JP4326752B2 - Method for producing water-absorbing agent - Google Patents

Method for producing water-absorbing agent Download PDF

Info

Publication number
JP4326752B2
JP4326752B2 JP2002166178A JP2002166178A JP4326752B2 JP 4326752 B2 JP4326752 B2 JP 4326752B2 JP 2002166178 A JP2002166178 A JP 2002166178A JP 2002166178 A JP2002166178 A JP 2002166178A JP 4326752 B2 JP4326752 B2 JP 4326752B2
Authority
JP
Japan
Prior art keywords
water
absorbing
absorbing agent
agent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002166178A
Other languages
Japanese (ja)
Other versions
JP2003105092A (en
Inventor
康久 中嶋
博之 池内
康弘 藤田
誠 長澤
繁 阪本
頼道 大六
克之 和田
眞一 藤野
敏匡 北山
一尚 樋富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2002166178A priority Critical patent/JP4326752B2/en
Publication of JP2003105092A publication Critical patent/JP2003105092A/en
Application granted granted Critical
Publication of JP4326752B2 publication Critical patent/JP4326752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、吸水剤の製造方法に関する。さらに詳しくは、本発明は、吸水性樹脂を架橋剤で改質することで、無加圧下でも加圧下でも高い吸収倍率、さらに高い生理食塩水流れ誘導性を示す吸水剤を得る方法に関する。
【0002】
【従来の技術】
近年、紙オムツや生理用ナプキン、いわゆる失禁パット等の衛生材料には、その構成材として、体液を吸収させることを目的とした吸水性樹脂(吸水剤)が幅広く使用されている。
上記の吸水性樹脂としては、例えば、ポリアクリル酸部分中和物架橋体、澱粉−アクリル酸グラフト重合体の加水分解物、酢酸ビニル−アクリル酸エステル共重合体ケン化物、アクリロニトリル共重合体若しくはアクリルアミド共重合体の加水分解物またはこれらの架橋体、及びカチオン性モノマーの架橋重合体等が知られている。
【0003】
上記の吸水性樹脂が備えるべき特性として、従来より体液等の水性液体に接した際の優れた吸液量や吸水速度、ゲル強度、ゲル通液性、水性液体を含んだ基材から水を吸い上げる吸引力等が唱えられている。そして、従来よりこれらの特性を複数併せ持ち、紙オムツや生理用ナプキン等の衛生材料に用いられた場合に、優れた性能(吸収特性)を示す吸水性樹脂(吸水剤)が種々提案されている。
例えば、吸水性樹脂の無加圧下吸収倍率および加圧下吸収倍率等の吸収特性をバランス良く改良する方法として、吸水性樹脂の表面近傍を架橋する技術が知られており、これまでに様々な方法が開示されている。
【0004】
その例として、多価アルコールを用いる方法(特開昭58−180233号公報、特開昭61−16903号公報)、多価グリシジル化合物、多価アジリジン化合物、多価アミン化合物、多価イソシアネート化合物を用いる方法(特開昭59−189103号公報)、グリオキサールを用いる方法(特開昭52−117393号公報)、多価金属を用いる方法(特開昭51−136588号公報、特開昭61−257235号公報、特開昭62−7745号公報)、シランカップリング剤を用いる方法(特開昭61−211305号公報、特開昭61−252212号公報、特開昭61−264006号公報)、アルキレンカーボネートを用いる方法(独国特許第4020780号公報)、多価ヘテロ環カーボネートを用いる方法(特開平11−315216)、オキサゾリジノンを用いる方法(WO99/42494号公報)、多価オキサゾリジノンを用いる方法(WO99/43720号公報)、オキサジンを用いる方法(WO00/31153号公報)、オキサゾリン化合物を用いる方法(特開2000−197818号公報)等が知られている。
【0005】
さらに、上記架橋剤によって吸収特性の向上を行う際に、更なる性能向上のために添加剤(不活性混合助剤、酸触媒、塩基)を用いる方法も知られている。すなわち、添加剤として不活性混合助剤を用いる方法(1)として、不活性無機粉末を存在させる方法(特開昭60−163956号公報、特開昭60−255814号公報)、多価金属の塩および/または水酸化物を含む水を存在させる方法(特開昭62−7745号公報)、二価アルコールを存在させる方法(特開平1−292004号公報)、水とエーテル化合物を存在させる方法(特開平2−153903号公報)、水溶性ポリマーを存在させる方法(特開平3−126730号公報)、1価アルコールのアルキレンオキサイド付加物、有機酸の1価塩、またはラクタム類を存在させる方法(特公平6−74331号公報、特開平7−33818号公報)、一価金属塩を存在させる方法(WO98/49221号公報)、カチオンを存在させる方法(WO00/53664号公報、WO00/53644公報)等が知られている。
【0006】
さらに、添加剤として酸触媒を用いる方法(2)として、リン酸を存在させる方法(WO94/15651号公報)、無機酸または有機酸を存在させる方法(特開平7−278225号公報)等が知られている。
また、添加剤として塩基を用いる方法(3)として、水溶性アルカリ化合物を存在させる方法(特開平6−298841)等も知られている。
これら(1)、(2)、(3)の方法で用いる添加剤が架橋剤と共に存在することにより、架橋剤単独に比べて吸水剤の吸収特性のバランスをある程度向上させることもできるが、まだまだ十分なものとは言い難いものであった。
【0007】
すなわち、(1)の方法で用いるような添加剤(不活性混合助剤)では、使用する吸水性樹脂に微紛が多く含まれる等の場合には混合助剤としての働きによりその効果が現れるものの、一方ではその存在により架橋剤の吸水性樹脂粉末への浸透性の過度の低下や架橋反応の阻害等により吸収特性の改善がほとんど見られなかったり、改善するにしても架橋剤の使用量が増加する、反応時間が長くなる、反応温度を上昇させなければならない、等という問題点もあった。
(2)の方法で用いるような添加剤(酸触媒)では、架橋剤の反応を促進する触媒としての効果が期待できるものの、ある程度の効果を得るための量を添加すると架橋剤溶液のpHの極度な低下と、酸基を含有する部分中和型の吸水性樹脂の場合などには特に表面の酸性化が起こって架橋剤の浸透性の制御が困難となる。また、表面の酸性化は吸水性樹脂の粒子間の接着性を増加し、凝集体の形成につながる傾向にあるので好ましくない。その結果、所望する吸水性樹脂粒子表面層の架橋密度が得られず性能的に満足できるものが得難いという問題点がある。
【0008】
(3)の方法には、添加剤(塩基)とカルボキシル基と容易に反応する官能基を2個以上有する化合物(多価金属塩、ポリエポキシ化合物、ポリアジリジニル化合物、ポリイソシアネート化合物)との組み合わせによる表面架橋が開示され、ゲル強度や比較的低荷重(20g/cm2)での加圧下吸収倍率の改善が図られている。しかし、特開平6−298841号の方法では、いまだ表面架橋剤の混合性改良や吸水性樹脂の物性改良に不十分であり、特に、近年求められているSFCや高荷重下(4.83kPa、約50g/cm2)での加圧下吸収倍率(AAP)(いずれも後述)を向上させることは困難であった。
【0009】
また、典型的な吸水性樹脂としては、その高物性やコスト面から、アクリル酸の部分中和塩架橋体からなるアクリル酸系吸水性樹脂が挙げられる。そして、かかるアクリル酸系吸水性樹脂の製造方法としては、予め所定中和率に中和したアクリル酸およびその塩を重合する方法(以下、中和重合法と呼ぶ)と、未中和ないし低中和のアクリル酸を重合してから重合ゲルを後中和する方法(以下、酸型重合法)の2つが一般的に行われている。
中和重合法に比べて、後者の酸型重合法では高吸収倍率で低可溶分の吸水性樹脂が得られる傾向にはあるが、重合後の含水ゲル状架橋重合体を均一に中和するには長時間を要する上に技術的に非常に困難であり、得られる吸水性樹脂粉末の個々の粒子の中和率が不均一になる場合がある。このような場合、酸型重合法の吸水性樹脂は高吸収倍率で低可溶分にもかかわらず、表面架橋処理を行っても十分な吸水剤の性能が得られないことが、特開平10−10173号(欧州特許公開0882502A1)で開示されている。
【0010】
すなわち、従来、吸水性樹脂を表面架橋する場合にはその中和率の違いにより必要とされる表面架橋処理が異なり、ある中和率で最適な架橋処理でも他の中和率では所望する吸水剤の性能が得られなかったり、特に吸水性樹脂粉末の個々の粒子の中和率が多岐に混在する場合には、所望する吸水剤の性能が得られないことがあった。
以上述べたように、従来の技術によっては表面架橋処理を均一に行うことができておらず、その結果、得られる吸水性樹脂の各種物性(後述のCRC、AAP、SFCなど、特にSFC)のバランスが悪くなるとともに、SFCにバラツキが生じていた。このため、例えば、オムツの性能のロット振れや、オムツ1枚の中でも性能に大きな差が生じていた。
【0011】
【発明が解決しようとする課題】
本発明は、上記従来の問題点に鑑みなされたものである。すなわち、本発明の課題は、架橋処理時に、混合助剤としての効果を示しながらも架橋反応を阻害せず、場合によっては反応触媒としての効果も併せ持ち、かつ部分中和重合された吸水性樹脂の中和率の違いや酸型重合の後中和操作に起因する中和率の均一性にほとんど関わりなく、均一な表面架橋が発現できる吸水剤の製造方法を提供することにある。さらに本発明の課題は、無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性のバランスに優れるとともに、製造の際のロットごと、あるいは各ロット中における生理食塩水流れ誘導性の値の振れ(バラツキ)が小さい、物性の安定した吸水剤を短時間で製造する方法を提供することにもある。
【0012】
【課題を解決するための手段】
本発明者は、吸収特性に優れた吸水剤を鋭意検討した結果、特定の添加剤を吸水性樹脂の特定の架橋剤と共に用いることで上記課題が解決することを見出し、本発明を完成させるに至った
【0016】
すなわち、本発明にかかる吸水剤の製造方法は
酸基含有の吸水性樹脂粉末(a)に該酸基と反応しうる表面架橋剤(c)を混合し、前記吸水性樹脂粉末(a)を架橋処理する吸水剤の製造方法であって、
前記吸水性樹脂粉末は、以下の定義に基づく重量平均粒子径(D50)が300〜600μmで150μm以下の微粉が10重量%以下である、ポリアクリル酸塩架橋重合体(ただし、内部架橋剤の量が0.005−0.5モル%)であり、かつ、表面架橋剤の混合時には、無機多塩基酸の部分アルカリ金属塩または有機多価カルボン酸の部分アルカリ金属塩である非還元性のアルカリ金属塩pH緩衝剤(b2)をも混合する、
ことを特徴とする。
ただし、吸水性樹脂粉末の重量平均粒子径(D50)は、JIS標準篩(850μm、600μm、500μm、425μm、300μm、212μm、150μm、106μm、75μm)で篩い分けし、残留百分率Rを対数確率紙にプロットすることによって規定する。
【0018】
【発明の実施の形態】
以下、本発明について詳細に説明する。なお、以下、本発明で吸水剤とは、架橋構造を有する吸水性樹脂(以下、単に吸水性樹脂と呼ぶ)を主成分(好ましくは50〜100重量%、より好ましくは80〜100重量%、さらに好ましくは90〜100重量%)とし、吸水性樹脂をさらに架橋剤で改質(好ましくは表面改質、特に表面架橋)されたものを吸水剤と呼ぶ。
(吸水性樹脂の製造方法)
以下、本発明において、酸基含有の吸水性樹脂粉末を吸水性樹脂粉末(a)と呼び、かかる吸水性樹脂粉末(a)の中でも、さらに粒度を制御したもの、例えば、重量平均粒子径300〜600μmで150μm以下の微粉が10重量%以下のものを吸水性樹脂粉末(a1)と呼ぶ。
【0019】
本発明の吸水性樹脂とは、従来から知られている吸水性樹脂のことであり、例えばイオン交換水中において、必須に自重の5倍以上、好ましくは、50倍から1000倍という多量の水を吸収し、アニオン性、ノニオン性、またはカチオン性の水不溶性ヒドロゲルを形成する従来公知の架橋重合体のことである。
これらは、一般に、不飽和単量体成分(好ましくは酸基、特に、カルボキシル基含有不飽和単量体)を重合して得られる架橋構造を有する吸水性樹脂を主成分とする粒子状吸水剤であって、単量体溶液の状態で重合され、必要に応じて該重合体を乾燥し、乾燥の前および/または後で通常粉砕して得られたものである。このような吸水性樹脂としては、ポリアクリル酸部分中和物重合体、デンプン−アクリロニトリルグラフト重合体の加水分解物、デンプン−アクリル酸グラフト重合体、酢酸ビニル−アクリル酸エステル共重合体のケン化物、アクリロニトリル共重合体もしくはアクリルアミド共重合体の加水分解物、またはこれらの架橋体、カルボキシル基含有架橋ポリビニルアルコール変性物、架橋イソブチレンー無水マレイン酸共重合体等の1種または2種以上を挙げることができる。
【0020】
これらの吸水性樹脂は、1種または混合物でも用いられるが、中でも酸基含有の吸水性樹脂、さらには、カルボン酸またはその塩であるカルボキシル基含有の吸水性樹脂の1種またはその混合物が好ましく、典型的にはアクリル酸及び/又はその塩(中和物)を主成分とする単量体を重合・架橋することにより得られる重合体、すなわち、必要によりグラフト成分を含むポリアクリル酸塩架橋重合体が主成分とされる。
また、上記吸水性樹脂としては、水膨潤性水不溶性であることが必須であり、該吸水性樹脂中の未架橋の水可溶性成分(水溶性高分子)は、好ましくは50重量%以下、より好ましくは25重量%以下、さらに好ましくは20重量%以下、さらにより好ましくは15重量%以下、特に好ましくは10重量%以下のものが用いられる。
【0021】
上記アクリル酸塩としては、アクリル酸のナトリウム、カリウム、リチウム等のアルカリ金属塩、アンモニウム塩及びアミン塩等を例示することができる。上記吸水性樹脂は、その構成単位としてアクリル酸0〜50モル%およびアクリル酸塩100〜50モル%(但し、両者の合計量は100モル%以下とする)の範囲にあるものが好ましく、アクリル酸10〜40モル%およびアクリル酸塩90〜60モル%(但し、両者の合計量は100モル%以下とする)の範囲にあるものがより好ましい。なお、この酸と塩とのモル比を中和率と呼ぶ。上記塩を形成させるための吸水性樹脂の中和は重合前に単量体の状態で行っても良いし、あるいは重合途中や重合後に重合体の状態で行っても良いし、それらを併用してもよい。
【0022】
一般に、未中和ないし低中和の単量体を重合し重合体の状態で中和を行う場合(酸型重合法)には高吸収倍率で低可溶分の吸水性樹脂が得られる傾向にはあるが、吸水性樹脂の個々の粒子の均一な中和にはかなりの労力、設備と時間を要する(特開平10−10173号報)。しかし、本発明の方法を用いることで、吸水性樹脂の中和状態や製造方法の如何にかかわらず、すべての吸水性樹脂を良好に表面架橋などに使用することができ、よって、吸水剤の物性と生産性を大幅に向上することが可能となる。
本発明で用いる吸水性樹脂を得るための単量体は、必要に応じて上記アクリル酸(塩)以外の単量体を含有していてもよい。アクリル酸(塩)以外の単量体としては、特に限定されるものではないが、具体的には、例えば、メタクリル酸、マレイン酸、ビニルスルホン酸、スチレンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−(メタ)アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸等のアニオン性不飽和単量体及びその塩;アクリルアミド、メタアクリルアミド、N−エチル(メタ)アクリルアミド、N−n−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ビニルピリジン、N−ビニルピロリドン、N−アクリロイルピペリジン、N−アクリロイルピロリジン、N−ビニルアセトアミド等のノニオン性の親水基含有不飽和単量体;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、及びこれらの四級塩等のカチオン性不飽和単量体等が挙げられる。これら単量体は、単独で用いてもよく、適宜2種類以上を混合して用いてもよい。
【0023】
本発明において、アクリル酸(塩)以外の単量体を用いる場合には、該アクリル酸(塩)以外の単量体は、主成分として用いるアクリル酸及びその塩との合計量に対して、好ましくは30モル%以下、より好ましくは10モル%以下の割合である。上記アクリル酸(塩)以外の単量体を上記の割合で用いることにより、最終的に得られる吸水性樹脂(吸水剤)の吸収特性がより一層向上すると共に、吸水性樹脂(吸水剤)をより一層安価に得ることができる。
本発明に用いられる吸水性樹脂を得るために上述の単量体を重合するに際しては、バルク重合や沈殿重合を行うことが可能であるが、性能面や重合の制御の容易さ、さらに膨潤ゲルの吸収特性の観点から、上記単量体を水溶液とすることによる水溶液重合や逆相懸濁重合を行うことが好ましい。尚、上記単量体を水溶液とする場合の該水溶液(以下、単量体水溶液と称する)中の単量体の濃度は、水溶液の温度や単量体によって決まり、特に限定されるものではないが、10〜70重量%の範囲内が好ましく、20〜60重量%の範囲内がさらに好ましい。また、上記水溶液重合を行う際には、水以外の溶媒を必要に応じて併用してもよく、併用して用いられる溶媒の種類は、特に限定されるものではない。
【0024】
水溶液重合の方法としては、双腕型ニーダー中で単量体水溶液を、得られる含水ゲルを砕きながら重合したり、所定の容器中や駆動するベルト上に単量体水溶液を供給し、重合して得られたゲルをミートチョッパー等で粉砕する方法等が挙げられる。
上記の重合を開始させる際には、例えば過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、t−ブチルハイドロパーオキサイド、過酸化水素、2,2′−アゾビス(2−アミジノプロパン)二塩酸塩等のラジカル重合開始剤や、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン等の光重合開始剤を用いることができる。
【0025】
さらに、これら重合開始剤の分解を促進する還元剤を併用し、両者を組み合わせることによりレドックス系開始剤とすることもできる。上記の還元剤としては、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム等の(重)亜硫酸(塩)、L−アスコルビン酸(塩)、第一鉄塩等の還元性金属(塩)、アミン類等が挙げられるが、特に限定されるものではない。
これら重合開始剤の使用量は、通常0.001〜2モル%、好ましくは0.01〜0.1モル%である。これら重合開始剤の使用量が0.001モル%未満の場合には、未反応の単量体が多くなり、従って、得られる吸水性樹脂や吸水剤中の残存単量体量が増加するので好ましくない。一方、これら重合開始剤の使用量が2モル%を超える場合には、得られる吸水性樹脂や吸水剤中の水可溶成分量が増加するので好ましくない場合がある。
【0026】
また、反応系に放射線、電子線、紫外線等の活性エネルギー線を照射することにより重合反応の開始を行ってもよいし、さらに、上記重合開始剤を併用してもよい。尚、上記重合反応における反応温度は、特に限定されるものではないが、15〜130℃の範囲が好ましく、20〜120℃の範囲内がより好ましい。また、反応時間や重合圧力も特に限定されるものではなく、単量体や重合開始剤の種類、反応温度等に応じて適宜設定すればよい。
前記吸水性樹脂としては、架橋剤を使用しない自己架橋型のものであってもよいが、一分子中に、2個以上の重合性不飽和基や、2個以上の反応性基を有する架橋剤(吸水性樹脂の内部架橋剤)を共重合又は反応させたものがさらに好ましい。
【0027】
これら内部架橋剤の具体例としては、例えば、N,N´−メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミン、グリシジル(メタ)アクリレート等を挙げることができる
これら内部架橋剤は、単独で用いてもよく、適宜2種類以上を混合して用いてもよい。また、これら内部架橋剤は、反応系に一括添加してもよく、分割添加してもよい。少なくとも1種または2種類以上の内部架橋剤を使用する場合には、最終的に得られる吸水性樹脂や吸水剤の吸収特性等を考慮して、2個以上の重合性不飽和基を有する化合物を重合時に必須に用いることが好ましい。
【0028】
これら内部架橋剤の使用量は前記単量体(架橋剤を除く)に対して、好ましくは0.001〜2モル%、より好ましくは0.005〜0.5モル%、さらに好ましくは0.01〜0.2モル%、特に好ましくは0.03〜0.15モル%の範囲内とされる。上記内部架橋剤の使用量が0.001モル%よりも少ない場合、並びに、2モル%よりも多い場合には、充分な吸収特性が得られないおそれがある。
上記内部架橋剤を用いて架橋構造を重合体内部に導入する場合には、上記内部架橋剤を、上記単量体の重合前あるいは重合途中、あるいは重合後、または中和後に反応系に添加するようにすればよい。
【0029】
尚、上記重合に際しては、反応系に、澱粉・セルロース、澱粉・セルロースの誘導体、ポリビニルアルコール、ポリアクリル酸(塩)、ポリアクリル酸(塩)架橋体等の親水性高分子0〜50重量%(対単量体)や、その他0〜10重量%の、炭酸(水素)塩、二酸化炭素、アゾ化合物、不活性有機溶媒等の各種発泡剤;各種界面活性剤;キレート剤;次亜燐酸(塩)等の連鎖移動剤などを添加してもよい。
上記架橋重合体が水溶液重合で得られたものでゲル状である場合、すなわち含水ゲル状架橋重合体である場合、該架橋重合体は、必要に応じて乾燥し、乾燥の前および/または後で通常粉砕されて吸水性樹脂とする。また、乾燥は通常60℃〜250℃、好ましくは100℃〜220℃、より好ましくは120℃〜200℃の温度範囲で行われる。乾燥時間は、重合体の表面積、含水率、および乾燥機の種類に依存し、目的とする含水率になるよう選択される。
【0030】
本発明に用いることのできる吸水性樹脂や吸水剤の含水率(吸水性樹脂や吸水剤中に含まれる水分量で規定/180℃で3時間の乾燥減量で測定)は特に限定されないが、得られる吸水剤の物性面から室温でも流動性を示す粉末であり、より好ましくは0.2〜30重量%、さらに好ましくは0.3〜15重量%、特に好ましくは0.5〜10重量%の粉末状態である。
また本発明の製造方法に用いることのできる吸水性樹脂としては、粉末状のものを挙げることができる。吸水性樹脂の粒子は重合反応により得られた乾燥粉砕前のゲル状の平均粒径が1000μmを超えるようなものも使用できるが、通常、粉末とならないため、必要により(好ましくは)乾燥・粉砕・分級をすることにより目的に応じた粉末粒径に調整される。
【0031】
吸水性樹脂粉末や吸水剤の粒径としては、重量平均粒子径が10〜2000μm、好ましくは100〜1000μm、より好ましくは200〜700μm、さらに好ましくは300〜600μm、特に好ましくは400〜550μmの範囲が好適に用いられる。さらに好ましくは、吸水性樹脂粉末や吸水剤中の微粉末(例えば100μm以下、好ましくは150μm以下)の微粉末は少ない方が好ましく、具体的には10重量%以下、さらには5重量%以下、特に1重量%以下であることが好ましい。また、吸水性樹脂粉末や吸水剤は好ましくは実質1000μm以上、さらに好ましくは850μm以上の粒子が5重量%以下、さらには1重量%以下とされる。
【0032】
このようにして得られた吸水性樹脂や吸水剤の粒子形状は、球状、破砕状、不定形状等特に限定されるものではないが、粉砕工程を経て得られた不定形破砕状のものが好ましく使用できる。さらに、その嵩比重(JIS K−3362で規定)は、吸水剤の優れた物性から好ましくは0.40〜0.80g/ml、より好ましくは0.50〜0.75g/ml、さらに好ましくは0.60〜0.73g/mlの範囲である。
上記の方法により得られた吸水性樹脂は、通常、無加圧下での生理食塩水に対する飽和吸収倍率が10〜100g/g程度を有し、この吸収倍率などの物性は目的に応じて適宜調整される。
【0033】
(水溶性無機塩基(b1))
本発明では上記吸水性樹脂粉末(a)あるいは(a1)に対して、非架橋性の水溶性無機塩基(b1)、すなわち、好ましくは、アルカリ金属塩、アンモニウム塩、アルカリ金属水酸化物、および、アンモニアあるいはその水酸化物などからなる群から選ばれる水溶性無機塩基(b1)(以下、水溶性無機塩基(b1)と呼ぶ)、および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および、架橋剤(c)あるいは脱水反応性架橋剤(c1)が添加されるが、以下、水溶性無機塩基(b1)について説明する。
【0034】
すなわち、本発明で水溶性無機塩基とは、水溶液中で解離することで水あるいは該塩基よりOH-を生じ、酸基を中和して塩を生じる無機化合物(炭酸塩や重炭酸塩を含む)を指す。本発明で用いられる水溶性無機塩基(b1)は、好ましくは、アルカリ金属塩,アンモニウム塩,アルカリ金属水酸化物、および、アンモニアあるいはその水酸化物からなる群から選ばれ、これらは、通常、実質的に非架橋性の水溶性無機塩基である。(なお、酸基含有の吸水性樹脂に対して架橋性の水溶性無機塩基として、水酸化カルシウムや水酸化アルミニウムに代表される多価金属の水酸化物が例示されるが、一般に、これら多価金属は本発明の水溶性無機塩基には含まれない)。
【0035】
水溶性無機塩基(b1)として、得られる吸水剤の物性面から水溶性であることが必須であり、室温の水100g当たり通常5g以上、好ましくは20g以上、より好ましくは50g以上、さらに好ましくは100g以上の溶解性を示すものが用いられる。なお、本発明で非水溶性無機塩基、有機塩基や架橋性無機塩基(多価金属の水酸化物)などの併用は排除しないが、非架橋性の水溶性無機塩基(b1)を用いない場合、得られた吸水剤の物性が低い。
具体的に水溶性無機塩基(b1)としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ナトリウムカリウム、炭酸セシウム、炭酸ルビジム、炭酸アンモニウム等のアルカリ金属塩および/またはアンモニウム塩を含む炭酸化合物やその水和物(十水塩、七水塩、一.五水塩、一水塩など)、重炭酸リチウム、重炭酸ナトリウム、重炭酸カリウム、重炭酸セシウム、重炭酸ルビジウム、重炭酸アンモニウム等のアルカリ金属および/またはアンモニウムを含む重炭酸塩、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化ルビジウム、水酸化アンモニウム、水ガラス等のアルカリ金属およびアンモニウムを含む水酸化化合物、燐酸水素2ナトリウム、燐酸水素2カリウム、燐酸水素2リチウム、燐酸水素2ルビジウム、燐酸水素2セシウムなどの燐酸水素化合物、セスキ炭酸ナトリウム(Na2CO3・NaHCO3・2H2O)などの複合塩が挙げられ、これらの2種以上を混合ないし併用しても良い。また、これら水溶性無機塩基(b1)は、粉末やその水和物、ペレットや水溶液として購入・保存ないし使用されるが、その形態に制限はない。
【0036】
水溶性無機塩基(b1)の中でも物性面や溶解性から、好ましくはアルカリ金属塩、さらに好ましくはリチウム塩、ナトリウム塩ないしカリウム塩、より好ましくはナトリウム塩が用いられる。また、化合物(b1)の中でも物性面から、好ましくは、炭酸塩/炭酸水素塩/水酸化物、さらに好ましくは、水酸物およびまたは炭酸水素塩、特に好ましくは水酸化物が用いられる。すなわち、具体的には水溶性無機塩基(b1)として好ましくは、炭酸水素ナトリウムおよび/または水酸化ナトリウム、さらに好ましくは、水酸化ナトリウムが用いられる。
本発明における水溶性無機塩基(b1)の使用量は、後述の非還元性アルカリ金属塩pH緩衝剤(b2)と併用しない場合には、吸水性樹脂100重量部に対して0.001〜10重量部の範囲内が好ましく、0.01〜5重量部の範囲内がより好ましく、さらに好ましくは0.01〜2重量部の範囲である。上記の範囲内で用いることにより、尿や汗、経血等の体液(水性液体)に対する吸収特性をさらに一層向上させることができる。使用量が0.001重量部未満では、吸水性樹脂の表面近傍の官能基の中和率を適度に調整することができず、吸収特性が向上しない場合がある。水溶性無機塩基(b1)の使用量が10重量部より多い場合には過剰となり、不経済であるとともに、吸収倍率が向上しない恐れがある。
【0037】
なお、水溶性無機塩基(b1)を、後述する非還元性アルカリ金属塩pH緩衝剤(b2)と併用する場合には、上記と同様の理由により、それらの合計使用量が、吸水性樹脂100重量部に対して0.001〜10重量部の範囲内が好ましく、0.01〜5重量部の範囲内がより好ましく、さらに好ましくは0.01〜2重量部の範囲である。ただし、本発明で水溶性無機塩基(b1)と後述の非還元性アルカリ金属塩pH緩衝剤(b2)とを併用する場合、少なくとも何れか一方の働きを示す範囲で(b1)と(b2)が適宜併用される。
この吸収特性の向上機構は明らかではないが、以下2つの理由((1)表面中和率の均一化による均一な表面架橋層の形成、(2)塩濃度の変化による混合と浸透の最適化)と推定される。
【0038】
すなわち、理由(1)として、一般に吸水性樹脂粉末では重合後の後中和の有無(前述の中和重合法か酸型重合法)にかかわらず、吸水性樹脂粉末の一粒一粒の中和率や、同じ一粒の粉末であっても微小には粉末表面の中和率が異なっており、従来の表面処理においては、これらの理由による粉末の架橋反応や架橋剤の混合に不均一が生じ、物性の低下が発生していた。そこで、本発明においては水溶性無機塩基(b1)を架橋剤(c)と併用することで、吸水性樹脂粉末の一粒一粒の中和率や、一粒の粉末の微小な表面中和率の差をなくすことにより、架橋に関与する表面近傍のカルボキシル基の中和率が一様に最適化でき、その結果均一に表面架橋を行うことが可能となった。例えば、70モル%中和のポリアクリル酸系吸水性樹脂および0.01〜2重量部の水酸化ナトリウムより得られた吸水剤は0.025〜5モル%の範囲で吸水剤の中和率は高められ、さらにその粒子の表面近傍において選択的に高中和率である。さらには、本発明の水溶性無機塩基(b1)は、架橋剤の反応触媒としても作用することが吸収特性向上に起因していると推測される。
【0039】
また、理由(2)として、水溶性無機塩基(b1)は、架橋剤の混合時には架橋剤溶液中の高い塩濃度由来で吸水性樹脂への浸透を制御し混合性を改良しているが、混合後には吸水性樹脂のカルボキシル基と中和反応してアルカリ金属塩およびアンモニウム塩となる事で架橋剤溶液中から消失するため、架橋剤の浸透を促進する働きをなしていると推定される。これは従来の添加剤(イソプロパノールなどの親水性有機溶媒)では、不活性な有機溶媒由来の吸水性樹脂への浸透が制御され混合性は改良されるが、混合後にも有機溶媒が架橋剤溶液中に残存して架橋剤の表面内部への浸透を妨げてしまうと推測される。
【0040】
また、水溶性無機塩基(b1)と異なり、アルミニウムのような多価金属塩を使用した場合、多価金属イオンによる架橋反応が進行してしまい、無加圧もしくは加圧下での吸収倍率を低下させている事が推測される。さらに、多価金属イオンによる架橋はイオン結合を形成するため非常に弱く、また水膨潤状態では多価金属イオンが粒子内部に移動して架橋を形成するためより一層の物性の低下をもたらす事も推測される。
以上のような現象から起こる吸水剤の架橋層の厚みの不足と物性が低下するという従来の欠点を、本願の水溶性無機塩基(b1)では改良していると推定される。さらに脱水反応性架橋剤(c1)を用いることにより、脱水架橋反応から生じる水によってさらに架橋剤が表面近傍に浸透し、架橋層の厚みがより増しているとも推定される。
【0041】
(非還元性アルカリ金属塩pH緩衝剤(b2))
本発明では上記吸水性樹脂粉末(a)あるいは(a1)に対して、非架橋性の水溶性無機塩基(b1)、すなわち、アルカリ金属塩、アンモニウム塩、アルカリ金属水酸化物、および、アンモニアあるいはその水酸化物などからなる群から選ばれる水溶性無機塩基(b1)、および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および、架橋剤(c)あるいは脱水反応性架橋剤(c1)が添加されるが、以下、非還元性アルカリ金属塩pH緩衝剤(b2)について説明する。
【0042】
本発明における非還元性アルカリ金属塩pH緩衝剤(b2)は、溶液中である程度の酸や塩基の添加の消失でも、ほぼ一定の水素イオン濃度を維持するものであり、必須に非還元性で、好ましくはさらに非酸化性のアルカリ金属塩が用いられる(例えば、リンや硫黄を含むアルカリ金属塩pH緩衝剤の場合、リン原子の酸化数が+5/硫黄原子の酸化数が+6、ならば該pH緩衝剤は非酸化性非還元性を示す)。
pH緩衝剤が還元性を有したり、アルカリ金属塩でない場合、架橋の阻害となる恐れがあり、本発明の目的を十分には達成できない。本発明にはpH緩衝剤として働くアルカリ金属塩であり、種々の酸、塩基、または塩の組み合わせから作成されるpH緩衝剤が適用される。また、吸水性樹脂への混合性や浸透性から、pH緩衝剤の分子量は50〜1000、さらには60〜800、特に70〜500のものが用いられる。
【0043】
本発明でいうpH緩衝剤(b2)として働くアルカリ金属塩とは、代表的には炭酸水素塩、リン酸二水素塩、リン酸水素塩の1種または2種以上が例示される。
具体的な例としては、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、リン酸水素二カリウムといった無機多塩基酸の部分アルカリ金属塩;クエン酸二水素カリウム、クエン酸二水素ナトリウム、クエン酸水素二ナトリウム、クエン酸水素二カリウム、酒石酸水素ナトリウム、酒石酸水素カリウム、フマル酸一ナトリウム、フタル酸水素カリウムといった有機多価カルボン酸の部分アルカリ金属塩、特にナトリウム塩ないしカリウム塩、さらにはリチウム塩が挙げられる。
【0044】
また、上記pH緩衝剤(b2)のほかに、本発明でいう種々の酸、塩基、または塩の組み合わせから作成されるpH緩衝剤(b2)とは、代表的には従来公知の緩衝液を作成する際に用いられる化合物の組み合わせから作られる緩衝剤が例示される。緩衝液としては、緩衝剤の溶液、特に、弱酸と強塩基からなる塩または強酸と弱塩基からなる塩、またはそれらの塩の混合物の水溶液である。カルボキシル基などの酸基を含有する吸水性樹脂の場合には、好ましくは弱酸と強塩基からなる塩の混合物としての緩衝剤が用いられ、より好ましくは無機塩を用いたものである。
【0045】
具体的な例としては、化学便覧(日本化学会編、II−355、356)に記載の緩衝液に使用されている化合物の組み合わせが緩衝剤として挙げられる。例えば、Clark−Lubsの緩衝液(塩化カリウム/塩酸;pH1.0〜2.2、フタル酸水素カリウム/塩酸;pH2.2〜3.8、フタル酸水素カリウム/水酸化ナトリウム;pH4.0〜6.2、リン酸二水素カリウム/水酸化ナトリウム;pH5.8〜8.0、ホウ酸/塩化カリウム/水酸化ナトリウム;pH7.8〜10.0)、Sφrensenの緩衝液(グリシン+塩化ナトリウム/塩酸;pH1.1〜4.6、グリシン+塩化ナトリウム/塩酸;pH8.6〜13.0、クエン酸ナトリウム/塩酸;pH1.1〜4.9、クエン酸ナトリウム/水酸化ナトリウム;pH5.0〜6.7、四ホウ酸ナトリウム/塩酸;pH7.6〜9.2、四ホウ酸ナトリウム/水酸化ナトリウム;pH9.3〜12.4、リン酸二水素カリウム/リン酸水素二ナトリウム;pH5.3〜8.0)、Kolthoffの緩衝液(クエン酸カリウム/クエン酸;pH2.2〜3.6、クエン酸二水素カリウム/塩酸;pH2.2〜3.6、クエン酸二水素カリウム/水酸化ナトリウム;pH3.8〜6.0、コハク酸/四ホウ酸ナトリウム;pH3.0〜5.8、クエン酸二水素カリウム/四ホウ酸ナトリウム;pH3.8〜6.0、リン酸二水素カリウム/四ホウ酸ナトリウム;pH5.8〜9.2、四ホウ酸ナトリウム/炭酸ナトリウム;pH9.2〜11.0、塩酸/炭酸ナトリウム;pH10.2〜11.2、リン酸水素二ナトリウム/水酸化ナトリウム;pH11.0〜12.0)、Michaelisの緩衝液(酒石酸/酒石酸ナトリウム;pH1.4〜4.5、乳酸/乳酸ナトリウム;pH2.3〜5.3、酢酸/酢酸ナトリウム;pH3.2〜6.2、リン酸二水素カリウム/リン酸水素二ナトリウム;pH5.2〜8.3、ジエチルバルビツル酸ナトリウム+酢酸ナトリウム/塩酸;pH2.6〜9.2、ジエチルバルビツル酸ナトリウム/塩酸;pH6.8〜9.6、N,N−ジメチルグリシンナトリウム塩/塩酸;pH8.6〜10.6)、Mcilvaineの広域緩衝液(リン酸水素二ナトリウム/クエン酸;pH2.2〜8.0)、Britton−Robinsonの広域緩衝液(クエン酸+リン酸二水素カリウム+ホウ酸+ジエチルバルビツル酸/リン酸三ナトリウム)、Carmodyの広域緩衝液(ホウ酸+クエン酸/リン酸三ナトリウム;pH2.0〜12.0)、Gomoriの緩衝液(2,4,6−トリメチルピリジン/塩酸;pH6.4〜8.4、トリス(ヒドロキシメチル)アミノメタン/塩酸;pH7.2〜9.1、2−アミノ−2−メチル−1,3−プロパンジオール/塩酸;pH7.8〜9.7)、Bates−BowerのTris緩衝液(トリス(ヒドロキシメチル)アミノメタン/塩酸;pH7.0〜9.0)、Delory−King緩衝液(炭酸塩/炭酸水素塩;pH9.2〜10.7)、等が挙げられる。そして、使用される緩衝剤のpHおよび濃度は、吸水性樹脂の中和率や用いる表面架橋剤の種類にもよるが、好ましくは緩衝剤を添加することにより該表面架橋剤溶液のpHが1.5〜10.0の範囲に調整される。
【0046】
上記の内でも、性能、安定性、一成分系での使用、コスト、等の点から無機多塩基酸の部分中和塩が好ましく、リン酸、炭酸の部分アルカリ金属中和塩がより好ましい。
本発明における上記pH緩衝剤(b2)の使用量は、前述の水溶性無機塩基(b1)と併用しない場合には、吸水性樹脂の固形分100重量部に対して0.005〜10重量部の範囲内が好ましく、0.05〜5重量部の範囲内がより好ましい。上記の範囲内で用いることにより、尿や汗、経血等の体液(水性液体)に対する吸収特性をさらに一層向上させることができる。使用量が0.005重量部未満では、吸水性樹脂の表面近傍の官能基の中和率を適度に調整することができず、吸収特性が向上しない場合がある。pH緩衝剤(b2)の使用量が10重量部より多い場合には、該添加剤が過剰となり、不経済であるとともに、吸収倍率が向上しない恐れがある。
【0047】
なお、非還元性アルカリ金属塩pH緩衝剤(b2)を、前述の水溶性無機塩基(b1)と併用する場合には、上記と同様の理由により、それらの合計使用量が、吸水性樹脂100重量部に対して0.001〜10重量部の範囲内が好ましく、0.01〜5重量部の範囲内がより好ましく、さらに好ましくは0.01〜2重量部の範囲である。ただし、本発明で水溶性無機塩基(b1)と前述の非還元性アルカリ金属塩pH緩衝剤(b2)と併用する場合、少なくとも何れか一方の働きを示す範囲で(b1)と(b2)が適宜併用される。
この吸収特性の向上機構は明らかではないが、以下2つの理由((1)表面中和率の均一化、(2)塩濃度の変化による混合と浸透の最適化)とも推定される。
【0048】
すなわち、理由(1)として、吸水性樹脂粉末では重合後の後中和の有無(前述の中和重合法か酸型重合法)にかかわらず、吸水性樹脂粉末の一粒一粒の中和率や、同じ一粒の粉末であっても微小には粉末表面の中和率が異なっており、粉末の架橋の反応や架橋剤の混合に不均一を生じて物性を低下されていたものが、本発明のpH緩衝剤(a)を架橋剤(b)と併用することで、吸水性樹脂粉末の一粒一粒の中和率や、一粒の粉末の微小な表面中和率の差をなくしているため、吸水性樹脂粉末の中和率や後述の中和指数の如何に関わらず、本発明では、架橋に関与する表面近傍のカルボキシル基の中和率が一様に最適化できるためと考えられる。その結果、本発明のpH緩衝剤は、吸水性樹脂粉末への架橋剤の浸透を妨げられることなく、混合助剤としても作用し、さらには、架橋剤の反応触媒としても作用することが吸収特性向上に起因していると推測される。
【0049】
また、理由(2)として、炭酸水素塩などpH緩衝剤は、架橋剤の混合時には架橋剤溶液中のアルカリ金属塩として存在するために、高い塩濃度由来の吸水性樹脂への浸透を制御し混合性を改良しているが、混合後には吸水性樹脂のカルボキシル基と中和反応してpH緩衝剤のアルカリ金属塩が架橋剤溶液中から消失するため、混合後には架橋剤の浸透を阻害した塩が消失して架橋剤の浸透を促進する働きをなしていると推定される。これは従来の添加剤(イソプロパノールなどの親水性有機溶媒)では、不活性な有機溶媒由来の吸水性樹脂への浸透が制御され混合性は改良されるが、混合後にも有機溶媒が架橋剤溶液中に残存して架橋剤の表面内部への浸透を妨げてしまい、吸水剤の架橋層の厚みが不足している従来の欠点を、本願のpH緩衝剤では改良していると推定される。
【0050】
(架橋剤(c)およびその混合と架橋処理)
本発明では、酸基と反応しうる架橋剤(c)として、好ましくは表面架橋剤、さらには、脱水反応性架橋剤(c1)が好ましく用いられる。なお、本発明で脱水反応性とは、吸水性樹脂の官能基(特に表面近傍の官能基)と架橋剤とが脱水反応、好ましくは、脱水エステル化および/または脱水アミド化、さらに好ましくが、脱水エステル化で架橋する架橋剤である。
具体的に吸水性樹脂がカルボキシル基を含有する場合、多価アルコールなどのヒドロキシル基含有の架橋剤、多価アミンなどのアミノ基含有の架橋剤、さらには、アルキレンカーボネートやモノ、ジまたはポリのオキサゾリジノン化合物;3−メチル−3−オキセタンメタノール等のオキセタン化合物などの環状架橋剤であって、その環状架橋剤の開環反応に伴ってヒドロキシル基やアミノ基を生成し該ヒドロキシル基やアミノ基が架橋反応反応を行う環状架橋剤、などが脱水反応性を示す架橋剤(c1)として例示される。脱水反応性架橋剤(c1)の1種または2種以上が用いられるが、さらに、非脱水反応性の架橋剤、例えば、多価金属なども併用してもよい。
【0051】
具体的に、本発明に用いることのできる脱水反応性架橋剤(c1)としては、吸水性樹脂の官能基と反応しうる架橋剤ならば制限なく使用され、通常、該用途に用いられている架橋剤(表面架橋剤)のことである。例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,3−プロパンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、グリセリン、ジグリセリン、ポリグリセリン、2−ブテン−1,4−ジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノール、1,2−シクロヘキサノール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、オキシエチレンオキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトールなどの多価アルコール化合物;エチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリアミドポリアミン、ポリアリルアミン、ポリエチレンイミン等の多価アミン化合物、並びに、それら多価アミンとハロエポキシ化合物との縮合物;1,3−ジオキソラン−2−オン、4−メチル−1,3−ジオキソラン−2−オン、4、5−ジメチル−1,3−ジオキソラン−2−オン、4、4−ジメチル−1,3−ジオキソラン−2−オン、4−エチル−1,3−ジオキソラン−2−オン、4−ヒドロキシメチル−1,3−ジオキソラン−2−オン、1,3−ジオキサン−2−オン、4−メチル−1,3−ジオキサン−2−オン、4、6−ジメチル−1,3−ジオキサン−2−オン、1,3−ジオキソパン−2−オン等のアルキレンカーボネート化合物、並びに、エチレングリコールビス(4−メチレン−1,3−ジオキソラン−2−オン)エーテル等の多価アルキレンカーボネート化合物;モノ、ジまたはポリのオキサゾリジノン化合物;3−メチル−3−オキセタンメタノール等のオキセタン化合物ならびに多価オキセタン化合物;等より選ばれる1種または2種以上のものが例示できる。
【0052】
これら脱水反応性架橋剤の中でも、多価アルコール、アルキレンカーボネート、オキサゾリジノン化合物、(多価)オキセタン化合物から選ばれた1種以上が好ましく、少なくとも多価アルコールを用いることが特に好ましい。
架橋剤(c)としては、これら脱水反応性架橋剤(c1)に加えて、さらに、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ポリエチレンジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリシドール、γ−グリシドキシプロピルトリメトキシシラン等のエポキシ化合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物;1,2−エチレンビスオキサゾリン等の多価オキサゾリン化合物;γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン等のシランカップリング剤;2,2−ビスヒドロキシメチルブタノール−トリス[3−(1−アジリジニル)プロピオネート]などの多価アジリジン化合物、ベリリウム、マグネシウム、カルシウム、ストロンチウム、亜鉛、アルミニウム、鉄、クロム、マンガン、チタン、ジルコニウムなどの多価金属が例示される。
【0053】
なお、本発明で脱水反応性架橋剤(c1)、および、重量平均粒子径300〜600μmで150μm以下の微粉が10重量%以下の吸水性樹脂粉末(a1)および/または粒子径が850μm未満で150μm以上の粒子を全粒子の90重量%以上含み、かつ、粒子径が850μm未満で600μm以上の粒子(A1)、粒子径が600μm未満で500μm以上の粒子(A2)、粒子径が500μm未満で300μm以上の粒子(A3)、粒子径が300μm未満で150μm以上の粒子(A4)から選ばれる少なくとも2種以上を含む吸水性樹脂粉末の両方を用いない場合、一般に得られる吸水剤の物性が低く、好ましくは、該脱水反応性架橋剤(c1)、および、該特定粒度の吸水性樹脂粉末(a1)の両方が本発明で使用される。
【0054】
本発明において、吸水性樹脂粉末(a)あるいは(a1)と、水溶性無機塩基(b1)および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および架橋剤(c)あるいは(c1)を混合する場合には、水を用いることが好ましい。この際、使用される水の量は、使用する吸水性樹脂の含水率にもよるが、通常、吸水性樹脂100重量部に対し、0.5〜20重量部、好ましくは0.5〜10重量部の範囲である。水の使用量が20重量部を越えると吸収倍率が低下してしまうことがある。0.5重量部よりも少ないと効果が現れにくくなり、加圧下吸収倍率を向上させることができなくなる恐れがある。
【0055】
また、本発明において、吸水性樹脂粉末(a)あるいは(a1)と、水溶性無機塩基(b1)および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および架橋剤(c)あるいは(c1)を混合する場合には、親水性有機溶媒を用いてもよい。用いられる親水性有機溶媒としては、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール、t−ブチルアルコール等のアルコール;アセトン、メチルエチルケトン等のケトン類;ジオキサン、アルコキシ(ポリ)エチレングリコール、テトラヒドロフラン等のエーテル類;ε−カプロラクタム、N,N−ジメチルホルムアミド等のアミド類;ジメチルスルホキサイド等のスルホキサイド類;エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3−プロパンジオール、ジプロピレングリコール、2,2,4−トリメチル−1,3−ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、グリセロリン酸、2−ブテン−1,4−ジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノール、1,2−シクロヘキサノール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、オキシエチレン−オキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトール等の多価アルコール類が挙げられる。
【0056】
使用される親水性有機溶媒の量は、吸水性樹脂の種類や粒度によって異なるが、通常、吸水性樹脂100重量部に対し0〜10重量部、好ましくは0〜5重量部、より好ましくは0〜3重量部の範囲である。親水性有機溶媒の使用量が10重量部以上の場合、上記添加剤の溶解性が低下し吸収特性が向上しない恐れがある。なお、上記多価アルコールは反応条件(加熱温度や時間、含水率など)によって吸水性樹脂と反応させて架橋剤としてもよいし、反応させずに溶媒としてもよいし、それらの働きを併用させてもよい。
さらに、本発明において吸水性樹脂粉末(a)あるいは(a1)と、上記添加剤(b1)および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および架橋剤(c)あるいは(c1)とを混合する場合、水や親水性有機溶媒以外の物質として、本発明の効果を妨げない範囲で界面活性剤や不活性無機微粒子粉末を用いてもよい。用いられる界面活性剤や不活性無機微粒子粉末は、米国特許第5164459号公報、欧州特許第827753号公報、欧州特許第349240号公報、欧州特許第761241号公報などに例示される。
【0057】
本発明において、吸水性樹脂粉末(a)あるいは(a1)と、上記水溶性無機塩基(b1)および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および架橋剤(c)あるいは(c1)の混合は、親水性有機溶媒またはシクロヘキサン、ペンタン等の有機溶媒中に該吸水性樹脂を分散させた状態で行ってもよいが、水、架橋剤、添加剤の混合物を数回に分けて添加してもよく、混合方法は特に限定されるものではない。また、上記水溶性無機塩基(b1)および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および架橋剤(c)あるいは(c1)、さらに必要に応じて用いられる水や親水性有機溶媒、無機粉末などは、吸水性樹脂に対して別々に混合してもよいし、一括で混合してもよいし、数回に分けて混合してもよいが、好ましくは、水溶性無機塩基(b1)および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および架橋剤(c)あるいは(c1)を予め混合した後に吸水性樹脂に添加させ、その際、水溶性無機塩基(b1)および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および架橋剤(c)あるいは(c1)は水溶液とさせることがより好ましい。また、この際の水溶液の温度は混合性や安定性から0℃〜沸点、好ましくは5〜50℃、さらには10〜30℃にさせる。また、混合前の吸水性樹脂粉末(a)あるいは(a1)の温度は、混合性から好ましくは0〜80℃、さらには40〜70℃の範囲である。
【0058】
さらに、本発明では種々の混合方法の中で、必要により水および/または親水性有機溶媒と、水溶性無機塩基(b1)および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および架橋剤(c)あるいは(c1)とを予め混合した後、次いで、その水溶液を吸水性樹脂粉末(a)に噴霧あるいは滴下混合する方法が好ましく、噴霧する方法がより好ましい。噴霧される液滴の大きさは、300μm以下が好ましく、200μm以下がより好ましい。また混合に際し、本発明の効果を妨げない範囲で水不溶性微粒子粉体や界面活性剤を共存させてもよい。
【0059】
前記混合に用いられる好適な混合装置は、均一な混合を確実にするため大きな混合力を生み出せることが必要である。本発明に用いることのできる混合装置としては、例えば、円筒型混合機、二重壁円錐型混合機、高速攪拌型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、流動型炉ロータリーディスク型混合機、気流型混合機、双腕型ニーダー、内部混合機、粉砕型ニーダー、回転式混合機、スクリュー型押出機等が好適である。
本発明の吸水剤の製造方法は、吸水性樹脂粉末(a)あるいは(a1)に、水溶性無機塩基(b1)および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および架橋剤(c)あるいは(c1)を混合し、前記吸水性樹脂粉末(a)あるいは(a1)を架橋処理することを特徴とする。
【0060】
本発明の吸水剤の製造方法は、好ましくは、吸水性樹脂粉末(a)あるいは(a1)に、水溶性無機塩基(b1)および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および架橋剤(c)あるいは(c1)を混合した後、吸水性樹脂の表面近傍を架橋させる際に、加熱処理を行う。
本発明で加熱処理を行う場合、処理時間は、1分〜180分が好ましく、3分〜120分がより好ましく、5分〜100分がさらに好ましい。加熱処理温度(熱媒温度ないし材料温度で規定)は100〜250℃の範囲が好ましく、140〜240℃の範囲がより好ましく、150〜230℃の範囲がさらに好ましく、160〜220℃の範囲がさらにより好ましい。加熱温度が100℃未満では、加熱処理や脱水反応に時間がかかり生産性の低下を引き起こすのみならず、均一な架橋が達成されず、優れた吸水剤が得られなくなる恐れがある。また処理温度が250℃を越えると、得られる吸水剤がダメージを受け、物性に優れたものが得られにくいとことがある。
【0061】
加熱処理は通常の乾燥機または加熱炉を用いて行うことができ、溝型混合乾燥機、ロータリー乾燥機、ディスク乾燥機、流動層乾燥機、気流型乾燥機、および赤外線乾燥機が例示される。
上記の本発明に係る吸水剤の製造方法においては、さらに、必要に応じて、消臭剤、抗菌剤、香料、二酸化珪素や酸化チタン等の無機粉末、発泡剤、顔料、染料、親水性短繊維、可塑剤、粘着剤、界面活性剤、肥料、酸化剤、還元剤、水、塩類、キレート剤、殺菌剤、ポリエチレングリコールやポリエチレンイミンなどの親水性高分子、パラフィンなどの疎水性高分子、ポリエチレンやポリプロピレンなどの熱可塑性樹脂、ポリエステル樹脂やユリア樹脂などの熱硬化性樹脂等を添加する等、吸水剤や吸水性樹脂に種々の機能を付与する工程を含んでいてもよい。これら添加剤の使用量は吸水剤100重量部に対して0〜10重量、好ましくは0〜1重量部の範囲で用いられる。
【0062】
本発明で吸水剤に用いられるカチオン性高分子化合物は、吸水剤の衛生材料への固定性などを向上でき、好ましくは重量平均分子量が2000以上で、さらに好ましくは5000以上、最も好ましくは重量平均分子量が10000以上である。また、その使用量は、好ましくは吸水性樹脂100重量部に対し0.01〜10重量部、より好ましくは0.05〜5重量部、さらに好ましくは0.1〜3重量部である。カチオン性高分子化合物の混合は、単独あるいは溶液(水溶液)で添加され、好ましくは、表面架橋後に添加される。カチオン性高分子化合物の具体例としては、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン、ポリアミドアミンとエピクロルヒドリンの縮合物、ポリアミジン、ポリ(N−ビニルホルムアルデヒド)の部分加水分解物またはこれらの塩などが例示される。
【0063】
水不溶性微粒子を用いてさらに吸水剤の通液性や吸湿時の耐ブロッキング性などを改善することができる。用いられる微粒子としては、好ましくは10μm以下、さらには1μm以下、特に0.1μm以下の無機または有機の水不溶性微粒子が用いられ、具体的には酸化珪素(商品名、Aerosil、日本アエロジル社製)、酸化チタン、酸化アルミ、などが用いられる。混合には粉体混合(Dry−Blend)やスラリー混合が用いられ、その使用量は吸水剤100重量部に対して10重量部以下、さらには0.001〜5重量部、好ましくは0.01〜2重量部用いられる。
【0064】
(吸水剤およびそれを用いた衛生材料)
本発明においては、好ましくは、吸水性樹脂粉末(a)あるいは(a1)に、水溶性無機塩基(b1)および/または非還元性のアルカリ金属塩pH緩衝剤(b2)、および架橋剤(c)あるいは(c1)を混合し、前記吸水性樹脂粉末(a)あるいは(a1)を架橋処理することによって、前述の本発明の効果に起因する高物性の新規な吸水剤を提供する。
本発明にかかる吸水剤は、好ましくは、不飽和単量体成分を重合して得られる架橋構造を有する吸水性樹脂を主成分とする粒子状吸水剤である。
【0065】
(1)酸重合する場合、得られる吸水剤
本発明にかかる吸水剤は、酸重合で吸水性樹脂を得る場合、好ましくは、酸基含有単量体(塩)を含む単量体を重合し、さらに後中和して得られた吸水性樹脂を表面架橋した吸水剤である。より好ましくは、前記の後中和して得られた吸水性樹脂の中和指数が15以上、さらに好ましくは17以上、特に好ましくは20以上である。また、好ましくは、前記の表面架橋した吸水剤の中和指数が15以上、さらに好ましくは17以上、特に好ましくは20以上である。表面架橋効果を高めるために中和指数を低くする場合、中和に長時間や複雑な工程を要するが、本発明では不均一な中和でも簡便に優れた表面架橋が達成できる。
【0066】
従来、酸基含有単量体(塩)を含む単量体を重合しさらに後中和して得られた吸水性樹脂は高吸収倍率で低可溶分だが、得られた吸水性樹脂の中和の不均一のため、一般に加圧下吸収倍率が向上しにくいものであった。かかる問題を解決するため、特開平10−101735号(欧州特許公開0882502号)では高度に吸水性樹脂の一粒一粒の粒子の中和率の差(中和指数)を制御する技術が知られている。
かかる中和指数を制御する方法では、酸基含有単量体(塩)を含む単量体を重合しさらに後中和して得られた低可溶分の吸水性樹脂であって、従来にない高い加圧下吸収倍率を達成するが、中和指数の制御に非常に手間を必要とするものであった。しかし、本発明のアルカリ金属pH緩衝剤(b2)を用いる本発明の方法では、中和指数の高度な制御を必要とせず、簡便な不均一な後中和でも高い加圧下吸収倍率を与えるので非常に好ましい。なお、勿論、本発明は、酸基含有単量体(塩)を含む単量体を重合しさらに後中和して得られた、酸型重合法による低可溶分の吸水性樹脂に限定されるものでなく、後述の実施例などにも示すように、後中和工程を含まない中和重合法による吸水性樹脂にも好適に適用される。
【0067】
(2)5つの物性を併せ持つ新規な吸水剤
また、酸重合する場合しない場合を含めて、本発明の吸水剤は下記物性が好ましく、特に本発明では、下記特性の5つの物性(粒度、CRC、AAP、SFCの4つに加えて、さらにSFC変化指数、SFC変動係数、SFC変動率、連続生産系SFC標準偏差、表層可溶分などの1つ以上、好ましくは2つ以上、より好ましくは3つ以上、特に好ましくは4つ以上)を併せ持った新規な吸水剤を与える。
(a)粒度
本発明にかかる吸水剤の平均粒子径や嵩比重は、前記吸水性樹脂の範囲、すわわち、重量平均粒子径300〜600μmで150μm以下の微粉末が10重量%以下であることが好ましい。より好ましくは5重量%以下、さらに好ましくは3重量%以下、特に2重量%以下である。
【0068】
本発明にかかる吸水剤は、粒子径が850μm未満で150μm以上の粒子を全粒子の90重量%以上含み、かつ、粒子径が850μm未満で600μm以上の粒子(A1)、粒子径が600μm未満で500μm以上の粒子(A2)、粒子径が500μm未満で300μm以上の粒子(A3)、粒子径が300μm未満で150μm以上の粒子(A4)から選ばれる少なくとも2種以上を含み、さらに好ましくは3種以上、より好ましくは4種を含む。
本発明にかかる吸水剤は、好ましくは、粒子径が850μm未満で150μm以上の粒子を全粒子の95重量%以上含み、より好ましくは97重量%以上、さらに好ましくは98重量%以上である。かかる特定の粒度に制御されることで、衛生材料で高物性を達成する。
【0069】
本発明にかかる吸水剤は、好ましくは、前記粒子A1からA4までの4種をそれぞれ0.1重量%以上含み、より好ましくは1重量%以上、さらに好ましくは3重量%以上である。この場合、上限値は特に限定されないが、好ましくは、前記粒子A1からA4までの4種がそれぞれ99重量%以下、より好ましくは90重量%以下、さらに好ましくは80重量%以下である。各粒度を一定以上含有する事で粒子の表面積に依存する吸水速度がバランスよく制御される。
(b)CRC
本発明にかかる吸水剤は、0.90重量%生理食塩水に対する無加圧下で30分の吸収倍率(Centrifuge Retention Capacity/CRC)が31g/g以上であることが好ましい。CRCが31g/g以上となることによって、吸水剤を用いた衛生材料の吸収に臨界的に優れ、コンパクトな衛生材料を達成でき、さらに吸水体(なお、吸水体とは、吸水剤と必要により繊維などの他の吸水材料を含む体液吸水体を意味する)のコスト低減にもなる。CRCは、より好ましくは32g/g以上、さらに好ましくは33g/g以上、さらにより好ましくは34g/g以上、特に好ましくは35g/g以上、特により好ましくは36g/g以上である。0.90重量%生理食塩水に対する無加圧下で30分の吸収倍率が31g/gよりも小さいと、吸水体に吸収されうる尿の総量が小さくなり、吸水体に吸収された尿がおむつの表面への戻りが非常に大きくなる。さらに吸水体に求められる尿の吸液量を維持しようとする場合、吸水体に使用する吸水剤の量が多くなり、衛生材料が嵩高く重いものになり、吸水体のコストアップに繋がることになる点で好ましくない。
【0070】
(c)AAP
本発明にかかる吸水剤は、0.90重量%生理食塩水に対する4.83kPaで60分の加圧下吸収倍率(Absorbency Against Pressure/AAP)が20g/g以上であることが好ましい。AAPが20g/g以上となることによって、本発明の吸水剤を紙おむつの吸水体の一部に使用した場合、吸水体に吸収された尿がおむつの表面への戻りを防ぐ効果が非常に大きくなる。0.90重量%生理食塩水に対する4.83kPaで60分の加圧下吸収倍率は、より好ましくは22g/g以上、さらに好ましくは24g/g以上、さらにより好ましくは25g/g以上、特に好ましくは26g/g、特により好ましくは27g/g以上である。0.90重量%生理食塩水に対する4.83kPaで60分の加圧下吸収倍率が20g/gよりも小さいと、吸水体に吸収された尿がおむつの表面への戻りを防ぐ効果が非常に小さくなる点で好ましくない。
【0071】
(d)SFC
本発明にかかる吸水剤は、0.69重量%生理食塩水流れ誘導性(SFC)が20(単位:10-7×cm3×s×g-1)以上であることが好ましい。SFCは、本発明で得られる吸水剤の膨潤後の通液性に、非常に大きな影響を与える。つまり、例えば、本発明の吸水剤を紙おむつの吸水体の一部に使用した場合の、通液性を良好にし、吸水体に液を十分に行き渡らせ、吸液量を増大させ、液の漏れを防止するという効果が著しく向上する。SFCは、より好ましくは25(単位:10-7×cm3×s×g-1)以上、さらに好ましくは30(単位:10-7×cm3×s×g-1)以上、さらにより好ましくは35(単位:10-7×cm3×s×g-1)以上、特に好ましくは40(単位:10-7×cm3×s×g-1)以上、特により好ましくは50(単位:10-7×cm3×s×g-1)以上である。SFCが20(単位:10-7×cm3×s×g-1)よりも小さいと、例えば、紙おむつの吸水体に使用した場合の通液性が低下し、吸水体に液が局在化し、吸液量が減少し、液の漏れが多くなり、吸水体としての性能が著しく低下する点で好ましくない。
【0072】
すなわち、本発明の吸水剤は衛生材料に用いるには粒度に加えて、下記3つの物性をバランスよく併せ持つことが好ましい。すなわち、CRC、AAP、SFCの1つまたは2つが高物性だけでは、衛生材料に十分に好適ではないことが見出された。これらの3つの物性は上記酸重合した特定の中和指数の吸水剤のみならず、後中和工程を含まない中和重合法による吸水性樹脂にも好適に適用される。
0.90重量%生理食塩水に対する無加圧下で30分の吸収倍率(CRC)が31g/g以上。
【0073】
0.90重量%生理食塩水に対する4.83kPaでの加圧下吸水倍率(AAP)が24g/g以上。
0.69重量%生理食塩水流れ誘導性(SFC)が20(単位:10-7×cm3×s×g-1)以上。
(e)SFC変化指数
また、本発明者らは、従来粒子全体(Bulk)で物性を評価および管理されていた吸水性樹脂(吸水剤)粒子において、吸水性樹脂(吸水剤)粒子の粒度ごとの物性が大きく異なり、その粒度ごとの物性の違いが衛生材料での物性低下を引き起こしている事実を見出した。衛生材料に含まれる吸水剤粒子は微視的には粒度にバラツキが見られるため、その粒度由来の個々の衛生材料の物性の違いや衛生材料の部分での物性の違いが、衛生材料の物性低下を引き起こすと推定される。
【0074】
そこで、本発明者らは粒度ごとの物性の差、特に粒度ごとのSFCのバラツキ小さい吸水剤を提供する。
本発明にかかる吸水剤は、下記式(1)で規定されるSFC変化指数が0〜25%であることが好ましい。
SFC変化指数(%)=[(粒子A1からA4のSFCの標準偏差)/(粒子状吸水剤全体のSFC)]×100 (1)
このSFC変化指数や後述のSFC変動係数において、粒子A1からA4のSFCの標準偏差は、吸水剤粒子を分級して、吸水剤中で粒子A1からA4のうちで存在する2〜4種類の粒子を得て、次いで得られた各粒度ごとのSFCを1回ずつ測定して、その2〜4種類のSFC値から標準偏差を計算して求められる。また、その2〜4種類のSFC値から平均値も同様に計算される。
【0075】
このSFC変化指数は、粒度ごとのSFCのバラツキを表し、SFC変化指数が0〜25%となることによって、吸水体がより均一な通液性を持つようになり、吸水体全体に液が分散し易く、液の漏れを防止するという効果となる。SFC変化指数は、より好ましくは0〜23%、さらに好ましくは0〜20%、さらにより好ましくは0〜18%、特に好ましくは0〜15%、特により好ましくは0〜10%である。SFC変化指数が25%よりも大きいと、例えば吸水剤を紙おむつの吸水体に使用した場合、吸水体に通液性のばらつきが生じ、吸水体全体に液が分散し難くなり、液の漏れの発生や、吸水体の吸液量が低減する点で好ましくない。
【0076】
(f)SFC変動係数
本発明にかかる吸水剤は、下記式(2)で規定されるSFC変動係数が0〜0.25であることが好ましい。
SFC変動係数=(粒子A1からA4のSFCの標準偏差)/(粒子A1からA4のSFCの平均値) (2)
このSFC変動係数や下記のSFC変動率も同様に粒度ごとのSFCの差の少なさを表し、SFC変動係数が0〜0.25となることによって、粒度ごと(例えばA1からA4)のSFCのばらつきの度合いが小さくなり、例えば本発明の吸水剤を用いて紙おむつの吸水体を製造する場合、吸水体内での通液性が均一になる上に、吸水体の各々を比較しても、紙おむつの性能にばらつきがなくなり、安定した品質の紙おむつを製造できることとなる。SFC変動係数は、より好ましくは0〜0.23、さらに好ましくは0〜0.20、さらにより好ましくは0〜0.18、特に好ましくは0〜0.15、特により好ましくは0〜0.10である。SFC変動係数が0.25よりも大きい場合および/またはSFC変動率が0.65未満である場合、吸水剤を用いた衛生材料(特に紙おむつ)の吸水体内での通液性が不均一になる上に、吸水体の各々を比較しても、紙おむつの性能のばらつきが大きくなり、安定した品質の紙おむつを製造できなくなる点で好ましくない。
【0077】
(g)SFC変動率
すなわち、本発明にかかる吸水剤は、下記式(3)で規定されるSFC変動率が0.65〜1.00であることが好ましい。
SFC変動率=(粒子A1からA4のSFCの中で最小のSFC)/(粒子A1からA4のSFCの中で最大のSFC) (3)
このSFC変動率も同様に粒度ごとのSFCの差の少なさを表し、好ましくは0.70〜1.00、さらにより好ましくは0.75〜1.00、特に好ましくは0.80〜1.00である。
【0078】
(h)表層可溶分量
本発明の吸水剤は、表層可溶分量が6.0重量%以下(対吸水剤)であることが好ましい。この表層可溶分量は、好ましくは5.5重量%以下、より好ましくは5.0重量%以下、さらに好ましくは4.5重量%以下、特に好ましくは4.0重量%以下である。
本願の測定法で規定される表層可溶分は衛生材料への実使用に対応した可溶分量であり、より衛生材料での吸水能に優れる。すなわち、従来、水可溶分の測定(US Re 32649やEDANA法など)は多く知られていたが、過剰の液で長時間の測定のため、実使用において溶出してくると考えられる可溶分の量よりも過剰の量の可溶分を測定していることがわかった。そして、本発明の方法が衛生材料での実使用に最もモデルとなっていることが見出された。
【0079】
(i)連続生産系SFC標準偏差
本発明にかかる吸水剤は、下記式(4)で規定される連続生産系SFC標準偏差が5.0以下であることが好ましい。
連続生産系SFC標準偏差=各LotのSFCの標準偏差 (4)
(ただし、各Lotは20kg以上。Lot数は10以上。)
上記連続生産系とは、1ラインで、24時間以上、若しくは10t以上、連続して吸水剤を生産することを示す。また、吸水剤の製造方法の基本工程である、重合、乾燥、粉砕、表面処理等は、連続生産系においては、各工程は連続式またはバッチ式を問わないが(例えば、重合工程においては連続重合とバッチ重合など)、各工程の間隔は24時間以下、好ましくは12時間以下、さらに好ましくは6時間以下、特に好ましくは3時間以下で行うものとする。
【0080】
各Lotは、好ましくは20kg〜100t、より好ましくは0.1t〜50t、さらに好ましくは0.5t〜25tである。
Lot数は、好ましくは20以上、より好ましくは30以上、さらに好ましくは50以上、特に好ましくは100以上である。
この連続生産系SFC標準偏差は、吸水剤の連続生産において各LotのSFCの値のばらつきを表し、連続生産系SFC標準偏差が5.0以下となることによって、各Lot毎のSFCのばらつきが小さくなり、例えば、本発明の吸水剤を用いて紙おむつの吸水体を製造する場合、安定した品質の紙おむつを製造できることとなる。連続生産系SFC標準偏差は、より好ましくは4.5以下、さらに好ましくは4.3以下、さらにより好ましくは4.0以下、特に好ましくは3.5以下、特により好ましくは3.0以下、最も好ましくは2.5以下である。連続生産系SFC標準偏差が5.0よりも大きい場合、安定した品質の紙おむつを製造できなくなる点で好ましくない。
【0081】
なお、上記した各種物性は、吸水剤が衛生材料として使用される場合、その実使用の結果(おむつの吸収量や漏れなど)と相関する重要な物性であり、本発明の吸水剤は上記各種物性に特に優れている。これら測定法は実施例に記載する。
本発明にかかる吸水剤は、以上に述べた種々の特徴を有することが好ましく、特に好ましい構成として、上記の式(1)、(2)、(4)のいずれか1つ以上、より好ましくは2つ以上、さらに好ましくは3つ全てを満たす吸水剤である。
すなわち、本発明にかかる吸水剤は、不飽和単量体成分を重合して得られる架橋構造を有する吸水性樹脂を主成分とする粒子状吸水剤であって、
前記粒子状吸水剤は、粒子径が850μm未満で150μm以上の粒子を全粒子の90重量%以上含み、かつ、粒子径が850μm未満で600μm以上の粒子(A1)、粒子径が600μm未満で500μm以上の粒子(A2)、粒子径が500μm未満で300μm以上の粒子(A3)、粒子径が300μm未満で150μm以上の粒子(A4)から選ばれる少なくとも2種以上を含み、
さらに、下記物性を満たすことを特徴とする、吸水剤である。
【0082】
0.90重量%生理食塩水に対する無加圧下で30分の吸収倍率(CRC)が31g/g以上。
0.90重量%生理食塩水に対する4.83kPaで60分の加圧下吸収倍率(AAP)が24g/g以上。
0.69重量%生理食塩水流れ誘導性(SFC)が20(単位:10-7×cm3×s×g-1)以上。
下記式(1)で規定されるSFC変化指数が0〜25%。
SFC変化指数(%)=[(粒子A1からA4のSFCの標準偏差)/(粒子状吸水剤全体のSFC)]×100 (1)
また、本発明にかかる別の吸水剤は、不飽和単量体成分を重合して得られる架橋構造を有する吸水性樹脂を主成分とする粒子状吸水剤であって、
前記粒子状吸水剤は、粒子径が850μm未満で150μm以上の粒子を全粒子の90重量%以上含み、かつ、粒子径が850μm未満で600μm以上の粒子(A1)、粒子径が600μm未満で500μm以上の粒子(A2)、粒子径が500μm未満で300μm以上の粒子(A3)、粒子径が300μm未満で150μm以上の粒子(A4)から選ばれる少なくとも2種以上を含み、
さらに、下記物性を満たすことを特徴とする、吸水剤である。
【0083】
0.90重量%生理食塩水に対する無加圧下で30分の吸収倍率(CRC)が31g/g以上。
0.90重量%生理食塩水に対する4.83kPaで60分の加圧下吸収倍率(AAP)が24g/g以上。
0.69重量%生理食塩水流れ誘導性(SFC)が20(単位:10-7×cm3×s×g-1)以上。
下記式(2)で規定されるSFC変動係数が0〜0.25。
SFC変動係数=(粒子A1からA4のSFCの標準偏差)/(粒子A1からA4のSFCの平均値) (2)
また、本発明にかかるさらに別の吸水剤は、不飽和単量体成分を重合して得られる架橋構造を有する吸水性樹脂を主成分とする粒子状吸水剤であって、
前記粒子状吸水剤は、粒子径が850μm未満で150μm以上の粒子を全粒子の90重量%以上含み、かつ、粒子径が850μm未満で600μm以上の粒子(A1)、粒子径が600μm未満で500μm以上の粒子(A2)、粒子径が500μm未満で300μm以上の粒子(A3)、粒子径が300μm未満で150μm以上の粒子(A4)から選ばれる少なくとも2種以上を含み、
さらに、下記物性を満たすことを特徴とする、吸水剤である。
【0084】
0.90重量%生理食塩水に対する無加圧下で30分の吸収倍率(CRC)が31g/g以上。
0.90重量%生理食塩水に対する4.83kPaで60分の加圧下吸収倍率(AAP)が24g/g以上。
0.69重量%生理食塩水流れ誘導性(SFC)が20(単位:10-7×cm3×s×g-1)以上。
下記式(4)で規定される連続生産系SFC標準偏差が5.0以下。
連続生産系SFC標準偏差=各LotのSFCの標準偏差 (4)
(ただし、CRC、AAP、SFCはLot平均であり、各Lotは20kg以上。Lot数は10以上。)
本発明にかかるさらに別の吸水剤は、酸基含有単量体(塩)を含む単量体を重合し、さらに後中和して得られた吸水性樹脂を表面架橋した粒子状吸水剤であって、
前記粒子状吸水剤または吸水性樹脂の中和指数が15以上で、かつ、表面架橋後の0.90重量%生理食塩水に対する4.83kPaで60分の加圧下吸収倍率(AAP)が20(g/g)以上であることを特徴とする、吸水剤である。
【0085】
上記吸水剤において、CRC、AAP、SFCやSFC変化指数、SFC変動係数などは好ましくは前述の範囲であり、本発明の新規な吸水剤は、例えば、前述の本発明の吸水剤の製造方法で得られる。本発明の吸水剤はCRC、AAP、SFCが非常に高く高物性をバランスよく維持している上で、さらに粒度ごとの物性の変化も従来になく少ないため、いかなる衛生材料の使用条件でも高物性を発揮する優れた吸水剤である。
本発明によれば、無加圧下の吸収倍率、加圧下の吸収倍率、生理食塩水流れ誘導性のバランスに優れた良好な吸収特性を備えた吸水剤を簡便に製造することができ、農園芸保水剤、工業用保水剤、吸湿剤、除湿剤、建材、などで広く用いられるが、その吸水剤は紙おむつ、生理用ナプキンなどの、糞、尿ないし血液の吸収用衛生材料に特に好適に用いられる。さらに、本発明の吸水剤は上記各種物性にバランスよく優れるため、衛生材料は一般に吸水剤の濃度(吸水剤および繊維基材の合計に対する吸水剤の重量比)として高濃度、例えば30〜100重量%、好ましくは40〜100重量%の範囲、さらに好ましくは50〜95重量%で使用可能である。また、衛生材料中の吸水体の構造は、一般の吸水性物品に用いられる構造であれば特に制限はなく、例えば、シート状に成形した親水性繊維材料の間に吸水剤を配する、いわゆるサンドイッチ構造の吸水体や、親水性繊維材料と吸水剤を混合したものを成形した、いわゆるブレンド構造の吸水体が挙げられる。
【0086】
【実施例】
以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、吸水性樹脂ないし吸水剤の諸性能は、以下の方法で測定した。
なお、衛生材料などの最終製品として使用された吸水剤の場合は、吸水剤は吸湿しているので、適宜、吸水剤を最終製品から分離して減圧低温乾燥後(例えば、1mmHg以下、60℃で12時間)に測定すればよい。また、本発明の実施例および比較例において使用された吸水性樹脂の含水率はすべて6重量%以下であった。
【0087】
さらに、後述の(4)で粒度別のSFCを測定する場合、衛生材料などの最終製品として使用された吸水剤では、上記操作ののちにSFCが測定されるが、使用前の吸水剤、すなわち、実験室で製造された吸水剤を測定する場合、実生産や実使用のダメージに相関させるため、すべて後述(5)の機械的ダメージを与えた後の吸水剤で、粒度別のSFC、分級する前のSFCを測定するものとする。
(1)無加圧下吸収倍率(0.90重量%生理食塩水に対する無加圧下で30分の吸収倍率/CRC)
室温(20〜25℃)、湿度50RH%の条件下で、吸水性樹脂ないし吸水剤0.20gを不織布製の袋(60mm×60mm)に均一に入れてシールした後、室温で0.9重量%生理食塩水中に浸漬した。30分後に袋を引き上げ、遠心分離機(株式会社コクサン社製、遠心機:型式H−122)を用いて250Gで3分間水切りを行った後、袋の重量W1(g)を測定した。また、同様の操作を吸水性樹脂あるいは吸水剤を用いずに行い、その時の重量W0(g)を測定した。そして、これらW1、W0から、次式に従って無加圧下吸収倍率(g/g)を算出した。
【0088】
無加圧下吸収倍率(g/g)=(W1(g)−W0(g))/吸水性樹脂ないし吸水剤の重量(g)
(2)加圧下吸収倍率(0.90重量%生理食塩水に対する4.83kPaで60分の加圧下吸収倍率/AAP)
内径60mmのプラスチックの支持円筒の底に、ステンレス製400メッシュの金網(目の大きさ38μm)を融着させ、室温(20〜25℃)、湿度50RH%の条件下で、該網上に吸水剤0.90gを均一に散布し、その上に、吸水剤に対して4.83kPa(0.7psi)の荷重を均一に加えることができるよう調整された、外径が60mmよりわずかに小さく支持円筒との隙間が生じず、かつ上下の動きが妨げられないピストンと荷重とをこの順に載置し、この測定装置一式の重量Wa(g)を測定した。
【0089】
直径150mmのペトリ皿の内側に直径90mmのガラスフィルター(株式会社相互理化学硝子製作所社製、細孔直径:100〜120μm)を置き、0.90重量%生理食塩水(20〜25℃)をガラスフィルターの上面と同じレベルになるように加えた。その上に、直径90mmの濾紙1枚(ADVANTEC東洋株式会社、品名:(JIS P 3801、No.2)、厚さ0.26mm、保留粒子径5μm)を載せ、表面が全て濡れるようにし、かつ過剰の液を除いた。
上記測定装置一式を前記湿った濾紙上に載せ、液を荷重下で吸収させた。1時間後、測定装置一式を持ち上げ、その重量Wb(g)を測定した。そして、Wa、Wbから、次式に従って加圧下吸収倍率(g/g)を算出した。
【0090】
加圧下吸収倍率(g/g)
=(Wa(g)−Wb(g))/吸水剤の重量((0.9)g)
(3)重量平均粒子径
吸水性樹脂粉末ないし吸水剤を目開き850μm、600μm、500μm、425μm、300μm、212μm、150μm、106μm、75μmなどのJIS標準ふるいで篩い分けし、残留百分率Rを対数確率紙にプロットした。これにより、重量平均粒子径(D50)を読み取った。
篩い分け、および、後述の粒度別のSFCを測定する際の分級方法は、吸水性樹脂粉末ないし吸水剤10.0gを、室温(20〜25℃)、湿度50RH%の条件下で、目開き850μm、600μm、500μm、300μm、150μmのJIS標準ふるい(THE IIDA TESTING SIEVE:径8cm)に仕込み、振動分級器(IIDA SIEVE SHAKER、TYPE:ES−65型、SER.No.0501)により、10分間、分級を行った。
【0091】
(4)0.69重量%生理食塩水流れ誘導性(SFC)
特表平9−509591の生理食塩水流れ誘導性(SFC)試験に準じて行った。
図1に示す装置を用い、容器40に均一に入れた吸水剤(0.900g)を人工尿(1)中で0.3psi(2.07kPa)の加圧下、60分間膨潤させ、ゲル44のゲル層の高さを記録し、次に0.3psi(2.07kPa)の加圧下、0.69重量%生理食塩水33を、一定の静水圧でタンク31から膨潤したゲル層を通液させる。このSFC試験は室温(20〜25℃)で行った。コンピューターと天秤を用い、時間の関数として20秒間隔でゲル層を通過する液体量を10分間記録する。膨潤したゲル44(の主に粒子間)を通過する流速Fs(t)は増加重量(g)を増加時間(s)で割ることによりg/sの単位で決定する。一定の静水圧と安定した流速が得られた時間をtsとし、tsと10分間の間に得たデータだけを流速計算に使用して、tsと10分間の間に得た流速を使用してFs(t=0)の値、つまりゲル層を通る最初の流速を計算する。Fs(t=0)はFs(t)対時間の最小2乗法の結果をt=0に外挿することにより計算される。
【0092】

Figure 0004326752
ここで、
s(t=0):g/sで表した流速
0:cmで表したゲル層の高さ
ρ:NaCl溶液の密度(1.003g/cm3
A:セル41中のゲル層上側の面積(28.27cm2
ΔP:ゲル層にかかる静水圧(4920dyne/cm2
およびSFC値の単位は(10-7×cm3×s×g-1)である。
【0093】
図1に示す装置としては、タンク31には、ガラス管32が挿入されており、ガラス管32の下端は、0.69重量%生理食塩水33をセル41中の膨潤ゲル44の底部から、5cm上の高さに維持できるように配置した。タンク31中の0.69重量%生理食塩水33は、コック付きL字管34を通じてセル41へ供給された。セル41の下には、通過した液を補集する容器48が配置されており、補集容器48は上皿天秤49の上に設置されていた。セル41の内径は6cmであり、下部の底面にはNo.400ステンレス製金網(目開き38μm)42が設置されていた。ピストン46の下部には液が通過するのに十分な穴47があり、底部には吸水剤あるいはその膨潤ゲルが、穴47へ入り込まないように透過性の良いガラスフィルター45が取り付けてあった。セル41は、セルを乗せるための台の上に置かれ、セルと接する台の面は、液の透過を妨げないステンレス製の金網43の上に設置した。
【0094】
人工尿(1)は、塩化カルシウムの2水和物0.25g、塩化カリウム2.0g、塩化マグネシウムの6水和物0.50g、硫酸ナトリウム2.0g、りん酸2水素アンモニウム0.85g、りん酸水素2アンモニウム0.15g、および、純水994.25gを加えたものを用いた。
(5)機械的ダメージ試験
図2に示すガラス製容器(山村硝子社製マヨネーズ瓶、商品名:A−29)に吸水剤30gとガラスビーズ(玉径約6mmの精密分留充填用ソーダ石灰ガラスビーズ)10gを入れた。これを図3に示す分散機(東洋精機製作所社製、No.488試験用分散機)に備えられたクランプ間に挟み固定し、100V/60Hzで振動回転数750cpmの振動を10分間与えた。これにより、上記分散機に固定された容器は、分散機における上記クランプの取り付け面に対して左右に各々12.5°(合計25°)傾斜運動すると同時に、前後に各々8mm(合計16mm)振動することにより、容器内部の吸水剤に衝撃を与える。上記衝撃は、吸水剤の製造工程中に吸水剤が受ける衝撃力を代表するものとして経験的に定められた力であるが、製造後の輸送や吸水体製造時のダメージにも広く適用できるものである。本発明において、機械的ダメージを与える場合は、特に、吸水剤の製造時、吸水体の製造時を想定したものである。さらに、SFC変化指数、SFC変動係数、SFC変動率は、吸水体内部における吸水剤の性能のばらつきを測る指標である。よって粒度別の物性を測定する場合は、実験室(1回の製造工程で得られる吸水剤の量が20kg以下)のスケールにおいて製造された吸水剤は、すべて前記機械的ダメージを与えなければならない。
【0095】
(6)可溶分(水可溶成分)量
250ml容量の蓋付きプラスチック容器に0.9重量%生理食塩水溶液(生理食塩水)の184.3gを測り取り、その水溶液中に吸水性樹脂1.00gを加え16時間攪拌することにより樹脂中の可溶分を抽出した。この抽出液を濾紙1枚(ADVANTEC東洋株式会社、品名:(JIS P 3801、No.2)、厚さ0.26mm、保留粒子径5μm)を用いて濾過することにより得られた濾液の50.0gを測り取り測定溶液とした。
はじめに生理食塩水だけを、まず、0.1NのNaOH水溶液でpH10まで滴定を行い、その後、0.1NのHCl水溶液でpH2.7まで滴定して空滴定量([bNaOH]ml、[bHCl]ml)を得た。
【0096】
同様の滴定操作を測定溶液についても行うことにより滴定量([NaOH]ml、[HCl]ml)を求めた。
例えば既知量のアクリル酸とそのナトリウム塩からなる吸水性樹脂の場合、そのモノマーの平均分子量と上記操作により得られた滴定量をもとに、吸水性樹脂中の可溶分量を以下の計算式により算出することができる。未知量の場合は滴定により求めた中和率を用いてモノマーの平均分子量を算出する。
可溶分(重量%)=0.1×(平均分子量)×184.3×100×([HCl]−[bHCl])/1000/1.0/50.0
中和率(mol%)=(1−([NaOH]−[bNaOH])/([HCl]−[bHCl]))×100
(7)表層可溶分(水可溶成分)量
250ml容量の蓋付きプラスチック容器に0.50重量%生理食塩水溶液の100gを測り取り、その水溶液中に吸水剤0.50gを加え、1時間吸水剤中の表層可溶分を抽出した。この抽出操作において、攪拌は初期の吸水剤の分散および最後の液の均一化のみを目的に攪拌し、前記以外は攪拌を行わない。具体的には、表層可溶分の抽出は静置で行い、抽出前後の1分間のみ攪拌(攪拌速度:400rpm、攪拌子:テフロン(登録商標)製(2.5cm))を行う。この抽出液を濾紙1枚(ADVANTEC東洋株式会社、品名:(JIS P 3801、No.2)、厚さ0.26mm、保留粒子径5μm)を用いて濾過することにより得られた濾液の50.0gを測り取り測定溶液とした。
【0097】
はじめに0.5重量%NaCl水溶液だけを、まず、0.1NのNaOH水溶液でpH10まで滴定を行い、その後、0.1NのHCl水溶液でpH2.7まで滴定して空滴定量([bNaOH]ml、[bHCl]ml)を得た。
同様の滴定操作を測定溶液についても行うことにより滴定量([NaOH]ml、[HCl]ml)を求めた。
例えば既知量のアクリル酸とそのナトリウム塩からなる吸水剤の場合、そのモノマーの平均分子量と上記操作により得られた滴定量をもとに、吸水剤中の表層可溶分量を以下の計算式により算出することができる。未知量の場合は滴定により求めた中和率を用いてモノマーの平均分子量を算出する。
【0098】
表層可溶分(重量%)=0.1×(平均分子量)×100×100×([HCl]−[bHCl])/1000/0.5/50.0
中和率(mol%)=(1−([NaOH]−[bNaOH])/([HCl]−[bHCl]))×100
(8)中和指数
特開平10−101735号およびその請求項3(欧州特許公開0882502号およびその請求項2〜4)に従い、以下、吸水性樹脂粉末および吸水剤の中和指数を求めた。
【0099】
すなわち、JIS標準篩で300〜600μmに分級した吸水性樹脂粉末ないし吸水剤の粒子200粒を、カバーガラスを貼りつけた20mm×20mmの開口部を有する厚さ1.6mmのプラスチックプレートに入れ、0.2mlの脱イオン水を添加する。さらに、上記膨潤ゲルにブルムチモールブルー(BTB)0.1重量%エタノール溶液とメチルレッド(MR)0.1重量%エタノール溶液との1.5:1混合溶液0.05mlをマイクロシリンジで添加して、pH指示薬によって粒子200粒の着色を観察した。こうして吸水性樹脂ないし吸水剤の平均中和率から20モル%を越えて不均一に中和された粒子の個数(200個中で何個か)を求めて、この不均一な中和粒子の個数を中和指数(上記特許では第一中和指数/請求項3)として求めた。もちろん、中和指数が大きいほど、吸水性樹脂粉末の中和は不均一である。詳しくは、上記特許を参照。
【0100】
製造例1):吸水性樹脂粉末(A)の製造/中和重合
シグマ型羽根を2本有する内容積10リットルのジャケット付きステンレス型双腕型ニーダーに蓋を付けて形成した反応器中で、75モル%の中和率を有するアクリル酸ナトリウムの水溶液5500g(単量体濃度38重量%、モノマーの平均分子量88.5)にポリエチレングリコールジアクリレート(n=9)3.70gを溶解させて反応液とした。次にこの反応液を窒素ガス雰囲気下で、30分間脱気した。続いて、反応液に10重量%過硫酸ナトリウム水溶液28.3gおよび1重量%L−アスコルビン酸水溶液2.1gを攪拌しながら添加したところ、およそ1分後に重合が開始した。そして、生成したゲルを粉砕しながら、20〜95℃で重合を行い、重合が開始して30分後に含水ゲル状架橋重合体(1)を取り出した。
【0101】
得られた含水ゲル状架橋重合体(1)は、その径が約5mm以下に細分化されていた。この細分化された含水ゲル状架橋重合体(1)を50メッシュ(目開き300μm)の金網上に広げ、150℃で90分間熱風乾燥した。次いで、ロールミルを用いて粉砕し、さらに目開き850μmおよび106μmのJIS標準篩で分級することで大部分の粒子が850μm〜106μmの範囲にある吸水性樹脂粉末(A)を得た。
得られた吸水性樹脂粉末(A)の無加圧下の吸収倍率は49(g/g)、可溶分量は23重量%、重量平均粒径(D50)は330μm、850μm〜150μmの範囲にある吸水性樹脂粉末は97重量%であった。
【0102】
製造例2):吸水性樹脂粉末(B)の製造/中和重合
シグマ型羽根を2本有する内容積10リットルのジャケット付きステンレス型双腕型ニーダーに蓋を付けて形成した反応器中で、71モル%の中和率を有するアクリル酸ナトリウムの水溶液5500g(単量体濃度41重量%、モノマーの平均分子量87.7)にポリエチレングリコールジアクリレート(n=9)8.05gを溶解させて反応液とした。次にこの反応液を窒素ガス雰囲気下で、30分間脱気した。続いて、反応液に10重量%過硫酸ナトリウム水溶液30.8gおよび1重量%L−アスコルビン酸水溶液2.57gを攪拌しながら添加したところ、およそ1分後に重合が開始した。そして、生成したゲルを粉砕しながら、20〜95℃で重合を行い、重合が開始して30分後に含水ゲル状架橋重合体(2)を取り出した。
【0103】
得られた含水ゲル状架橋重合体(2)は、その径が約5mm以下に細分化されていた。この細分化された含水ゲル状架橋重合体(2)を50メッシュ(目開き300μm)の金網上に広げ、180℃で50分間熱風乾燥した。次いで、ロールミルを用いて粉砕し、さらに目開き850μmのJIS標準篩で分級することで大部分の粒子が850μm以下の範囲にある吸水性樹脂粉末(B)を得た。
得られた吸水性樹脂粉末(B)の無加圧下の吸収倍率は36(g/g)、可溶分量は10重量%、重量平均粒径(D50)は450μm、850μm〜150μmの範囲にある吸水性樹脂粉末は97重量%であった。
【0104】
製造例3):吸水性樹脂粉末(C)の製造例/中和重合
製造例2において、ポリエチレングリコールジアクリレート5.01gに変更した以外は製造例2と同様にして重合、乾燥、粉砕および分級を行い、吸水性樹脂粉末(C)を得た。得られた吸水性樹脂粉末(C)の無加圧下の吸収倍率は39(g/g)、可溶分量は13重量%、重量平均粒径(D50)は450μm、850μm〜150μmの範囲にある吸水性樹脂粉末は97重量%であった。
製造例4):吸水性樹脂粉末(D)の製造例/中和重合
製造例2において、ポリエチレングリコールジアクリレート5.01gに変更した以外は製造例2と同様にして重合、乾燥、および粉砕を行った。得られた粉砕物をさらに目開き600μmおよび300μmのJIS標準篩で分級することで、600μm〜300μmの範囲にある吸水性樹脂粉末(D)を得た。得られた吸水性樹脂粉末(D)の無加圧下の吸収倍率は40(g/g)、可溶分量は9重量%、重量平均粒径(D50)は450μmであった。
【0105】
参考例1):吸水性樹脂粉末(A)の架橋処理/水溶性無機塩基あり
製造例1で得られた吸水性樹脂粉末(A)100gにエチレングリコールジグリシジルエーテル(デナコールEX−810、ナガセ化成(株)社製)0.027g、プロピレングリコール0.9g、水2.7g及び炭酸水素ナトリウム0.18gの混合液からなる表面処理剤を混合した後、混合物を210℃で35分間加熱処理することにより、吸水剤(1)を得た。得られた吸水剤(1)も粉末状であり、その無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
【0106】
参考例2):吸水性樹脂粉末(A)の架橋処理/水溶性無機塩基あり
参考例1において、炭酸水素ナトリウムを用いる代わりに、炭酸ナトリウムを0.09g用いた以外は同様にして、吸水剤(2)を得た。無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
(比較例1):吸水性樹脂粉末(A)の架橋処理/水溶性無機塩基なし
参考例1において、炭酸水素ナトリウムを用いる代わりに、イソプロピルアルコール0.81gを用いた以外は同様にして、比較用吸水剤(1)を得た。無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
【0107】
(比較例2):吸水性樹脂粉末(A)の架橋処理/水溶性無機塩基なし
参考例1において、炭酸水素ナトリウムを用いなかった以外は同様にして、比較用吸水剤(2)を得た。無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
参考例3):吸水性樹脂粉末(B)の架橋処理/水溶性無機塩基あり
製造例2で得られた吸水性樹脂粉末(B)100gに1,4−ブタンジオール0.384g、プロピレングリコール0.6g、水3.28g、および24重量%水酸化ナトリウム水溶液0.3g(固形分0.072g)の混合液からなる表面処理剤を混合した後、混合物を212℃で30分間加熱処理することにより、吸水剤(3)を得た。得られた吸水剤(3)も粉末形状であり、その無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
【0108】
(比較例3):吸水性樹脂粉末(B)の架橋処理/水溶性無機塩基なし
参考例3において、24重量%水酸化ナトリウム水溶液を用いなかった以外は同様にして、比較用吸水剤(3)を得た。無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
参考例4):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基あり
製造例3で得られた吸水性樹脂粉末(C)100gに1,4−ブタンジオール0.384g、プロピレングリコール0.6g、水3.28g、および炭酸水素ナトリウム0.24gの混合液からなる表面処理剤を混合した後、混合物を212℃で40分間加熱処理することにより、吸水剤(4)を得た。得られた吸水剤(4)も粉末形状であり、その無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
【0109】
参考例5):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基あり
参考例4において、炭酸水素ナトリウムを用いる代わりに、炭酸ナトリウム0.12gを用いた以外は同様にして、吸水剤(5)を得た。無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
参考例6):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基あり
参考例4において、炭酸水素ナトリウムを用いる代わりに、24重量%水酸化ナトリウム水溶液0.3g(固形分0.072g)を用いた以外は同様にして、吸水剤(6)を得た。無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
【0110】
(比較例4):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基なし
参考例4において、炭酸水素ナトリウムを用いなかった以外は同様にして、比較用吸水剤(4)を得た。無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
参考例7):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基あり
参考例4において、加熱処理時間を30分間にした以外は同様にして、吸水剤(7)を得た。無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
【0111】
参考例8):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基あり
参考例7において、炭酸水素ナトリウムを用いる代わりに、炭酸ナトリウム0.12gを用いた以外は同様にして、吸水剤(8)を得た。無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。
参考例9):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基あり
参考例7において、炭酸水素ナトリウムを用いる代わりに、24重量%水酸化ナトリウム水溶液0.3g(固形分0.072g)を用いた以外は同様にして、吸水剤(9)を得た。無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。また、吸水剤(9)の表層可溶分は3.8重量%であった。
【0112】
(比較例5):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基なし
参考例7において、炭酸水素ナトリウムを用いなかった以外は同様にして、比較用吸水剤(5)を得た。無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表1に示した。また、比較用吸水剤(5)の表層可溶分は6.5重量%であった。
(比較例6):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基なし
参考例9において、24重量%水酸化ナトリウム水溶液の代わりに、WO00/53664に準じて、硫酸アルミニウム14〜18水和物を0.455g用いた以外は同様にして、比較用吸水剤(6)を得た。その結果を表1に示した。
【0113】
参考例10):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基あり
製造例3で得られた吸水性樹脂粉末(C)100gにエチレングリコールジグリシジルエーテル(デナコールEX−810、ナガセ化成(株)社製)0.784g、水4.0g、および24重量%水酸化ナトリウム水溶液0.5g(固形分0.12g)の混合液からなる表面処理剤を混合した後、混合物を212℃で40分間加熱処理することにより、吸水剤(10)を得た。得られた吸水剤(10)も粉末形状であり、結果を表1に示した。
(比較例7):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基なし
参考例10において、24重量%水酸化ナトリウム水溶液を用いなかった以外は同様にして、比較用吸水剤(7)を得た。その結果を表1に示した。
【0114】
参考例11):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基あり
製造例3で得られた吸水性樹脂粉末(C)100gに3−エチル−3−オキセタンメタノール0.4g、水3.0g、および24重量%水酸化ナトリウム水溶液0.3g(固形分0.072g)の混合液からなる表面処理剤を混合した後、混合物を212℃で40分間加熱処理することにより、吸水剤(11)を得た。得られた吸水剤(11)も粉末形状であり、その結果を表1に示した。
(比較例8):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基なし
参考例11において、24重量%水酸化ナトリウム水溶液を用いなかった以外は同様にして、比較用吸水剤(8)を得た。その結果を表1に示した。
【0115】
(実施例):吸水性樹脂粉末(C)の架橋処理/pH緩衝剤あり
製造例3で得られた吸水性樹脂粉末(C)100gにエチレングリコールジグリシジルエーテル(デナコールEX−810、ナガセ化成製)0.15g、プロピレングリコール1.0g、水5.0g、およびリン酸2水素ナトリウム・2水和物0.5gの混合液からなる表面処理剤を混合した後、混合物を150℃で30分間加熱処理することにより、吸水剤(12)を得た。得られた吸水剤(12)も粉末形状であり、その結果を表1に示した。
(比較例9):吸水性樹脂粉末(C)の架橋処理/pH緩衝剤なし
実施例において、リン酸二水素ナトリウム二水和物を用いなかった以外は同様にして、比較用吸水剤(9)を得た。その結果を表1に示した。
【0116】
参考12):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基あり
参考例9において、同様の手法を用いて、吸水剤(13)を得た。得られた吸水剤(13)に前記の機械的ダメージを10分間与えた後、得られた吸水剤(13)の無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表2に示した。さらに得られた吸水剤(13)を、JIS標準ふるい(目開き850μm、600μm、500μm、300μm、150μm)でふるい、それぞれ、850μm未満で600μm以上の粒子(13−a)、粒子径が600μm未満で500μm以上の粒子(13−b)、粒子径が500μm未満で300μm以上の粒子(13−c)、粒子径が300μm未満で150μm以上の粒子(13−d)を得た。得られた吸水剤(13−a)、(13−b)、(13−c)、(13−d)を測定した結果を表2に示した。また、SFC変化指数、SFC変動係数、SFC変動率を算出した結果を表3に示した。
【0117】
参考13):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基あり
参考例9において、加熱時間を20分間にした以外は同様の手法をもちいて吸水剤(14)を得た。得られた吸水剤(14)に前記の機械的ダメージを10分間与えた後、得られた吸水剤(14)を測定した結果を表2に示した。さらに得られた吸水剤(14)を、JIS標準ふるい(目開き850μm、600μm、500μm、300μm、150μm)でふるい、それぞれ、850μm未満で600μm以上の粒子(14−a)、粒子径が600μm未満で500μm以上の粒子(14−b)、粒子径が500μm未満で300μm以上の粒子(14−c)、粒子径が300μm未満で150μm以上の粒子(14−d)を得た。得られた吸水剤(14−a)、(14−b)、(14−c)、(14−d)を測定した結果を表2に示した。また、SFC変化指数、SFC変動係数、SFC変動率を算出した結果を表3に示した。
【0118】
(比較例10):吸水性樹脂粉末(C)の架橋処理/水溶性無機塩基なし
比較例5において、同様の手法を用いて、比較用吸水剤(10)を得た。得られた比較用吸水剤(10)に機械的ダメージを10分間与えた後、得られた比較用吸水剤(10)の無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表2に示した。さらに得られた比較用吸水剤(10)を、JIS標準ふるい(目開き850μm、600μm、500μm、300μm、150μm)でふるい、それぞれ、850μm未満で600μm以上の粒子(10−a)、粒子径が600μm未満で500μm以上の粒子(10−b)、粒子径が500μm未満で300μm以上の粒子(10−c)、粒子径が300μm未満で150μm以上の粒子(10−d)を得た。得られた比較用吸水剤(10−a)、(10−b)、(10−c)、(10−d)を測定した結果を表2に示した。また、SFC変化指数、SFC変動係数、SFC変動率を算出した結果を表3に示した。
【0119】
(比較例11):市販品の吸水剤
ドイツで市販されているPampers Acitve Fit(P&G社製、2001年12月5日購入)のおむつから吸水剤を取り出し、比較用吸水剤(11)を得た。得られた比較用吸水剤(11)の無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表2に示した。さらに得られた比較用吸水剤(11)を、JIS標準ふるい(目開き850、600、500、300、150μm)でふるい、それぞれ、850μm未満で600μm以上の粒子(11−a)、粒子径が600μm未満で500μm以上の粒子(11−b)、粒子径が500μm未満で300μm以上の粒子(11−c)、粒子径が300μm未満で150μm以上の粒子(11−d)を得た。得られた吸水剤(11−a)、(11−b)、(11−c)、(11−d)を測定した結果を表2に示した。また、SFC変化指数、SFC変動係数、SFC変動率を算出した結果を表3に示した。
【0120】
(比較例12):市販品の吸水剤
日本で市販されていた「パンパースさらさらケア」(P&G社製、1997年12月購入)のおむつから吸水剤を取り出し、比較用吸水剤(12)とした。比較吸水剤(12)の無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表2に示した。
さらに得られた比較用吸水剤(12)をJIS標準ふるい(目開き850、600、500、300、150μm)でふるい、それぞれ、850μm未満で600μm以上の粒子(12−a)、粒子径が600μm未満で500μm以上の粒子(12−b)、粒子径が500μm未満で300μm以上の粒子(12−c)、粒子径が300μm未満で150μm以上の粒子(12−d)を得た。得られた吸水剤(12−a)、(12−b)、(12−c)、(12−d)の無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表2に示した。また、SFC変化指数、SFC変動係数、SFC変動率を算出した結果を表3に示した。
【0121】
参考14):吸水性樹脂粉末(D)の架橋処理/水溶性無機塩基あり
製造例4で得られた吸水性樹脂粉末(D)100gに1,4−ブタンジオール0.384g、プロピレングリコール0.6g、水3.28g、および24重量%水酸化ナトリウム水溶液0.3g(固形分0.072g)の混合液からなる表面処理剤を混合した後、混合物を212℃で20分間加熱処理することにより、吸水剤(15)を得た。得られた吸水剤(15)に前記の機械的ダメージを10分間与えた後、得られた吸水剤(15)を測定した結果を表2に示した。さらに得られた吸水剤(15)を、JIS標準ふるい(目開き850μm、600μm、500μm、300μm、150μm)でふるい、それぞれ、粒子径が600μm未満で500μm以上の粒子(15−b)、粒子径が500μm未満で300μm以上の粒子(15−c)を得た。得られた吸水剤(15−b)、(15−c)を測定した結果を表2に示した。また、SFC変化指数、SFC変動係数、SFC変動率を算出した結果を表3に示した。
【0122】
参考15):吸水性樹脂粉末(D)の架橋処理/水溶性無機塩基あり
参考14において、加熱時間を40分間にした以外は同様にして、吸水剤(16)を得た。得られた吸水剤(16)に前記の機械的ダメージを10分間与えた後、得られた吸水剤(16)を測定した結果を表2に示した。さらに得られた吸水剤(16)を、JIS標準ふるい(目開き850μm、600μm、500μm、300μm、150μm)でふるい、それぞれ、粒子径が600μm未満で500μm以上の粒子(16−b)、粒子径が500μm未満で300μm以上の粒子(16−c)を得た。得られた吸水剤(16−b)、(16−c)を測定した結果を表2に示した。また、SFC変化指数、SFC変動係数、SFC変動率を算出した結果を表3に示した。
【0123】
(比較例13〜16):市販品の吸水剤
実使用されている吸水剤(吸水性樹脂)として、2001年に市販の紙おむつより吸水性樹脂を取り出し比較吸水剤(13)〜(16)とした。比較吸水剤(13)〜(16)の無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性を測定した結果を表4に示した。
製造例5):吸水性樹脂粉末(E)の製造/酸型重合で後中和
2Lのプラスチック容器にアクリル酸252.2g、N,N’−メチレンビスアクリルアミド1.1g、水998.4gを混合し反応液とした。次にこの反応液を窒素ガス雰囲気下で、30分間脱気した。続いて、反応液に15重量%2,2’−アゾビス(2−アミジノプロパン)二塩酸塩5.1g、10重量%L−アスコルビン酸水溶液0.63g、および7重量%過酸化水素水溶液3.6gを加えて重合を開始させた。16〜74℃で重合を行い、重合が開始してから3時間後に含水ゲル状架橋重合体(5)を取り出した。得られた重合体(5)を約5cm角に切断してからその1000gについて、中和率が65モル%となる量の48重量%の水酸化ナトリウム水溶液15.0gを混合し、さらにダイス径9.5mmのミートチョッパーに通して細分化された粉砕ゲルとした。得られた粉砕ゲルを50メッシュ(目開き300μm)の金網上に広げ、170℃で40分間熱風乾燥した。次いで、ロールミルを用いて粉砕し、さらに目開き500μmおよび300μmのJIS標準網で分級することで大部分の粒子が500μm〜300μmの範囲にある吸水性樹脂粉末(E)を得た。得られた吸水性樹脂粉末(E)の無加圧下の吸収倍率は49(g/g)、可溶分量は6重量%であった。
【0124】
さらに得られた粒子の中和率の均一性を調べるために、200個の粒子を膨潤させ、さらに、pH指示薬であるブロモチモールブルーとメチルレッドの0.1重量%エタノール溶液を添加し中和指数(特開平10−101735号の請求項3)を測定した。その結果、製造例1、6、7で得られた中和重合から得られた吸水性樹脂粉末(A)、(F)、(G)は200個の粒子が一様に黄色(中和指数が0)であるのに対して、吸水性樹脂粉末(E)の粒子は濃緑色から赤色まで様々な色に発色する粒子が混在し、個々の粒子の中和率が非常に不均一(中和指数が15以上)であった。
【0125】
製造例6):吸水性樹脂粉末(F)の製造例/中和重合
製造例1において、単量体濃度を39重量%、中和率を71モル%、ポリエチレングリコールジアクリレート9.6gに変更した以外は製造例1と同様にして重合、乾燥および粉砕を行った。得られた粉砕物をさらに目開き500μmおよび300μmのJIS標準篩で分級することで大部分の粒子が500μm〜300μmの範囲にある吸水性樹脂粉末(F)を得た。得られた吸水性樹脂粉末(F)の無加圧下の吸収倍率は32(g/g)、可溶分量は10重量%であった。
製造例7):吸水性樹脂粉末(G)の製造例/中和重合
製造例1において、単量体濃度を41重量%、中和率を71モル%、ポリエチレングリコールジアクリレート5.47g、過硫酸ナトリウム水溶液30.8g、L−アスコルビン酸水溶液2.57g、熱風乾燥温度180℃、熱風乾燥時間50分間に変更した以外は製造例1と同様にして重合、乾燥および粉砕を行った。得られた粉砕物をさらに目開き850μmのJIS標準篩で分級することで大部分の粒子が850μm以下の範囲にある吸水性樹脂粉末(G)を得た。
【0126】
得られた吸水性樹脂粉末(G)の無加圧下の吸収倍率は38(g/g)、可溶分量は13重量%、重量平均粒径(D50)は400μmであった。
(実施例):吸水性樹脂粉末(E)の架橋処理/pH緩衝剤あり
製造例5で得られた吸水性樹脂粉末(E)100gにエチレングリコールジグリシジルエーテル(デナコールEX−810、ナガセ化成(株)社製)0.5g、プロピレングリコール1.0g、中性リン酸塩pH標準液(リン酸二水素カリウム/リン酸水素二ナトリウム;pH6.86)6.0g、およびイソプロピルアルコール1.0gの混合液からなる表面処理剤を混合した後、混合物を120℃で30分間加熱処理することにより、吸水剤(17)を得た。得られた吸水剤(17)も粉末形状であり、その無加圧下吸収倍率、加圧下吸収倍率を測定した結果を表5に示した。
【0127】
(比較例17):吸水性樹脂粉末(E)の架橋処理/pH緩衝剤なし
実施例において、中性リン酸塩pH標準液の代わりに水6.0gを用いた以外は同様にして比較用吸水剤(17)を得た。無加圧下吸収倍率、加圧下吸収倍率を測定し、その結果を表5に示した。
(実施例):吸水性樹脂粉末(F)の架橋処理/pH緩衝剤あり
製造例6で得られた吸水性樹脂粉末(F)100gに1,4−ブタンジオール0.32g、プロピレングリコール0.5g、水2.73g、リン酸二水素ナトリウム二水和物1.2gの混合液からなる表面処理剤を混合した後、混合物を197℃で10分加熱処理することにより吸水剤(18)を得た。得られた吸水剤(18)も粉末形状であり、その無加圧下吸収倍率、加圧下吸収倍率を測定した結果を表5に示した。
【0128】
(比較例18):吸水性樹脂粉末(F)の架橋処理/pH緩衝剤なし
実施例において、リン酸二水素ナトリウム二水和物の代わりにリン酸(85重量%)0.6gを用いた以外は同様にして比較用吸水剤(18)を得た。無加圧下吸収倍率、加圧下吸収倍率を測定した結果を表5に示した。
(比較例19):吸水性樹脂粉末(F)の架橋処理/pH緩衝剤なし
実施例において、リン酸二水素ナトリウム二水和物を用いなかった以外は同様にして比較用吸水剤(19)を得た。無加圧下吸収倍率、加圧下吸収倍率を測定した結果を表5に示した。
【0129】
(実施例):吸水性樹脂粉末(G)の架橋処理/pH緩衝剤あり
製造例7で得られた吸水性樹脂粉末(G)100gに1,4−ブタンジオール0.32g、プロピレングリコール0.5g、水2.73g、および炭酸水素ナトリウム0.2gの混合液からなる表面処理剤溶液を混合した後、混合物を212℃で25分間加熱処理することにより、吸水剤(19)を得た。無加圧下吸収倍率、加圧下吸収倍率を測定した結果を表5に示した。
(実施例):吸水性樹脂粉末(G)の架橋処理/pH緩衝剤あり
製造例7で得られた吸水性樹脂粉末(G)100gに1,4−ブタンジオール0.32g、プロピレングリコール0.5g、水2.73g、および炭酸水素カリウム0.24gの混合液からなる表面処理剤溶液を混合した後、混合物を212℃で25分間加熱処理することにより、吸水剤(20)を得た。無加圧下吸収倍率、加圧下吸収倍率を測定した結果を表5に示した。
【0130】
(比較例20):吸水性樹脂粉末(G)の架橋処理/pH緩衝剤なし
実施例において、炭酸水素ナトリウムを用いなかった以外は同様にして比較用吸水剤(20)を得た。無加圧下吸収倍率、加圧下吸収倍率を測定した結果を表5に示した。
参考16):連続生産系
71モル%が中和されたアクリル酸部分ナトリウム塩とポリエチレングリコールジアクリレート(n=9)を製造例3の比率で、連続的に水溶液重合(ベルト滞留時間:約30分、厚み:約25mm)し、得られた吸水性樹脂の含水ゲル状架橋重合体をミートチョッパーで粒子状に粗砕し、これをバンド乾燥機の多孔板上に薄く広げて載せ、180℃で30分間連続熱風乾燥した。乾燥機出口でブロック状の乾燥重合体が得られた。この乾燥重合体を取り出したと同時に解砕し、得られた粒子状乾燥物を1000kg/hで3段ロールグラニュレーター(ロールギャップが上から1.0mm/0.55mm/0.42mm)に連続供給することで粉砕した。得られた約60℃の粒子状吸水性樹脂の粉末を、網目開き850μmのふるい網を有する篩い分け装置で分級し、90重量%以上が850μm未満で150μm以上のサイズの吸水性樹脂粉末(H)(平均粒子径:430〜460μm)を得た。得られた吸水性樹脂粉末(H)の無加圧下の平均吸収倍率(CRC)は40g/g、可溶分量の平均は11重量%であった。なお、CRCおよび可溶分量の物性は2時間ごと(2000kg/Lot)に測定した平均値である。
【0131】
さらに、吸水性樹脂粉末(H)を、高速連続混合機(タービュライザー/1000rpm)に1000kg/hで連続供給して、さらに、吸水性樹脂粉末(H)に1,4−ブタンジオール/プロピレングリコール/水/24%水酸化ナトリウム水溶液=0.384/0.63/3.39/0.3(重量%/対粉末)からなる表面架橋剤水溶液を、約200μmの液滴になるスプレーで噴霧し混合した。次いで、得られた混合物を195℃で40分間、パドルドライヤーにより連続的に加熱処理することで吸水剤粉末を得た。さらに得られた吸水剤粉末を、網目開き850μmのふるい網を有する篩い分け装置で分級して、850μm未満で150μm以上のサイズの粒子が90重量%以上の吸水剤(21)を得た。
【0132】
前記の一連の工程(重合、乾燥、粉砕、加熱処理)を連続で24時間で行い、2時間ごと(2000kg/Lot)に吸水剤の物性(Lot数:11点)を測定した結果、無加圧下の吸収倍率の平均値は31.1g/g、加圧下での吸収倍率の平均値は25.5g/g、生理食塩水流れ誘導性の平均値は30(Lot毎のSFCの値:32、32、28、28、30、27、27、32、31、32、28)、そのSFCの標準偏差の値は2.1であった。
参考17):連続生産系
参考16において、24時間を10日間に変えた以外は同様の方法で連続生産を行い、吸水剤(22)を得た。2時間ごと(2000kg/Lot)に吸水剤の物性(Lot数:110点)を測定した結果、無加圧下の吸収倍率の平均値は31.3g/g、加圧下での吸収倍率の平均値は25.2g/g、生理食塩水流れ誘導性の平均値は30(Lot毎のSFCの値は省略)、そのSFCの標準偏差の値は3.9であった。
【0133】
(比較例21):連続生産系
参考16において、24%水酸化ナトリウム水溶液を使わなかった以外は同様の方法で連続生産を行い、比較用吸水剤(21)を得た。2時間ごと(2000kg/Lot)に吸水剤の物性(Lot数:11点)を測定した結果、無加圧下の吸収倍率の平均値は31.1g/g、加圧下での吸収倍率の平均値は24.2g/g、生理食塩水流れ誘導性の平均値は20(Lot毎のSFCの値:26、17、11、17、17、18、20、17、16、28、28)、そのSFCの標準偏差の値は5.5であった。
【0134】
参考16および参考17に記載の吸水剤(21)、(22)は、比較例21に記載の比較用吸水剤(21)に比べて、SFCの標準偏差が小さくなり、本発明の吸水剤を連続生産する場合、不良品(低SFC品など)の発生もなく、かつ、品質(SFC)のばらつきが低減されることを示している。
【0135】
【表1】
Figure 0004326752
【0136】
【表2】
Figure 0004326752
【0137】
【表3】
Figure 0004326752
【0138】
参考例1および参考例2に記載の吸水剤(1)、(2)は、同じく表面架橋された比較用吸水剤(1)、(2)と比べて、加圧下吸収倍率が大きく、無加圧下吸収倍率と加圧下吸収倍率のバランスに優れている。
参考に記載の吸水剤(3)は、比較例3に記載の比較用吸水剤(3)と比べて、無加圧下吸収倍率と加圧下吸収倍率と生理食塩水流れ誘導性の3つのバランスに優れている。
さらに、参考例4および参考例5および参考例6に記載の吸水剤(4)、(5)、(6)は、比較例4に記載の比較用吸水剤(4)と比べて、無加圧下吸収倍率はほぼ同じであるが生理食塩水流れ誘導性は高い値を示している。
【0139】
同様に、参考例7および参考例8および参考例9に記載の吸水剤(7)(8)(9)においても、比較例5および比較例6に記載の比較用吸水剤(5)および比較用吸水剤(6)と比べて、無加圧下吸収倍率はほぼ同じであるが、加圧下吸水倍率と生理食塩水流れ誘導性は高い値を示している。
また、参考例10、参考例11、実施例に記載の吸水剤(10)、(11)、(12)は、それぞれ比較例7、比較例8、比較例9に記載の比較用吸水剤(7)、(8)、(9)と比べて、無加圧下吸収倍率はほぼ同じであるが、生理食塩水流れ誘導性は高い値を示している。
【0140】
参考12および参考13に記載の吸水剤(13)、(14)は、比較例10および比較例11および比較例12に記載の比較用吸水剤(10)、(11)、(12)と比べて、SFC変化指数およびSFC変動係数は小さく、SFC変動率は大きくなりいずれもSFCのばらつきが低減されている。
また、参考14および参考15に記載の吸水剤(15)、(16)も、SFC変化指数およびSFC変動指数は小さく、SFC変動率は大きくなり、いずれもSFCのばらつきが低減されている。
このように、本発明の方法で製造される吸水剤は、無加圧下吸収倍率と加圧下吸収倍率と生理食塩水流れ誘導性の3つのバランスに優れ、良好な性能を備えたものである。さらに、粒度毎のSFCのばらつきも少ない事から、おむつの性能を安定させる上で非常に優れた吸水剤である。
【0141】
【表4】
Figure 0004326752
【0142】
比較例13、比較例14、比較例15、比較例16に記載の比較用吸水剤(13)、(14)、(15)、(16)は、いずれも無加圧下吸収倍率と加圧下吸収倍率と生理食塩水流れ誘導性の3つのバランスが悪いものであった。
【0143】
【表5】
Figure 0004326752
【0144】
実施例記載の吸水剤(17)は、比較例17記載の比較用吸水剤(17)と比べて、無加圧下吸収倍率と加圧下吸収倍率のバランスやその合計に優れている。
また、実施例記載の吸水剤(18)は、リン酸を加えた比較例18記載の比較用吸水剤(18)と比べて、同様に10分という短い時間で架橋反応が進行し、無加圧下吸収倍率は同じであるが加圧下吸収倍率は高い値を示している。さらに、何も加えなかった比較例19記載の比較用吸水剤(19)については、10分という短時間では十分な架橋反応が進行せず、無加圧下吸収倍率の低下がほとんど見られず、加圧下吸収倍率も低いものとなっている。
【0145】
このように、本発明の方法で製造される吸水剤は、無加圧下吸収倍率と加圧下吸収倍率のバランスやその合計に優れ、短い反応時間でも良好な性能を備えたものである。
【0146】
【発明の効果】
本発明によれば、架橋処理時に、混合助剤としての効果を示しながらも架橋反応を阻害せず、場合によっては反応触媒としての効果も併せ持ち、かつ部分中和重合された吸水性樹脂の中和率の違いや酸型重合の後中和操作に起因する中和率の均一性にほとんど関わりなく、均一な表面架橋が発現でき、無加圧下吸収倍率、加圧下吸収倍率、生理食塩水流れ誘導性のバランスに優れるとともに、製造の際のロットごと、あるいは各ロット中における生理食塩水流れ誘導性の値の振れ(バラツキ)が小さい、物性の安定した吸水剤を短時間で製造する方法および吸水剤を提供することができる。
【図面の簡単な説明】
【図1】生理食塩水流れ誘導性の測定に用いる測定装置の概略の断面図。
【図2】機械的ダメージ試験に用いるガラス製容器の側面概略図(a)と平面概略図(b)。
【図3】機械的ダメージ試験に用いる分散機の概略図。
【符号の説明】
31 タンク
32 ガラス管
33 0.69重量%塩化ナトリウム水溶液
34 コック付きL字管
35 コック
40 容器
41 セル
42 ステンレス製金網
43 ステンレス製金網
44 膨潤ゲル
45 ガラスフィルター
46 ピストン
47 ピストン中の穴
48 補集容器
49 上皿天秤
51 ガラス容器
52 分散機
53 上側クランプ
54 下側クランプ[0001]
BACKGROUND OF THE INVENTION
  The present invention absorbs waterMedicinalIt relates to a manufacturing method. More specifically, the present invention modifies the water absorbent resin with a crosslinking agent.so,A water-absorbing agent with high absorbency and high saline flow inductivity under no pressure or under pressureGetRegarding the method.
[0002]
[Prior art]
In recent years, hygienic materials such as paper diapers and sanitary napkins, so-called incontinence pads, have widely used water-absorbing resins (water-absorbing agents) for the purpose of absorbing body fluid.
Examples of the water-absorbing resin include a crosslinked polyacrylic acid partially neutralized product, a hydrolyzate of starch-acrylic acid graft polymer, a saponified vinyl acetate-acrylic ester copolymer, an acrylonitrile copolymer, or an acrylamide. A hydrolyzate of a copolymer or a crosslinked product thereof, and a crosslinked polymer of a cationic monomer are known.
[0003]
As the characteristics that the water-absorbent resin should have, water is absorbed from a substrate containing an aqueous liquid, an excellent liquid absorption amount, water absorption speed, gel strength, gel permeability, and aqueous liquid when conventionally in contact with an aqueous liquid such as a body fluid. The suction power to suck up is advocated. Various water-absorbing resins (water-absorbing agents) that have a combination of these characteristics and exhibit excellent performance (absorption characteristics) when used in sanitary materials such as paper diapers and sanitary napkins have been proposed. .
For example, as a method for improving the absorption characteristics of the water absorbent resin under no pressure and the absorption capacity under pressure in a well-balanced manner, a technique for crosslinking the vicinity of the surface of the water absorbent resin is known. Is disclosed.
[0004]
Examples thereof include a method using a polyhydric alcohol (Japanese Patent Laid-Open Nos. 58-180233 and 61-16903), a polyvalent glycidyl compound, a polyvalent aziridine compound, a polyvalent amine compound, and a polyvalent isocyanate compound. Method used (Japanese Patent Laid-Open No. 59-189103), method using glyoxal (Japanese Patent Laid-Open No. 52-117393), method using polyvalent metal (Japanese Patent Laid-Open No. 51-136588, Japanese Patent Laid-Open No. 61-257235) , JP-A-62-27455), a method using a silane coupling agent (JP-A-61-211305, JP-A-61-225212, JP-A-61-264006), alkylene Method using carbonate (German Patent No. 4020780), Method using polyvalent heterocyclic carbonate (JP-A-1 -315216), method using oxazolidinone (WO99 / 42494), method using polyvalent oxazolidinone (WO99 / 43720), method using oxazine (WO00 / 31153), method using oxazoline compound (JP No. 2000-197818) is known.
[0005]
Furthermore, a method of using an additive (inert mixing aid, acid catalyst, base) for further performance improvement when the absorption property is improved by the crosslinking agent is also known. That is, as a method (1) using an inert mixing aid as an additive, a method in which an inert inorganic powder is present (Japanese Patent Laid-Open Nos. 60-163156 and 60-255814), a polyvalent metal A method of allowing water containing a salt and / or a hydroxide to exist (Japanese Patent Laid-Open No. 62-7745), a method of causing a dihydric alcohol to be present (Japanese Patent Laid-Open No. 1-2292004), a method of causing water and an ether compound to exist (JP-A-2-153903), a method for allowing a water-soluble polymer to be present (JP-A-3-126730), a method for allowing an alkylene oxide adduct of a monohydric alcohol, a monovalent salt of an organic acid, or a lactam to exist. (Japanese Patent Publication No. 6-74331, Japanese Patent Application Laid-Open No. 7-33818), a method in which a monovalent metal salt is present (WO 98/49221), a cation Method of Zaisa (WO00 / 53664 discloses, WO00 / 53644 publication) are known.
[0006]
Further, as a method (2) using an acid catalyst as an additive, a method in which phosphoric acid is present (WO94 / 15651), a method in which an inorganic acid or an organic acid is present (JP-A-7-278225), and the like are known. It has been.
In addition, as a method (3) using a base as an additive, a method in which a water-soluble alkali compound is present (Japanese Patent Laid-Open No. Hei 6-298881) is also known.
The presence of the additive used in the methods (1), (2), and (3) together with the crosslinking agent can improve the balance of the absorption characteristics of the water-absorbing agent to some extent as compared with the crosslinking agent alone, but still more It was hard to say enough.
[0007]
That is, with the additive (inert mixing aid) used in the method (1), when the water-absorbing resin to be used contains a large amount of fine powder, its effect appears due to the action as a mixing aid. However, on the other hand, due to its presence, there is almost no improvement in the absorption characteristics due to excessive decrease in the permeability of the crosslinking agent to the water-absorbent resin powder, inhibition of the crosslinking reaction, etc. There are also problems that the reaction time increases, the reaction time becomes longer, the reaction temperature has to be raised, and the like.
The additive (acid catalyst) used in the method (2) can be expected to have an effect as a catalyst for promoting the reaction of the crosslinking agent. However, when an amount for obtaining a certain effect is added, the pH of the crosslinking agent solution In the case of an extremely lowered and partially neutralized water-absorbing resin containing an acid group, the acidification of the surface occurs in particular, making it difficult to control the permeability of the crosslinking agent. Also, acidification of the surface is not preferable because it tends to increase the adhesion between the particles of the water-absorbent resin and lead to the formation of aggregates. As a result, there is a problem in that it is difficult to obtain a satisfactory performance because the desired cross-linking density of the surface layer of the water-absorbent resin particles cannot be obtained.
[0008]
The method (3) is based on a combination of an additive (base) and a compound (polyvalent metal salt, polyepoxy compound, polyaziridinyl compound, polyisocyanate compound) having two or more functional groups that easily react with a carboxyl group. Surface cross-linking is disclosed, gel strength and relatively low load (20 g / cm2) To improve the absorption capacity under pressure. However, the method of JP-A-6-298842 is still insufficient for improving the mixing property of the surface cross-linking agent and improving the physical properties of the water-absorbent resin. In particular, the SFC and the high load (4.83 kPa, Approx. 50 g / cm2), It was difficult to improve the absorption capacity under pressure (AAP) (both described later).
[0009]
Moreover, as a typical water-absorbing resin, acrylic acid-based water-absorbing resin comprising a partially neutralized salt of acrylic acid is cited from the viewpoint of its high physical properties and cost. The acrylic acid water-absorbing resin can be produced by a method of polymerizing acrylic acid and its salt previously neutralized to a predetermined neutralization rate (hereinafter referred to as neutralization polymerization method), non-neutralized to low Two methods (hereinafter referred to as an acid-type polymerization method) are generally performed in which neutralized acrylic acid is polymerized and then the polymer gel is post-neutralized.
Compared to the neutralization polymerization method, the latter acid type polymerization method tends to obtain a water-absorbent resin with a high absorption capacity and a low solubility, but uniformly neutralizes the hydrogel crosslinked polymer after polymerization. It takes a long time and is technically very difficult, and the neutralization rate of the individual particles of the resulting water-absorbent resin powder may be uneven. In such a case, although the water-absorbing resin of the acid type polymerization method has a high absorption ratio and a low solubility, it is not possible to obtain sufficient water-absorbing agent performance even if surface cross-linking treatment is performed. -10173 (European Patent Publication No. 0882502A1).
[0010]
In other words, conventionally, when surface cross-linking of a water-absorbing resin, the required surface cross-linking treatment differs depending on the difference in neutralization rate, and even with an optimal cross-linking treatment at a certain neutralization rate, the desired water absorption at other neutralization rates. When the performance of the water-absorbing agent is not obtained, or when the neutralization rates of the individual particles of the water-absorbent resin powder are mixed, the desired performance of the water-absorbing agent may not be obtained.
As described above, depending on the conventional technology, the surface cross-linking treatment cannot be performed uniformly, and as a result, various physical properties of the resulting water-absorbent resin (CRC, AAP, SFC, etc., which will be described later, particularly SFC) are obtained. As the balance deteriorated, the SFC was uneven. For this reason, for example, there has been a large difference in performance among the diaper performance lot fluctuation and even one diaper.
[0011]
[Problems to be solved by the invention]
  The present invention has been made in view of the above-described conventional problems. That is, an object of the present invention is to provide a water-absorbent resin that does not inhibit a crosslinking reaction while exhibiting an effect as a mixing aid, and also has an effect as a reaction catalyst in some cases and is partially neutralized and polymerized. It is an object of the present invention to provide a method for producing a water-absorbing agent capable of exhibiting uniform surface cross-linking regardless of the difference in the neutralization rate and the uniformity of the neutralization rate due to the post-neutralization operation after acid type polymerization. Furthermore, the problem of the present invention is excellent in the balance between absorption capacity under no pressure, absorption capacity under pressure, and saline flow inductivity, and the value of the saline flow inductivity in each lot during production or in each lot. To manufacture water-absorbing agent with small physical fluctuation and stable physical properties in a short timeThe lawThere is also to provide.
[0012]
[Means for Solving the Problems]
  As a result of intensive investigation of a water-absorbing agent having excellent absorption characteristics, the present inventor has found that the above-mentioned problems can be solved by using a specific additive together with a specific cross-linking agent of a water-absorbent resin, thereby completing the present invention. Reached.
[0016]
  That is, the method for producing a water absorbing agent according to the present invention is as follows.,
A method for producing a water-absorbing agent comprising mixing a water-absorbing resin powder (a) containing an acid group with a surface cross-linking agent (c) capable of reacting with the acid group, and crosslinking the water-absorbing resin powder (a).
  The water-absorbent resin powder has a weight average particle diameter (D50) based on the following definition of 300 to 600 μm and a fine powder having a weight of 150 μm or less of 10% by weight or less. The amount is 0.005-0.5 mol%) and when the surface cross-linking agent is mixed,Partial alkali metal salt of inorganic polybasic acid or partial alkali metal salt of organic polyvalent carboxylic acidNon-reducing alkali metal salt pH buffer (b2) is also mixed.
It is characterized by that.
  However, the weight average particle diameter (D50) of the water-absorbent resin powder is sieved with a JIS standard sieve (850 μm, 600 μm, 500 μm, 425 μm, 300 μm, 212 μm, 150 μm, 106 μm, 75 μm), and the residual percentage R is logarithmic probability paper. It is specified by plotting.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. Hereinafter, the water-absorbing agent in the present invention is a water-absorbing resin having a crosslinked structure (hereinafter simply referred to as a water-absorbing resin) as a main component (preferably 50 to 100% by weight, more preferably 80 to 100% by weight, More preferably, the water-absorbing resin is further modified (preferably surface-modified, particularly surface-crosslinked) with a crosslinking agent.
(Method for producing water-absorbing resin)
Hereinafter, in the present invention, the acid group-containing water-absorbent resin powder is referred to as a water-absorbent resin powder (a), and among these water-absorbent resin powders (a), those having further controlled particle size, for example, a weight average particle diameter of 300 A powder having a fine powder of ˜600 μm and 150 μm or less of 10% by weight or less is referred to as a water absorbent resin powder (a1).
[0019]
The water-absorbing resin of the present invention is a conventionally known water-absorbing resin. For example, in ion-exchanged water, a large amount of water of 5 times or more, preferably 50 to 1000 times its own weight is essential. It is a conventionally known crosslinked polymer that absorbs and forms an anionic, nonionic or cationic water-insoluble hydrogel.
These are generally particulate water-absorbing agents mainly composed of a water-absorbing resin having a crosslinked structure obtained by polymerizing an unsaturated monomer component (preferably an acid group, particularly a carboxyl group-containing unsaturated monomer). The polymer was polymerized in the state of a monomer solution, and the polymer was dried as necessary, and was usually pulverized before and / or after drying. Examples of such a water-absorbing resin include a polyacrylic acid partially neutralized polymer, a starch-acrylonitrile graft polymer hydrolyzate, a starch-acrylic acid graft polymer, and a saponified vinyl acetate-acrylic acid ester copolymer. , One or more of hydrolyzate of acrylonitrile copolymer or acrylamide copolymer, cross-linked product thereof, carboxyl group-containing cross-linked polyvinyl alcohol modified product, cross-linked isobutylene-maleic anhydride copolymer, etc. it can.
[0020]
These water-absorbing resins may be used singly or as a mixture. Among them, an acid group-containing water-absorbing resin, more preferably a carboxyl group-containing water-absorbing resin which is a carboxylic acid or a salt thereof, or a mixture thereof is preferable. A polymer obtained by polymerizing and cross-linking a monomer having acrylic acid and / or a salt thereof (neutralized product) as a main component, that is, a polyacrylate cross-linking containing a graft component if necessary A polymer is a main component.
The water-absorbing resin must be water-swellable and water-insoluble, and the uncrosslinked water-soluble component (water-soluble polymer) in the water-absorbing resin is preferably 50% by weight or less. It is preferably 25% by weight or less, more preferably 20% by weight or less, still more preferably 15% by weight or less, particularly preferably 10% by weight or less.
[0021]
Examples of the acrylate include alkali metal salts such as sodium, potassium and lithium of acrylic acid, ammonium salts and amine salts. The above water-absorbent resin preferably has a constitutional unit in the range of 0 to 50 mol% acrylic acid and 100 to 50 mol% acrylate (however, the total amount of both is 100 mol% or less). What is in the range of 10-40 mol% of acid and 90-60 mol% of acrylate (however, the total amount of both shall be 100 mol% or less) is more preferable. This molar ratio of acid to salt is called the neutralization rate. Neutralization of the water-absorbing resin for forming the salt may be performed in the monomer state before polymerization, or may be performed in the polymer state during or after the polymerization, or they may be used in combination. May be.
[0022]
Generally, when an unneutralized or low-neutralized monomer is polymerized and neutralized in the state of a polymer (acid type polymerization method), a water-absorbent resin having a high absorption ratio and a low solubility tends to be obtained. However, considerable effort, equipment and time are required for uniform neutralization of individual particles of the water-absorbent resin (Japanese Patent Laid-Open No. 10-10173). However, by using the method of the present invention, it is possible to satisfactorily use all the water-absorbing resins for surface cross-linking regardless of the neutralized state of the water-absorbing resin and the production method. Physical properties and productivity can be greatly improved.
The monomer for obtaining the water absorbent resin used in the present invention may contain a monomer other than the acrylic acid (salt) as required. Although it does not specifically limit as monomers other than acrylic acid (salt), Specifically, for example, methacrylic acid, maleic acid, vinyl sulfonic acid, styrene sulfonic acid, 2- (meth) acrylamide- Anionic unsaturated monomers such as 2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid and their salts; acrylamide, methacrylamide, N-ethyl (meth) Acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene Glycol (meth) acrylate, polyester Nonionic hydrophilic group-containing unsaturated monomers such as lenglycol mono (meth) acrylate, vinylpyridine, N-vinylpyrrolidone, N-acryloylpiperidine, N-acryloylpyrrolidine and N-vinylacetamide; N, N-dimethylamino Cations such as ethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide, and quaternary salts thereof Unsaturated unsaturated monomers. These monomers may be used alone or in combination of two or more as appropriate.
[0023]
In the present invention, when a monomer other than acrylic acid (salt) is used, the monomer other than acrylic acid (salt) is based on the total amount of acrylic acid and its salt used as a main component. The ratio is preferably 30 mol% or less, more preferably 10 mol% or less. By using a monomer other than the acrylic acid (salt) in the above proportion, the absorption characteristics of the finally obtained water-absorbing resin (water-absorbing agent) are further improved, and the water-absorbing resin (water-absorbing agent) is used. It can be obtained even more inexpensively.
When polymerizing the above-mentioned monomer to obtain the water-absorbent resin used in the present invention, bulk polymerization or precipitation polymerization can be performed. However, performance and ease of control of polymerization, and swelling gel From the viewpoint of the absorption characteristics, it is preferable to perform aqueous solution polymerization or reverse phase suspension polymerization by using the monomer as an aqueous solution. When the monomer is an aqueous solution, the concentration of the monomer in the aqueous solution (hereinafter referred to as the monomer aqueous solution) is determined by the temperature of the aqueous solution and the monomer, and is not particularly limited. Is preferably in the range of 10 to 70% by weight, and more preferably in the range of 20 to 60% by weight. Moreover, when performing the said aqueous solution polymerization, you may use together solvents other than water as needed, and the kind of solvent used together is not specifically limited.
[0024]
As a method of aqueous solution polymerization, a monomer aqueous solution is polymerized in a double-arm kneader while crushing the resulting hydrogel, or a monomer aqueous solution is supplied in a predetermined container or on a driving belt for polymerization. And a method of pulverizing the obtained gel with a meat chopper or the like.
When starting the polymerization, for example, potassium persulfate, ammonium persulfate, sodium persulfate, t-butyl hydroperoxide, hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride, etc. A radical polymerization initiator or a photopolymerization initiator such as 2-hydroxy-2-methyl-1-phenyl-propan-1-one can be used.
[0025]
Further, a reducing agent that promotes the decomposition of the polymerization initiator can be used in combination, and a redox initiator can be obtained by combining the two. Examples of the reducing agent include (bi) sulfurous acid (salt) such as sodium sulfite and sodium bisulfite, L-ascorbic acid (salt), reducing metal (salt) such as ferrous salt, amines, and the like. Although it is mentioned, it is not particularly limited.
The amount of these polymerization initiators used is usually 0.001 to 2 mol%, preferably 0.01 to 0.1 mol%. When the amount of these polymerization initiators used is less than 0.001 mol%, the amount of unreacted monomers increases, and therefore the amount of residual monomers in the resulting water-absorbing resin and water-absorbing agent increases. It is not preferable. On the other hand, when the usage-amount of these polymerization initiators exceeds 2 mol%, since the amount of water-soluble components in the obtained water-absorbing resin or water-absorbing agent increases, it may not be preferable.
[0026]
Further, the polymerization reaction may be initiated by irradiating the reaction system with active energy rays such as radiation, electron beam, and ultraviolet rays, and the above polymerization initiator may be used in combination. The reaction temperature in the polymerization reaction is not particularly limited, but is preferably in the range of 15 to 130 ° C, and more preferably in the range of 20 to 120 ° C. Further, the reaction time and the polymerization pressure are not particularly limited, and may be appropriately set according to the type of monomer or polymerization initiator, the reaction temperature, and the like.
The water-absorbing resin may be of a self-crosslinking type that does not use a crosslinking agent, but is a crosslink having two or more polymerizable unsaturated groups or two or more reactive groups in one molecule. More preferably, a co-polymerized or reacted agent (internal cross-linking agent for water-absorbing resin) is used.
[0027]
Specific examples of these internal crosslinking agents include, for example, N, N′-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethylolpropane tri ( (Meth) acrylate, glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol hexa (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, tri Allylamine, poly (meth) allyloxyalkane, (poly) ethylene glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol, polyethylene Glycol, propylene glycol, glycerol, pentaerythritol, ethylenediamine, ethylene carbonate, propylene carbonate, polyethylenimine, and glycidyl (meth) acrylate
These internal cross-linking agents may be used alone or in combination of two or more. These internal cross-linking agents may be added to the reaction system all at once or in divided portions. In the case of using at least one kind or two or more kinds of internal cross-linking agents, a compound having two or more polymerizable unsaturated groups in consideration of the absorption characteristics of the finally obtained water-absorbing resin or water-absorbing agent Is preferably used during the polymerization.
[0028]
The amount of these internal crosslinking agents to be used is preferably 0.001 to 2 mol%, more preferably 0.005 to 0.5 mol%, still more preferably 0.001 mol%, based on the above-mentioned monomers (excluding the crosslinking agent). The content is in the range of 01 to 0.2 mol%, particularly preferably 0.03 to 0.15 mol%. When the amount of the internal cross-linking agent used is less than 0.001 mol% and more than 2 mol%, sufficient absorption characteristics may not be obtained.
When a crosslinked structure is introduced into the polymer using the internal cross-linking agent, the internal cross-linking agent is added to the reaction system before, during or after the polymerization of the monomer, or after the polymerization or neutralization. What should I do?
[0029]
In the above polymerization, the reaction system includes starch / cellulose, starch / cellulose derivatives, polyvinyl alcohol, polyacrylic acid (salt), polyacrylic acid (salt) cross-linked hydrophilic polymer 0 to 50% by weight. (To monomer) and other 0-10 wt% foaming agents such as carbonic acid (hydrogen) salts, carbon dioxide, azo compounds, inert organic solvents; various surfactants; chelating agents; hypophosphorous acid ( A chain transfer agent such as salt) may be added.
When the cross-linked polymer is obtained by aqueous solution polymerization and is in a gel form, that is, a hydrogel cross-linked polymer, the cross-linked polymer is dried as necessary, and before and / or after drying. Is usually pulverized to make a water-absorbent resin. Moreover, drying is normally performed in the temperature range of 60 to 250 degreeC, Preferably it is 100 to 220 degreeC, More preferably, it is 120 to 200 degreeC. The drying time depends on the surface area of the polymer, the moisture content, and the type of dryer, and is selected to achieve the desired moisture content.
[0030]
The water content of the water-absorbing resin or water-absorbing agent that can be used in the present invention (specified by the amount of water contained in the water-absorbing resin or water-absorbing agent / measured by loss on drying at 180 ° C. for 3 hours) is not particularly limited. In view of the physical properties of the water-absorbing agent, the powder exhibits fluidity at room temperature, more preferably 0.2 to 30% by weight, still more preferably 0.3 to 15% by weight, particularly preferably 0.5 to 10% by weight. It is a powder state.
Moreover, as a water absorbing resin which can be used for the manufacturing method of this invention, a powdered thing can be mentioned. The water-absorbent resin particles obtained by polymerization reaction may have a gel-like average particle size before drying and pulverization exceeding 1000 μm. However, since they are not normally powdered, they are preferably (preferably) dried and pulverized.・ By classifying, the particle size is adjusted according to the purpose.
[0031]
The particle diameter of the water-absorbent resin powder or the water-absorbing agent is a weight average particle diameter of 10 to 2000 μm, preferably 100 to 1000 μm, more preferably 200 to 700 μm, still more preferably 300 to 600 μm, and particularly preferably 400 to 550 μm. Are preferably used. More preferably, the water-absorbent resin powder or the fine powder in the water-absorbing agent (for example, 100 μm or less, preferably 150 μm or less) is preferred to be less, specifically 10% by weight or less, further 5% by weight or less, In particular, it is preferably 1% by weight or less. The water-absorbent resin powder and the water-absorbing agent are preferably substantially 1000 μm or more, more preferably 850 μm or more of particles in an amount of 5% by weight or less, further 1% by weight or less.
[0032]
The particle shape of the water-absorbing resin and water-absorbing agent thus obtained is not particularly limited, such as spherical, crushed, and irregular shapes, but is preferably an irregularly crushed one obtained through the pulverization step. Can be used. Further, the bulk specific gravity (specified in JIS K-3362) is preferably 0.40 to 0.80 g / ml, more preferably 0.50 to 0.75 g / ml, and still more preferably, due to the excellent physical properties of the water-absorbing agent. The range is 0.60 to 0.73 g / ml.
The water-absorbent resin obtained by the above method usually has a saturated absorption ratio with respect to physiological saline under no pressure, of about 10 to 100 g / g, and the physical properties such as the absorption ratio are appropriately adjusted according to the purpose. Is done.
[0033]
(Water-soluble inorganic base (b1))
In the present invention, the water-absorbent resin powder (a) or (a1) is non-crosslinkable water-soluble inorganic base (b1), that is, preferably an alkali metal salt, an ammonium salt, an alkali metal hydroxide, and , Ammonia or a hydroxide thereof, a water-soluble inorganic base (b1) (hereinafter referred to as a water-soluble inorganic base (b1)), and / or a non-reducing alkali metal salt pH buffer (b2) ) And a crosslinking agent (c) or a dehydration-reactive crosslinking agent (c1) are added. Hereinafter, the water-soluble inorganic base (b1) will be described.
[0034]
That is, in the present invention, the water-soluble inorganic base is dissociated in an aqueous solution, so that water or OH-Inorganic compounds (including carbonates and bicarbonates) that generate salts by neutralizing acid groups. The water-soluble inorganic base (b1) used in the present invention is preferably selected from the group consisting of alkali metal salts, ammonium salts, alkali metal hydroxides, and ammonia or hydroxides thereof. It is a substantially non-crosslinkable water-soluble inorganic base. (Note that examples of the water-soluble inorganic base that is crosslinkable with respect to the acid group-containing water-absorbing resin include polyhydric metal hydroxides typified by calcium hydroxide and aluminum hydroxide. Valence metals are not included in the water-soluble inorganic bases of the present invention).
[0035]
As the water-soluble inorganic base (b1), it is essential that it is water-soluble in view of the properties of the resulting water-absorbing agent, and is usually 5 g or more, preferably 20 g or more, more preferably 50 g or more, more preferably 100 g of room temperature water. Those having a solubility of 100 g or more are used. In the present invention, the combined use of a water-insoluble inorganic base, an organic base or a crosslinkable inorganic base (polyhydric metal hydroxide) is not excluded, but a non-crosslinkable water-soluble inorganic base (b1) is not used. The physical properties of the obtained water-absorbing agent are low.
Specifically, as the water-soluble inorganic base (b1), a carbonate compound containing an alkali metal salt such as lithium carbonate, sodium carbonate, potassium carbonate, sodium carbonate, cesium carbonate, rubidium carbonate, ammonium carbonate, and / or ammonium salt, and its Hydrates (decahydrate, heptahydrate, 1.pentahydrate, monohydrate, etc.), lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate, rubidium bicarbonate, ammonium bicarbonate, etc. Bicarbonate containing metal and / or ammonium, lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, rubidium hydroxide, ammonium hydroxide, hydroxide compounds containing ammonium such as water glass, phosphoric acid Disodium hydrogen, dipotassium hydrogen phosphate, dilithium hydrogen phosphate, hydrogen phosphate Rubidium, hydrogen phosphate compound, such as hydrogen phosphate 2 cesium, sodium sesquicarbonate (Na2COThree・ NaHCOThree・ 2H2Complex salts such as O) may be mentioned, and two or more of these may be mixed or used together. These water-soluble inorganic bases (b1) are purchased, stored or used as powders, hydrates thereof, pellets or aqueous solutions, but the form is not limited.
[0036]
Among the water-soluble inorganic bases (b1), an alkali metal salt, preferably a lithium salt, a sodium salt or a potassium salt, more preferably a sodium salt is used from the viewpoint of physical properties and solubility. Among the compounds (b1), from the viewpoint of physical properties, carbonate / bicarbonate / hydroxide is preferred, more preferably hydroxide and / or bicarbonate, particularly preferably hydroxide. That is, specifically, as the water-soluble inorganic base (b1), preferably sodium bicarbonate and / or sodium hydroxide, more preferably sodium hydroxide is used.
The amount of the water-soluble inorganic base (b1) used in the present invention is 0.001 to 10 parts per 100 parts by weight of the water-absorbent resin when not used in combination with the non-reducing alkali metal salt pH buffer (b2) described later. It is preferably in the range of parts by weight, more preferably in the range of 0.01 to 5 parts by weight, and still more preferably in the range of 0.01 to 2 parts by weight. By using it within the above range, the absorption characteristics for body fluids (aqueous liquids) such as urine, sweat and menstrual blood can be further improved. When the amount used is less than 0.001 part by weight, the neutralization rate of the functional group in the vicinity of the surface of the water-absorbent resin cannot be appropriately adjusted, and the absorption characteristics may not be improved. When the amount of the water-soluble inorganic base (b1) used is more than 10 parts by weight, the amount becomes excessive, which is uneconomical and the absorption capacity may not be improved.
[0037]
In the case where the water-soluble inorganic base (b1) is used in combination with the non-reducing alkali metal salt pH buffer (b2) described later, for the same reason as described above, the total use amount thereof is the water-absorbing resin 100. It is preferably in the range of 0.001 to 10 parts by weight, more preferably in the range of 0.01 to 5 parts by weight, and still more preferably in the range of 0.01 to 2 parts by weight with respect to parts by weight. However, in the present invention, when the water-soluble inorganic base (b1) and the non-reducing alkali metal salt pH buffer (b2) described later are used in combination, (b1) and (b2) within the range showing at least one of the functions. Are used together as appropriate.
Although the mechanism for improving the absorption characteristics is not clear, the following two reasons ((1) formation of a uniform surface cross-linking layer by uniformizing the surface neutralization rate, (2) optimization of mixing and penetration by changing the salt concentration) )It is estimated to be.
[0038]
That is, as the reason (1), in the water-absorbent resin powder, the water-absorbent resin powder is generally contained in each particle regardless of the post-neutralization after the polymerization (the neutralization polymerization method or the acid type polymerization method described above). The neutralization rate of the powder surface differs slightly even with the same rate or even the same single powder. In conventional surface treatment, the powder cross-linking reaction and mixing of the cross-linking agent are not uniform due to these reasons. As a result, the physical properties deteriorated. Therefore, in the present invention, by using the water-soluble inorganic base (b1) together with the crosslinking agent (c), the neutralization rate of each particle of the water-absorbent resin powder and the minute surface neutralization of the powder By eliminating the difference in rate, the neutralization rate of the carboxyl groups in the vicinity of the surface involved in crosslinking can be optimized uniformly, and as a result, surface crosslinking can be performed uniformly. For example, the water-absorbing agent obtained from 70 mol% neutralized polyacrylic acid-based water-absorbing resin and 0.01 to 2 parts by weight of sodium hydroxide is in the range of 0.025 to 5 mol%. And is selectively highly neutralized near the surface of the particles. Furthermore, it is presumed that the water-soluble inorganic base (b1) of the present invention also acts as a reaction catalyst for the crosslinking agent due to improved absorption characteristics.
[0039]
In addition, as the reason (2), the water-soluble inorganic base (b1) is derived from a high salt concentration in the crosslinking agent solution at the time of mixing the crosslinking agent, thereby controlling the penetration into the water-absorbent resin and improving the mixing property. After mixing, it neutralizes with the carboxyl group of the water-absorbent resin and becomes an alkali metal salt and ammonium salt, which disappears from the crosslinking agent solution. Therefore, it is estimated that it works to promote penetration of the crosslinking agent. . This is because conventional additives (hydrophilic organic solvents such as isopropanol) control the penetration of the water-absorbing resin derived from the inert organic solvent and improve the mixing, but the organic solvent remains the crosslinker solution after mixing. It is presumed that it remains inside and prevents the cross-linking agent from penetrating into the surface.
[0040]
In addition, unlike a water-soluble inorganic base (b1), when a polyvalent metal salt such as aluminum is used, the cross-linking reaction proceeds with a polyvalent metal ion, reducing the absorption capacity under no pressure or under pressure. I guess it is. Furthermore, cross-linking with polyvalent metal ions is very weak because it forms ionic bonds, and in the water-swollen state, polyvalent metal ions move into the particles and form cross-links, resulting in further deterioration in physical properties. Guessed.
It is presumed that the water-soluble inorganic base (b1) of the present application has improved the conventional disadvantage that the thickness of the crosslinked layer of the water-absorbing agent resulting from the above phenomenon is insufficient and the physical properties are lowered. Furthermore, by using the dehydration-reactive crosslinking agent (c1), it is estimated that the cross-linking agent further penetrates into the vicinity of the surface due to water generated from the dehydration crosslinking reaction, and the thickness of the crosslinked layer is further increased.
[0041]
(Non-reducing alkali metal salt pH buffer (b2))
In the present invention, the non-crosslinkable water-soluble inorganic base (b1), that is, alkali metal salt, ammonium salt, alkali metal hydroxide, and ammonia or the water-absorbent resin powder (a) or (a1) Water-soluble inorganic base (b1) selected from the group consisting of hydroxides and the like, and / or non-reducing alkali metal salt pH buffer (b2), and crosslinking agent (c) or dehydration-reactive crosslinking agent ( Although c1) is added, the non-reducing alkali metal salt pH buffer (b2) will be described below.
[0042]
The non-reducing alkali metal salt pH buffer (b2) in the present invention maintains a substantially constant hydrogen ion concentration even in the absence of a certain amount of acid or base addition in the solution, and is essentially non-reducing. Preferably, a non-oxidizing alkali metal salt is used (for example, in the case of an alkali metal salt pH buffer containing phosphorus or sulfur, if the oxidation number of phosphorus atoms is + 5 / the oxidation number of sulfur atoms is +6, pH buffer exhibits non-oxidizing and non-reducing properties).
If the pH buffering agent has reducibility or is not an alkali metal salt, crosslinking may be inhibited, and the object of the present invention cannot be sufficiently achieved. The present invention is applied to pH buffer agents that are alkali metal salts that act as pH buffer agents and are made from various acid, base, or salt combinations. Moreover, the molecular weight of a pH buffer agent is 50-1000, Furthermore, the thing of 60-800, especially 70-500 is used from the mixing property to a water absorbing resin, or permeability.
[0043]
Examples of the alkali metal salt that functions as the pH buffer (b2) in the present invention typically include one or more of hydrogen carbonate, dihydrogen phosphate, and hydrogen phosphate.
Specific examples include partial alkalis of inorganic polybasic acids such as sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate. Metal salts: Organic polyvalent carboxylic acids such as potassium dihydrogen citrate, sodium dihydrogen citrate, disodium hydrogen citrate, dipotassium hydrogen citrate, sodium hydrogen tartrate, potassium hydrogen tartrate, monosodium fumarate, potassium hydrogen phthalate And partial alkali metal salts, especially sodium salts or potassium salts, and lithium salts.
[0044]
In addition to the pH buffering agent (b2), the pH buffering agent (b2) prepared from a combination of various acids, bases or salts referred to in the present invention is typically a conventionally known buffer solution. Examples are buffers made from the combination of compounds used in making. The buffer solution is an aqueous solution of a buffer solution, particularly a salt composed of a weak acid and a strong base, a salt composed of a strong acid and a weak base, or a mixture of these salts. In the case of a water-absorbing resin containing an acid group such as a carboxyl group, a buffer as a mixture of salts consisting of a weak acid and a strong base is preferably used, and more preferably an inorganic salt is used.
[0045]
As a specific example, a combination of compounds used in the buffer described in Chemical Handbook (edited by the Chemical Society of Japan, II-355, 356) can be mentioned as a buffer. For example, Clark-Lubs buffer (potassium chloride / hydrochloric acid; pH 1.0 to 2.2, potassium hydrogen phthalate / hydrochloric acid; pH 2.2 to 3.8, potassium hydrogen phthalate / sodium hydroxide; pH 4.0 to 6.2, potassium dihydrogen phosphate / sodium hydroxide; pH 5.8-8.0, boric acid / potassium chloride / sodium hydroxide; pH 7.8-10.0), Sφrensen's buffer (glycine + sodium chloride) PH 1.1-4.6, glycine + sodium chloride / hydrochloric acid; pH 8.6-13.0, sodium citrate / hydrochloric acid; pH 1.1-4.9, sodium citrate / sodium hydroxide; pH 5. 0 to 6.7, sodium tetraborate / hydrochloric acid; pH 7.6 to 9.2, sodium tetraborate / sodium hydroxide; pH 9.3 to 12.4, dihydrogen phosphate potassium Um / disodium hydrogen phosphate; pH 5.3-8.0), Kolthoff's buffer (potassium citrate / citric acid; pH 2.2-3.6, potassium dihydrogen citrate / hydrochloric acid; pH 2.2-3 .6, potassium dihydrogen citrate / sodium hydroxide; pH 3.8-6.0, succinic acid / sodium tetraborate; pH 3.0-5.8, potassium dihydrogen citrate / sodium tetraborate; pH 3. 8 to 6.0, potassium dihydrogen phosphate / sodium tetraborate; pH 5.8 to 9.2, sodium tetraborate / sodium carbonate; pH 9.2 to 11.0, hydrochloric acid / sodium carbonate; pH 10.2 to 11.2, disodium hydrogen phosphate / sodium hydroxide; pH 11.0-12.0), Michaelis buffer (tartaric acid / sodium tartrate; pH 1.4-4.5, lactic acid / Sodium lactate; pH 2.3 to 5.3, acetic acid / sodium acetate; pH 3.2 to 6.2, potassium dihydrogen phosphate / disodium hydrogen phosphate; pH 5.2 to 8.3, sodium diethyl barbiturate + Sodium acetate / hydrochloric acid; pH 2.6-9.2, sodium diethylbarbiturate / hydrochloric acid; pH 6.8-9.6, N, N-dimethylglycine sodium salt / hydrochloric acid; pH 8.6-10.6), Mcilvaine Wide-area buffer (disodium hydrogen phosphate / citric acid; pH 2.2-8.0), Britton-Robinson's wide-area buffer (citric acid + potassium dihydrogen phosphate + boric acid + diethyl barbituric acid / phosphoric acid Trisodium), Carmody's broad buffer (boric acid + citric acid / trisodium phosphate; pH 2.0-12.0), Gomori's Impulse liquid (2,4,6-trimethylpyridine / hydrochloric acid; pH 6.4 to 8.4, tris (hydroxymethyl) aminomethane / hydrochloric acid; pH 7.2 to 9.1,2-amino-2-methyl-1,3 -Propanediol / hydrochloric acid; pH 7.8-9.7), Bates-Bower Tris buffer (Tris (hydroxymethyl) aminomethane / hydrochloric acid; pH 7.0-9.0), Delhi-King buffer (carbonate) / Bicarbonate; pH 9.2 to 10.7). The pH and concentration of the buffer used depend on the neutralization rate of the water-absorbent resin and the type of surface cross-linking agent used, but preferably the pH of the surface cross-linking agent solution is 1 by adding a buffer. It is adjusted in the range of .5 to 10.0.
[0046]
Among these, partially neutralized salts of inorganic polybasic acids are preferable from the viewpoint of performance, stability, use in a one-component system, cost, and the like, and partially alkali metal neutralized salts of phosphoric acid and carbonic acid are more preferable.
The amount of the pH buffer (b2) used in the present invention is 0.005 to 10 parts by weight with respect to 100 parts by weight of the solid content of the water-absorbent resin when not used in combination with the water-soluble inorganic base (b1). Is preferable, and the range of 0.05 to 5 parts by weight is more preferable. By using it within the above range, the absorption characteristics for body fluids (aqueous liquids) such as urine, sweat and menstrual blood can be further improved. If the amount used is less than 0.005 parts by weight, the neutralization rate of the functional group in the vicinity of the surface of the water-absorbent resin cannot be appropriately adjusted, and the absorption characteristics may not be improved. When the amount of the pH buffer (b2) used is more than 10 parts by weight, the additive becomes excessive, which is uneconomical and may not improve the absorption capacity.
[0047]
In the case where the non-reducing alkali metal salt pH buffer (b2) is used in combination with the water-soluble inorganic base (b1), the total amount of the non-reducing alkali metal salt pH buffer (b2) is 100% for the same reason as described above. It is preferably in the range of 0.001 to 10 parts by weight, more preferably in the range of 0.01 to 5 parts by weight, and still more preferably in the range of 0.01 to 2 parts by weight with respect to parts by weight. However, in the present invention, when the water-soluble inorganic base (b1) and the non-reducing alkali metal salt pH buffer (b2) are used in combination, (b1) and (b2) are within a range showing at least one of the functions. Used in combination as appropriate.
Although the mechanism for improving the absorption characteristics is not clear, it is presumed for the following two reasons ((1) uniform surface neutralization rate and (2) optimization of mixing and penetration by changing the salt concentration).
[0048]
That is, as the reason (1), in the water-absorbent resin powder, neutralization of each particle of the water-absorbent resin powder irrespective of the presence or absence of post-neutralization after polymerization (the above-described neutralization polymerization method or acid type polymerization method). Even if the powder is the same grain, the neutralization rate on the surface of the powder is slightly different, and the physical properties have been lowered due to nonuniformity in the cross-linking reaction of the powder and the mixing of the cross-linking agent. By using the pH buffering agent (a) of the present invention in combination with the crosslinking agent (b), the difference in the neutralization rate of each particle of the water-absorbent resin powder and the minute surface neutralization rate of the powder of one particle Therefore, regardless of the neutralization rate of the water-absorbent resin powder and the neutralization index described later, in the present invention, the neutralization rate of the carboxyl groups in the vicinity of the surface involved in crosslinking can be uniformly optimized. This is probably because of this. As a result, the pH buffering agent of the present invention acts as a mixing aid without interfering with the penetration of the crosslinking agent into the water-absorbent resin powder, and further acts as a reaction catalyst for the crosslinking agent. It is presumed that this is due to improved characteristics.
[0049]
In addition, as a reason (2), since a pH buffer such as hydrogen carbonate exists as an alkali metal salt in the cross-linking agent solution when the cross-linking agent is mixed, it controls the penetration of the water-absorbing resin derived from a high salt concentration. Although the mixing property has been improved, after mixing, the alkali metal salt of the pH buffering agent disappears from the crosslinking agent solution by neutralizing reaction with the carboxyl group of the water-absorbent resin, thus inhibiting the penetration of the crosslinking agent after mixing. It is presumed that the dissolved salt disappears and promotes the penetration of the crosslinking agent. This is because conventional additives (hydrophilic organic solvents such as isopropanol) control the penetration of the water-absorbing resin derived from the inert organic solvent and improve the mixing, but the organic solvent remains the crosslinker solution after mixing. It is presumed that the pH buffer of the present application has improved the conventional defect that remains in the inside and prevents the cross-linking agent from penetrating into the surface and the cross-linking layer of the water-absorbing agent is insufficient.
[0050]
(Crosslinking agent (c) and its mixture and crosslinking treatment)
In the present invention, as the crosslinking agent (c) capable of reacting with an acid group, a surface crosslinking agent, and further a dehydration reactive crosslinking agent (c1) are preferably used. In the present invention, the dehydration reactivity means that the functional group of the water-absorbent resin (particularly the functional group in the vicinity of the surface) and the crosslinking agent undergo a dehydration reaction, preferably dehydration esterification and / or dehydration amidation, more preferably It is a crosslinking agent that crosslinks by dehydration esterification.
Specifically, when the water-absorbing resin contains a carboxyl group, a hydroxyl group-containing cross-linking agent such as a polyhydric alcohol, an amino group-containing cross-linking agent such as a polyhydric amine, an alkylene carbonate, mono-, di- or poly- An oxazolidinone compound; a cyclic cross-linking agent such as an oxetane compound such as 3-methyl-3-oxetanemethanol, which generates a hydroxyl group or an amino group in accordance with a ring-opening reaction of the cyclic cross-linking agent, and the hydroxyl group or amino group Examples of the crosslinking agent (c1) that exhibits a dehydration reactivity include a cyclic crosslinking agent that performs a crosslinking reaction. One or more of the dehydration-reactive crosslinking agents (c1) are used, but a non-dehydration-reactive crosslinking agent such as a polyvalent metal may be used in combination.
[0051]
Specifically, as the dehydration-reactive cross-linking agent (c1) that can be used in the present invention, any cross-linking agent that can react with the functional group of the water-absorbent resin is used without limitation, and is usually used for the application. It is a crosslinking agent (surface crosslinking agent). For example, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, 1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol, Glycerin, diglycerin, polyglycerin, 2-butene-1,4-diol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,2 -Multivalent alcohols such as cyclohexanol, trimethylolpropane, diethanolamine, triethanolamine, polyoxypropylene, oxyethyleneoxypropylene block copolymer, pentaerythritol, sorbitol, etc. Polyamine compounds such as ethylenediamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, polyamide polyamine, polyallylamine, polyethyleneimine, and condensates of these polyamines and haloepoxy compounds; 3-dioxolan-2-one, 4-methyl-1,3-dioxolan-2-one, 4,5-dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1,3-dioxolane- 2-one, 4-ethyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3-dioxolan-2-one, 1,3-dioxan-2-one, 4-methyl-1,3 -Dioxane-2-one, 4,6-dimethyl-1,3-dioxan-2-one, 1,3-dioxopan-2-one An alkylene carbonate compound such as ethylene glycol bis (4-methylene-1,3-dioxolan-2-one) ether; a mono-, di- or polyoxazolidinone compound; 3-methyl-3- One or two or more types selected from oxetane compounds such as oxetane methanol and polyvalent oxetane compounds;
[0052]
Among these dehydration-reactive crosslinking agents, one or more selected from polyhydric alcohols, alkylene carbonates, oxazolidinone compounds, and (polyhydric) oxetane compounds are preferable, and at least polyhydric alcohols are particularly preferably used.
As the crosslinking agent (c), in addition to the dehydration-reactive crosslinking agent (c1), ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl Epoxy compounds such as ether, polyethylene diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, glycidol, and γ-glycidoxypropyltrimethoxysilane; polyvalent compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate Isocyanate compounds; polyvalent oxazoline compounds such as 1,2-ethylenebisoxazoline; γ-glycidoxypropyltrimethoxysilane, γ- Silane coupling agents such as minopropyltrimethoxysilane; polyvalent aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], beryllium, magnesium, calcium, strontium, zinc, aluminum And multivalent metals such as iron, chromium, manganese, titanium, and zirconium.
[0053]
In the present invention, the dehydration-reactive crosslinking agent (c1), the water-absorbent resin powder (a1) in which the fine powder having a weight average particle diameter of 300 to 600 μm and 150 μm or less is 10% by weight and / or the particle diameter is less than 850 μm. 150% or more of particles of 150 μm or more are contained, and the particle diameter is less than 850 μm and 600 μm or more (A1), the particle diameter is less than 600 μm and 500 μm or more (A2), the particle diameter is less than 500 μm When both the water absorbent resin powder containing at least two kinds selected from particles (A3) having a particle diameter of less than 300 μm and particles having a particle diameter of less than 300 μm (A4) are not used, the physical properties of the water absorbent generally obtained are low. Preferably, both the dehydration-reactive crosslinking agent (c1) and the water absorbent resin powder (a1) having the specific particle size are used in the present invention.
[0054]
In the present invention, the water-absorbent resin powder (a) or (a1), the water-soluble inorganic base (b1) and / or the non-reducing alkali metal salt pH buffer (b2), and the crosslinking agent (c) or (c1) ) Is preferably mixed with water. In this case, the amount of water used is usually 0.5 to 20 parts by weight, preferably 0.5 to 10 parts by weight based on 100 parts by weight of the water absorbent resin, although it depends on the water content of the water absorbent resin to be used. The range is parts by weight. If the amount of water used exceeds 20 parts by weight, the absorption capacity may decrease. If the amount is less than 0.5 parts by weight, the effect is difficult to appear, and the absorption capacity under pressure may not be improved.
[0055]
In the present invention, the water absorbent resin powder (a) or (a1), the water-soluble inorganic base (b1) and / or the non-reducing alkali metal salt pH buffer (b2), and the crosslinking agent (c) or When mixing (c1), a hydrophilic organic solvent may be used. Examples of the hydrophilic organic solvent used include alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, and t-butyl alcohol; ketones such as acetone and methyl ethyl ketone; dioxane, alkoxy (poly) ethylene Ethers such as glycol and tetrahydrofuran; amides such as ε-caprolactam and N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide; ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol 1,3-propanediol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, polyp Pyrene glycol, glycerin, polyglycerin, glycerophosphoric acid, 2-butene-1,4-diol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1 , 2-cyclohexanedimethanol, 1,2-cyclohexanol, trimethylolpropane, diethanolamine, triethanolamine, polyoxypropylene, oxyethylene-oxypropylene block copolymers, polyhydric alcohols such as pentaerythritol, sorbitol, etc. It is done.
[0056]
The amount of the hydrophilic organic solvent to be used varies depending on the type and particle size of the water-absorbent resin, but is usually 0 to 10 parts by weight, preferably 0 to 5 parts by weight, more preferably 0 to 100 parts by weight of the water-absorbent resin. It is in the range of ˜3 parts by weight. When the usage-amount of a hydrophilic organic solvent is 10 weight part or more, there exists a possibility that the solubility of the said additive may fall and an absorption characteristic may not improve. The polyhydric alcohol may be reacted with the water-absorbent resin depending on the reaction conditions (heating temperature, time, moisture content, etc.), may be used as a crosslinking agent, or may be used as a solvent without being reacted, or the functions thereof may be used in combination. May be.
Furthermore, in the present invention, the water-absorbent resin powder (a) or (a1), the additive (b1) and / or the non-reducing alkali metal salt pH buffer (b2), and the crosslinking agent (c) or (c1) ) May be used as a substance other than water or a hydrophilic organic solvent as long as it does not interfere with the effects of the present invention. Surfactants and inert inorganic fine particle powders used are exemplified in US Pat. No. 5,164,459, European Patent No. 827753, European Patent No. 349240, European Patent No. 761241 and the like.
[0057]
In the present invention, the water absorbent resin powder (a) or (a1), the water-soluble inorganic base (b1) and / or the non-reducing alkali metal salt pH buffer (b2), and the crosslinking agent (c) or ( The mixing of c1) may be performed in a state where the water-absorbing resin is dispersed in a hydrophilic organic solvent or an organic solvent such as cyclohexane or pentane, but the mixture of water, crosslinking agent and additive is divided into several times. The mixing method is not particularly limited. In addition, the water-soluble inorganic base (b1) and / or the non-reducing alkali metal salt pH buffer (b2) and the crosslinking agent (c) or (c1), water or hydrophilic organic used as necessary The solvent, inorganic powder, etc. may be mixed separately with respect to the water-absorbent resin, may be mixed in a lump, or may be mixed in several times, preferably a water-soluble inorganic base. (B1) and / or a non-reducing alkali metal salt pH buffer (b2) and a crosslinking agent (c) or (c1) are mixed in advance and then added to the water-absorbent resin. More preferably, b1) and / or the non-reducing alkali metal salt pH buffering agent (b2) and the crosslinking agent (c) or (c1) are made into an aqueous solution. Moreover, the temperature of the aqueous solution at this time is set to 0 ° C. to boiling point, preferably 5 to 50 ° C., and more preferably 10 to 30 ° C. in view of mixing property and stability. In addition, the temperature of the water absorbent resin powder (a) or (a1) before mixing is preferably in the range of 0 to 80 ° C., more preferably 40 to 70 ° C., from the viewpoint of mixing properties.
[0058]
Furthermore, in the present invention, water and / or a hydrophilic organic solvent, a water-soluble inorganic base (b1) and / or a non-reducing alkali metal salt pH buffer (b2), if necessary, among various mixing methods, and After the crosslinking agent (c) or (c1) is preliminarily mixed, a method of spraying or dropping and mixing the aqueous solution onto the water absorbent resin powder (a) is preferable, and a method of spraying is more preferable. The size of the droplets to be sprayed is preferably 300 μm or less, and more preferably 200 μm or less. In mixing, a water-insoluble fine particle powder and a surfactant may be allowed to coexist within a range not impeding the effects of the present invention.
[0059]
A suitable mixing device used for the mixing needs to be able to generate a large mixing force to ensure uniform mixing. Examples of the mixing apparatus that can be used in the present invention include a cylindrical mixer, a double wall conical mixer, a high-speed stirring mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, and a fluidizer. A mold furnace rotary disk type mixer, an airflow type mixer, a double arm type kneader, an internal mixer, a pulverizing type kneader, a rotary mixer, a screw type extruder and the like are suitable.
The method for producing a water-absorbing agent of the present invention comprises a water-absorbing resin powder (a) or (a1), a water-soluble inorganic base (b1) and / or a non-reducing alkali metal salt pH buffer (b2), and a crosslinking agent. (C) or (c1) is mixed, and the water-absorbent resin powder (a) or (a1) is subjected to a crosslinking treatment.
[0060]
In the method for producing a water-absorbing agent of the present invention, preferably, the water-absorbing resin powder (a) or (a1) is added with a water-soluble inorganic base (b1) and / or a non-reducing alkali metal salt pH buffer (b2), Then, after the crosslinking agent (c) or (c1) is mixed, a heat treatment is performed when the vicinity of the surface of the water absorbent resin is crosslinked.
When performing heat processing by this invention, 1 minute-180 minutes are preferable, 3 minutes-120 minutes are more preferable, and 5 minutes-100 minutes are further more preferable. The heat treatment temperature (specified by heat medium temperature or material temperature) is preferably in the range of 100 to 250 ° C, more preferably in the range of 140 to 240 ° C, further preferably in the range of 150 to 230 ° C, and in the range of 160 to 220 ° C. Even more preferred. When the heating temperature is less than 100 ° C., the heat treatment and dehydration reaction take time, not only causing a decrease in productivity, but also a uniform crosslinking is not achieved, and an excellent water absorbing agent may not be obtained. On the other hand, if the treatment temperature exceeds 250 ° C., the resulting water-absorbing agent may be damaged and it may be difficult to obtain a product having excellent physical properties.
[0061]
The heat treatment can be performed using a normal dryer or a heating furnace, and examples thereof include a groove type mixing dryer, a rotary dryer, a disk dryer, a fluidized bed dryer, an airflow dryer, and an infrared dryer. .
In the method for producing a water-absorbing agent according to the present invention, further, if necessary, deodorant, antibacterial agent, fragrance, inorganic powder such as silicon dioxide and titanium oxide, foaming agent, pigment, dye, hydrophilic short Fibers, plasticizers, adhesives, surfactants, fertilizers, oxidizing agents, reducing agents, water, salts, chelating agents, fungicides, hydrophilic polymers such as polyethylene glycol and polyethyleneimine, hydrophobic polymers such as paraffin, A step of imparting various functions to the water-absorbing agent or the water-absorbing resin, such as adding a thermoplastic resin such as polyethylene or polypropylene, or a thermosetting resin such as polyester resin or urea resin, may be included. The amount of these additives used is 0 to 10 parts by weight, preferably 0 to 1 part by weight, based on 100 parts by weight of the water-absorbing agent.
[0062]
The cationic polymer compound used for the water-absorbing agent in the present invention can improve the fixability of the water-absorbing agent to a sanitary material, and preferably has a weight average molecular weight of 2000 or more, more preferably 5000 or more, and most preferably a weight average. The molecular weight is 10,000 or more. Moreover, the usage-amount becomes like this. Preferably it is 0.01-10 weight part with respect to 100 weight part of water absorbing resin, More preferably, it is 0.05-5 weight part, More preferably, it is 0.1-3 weight part. Mixing of the cationic polymer compound is added alone or in solution (aqueous solution), preferably after surface crosslinking. Specific examples of the cationic polymer compound include polyethyleneimine, polyvinylamine, polyallylamine, polyamidoamine and epichlorohydrin condensate, polyamidine, partial hydrolyzate of poly (N-vinylformaldehyde), and salts thereof. The
[0063]
The water-insoluble fine particles can be used to further improve the liquid permeability of the water-absorbing agent and the blocking resistance during moisture absorption. The fine particles used are preferably inorganic or organic water-insoluble fine particles of 10 μm or less, more preferably 1 μm or less, particularly 0.1 μm or less. Specifically, silicon oxide (trade name, Aerosil, manufactured by Aerosil Japan) , Titanium oxide, aluminum oxide, etc. are used. For mixing, powder mixing (Dry-Blend) or slurry mixing is used. The amount used is 10 parts by weight or less, more preferably 0.001 to 5 parts by weight, preferably 0.01. ~ 2 parts by weight are used.
[0064]
(Water-absorbing agent and sanitary material using it)
In the present invention, preferably, the water-absorbent resin powder (a) or (a1) is added to the water-soluble inorganic base (b1) and / or the non-reducing alkali metal salt pH buffer (b2), and the crosslinking agent (c ) Or (c1) is mixed, and the water-absorbent resin powder (a) or (a1) is crosslinked to provide a novel water-absorbing agent having high physical properties resulting from the effects of the present invention described above.
The water-absorbing agent according to the present invention is preferably a particulate water-absorbing agent mainly composed of a water-absorbing resin having a crosslinked structure obtained by polymerizing an unsaturated monomer component.
[0065]
(1) In the case of acid polymerization, the resulting water-absorbing agent
In the case of obtaining a water-absorbing resin by acid polymerization, the water-absorbing agent according to the present invention is preferably obtained by polymerizing a monomer containing an acid group-containing monomer (salt) and further post-neutralizing. It is a water-absorbing agent obtained by surface-crosslinking a resin. More preferably, the water-absorbent resin obtained by the post-neutralization has a neutralization index of 15 or more, more preferably 17 or more, and particularly preferably 20 or more. Preferably, the surface-crosslinked water-absorbing agent has a neutralization index of 15 or more, more preferably 17 or more, and particularly preferably 20 or more. When the neutralization index is lowered in order to enhance the surface crosslinking effect, the neutralization requires a long time and a complicated process, but in the present invention, excellent surface crosslinking can be easily achieved even with non-uniform neutralization.
[0066]
Conventionally, a water-absorbing resin obtained by polymerizing a monomer containing an acid group-containing monomer (salt) and further post-neutralizing has a high absorption capacity and low solubility. Since the sum is not uniform, the absorption capacity under pressure is generally difficult to improve. In order to solve this problem, Japanese Patent Laid-Open No. 10-101735 (European Patent Publication No. 0882502) discloses a technique for highly controlling the difference (neutralization index) in the neutralization rate of each particle of the water absorbent resin. It has been.
In such a method for controlling the neutralization index, a water-absorbing resin having a low solubility obtained by polymerizing a monomer containing an acid group-containing monomer (salt) and further neutralizing it, Although high absorption capacity under pressure was achieved, control of the neutralization index was very laborious. However, the method of the present invention using the alkali metal pH buffer (b2) of the present invention does not require a high degree of control of the neutralization index, and provides a high absorption capacity under pressure even with simple non-uniform post-neutralization. Highly preferred. Of course, the present invention is limited to the low water-soluble water-absorbing resin obtained by polymerizing a monomer containing an acid group-containing monomer (salt) and then neutralizing it after the acid-type polymerization method. However, as shown in the examples and the like described later, the present invention is also suitably applied to a water-absorbing resin by a neutralization polymerization method that does not include a post-neutralization step.
[0067]
(2) Novel water-absorbing agent that has five physical properties
In addition, including the case where acid polymerization is not performed, the water-absorbing agent of the present invention preferably has the following physical properties. In particular, in the present invention, in addition to the following five physical properties (particle size, CRC, AAP, SFC) 1 or more, preferably 2 or more, more preferably 3 or more, particularly preferably 4 or more) such as SFC change index, SFC variation coefficient, SFC variation rate, continuous production system SFC standard deviation, surface soluble component, etc. A new water-absorbing agent is also provided.
(A) Particle size
The average particle diameter and bulk specific gravity of the water-absorbing agent according to the present invention are preferably in the range of the water-absorbent resin, that is, the fine powder having a weight average particle diameter of 300 to 600 μm and 150 μm or less is 10% by weight or less. More preferably, it is 5% by weight or less, further preferably 3% by weight or less, particularly 2% by weight or less.
[0068]
The water-absorbing agent according to the present invention comprises particles having a particle size of less than 850 μm and 150 μm or more of 90% by weight or more of all particles, and a particle size of less than 850 μm and 600 μm or more (A1), wherein the particle size is less than 600 μm. Including at least two kinds selected from particles (A2) having a particle diameter of 500 μm or more, particles (A3) having a particle diameter of less than 500 μm and 300 μm or more, and particles (A4) having a particle diameter of less than 300 μm and 150 μm or more, more preferably three kinds As mentioned above, More preferably, 4 types are included.
The water-absorbing agent according to the present invention preferably contains 95% by weight or more of particles having a particle diameter of less than 850 μm and 150 μm or more, more preferably 97% by weight or more, and still more preferably 98% by weight or more. By controlling to such a specific particle size, high physical properties are achieved with sanitary materials.
[0069]
The water-absorbing agent according to the present invention preferably contains 0.1% by weight or more of each of the four types of particles A1 to A4, more preferably 1% by weight or more, and further preferably 3% by weight or more. In this case, the upper limit is not particularly limited, but preferably, the four types of particles A1 to A4 are each 99% by weight or less, more preferably 90% by weight or less, and still more preferably 80% by weight or less. By containing each particle size above a certain level, the water absorption speed depending on the surface area of the particles is controlled in a well-balanced manner.
(B) CRC
The water-absorbing agent according to the present invention preferably has an absorption capacity (Centrifuge Retention Capacity / CRC) of 30 g / g for 30 minutes under no pressure with respect to 0.90% by weight physiological saline. When the CRC is 31 g / g or more, it is critically superior in absorbing hygiene materials using a water-absorbing agent, and a compact sanitary material can be achieved. Further, a water-absorbing body (note that a water-absorbing body is a water-absorbing agent and This also means a reduction in the cost of a bodily fluid water-absorbing body containing other water-absorbing materials such as fibers. CRC is more preferably 32 g / g or more, further preferably 33 g / g or more, still more preferably 34 g / g or more, particularly preferably 35 g / g or more, and particularly preferably 36 g / g or more. If the absorption rate for 30 minutes under 0.90% by weight physiological saline is less than 31 g / g, the total amount of urine that can be absorbed by the water absorbent becomes small, and the urine absorbed by the water absorbent is a diaper. The return to the surface is very large. Furthermore, when trying to maintain the urine absorption amount required for the water absorbent body, the amount of water absorbent used in the water absorbent body increases, sanitary materials become bulky and heavy, leading to an increase in the cost of the water absorbent body. This is not preferable.
[0070]
(C) AAP
The water-absorbing agent according to the present invention preferably has an absorption capacity under pressure (Absorbency Against Pressure / AAP) of not less than 20 g / g at 4.83 kPa against 0.90 wt% physiological saline for 60 minutes. When the water-absorbing agent of the present invention is used as a part of the water absorbent body of a paper diaper due to the AAP being 20 g / g or more, the effect of preventing the urine absorbed by the water absorbent body from returning to the surface of the diaper is very large. Become. The absorption capacity under pressure at 4.83 kPa for 0.90 wt% physiological saline for 60 minutes is more preferably 22 g / g or more, still more preferably 24 g / g or more, still more preferably 25 g / g or more, particularly preferably. 26 g / g, particularly preferably 27 g / g or more. When the absorption capacity under pressure at 4.83 kPa against 0.90% by weight physiological saline is less than 20 g / g, the effect of preventing the urine absorbed by the water absorbent from returning to the surface of the diaper is very small. This is not preferable.
[0071]
(D) SFC
The water-absorbing agent according to the present invention has a 0.69% by weight physiological saline flow conductivity (SFC) of 20 (unit: 10).-7× cmThree× s × g-1) Or more. SFC has a great influence on the liquid permeability after swelling of the water-absorbing agent obtained in the present invention. In other words, for example, when the water-absorbing agent of the present invention is used for a part of the water absorbent body of a paper diaper, the liquid permeability is improved, the liquid is sufficiently distributed to the water absorbent body, the liquid absorption amount is increased, and the liquid leaks. The effect of preventing is significantly improved. SFC is more preferably 25 (unit: 10-7× cmThree× s × g-1) Or more, more preferably 30 (unit: 10)-7× cmThree× s × g-1) Or more, more preferably 35 (unit: 10)-7× cmThree× s × g-1) Or more, particularly preferably 40 (unit: 10)-7× cmThree× s × g-1) Or more, particularly preferably 50 (unit: 10)-7× cmThree× s × g-1) That's it. SFC is 20 (unit: 10-7× cmThree× s × g-1If it is smaller than, for example, the liquid permeability when used in a water absorbent body of a paper diaper is reduced, the liquid is localized in the water absorbent body, the amount of liquid absorbed is reduced, and the leakage of the liquid is increased. It is not preferable in that the performance of is significantly reduced.
[0072]
That is, it is preferable that the water-absorbing agent of the present invention has the following three physical properties in a well-balanced manner in addition to the particle size for use in sanitary materials. That is, it has been found that one or two of CRC, AAP, and SFC are not sufficiently suitable for sanitary materials only with high physical properties. These three physical properties are suitably applied not only to the water-absorbing agent having a specific neutralization index obtained by acid polymerization but also to a water-absorbing resin by a neutralization polymerization method not including a post-neutralization step.
Absorption capacity (CRC) for 30 minutes with no pressure against 0.90% by weight physiological saline is 31 g / g or more.
[0073]
Absorption capacity under load (AAP) at 4.83 kPa with respect to 0.90 wt% physiological saline is 24 g / g or more.
0.69 wt% saline flow conductivity (SFC) is 20 (unit: 10)-7× cmThree× s × g-1)more than.
(E) SFC change index
In addition, in the water-absorbing resin (water-absorbing agent) particles, which have been conventionally evaluated and managed in the whole particle (Bulk), the present inventors have greatly different physical properties for each particle size of the water-absorbing resin (water-absorbing agent) particles, It was found that the difference in physical properties for each particle size caused a decrease in physical properties in sanitary materials. Since the water-absorbent particles contained in sanitary materials are microscopically different in particle size, the differences in the physical properties of individual sanitary materials derived from the particle size and the physical properties of the sanitary materials are due to the physical properties of the sanitary materials. Estimated to cause a decline.
[0074]
Therefore, the present inventors provide a water-absorbing agent having a small difference in physical properties for each particle size, particularly a small variation in SFC for each particle size.
The water absorbent according to the present invention preferably has an SFC change index defined by the following formula (1) of 0 to 25%.
SFC change index (%) = [(standard deviation of SFC of particles A1 to A4) / (SFC of the entire particulate water-absorbing agent)] × 100 (1)
In this SFC change index and SFC variation coefficient described later, the SFC standard deviation of the particles A1 to A4 classifies the water-absorbing agent particles, and 2 to 4 types of particles existing among the particles A1 to A4 in the water-absorbing agent. Then, the SFC for each particle size obtained is measured once, and the standard deviation is calculated from the two to four types of SFC values. In addition, the average value is similarly calculated from the two to four types of SFC values.
[0075]
This SFC change index represents the variation of SFC for each particle size. When the SFC change index is 0 to 25%, the water absorbent body has more uniform liquid permeability, and the liquid is dispersed throughout the water absorbent body. It becomes easy to do and it becomes the effect of preventing the leakage of the liquid. The SFC change index is more preferably 0 to 23%, further preferably 0 to 20%, still more preferably 0 to 18%, particularly preferably 0 to 15%, and particularly preferably 0 to 10%. If the SFC change index is larger than 25%, for example, when a water absorbing agent is used for the water absorbent body of a paper diaper, the water absorbent body has a variation in liquid permeability, and it becomes difficult for the liquid to be dispersed throughout the water absorbent body. It is not preferable in terms of generation and reduction of the water absorption amount of the water absorbent.
[0076]
(F) SFC coefficient of variation
The water absorbing agent according to the present invention preferably has an SFC variation coefficient defined by the following formula (2) of 0 to 0.25.
SFC variation coefficient = (standard deviation of SFC of particles A1 to A4) / (average value of SFC of particles A1 to A4) (2)
This SFC variation coefficient and the following SFC variation rate also represent a small difference in SFC for each particle size, and the SFC variation coefficient is 0 to 0.25, so that the SFC of each particle size (for example, A1 to A4) For example, when manufacturing a water absorbent body of a paper diaper using the water absorbent of the present invention, the liquid permeability in the water absorbent body is uniform, and even if each of the water absorbent bodies is compared, the paper diaper As a result, it is possible to produce a disposable diaper with stable quality. The SFC coefficient of variation is more preferably 0 to 0.23, still more preferably 0 to 0.20, even more preferably 0 to 0.18, particularly preferably 0 to 0.15, and particularly preferably 0 to 0.0. 10. When the SFC coefficient of variation is larger than 0.25 and / or when the SFC coefficient of variation is less than 0.65, the liquid permeability of the hygroscopic material (especially paper diaper) using the water absorbing agent in the water absorbing body becomes uneven. Furthermore, even if each of the water absorbent bodies is compared, it is not preferable in that the performance variation of the disposable diaper becomes large and it becomes impossible to manufacture a disposable diaper having a stable quality.
[0077]
(G) SFC fluctuation rate
That is, the water absorbing agent according to the present invention preferably has an SFC fluctuation rate defined by the following formula (3) of 0.65 to 1.00.
SFC variation rate = (minimum SFC among particles A1 to A4 SFC) / (maximum SFC among particles A1 to A4 SFC) (3)
This SFC variation rate similarly represents a small difference in SFC for each particle size, preferably 0.70 to 1.00, still more preferably 0.75 to 1.00, and particularly preferably 0.80 to 1. 00.
[0078]
(H) Surface soluble amount
The water-absorbing agent of the present invention preferably has a surface layer soluble content of 6.0% by weight or less (for water-absorbing agent). The surface layer soluble content is preferably 5.5% by weight or less, more preferably 5.0% by weight or less, still more preferably 4.5% by weight or less, and particularly preferably 4.0% by weight or less.
The surface soluble component defined by the measurement method of the present application is the amount of soluble component corresponding to actual use for sanitary materials, and is more excellent in water absorption capability in sanitary materials. In other words, conventionally, many methods for measuring water-soluble components (US Re 32649, EDANA method, etc.) have been known. It was found that the amount of solubles in excess of the amount of minutes was measured. And it has been found that the method of the present invention is the most model for practical use in sanitary materials.
[0079]
(I) Continuous production system SFC standard deviation
The water absorbing agent according to the present invention preferably has a continuous production system SFC standard deviation defined by the following formula (4) of 5.0 or less.
Standard deviation of continuous production system SFC = Standard deviation of SFC of each lot (4)
(However, each lot is 20 kg or more. The number of lots is 10 or more.)
The continuous production system means that a water absorbing agent is continuously produced in one line for 24 hours or more, or 10 t or more. In addition, in the continuous production system, polymerization, drying, pulverization, surface treatment, etc., which are the basic steps of the method for producing a water-absorbing agent, may be performed continuously or batchwise (for example, continuous in the polymerization step). The interval between each step is 24 hours or less, preferably 12 hours or less, more preferably 6 hours or less, and particularly preferably 3 hours or less.
[0080]
Each lot is preferably 20 kg to 100 t, more preferably 0.1 t to 50 t, and still more preferably 0.5 t to 25 t.
The Lot number is preferably 20 or more, more preferably 30 or more, still more preferably 50 or more, and particularly preferably 100 or more.
This continuous production system SFC standard deviation represents the variation in the SFC value of each lot in the continuous production of the water-absorbing agent. When the continuous production system SFC standard deviation is 5.0 or less, the variation in SFC for each lot is reduced. For example, when a water absorbent body of a paper diaper is manufactured using the water-absorbing agent of the present invention, a stable quality paper diaper can be manufactured. The continuous production system SFC standard deviation is more preferably 4.5 or less, still more preferably 4.3 or less, even more preferably 4.0 or less, particularly preferably 3.5 or less, particularly more preferably 3.0 or less, Most preferably, it is 2.5 or less. When the continuous production system SFC standard deviation is larger than 5.0, it is not preferable in that a disposable diaper having a stable quality cannot be manufactured.
[0081]
The above-mentioned various physical properties are important physical properties that correlate with the actual use results (absorbed amount of diapers, leakage, etc.) when the water-absorbing agent is used as a sanitary material. Especially good. These measuring methods are described in the Examples.
The water-absorbing agent according to the present invention preferably has the various characteristics described above, and as a particularly preferred configuration, any one or more of the above formulas (1), (2), (4), more preferably It is a water absorbing agent satisfying two or more, more preferably all three.
That is, the water-absorbing agent according to the present invention is a particulate water-absorbing agent mainly composed of a water-absorbing resin having a crosslinked structure obtained by polymerizing an unsaturated monomer component,
The particulate water-absorbing agent contains 90% by weight or more of particles having a particle size of less than 850 μm and 150 μm or more, and is a particle (A1) having a particle size of less than 850 μm and 600 μm or more, and a particle size of less than 600 μm and 500 μm. Including at least two or more selected from the above particles (A2), particles having a particle size of less than 500 μm and not less than 300 μm (A3), particles having a particle size of less than 300 μm and not less than 150 μm (A4),
Furthermore, it is a water absorbing agent characterized by satisfying the following physical properties.
[0082]
Absorption capacity (CRC) for 30 minutes with no pressure against 0.90% by weight physiological saline is 31 g / g or more.
Absorption capacity under pressure (AAP) for 60 minutes at 4.83 kPa with respect to 0.90% by weight physiological saline is 24 g / g or more.
0.69 wt% saline flow conductivity (SFC) is 20 (unit: 10)-7× cmThree× s × g-1)more than.
SFC change index defined by the following formula (1) is 0 to 25%.
SFC change index (%) = [(standard deviation of SFC of particles A1 to A4) / (SFC of the entire particulate water-absorbing agent)] × 100 (1)
Another water absorbent according to the present invention is a particulate water absorbent mainly composed of a water absorbent resin having a crosslinked structure obtained by polymerizing an unsaturated monomer component,
The particulate water-absorbing agent contains 90% by weight or more of particles having a particle size of less than 850 μm and 150 μm or more, and is a particle (A1) having a particle size of less than 850 μm and 600 μm or more, and a particle size of less than 600 μm and 500 μm. Including at least two or more selected from the above particles (A2), particles having a particle size of less than 500 μm and not less than 300 μm (A3), particles having a particle size of less than 300 μm and not less than 150 μm (A4),
Furthermore, it is a water absorbing agent characterized by satisfying the following physical properties.
[0083]
Absorption capacity (CRC) for 30 minutes with no pressure against 0.90% by weight physiological saline is 31 g / g or more.
Absorption capacity under pressure (AAP) for 60 minutes at 4.83 kPa with respect to 0.90% by weight physiological saline is 24 g / g or more.
0.69 wt% saline flow conductivity (SFC) is 20 (unit: 10)-7× cmThree× s × g-1)more than.
The SFC variation coefficient defined by the following formula (2) is 0 to 0.25.
SFC variation coefficient = (standard deviation of SFC of particles A1 to A4) / (average value of SFC of particles A1 to A4) (2)
Further, another water-absorbing agent according to the present invention is a particulate water-absorbing agent mainly composed of a water-absorbing resin having a crosslinked structure obtained by polymerizing an unsaturated monomer component,
The particulate water-absorbing agent contains 90% by weight or more of particles having a particle size of less than 850 μm and 150 μm or more, and is a particle (A1) having a particle size of less than 850 μm and 600 μm or more, and a particle size of less than 600 μm and 500 μm. Including at least two or more selected from the above particles (A2), particles having a particle size of less than 500 μm and not less than 300 μm (A3), particles having a particle size of less than 300 μm and not less than 150 μm (A4),
Furthermore, it is a water absorbing agent characterized by satisfying the following physical properties.
[0084]
Absorption capacity (CRC) for 30 minutes with no pressure against 0.90% by weight physiological saline is 31 g / g or more.
Absorption capacity under pressure (AAP) for 60 minutes at 4.83 kPa with respect to 0.90% by weight physiological saline is 24 g / g or more.
0.69 wt% saline flow conductivity (SFC) is 20 (unit: 10)-7× cmThree× s × g-1)more than.
Standard production system SFC standard deviation defined by the following formula (4) is 5.0 or less.
Standard deviation of continuous production system SFC = Standard deviation of SFC of each lot (4)
(However, CRC, AAP, and SFC are averages of lots, and each lot is 20 kg or more. The number of lots is 10 or more.)
Still another water-absorbing agent according to the present invention is a particulate water-absorbing agent obtained by polymerizing a monomer containing an acid group-containing monomer (salt) and further surface-crosslinking a water-absorbing resin obtained by post-neutralization. There,
The neutralized index of the particulate water-absorbing agent or water-absorbing resin is 15 or more, and the absorption capacity under pressure (AAP) for 60 minutes at 4.83 kPa with respect to 0.90 wt% physiological saline after surface crosslinking is 20 ( g / g) or more, which is a water-absorbing agent.
[0085]
In the above water-absorbing agent, CRC, AAP, SFC, SFC change index, SFC variation coefficient and the like are preferably in the above-mentioned range, and the novel water-absorbing agent of the present invention is, for example, the above-described method for producing a water-absorbing agent of the present invention. can get. The water-absorbing agent of the present invention has a very high CRC, AAP, and SFC and maintains high physical properties in a well-balanced manner. Further, since the change in physical properties for each particle size is unprecedented, it has high physical properties under any sanitary material usage conditions. Is an excellent water-absorbing agent.
According to the present invention, it is possible to easily produce a water-absorbing agent having good absorption characteristics with an excellent balance of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow inductivity. Widely used in water-retaining agents, industrial water-retaining agents, moisture-absorbing agents, dehumidifying agents, building materials, etc., but these water-absorbing agents are particularly suitable for use in sanitary materials for absorbing feces, urine or blood, such as disposable diapers and sanitary napkins. It is done. Further, since the water-absorbing agent of the present invention is excellent in the above-mentioned various physical properties in a well-balanced manner, sanitary materials generally have a high concentration, for example, 30 to 100 wt. %, Preferably in the range of 40 to 100% by weight, more preferably in the range of 50 to 95% by weight. Further, the structure of the water-absorbing body in the sanitary material is not particularly limited as long as it is a structure used for general water-absorbing articles. For example, a so-called water-absorbing agent is disposed between hydrophilic fiber materials formed into a sheet shape. Examples include a water absorbent body having a sandwich structure and a water absorbent body having a so-called blend structure formed by mixing a hydrophilic fiber material and a water absorbent.
[0086]
【Example】
Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these examples. The various performances of the water absorbent resin or water absorbent were measured by the following methods.
In the case of a water-absorbing agent used as a final product such as sanitary material, the water-absorbing agent absorbs moisture. Therefore, after appropriately separating the water-absorbing agent from the final product and drying under reduced pressure at low temperature (for example, 1 mmHg or less, 60 ° C. 12 hours). In addition, the water content of the water-absorbent resins used in the examples and comparative examples of the present invention were all 6% by weight or less.
[0087]
Furthermore, when measuring SFC by particle size in (4) described later, in the water absorbent used as a final product such as sanitary material, SFC is measured after the above operation. When measuring the water-absorbing agent manufactured in the laboratory, in order to correlate with the damage of actual production and actual use, all of the water-absorbing agent after mechanical damage described in (5) below, SFC by particle size, classification Measure SFC before starting.
(1) Absorption capacity under no pressure (absorption capacity / CRC for 30 minutes under no pressure with respect to 0.90% by weight physiological saline)
Under conditions of room temperature (20 to 25 ° C.) and humidity of 50 RH%, 0.20 g of a water-absorbing resin or water-absorbing agent is uniformly put in a non-woven bag (60 mm × 60 mm) and sealed, and then 0.9 weight at room temperature. It was immersed in% physiological saline. After 30 minutes, the bag was pulled up, drained at 250 G for 3 minutes using a centrifuge (manufactured by Kokusan Co., Ltd., centrifuge: model H-122), and the weight W1 (g) of the bag was measured. Further, the same operation was performed without using a water absorbent resin or a water absorbent, and the weight W0 (g) at that time was measured. And from these W1 and W0, the absorption capacity (g / g) under no pressure was calculated according to the following formula.
[0088]
Absorption capacity under no pressure (g / g) = (W1 (g) -W0 (g)) / weight of water absorbent resin or water absorbent (g)
(2) Absorption capacity under pressure (absorption capacity under pressure / AAP for 60 minutes at 4.83 kPa against 0.90 wt% physiological saline)
A stainless steel 400 mesh wire mesh (mesh size 38 μm) is fused to the bottom of a plastic support cylinder with an inner diameter of 60 mm, and water is absorbed on the mesh under conditions of room temperature (20-25 ° C.) and humidity 50 RH%. 0.90 g of the agent was uniformly sprayed, and the outer diameter was adjusted to be able to uniformly apply a load of 4.83 kPa (0.7 psi) to the water-absorbing agent. A piston and a load, in which a gap with the cylinder does not occur and the vertical movement is not hindered, were placed in this order, and the weight Wa (g) of this measuring device set was measured.
[0089]
A glass filter of 90 mm in diameter (manufactured by Mutual Riken Glass Co., Ltd., pore diameter: 100 to 120 μm) is placed inside a petri dish having a diameter of 150 mm, and 0.90 wt% physiological saline (20 to 25 ° C.) is glass. It added so that it might become the same level as the upper surface of a filter. On top of that, a sheet of filter paper having a diameter of 90 mm (ADVANTEC Toyo Co., Ltd., product name: (JIS P 3801, No. 2), thickness 0.26 mm, retention particle diameter 5 μm) was placed so that the entire surface was wetted, and Excess liquid was removed.
The set of measuring devices was placed on the wet filter paper, and the liquid was absorbed under load. After 1 hour, the measuring device set was lifted and its weight Wb (g) was measured. And the absorption capacity | capacitance (g / g) under pressure was computed from Wa and Wb according to following Formula.
[0090]
Absorption capacity under pressure (g / g)
= (Wa (g) -Wb (g)) / weight of water-absorbing agent ((0.9) g)
(3) Weight average particle diameter
The water-absorbing resin powder or water-absorbing agent was sieved with JIS standard sieves having an opening of 850 μm, 600 μm, 500 μm, 425 μm, 300 μm, 212 μm, 150 μm, 106 μm, 75 μm, etc., and the residual percentage R was plotted on logarithmic probability paper. Thereby, the weight average particle diameter (D50) was read.
The method of sieving and classifying SFC for each particle size described later is as follows: water-absorbent resin powder or 10.0 g of water-absorbing agent is opened at room temperature (20 to 25 ° C.) and humidity of 50 RH%. 850 μm, 600 μm, 500 μm, 300 μm, 150 μm JIS standard sieve (THE IIDA TESTING SIVE: diameter 8 cm) was charged for 10 minutes with vibration classifier (IIDA SIEVE SHAKER, TYPE: ES-65 type, SER No. 0501). , Classification was done.
[0091]
(4) 0.69 wt% saline flow conductivity (SFC)
It carried out according to the physiological saline flow inductivity (SFC) test of Tokuheihei 9-509591.
Using the apparatus shown in FIG. 1, the water-absorbing agent (0.900 g) uniformly placed in the container 40 is swollen in the artificial urine (1) for 60 minutes under a pressure of 0.3 psi (2.07 kPa), The height of the gel layer is recorded, and then 0.69 wt% saline 33 is passed through the swelled gel layer from the tank 31 at a constant hydrostatic pressure under a pressure of 0.3 psi (2.07 kPa). . The SFC test was performed at room temperature (20-25 ° C.). Using a computer and a balance, the amount of liquid passing through the gel layer at 20 second intervals as a function of time is recorded for 10 minutes. Flow velocity F passing through swollen gel 44 (mainly between particles)s(T) is determined in units of g / s by dividing the increased weight (g) by the increased time (s). The time at which a constant hydrostatic pressure and a stable flow rate were obtained was tsAnd tsAnd only the data obtained during 10 minutes is used for the flow rate calculation, tsAnd F using the flow rate obtained during 10 minutes.sCalculate the value of (t = 0), ie the initial flow rate through the gel layer. Fs(T = 0) is Fs(T) Calculated by extrapolating the result of least squares versus time to t = 0.
[0092]
Figure 0004326752
here,
Fs(T = 0): flow rate expressed in g / s
L0: Height of gel layer in cm
ρ: density of NaCl solution (1.003 g / cmThree)
A: Area above the gel layer in the cell 41 (28.27 cm2)
ΔP: Hydrostatic pressure applied to the gel layer (4920 dyne / cm2)
And the unit of SFC value is (10-7× cmThree× s × g-1).
[0093]
As an apparatus shown in FIG. 1, a glass tube 32 is inserted into the tank 31, and the lower end of the glass tube 32 is filled with 0.69 wt% physiological saline 33 from the bottom of the swelling gel 44 in the cell 41. It was arranged so that it could be maintained at a height of 5 cm. 0.69 wt% physiological saline 33 in the tank 31 was supplied to the cell 41 through the L-shaped tube 34 with a cock. Under the cell 41, a container 48 for collecting the passed liquid is disposed, and the collection container 48 is installed on an upper pan balance 49. The inner diameter of the cell 41 is 6 cm. A 400 stainless steel wire mesh (aperture 38 μm) 42 was installed. There is a hole 47 sufficient for the liquid to pass through the lower part of the piston 46, and a glass filter 45 with good permeability is attached to the bottom so that the water absorbing agent or its swollen gel does not enter the hole 47. The cell 41 was placed on a table on which the cell was placed, and the surface of the table in contact with the cell was placed on a stainless steel wire mesh 43 that did not prevent liquid permeation.
[0094]
Artificial urine (1) is calcium chloride dihydrate 0.25 g, potassium chloride 2.0 g, magnesium chloride hexahydrate 0.50 g, sodium sulfate 2.0 g, ammonium dihydrogen phosphate 0.85 g, What added 0.15 g of hydrogen ammonium diphosphate and 994.25 g of pure waters was used.
(5) Mechanical damage test
A glass container (Yamamura Glass mayonnaise bottle, trade name: A-29) shown in FIG. 2 was charged with 30 g of a water-absorbing agent and 10 g of glass beads (soda-lime glass beads for precision fractional filling with a ball diameter of about 6 mm). This was sandwiched and fixed between clamps provided in a disperser (manufactured by Toyo Seiki Seisakusho, No. 488 test disperser) shown in FIG. 3, and a vibration with a vibration rotational speed of 750 cpm was applied at 100 V / 60 Hz for 10 minutes. As a result, the container fixed to the disperser tilts and moves 12.5 ° to the left and right (total 25 °) with respect to the mounting surface of the clamp in the disperser, and at the same time, vibrates to the front and rear by 8 mm (total 16 mm). By doing so, an impact is given to the water-absorbing agent inside the container. The above impact is a force empirically determined as representative of the impact force received by the water absorbent during the manufacturing process of the water absorbent, but can also be widely applied to damage after transportation and water absorber production. It is. In the present invention, when mechanical damage is caused, it is particularly assumed that the water absorbing agent is manufactured and the water absorbing body is manufactured. Further, the SFC change index, the SFC variation coefficient, and the SFC variation rate are indicators for measuring the variation in the performance of the water absorbent within the water absorbent. Therefore, when measuring physical properties by particle size, all water absorbents manufactured in a laboratory scale (the amount of water absorbent obtained in one manufacturing process is 20 kg or less) must cause the mechanical damage. .
[0095]
(6) Amount of soluble component (water-soluble component)
A plastic container with a lid with a capacity of 250 ml is weighed 184.3 g of 0.9% by weight physiological saline solution (saline), and 1.00 g of a water absorbent resin is added to the aqueous solution and stirred for 16 hours. Soluble components were extracted. Filtration of this extract using one sheet of filter paper (ADVANTEC Toyo Co., Ltd., product name: (JIS P 3801, No. 2), thickness 0.26 mm, retained particle diameter 5 μm) gave 50. 0 g was measured and used as a measurement solution.
First, the physiological saline alone is titrated to pH 10 with a 0.1N aqueous NaOH solution, and then titrated to a pH 2.7 with a 0.1N aqueous HCl solution (blank titration [[bNaOH] ml, [bHCl] ml).
[0096]
The titration ([NaOH] ml, [HCl] ml) was determined by performing the same titration operation on the measurement solution.
For example, in the case of a water-absorbing resin composed of a known amount of acrylic acid and its sodium salt, based on the average molecular weight of the monomer and the titration amount obtained by the above operation, the soluble content in the water-absorbing resin is calculated as follows: Can be calculated. In the case of an unknown amount, the average molecular weight of the monomer is calculated using the neutralization rate obtained by titration.
Soluble content (% by weight) = 0.1 × (average molecular weight) × 184.3 × 100 × ([HCl] − [bHCl]) / 1000 / 1.0 / 50.0
Neutralization rate (mol%) = (1 − ([NaOH] − [bNaOH]) / ([HCl] − [bHCl])) × 100
(7) Amount of surface layer soluble component (water soluble component)
100 g of a 0.50 wt% physiological saline solution was weighed into a 250 ml capacity plastic container with a lid, 0.50 g of a water absorbing agent was added to the aqueous solution, and the surface soluble component in the water absorbing agent was extracted for 1 hour. In this extraction operation, stirring is performed only for the purpose of dispersing the initial water-absorbing agent and homogenizing the last liquid, and stirring is not performed except for the above. Specifically, the surface soluble component is extracted by standing, and is stirred for 1 minute before and after extraction (stirring speed: 400 rpm, stirrer: made of Teflon (registered trademark) (2.5 cm)). Filtration of this extract using one sheet of filter paper (ADVANTEC Toyo Co., Ltd., product name: (JIS P 3801, No. 2), thickness 0.26 mm, retained particle diameter 5 μm) gave 50. 0 g was measured and used as a measurement solution.
[0097]
First, only 0.5 wt% NaCl aqueous solution is titrated to pH 10 with 0.1N NaOH aqueous solution, and then titrated to pH 2.7 with 0.1N HCl aqueous solution to give an empty titration ([bNaOH] ml). [BHCl] ml).
The titration ([NaOH] ml, [HCl] ml) was determined by performing the same titration operation on the measurement solution.
For example, in the case of a water-absorbing agent comprising a known amount of acrylic acid and its sodium salt, based on the average molecular weight of the monomer and the titration amount obtained by the above operation, the amount of soluble matter in the surface layer in the water-absorbing agent is calculated by the following formula: Can be calculated. In the case of an unknown amount, the average molecular weight of the monomer is calculated using the neutralization rate obtained by titration.
[0098]
Surface layer soluble content (% by weight) = 0.1 × (average molecular weight) × 100 × 100 × ([HCl] − [bHCl]) / 1000 / 0.5 / 50.0
Neutralization rate (mol%) = (1 − ([NaOH] − [bNaOH]) / ([HCl] − [bHCl])) × 100
(8) Neutralization index
In accordance with JP-A-10-101735 and claim 3 thereof (European Patent Publication No. 0882502 and claims 2 to 4 thereof), the neutralization index of the water-absorbent resin powder and the water-absorbing agent was determined.
[0099]
That is, 200 particles of water-absorbing resin powder or water-absorbing agent classified to 300 to 600 μm with a JIS standard sieve are placed in a 1.6 mm thick plastic plate having a 20 mm × 20 mm opening with a cover glass attached thereto, Add 0.2 ml deionized water. Furthermore, 0.05 ml of a 1.5: 1 mixed solution of 0.1 wt% ethanol solution of bulumthymol blue (BTB) and 0.1 wt% methyl red (MR) was added to the swollen gel with a micro syringe. Then, coloring of 200 particles was observed with a pH indicator. Thus, the number of particles neutralized inhomogeneously exceeding 20 mol% from the average neutralization rate of the water-absorbing resin or water-absorbing agent was determined (some of 200 particles). The number was determined as the neutralization index (first neutralization index / claim 3 in the above patent). Of course, the higher the neutralization index, the more uneven the neutralization of the water absorbent resin powder. See the above patent for details.
[0100]
  (ManufacturingExample 1): Production / neutralization polymerization of water absorbent resin powder (A)
  5500 g of an aqueous solution of sodium acrylate having a neutralization rate of 75 mol% (single quantity) in a reactor formed by attaching a lid to a 10-liter jacketed stainless steel double-arm kneader having two sigma-shaped blades 3.70 g of polyethylene glycol diacrylate (n = 9) was dissolved in a body concentration of 38% by weight and an average molecular weight of the monomer of 88.5) to prepare a reaction solution. Next, this reaction solution was degassed for 30 minutes in a nitrogen gas atmosphere. Subsequently, 28.3 g of a 10 wt% aqueous sodium persulfate solution and 2.1 g of a 1 wt% L-ascorbic acid aqueous solution were added to the reaction solution with stirring. Polymerization started after about 1 minute. And it superposed | polymerized at 20-95 degreeC, grind | pulverizing the produced | generated gel, 30 minutes after superposition | polymerization started, the water-containing gel-like crosslinked polymer (1) was taken out.
[0101]
The obtained hydrogel crosslinked polymer (1) had a diameter of about 5 mm or less. This finely divided hydrogel crosslinked polymer (1) was spread on a 50 mesh (mesh opening 300 μm) wire net and dried with hot air at 150 ° C. for 90 minutes. Next, the mixture was pulverized using a roll mill and further classified with a JIS standard sieve having openings of 850 μm and 106 μm to obtain a water absorbent resin powder (A) in which most of the particles were in the range of 850 μm to 106 μm.
The absorption capacity of the obtained water absorbent resin powder (A) under no pressure is 49 (g / g), the soluble content is 23% by weight, and the weight average particle diameter (D50) is in the range of 330 μm, 850 μm to 150 μm. The water absorbent resin powder was 97% by weight.
[0102]
  (ManufacturingExample 2): Production of water-absorbent resin powder (B) / neutralization polymerization
  5500 g of sodium acrylate aqueous solution having a neutralization rate of 71 mol% (single unit) in a reactor formed by attaching a cover to a stainless steel double-armed kneader with a volume of 10 liters and having two sigma blades A reaction solution was prepared by dissolving 8.05 g of polyethylene glycol diacrylate (n = 9) in a body concentration of 41% by weight and an average molecular weight of the monomer of 87.7). Next, this reaction solution was degassed for 30 minutes in a nitrogen gas atmosphere. Subsequently, 30.8 g of a 10 wt% aqueous sodium persulfate solution and 2.57 g of a 1 wt% L-ascorbic acid aqueous solution were added to the reaction solution with stirring, and polymerization started about 1 minute later. And it superposed | polymerized at 20-95 degreeC, grind | pulverizing the produced | generated gel, 30 minutes after superposition | polymerization started, the water-containing gel-like crosslinked polymer (2) was taken out.
[0103]
The obtained hydrogel crosslinked polymer (2) was subdivided to have a diameter of about 5 mm or less. This finely divided hydrogel crosslinked polymer (2) was spread on a 50 mesh (mesh opening 300 μm) wire mesh and dried with hot air at 180 ° C. for 50 minutes. Next, the mixture was pulverized using a roll mill and further classified with a JIS standard sieve having an opening of 850 μm to obtain a water-absorbent resin powder (B) in which most of the particles were in the range of 850 μm or less.
The absorption capacity of the obtained water absorbent resin powder (B) under no pressure is 36 (g / g), the soluble content is 10% by weight, and the weight average particle diameter (D50) is in the range of 450 μm, 850 μm to 150 μm. The water absorbent resin powder was 97% by weight.
[0104]
  (ManufacturingExample 3): Production example of water-absorbent resin powder (C) / neutralization polymerization
  ManufacturingIn Example 2, except that it was changed to 5.01 g of polyethylene glycol diacrylateManufacturingPolymerization, drying, pulverization and classification were carried out in the same manner as in Example 2 to obtain a water absorbent resin powder (C). The absorption capacity of the obtained water-absorbent resin powder (C) under no pressure is 39 (g / g), the soluble content is 13% by weight, and the weight average particle diameter (D50) is in the range of 450 μm, 850 μm to 150 μm. The water absorbent resin powder was 97% by weight.
  (ManufacturingExample 4): Production Example of Water Absorbent Resin Powder (D) / Neutralization Polymerization
  ManufacturingIn Example 2, except that it was changed to 5.01 g of polyethylene glycol diacrylateManufacturingPolymerization, drying and grinding were carried out in the same manner as in Example 2. The obtained pulverized product was further classified with a JIS standard sieve having openings of 600 μm and 300 μm to obtain water absorbent resin powder (D) in the range of 600 μm to 300 μm. The resultant water-absorbent resin powder (D) had an absorption capacity of 40 (g / g) under no pressure, a soluble content of 9% by weight, and a weight average particle size (D50) of 450 μm.
[0105]
  (referenceExample 1): Cross-linking treatment of water-absorbent resin powder (A) / with water-soluble inorganic base
  ManufacturingTo 100 g of the water-absorbent resin powder (A) obtained in Example 1, 0.027 g of ethylene glycol diglycidyl ether (Denacol EX-810, manufactured by Nagase Kasei Co., Ltd.), 0.9 g of propylene glycol, 2.7 g of water, and carbonic acid After mixing the surface treating agent consisting of a mixed solution of sodium hydride 0.18 g, the mixture was heat treated at 210 ° C. for 35 minutes to obtain a water absorbing agent (1). The obtained water-absorbing agent (1) was also in the form of powder. Table 1 shows the results of measuring the absorption capacity under no pressure, the absorption capacity under pressure, and the saline flow conductivity.
[0106]
  (referenceExample 2): Cross-linking treatment of water-absorbent resin powder (A) / with water-soluble inorganic base
  referenceIn Example 1, a water-absorbing agent (2) was obtained in the same manner except that 0.09 g of sodium carbonate was used instead of sodium bicarbonate. Table 1 shows the results of measurement of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow conductivity.
  (Comparative Example 1): Crosslinking treatment of water-absorbent resin powder (A) / no water-soluble inorganic base
  referenceIn Example 1, a comparative water-absorbing agent (1) was obtained in the same manner except that 0.81 g of isopropyl alcohol was used instead of sodium bicarbonate. Table 1 shows the results of measurement of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow conductivity.
[0107]
  (Comparative Example 2): Crosslinking treatment of water-absorbent resin powder (A) / no water-soluble inorganic base
  referenceIn Example 1, a comparative water-absorbing agent (2) was obtained in the same manner except that sodium bicarbonate was not used. Table 1 shows the results of measurement of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow conductivity.
  (referenceExample 3): Cross-linking treatment of water-absorbent resin powder (B) / with water-soluble inorganic base
  ManufacturingTo 100 g of the water-absorbent resin powder (B) obtained in Example 2, 0.384 g of 1,4-butanediol, 0.6 g of propylene glycol, 3.28 g of water, and 0.3 g of a 24 wt% aqueous sodium hydroxide solution (solid content) 0.072 g) was mixed with the surface treatment agent, and then the mixture was heat treated at 212 ° C. for 30 minutes to obtain a water absorbing agent (3). The obtained water-absorbing agent (3) was also in the form of a powder. The results of measuring the absorption capacity under no pressure, the absorption capacity under pressure, and the physiological saline flow conductivity are shown in Table 1.
[0108]
  (Comparative Example 3): Crosslinking treatment of water-absorbent resin powder (B) / no water-soluble inorganic base
  referenceA comparative water-absorbing agent (3) was obtained in the same manner as in Example 3, except that the 24 wt% aqueous sodium hydroxide solution was not used. Table 1 shows the results of measurement of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow conductivity.
  (referenceExample 4): Cross-linking treatment of water-absorbent resin powder (C) / with water-soluble inorganic base
  ManufacturingSurface treatment comprising a mixed solution of 0.384 g of 1,4-butanediol, 0.6 g of propylene glycol, 3.28 g of water, and 0.24 g of sodium bicarbonate to 100 g of the water absorbent resin powder (C) obtained in Example 3 After mixing the agent, the mixture was heat-treated at 212 ° C. for 40 minutes to obtain a water-absorbing agent (4). The obtained water-absorbing agent (4) was also in the form of a powder. The results of measuring the absorption capacity under no pressure, the absorption capacity under pressure, and the physiological saline flow conductivity are shown in Table 1.
[0109]
  (referenceExample 5): Cross-linking treatment of water-absorbent resin powder (C) / with water-soluble inorganic base
  referenceIn Example 4, a water absorbing agent (5) was obtained in the same manner except that 0.12 g of sodium carbonate was used instead of using sodium hydrogen carbonate. Table 1 shows the results of measurement of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow conductivity.
  (referenceExample 6): Cross-linking treatment of water-absorbent resin powder (C) / with water-soluble inorganic base
  referenceIn Example 4, a water-absorbing agent (6) was obtained in the same manner except that 0.3 g of a 24 wt% aqueous sodium hydroxide solution (solid content: 0.072 g) was used instead of using sodium bicarbonate. Table 1 shows the results of measurement of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow conductivity.
[0110]
  (Comparative Example 4): Crosslinking treatment of water-absorbent resin powder (C) / without water-soluble inorganic base
  referenceIn Example 4, a comparative water absorbing agent (4) was obtained in the same manner except that sodium bicarbonate was not used. Table 1 shows the results of measurement of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow conductivity.
  (referenceExample 7): Cross-linking treatment of water-absorbent resin powder (C) / with water-soluble inorganic base
  referenceIn Example 4, a water absorbing agent (7) was obtained in the same manner except that the heat treatment time was 30 minutes. Table 1 shows the results of measurement of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow conductivity.
[0111]
  (referenceExample 8): Cross-linking treatment of water-absorbent resin powder (C) / with water-soluble inorganic base
  referenceIn Example 7, a water absorbing agent (8) was obtained in the same manner except that 0.12 g of sodium carbonate was used instead of sodium hydrogen carbonate. Table 1 shows the results of measurement of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow conductivity.
  (referenceExample 9): Cross-linking treatment of water-absorbent resin powder (C) / with water-soluble inorganic base
  referenceIn Example 7, a water-absorbing agent (9) was obtained in the same manner except that 0.3 g of a 24 wt% aqueous sodium hydroxide solution (solid content: 0.072 g) was used instead of using sodium bicarbonate. Table 1 shows the results of measurement of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow conductivity. Moreover, the surface layer soluble content of the water absorbing agent (9) was 3.8% by weight.
[0112]
  (Comparative Example 5): Crosslinking treatment of water-absorbent resin powder (C) / without water-soluble inorganic base
  referenceIn Example 7, a comparative water-absorbing agent (5) was obtained in the same manner except that sodium bicarbonate was not used. Table 1 shows the results of measurement of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow conductivity. Further, the surface layer soluble component of the comparative water-absorbing agent (5) was 6.5% by weight.
  (Comparative Example 6): Crosslinking treatment of water-absorbent resin powder (C) / without water-soluble inorganic base
  referenceIn Example 9, a comparative water absorbing agent (6) was prepared in the same manner except that 0.455 g of aluminum sulfate 14-18 hydrate was used in accordance with WO 00/53664 instead of the 24 wt% aqueous sodium hydroxide solution. Obtained. The results are shown in Table 1.
[0113]
  (referenceExample 10): Cross-linking treatment of water-absorbent resin powder (C) / with water-soluble inorganic base
  ManufacturingTo 100 g of the water absorbent resin powder (C) obtained in Example 3, 0.784 g of ethylene glycol diglycidyl ether (Denacol EX-810, manufactured by Nagase Kasei Co., Ltd.), 4.0 g of water, and 24% by weight sodium hydroxide After mixing the surface treating agent which consists of 0.5 g of aqueous solution (solid content 0.12g) liquid mixture, the water absorbing agent (10) was obtained by heat-processing a mixture for 40 minutes at 212 degreeC. The obtained water-absorbing agent (10) was also in the form of a powder. The results are shown in Table 1.
  (Comparative Example 7): Cross-linking treatment of water-absorbent resin powder (C) / no water-soluble inorganic base
  referenceA comparative water-absorbing agent (7) was obtained in the same manner as in Example 10 except that the 24 wt% aqueous sodium hydroxide solution was not used. The results are shown in Table 1.
[0114]
  (referenceExample 11): Cross-linking treatment of water-absorbent resin powder (C) / with water-soluble inorganic base
  ManufacturingTo 100 g of the water-absorbent resin powder (C) obtained in Example 3, 0.4 g of 3-ethyl-3-oxetanemethanol, 3.0 g of water, and 0.3 g of a 24 wt% aqueous sodium hydroxide solution (solid content 0.072 g) After mixing the surface treatment agent consisting of the mixed solution, the mixture was heat-treated at 212 ° C. for 40 minutes to obtain a water-absorbing agent (11). The resultant water-absorbing agent (11) was also in the form of a powder. The results are shown in Table 1.
  (Comparative Example 8): Cross-linking treatment of water-absorbent resin powder (C) / no water-soluble inorganic base
  referenceA comparative water-absorbing agent (8) was obtained in the same manner as in Example 11 except that the 24 wt% aqueous sodium hydroxide solution was not used. The results are shown in Table 1.
[0115]
  (Example1): Water-absorbing resin powder (C) cross-linking treatment / with pH buffer
  ManufacturingTo 100 g of the water-absorbent resin powder (C) obtained in Example 3, 0.15 g of ethylene glycol diglycidyl ether (Denacol EX-810, manufactured by Nagase Kasei), 1.0 g of propylene glycol, 5.0 g of water, and dihydrogen phosphate After mixing the surface treatment agent consisting of a mixed solution of sodium dihydrate 0.5 g, the mixture was heat treated at 150 ° C. for 30 minutes to obtain a water absorbing agent (12). The obtained water-absorbing agent (12) was also in the form of a powder. The results are shown in Table 1.
  (Comparative Example 9): Cross-linking treatment of water-absorbent resin powder (C) / no pH buffering agent
  Example1In Comparative Example 1, a comparative water-absorbing agent (9) was obtained in the same manner except that sodium dihydrogen phosphate dihydrate was not used. The results are shown in Table 1.
[0116]
  (referenceExample12): Cross-linking treatment of water-absorbent resin powder (C) / with water-soluble inorganic base
  referenceIn Example 9, a water absorbing agent (13) was obtained using the same method. The obtained water-absorbing agent (13) was subjected to the mechanical damage for 10 minutes, and then the water-absorbing agent (13) was subjected to measurement of the absorption capacity under no pressure, the absorption capacity under pressure, and the saline flow-inductivity. The results are shown in Table 2. Further, the obtained water-absorbing agent (13) was sieved with a JIS standard sieve (aperture 850 μm, 600 μm, 500 μm, 300 μm, 150 μm), and each particle (13-a) having a particle size of less than 850 μm and 600 μm or more was smaller than 600 μm. Particles (13-b) having a particle diameter of less than 500 μm and particles having a particle diameter of less than 500 μm (13-c), and particles having a particle diameter of less than 300 μm and having a particle diameter of not less than 150 μm (13-d) were obtained. Table 2 shows the results of measuring the obtained water-absorbing agents (13-a), (13-b), (13-c), and (13-d). Table 3 shows the results of calculating the SFC change index, SFC variation coefficient, and SFC variation rate.
[0117]
  (referenceExample13): Cross-linking treatment of water-absorbent resin powder (C) / with water-soluble inorganic base
  referenceA water absorbing agent (14) was obtained in the same manner as in Example 9 except that the heating time was 20 minutes. Table 2 shows the results of measuring the obtained water-absorbing agent (14) after giving the mechanical damage to the obtained water-absorbing agent (14) for 10 minutes. Further, the obtained water-absorbing agent (14) was sieved with a JIS standard sieve (aperture 850 μm, 600 μm, 500 μm, 300 μm, 150 μm), and each particle (14-a) having a particle size of less than 850 μm and 600 μm or more, and a particle diameter of less than 600 μm Particles (14-b) having a particle diameter of less than 500 μm and particles having a particle diameter of less than 500 μm (14-c) and particles having a particle diameter of less than 300 μm and having a particle diameter of 150 μm or more (14-d) were obtained. Table 2 shows the results of measuring the obtained water-absorbing agent (14-a), (14-b), (14-c), and (14-d). Table 3 shows the results of calculating the SFC change index, SFC variation coefficient, and SFC variation rate.
[0118]
(Comparative Example 10): Cross-linking treatment of water-absorbent resin powder (C) / no water-soluble inorganic base
In Comparative Example 5, a comparative water absorbing agent (10) was obtained using the same method. After giving mechanical damage to the obtained comparative water-absorbing agent (10) for 10 minutes, the comparative water-absorbing agent (10) has an absorption capacity under no pressure, an absorption capacity under pressure, and saline flow conductivity. The measurement results are shown in Table 2. Further, the comparative water-absorbing agent (10) thus obtained was sieved with a JIS standard sieve (mesh opening 850 μm, 600 μm, 500 μm, 300 μm, 150 μm), and each particle (10-a) having a particle size of less than 850 μm and 600 μm or more was obtained. Particles (10-b) having a particle size of less than 600 μm and 500 μm or more, particles (10-c) having a particle size of less than 500 μm and 300 μm or more, and particles (10-d) having a particle size of less than 300 μm and 150 μm or more were obtained. Table 2 shows the results obtained by measuring the obtained comparative water-absorbing agent (10-a), (10-b), (10-c), and (10-d). Table 3 shows the results of calculating the SFC change index, SFC variation coefficient, and SFC variation rate.
[0119]
(Comparative Example 11): Commercially available water absorbing agent
A water absorbing agent was taken out from a diaper of Pampers Active Fit (manufactured by P & G, purchased on December 5, 2001) commercially available in Germany to obtain a comparative water absorbing agent (11). Table 2 shows the results of measuring the absorption capacity under no pressure, the absorption capacity under pressure, and the saline flow conductivity of the comparative water-absorbing agent (11) obtained. Further, the comparative water-absorbing agent (11) thus obtained was sieved with a JIS standard sieve (aperture 850, 600, 500, 300, 150 μm), and each particle (11-a) having a particle size of less than 850 μm and 600 μm or more was measured. Particles (11-b) having a particle diameter of less than 600 μm and 500 μm or more, particles (11-c) having a particle diameter of less than 500 μm and 300 μm or more, and particles (11-d) having a particle diameter of less than 300 μm and 150 μm or more were obtained. Table 2 shows the results obtained by measuring the obtained water-absorbing agent (11-a), (11-b), (11-c), and (11-d). Table 3 shows the results of calculating the SFC change index, SFC variation coefficient, and SFC variation rate.
[0120]
(Comparative Example 12): Commercially available water-absorbing agent
A water absorbing agent was taken out from a diaper of “Pampers Sarasara Care” (P & G, purchased in December 1997) that was commercially available in Japan, and used as a comparative water absorbing agent (12). Table 2 shows the results of measuring the absorption capacity under no pressure, the absorption capacity under pressure, and the saline flow conductivity of the comparative water-absorbing agent (12).
Further, the obtained water-absorbing agent (12) for comparison was sieved with a JIS standard sieve (aperture 850, 600, 500, 300, 150 μm), and each particle (12-a) was less than 850 μm and 600 μm or more, and the particle diameter was 600 μm. Particles (12-b) having a particle diameter of less than 500 μm, particles (12-c) having a particle diameter of less than 500 μm and having a particle diameter of less than 300 μm, and particles (12-d) having a particle diameter of less than 300 μm were obtained. Results of measuring the absorption capacity under no pressure, the absorption capacity under pressure, and the saline flow conductivity of the obtained water-absorbing agents (12-a), (12-b), (12-c), and (12-d) Are shown in Table 2. Table 3 shows the results of calculating the SFC change index, SFC variation coefficient, and SFC variation rate.
[0121]
  (referenceExample14): Cross-linking treatment of water-absorbent resin powder (D) / with water-soluble inorganic base
  ManufacturingTo 100 g of the water-absorbent resin powder (D) obtained in Example 4, 0.384 g of 1,4-butanediol, 0.6 g of propylene glycol, 3.28 g of water, and 0.3 g of a 24 wt% sodium hydroxide aqueous solution (solid content) 0.072 g) was mixed with the surface treatment agent, and then the mixture was heat-treated at 212 ° C. for 20 minutes to obtain a water absorbing agent (15). Table 2 shows the results of measuring the obtained water-absorbing agent (15) after giving the mechanical damage to the obtained water-absorbing agent (15) for 10 minutes. Further, the obtained water-absorbing agent (15) was sieved with a JIS standard sieve (mesh size 850 μm, 600 μm, 500 μm, 300 μm, 150 μm), and each particle (15-b) having a particle diameter of less than 600 μm and 500 μm or more was measured. Were less than 500 μm and particles (15-c) of 300 μm or more were obtained. Table 2 shows the results obtained by measuring the obtained water-absorbing agents (15-b) and (15-c). Table 3 shows the results of calculating the SFC change index, SFC variation coefficient, and SFC variation rate.
[0122]
  (referenceExample15): Cross-linking treatment of water-absorbent resin powder (D) / with water-soluble inorganic base
  referenceExample14The water absorbing agent (16) was obtained in the same manner except that the heating time was 40 minutes. Table 2 shows the results of measuring the obtained water-absorbing agent (16) after giving the mechanical damage to the obtained water-absorbing agent (16) for 10 minutes. Further, the obtained water-absorbing agent (16) was sieved with a JIS standard sieve (mesh size: 850 μm, 600 μm, 500 μm, 300 μm, 150 μm), and each of the particles (16-b) having a particle diameter of less than 600 μm and 500 μm or more was measured. Were less than 500 μm and particles (16-c) of 300 μm or more were obtained. Table 2 shows the results of measuring the obtained water-absorbing agents (16-b) and (16-c). Table 3 shows the results of calculating the SFC change index, SFC variation coefficient, and SFC variation rate.
[0123]
  (Comparative Examples 13 to 16): Commercially available water-absorbing agent
  As a water-absorbing agent (water-absorbing resin) actually used, a water-absorbing resin was taken out from a commercially available paper diaper in 2001 and used as comparative water-absorbing agents (13) to (16). Table 4 shows the results of measuring the absorption capacity under no pressure, the absorption capacity under pressure, and the saline flow conductivity of the comparative water-absorbing agents (13) to (16).
  (ManufacturingExample 5): Production of water-absorbent resin powder (E) / post-neutralization by acid type polymerization
  A 2 L plastic container was mixed with 252.2 g of acrylic acid, 1.1 g of N, N′-methylenebisacrylamide, and 998.4 g of water to prepare a reaction solution. Next, this reaction solution was degassed for 30 minutes in a nitrogen gas atmosphere. Subsequently, the reaction solution was mixed with 15 wt% 2,2′-azobis (2-amidinopropane) dihydrochloride 5.1 g, 10 wt% L-ascorbic acid aqueous solution 0.63 g, and 7 wt% hydrogen peroxide aqueous solution 3. 6 g was added to initiate the polymerization. Polymerization was carried out at 16 to 74 ° C., and the hydrogel crosslinked polymer (5) was taken out 3 hours after the start of the polymerization. After cutting the obtained polymer (5) into about 5 cm square, 15.0 g of a 48 wt% sodium hydroxide aqueous solution with an amount of neutralization of 65 mol% was mixed with 1000 g of the polymer (5), and the die diameter was further reduced. It was set as the pulverized gel finely divided by passing through a 9.5 mm meat chopper. The obtained crushed gel was spread on a 50 mesh (mesh opening 300 μm) wire mesh and dried with hot air at 170 ° C. for 40 minutes. Next, the mixture was pulverized using a roll mill, and further classified with a JIS standard mesh having openings of 500 μm and 300 μm to obtain a water absorbent resin powder (E) in which most of the particles were in the range of 500 μm to 300 μm. The resultant water-absorbent resin powder (E) had an absorption capacity of 49 (g / g) under no pressure and a soluble content of 6% by weight.
[0124]
  Furthermore, in order to investigate the uniformity of the neutralization rate of the obtained particles, 200 particles were swollen and further neutralized by adding 0.1 wt% ethanol solution of bromothymol blue and methyl red as pH indicators. The index (Claim 3 of JP-A-10-101735) was measured. as a result,ManufacturingIn the water-absorbent resin powders (A), (F), and (G) obtained from the neutralization polymerization obtained in Examples 1, 6, and 7, 200 particles are uniformly yellow (neutralization index is 0). On the other hand, the particles of the water-absorbent resin powder (E) are mixed with particles that develop in various colors from dark green to red, and the neutralization rate of individual particles is very uneven (neutralization index is 15). That's it).
[0125]
  (ManufacturingExample 6): Production example of water absorbent resin powder (F) / neutralization polymerization
  ManufacturingIn Example 1, the monomer concentration was changed to 39% by weight, the neutralization rate was changed to 71 mol%, and polyethylene glycol diacrylate was changed to 9.6 g.ManufacturingPolymerization, drying and pulverization were carried out in the same manner as in Example 1. The obtained pulverized product was further classified with a JIS standard sieve having openings of 500 μm and 300 μm to obtain a water absorbent resin powder (F) in which most of the particles were in the range of 500 μm to 300 μm. The absorption capacity of the obtained water absorbent resin powder (F) under no pressure was 32 (g / g), and the soluble content was 10% by weight.
  (ManufacturingExample 7): Production example of water-absorbent resin powder (G) / neutralization polymerization
  ManufacturingIn Example 1, the monomer concentration was 41 wt%, the neutralization rate was 71 mol%, polyethylene glycol diacrylate 5.47 g, sodium persulfate aqueous solution 30.8 g, L-ascorbic acid aqueous solution 2.57 g, hot air drying temperature 180 Except for changing to ℃, hot air drying time 50 minutesManufacturingPolymerization, drying and pulverization were carried out in the same manner as in Example 1. The obtained pulverized product was further classified with a JIS standard sieve having an opening of 850 μm to obtain a water-absorbent resin powder (G) in which most of the particles were in the range of 850 μm or less.
[0126]
  The resulting water-absorbent resin powder (G) had an absorption capacity of 38 (g / g) under no pressure, a soluble content of 13% by weight, and a weight average particle size (D50) of 400 μm.
  (Example2): Water-absorbent resin powder (E) has a crosslinking treatment / pH buffering agent
  Manufacturing100 g of the water-absorbent resin powder (E) obtained in Example 5 was added with 0.5 g of ethylene glycol diglycidyl ether (Denacol EX-810, manufactured by Nagase Kasei Co., Ltd.), 1.0 g of propylene glycol, and neutral phosphate pH. After mixing a surface treatment agent composed of 6.0 g of a standard solution (potassium dihydrogen phosphate / disodium hydrogen phosphate; pH 6.86) and 1.0 g of isopropyl alcohol, the mixture was heated at 120 ° C. for 30 minutes. The water-absorbing agent (17) was obtained by processing. The obtained water-absorbing agent (17) was also in the form of a powder. The results of measuring the absorption capacity under no pressure and the absorption capacity under pressure are shown in Table 5.
[0127]
  (Comparative Example 17): Crosslinking treatment of water-absorbent resin powder (E) / no pH buffering agent
  Example2The comparative water-absorbing agent (17) was obtained in the same manner except that 6.0 g of water was used instead of the neutral phosphate pH standard solution. Absorption capacity under no pressure and absorption capacity under pressure were measured, and the results are shown in Table 5.
  (Example3): Water-absorbent resin powder (F) is crosslinked / pH buffered
  ManufacturingMixing 100 g of the water-absorbent resin powder (F) obtained in Example 6 with 0.32 g of 1,4-butanediol, 0.5 g of propylene glycol, 2.73 g of water, and 1.2 g of sodium dihydrogen phosphate dihydrate After mixing the liquid surface treatment agent, the mixture was heat-treated at 197 ° C. for 10 minutes to obtain a water absorbing agent (18). The resultant water-absorbing agent (18) was also in the form of a powder. Table 5 shows the results of measuring the absorption capacity under no pressure and the absorption capacity under pressure.
[0128]
  (Comparative Example 18): Cross-linking treatment of water-absorbent resin powder (F) / no pH buffering agent
  Example3In Comparative Example 1, a comparative water-absorbing agent (18) was obtained in the same manner except that 0.6 g of phosphoric acid (85% by weight) was used instead of sodium dihydrogen phosphate dihydrate. Table 5 shows the results of measuring the absorption capacity under no pressure and the absorption capacity under pressure.
  (Comparative Example 19): Cross-linking treatment of water-absorbent resin powder (F) / no pH buffering agent
  Example3In Comparative Example 1, a comparative water-absorbing agent (19) was obtained in the same manner except that sodium dihydrogen phosphate dihydrate was not used. Table 5 shows the results of measuring the absorption capacity under no pressure and the absorption capacity under pressure.
[0129]
  (Example4): Water-absorbent resin powder (G) cross-linking treatment / with pH buffering agent
  ManufacturingSurface treatment comprising a mixed liquid of 0.32 g of 1,4-butanediol, 0.5 g of propylene glycol, 2.73 g of water, and 0.2 g of sodium hydrogencarbonate on 100 g of the water absorbent resin powder (G) obtained in Example 7. After mixing the agent solution, the mixture was heat-treated at 212 ° C. for 25 minutes to obtain a water absorbing agent (19). Table 5 shows the results of measuring the absorption capacity under no pressure and the absorption capacity under pressure.
  (Example5): Water-absorbent resin powder (G) cross-linking treatment / with pH buffering agent
  ManufacturingSurface treatment comprising a mixed liquid of 0.32 g of 1,4-butanediol, 0.5 g of propylene glycol, 2.73 g of water, and 0.24 g of potassium bicarbonate to 100 g of the water absorbent resin powder (G) obtained in Example 7. After mixing the agent solution, the mixture was heated at 212 ° C. for 25 minutes to obtain a water absorbing agent (20). Table 5 shows the results of measuring the absorption capacity under no pressure and the absorption capacity under pressure.
[0130]
  (Comparative Example 20): Cross-linking treatment of water-absorbent resin powder (G) / no pH buffering agent
  Example4The comparative water-absorbing agent (20) was obtained in the same manner except that sodium bicarbonate was not used. Table 5 shows the results of measuring the absorption capacity under no pressure and the absorption capacity under pressure.
  (referenceExample16): Continuous production system
  71 mol% neutralized acrylic acid partial sodium salt and polyethylene glycol diacrylate (n = 9)ManufacturingIn the ratio of Example 3, aqueous solution polymerization (belt residence time: about 30 minutes, thickness: about 25 mm) was continuously performed, and the obtained water-containing gel-containing crosslinked polymer was roughly crushed into particles with a meat chopper. This was spread thinly on a perforated plate of a band dryer and dried with continuous hot air at 180 ° C. for 30 minutes. A block-shaped dry polymer was obtained at the outlet of the dryer. The dried polymer was taken out and crushed at the same time, and the resulting particulate dried product was continuously supplied to a three-stage roll granulator (roll gap is 1.0 mm / 0.55 mm / 0.42 mm from above) at 1000 kg / h. And then crushed. The obtained particulate water-absorbing resin powder of about 60 ° C. is classified by a sieving device having a sieve screen having a mesh opening of 850 μm, and a water-absorbing resin powder having a size of 90% by weight or more and less than 850 μm and a size of 150 μm or more (H (Average particle size: 430 to 460 μm). The resulting water-absorbent resin powder (H) had an average absorption capacity (CRC) of 40 g / g under no pressure, and the average amount of soluble components was 11% by weight. The physical properties of CRC and soluble content are average values measured every 2 hours (2000 kg / Lot).
[0131]
Further, the water-absorbent resin powder (H) was continuously supplied to a high-speed continuous mixer (turbulator / 1000 rpm) at 1000 kg / h, and further 1,4-butanediol / propylene was added to the water-absorbent resin powder (H). A surface cross-linking agent aqueous solution composed of glycol / water / 24% aqueous sodium hydroxide = 0.384 / 0.63 / 3.39 / 0.3 (weight% / powder) is sprayed into droplets of about 200 μm. Sprayed and mixed. Subsequently, the obtained mixture was continuously heat-treated with a paddle dryer at 195 ° C. for 40 minutes to obtain a water absorbent powder. Furthermore, the obtained water-absorbing agent powder was classified by a sieving device having a sieve screen having a mesh opening of 850 μm to obtain a water-absorbing agent (21) in which particles having a size of less than 850 μm and a size of 150 μm or more were 90% by weight or more.
[0132]
  The series of steps (polymerization, drying, pulverization, heat treatment) was performed continuously for 24 hours, and the physical properties (Lot number: 11 points) of the water-absorbing agent were measured every 2 hours (2000 kg / Lot). The average value of the absorption capacity under pressure was 31.1 g / g, the average value of the absorption capacity under pressure was 25.5 g / g, and the average value of the saline flow conductivity was 30 (SFC value per lot: 32 32, 28, 28, 30, 27, 27, 32, 31, 32, 28), and the standard deviation of the SFC was 2.1.
  (referenceExample17): Continuous production system
  referenceExample16In the above, continuous production was carried out in the same manner except that 24 hours was changed to 10 days to obtain a water absorbing agent (22). As a result of measuring the physical properties (Lot number: 110 points) of the water-absorbing agent every 2 hours (2000 kg / Lot), the average value of the absorption capacity under no pressure was 31.3 g / g, and the average value of the absorption capacity under pressure Was 25.2 g / g, the average value of physiological saline flow inductivity was 30 (the SFC value for each lot was omitted), and the standard deviation value of the SFC was 3.9.
[0133]
  (Comparative Example 21): Continuous production system
  referenceExample16In Example 1, a continuous production was carried out in the same manner except that a 24% aqueous sodium hydroxide solution was not used to obtain a comparative water-absorbing agent (21). As a result of measuring the physical properties (Lot number: 11 points) of the water-absorbing agent every 2 hours (2000 kg / Lot), the average value of the absorption capacity under no pressure was 31.1 g / g, the average value of the absorption capacity under pressure Is 24.2 g / g, the average value of the saline flow inductivity is 20 (SFC values per lot: 26, 17, 11, 17, 17, 18, 20, 17, 16, 28, 28), The standard deviation value of SFC was 5.5.
[0134]
  referenceExample16andreferenceExample17The water-absorbing agent (21), (22) described in (2) has a smaller standard deviation of SFC than the comparative water-absorbing agent (21) described in Comparative Example 21, and the water-absorbing agent of the present invention is continuously produced. This indicates that there is no occurrence of defective products (such as low SFC products) and that variations in quality (SFC) are reduced.
[0135]
[Table 1]
Figure 0004326752
[0136]
[Table 2]
Figure 0004326752
[0137]
[Table 3]
Figure 0004326752
[0138]
  referenceExample 1 andreferenceThe water-absorbing agents (1) and (2) described in Example 2 have a higher absorption capacity under pressure than the comparative surface-crosslinked water-absorbing agents (1) and (2). Excellent balance of reduction absorption.
  referenceExample3The water-absorbing agent (3) described in 1 is superior to the comparative water-absorbing agent (3) described in Comparative Example 3 in three balances of absorption capacity under no pressure, absorption capacity under pressure, and saline flow conductivity. ing.
  further,referenceExample 4 andreferenceExample 5 andreferenceThe water-absorbing agent (4), (5), (6) described in Example 6 has substantially the same absorption capacity without pressure as the comparative water-absorbing agent (4) described in Comparative Example 4, but is physiological saline. Water flow inductivity shows a high value.
[0139]
  Similarly,referenceExample 7 andreferenceExample 8 andreferenceIn the water-absorbing agents (7), (8) and (9) described in Example 9, the water-absorbing agent (5) and the comparative water-absorbing agent (6) described in Comparative Example 5 and Comparative Example 6 were not added. The absorption ratio under reduction is almost the same, but the absorption ratio under pressure and saline flow inductivity are high.
  Also,referenceExample 10,referenceExample 11, Example1The water-absorbing agents (10), (11), and (12) described in 1 are compared with the comparative water-absorbing agents (7), (8), and (9) described in Comparative Example 7, Comparative Example 8, and Comparative Example 9, respectively. The absorption capacity under no pressure is almost the same, but the saline flow inductivity shows a high value.
[0140]
  referenceExample12andreferenceExample13The water-absorbing agents (13) and (14) described in 1 were compared with the comparative water-absorbing agents (10), (11), and (12) described in Comparative Example 10, Comparative Example 11 and Comparative Example 12, respectively. The SFC variation coefficient is small, the SFC variation rate is large, and the variation in SFC is reduced in both cases.
  Also,referenceExample14andreferenceExample15In the water absorbing agents (15) and (16) described in 1), the SFC change index and the SFC fluctuation index are small, the SFC fluctuation rate is large, and both of the variations in SFC are reduced.
  Thus, the water-absorbing agent produced by the method of the present invention is excellent in three balances of absorption capacity under no pressure, absorption capacity under pressure, and physiological saline flow inductivity, and has good performance. Furthermore, since there is little variation in SFC for each particle size, it is a very excellent water-absorbing agent in stabilizing the performance of diapers.
[0141]
[Table 4]
Figure 0004326752
[0142]
The comparative water-absorbing agents (13), (14), (15), and (16) described in Comparative Example 13, Comparative Example 14, Comparative Example 15, and Comparative Example 16 are all absorbed under no pressure and absorbed under pressure. The balance between magnification and physiological saline flow inductivity was poor.
[0143]
[Table 5]
Figure 0004326752
[0144]
  Example2The water-absorbing agent (17) described is superior to the comparative water-absorbing agent (17) described in Comparative Example 17 in terms of the balance between the absorption capacity without pressure and the absorption capacity under pressure and the total thereof.
  Examples3The water-absorbing agent (18) described above undergoes a cross-linking reaction in a short time of 10 minutes as compared with the comparative water-absorbing agent (18) described in Comparative Example 18 to which phosphoric acid has been added. Although it is the same, the absorption capacity under pressure shows a high value. Furthermore, for the comparative water-absorbing agent (19) described in Comparative Example 19 in which nothing was added, sufficient crosslinking reaction did not proceed in a short time of 10 minutes, and almost no decrease in absorption capacity under no pressure was observed. Absorption capacity under pressure is also low.
[0145]
Thus, the water-absorbing agent produced by the method of the present invention is excellent in the balance between the absorption capacity under no pressure and the absorption capacity under pressure and the total thereof, and has good performance even in a short reaction time.
[0146]
【The invention's effect】
According to the present invention, during the crosslinking treatment, while exhibiting the effect as a mixing aid, it does not inhibit the crosslinking reaction, and in some cases also has an effect as a reaction catalyst, and in the partially neutralized water-absorbing resin. Uniform surface cross-linking can be realized almost regardless of the difference in the sum rate and the uniformity of the neutralization rate resulting from the post-neutralization operation of the acid type polymerization. Absorption capacity under no pressure, Absorption capacity under pressure, Saline flow A method for producing a water-absorbing agent having a stable physical property in a short time with excellent balance of inductivity and small fluctuation (variation) of physiological saline flow-inductive value in each lot during production or in each lot, and A water absorbing agent can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a measuring apparatus used for measurement of physiological saline flow inductivity.
FIG. 2 is a schematic side view (a) and a schematic plan view (b) of a glass container used for a mechanical damage test.
FIG. 3 is a schematic view of a disperser used for a mechanical damage test.
[Explanation of symbols]
31 tanks
32 glass tubes
33 0.69 wt% sodium chloride aqueous solution
34 L-shaped tube with cock
35 cock
40 containers
41 cells
42 Stainless steel wire mesh
43 Stainless steel wire mesh
44 swelling gel
45 Glass filter
46 piston
47 Hole in piston
48 Collection container
49 Precision Balance
51 glass container
52 Disperser
53 Upper clamp
54 Lower clamp

Claims (11)

酸基含有の吸水性樹脂粉末(a)に該酸基と反応しうる表面架橋剤(c)を混合し、前記吸水性樹脂粉末(a)を架橋処理する吸水剤の製造方法であって、
前記吸水性樹脂粉末は、以下の定義に基づく重量平均粒子径(D50)が300〜600μmで150μm以下の微粉が10重量%以下である、ポリアクリル酸塩架橋重合体(ただし、内部架橋剤の量が0.005−0.5モル%)であり、かつ、
表面架橋剤の混合時には、無機多塩基酸の部分アルカリ金属塩または有機多価カルボン酸の部分アルカリ金属塩である非還元性のアルカリ金属塩pH緩衝剤(b2)をも混合する、
ことを特徴とする、吸水剤の製造方法。
ただし、吸水性樹脂粉末の重量平均粒子径(D50)は、JIS標準篩(850μm、600μm、500μm、425μm、300μm、212μm、150μm、106μm、75μm)で篩い分けし、残留百分率Rを対数確率紙にプロットすることによって規定する。
A method for producing a water-absorbing agent comprising mixing a water-absorbing resin powder (a) containing an acid group with a surface cross-linking agent (c) capable of reacting with the acid group, and crosslinking the water-absorbing resin powder (a).
The water-absorbent resin powder has a weight average particle diameter (D50) based on the following definition of 300 to 600 μm and a fine powder of 150 μm or less in an amount of 10% by weight or less. The amount is 0.005-0.5 mol%), and
When mixing the surface cross-linking agent , a non-reducing alkali metal salt pH buffer (b2) which is a partial alkali metal salt of an inorganic polybasic acid or a partial alkali metal salt of an organic polyvalent carboxylic acid is also mixed.
A method for producing a water-absorbing agent.
However, the weight average particle diameter (D50) of the water-absorbent resin powder is sieved with a JIS standard sieve (850 μm, 600 μm, 500 μm, 425 μm, 300 μm, 212 μm, 150 μm, 106 μm, 75 μm), and the residual percentage R is logarithmic probability paper. It is specified by plotting.
前記アルカリ金属塩pH緩衝剤(b2)が、炭酸水素塩、リン酸二水素塩、リン酸水素塩の1種または2種以上からなるものである、請求項に記載の吸水剤の製造方法。The method for producing a water-absorbing agent according to claim 1 , wherein the alkali metal salt pH buffer (b2) comprises one or more of hydrogen carbonate, dihydrogen phosphate, and hydrogen phosphate. . 前記表面架橋剤(c)が、脱水反応性架橋剤(c1)である、請求項1または2に記載の吸水剤の製造方法。The method for producing a water-absorbing agent according to claim 1 or 2 , wherein the surface crosslinking agent (c) is a dehydration-reactive crosslinking agent (c1). 表面架橋剤の混合時には、前記表面架橋剤として、脱水反応性架橋剤(c1)とともに非脱水反応性架橋剤をも用いる、請求項に記載の吸水剤の製造方法。The method for producing a water-absorbing agent according to claim 3 , wherein a non-dehydrating reactive crosslinking agent is also used as the surface crosslinking agent together with the dehydrating reactive crosslinking agent (c1) when the surface crosslinking agent is mixed. 前記脱水反応性架橋剤(c1)が、多価アルコール化合物である、請求項またはに記載の吸水剤の製造方法。The method for producing a water absorbing agent according to claim 3 or 4 , wherein the dehydration-reactive crosslinking agent (c1) is a polyhydric alcohol compound. 前記表面架橋剤(c)あるいは脱水反応性架橋剤(c1)に前記非還元性のアルカリ金属塩pH緩衝剤(b2)を予め混合して水溶液としたのち、該水溶液を、前記吸水性樹脂粉末(a)あるいは(a1)に対し噴霧添加する、請求項1からまでのいずれかに記載の吸水剤の製造方法。After the aqueous solution was mixed before Kihi reducing alkali metal salt pH buffer agent (b2) in advance to the surface cross-linking agent (c) or dehydration reactive crosslinking agent (c1), the aqueous solution, the water-absorbent resin The method for producing a water-absorbing agent according to any one of claims 1 to 5 , wherein the powder (a) or (a1) is added by spraying. 表面架橋剤の混合時には、吸水性樹脂100重量部に対する割合で0.5〜20重量部の水を使用する、請求項1からまでのいずれかに記載の製造方法。The manufacturing method according to any one of claims 1 to 6 , wherein 0.5 to 20 parts by weight of water is used at a ratio of 100 parts by weight of the water-absorbing resin when the surface crosslinking agent is mixed. 表面架橋剤の混合時には、吸水性樹脂100重量部に対する割合で0〜10重量部の親水性有機溶媒を使用する、請求項1からまでのいずれかに記載の製造方法。The manufacturing method according to any one of claims 1 to 7 , wherein 0 to 10 parts by weight of a hydrophilic organic solvent is used in a ratio with respect to 100 parts by weight of the water-absorbing resin when the surface crosslinking agent is mixed. 表面架橋剤の混合をする前の吸水性樹脂粉末の温度が40〜70℃である、請求項1からまでのいずれかに記載の吸水剤の製造方法。The manufacturing method of the water absorbing agent in any one of Claim 1-8 whose temperature of the water absorbing resin powder before mixing a surface crosslinking agent is 40-70 degreeC. 前記架橋処理が、150〜230℃の加熱処理でなされる、請求項1からまでのいずれかに記載の吸水剤の製造方法。The method for producing a water absorbing agent according to any one of claims 1 to 9 , wherein the crosslinking treatment is performed by a heat treatment at 150 to 230 ° C. 前記吸水性樹脂が、アクリル酸および/またはその塩を主成分とする単量体を重合し、さらに後中和して得られる、ポリアクリル酸塩架橋重合体である、請求項1から10までのいずれかに記載の吸水剤の製造方法。The water-absorbent resin, polymerizing a monomer composed mainly of acrylic acid and / or its salts, obtained by post-neutralization Furthermore, a polyacrylate crosslinked polymer, Claims 1 to 10 The manufacturing method of the water absorbing agent in any one of.
JP2002166178A 2001-06-08 2002-06-06 Method for producing water-absorbing agent Expired - Lifetime JP4326752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166178A JP4326752B2 (en) 2001-06-08 2002-06-06 Method for producing water-absorbing agent

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001173417 2001-06-08
JP2001-173417 2001-06-08
JP2001-173392 2001-06-08
JP2001173392 2001-06-08
JP2002166178A JP4326752B2 (en) 2001-06-08 2002-06-06 Method for producing water-absorbing agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009117974A Division JP5451173B2 (en) 2001-06-08 2009-05-14 Water-absorbing agent and sanitary material

Publications (2)

Publication Number Publication Date
JP2003105092A JP2003105092A (en) 2003-04-09
JP4326752B2 true JP4326752B2 (en) 2009-09-09

Family

ID=27346896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166178A Expired - Lifetime JP4326752B2 (en) 2001-06-08 2002-06-06 Method for producing water-absorbing agent

Country Status (1)

Country Link
JP (1) JP4326752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209373A (en) * 2001-06-08 2009-09-17 Nippon Shokubai Co Ltd Water-absorbing agent and its manufacturing method, and sanitary material

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0403937A (en) * 2003-02-10 2005-03-01 Nippon Catalytic Chem Ind Particulate water absorber containing water absorbing resin as the main component and sanitary article to absorb a body fluid
US20040214499A1 (en) * 2003-04-25 2004-10-28 Kimberly-Clark Worldwide, Inc. Absorbent structure with superabsorbent material
JP4683405B2 (en) * 2003-06-24 2011-05-18 株式会社日本触媒 Water-absorbing resin composition and method for producing the same
CN100391548C (en) 2003-09-19 2008-06-04 株式会社日本触媒 Water absorbent and producing method of same
KR100823418B1 (en) 2003-11-07 2008-04-18 니폰 쇼쿠바이 컴파니 리미티드 Particulate water-absorbent resin composition and its production process
WO2005056177A1 (en) * 2003-12-12 2005-06-23 Nippon Shokubai Co., Ltd. Water-absorbing agent, manufacture method thereof, and absorbent and absorbent article made therefrom
JP4799855B2 (en) * 2003-12-12 2011-10-26 株式会社日本触媒 Water-absorbing agent and method for producing the same, and absorbent body and absorbent article using the same
JP2006055833A (en) * 2004-03-29 2006-03-02 Nippon Shokubai Co Ltd Particulate water absorbing agent with water-absorbing resin as main component
KR100849526B1 (en) * 2004-03-29 2008-07-31 니폰 쇼쿠바이 컴파니 리미티드 Particulate water absorbing agent with water-absorbing resin as main component
WO2005108472A1 (en) 2004-05-07 2005-11-17 Nippon Shokubai Co., Ltd. Water absorbing agent and production method thereof
EP1846475A1 (en) * 2005-02-04 2007-10-24 Basf Aktiengesellschaft Water swellable material
TWI344469B (en) 2005-04-07 2011-07-01 Nippon Catalytic Chem Ind Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
CN101283003B (en) * 2005-09-30 2013-11-13 株式会社日本触媒 Aqueous-liquid-absorbing agent and production process thereof
TWI394789B (en) 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind Water-absorbent resin composition, method of manufacturing the same, and absorbent article
EP1837348B9 (en) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
DE102006039205A1 (en) * 2006-08-22 2008-03-20 Stockhausen Gmbh On renewable raw materials based acrylic acid and water-absorbing polymer structures and processes for their preparation by dehydration
EP2182992B1 (en) * 2007-07-27 2012-01-11 Basf Se Water-absorbing polymeric particles and method for the production thereof
JP5560192B2 (en) * 2008-09-16 2014-07-23 株式会社日本触媒 Method for producing water absorbent resin and method for improving liquid permeability
CN102548654A (en) 2009-09-29 2012-07-04 株式会社日本触媒 Particulate water absorbent and process for production thereof
JP6092228B2 (en) * 2012-08-30 2017-03-08 株式会社日本触媒 Particulate water-absorbing agent and method for producing the same
JP6323728B2 (en) * 2013-09-30 2018-05-16 株式会社日本触媒 Method for filling particulate water-absorbing agent and sampling method for particulate water-absorbing agent filling
CN109071830A (en) * 2016-05-20 2018-12-21 三大雅株式会社 Water-absorbent besin particles, contain absorber and absorbent commodity made of the water-absorbent besin particles at its manufacturing method
KR102637493B1 (en) 2018-09-28 2024-02-15 주식회사 엘지화학 Preparation method of super absorbent polymer and super absorbent polymer therefrom
KR102468196B1 (en) 2018-11-26 2022-11-17 주식회사 엘지화학 Super absorbent polymer and method for preparing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461860B2 (en) * 1993-04-15 2003-10-27 株式会社日本触媒 Manufacturing method of absorbent material
JP3205168B2 (en) * 1993-06-18 2001-09-04 三洋化成工業株式会社 Absorbent composition for disposable diapers
JP3688418B2 (en) * 1995-12-27 2005-08-31 株式会社日本触媒   Water-absorbing agent and sanitary material
JP3325806B2 (en) * 1996-08-07 2002-09-17 株式会社日本触媒 Water absorbing agent and method for producing the same
JPH10244151A (en) * 1997-03-06 1998-09-14 Sanyo Chem Ind Ltd Production of water absorbent and water absorbent
JPH11349625A (en) * 1998-06-10 1999-12-21 Sanyo Chem Ind Ltd Preparation of water absorbent and water absorbent
JP2000026510A (en) * 1998-07-06 2000-01-25 Sanyo Chem Ind Ltd Production of resin and water-absorbing resin
JP4380873B2 (en) * 1999-02-15 2009-12-09 株式会社日本触媒 Water absorbent resin powder and use thereof
DE19909838A1 (en) * 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Powdery, crosslinked, aqueous liquids and blood-absorbing polymers, processes for their preparation and their use
JP2000327926A (en) * 1999-05-25 2000-11-28 Sanyo Chem Ind Ltd Absorbent composition and absorbing article
WO2002100451A2 (en) * 2001-06-08 2002-12-19 Nippon Shokubai Co., Ltd. Water-absorbing agent, its production and sanitary material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209373A (en) * 2001-06-08 2009-09-17 Nippon Shokubai Co Ltd Water-absorbing agent and its manufacturing method, and sanitary material

Also Published As

Publication number Publication date
JP2003105092A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP5451173B2 (en) Water-absorbing agent and sanitary material
JP4326752B2 (en) Method for producing water-absorbing agent
JP4683405B2 (en) Water-absorbing resin composition and method for producing the same
JP5128098B2 (en) Method for producing particulate water-absorbing agent and particulate water-absorbing agent
JP5090572B2 (en) Manufacturing method of water-absorbing agent
JP5386517B2 (en) Surface treated water absorbent resin
JP4380873B2 (en) Water absorbent resin powder and use thereof
US7285615B2 (en) Particulate water-absorbent resin composition
JP4776969B2 (en) Water absorbing agent and method for producing the same
JP5367364B2 (en) Water-absorbing agent containing water-absorbing resin as main component and method for producing the same
JP3987348B2 (en) Manufacturing method of water-absorbing agent
JP2008142714A (en) Water-absorbing agent
JP2010234368A (en) Water absorbent and sanitary material using the same
JP6286533B2 (en) Particulate water-absorbing agent and method for producing the same
JP4666574B2 (en) Particulate water-absorbing resin composition
JPH11315147A (en) Production of water absorbing agent
JP4500134B2 (en) Particulate water-absorbing resin composition
JP4942235B2 (en) Water-absorbing agent, absorber, absorbent article, and method for measuring absorption characteristics
JP4695370B2 (en) Method for producing surface-treated water-absorbing resin
JP3830223B2 (en) Method for producing high water absorption rate water absorbent resin
JP2010214371A (en) Water absorbent, absorber, absorbable article and method for measuring absorption properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4326752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

EXPY Cancellation because of completion of term