場合がある。一方、中和度が80モル%を超える場合、得られた吸水性樹脂のpHが高くなり人体の皮膚に対する安全性が懸念されたり、吸水性樹脂粒子の通液性が低下する場合がある。アルカリは、公知{特許第3205168号公報等}のものが使用できる。これらのうち、吸水性能の観点から、水酸化リチウム、水酸化ナトリウム及び水酸化カリウムが好ましく、さらに好ましくは水酸化ナトリウム及び水酸化カリウム、特に好ましくは水酸化ナトリウムである。アルカリの添加方法としては、中和の均一性の観点から、好ましくは含水ゲルを混練細断する工程前又は含水ゲルを混練細断する工程中に、より好ましくは含水ゲルを混練細断する工程前に、更に好ましくは含水ゲルを細分する工程後であって、含水ゲルを混練細断する工程前にアルカリを添加することが好ましい。なお、アルカリとしては、前記アルカリの水溶液をして添加することができる。 When an acid group-containing monomer such as acrylic acid or methacrylic acid is used as the water-soluble vinyl monomer (a1), an alkali is added to the crosslinked polymer (A) containing an acid group obtained after polymerization in the form of a hydrogel. It can also be neutralized. The degree of neutralization of the acid groups of the crosslinked polymer (A) is preferably 50 to 80 mol% with respect to the total number of moles of acid groups. When the degree of neutralization is less than 50 mol%, the resulting water-containing gel polymer has high tackiness, the workability during production and use deteriorates, or the water retention amount of the resulting water-absorbent resin particles decreases. There is. On the other hand, when the degree of neutralization exceeds 80 mol%, the pH of the obtained water-absorbent resin is increased, and there is a concern about the safety of human skin, or the liquid permeability of the water-absorbent resin particles may be lowered. As the alkali, those known in the art {Japanese Patent No. 3205168 etc.} can be used. Among these, from the viewpoint of water absorption performance, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable, sodium hydroxide and potassium hydroxide are more preferable, and sodium hydroxide is particularly preferable. As the method of adding alkali, from the viewpoint of uniformity of neutralization, preferably before the step of kneading the hydrated gel or during the step of kneading the hydrated gel, more preferably the step of kneading the hydrated gel It is preferable to add an alkali before, more preferably, after the step of subdividing the hydrated gel and before the step of kneading and chopping the hydrated gel. In addition, as an alkali, it can add as the aqueous solution of the said alkali.
 含水ゲル中の溶媒(水を含む)を留去する方法としては、80~230℃の温度の熱風で留去(乾燥)する方法、100~230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用できる。 As a method of distilling off the solvent (including water) in the hydrogel, a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C., a thin film drying method using a drum dryer or the like heated to 100 to 230 ° C. (Heating) reduced pressure drying method, freeze drying method, infrared drying method, decantation, filtration and the like can be applied.
 含水ゲルを混練細断後、乾燥して架橋重合体(A)を得た後、更に粉砕することができる。粉砕方法については、特に限定はなく、粉砕装置(例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機)等が使用できる。粉砕された架橋重合体は、必要によりふるい分け等により粒度調整できる。 The kneaded hydrated gel is chopped and then dried to obtain a crosslinked polymer (A), which can be further pulverized. The pulverization method is not particularly limited, and a pulverizer (for example, a hammer pulverizer, an impact pulverizer, a roll pulverizer, and a shet airflow pulverizer) can be used. The pulverized crosslinked polymer can be adjusted in particle size by sieving or the like, if necessary.
 必要によりふるい分けされた架橋重合体(A)の重量平均粒子径(μm)は、100~800が好ましく、更に好ましくは200~700、次に好ましくは250~600、特に好ましくは300~500、最も好ましくは350~450である。この範囲であると、吸収性能が更に良好となる。 The weight average particle diameter (μm) of the crosslinked polymer (A) screened as necessary is preferably 100 to 800, more preferably 200 to 700, next preferably 250 to 600, particularly preferably 300 to 500, most preferably Preferably it is 350-450. Within this range, the absorption performance is further improved.
 なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンバニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、並びに受け皿、の順に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙[横軸がふるいの目開き(粒子径)、縦軸が重量分率]にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径とする。 The weight average particle size was measured using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook, 6th edition (Mac Glow Hill Book, 1984). , Page 21). That is, JIS standard sieves are combined in the order of 1000 μm, 850 μm, 710 μm, 500 μm, 425 μm, 355 μm, 250 μm, 150 μm, 125 μm, 75 μm and 45 μm, and a tray from the top. About 50 g of the measured particles are put in the uppermost screen and shaken for 5 minutes with a low-tap test sieve shaker. Weigh the measured particles on each sieve and pan, and calculate the weight fraction of the particles on each sieve with the total as 100% by weight. This value is the logarithmic probability paper [horizontal axis is sieve aperture (particle size ), The vertical axis is plotted in the weight fraction], and then a line connecting the points is drawn to obtain the particle diameter corresponding to the weight fraction of 50% by weight, which is defined as the weight average particle diameter.
 また、架橋重合体(A)に含まれる微粒子の含有量は少ない方が吸収性能が良好となるため、架橋重合体(A)の合計重量に占める150μm以下の微粒子の含有率(重量%)は3.0以下が好ましく、更に好ましくは1.0以下である。微粒子の含有量は、上記の重量平均粒子径を求める際に作成するグラフを用いて求めることができる。 In addition, since the absorption performance is better when the content of fine particles contained in the crosslinked polymer (A) is smaller, the content (% by weight) of fine particles of 150 μm or less in the total weight of the crosslinked polymer (A) is 3.0 or less is preferable, More preferably, it is 1.0 or less. The content of the fine particles can be determined using a graph created when determining the above-mentioned weight average particle diameter.
 架橋重合体(A)の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらの内、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 The shape of the crosslinked polymer (A) is not particularly limited, and examples thereof include an irregular crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, from the viewpoint of good entanglement with the fibrous material for use as a disposable diaper and no fear of dropping off from the fibrous material, an irregularly crushed shape is preferable.
 架橋重合体(A)又は前記重合ゲルを特開2013-231199等に記載の方法等により必要に応じて疎水性物質で処理してもよい。 The crosslinked polymer (A) or the polymer gel may be treated with a hydrophobic substance as required by the method described in JP2013-231199A.
 架橋重合体(A)は、表面架橋されていることが好ましい。表面架橋することにより更にゲル強度を向上させることができ、実使用において望ましい保水量と荷重下における吸収量とを満足させることができる。 The crosslinked polymer (A) is preferably surface-crosslinked. By surface crosslinking, the gel strength can be further improved, and the water retention amount and the absorption amount under load that are desirable in actual use can be satisfied.
 架橋重合体(A)を表面架橋する方法としては、従来公知の方法、例えば、吸水性樹脂を粒子状とした後、表面架橋剤(c)、水及び溶媒の混合溶液を混合し、加熱反応する方法が挙げられる。混合する方法としては、架橋重合体(A)に上記混合溶液を噴霧するか、上記混合溶液に架橋重合体(A)をディッピングする方法等が挙げられ、好ましくは、架橋重合体(A)に上記混合溶液を噴霧して混合する方法である。 As a method of surface cross-linking the cross-linked polymer (A), a conventionally known method, for example, after forming a water-absorbing resin in the form of particles, mixing a surface cross-linking agent (c), a mixed solution of water and a solvent, and heating reaction The method of doing is mentioned. Examples of the mixing method include spraying the mixed solution onto the crosslinked polymer (A) or dipping the crosslinked polymer (A) into the mixed solution. Preferably, the crosslinked polymer (A) is mixed with the crosslinked polymer (A). In this method, the mixed solution is sprayed and mixed.
 表面架橋剤(c)としては、例えば、エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル及びポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物、グリセリン及びエチレングリコール等の多価アルコール、エチレンカーボネート、ボリアミン並びに多価金属化合物等が挙げられる。これらの内、比較的低い温度で架橋反応を行うことができる点で好ましいのは、ポリグリシジル化合物である。これらの表面架橋剤は単独で使用してもよく、2種以上を併用してもよい。 Examples of the surface cross-linking agent (c) include polyglycidyl compounds such as ethylene glycol diglycidyl ether, glycerol diglycidyl ether and polyglycerol polyglycidyl ether, polyhydric alcohols such as glycerin and ethylene glycol, ethylene carbonate, polyamine and polyvalent A metal compound etc. are mentioned. Among these, a polyglycidyl compound is preferable in that a crosslinking reaction can be performed at a relatively low temperature. These surface crosslinking agents may be used alone or in combination of two or more.
 表面架橋剤(c)の使用量は、架橋前の吸水性樹脂の重量に基づいて、好ましくは0.001~5重量%、更に好ましくは0.005~2重量%である。表面架橋剤(c)の使用量が0.001重量%未満の場合は、表面架橋度が不足し、荷重下における吸収量の向上効果が不充分となる場合がある。一方、表面架橋剤(c)の使用量が5重量%を超える場合は、表面の架橋度が過度となりすぎて保水量が低下する場合がある。 The amount of the surface crosslinking agent (c) used is preferably 0.001 to 5% by weight, more preferably 0.005 to 2% by weight, based on the weight of the water-absorbent resin before crosslinking. When the amount of the surface cross-linking agent (c) used is less than 0.001% by weight, the degree of surface cross-linking is insufficient, and the effect of improving the amount of absorption under load may be insufficient. On the other hand, when the amount of the surface cross-linking agent (c) used exceeds 5% by weight, the degree of cross-linking of the surface becomes excessive, and the water retention amount may decrease.
 表面架橋時の水の使用量は、架橋前の吸水性樹脂の重量に基づいて、好ましくは0.5~10重量%、更に好ましくは1~7重量%である。水の使用量が0.5重量%未満の場合、表面架橋剤(c)の吸水性樹脂粒子内部への浸透度が不充分となり、荷重下における吸収量の向上効果が乏しくなる場合がある。一方、水の使用量が10重量%を越えると、表面架橋剤(c)の内部への浸透が過度となり、荷重下における吸収量の向上は認められるものの、保水量が低下する場合がある。 The amount of water used for surface crosslinking is preferably 0.5 to 10% by weight, more preferably 1 to 7% by weight, based on the weight of the water absorbent resin before crosslinking. When the amount of water used is less than 0.5% by weight, the degree of penetration of the surface cross-linking agent (c) into the water-absorbent resin particles becomes insufficient, and the effect of improving the amount of absorption under load may be poor. On the other hand, when the amount of water used exceeds 10% by weight, penetration of the surface cross-linking agent (c) into the inside becomes excessive, and although an improvement in the amount of absorption under load is observed, the amount of water retained may decrease.
 表面架橋時に水と併用して使用される溶媒としては従来公知のものが使用可能であり、表面架橋剤(c)の吸水性樹脂粒子内部への浸透度合い、表面架橋剤(c)の反応性等を考慮し、適宜選択して使用することができるが、好ましくは、メタノール、ジエチレングリコール、プロピレングリコール等の水に溶解しうる親水性有機溶媒である。溶媒は単独で使用してもよいし、2種以上を併用してもよい。
 溶媒の使用量は、溶媒の種類により適宜調整できるが、表面架橋前の吸水性樹脂の重量に基づいて、好ましくは1~10重量%である。また、水に対する溶媒の比率についても任意に調整することができるが、好ましくは重量基準で20~80重量%、更に好ましくは30~70重量%である。
As the solvent used in combination with water at the time of surface cross-linking, conventionally known solvents can be used, the degree of penetration of the surface cross-linking agent (c) into the water-absorbent resin particles, and the reactivity of the surface cross-linking agent (c). However, it is preferably a hydrophilic organic solvent that can be dissolved in water such as methanol, diethylene glycol, and propylene glycol. A solvent may be used independently and may use 2 or more types together.
The amount of the solvent used can be appropriately adjusted depending on the type of the solvent, but is preferably 1 to 10% by weight based on the weight of the water-absorbent resin before surface crosslinking. Further, the ratio of the solvent to water can be arbitrarily adjusted, but it is preferably 20 to 80% by weight, more preferably 30 to 70% by weight based on the weight.
 表面架橋を行うには、表面架橋剤(c)と水と溶媒との混合溶液を従来公知の方法で吸水性樹脂粒子と混合し、加熱反応を行う。反応温度は、好ましくは100~230℃、更に好ましくは120~180℃である。反応時間は、反応温度により適宜調整することができるが、好ましくは3~60分、更に好ましくは10~45分である。表面架橋して得られる粒子状の吸水性樹脂を、最初に用いた表面架橋剤と同種又は異種の表面架橋剤を用いて、更に表面架橋することも可能である。 In order to carry out surface cross-linking, a mixed solution of the surface cross-linking agent (c), water and a solvent is mixed with water-absorbent resin particles by a conventionally known method, and a heating reaction is performed. The reaction temperature is preferably 100 to 230 ° C, more preferably 120 to 180 ° C. The reaction time can be appropriately adjusted depending on the reaction temperature, but it is preferably 3 to 60 minutes, more preferably 10 to 45 minutes. The particulate water-absorbing resin obtained by surface cross-linking can be further subjected to surface cross-linking using the same or different type of surface cross-linking agent as the first used surface cross-linking agent.
 表面架橋の後、必要により篩別して粒度調整してもよい。 After surface cross-linking, the particle size may be adjusted by sieving if necessary.
 本発明の吸水性樹脂粒子は、更に多価金属塩(d)を含有してもよく、このために、後述する本発明の製造方法は、更に多価金属塩(d)と混合する工程を含んでも良い。多価金属塩(d)を含有することで、吸水性樹脂粒子の耐ブロッキング性及び通液性が向上する。多価金属塩(d)としては、マグネシウム、カルシウム、ジルコニウム、アルミニウム及びチタニウムからなる群から選ばれる少なくとも1種の金属と前記の無機酸又は有機酸との塩が挙げられる。 The water-absorbent resin particles of the present invention may further contain a polyvalent metal salt (d). For this reason, the production method of the present invention described later further comprises a step of mixing with the polyvalent metal salt (d). May be included. By containing the polyvalent metal salt (d), the blocking resistance and liquid permeability of the water-absorbent resin particles are improved. Examples of the polyvalent metal salt (d) include a salt of at least one metal selected from the group consisting of magnesium, calcium, zirconium, aluminum, and titanium and the above inorganic acid or organic acid.
 多価金属塩(d)としては、入手の容易性や溶解性の観点から、アルミニウムの無機酸塩及びチタニウムの無機酸塩が好ましく、更に好ましいのは硫酸アルミニウム、塩化アルミニウム、硫酸カリウムアルミニウム及び硫酸ナトリウムアルミニウム、特に好ましいのは硫酸アルミニウム及び硫酸ナトリウムアルミニウム、最も好ましいのは硫酸ナトリウムアルミニウムである。これらは1種を単独で用いても良いし、2種以上を併用しても良い  As the polyvalent metal salt (d), from the viewpoint of easy availability and solubility, inorganic acid salts of aluminum and inorganic acid salts of titanium are preferable, and aluminum sulfate, aluminum chloride, potassium aluminum sulfate and sulfuric acid are more preferable. Sodium aluminum, particularly preferred are aluminum sulfate and sodium aluminum sulfate, and most preferred is sodium aluminum sulfate. These may be used alone or in combination of two or more.
 多価金属塩(d)の使用量(重量%)は、吸収性能及び耐ブロッキング性の観点から架橋重合体(A)の重量に基づいて、0.01~5が好ましく、更に好ましくは0.05~4、特に好ましくは0.1~3である。 The use amount (% by weight) of the polyvalent metal salt (d) is preferably 0.01 to 5 based on the weight of the crosslinked polymer (A) from the viewpoint of absorption performance and anti-blocking property, more preferably 0. 05 to 4, particularly preferably 0.1 to 3.
 多価金属塩(d)と混合するタイミングとしては特に制限はないが、前記の含水ゲル重合体を乾燥して架橋重合体を得た以降に混合することが吸収性能及び耐ブロッキング性の観点から好ましい。 Although there is no restriction | limiting in particular as timing which mixes with a polyvalent metal salt (d), it mixes after drying the said hydrogel polymer and obtaining the crosslinked polymer from a viewpoint of absorption performance and blocking resistance. preferable.
 本発明の吸水性樹脂粒子はさらに表面に無機質粉末(D)をコーティングすることもできる。無機質粉末(D)としては、親水性無機物粒子(D1)及び疎水性無機粒子(D2)等が含まれる。
 親水性無機物粒子(D1)としては、ガラス、シリカゲル、シリカ及びクレー等の粒子が挙げられる。
 疎水性無機物粒子(D2)としては、炭素繊維、カオリン、タルク、マイカ、ベントナイト、セリサイト、アスベスト及びシラス等の粒子が挙げられる。
 これらのうち、親水性無機粒子(D1)が好ましく、最も好ましいのはシリカである。
The surface of the water-absorbent resin particles of the present invention can be further coated with an inorganic powder (D). Examples of the inorganic powder (D) include hydrophilic inorganic particles (D1) and hydrophobic inorganic particles (D2).
Examples of the hydrophilic inorganic particles (D1) include particles such as glass, silica gel, silica, and clay.
Examples of the hydrophobic inorganic particles (D2) include particles of carbon fiber, kaolin, talc, mica, bentonite, sericite, asbestos, shirasu, and the like.
Of these, hydrophilic inorganic particles (D1) are preferred, and silica is most preferred.
 親水性無機粒子(D1)及び疎水性無機粒子(D2)の形状としては、不定形(破砕状)、真球状、フィルム状、棒状及び繊維状等のいずれでもよいが、不定形(破砕状)又は真球状が好ましく、さらに好ましくは真球状である。 The shape of the hydrophilic inorganic particles (D1) and the hydrophobic inorganic particles (D2) may be any of an irregular shape (crushed shape), a true spherical shape, a film shape, a rod shape, a fiber shape, etc., but an irregular shape (crushed shape). Alternatively, a true spherical shape is preferable, and a true spherical shape is more preferable.
 無機質粉末(D)の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0.01~3.0が好ましく、さらに好ましくは0.05~1.0、次に好ましくは0.1~0.8、特に好ましくは0.2~0.7、最も好ましくは0.3~0.6である。この範囲であると、吸収性物品の耐カブレ性がさらに良好となる。 The content (% by weight) of the inorganic powder (D) is preferably 0.01 to 3.0, more preferably 0.05 to 1.0, and then preferably based on the weight of the crosslinked polymer (A). Is 0.1 to 0.8, particularly preferably 0.2 to 0.7, and most preferably 0.3 to 0.6. Within this range, the anti-fogging property of the absorbent article is further improved.
 本発明の吸水性樹脂粒子には、他の添加剤{たとえば、公知(特開2003-225565号、特開2006-131767号等)の防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、着色剤、芳香剤、消臭剤及び有機質繊維状物等}を含むこともできる。これらの添加剤を含有させる場合、添加剤の含有量(重量%)は、架橋重合体(A1)の重量に基づいて、0.001~10が好ましく、さらに好ましくは0.01~5、特に好ましくは0.05~1、最も好ましくは0.1~0.5である。 The water-absorbent resin particles of the present invention may contain other additives (for example, known preservatives, fungicides, antibacterial agents, antioxidants, ultraviolet rays (for example, JP-A-2003-225565, JP-A-2006-131767, etc.) An absorbent, a colorant, a fragrance, a deodorant, an organic fibrous material, etc.}. When these additives are contained, the content (% by weight) of the additive is preferably 0.001 to 10, more preferably 0.01 to 5, particularly preferably based on the weight of the crosslinked polymer (A1). Preferably it is 0.05 to 1, most preferably 0.1 to 0.5.
 本発明の吸水性樹脂粒子の重量平均粒子径(μm)は、100~800が好ましく、更に好ましくは200~700、次に好ましくは250~600、特に好ましくは300~500、最も好ましくは350~450である。この範囲より大きいと、吸収速度が遅くなる場合があり、この範囲より小さいと、通液性が悪化してスポット吸収やゲルブロッキングを生じ、いずれも液漏れを生じやすくなる。また、微粒子の含有量は少ない方が好ましく、150μm以下の粒子の含有量は3.0重量%以下であることが好ましく、更に好ましくは1.0重量%以下である。微粒子が多いとスポット吸収やゲルブロッキングを生じ、漏れを生じやすくなったり、おむつ製造工程での工程の詰まりの原因となる場合がある。 The weight average particle diameter (μm) of the water-absorbent resin particles of the present invention is preferably 100 to 800, more preferably 200 to 700, next preferably 250 to 600, particularly preferably 300 to 500, most preferably 350 to 450. If it is larger than this range, the absorption rate may be slow, and if it is smaller than this range, the liquid permeability is deteriorated to cause spot absorption and gel blocking, and both easily cause liquid leakage. The content of fine particles is preferably small, and the content of particles of 150 μm or less is preferably 3.0% by weight or less, more preferably 1.0% by weight or less. When there are many fine particles, spot absorption and gel blocking may occur, which may easily cause leakage, and may cause clogging of the process in the diaper manufacturing process.
 本発明の吸水性樹脂粒子の全重量に対する300~600μmの粒子径を有する粒子の重量割合は、50重量%以上が好ましく、更に好ましくは60重量%、特に好ましくは70重量%である。上限値は高いほど好ましく特に制限されないが、生産性の観点より100重量%以下が好ましく、更に好ましくは90重量%以下である。 The weight ratio of particles having a particle diameter of 300 to 600 μm to the total weight of the water-absorbent resin particles of the present invention is preferably 50% by weight or more, more preferably 60% by weight, and particularly preferably 70% by weight. The upper limit is preferably as high as possible, but is not particularly limited, but is preferably 100% by weight or less, more preferably 90% by weight or less from the viewpoint of productivity.
 本発明の吸水性樹脂粒子の粒子形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらの内、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 The particle shape of the water-absorbent resin particles of the present invention is not particularly limited, and examples thereof include an irregular crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, from the viewpoint of good entanglement with the fibrous material for use as a disposable diaper and no fear of dropping off from the fibrous material, an irregularly crushed shape is preferable.
 本発明の吸水性樹脂粒子の見掛け密度(g/ml)は、0.5~0.7が好ましく、更に好ましくは0.52~0.69、特に好ましくは0.54~0.68である。この範囲であると、吸収性物品の耐カブレ性が更に良好となる。吸水性樹脂粒子の見掛け密度は、JIS K7365:1999に準拠して、25℃で測定される。 The apparent density (g / ml) of the water absorbent resin particles of the present invention is preferably 0.5 to 0.7, more preferably 0.52 to 0.69, and particularly preferably 0.54 to 0.68. . Within this range, the anti-fogging property of the absorbent article is further improved. The apparent density of the water absorbent resin particles is measured at 25 ° C. according to JIS K7365: 1999.
 本発明の吸水性樹脂粒子は0.9重量%生理食塩水の保水量が30~50g/gであることが好ましい。保水量は、後述する方法で測定することができ、吸収性物品の漏れを抑制できる観点からより好ましくは33~49g/gであり、36~48g/gが更に好ましく、39~47g/gが特に好ましい。30g/g未満であると、繰り返し使用時に漏れが生じやすく好ましくない。また、50g/gを超えるとブロッキングしやすくなるため好ましくない。保水量は、架橋剤(b)および表面架橋剤(c)の種類と量で適宜調整することができる。従って、例えば、保水量を上げる必要がある場合、架橋剤(b)および表面架橋剤(c)の使用量を低下させることで容易に実現することができる。 The water-absorbent resin particles of the present invention preferably have a 0.9% by weight physiological saline water retention of 30 to 50 g / g. The water retention amount can be measured by the method described later, and is preferably 33 to 49 g / g, more preferably 36 to 48 g / g, further preferably 39 to 47 g / g, from the viewpoint of suppressing leakage of the absorbent article. Particularly preferred. If it is less than 30 g / g, leakage is likely to occur during repeated use. Moreover, since it will become easy to block when it exceeds 50 g / g, it is not preferable. The amount of water retention can be appropriately adjusted by the kind and amount of the crosslinking agent (b) and the surface crosslinking agent (c). Therefore, for example, when it is necessary to increase the water retention amount, it can be easily realized by reducing the amount of the crosslinking agent (b) and the surface crosslinking agent (c) used.
 本発明の吸水性樹脂粒子は、ボルテックス法で測定された吸収速度(秒)が50以下であり、ロックアップ法で測定された吸収速度(秒)が130以下であることが好ましい。ボルテックス法は後述する方法で測定することができ、吸収性物品の漏れ抑制の観点からより好ましくは48以下であり、46以下が更に好ましく、44以下が特に好ましい。ロックアップ法は後述する方法で測定することができ、吸収性物品の漏れ抑制の観点から好ましくは130以下であり、120以下が更に好ましく、110以下が特に好ましい。 The water-absorbent resin particles of the present invention preferably have an absorption rate (seconds) measured by the vortex method of 50 or less and an absorption rate (seconds) measured by the lockup method of 130 or less. The vortex method can be measured by the method described later, and is preferably 48 or less, more preferably 46 or less, and particularly preferably 44 or less from the viewpoint of suppressing leakage of the absorbent article. The lock-up method can be measured by the method described later, and is preferably 130 or less, more preferably 120 or less, and particularly preferably 110 or less from the viewpoint of suppressing leakage of the absorbent article.
 本発明の吸水性樹脂粒子は荷重下吸収量が10~27g/gであることが好ましい。荷重下吸収量は、後述する方法で測定することができ、吸収特性の観点から、13~27がより好ましく、さらに好ましくは16~27、特に好ましくは19~27である。 The water-absorbent resin particles of the present invention preferably have an absorption amount under load of 10 to 27 g / g. The amount of absorption under load can be measured by the method described later, and is preferably 13 to 27, more preferably 16 to 27, and particularly preferably 19 to 27 from the viewpoint of absorption characteristics.
 本発明の吸水性樹脂粒子のゲル通液速度(ml/分)は5~250であることが好ましい。ゲル通液速度は後述する方法で測定することができ、吸収特性の観点から、さらに好ましくは10~230、特に好ましくは30~210である。 The gel flow rate (ml / min) of the water-absorbent resin particles of the present invention is preferably 5 to 250. The gel flow rate can be measured by the method described later, and is more preferably 10 to 230, and particularly preferably 30 to 210, from the viewpoint of absorption characteristics.
 本発明の吸水性樹脂粒子の壊れ性試験後の微粒子含有量の増加量(%)は、0.0~3.0であることが好ましい。壊れ性試験後の微粒子含有量の増加量は後述する方法で測定することができ、機械的強度の観点から、さらに好ましくは0.0~2.0、特に好ましくは0.0~1.5である。 The amount (%) of increase in the fine particle content after the breakability test of the water-absorbent resin particles of the present invention is preferably 0.0 to 3.0. The amount of increase in the content of fine particles after the breakability test can be measured by the method described later. From the viewpoint of mechanical strength, it is more preferably 0.0 to 2.0, particularly preferably 0.0 to 1.5. It is.
 本発明の吸水性樹脂粒子は、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに内部架橋剤(b)を必須構成単位とする単量体組成物を重合して架橋重合体(A)の含水ゲルを得る重合工程と、架橋重合体(A)の含水ゲルを細分する工程と、細分したゲルをゲル温度40℃~120℃で混練細断する工程と、架橋重合体(A)を含有する樹脂粒子(B)の表面を表面架橋剤(c)で表面架橋する工程とを有する、吸水性樹脂粒子の製造方法で好ましく製造することができる。本発明の製造方法において、混練細断工程前に細分することで、吸水性樹脂粒子内部の形状を維持し、吸水性樹脂粒子の機械的強度の低下を防ぐことができ、製造される吸水性樹脂粒子の吸収性能が良好となる。 The water-absorbent resin particles of the present invention include a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis and an internal crosslinking agent (b) as essential constituent units. A polymerization step of polymerizing the monomer composition to obtain a hydrogel of the cross-linked polymer (A), a step of subdividing the hydrogel of the cross-linked polymer (A), and the subdivided gel at a gel temperature of 40 ° C. to 120 ° C. It is preferably produced by a method for producing water-absorbent resin particles, comprising a step of kneading and chopping, and a step of surface-crosslinking the surface of the resin particles (B) containing the crosslinked polymer (A) with a surface crosslinking agent (c). be able to. In the production method of the present invention, by subdividing before the kneading shredding step, the shape of the water-absorbent resin particles can be maintained, and the mechanical strength of the water-absorbent resin particles can be prevented from being lowered. The absorption performance of the resin particles is improved.
 本発明の吸収体は、本発明の吸水性樹脂粒子を含有する。吸収体としては、吸水性樹脂粒子を単独で用いても良く、他の材料と共に用いて吸収体としても良い。
 他の材料としては繊維状物等が挙げられる。繊維状物と共に用いた場合の吸収体の構造及び製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等)と同様である。
The absorber of the present invention contains the water absorbent resin particles of the present invention. As the absorber, water-absorbing resin particles may be used alone or may be used together with other materials as an absorber.
Examples of other materials include fibrous materials. The structure and production method of the absorbent when used together with the fibrous material are the same as those known (JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.). is there.
 上記繊維状物として好ましいのは、セルロース系繊維、有機系合成繊維及びセルロース系繊維と有機系合成繊維との混合物である。 Preferred as the fibrous material are cellulose fibers, organic synthetic fibers, and a mixture of cellulose fibers and organic synthetic fibers.
 セルロース系繊維としては、例えばフラッフパルプ等の天然繊維、ビスコースレーヨン、アセテート及びキュプラ等のセルロース系化学繊維が挙げられる。このセルロース系天然繊維の原料(針葉樹及び広葉樹等)、製造方法(ケミカルパルプ、セミケミカルパルプ、メカニカルパルプ及びCTMP等)及び漂白方法等は特に限定されない。 Examples of the cellulosic fibers include natural fibers such as fluff pulp, and cellulosic chemical fibers such as viscose rayon, acetate, and cupra. There are no particular restrictions on the raw materials (conifers, hardwoods, etc.), production methods (chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.), bleaching methods, etc. of this cellulose-based natural fiber.
 有機系合成繊維としては、例えばポリプロピレン系繊維、ポリエチレン系繊維、ポリアミド系繊維、ポリアクリロニトリル系繊維、ポリエステル系繊維、ポリビニルアルコール系繊維、ポリウレタン系繊維及び熱融着性複合繊維(融点の異なる上記繊維の少なくとも2種を鞘芯型、偏芯型、並列型等に複合化された繊維、上記繊維の少なくとも2種をブレンドした繊維及び上記繊維の表層を改質した繊維等)が挙げられる。 Examples of organic synthetic fibers include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above fibers having different melting points). And a fiber obtained by compounding at least two of the above into a sheath core type, an eccentric type, a parallel type, and the like, a fiber obtained by blending at least two kinds of the above fibers, and a fiber obtained by modifying the surface layer of the above fibers).
 これらの繊維状物の内で好ましいのは、セルロース系天然繊維、ポリプロピレン系繊維、ポリエチレン系繊維、ポリエステル系繊維、熱融着性複合繊維及びこれらの混合繊維であり、更に好ましいのは、得られた吸水剤の吸水後の形状保持性に優れるという点で、フラッフパルプ、熱融着性複合繊維及びこれらの混合繊維である。 Among these fibrous materials, preferred are cellulose-based natural fibers, polypropylene-based fibers, polyethylene-based fibers, polyester-based fibers, heat-fusible conjugate fibers, and mixed fibers thereof, and more preferable are obtained. The fluff pulp, the heat-fusible conjugate fiber, and the mixed fiber thereof are preferable in that the water-absorbing agent has excellent shape retention after water absorption.
 上記繊維状物の長さ、太さについては特に限定されず、長さは1~200mm、太さは0.1~100デニールの範囲であれば好適に使用することができる。形状についても繊維状であれば特に限定されず、細い円筒状、スプリットヤーン状、ステープル状、フィラメント状及びウェブ状等が例示される。 The length and thickness of the fibrous material are not particularly limited and can be suitably used as long as the length is 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier. The shape is not particularly limited as long as it is fibrous, and examples thereof include a thin cylindrical shape, a split yarn shape, a staple shape, a filament shape, and a web shape.
 吸水性樹脂粒子を、繊維状物と共に吸収体とする場合、吸水性樹脂粒子と繊維の重量比率(吸水性樹脂粒子の重量/繊維の重量)は40/60~90/10が好ましく、更に好ましくは70/30~80/20である。 When the water-absorbent resin particles are used as an absorbent together with the fibrous material, the weight ratio of the water-absorbent resin particles to the fibers (the weight of the water-absorbent resin particles / the weight of the fibers) is preferably 40/60 to 90/10, more preferably Is 70/30 to 80/20.
 本発明の吸収性物品は上記吸収体を用いる。吸収性物品としては、紙おむつや生理用ナプキン等の衛生用品のみならず、後述する各種水性液体の吸収剤や保持剤用途、ゲル化剤用途等の各種用途に使用されるものとして適用可能である。吸収性物品の製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等に記載のもの)と同様である。 The absorbent article of the present invention uses the above absorber. The absorbent article is applicable not only to sanitary articles such as disposable diapers and sanitary napkins, but also to those used for various uses such as absorbent and retention agents for various aqueous liquids and gelling agents described later. . The manufacturing method and the like of the absorbent article are the same as known ones (described in JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.).
 以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、部は重量部、%は重量%を示す。
 粒子欠損度、保水量、ボルテックス法で測定される吸収速度、ロックアップ法で測定される吸収速度、荷重下吸収量、ゲル通液速度は、25±2℃、湿度50±10%の室内でそれぞれ以下の方法で測定した。なお、使用する生理食塩水の温度は予め25℃±2℃に調整して使用した。
Hereinafter, although an example and a comparative example explain the present invention further, the present invention is not limited to these. Hereinafter, unless otherwise specified, parts indicate parts by weight and% indicates% by weight.
Particle deficiency, water retention, absorption rate measured by vortex method, absorption rate measured by lock-up method, absorption amount under load, gel flow rate is 25 ± 2 ° C, humidity is 50 ± 10% in a room. Each was measured by the following method. Note that the temperature of the physiological saline used was adjusted to 25 ° C. ± 2 ° C. in advance.
<粒子欠損度の測定方法> 吸水性樹脂粒子の粒子欠損度は、Camsizer(登録商標)image analysis system(Retsch Technology GmbH社製)を用いて測定した。装置上部のサンプルフィーダーより、標準ふるい(JIS Z8801-1:2006)を用いて300~600μmの範囲にふるい分けした測定試料5.00gを少量ずつ自由落下させ、落下する測定サンプルをCCDカメラで連続的に撮影した。撮影した画像を解析することで測定サンプルの粒子欠損度を導いた。分析点数N=3で導いた粒子欠損度の算術平均値を本発明の粒子欠損度とした。また、全粒子に対する測定はふるい分けしない以外は上記と同様にして測定した。 <Measuring Method of Particle Defect Degree> The particle defect degree of the water-absorbent resin particles was measured using a Camsizer (registered trademark) image analysis system (manufactured by Retsch Technology GmbH). From the sample feeder at the top of the device, 5.00 g of the measurement sample screened in the range of 300 to 600 μm using a standard sieve (JIS Z8801-1: 2006) is freely dropped little by little, and the falling measurement sample is continuously collected with a CCD camera. Taken on. The degree of particle defect of the measurement sample was derived by analyzing the captured image. The arithmetic average value of the degree of particle defect derived with an analysis point N = 3 was defined as the particle defect degree of the present invention. Moreover, the measurement with respect to all the particles was measured like the above except not sieving.
<保水量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網で作製したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水(食塩濃度0.9%)1,000ml中に無撹拌下、1時間浸漬した後引き上げて、15分間吊るして水切りした。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバックを含めた重量(h1)を測定し次式から保水量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
保水量(g/g)=(h1)-(h2)
 (h2)は、測定試料の無い場合について上記と同様の操作により計測したティーバックの重量である。
<Measurement method of water retention amount>
1.00 g of a measurement sample is placed in a tea bag (20 cm long, 10 cm wide) made of a nylon net having a mesh size of 63 μm (JIS Z8801-1: 2006), and 1,000 ml of physiological saline (saline concentration 0.9%). The sample was immersed for 1 hour without stirring and then pulled up, suspended for 15 minutes and drained. Thereafter, each tea bag was placed in a centrifuge, centrifuged at 150 G for 90 seconds to remove excess physiological saline, and the weight (h1) including the tea bag was measured to obtain the water retention amount from the following formula. In addition, the temperature of the used physiological saline and measurement atmosphere was 25 degreeC +/- 2 degreeC.
Water retention amount (g / g) = (h1) − (h2)
(H2) is the weight of the tea bag measured by the same operation as described above when there is no measurement sample.
<ボルテックス法で測定される吸収速度>
 標準ふるいを用いて300~600μmの範囲にふるい分けした測定試料2.000gが、JIS R 3503に規定する底面が平らな100mlのトールビーカー内で毎分600回の回転数で撹拌されている生理食塩水50gを吸収し終わるまでに必要とした時間(単位:秒)をJIS K7224-1996に準拠して測定し、ボルテックス法で測定される吸収速度とした。
<Absorption rate measured by vortex method>
Physiological salt in which 2.000 g of a measurement sample screened in the range of 300 to 600 μm using a standard sieve is stirred at a rotation speed of 600 rotations per minute in a 100 ml tall beaker having a flat bottom as defined in JIS R 3503 The time (unit: second) required to absorb 50 g of water was measured according to JIS K7224-1996, and the absorption rate was measured by the vortex method.
<ロックアップ法で測定される吸収速度>
 測定試料1.000gをJIS R 3503に規定する底面が平らな100mlのトールビーカーに入れた。この際、ビーカーに入れた吸水性樹脂の上面が水平となるようにした。次に、23℃±2℃に調温した生理食塩水40gを100mlのガラス製ビーカーに量り取り、吸水性樹脂の入った100mlビーカーに丁寧に素早く注いだ。注ぎ込んだ生理食塩水が吸水性樹脂と接触したと同時に時間測定を開始した。そして、生理食塩水を注ぎ込んだビーカーを約90゜の角度で横に向けた際、流動物が吸水性樹脂表面から浸出しなくなった点を終点とし、この時間(単位:秒)をロックアップ法で測定される吸収速度とした。
<Absorption rate measured by lock-up method>
1.000 g of the measurement sample was placed in a 100 ml tall beaker having a flat bottom as defined in JIS R 3503. At this time, the upper surface of the water absorbent resin placed in the beaker was made horizontal. Next, 40 g of physiological saline adjusted to 23 ° C. ± 2 ° C. was weighed into a 100 ml glass beaker and poured quickly and carefully into a 100 ml beaker containing a water absorbent resin. Time measurement was started at the same time as the poured physiological saline contacted the water-absorbent resin. When the beaker filled with physiological saline is turned sideways at an angle of about 90 °, the end point is the point at which the fluid does not ooze from the surface of the water-absorbent resin, and this time (unit: seconds) is the lock-up method. The absorption rate measured in
<荷重下吸収量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網を底面に貼った円筒型プラスチックチューブ(内径:25mm、高さ:34mm)内に、標準ふるいを用いて250~500μmの範囲にふるい分けした測定試料0.16gを秤量し、円筒型プラスチックチューブを垂直にしてナイロン網上に測定試料がほぼ均一厚さになるように整えた後、この測定試料の上に分銅(重量:310.6g、外径:24.5mm、)を乗せた。この円筒型プラスチックチューブ全体の重量(M1)を計量した後、生理食塩水(食塩濃度0.9%)60mlの入ったシャーレ(直径:12cm)の中に測定試料及び分銅の入った円筒型プラスチックチューブを垂直に立ててナイロン網側を下面にして浸し、60分静置した。60分後に、円筒型プラスチックチューブをシャーレから引き上げ、これを斜めに傾けて底部に付着した水を一箇所に集めて水滴として垂らすことで余分な水を除去した後、測定試料及び分銅の入った円筒型プラスチックチューブ全体の重量(M2)を計量し、次式から荷重下吸収量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
荷重下吸収量(g/g)={(M2)-(M1)}/0.16
<Measurement method of absorption under load>
Measurement using a standard sieve in a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) with a nylon mesh of 63 μm mesh (JIS Z8801-1: 2006) pasted on the bottom. Weigh 0.16 g of sample, arrange the cylindrical plastic tube vertically and arrange the measurement sample on the nylon net so as to have a substantially uniform thickness, and then place a weight on the measurement sample (weight: 310.6 g, outer Diameter: 24.5 mm). After measuring the weight (M1) of the entire cylindrical plastic tube, a cylindrical plastic containing a measurement sample and a weight in a petri dish (diameter: 12 cm) containing 60 ml of physiological saline (salt concentration 0.9%). The tube was set up vertically and immersed with the nylon mesh side as the bottom surface and allowed to stand for 60 minutes. After 60 minutes, the cylindrical plastic tube was pulled up from the petri dish, and the slant was tilted to collect the water adhering to the bottom in one place and dropped as water droplets. The weight (M2) of the entire cylindrical plastic tube was weighed, and the absorbed amount under load was determined from the following equation. In addition, the temperature of the used physiological saline and measurement atmosphere was 25 degreeC +/- 2 degreeC.
Absorption under load (g / g) = {(M2) − (M1)} / 0.16
<ゲル通液速度の測定方法>
 図2及び図3で示される器具を用いて以下の操作により測定した。
 測定試料0.32gを150ml生理食塩水1(食塩濃度0.9%)に30分間浸漬して膨潤ゲル粒子2を調製した。そして、垂直に立てた円筒3{直径(内径)25.4mm、長さ40cm、底部から60mlの位置及び40mlの位置にそれぞれ目盛り線4及び目盛り線5が設けてある。}の底部に、金網6(目開き106μm、JIS Z8801-1:2006)と、開閉自在のコック7(通液部の内径5mm)とを有する濾過円筒管内に、コック7を閉鎖した状態で、調製した膨潤ゲル粒子2を生理食塩水と共に移した後、この膨潤ゲル粒子2の上に、金網面に対して垂直に結合する加圧軸9(重さ22g、長さ47cm)を有する円形金網8(目開き150μm、直径25mm)を、金網と膨潤ゲル粒子とが接触するように載せ、更に加圧軸9におもり10(88.5g)を載せ、1分間静置した。引き続き、コック7を開き、濾過円筒管内の液面が60ml目盛り線4から40ml目盛り線5になるのに要する時間(T1;秒)を計測し、次式よりゲル通液速度(ml/min)を求めた。
 ゲル通液速度(ml/min)=20ml×60/(T1-T2)
 なお、使用する生理食塩水及び測定雰囲気の温度は25℃±2℃で行い、T2は測定試料の無い場合について上記と同様の操作により計測した時間である。
<Measurement method of gel flow rate>
Measurement was performed by the following operation using the instrument shown in FIGS.
Swelled gel particles 2 were prepared by immersing 0.32 g of the measurement sample in 150 ml of physiological saline 1 (salt concentration of 0.9%) for 30 minutes. The cylinder 3 standing upright {diameter (inner diameter) 25.4 mm, length 40 cm, scale line 4 and scale line 5 are provided at a position of 60 ml and 40 ml from the bottom, respectively. } At the bottom of the filtration cylinder having a wire mesh 6 (mesh opening 106 μm, JIS Z8801-1: 2006) and an openable / closable cock 7 (inner diameter of the liquid passing part 5 mm), After the prepared swollen gel particles 2 are transferred together with physiological saline, a circular wire mesh having a pressure shaft 9 (weight 22 g, length 47 cm) which is bonded perpendicularly to the wire mesh surface on the swollen gel particles 2. 8 (aperture 150 μm, diameter 25 mm) was placed so that the wire mesh and swollen gel particles were in contact with each other, and a weight 10 (88.5 g) was placed on the pressure shaft 9 and allowed to stand for 1 minute. Subsequently, the cock 7 is opened, the time (T1; second) required for the liquid level in the filtration cylindrical tube to change from the 60 ml scale line 4 to the 40 ml scale line 5 is measured, and the gel flow rate (ml / min) is calculated from the following equation. Asked.
Gel flow rate (ml / min) = 20 ml × 60 / (T1-T2)
The temperature of the physiological saline used and the measurement atmosphere is 25 ° C. ± 2 ° C., and T2 is the time measured by the same operation as described above when there is no measurement sample.
<実施例1> アクリル酸(a1){三菱化学株式会社製、純度100%}131部、内部架橋剤(b-1){ペンタエリスリトールトリアリルエーテル、株式会社大阪ソーダ製}0.44部及び脱イオン水362部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.5部、2%アスコルビン酸水溶液1部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液0.1部を添加・混合して重合を開始させた。混合物の温度が80℃に達した後、80±2℃で約5時間重合することにより含水ゲルを得た。 <Example 1> Acrylic acid (a1) {Mitsubishi Chemical Co., Ltd., purity 100%} 131 parts, Internal crosslinking agent (b-1) {Pentaerythritol triallyl ether, Osaka Soda Co., Ltd.} 0.44 parts and 362 parts of deionized water was kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.5 part of 1% aqueous hydrogen peroxide solution, 1 part of 2% aqueous ascorbic acid solution and 2% 2,2′-azobisamidinopropane Polymerization was started by adding and mixing 0.1 part of a dihydrochloride aqueous solution. After the temperature of the mixture reached 80 ° C., a water-containing gel was obtained by polymerization at 80 ± 2 ° C. for about 5 hours.
 次にこの含水ゲルをはさみで約1mm角に細分し、45%水酸化ナトリウム水溶液162部を添加した。更に目皿径16mmのミンチ機(ROYAL社製12VR-400K)でゲル温度80℃で4回混練細断後、通気型乾燥機{150℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲(重量平均粒子径として400μm)に調整して、架橋重合体粒子を含む樹脂粒子を得た。 Next, this hydrogel was subdivided into about 1 mm square with scissors, and 162 parts of 45% aqueous sodium hydroxide solution was added. Further, after kneading and cutting four times at a gel temperature of 80 ° C. with a mincing machine (ROYAL 12VR-400K) having a diameter of 16 mm, the dried product is obtained by drying with a ventilation dryer {150 ° C., wind speed 2 m / sec}. It was. After the dried product is pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), the dried product is screened and adjusted to a particle size range of 710 to 150 μm (400 μm as a weight average particle size) to include crosslinked polymer particles Resin particles were obtained.
 ついで、得られた樹脂粒子100部を高速攪拌(ホソカワミクロン製高速攪拌タービュライザー(登録商標。以下おなじ):回転数2000rpm)しながら、これに、無機酸塩(d)としての硫酸ナトリウムアルミニウムミョウバン12水和物を0.6重量部、表面架橋剤としてのエチレングリコールジグリシジルエーテルを0.08重量部及び溶剤としての45%プロピレングリコール水溶液を3.3重量部を混合した混合溶液を添加し、均一混合した後、130℃で60分間静置することで乾燥して、本発明の吸水性樹脂粒子(P-1)を得た。吸水性樹脂粒子(P-1)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は71重量%であった。 Next, 100 parts of the obtained resin particles were stirred at a high speed (high speed stirring turbulizer manufactured by Hosokawa Micron (registered trademark; hereinafter the same): rotation speed: 2000 rpm), and then sodium aluminum sulfate alum as inorganic acid salt (d) was added thereto. Add 0.6 parts by weight of 12 hydrate, 0.08 parts by weight of ethylene glycol diglycidyl ether as surface cross-linking agent and 3.3 parts by weight of 45% propylene glycol aqueous solution as solvent. After uniform mixing, the mixture was allowed to stand at 130 ° C. for 60 minutes and dried to obtain water-absorbing resin particles (P-1) of the present invention. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-1) was 71% by weight.
<実施例2>
 含水ゲルをはさみで5mm角に細分したこと以外、実施例1と同様にして吸水性樹脂粒子(P-2)を得た。吸水性樹脂粒子(P-2)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は70重量%であった。
<Example 2>
Water-absorbent resin particles (P-2) were obtained in the same manner as in Example 1 except that the hydrogel was subdivided into 5 mm squares with scissors. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-2) was 70% by weight.
<実施例3> 中和した含水ゲルを目皿径8mmのミンチ機(ROYAL社製12VR-400K)でゲル温度80℃で4回混練細断したこと以外、実施例1と同様にして吸水性樹脂粒子(P-3)を得た。吸水性樹脂粒子(P-3)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は70重量%であった。 <Example 3> The water-absorbing property was the same as in Example 1 except that the neutralized hydrous gel was kneaded and chopped four times at a gel temperature of 80 ° C with a minced machine (ROYAL 12VR-400K) having a diameter of 8 mm. Resin particles (P-3) were obtained. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-3) was 70% by weight.
<実施例4> 中和した含水ゲルを目皿径16mmのミンチ機(ROYAL社製12VR-400K)でゲル温度80℃で2回混練細断したこと以外、実施例1と同様にして吸水性樹脂粒子(P-4)を得た。吸水性樹脂粒子(P-4)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は71重量%であった。 <Example 4> The water-absorbing property was the same as in Example 1 except that the neutralized hydrogel was kneaded and chopped twice at a gel temperature of 80 ° C. with a minced machine (ROYAL 12VR-400K) having a diameter of 16 mm. Resin particles (P-4) were obtained. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-4) was 71% by weight.
<実施例5>
 含水ゲルの混練細断温度80℃を60℃としたこと以外、実施例1と同様にして吸水性樹脂粒子(P-5)を得た。吸水性樹脂粒子(P-5)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は71重量%であった。
<Example 5>
Water-absorbent resin particles (P-5) were obtained in the same manner as in Example 1 except that the hydrogel kneading shredding temperature was set to 60 ° C. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-5) was 71% by weight.
<実施例6>
 含水ゲルの混練細断温度80℃を100℃としたこと以外、実施例1と同様にして吸水性樹脂粒子(P-6)を得た。吸水性樹脂粒子(P-6)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は71重量%であった。
<Example 6>
Water-absorbent resin particles (P-6) were obtained in the same manner as in Example 1 except that the kneading shredding temperature of the hydrogel was set to 100 ° C. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-6) was 71% by weight.
<実施例7>
 含水ゲルの細分化サイズ約1mm角を約5mm角に、ミンチ機の目皿径16mmを8mmに、含水ゲルの混練細断温度80℃を100℃としたこと以外、実施例1と同様にして吸水性樹脂粒子(P-7)を得た。吸水性樹脂粒子(P-7)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は71重量%であった。
<Example 7>
The hydrogel subdivision size is about 1 mm square to about 5 mm square, the diameter of the minced machine 16 mm is 8 mm, and the hydrogel kneading shredding temperature 80 ° C. is 100 ° C. Water-absorbing resin particles (P-7) were obtained. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-7) was 71% by weight.
<実施例8> アクリル酸(a1){三菱化学株式会社製、純度100%}131部、内部架橋剤(b-1){ペンタエリスリトールトリアリルエーテル、株式会社大阪ソーダ製}0.44部及び脱イオン水362部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.5部、2%アスコルビン酸水溶液1部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液0.1部を添加・混合して重合を開始させた。混合物の温度が80℃に達した後、80±2℃で約5時間重合することにより含水ゲルを得た。 <Example 8> Acrylic acid (a1) {Mitsubishi Chemical Co., Ltd., purity 100%} 131 parts, Internal crosslinking agent (b-1) {Pentaerythritol triallyl ether, Osaka Soda Co., Ltd.} 0.44 parts and 362 parts of deionized water was kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.5 part of 1% aqueous hydrogen peroxide solution, 1 part of 2% aqueous ascorbic acid solution and 2% 2,2′-azobisamidinopropane Polymerization was started by adding and mixing 0.1 part of a dihydrochloride aqueous solution. After the temperature of the mixture reached 80 ° C., a water-containing gel was obtained by polymerization at 80 ± 2 ° C. for about 5 hours.
 次にこの含水ゲルをはさみで約5mm角に細分し、45%水酸化ナトリウム水溶液162部を添加した。更に目皿径8mmのミンチ機(ROYAL社製12VR-400K)でゲル温度100℃で4回混練細断後、シグマ型回転翼及び保温ジャケットを備えたニーダー(卓上型ニーダーPNV-1、株式会社入江商会)に全量投入し、回転数40rpm、ジャケット温度180℃で60分間乾燥し、架橋重合体を含有する乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲(重量平均粒子径として400μm)に調整して、架橋重合体粒子を含む樹脂粒子を得た。 Next, this hydrogel was subdivided into about 5 mm squares with scissors, and 162 parts of 45% aqueous sodium hydroxide solution was added. Furthermore, after kneading and chopping four times at a gel temperature of 100 ° C. with a mincing machine (ROYAL 12VR-400K) having a diameter of 8 mm, a kneader (desktop kneader PNV-1, Co., Ltd.) The whole amount was charged into Irie Shokai, and dried for 60 minutes at a rotation speed of 40 rpm and a jacket temperature of 180 ° C. to obtain a dried product containing a crosslinked polymer. After the dried product is pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), the dried product is screened and adjusted to a particle size range of 710 to 150 μm (400 μm as a weight average particle size) to include crosslinked polymer particles Resin particles were obtained.
 ついで、得られた樹脂粒子100部を高速攪拌(ホソカワミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、無機酸塩(d)としての硫酸ナトリウムアルミニウムミョウバン12水和物を0.6重量部、表面架橋剤としてのエチレングリコールジグリシジルエーテルを0.08重量部及び溶剤としての45%プロピレングリコール水溶液を3.3重量部を混合した混合溶液を添加し、均一混合した後、130℃で60分間静置することで乾燥して、本発明の吸水性樹脂粒子(P-8)を得た。吸水性樹脂粒子(P-8)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は70重量%であった。 Next, 100 parts of the obtained resin particles were stirred at a high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed: 2000 rpm), and sodium aluminum sulfate alum 12 hydrate as an inorganic acid salt (d) was added to the mixture in an amount of 0.001. 6 parts by weight, a mixed solution in which 0.08 part by weight of ethylene glycol diglycidyl ether as a surface cross-linking agent and 3.3 parts by weight of 45% propylene glycol aqueous solution as a solvent were mixed and mixed uniformly. The mixture was allowed to stand at 60 ° C. for 60 minutes for drying to obtain water absorbent resin particles (P-8) of the present invention. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-8) was 70% by weight.
<実施例9> アクリル酸(a1){三菱化学株式会社製、純度100%}131部、内部架橋剤(b-2){ポリエチレングリコールジアクリレート(Mw=508)、新中村化学工業株式会社製}0.4部、45%水酸化ナトリウム水溶液162部、及び脱イオン水362部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.5部、2%アスコルビン酸水溶液1部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液0.1部を添加・混合して重合を開始させた。混合物の温度が80℃に達した後、80±2℃で約5時間重合することにより含水ゲルを得た。 <Example 9> Acrylic acid (a1) {manufactured by Mitsubishi Chemical Corporation, purity 100%} 131 parts, internal cross-linking agent (b-2) {polyethylene glycol diacrylate (Mw = 508), manufactured by Shin-Nakamura Chemical Co., Ltd. } 0.4 parts, 162 parts of 45% aqueous sodium hydroxide, and 362 parts of deionized water were kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.5 part of 1% aqueous hydrogen peroxide solution, 1 part of 2% aqueous ascorbic acid solution and 2% 2,2′-azobisamidinopropane Polymerization was started by adding and mixing 0.1 part of a dihydrochloride aqueous solution. After the temperature of the mixture reached 80 ° C., a water-containing gel was obtained by polymerization at 80 ± 2 ° C. for about 5 hours.
 次にこの含水ゲルをはさみで約1mm角に細分し、目皿径16mmのミンチ機(ROYAL社製12VR-400K)でゲル温度80℃で4回混練細断後、通気型乾燥機{150℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲(重量平均粒子径として400μm)に調整して、架橋重合体粒子を含む樹脂粒子を得た。 Next, this hydrogel was subdivided into approximately 1 mm squares with scissors, kneaded and cut four times at a gel temperature of 80 ° C. with a minced machine (ROYAL 12VR-400K) having a diameter of 16 mm, and then ventilated dryer {150 ° C. And dried at a wind speed of 2 m / sec} to obtain a dried product. After the dried product is pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), the dried product is screened and adjusted to a particle size range of 710 to 150 μm (400 μm as a weight average particle size) to include crosslinked polymer particles Resin particles were obtained.
 ついで、得られた樹脂粒子100部を高速攪拌(ホソカワミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、無機酸塩(d)としての硫酸ナトリウムアルミニウムミョウバン12水和物を0.6重量部、表面架橋剤としてのエチレングリコールジグリシジルエーテルを0.08重量部及び溶剤としての45%プロピレングリコール水溶液を3.3重量部を混合した混合溶液を添加し、均一混合した後、130℃で60分間静置することで乾燥して、本発明の吸水性樹脂粒子(P-9)を得た。吸水性樹脂粒子(P-9)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は70重量%であった。 Next, 100 parts of the obtained resin particles were stirred at a high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed: 2000 rpm), and sodium aluminum sulfate alum 12 hydrate as an inorganic acid salt (d) was added to the mixture in an amount of 0.001. 6 parts by weight, a mixed solution in which 0.08 part by weight of ethylene glycol diglycidyl ether as a surface cross-linking agent and 3.3 parts by weight of 45% propylene glycol aqueous solution as a solvent were mixed and mixed uniformly. The mixture was allowed to stand at 60 ° C. for 60 minutes to dry to obtain water absorbent resin particles (P-9) of the present invention. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-9) was 70% by weight.
<実施例10>
 含水ゲルをはさみで5mm角に細分したこと以外、実施例9と同様にして吸水性樹脂粒子(P-10)を得た。吸水性樹脂粒子(P-10)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は71重量%であった。
<Example 10>
Water-absorbent resin particles (P-10) were obtained in the same manner as in Example 9, except that the hydrogel was subdivided into 5 mm squares with scissors. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-10) was 71% by weight.
<実施例11> 約1mm角に細分した含水ゲルを目皿径8mmのミンチ機(ROYAL社製12VR-400K)でゲル温度80℃で4回混練細断したこと以外、実施例9と同様にして吸水性樹脂粒子(P-11)を得た。吸水性樹脂粒子(P-11)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は70重量%であった。 <Example 11> Except that the hydrogel subdivided into approximately 1 mm square was kneaded and shredded four times at a gel temperature of 80 ° C with a minced machine (ROYAL 12VR-400K) having a diameter of 8 mm. Thus, water-absorbing resin particles (P-11) were obtained. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-11) was 70% by weight.
<実施例12> 約1mm角に細分した含水ゲルを目皿径16mmのミンチ機(ROYAL社製12VR-400K)でゲル温度80℃で2回混練細断したこと以外、実施例9と同様にして吸水性樹脂粒子(P-12)を得た。吸水性樹脂粒子(P-12)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は71重量%であった。 <Example 12> Except that the hydrogel subdivided into approximately 1 mm square was kneaded and cut twice at a gel temperature of 80 ° C with a minced machine (ROYAL 12VR-400K) having a 16 mm diameter. Thus, water absorbent resin particles (P-12) were obtained. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (P-12) was 71% by weight.
<比較例1> 中和した含水ゲルをミンチ機(ROYAL社製12VR-400K)で混練細断せずに、通気型乾燥機{150℃、風速2m/秒}で乾燥し、乾燥体を得たこと以外、実施例1と同様にして比較用の吸水性樹脂粒子(R-1)を得た。吸水性樹脂粒子(R-1)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は71重量%であった。 <Comparative Example 1> The neutralized water-containing gel was dried with a ventilation dryer {150 ° C, wind speed 2 m / sec} without kneading and chopping with a minced machine (ROYAL 12VR-400K) to obtain a dried product. Except that, comparative water-absorbent resin particles (R-1) were obtained in the same manner as in Example 1. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (R-1) was 71% by weight.
<比較例2> 約1mm角に細分した含水ゲルをミンチ機(ROYAL社製12VR-400K)で混練細断せずに、通気型乾燥機{150℃、風速2m/秒}で乾燥し、乾燥体を得たこと以外、実施例9と同様にして比較用の吸水性樹脂粒子(R-2)を得た。吸水性樹脂粒子(R-2)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は71重量%であった。 <Comparative Example 2> The hydrogel subdivided into approximately 1 mm square was kneaded and chopped with a minced machine (ROYAL 12VR-400K), and dried with a ventilation dryer {150 ° C, wind speed 2 m / sec} and dried. A comparative water-absorbent resin particle (R-2) was obtained in the same manner as in Example 9, except that the product was obtained. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (R-2) was 71% by weight.
<比較例3> 特表2017-222875号公報の0088~0091段落に開示されている方法をトレースして含水ゲルの乾燥体を得た。即ち、アクリル酸100g、架橋剤としてポリエチレングリコールジアクリレート(Mw=523)0.5g、UV開始剤としてジフェニル(2,4,6-トリメチルベンゾイル)-ホスフィンオキシド0.033g、50%苛性ソーダ水溶液(NaOH)83.3g、および水89.8gを混合して、単量体の濃度が45重量%のモノマー水溶液組成物を製造した。つぎに、前記モノマー水溶液組成物を連続移動するコンベヤベルトからなる重合器の供給部を介して投入した後、UV照射装置により紫外線を照射(照射量:2mW/cm)し、2分間UV重合を進行させて、含水ゲル重合体を製造した。前記含水ゲル重合体を切断機に移送した後、0.2cmに切断した。この時、切断された含水ゲル重合体の含水率は50重量%であった。 <Comparative Example 3> The method disclosed in paragraphs 0088 to 0091 of JP-T-2017-222875 was traced to obtain a dried hydrated gel. That is, 100 g of acrylic acid, 0.5 g of polyethylene glycol diacrylate (Mw = 523) as a crosslinking agent, 0.033 g of diphenyl (2,4,6-trimethylbenzoyl) -phosphine oxide as a UV initiator, 50% aqueous sodium hydroxide solution (NaOH) 83.3 g) and 89.8 g of water were mixed to prepare a monomer aqueous solution composition having a monomer concentration of 45% by weight. Next, after the monomer aqueous solution composition is charged through a supply unit of a polymerization vessel composed of a conveyor belt that continuously moves, UV irradiation is performed by a UV irradiation device (irradiation amount: 2 mW / cm 2 ), and UV polymerization is performed for 2 minutes. To proceed to produce a hydrogel polymer. The hydrated gel polymer was transferred to a cutting machine and then cut to 0.2 cm. At this time, the water content of the cut hydrogel polymer was 50% by weight.
 次に、前記含水ゲル重合体に対して160℃の温度の熱風乾燥機で30分間乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲(重量平均粒子径として400μm)に調整して、架橋重合体粒子を含む樹脂粒子を得た。 Next, the hydrogel polymer was dried for 30 minutes with a hot air dryer at a temperature of 160 ° C. to obtain a dried product. After the dried product is pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), the dried product is screened and adjusted to a particle size range of 710 to 150 μm (400 μm as a weight average particle size) to include crosslinked polymer particles Resin particles were obtained.
 ついで、得られた樹脂粒子100部を高速攪拌(ホソカワミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、無機酸塩(d)としての硫酸ナトリウムアルミニウムミョウバン12水和物を0.6重量部、表面架橋剤としてのエチレングリコールジグリシジルエーテルを0.08重量部及び溶剤としての45%プロピレングリコール水溶液を3.3重量部を混合した混合溶液を添加し、均一混合した後、130℃で60分間静置することで乾燥して、比較用の吸水性樹脂粒子(R-3)を得た。吸水性樹脂粒子(R-3)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は70重量%であった。 Next, 100 parts of the obtained resin particles were stirred at a high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed: 2000 rpm), and sodium aluminum sulfate alum 12 hydrate as an inorganic acid salt (d) was added to the mixture in an amount of 0.001. 6 parts by weight, a mixed solution in which 0.08 part by weight of ethylene glycol diglycidyl ether as a surface cross-linking agent and 3.3 parts by weight of 45% propylene glycol aqueous solution as a solvent were mixed and mixed uniformly. The mixture was allowed to stand at 60 ° C. for 60 minutes for drying to obtain comparative water absorbent resin particles (R-3). The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (R-3) was 70% by weight.
<比較例4>
 特開2018-16750号公報の0075~0077段落に開示されている方法をトレースして比較用の吸水性樹脂粒子(R-4)を得た。即ち、アクリル酸(a1){三菱化学株式会社製、純度100%}270部、内部架橋剤(b-1){ペンタエリスリトールトリアリルエーテル、株式会社大阪ソーダ製}0.98部及びイオン交換水712部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液1.1部、2%アスコルビン酸水溶液2.0部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液13.5部を添加・混合して重合を開始させた。混合物の温度が80℃に達した後、80±2℃で約5時間熟成することにより含水ゲルを得た。
<Comparative example 4>
Water-absorbing resin particles (R-4) for comparison were obtained by tracing the method disclosed in paragraphs 0075 to 0077 of JP-A-2018-16750. Namely, acrylic acid (a1) {Mitsubishi Chemical Co., Ltd., purity 100%} 270 parts, internal cross-linking agent (b-1) {pentaerythritol triallyl ether, Osaka Soda Co., Ltd.} 0.98 parts and ion-exchanged water 712 parts were kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 1.1 parts of 1% aqueous hydrogen peroxide solution, 2.0 parts of 2% aqueous ascorbic acid solution, and 2% 2,2′-azobis Polymerization was initiated by adding and mixing 13.5 parts of an amidinopropane dihydrochloride aqueous solution. After the temperature of the mixture reached 80 ° C., it was aged at 80 ± 2 ° C. for about 5 hours to obtain a water-containing gel.
 次にこの含水ゲルをミンチ機(ROYAL社製12VR-400K)で細断しながら、49%水酸化ナトリウム水溶液220部を添加して混合・中和し、中和ゲルを得た。このとき使用した目皿径は16mmで4回細断した。また、ゲル温度は60℃だった。更に中和した含水ゲルを通気型乾燥機(井上金属製)を用い、供給温度150℃、風速1.5m/秒の条件下で含水率が4%となるまで通気乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、架橋重合体を含む樹脂粒子を得た。 Next, while this hydrated gel was chopped with a mincing machine (12VR-400K manufactured by ROYAL), 220 parts of a 49% sodium hydroxide aqueous solution was added and mixed and neutralized to obtain a neutralized gel. The diameter of the eye plate used at this time was 16 mm, and was chopped four times. The gel temperature was 60 ° C. Further, the neutralized water-containing gel was air-dried using a ventilation dryer (manufactured by Inoue Metal) under the conditions of a supply temperature of 150 ° C. and a wind speed of 1.5 m / sec until the water content became 4% to obtain a dried product. It was. The dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), and then sieved to adjust the particle size to a particle size range of 710 to 150 μm to obtain resin particles containing a crosslinked polymer.
 ついで、得られた樹脂粒子100部を高速攪拌(ホソカワミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに表面架橋剤としてのエチレングリコールジグリシジルエーテル0.12部、プロピレングリコール1.0部、水不溶性無機微粒子としてのKlebosol30cal25(AZマテリアル社製コロイダルシリカ)1.0部及びイオン交換水1.7部を混合した混合液と、無機酸塩(d)としての硫酸ナトリウムアルミニウム12水和物0.6部、プロピレングリコール0.6部及びイオン交換水1.5部を混合した混合液を同時に添加し、均一混合した後、135℃で30分加熱して、表面架橋された樹脂粒子(R-4)を得た。吸水性樹脂粒子(R-4)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は71重量%であった。 Subsequently, 100 parts of the obtained resin particles were stirred at a high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), and 0.12 part of ethylene glycol diglycidyl ether as a surface cross-linking agent and 1.0 of propylene glycol were added thereto. Part, Klebosol 30cal25 (colloidal silica manufactured by AZ Material Co., Ltd.) 1.0 part as water-insoluble inorganic fine particles and 1.7 parts of ion-exchanged water, and sodium aluminum sulfate 12 hydrate as inorganic acid salt (d) A mixture of 0.6 part of the product, 0.6 part of propylene glycol and 1.5 part of ion-exchanged water was added at the same time, mixed uniformly, then heated at 135 ° C. for 30 minutes, and surface-crosslinked resin particles (R-4) was obtained. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (R-4) was 71% by weight.
<比較例5>
 中和した含水ゲルの乾燥条件について、供給温度150℃を200℃に、風速1.5m/秒を5m/秒としたこと以外、比較例4と同様にして吸水性樹脂粒子(R-5)を得た。吸水性樹脂粒子(R-5)の全重量に対する300~600μmの粒子径を有する粒子の重量割合は70重量%であった。
<Comparative Example 5>
Regarding the drying conditions of the neutralized hydrous gel, water-absorbent resin particles (R-5) were obtained in the same manner as in Comparative Example 4 except that the supply temperature was 150 ° C. and the wind speed was 1.5 m / sec. Got. The weight ratio of the particles having a particle diameter of 300 to 600 μm to the total weight of the water absorbent resin particles (R-5) was 70% by weight.
 引き続き、吸水性樹脂粒子の機械的強度を評価するために、実施例1、実施例8、比較例4及び比較例5で得られた吸水性樹脂粒子を用いて、以下のようにして壊れ性試験後の微粒子含有量の増加量を評価した。 Subsequently, in order to evaluate the mechanical strength of the water-absorbing resin particles, the water-absorbing resin particles obtained in Example 1, Example 8, Comparative Example 4 and Comparative Example 5 were used, and the breakability was as follows. The increase in fine particle content after the test was evaluated.
 <壊れ性試験後の微粒子含有量の増加量>
 測定試料50gを150μmのJIS標準ふるい(JIS Z8801-1:2006)でふるい、150μm以下の粒子を除去した。ふるい上の残った150μm以上の粒子全量を3L丸底フラスコ(AS ONE製)に投入し、丸底フラスコの上部に、中心部に6mmの穴を開けた目開き63μmのナイロン網(JIS Z8801-1:2000)を敷き、さらにその上に4つ口セパラブルカバー(AS ONE製 主管TS29/42、側管TS24/40、24/40、15/35)をセットした。次に4つ口セパラブルカバーの主管TS29/42にステンレス製(外径6mm、内径4mm)管を、ナイロン網を通過し、かつ先端が丸底フラスコ底面から45mmの位置となるように、セットした。ステンレス製管のもう一方の末端にはウレタンチューブ(長さ1500mm、内径8.5mm)を装備し、0.3MPa以上の圧力が達成できるエアーラインに接続した。次に圧力0.2MPaにてエアーラインを開け、10分間エアーブローした後、測定試料を取り出し、150μmのJIS標準ふるい(JIS Z8801-1:2006)でふるい、全重量に対する150μm以下の粒子の重量の割合(%)を、微粒子含有量の増加量とした。
<Increase in fine particle content after breakability test>
50 g of a measurement sample was sieved with a 150 μm JIS standard sieve (JIS Z8801-1: 2006) to remove particles of 150 μm or less. The total amount of particles of 150 μm or more remaining on the sieve was put into a 3 L round bottom flask (manufactured by AS ONE), and a nylon net (JIS Z8801- 1: 2000), and a four-mouth separable cover (ASONE main pipe TS29 / 42, side pipe TS24 / 40, 24/40, 15/35) was set thereon. Next, set the stainless steel pipe (outer diameter 6 mm, inner diameter 4 mm) to the main pipe TS29 / 42 of the four-neck separable cover so that it passes through the nylon net and the tip is 45 mm from the bottom of the round bottom flask. did. The other end of the stainless steel tube was equipped with a urethane tube (length 1500 mm, inner diameter 8.5 mm) and connected to an air line capable of achieving a pressure of 0.3 MPa or more. Next, the air line is opened at a pressure of 0.2 MPa, and after air blowing for 10 minutes, the measurement sample is taken out, sieved with a 150 μm JIS standard sieve (JIS Z8801-1: 2006), and the weight of particles of 150 μm or less relative to the total weight. The percentage (%) was taken as the amount of increase in the fine particle content.
 実施例1~12の吸水性樹脂粒子(P-1)~(P-12)及び比較例1~5の吸水性樹脂粒子(R-1)~(R-5)についての粒子欠損度(1%以下、8%以上(ふるい分け粒子及び全粒))、見掛け密度(g/ml)、重量平均粒子径(μm)、性能(保水量(g/g)、ボルテックス法で測定される吸収速度(秒)、ロックアップ法で測定される吸収速度(秒)、荷重下吸収量(g/g)及びゲル通液速度(ml/分))の評価結果を表1に示す。また、吸水性樹脂粒子(P-1)、(P-8)、(R-4)、(R-5)について壊れ試験後の微粒子含有量の増加量の評価結果を表2に示す。 Particle defect degree (1) for the water absorbent resin particles (P-1) to (P-12) of Examples 1 to 12 and the water absorbent resin particles (R-1) to (R-5) of Comparative Examples 1 to 5 % Or less, 8% or more (screened particles and whole grains)), apparent density (g / ml), weight average particle diameter (μm), performance (water retention (g / g), absorption rate measured by vortex method ( (Second), absorption rate (second), absorption amount under load (g / g) and gel flow rate (ml / min)) measured by the lock-up method are shown in Table 1. In addition, Table 2 shows the evaluation results of the increase in the fine particle content after the breakage test for the water absorbent resin particles (P-1), (P-8), (R-4), and (R-5).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、本発明の吸水性樹脂粒子は、比較例1~3の吸水性樹脂粒子に比べて、粒子欠損度が1%以下である粒子の割合が、体積比で50%以下と少なく、ボルテックス法およびロックアップ法により測定される吸収速度が飛躍的に向上していることがわかる。なお、比較例4と5は、粒子欠損度が8%以上である粒子割合が本願発明の要件を満たしていない。この比較例4と5は表1に掲げる性能において実施例に比べて劣るものではないものの、表2に示すとおり、壊れ性試験後の微粒子含有量の増加量が大きい。すなわち、表2の結果から、実施例1と8で典型的に示されるとおり本発明の吸水性樹脂粒子は、比較例4及び5の吸水性樹脂粒子に比べて、粒子欠損度が8%以上である粒子の割合が、体積比で5%以下であり、壊れ性試験後の微粒子含有量の増加量が抑制され、機械的強度の低下を抑制できていることがわかる。さらにまた、実施例及び比較例の全体において見掛け密度、平均粒子径に大きな差がないこと、重合法による差がないことから、粒子表面の形状が吸収速度に大きく寄与していることがわかる。 From the results shown in Table 1, the water-absorbent resin particles of the present invention have a volume ratio of 50% or less in terms of the volume ratio of the particles having a particle deficiency of 1% or less compared to the water-absorbent resin particles of Comparative Examples 1 to 3. It can be seen that the absorption rate measured by the vortex method and the lock-up method is greatly improved. In Comparative Examples 4 and 5, the proportion of particles having a particle defect degree of 8% or more does not satisfy the requirements of the present invention. Although Comparative Examples 4 and 5 are not inferior to the Examples in the performance listed in Table 1, as shown in Table 2, the increase in the content of fine particles after the breakability test is large. That is, from the results of Table 2, as typically shown in Examples 1 and 8, the water absorbent resin particles of the present invention have a particle defect degree of 8% or more compared to the water absorbent resin particles of Comparative Examples 4 and 5. It can be seen that the ratio of the particles is 5% or less by volume ratio, the increase in the fine particle content after the breakability test is suppressed, and the decrease in mechanical strength can be suppressed. Furthermore, since there is no large difference in apparent density and average particle diameter in the whole Examples and Comparative Examples, and no difference due to the polymerization method, it can be seen that the shape of the particle surface greatly contributes to the absorption rate.
 本発明の吸水性樹脂粒子は、吸水性樹脂粒子の表面に凹凸を形成し、しかも一定の制御された割合の粒子に対して形成することで、機械的強度を落とすことなく、見掛け密度と吸収速度を両立することから、各種の吸収体の製造工程でトラブルを起こすことなく、吸収速度が速く、逆戻り性や表面ドライ感に優れた吸収性物品に利用でき、衛生用品に好適に用いられる。 The water-absorbent resin particles of the present invention form irregularities on the surface of the water-absorbent resin particles, and are formed with respect to particles at a constant controlled ratio, so that the apparent density and absorption are reduced without reducing the mechanical strength. Since both speeds are compatible, it can be used for absorbent articles with high absorption speed, excellent reversibility and surface dryness without causing troubles in the manufacturing process of various absorbent bodies, and is suitably used for sanitary goods.
1 生理食塩水
2 含水ゲル粒子
3 円筒
4 底部から60mlの位置の目盛り線
5 底部から40mlの位置の目盛り線
6 金網
7 コック
8 円形金網
9 加圧軸
10 おもり
 

 
 
DESCRIPTION OF SYMBOLS 1 Saline 2 Hydrous gel particle 3 Cylinder 4 Scale line of 60 ml position from bottom 5 Scale line of 40 ml position from bottom 6 Wire mesh 7 Cock 8 Circular wire mesh 9 Pressurizing shaft 10 Weight


Claims (11)

  1.  JIS標準ふるいを用いて300~600μmの範囲にふるい分けた粒子のうち、下記(1)式で定義される粒子欠損度(CONV)が1%以下である粒子が、体積比で50%以下であり、粒子欠損度(CONV)が8%以上である粒子が、体積比で5%以下である、吸水性樹脂粒子。
    CONV(%)={B/(A+B)}×100 (1)
    (式(1)中、CONVは、粒子欠損度を表し、Aは、画像解析法により得られる対象粒子の投影面積を表し、Bは、画像解析法により得られる対象粒子の凸部を結んだ包絡線で囲まれた投影面積からAで示す対象粒子の投影面積を引いた値を表す。)
    Among the particles screened in the range of 300 to 600 μm using a JIS standard sieve, the particles having a particle defect degree (CONV) defined by the following formula (1) of 1% or less are 50% or less by volume. Water-absorbent resin particles in which particles having a particle defect degree (CONV) of 8% or more are 5% or less by volume.
    CONV (%) = {B / (A + B)} × 100 (1)
    (In Formula (1), CONV represents the particle defect degree, A represents the projected area of the target particle obtained by the image analysis method, and B connected the convex portions of the target particle obtained by the image analysis method. (A value obtained by subtracting the projected area of the target particle indicated by A from the projected area surrounded by the envelope).
  2.  見掛け密度が0.5~0.7g/mlである請求項1に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to claim 1, wherein the apparent density is 0.5 to 0.7 g / ml.
  3.  0.9重量%生理食塩水の保水量が単位重量あたり30~50g/gである請求項1または2に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to claim 1 or 2, wherein the water retention amount of 0.9% by weight physiological saline is 30 to 50 g / g per unit weight.
  4.  ボルテックス法で測定された吸収速度(秒)が50以下であり、ロックアップ法で測定された吸収速度(秒)が130以下である、請求項1~3のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particle according to any one of claims 1 to 3, wherein an absorption rate (second) measured by a vortex method is 50 or less and an absorption rate (second) measured by a lockup method is 130 or less. .
  5.  荷重下吸収量が10~27g/gである請求項1~4のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 4, wherein the absorbed amount under load is 10 to 27 g / g.
  6.  ゲル通液速度が5~250ml/分である請求項1~5のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 5, wherein the gel flow rate is 5 to 250 ml / min.
  7.  水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに内部架橋剤(b)を必須構成単位とする単量体組成物を重合して架橋重合体(A)の含水ゲルを得る重合工程と、架橋重合体(A)の含水ゲルを細分する工程と、細分したゲルをゲル温度40℃~120℃でさらに混練細断する工程と、架橋重合体(A)を含有する樹脂粒子(B)の表面を表面架橋剤(c)で表面架橋する工程とを有する、吸水性樹脂粒子の製造方法。 Water-soluble vinyl monomer (a1) and / or vinyl monomer (a2) which becomes water-soluble vinyl monomer (a1) by hydrolysis and a monomer composition having an internal crosslinking agent (b) as essential constituent units are polymerized and crosslinked. A step of polymerizing the hydrogel of the polymer (A), a step of subdividing the hydrogel of the cross-linked polymer (A), a step of further kneading the subdivided gel at a gel temperature of 40 ° C. to 120 ° C., And a step of surface cross-linking the surface of the resin particles (B) containing the polymer (A) with a surface cross-linking agent (c).
  8.  含水ゲルを乾燥して架橋重合体を得た後、多価金属塩(d)を架橋重合体(A)の重量に基づいて0.01~5重量%混合する工程、を含む請求項7に記載の製造方法。 The method according to claim 7, further comprising the step of mixing the polyvalent metal salt (d) in an amount of 0.01 to 5% by weight based on the weight of the crosslinked polymer (A) after drying the hydrogel to obtain a crosslinked polymer. The manufacturing method as described.
  9.  多価金属塩(d)がアルミニウムの無機酸塩である請求項8に記載の製造方法。 The production method according to claim 8, wherein the polyvalent metal salt (d) is an inorganic acid salt of aluminum.
  10.  請求項1~6のいずれかに記載の吸水性樹脂粒子を含む吸収体。 An absorber comprising the water-absorbent resin particles according to any one of claims 1 to 6.
  11.  請求項10に記載の吸収体を備えてなる吸収性物品。
     
    An absorbent article comprising the absorbent body according to claim 10.
PCT/JP2019/011665 2018-03-26 2019-03-20 Water absorbent resin particles and production method therefor WO2019188648A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020510775A JP7291686B2 (en) 2018-03-26 2019-03-20 Water-absorbing resin particles and method for producing the same
CN201980018707.6A CN111868144B (en) 2018-03-26 2019-03-20 Water-absorbent resin particles and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018058016 2018-03-26
JP2018-058016 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188648A1 true WO2019188648A1 (en) 2019-10-03

Family

ID=68058190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011665 WO2019188648A1 (en) 2018-03-26 2019-03-20 Water absorbent resin particles and production method therefor

Country Status (3)

Country Link
JP (1) JP7291686B2 (en)
CN (1) CN111868144B (en)
WO (1) WO2019188648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115988A1 (en) * 2018-12-04 2020-06-11 Sdpグローバル株式会社 Water-absorbing resin particles and production method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063527A (en) * 1998-08-12 2000-02-29 Nippon Shokubai Co Ltd Method for making water-containing gel-like crosslinked polymer granules
JP2000302876A (en) * 1999-02-15 2000-10-31 Nippon Shokubai Co Ltd Production of water absorptive resin powder, water absorptive resin powder and its use
JP2001011106A (en) * 1999-06-30 2001-01-16 Mitsubishi Chemicals Corp Production of highly water-absorbing resin
JP2002284803A (en) * 2001-03-27 2002-10-03 Mitsubishi Chemicals Corp Method of manufacturing highly water absorptive resin and highly water absorptive resin
WO2011126079A1 (en) * 2010-04-07 2011-10-13 株式会社日本触媒 Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
WO2016158975A1 (en) * 2015-03-31 2016-10-06 株式会社日本触媒 Super absorbent polyacrylic acid (salt)-based resin powder, method for manufacturing same, and method for evaluating same
US20170009026A1 (en) * 2014-11-24 2017-01-12 Lg Chem, Ltd. Super absorbent polymer and method for preparing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640923B2 (en) * 2003-09-05 2011-03-02 株式会社日本触媒 Method for producing particulate water-absorbing resin composition
JP5599513B2 (en) 2011-06-29 2014-10-01 株式会社日本触媒 Polyacrylic acid (salt) water-absorbing resin powder and method for producing the same
CN107709415A (en) 2015-06-19 2018-02-16 株式会社日本触媒 It is poly-(Methyl)Acrylic acid(Salt)It is particulate water-absorbing agent and manufacture method
JP6808391B2 (en) * 2016-07-29 2021-01-06 Sdpグローバル株式会社 Water-absorbent resin particles and their manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063527A (en) * 1998-08-12 2000-02-29 Nippon Shokubai Co Ltd Method for making water-containing gel-like crosslinked polymer granules
JP2000302876A (en) * 1999-02-15 2000-10-31 Nippon Shokubai Co Ltd Production of water absorptive resin powder, water absorptive resin powder and its use
JP2001011106A (en) * 1999-06-30 2001-01-16 Mitsubishi Chemicals Corp Production of highly water-absorbing resin
JP2002284803A (en) * 2001-03-27 2002-10-03 Mitsubishi Chemicals Corp Method of manufacturing highly water absorptive resin and highly water absorptive resin
WO2011126079A1 (en) * 2010-04-07 2011-10-13 株式会社日本触媒 Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
US20170009026A1 (en) * 2014-11-24 2017-01-12 Lg Chem, Ltd. Super absorbent polymer and method for preparing the same
WO2016158975A1 (en) * 2015-03-31 2016-10-06 株式会社日本触媒 Super absorbent polyacrylic acid (salt)-based resin powder, method for manufacturing same, and method for evaluating same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115988A1 (en) * 2018-12-04 2020-06-11 Sdpグローバル株式会社 Water-absorbing resin particles and production method therefor

Also Published As

Publication number Publication date
CN111868144B (en) 2023-09-08
JPWO2019188648A1 (en) 2021-03-18
CN111868144A (en) 2020-10-30
JP7291686B2 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
KR102577371B1 (en) Process for producing aqueous-liquid-absorbing resin particles, aqueous-liquid-absorbing resin particles, absorbent, and absorbent article
WO2018147317A1 (en) Water-absorbent resin particles, and absorber and absorbent article in which same are used
WO2016143739A1 (en) Method for producing aqueous liquid absorbent resin particles, and absorbent body and absorbent article
EP1659144B9 (en) Absorbent resin particle, and absorber and absorbent article employing the same
CA2873361A1 (en) Compounded surface treated carboxyalkylated starch polycrylate composites
WO2017057706A1 (en) Water absorbent resin particles and method for producing same
JPWO2011052140A1 (en) Absorbent resin particles for waterstop tape and waterstop tape containing the same
WO2019188648A1 (en) Water absorbent resin particles and production method therefor
JP6744792B2 (en) Method for producing aqueous liquid-absorbent resin particles
JP2019094444A (en) Water-absorbable resin particle and production method thereof
JP7187220B2 (en) Absorbent resin particles and method for producing the same
JP7108422B2 (en) Water-absorbing resin particles, absorbent body and absorbent article using the same, and method for producing water-absorbing resin particles
JP2018021090A (en) Absorptive resin particle and method for producing the same
CN111978456A (en) Absorbent resin particle, method for producing same, and absorbent article
JP7453918B2 (en) Water-absorbing resin particles and their manufacturing method
JP2018016750A (en) Water-absorbing resin particle and method for producing the same
JPWO2018225815A1 (en) Water-absorbing resin particles and method for producing the same
JP6935996B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using them
JP2023038963A (en) Method for producing water-absorbing resin composition
WO2019059019A1 (en) Water-absorbing resin composition and production method therefor
JP2018039929A (en) Aqueous liquid absorptive resin particle and absorber and absorptive article using the same
JP2018202165A (en) Absorbent article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510775

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776846

Country of ref document: EP

Kind code of ref document: A1