WO2017199966A1 - Method for producing carbon fibers, carbon fibers, and electrode for electric double layer capacitors - Google Patents

Method for producing carbon fibers, carbon fibers, and electrode for electric double layer capacitors Download PDF

Info

Publication number
WO2017199966A1
WO2017199966A1 PCT/JP2017/018391 JP2017018391W WO2017199966A1 WO 2017199966 A1 WO2017199966 A1 WO 2017199966A1 JP 2017018391 W JP2017018391 W JP 2017018391W WO 2017199966 A1 WO2017199966 A1 WO 2017199966A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
carbon fiber
solvent
carbon fibers
ashless coal
Prior art date
Application number
PCT/JP2017/018391
Other languages
French (fr)
Japanese (ja)
Inventor
眞基 濱口
祥平 和田
聡則 井上
昌宏 豊田
Original Assignee
株式会社神戸製鋼所
国立大学法人大分大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 国立大学法人大分大学 filed Critical 株式会社神戸製鋼所
Priority to KR1020187033029A priority Critical patent/KR102118943B1/en
Priority to CN201780030160.2A priority patent/CN109154108A/en
Publication of WO2017199966A1 publication Critical patent/WO2017199966A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

This method for producing carbon fibers comprises: a step for obtaining an ash-free coal by means of solvent extraction of a coal; a step for electrospinning the ash-free coal obtained in the ash-free coal acquisition step together with a solvent; and a step for carbonizing fibers obtained in the electrospinning step, preferably a step for heating the fibers at a temperature from 700°C to 1,200°C (inclusive). The thus-obtained carbon fibers have a specific surface area of from 300 m2/g to 3,000 m2/g (inclusive), an average diameter of from 0.5 μm to 5 μm (inclusive) and an oxygen content of 0.4% by mass or more, and are suitable as an electrode for electric double layer capacitors.

Description

炭素繊維の製造方法、炭素繊維及び電気二重層キャパシタ用電極Carbon fiber manufacturing method, carbon fiber, and electrode for electric double layer capacitor
 本発明は、炭素繊維の製造方法、炭素繊維及び電気二重層キャパシタ用電極に関する。 The present invention relates to a carbon fiber manufacturing method, carbon fiber, and electrode for an electric double layer capacitor.
 炭素繊維は、例えば樹脂、コンクリート、セラミック等の構造材料のための強化材として広く利用されている。また、他にも炭素繊維は、例えば断熱材、活性炭原料、導電材料、伝熱材料等としても利用される。炭素繊維の製造方法としては、石油又は石炭由来のピッチや樹脂等を電界紡糸する方法が公知である(日本国特開2011-157668号公報及び国際公開第2011/070893号参照)。 Carbon fiber is widely used as a reinforcing material for structural materials such as resin, concrete and ceramic. In addition, carbon fiber is also used as, for example, a heat insulating material, activated carbon raw material, conductive material, heat transfer material, and the like. As a method for producing carbon fiber, a method of electrospinning pitch or resin derived from petroleum or coal is known (see Japanese Patent Application Laid-Open No. 2011-157668 and International Publication No. 2011/070893).
 一方で、微細な細孔を有する多孔質炭素繊維は吸着材や電極として有用である。このような多孔質炭素繊維を製造する方法としては、炭素繊維の表面を高温水蒸気や強アルカリで処理することで侵食するいわゆる賦活と呼ばれる方法や、炭素繊維の原料のピッチや樹脂にMgO等の微粒子を鋳型物質として混合し紡糸する方法などがある。 On the other hand, porous carbon fibers having fine pores are useful as adsorbents and electrodes. As a method for producing such a porous carbon fiber, a method called so-called activation in which the surface of the carbon fiber is eroded by treatment with high-temperature steam or strong alkali, or the pitch or resin of the carbon fiber raw material such as MgO is used. There is a method of mixing and spinning fine particles as a template material.
 しかし、上述の方法では、表面処理や鋳型物質のような特殊な処理や材料が必要となるため、多孔質炭素繊維の製造コストが上昇するという課題がある。 However, the above-described method requires a special treatment or material such as a surface treatment or a template substance, which raises a problem that the manufacturing cost of the porous carbon fiber increases.
日本国特開2011-157668号公報Japanese Unexamined Patent Publication No. 2011-157668 国際公開第2011/070893号International Publication No. 2011/070893
 上記不都合に鑑みて、本発明は、比較的簡易な工程で多孔質の炭素繊維を製造できる炭素繊維の製造方法、並びに比較的簡易な工程で得られる炭素繊維及びこれを用いた電気二重層キャパシタ用電極を提供することを課題とする。 In view of the above inconveniences, the present invention provides a carbon fiber production method capable of producing porous carbon fibers in a relatively simple process, a carbon fiber obtained in a relatively simple process, and an electric double layer capacitor using the same. It is an object to provide a working electrode.
 上記課題を解決するためになされた発明は、石炭の溶剤抽出処理により無灰炭を得る工程と、上記無灰炭取得工程で得られた無灰炭を溶剤と共に電界紡糸する工程と、上記電界紡糸工程で得られた糸状体を炭素化する工程とを備える炭素繊維の製造方法である。 The invention made to solve the above problems includes a step of obtaining ashless coal by solvent extraction treatment of coal, a step of electrospinning ashless coal obtained in the ashless coal acquisition step together with a solvent, and the electric field And a step of carbonizing the filament obtained in the spinning step.
 当該炭素繊維の製造方法は、無灰炭を原料として用い、無灰炭を溶剤と共に電界紡糸した後に炭素化を行うことで、溶剤の揮発により微細孔が形成された多孔質の炭素繊維を得ることができる。つまり、当該炭素繊維の製造方法によれば、電界紡糸の後に炭素化を行う比較的簡易な工程で多孔質の炭素繊維を製造できる。 The carbon fiber manufacturing method uses ashless coal as a raw material, and electrospinning ashless coal together with a solvent and then carbonizing to obtain porous carbon fibers in which fine pores are formed by volatilization of the solvent. be able to. That is, according to the carbon fiber manufacturing method, porous carbon fibers can be manufactured by a relatively simple process of carbonization after electrospinning.
 上記炭素化を700℃以上1200℃以下まで糸状体を加熱することで行うとよい。このように炭素化を行うことで、容易かつ確実に多孔質の炭素繊維を得ることができる。 The carbonization may be performed by heating the filament to 700 ° C. or more and 1200 ° C. or less. By performing carbonization in this way, porous carbon fibers can be obtained easily and reliably.
 上記課題を解決するためになされた別の発明は、石炭を原料とする炭素繊維であって、比表面積が300m/g以上3000m/g以下、平均径が0.5μm以上5μm以下、酸素含有量が0.4質量%以上であることを特徴とする。 Another invention made to solve the above problems is a carbon fiber made from coal, having a specific surface area of 300 m 2 / g to 3000 m 2 / g, an average diameter of 0.5 μm to 5 μm, oxygen Content is 0.4 mass% or more, It is characterized by the above-mentioned.
 当該炭素繊維は、比表面積及び平均径がそれぞれ上記範囲であり、かつ酸素含有量が0.4質量%以上であるので、無灰炭を原料とし、この無灰炭を溶剤と共に電界紡糸した後に炭素化することで得られる。そのため、当該炭素繊維は、比較的簡易な工程で製造でき、かつ微細孔を多数有する多孔質材として有効使用できる。 The carbon fiber has a specific surface area and an average diameter in the above ranges, and the oxygen content is 0.4% by mass or more. Therefore, after the ashless coal is electrospun together with a solvent, the ashless coal is used as a raw material. Obtained by carbonization. Therefore, the carbon fiber can be produced by a relatively simple process and can be effectively used as a porous material having many fine pores.
 上記課題を解決するためになされたさらに別の発明は、当該炭素繊維を用いた電気二重層キャパシタ用電極である。当該電気二重層キャパシタ用電極は、当該炭素繊維を用いるため製造コストに優れる。 Still another invention made to solve the above problems is an electrode for an electric double layer capacitor using the carbon fiber. The electric double layer capacitor electrode is excellent in manufacturing cost because the carbon fiber is used.
 ここで、「比表面積」とは、JIS-Z8830(2013)に準拠して測定される値を意味する。「酸素含有量」とは、酸素分子だけでなく他の原子と結合している原子を含む酸素原子の含有率を意味し、具体的にはJIS-M8813(2004)に準拠して測定される値を意味する。 Here, “specific surface area” means a value measured according to JIS-Z8830 (2013). “Oxygen content” means the content of oxygen atoms including not only oxygen molecules but also atoms bonded to other atoms, and is specifically measured according to JIS-M8813 (2004). Mean value.
 以上のように、当該炭素繊維の製造方法は、比較的簡易な工程で多孔質の炭素繊維を製造できる。また、当該炭素繊維は比較的簡易な工程で得られ、これを用いた当該電気二重層キャパシタ用電極は製造コストに優れる。 As described above, the carbon fiber production method can produce porous carbon fiber by a relatively simple process. Further, the carbon fiber is obtained by a relatively simple process, and the electric double layer capacitor electrode using the carbon fiber is excellent in manufacturing cost.
本発明の一実施形態の炭素繊維の製造方法の手順を示すフローである。It is a flow which shows the procedure of the manufacturing method of the carbon fiber of one Embodiment of this invention. 実施例1の炭素繊維の細孔分布を示すグラフである。2 is a graph showing the pore distribution of the carbon fiber of Example 1. 実施例1の炭素繊維の走査電子顕微鏡写真である。2 is a scanning electron micrograph of the carbon fiber of Example 1. FIG.
 以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
[炭素繊維の製造方法]
 当該炭素繊維の製造方法は、図1に示すように、石炭の溶剤抽出処理により無灰炭を得る無灰炭取得工程S1と、無灰炭取得工程S1で得られた無灰炭を溶剤と共に電界紡糸する電界紡糸工程S2と、電界紡糸工程S2で得られた糸状体を炭素化する炭素化工程S3とを主に備える。
[Method for producing carbon fiber]
As shown in FIG. 1, the carbon fiber production method includes ashless coal acquisition step S1 for obtaining ashless coal by solvent extraction treatment of coal and ashless coal obtained in ashless coal acquisition step S1 together with a solvent. An electrospinning process S2 for electrospinning and a carbonization process S3 for carbonizing the filament obtained in the electrospinning process S2 are mainly provided.
<無灰炭取得工程>
 無灰炭取得工程S1では、原料の石炭を溶剤抽出処理し、無灰炭を得る。具体的には、原料石炭と溶剤とを混合したスラリーを原料石炭の熱分解温度以上に加熱して、熱分解した原料石炭の可溶成分を溶剤に抽出し、この熱分解温度における不溶成分をスラリーから分離することによって無灰炭を得る。なお、「無灰炭」とは、石炭を改質した改質炭であり、灰分含有量が5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下であるものをいう。なお、「灰分」とは、JIS-M8812(2004)に準拠して測定される値を意味する。
<Ashless coal acquisition process>
In the ashless coal acquisition step S1, raw material coal is subjected to solvent extraction treatment to obtain ashless coal. Specifically, the slurry obtained by mixing the raw coal and the solvent is heated to a temperature equal to or higher than the pyrolysis temperature of the raw coal, the soluble component of the pyrolyzed raw coal is extracted into the solvent, and the insoluble component at this pyrolysis temperature is extracted. Ashless coal is obtained by separating from the slurry. The “ashless coal” is a modified coal obtained by modifying coal, and has an ash content of 5% by mass or less, preferably 3% by mass or less, more preferably 1% by mass or less. “Ash” means a value measured in accordance with JIS-M8812 (2004).
 無灰炭の原料とされる石炭としては、石炭化度が高い順に、無煙炭、瀝青炭、亜瀝青炭、褐炭等が挙げられ、中でも中程度の石炭化度を有する瀝青炭又は亜瀝青炭が好ましい。 Examples of coal used as raw material for ashless coal include anthracite coal, bituminous coal, subbituminous coal, lignite, etc., in descending order of degree of coalification. Of these, bituminous coal or subbituminous coal having a moderate degree of coalification is preferred.
 上記溶剤としては、原料石炭を溶解する性質を有するものであれば特に限定されず、例えばベンゼン、トルエン、キシレン等の単環芳香族化合物、ナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン等の2環芳香族化合物、アントラセン等の3環芳香族化合物などを用いることができる。なお、上記2環芳香族化合物には、脂肪族鎖を有するナフタレン類や長鎖脂肪族鎖を有するビフェニル類等が含まれる。 The solvent is not particularly limited as long as it has a property of dissolving the raw material coal. For example, monocyclic aromatic compounds such as benzene, toluene and xylene, bicyclic rings such as naphthalene, methylnaphthalene, dimethylnaphthalene and trimethylnaphthalene. Aromatic compounds, tricyclic aromatic compounds such as anthracene, and the like can be used. The bicyclic aromatic compound includes naphthalenes having an aliphatic chain, biphenyls having a long aliphatic chain, and the like.
 上記溶剤の中でも、石炭乾留生成物から精製した石炭誘導体である2環芳香族化合物が好ましい。石炭誘導体の2環芳香族化合物は、加熱状態でも安定しており、石炭との親和性に優れている。そのため、溶剤としてこのような2環芳香族化合物を用いることで、溶剤に抽出される石炭成分の割合を高めることができると共に、蒸留等の方法で容易に溶剤を回収し循環使用することができる。 Among the above solvents, a bicyclic aromatic compound which is a coal derivative purified from a coal dry distillation product is preferable. The bicyclic aromatic compound of the coal derivative is stable even in a heated state and has an excellent affinity with coal. Therefore, by using such a bicyclic aromatic compound as a solvent, the ratio of coal components extracted into the solvent can be increased, and the solvent can be easily recovered and reused by a method such as distillation. .
 スラリーの加熱温度(熱分解抽出温度)の下限としては、300℃が好ましく、350℃がより好ましく、380℃がさらに好ましい。一方、スラリーの加熱温度の上限としては、450℃が好ましく、420℃がより好ましい。スラリーの加熱温度が上記下限に満たない場合、石炭を構成する分子間の結合を十分に弱めることができないため、例えば原料石炭として低品位炭を使用した場合に、抽出される無灰炭の再固化温度を高めることができないおそれや、収率が低く不経済となるおそれがある。逆に、スラリーの加熱温度が上記上限を超える場合、石炭の熱分解反応が非常に活発になるため、無灰炭の酸素含有量が低下するおそれや、生成した熱分解ラジカルの再結合が起こることで無灰炭の抽出率が低下するおそれがある。 The lower limit of the slurry heating temperature (pyrolysis extraction temperature) is preferably 300 ° C, more preferably 350 ° C, and even more preferably 380 ° C. On the other hand, the upper limit of the heating temperature of the slurry is preferably 450 ° C, more preferably 420 ° C. If the heating temperature of the slurry is less than the above lower limit, the bonds between the molecules constituting the coal cannot be sufficiently weakened. For example, when low grade coal is used as the raw coal, There is a possibility that the solidification temperature cannot be increased, and the yield may be low and uneconomical. On the other hand, when the heating temperature of the slurry exceeds the above upper limit, the pyrolysis reaction of coal becomes very active, so that the oxygen content of ashless coal may decrease and recombination of the generated pyrolysis radical occurs. This may reduce the extraction rate of ashless coal.
 スラリーの加熱時間(抽出時間)の上限としては、120分が好ましく、60分がより好ましく、30分がさらに好ましい。一方、スラリーの加熱時間の下限としては、10分が好ましい。スラリーの加熱時間が上記上限を超える場合、石炭の熱分解反応が進行しすぎてラジカル重合反応が進むことで抽出率が低下するおそれがある。逆に、スラリーの加熱時間が上記下限未満の場合、石炭の可溶成分の抽出が不十分となるおそれがある。 The upper limit of the slurry heating time (extraction time) is preferably 120 minutes, more preferably 60 minutes, and even more preferably 30 minutes. On the other hand, the lower limit of the slurry heating time is preferably 10 minutes. When the heating time of the slurry exceeds the above upper limit, the thermal decomposition reaction of coal proceeds too much and the radical polymerization reaction proceeds, which may reduce the extraction rate. On the contrary, when the heating time of the slurry is less than the above lower limit, extraction of soluble components of coal may be insufficient.
 スラリーを加熱した後、熱分解反応を抑制するためにスラリーを冷却することが好ましい。スラリーの冷却温度としては、300℃以上370℃以下が好ましい。スラリーの冷却温度が上記上限を超える場合、熱分解反応を十分に抑制できないおそれがある。逆に、スラリーの冷却温度が上記下限未満の場合、溶剤の溶解力が低下して、一旦抽出された石炭成分の再析出が起き、無灰炭の回収率が低下するおそれがある。 After heating the slurry, it is preferable to cool the slurry to suppress the thermal decomposition reaction. The cooling temperature of the slurry is preferably 300 ° C. or higher and 370 ° C. or lower. When the cooling temperature of the slurry exceeds the above upper limit, the thermal decomposition reaction may not be sufficiently suppressed. On the other hand, when the cooling temperature of the slurry is less than the lower limit, the solvent dissolving power is reduced, and re-precipitation of the extracted coal component occurs, which may reduce the recovery rate of ashless coal.
 なお、スラリーの加熱抽出は非酸化性雰囲気で行うことが好ましい。具体的には、スラリーの加熱抽出を窒素等の不活性ガスの存在下で行うことが好ましい。窒素等の不活性ガスを用いることで、加熱抽出の際にスラリーが酸素に接触して発火することを低コストで防止できる。 In addition, it is preferable to perform heat extraction of the slurry in a non-oxidizing atmosphere. Specifically, it is preferable to perform heat extraction of the slurry in the presence of an inert gas such as nitrogen. By using an inert gas such as nitrogen, it is possible to prevent the slurry from coming into contact with oxygen and igniting at low cost during the heat extraction.
 スラリーの加熱抽出時の圧力は、加熱温度や用いる溶剤の蒸気圧にもよるが、例えば1MPa以上2MPa以下とすることができる。加熱抽出時の圧力が溶剤の蒸気圧より低い場合には、溶剤が揮発して石炭の可溶成分を液相に閉じ込められず、可溶成分を抽出できない。一方、加熱抽出時の圧力が高すぎると、機器のコスト、運転コスト等が上昇する。 Although the pressure at the time of heat extraction of the slurry depends on the heating temperature and the vapor pressure of the solvent used, it can be, for example, 1 MPa or more and 2 MPa or less. When the pressure at the time of heat extraction is lower than the vapor pressure of the solvent, the solvent is volatilized and the soluble component of coal cannot be confined in the liquid phase, and the soluble component cannot be extracted. On the other hand, if the pressure at the time of heating extraction is too high, the cost of the equipment, the operating cost, etc. increase.
 スラリーからの不溶成分の分離方法としては、特に限定されず、濾過法、遠心分離法、重力沈降法等の公知の分離方法、あるいはこれらのうちの2法の組合せを採用できる。これらの中でも、流体の連続操作が可能であり、低コストで大量の処理にも適しており、かつ不溶成分を確実に除去できる遠心分離法と濾過法との組合せが好ましい。 The method for separating the insoluble component from the slurry is not particularly limited, and a known separation method such as a filtration method, a centrifugal separation method, a gravity sedimentation method, or a combination of these two methods can be employed. Among these, a combination of a centrifugal separation method and a filtration method that can continuously operate a fluid, is suitable for a large amount of processing at low cost, and can reliably remove insoluble components is preferable.
 無灰炭の石炭からの抽出率(収率)としては、原料となる石炭の品質にもよるが、瀝青炭又は亜瀝青炭の場合には例えば20質量%以上60質量%以下とされる。 The extraction rate (yield) of ashless coal from coal is, for example, 20% by mass to 60% by mass in the case of bituminous coal or sub-bituminous coal, although it depends on the quality of the raw coal.
 無灰炭の酸素含有量の下限としては、1質量%が好ましく、1.5質量%がより好ましく、2質量%がさらに好ましい。一方、無灰炭の酸素含有量の上限としては、5質量%が好ましく、4質量%がより好ましく、3.5質量%がさらに好ましい。無灰炭の酸素含有量が上記下限に満たない場合、芳香族化合物が多くなることで電界紡糸における結晶発達を十分に抑制することができず、得られる炭素繊維の多孔質化が不十分となるおそれがある。逆に、無灰炭の酸素含有量が上記上限を超える場合、炭素化時の質量減少率が大きく、炭素繊維の収率が低下することにより炭素繊維の製造コストが上昇するおそれがある。 As a minimum of oxygen content of ashless coal, 1 mass% is preferred, 1.5 mass% is more preferred, and 2 mass% is still more preferred. On the other hand, as an upper limit of oxygen content of ashless coal, 5 mass% is preferable, 4 mass% is more preferable, and 3.5 mass% is further more preferable. When the oxygen content of ashless coal is less than the above lower limit, it is not possible to sufficiently suppress crystal development in electrospinning due to an increase in aromatic compounds, and the resulting carbon fiber is insufficiently porous There is a risk. Conversely, when the oxygen content of ashless coal exceeds the above upper limit, the mass reduction rate during carbonization is large, and the carbon fiber production cost may increase due to a decrease in the carbon fiber yield.
<電界紡糸工程>
 電界紡糸工程S2では、無灰炭取得工程S1で得られた無灰炭と溶剤との混合液(無灰炭の溶解液)を原料液として電界紡糸を行う。
<Electrospinning process>
In the electrospinning step S2, electrospinning is performed using the mixed solution of ashless coal and a solvent (solution of ashless coal) obtained in the ashless coal acquisition step S1 as a raw material liquid.
 上記溶剤は、無灰炭取得工程S1で用いた無灰炭の抽出溶剤をそのまま用いるとよい。つまり、無灰炭取得工程S1で加熱後(無灰炭抽出後)に不溶成分を分離した溶剤を上記混合液として電界紡糸に供するとよい。これにより、工程の簡略化を図ることができる。 As the solvent, the ashless coal extraction solvent used in the ashless coal acquisition step S1 may be used as it is. That is, it is good to use for electrospinning the solvent which isolate | separated the insoluble component after heating by ashless coal acquisition process S1 (after ashless coal extraction) as the said liquid mixture. Thereby, the process can be simplified.
 また、無灰炭取得工程S1で不溶成分を分離した溶剤から固形の無灰炭を分離し、分離した無灰炭に改めて溶剤を混合してもよい。この溶剤としては、無灰炭の抽出で使用可能なものと同様のものが使用できる。上記分離方法としては、一般的な蒸留法や蒸発法(例えばスプレードライ法)等を用いることができる。 Also, solid ashless coal may be separated from the solvent from which insoluble components have been separated in the ashless coal acquisition step S1, and the solvent may be mixed with the separated ashless coal. As this solvent, the same solvents that can be used for extraction of ashless coal can be used. As the separation method, a general distillation method, evaporation method (for example, spray drying method) or the like can be used.
 上記混合液に用いる溶剤の沸点の下限としては、50℃が好ましく、100℃がより好ましい。一方、溶剤の沸点の上限としては、150℃が好ましく、130℃がより好ましい。溶剤の沸点を上記範囲とすることで、炭素繊維の多孔質化を促進することができる。このような溶剤としては例えばピリジンやテトラヒドロフランが挙げられる。 The lower limit of the boiling point of the solvent used in the mixed solution is preferably 50 ° C, more preferably 100 ° C. On the other hand, as an upper limit of the boiling point of a solvent, 150 degreeC is preferable and 130 degreeC is more preferable. By making the boiling point of the solvent within the above range, the carbon fiber can be made porous. Examples of such a solvent include pyridine and tetrahydrofuran.
 上記混合液における無灰炭の含有率の下限としては、3質量%が好ましく、5質量%がより好ましく、10質量%がさらに好ましい。一方、上記混合液における無灰炭の含有率の上限としては、50質量%が好ましく、40質量%がより好ましい。上記混合液における無灰炭の含有率が上記下限に満たない場合、炭素繊維の製造効率が低下し、不経済となるおそれがある。逆に、上記混合液における無灰炭の含有率が上記上限を超える場合、紡糸が困難となるおそれや、炭素繊維の多孔質化が不十分となるおそれがある。 The lower limit of the content of ashless coal in the mixed solution is preferably 3% by mass, more preferably 5% by mass, and even more preferably 10% by mass. On the other hand, as an upper limit of the content rate of ashless coal in the said liquid mixture, 50 mass% is preferable and 40 mass% is more preferable. When the content rate of ashless coal in the said mixed liquid is less than the said minimum, there exists a possibility that the manufacturing efficiency of carbon fiber may fall and it may become uneconomical. Conversely, if the content of ashless coal in the mixed solution exceeds the above upper limit, spinning may be difficult, or the carbon fiber may become insufficiently porous.
 電界紡糸は、原料液を電界中で曳糸しつつ原料液を電荷の反発力で噴流化させ、糸状体を得る公知の方法である。具体的には、原料液を噴出するノズルと、このノズルに対向するドラム状のコレクタとを1対の電極とし、これらの電極により原料液に高圧の電圧を印可することで、コレクタ表面上に原料液に含まれる無灰炭由来の炭素を骨格とする糸状体が形成される。 Electrospinning is a known method for obtaining a filament by spinning a raw material liquid with electric charge repulsion while spinning the raw material liquid in an electric field. Specifically, a nozzle for jetting the raw material liquid and a drum-shaped collector facing the nozzle are used as a pair of electrodes, and a high voltage is applied to the raw material liquid by these electrodes, so that A filamentous body having a skeleton of carbon derived from ashless coal contained in the raw material liquid is formed.
 この電界紡糸の条件として、例えば電圧は1kV以上50kV以下、原料液流量は0.1ml/h以上2ml/h以下、ノズルとコレクタとの距離は1cm以上50cm以下、ノズルの直径は0.1mm以上1mm以下とすることができる。 As conditions for the electrospinning, for example, the voltage is 1 kV to 50 kV, the raw material liquid flow rate is 0.1 ml / h to 2 ml / h, the distance between the nozzle and the collector is 1 cm to 50 cm, and the nozzle diameter is 0.1 mm or more. It can be 1 mm or less.
 上記糸状体は、ノズルからの噴出時に溶剤が揮発し、無灰炭を構成する分子がランダムに積層することで多孔質化される。また、糸状体がコレクタ上に形成された状態では炭素骨格と共に噴出後に揮発しなかった一部の溶剤を含む。この溶剤は次の炭素化工程S3により除去される。 The filament is made porous by volatilizing the solvent at the time of ejection from the nozzle and laminating molecules constituting ashless coal randomly. In addition, when the filamentous body is formed on the collector, it contains a part of the solvent that has not volatilized after ejection together with the carbon skeleton. This solvent is removed by the next carbonization step S3.
<炭素化工程>
 炭素化工程S3では、電界紡糸工程S2で得られた溶剤を含む糸状体を加熱して炭素化(黒鉛化)することによって、多孔質の炭素繊維を得る。
<Carbonization process>
In the carbonization step S3, porous carbon fibers are obtained by heating and carbonizing (graphitizing) the filament containing the solvent obtained in the electrospinning step S2.
 具体的には、糸状体を電気炉等の任意の加熱装置へ装入し、内部を非酸化性ガスで置換した後、この加熱装置内へ非酸化性ガスを吹き込みながら一定温度まで加熱する。 Specifically, after the filamentous body is inserted into an arbitrary heating device such as an electric furnace and the inside is replaced with a non-oxidizing gas, the filament is heated to a constant temperature while blowing the non-oxidizing gas into the heating device.
 炭素化工程における加熱温度の下限としては、700℃が好ましく、800℃がより好ましい。一方、加熱温度の上限としては、1200℃が好ましく、1000℃がより好ましい。加熱温度が上記下限に満たない場合、炭素化が不十分となるおそれがある。逆に、加熱温度が上記上限を超える場合、設備の耐熱性向上や燃料消費量の観点から製造コストが上昇するおそれがある。 As a minimum of heating temperature in a carbonization process, 700 ° C is preferred and 800 ° C is more preferred. On the other hand, as an upper limit of heating temperature, 1200 degreeC is preferable and 1000 degreeC is more preferable. When heating temperature is less than the said minimum, carbonization may become inadequate. On the other hand, when the heating temperature exceeds the above upper limit, the production cost may increase from the viewpoint of improving the heat resistance of the equipment and fuel consumption.
 炭素化工程における昇温も含めた加熱時間としては、15分以上10時間以下が好ましい。また、昇温速度としては、1℃/分以上5℃/分以下が好ましい。 The heating time including the temperature increase in the carbonization step is preferably 15 minutes or more and 10 hours or less. Moreover, as a temperature increase rate, 1 degreeC / min or more and 5 degrees C / min or less are preferable.
 上記非酸化性ガスとしては、炭素材料の酸化を抑えられるものであれば特に限定されないが、経済的観点から窒素ガスが好ましい。 The non-oxidizing gas is not particularly limited as long as it can suppress the oxidation of the carbon material, but nitrogen gas is preferable from the economical viewpoint.
 なお、当該炭素繊維の製造方法は、繊維の変形や溶融を防止するために、炭素化工程S3の前に、糸状体を軽度に酸化する酸化処理工程を備えてもよい。この酸化処理としては、例えば300℃以下の酸素を含む雰囲気下での加熱や、酸化性の薬剤による処理などを用いることができる。 In addition, in order to prevent the deformation | transformation and fusion | melting of a fiber, the manufacturing method of the said carbon fiber may be provided with the oxidation process process which lightly oxidizes a filament before carbonization process S3. As this oxidation treatment, for example, heating in an atmosphere containing oxygen of 300 ° C. or lower, treatment with an oxidizing agent, or the like can be used.
[炭素繊維]
 当該炭素繊維は、石炭を原料とし、比表面積が300m/g以上3000m/g以下、平均径が0.5μm以上5μm以下、酸素含有量が0.4質量%以上である。当該炭素繊維は、上述の当該炭素繊維の製造方法により得ることができる。
[Carbon fiber]
The carbon fiber is made of coal, has a specific surface area of 300 m 2 / g to 3000 m 2 / g, an average diameter of 0.5 μm to 5 μm, and an oxygen content of 0.4% by mass or more. The said carbon fiber can be obtained with the manufacturing method of the said carbon fiber mentioned above.
 当該炭素繊維は、酸素含有量が上記下限以上であることで、多環芳香族化合物の割合が小さい。そのため、当該炭素繊維では、含有する化合物の分子の平面性が低く、環サイズが小さいため、分子が配向し難い。つまり、上述のように電界紡糸時に分子がランダムに積層されるため、当該炭素繊維は多孔質性に優れる。 The carbon fiber has a small proportion of polycyclic aromatic compounds because the oxygen content is not less than the above lower limit. Therefore, in the carbon fiber, since the planarity of the molecule of the compound contained is low and the ring size is small, the molecule is difficult to orient. That is, since the molecules are randomly stacked during electrospinning as described above, the carbon fiber is excellent in porosity.
 当該炭素繊維の比表面積の下限としては、350m/gが好ましく、400m/gがより好ましい。一方、比表面積の上限としては、2500m/gが好ましく、1000m/gがより好ましい。比表面積が上記下限に満たない場合、細孔の数が不十分となり、吸着材等としての適性が低下するおそれがある。逆に、比表面積が上記上限を超える場合、炭素繊維の強度が不十分となるおそれがある。 The lower limit of the specific surface area of the carbon fiber, 350m 2 / g are preferred, 400m 2 / g is more preferable. On the other hand, the upper limit of the specific surface area is preferably 2500 m 2 / g, and more preferably 1000 m 2 / g. When the specific surface area is less than the above lower limit, the number of pores becomes insufficient, and the suitability as an adsorbent may be reduced. Conversely, when the specific surface area exceeds the above upper limit, the strength of the carbon fiber may be insufficient.
 当該炭素繊維の平均径の下限としては、0.8μmが好ましい。一方、平均径の上限としては、1.5μmが好ましい。平均径が上記下限に満たない場合、炭素繊維の強度が不十分となるおそれがある。逆に、平均径が上記上限を超える場合、吸着材等の構成材料としての適性が低下するおそれがある。 The lower limit of the average diameter of the carbon fiber is preferably 0.8 μm. On the other hand, the upper limit of the average diameter is preferably 1.5 μm. When the average diameter is less than the above lower limit, the strength of the carbon fiber may be insufficient. Conversely, if the average diameter exceeds the above upper limit, the suitability as a constituent material such as an adsorbent may be reduced.
 当該炭素繊維の酸素含有量の下限としては、0.5質量%が好ましい。一方、酸素含有量の上限としては、特に限定されないが、例えば5質量%である。酸素含有量が上記下限に満たない場合、芳香族化合物が多くなることで炭素繊維が多孔質化し難くなり、吸着材等としての適性が低下するおそれがある。逆に、酸素含有量が上記上限を超える場合、炭素繊維の製造が困難となるおそれがある。 The lower limit of the oxygen content of the carbon fiber is preferably 0.5% by mass. On the other hand, the upper limit of the oxygen content is not particularly limited, but is, for example, 5% by mass. When the oxygen content is less than the above lower limit, the carbon fiber becomes difficult to be porous due to the increase of the aromatic compound, and the suitability as an adsorbent may be lowered. Conversely, when the oxygen content exceeds the above upper limit, it may be difficult to produce carbon fibers.
[電気二重層キャパシタ用電極]
 当該電気二重層キャパシタ用電極は、当該炭素繊維を用いて形成される。具体的には、当該電気二重層キャパシタ用電極は、当該炭素繊維に結着用の助剤を混合し、繊維が互いに絡み合うように積層することで得られる。
[Electric double layer capacitor electrode]
The electric double layer capacitor electrode is formed using the carbon fiber. Specifically, the electrode for the electric double layer capacitor is obtained by mixing the carbon fiber with a binding aid and laminating the fibers so that the fibers are entangled with each other.
[利点]
 当該炭素繊維の製造方法は、無灰炭を原料として用い、無灰炭を溶剤と共に電界紡糸した後に炭素化を行うことで、溶剤の揮発により微細孔が形成された多孔質の炭素繊維を得ることができる。つまり、当該炭素繊維の製造方法によれば、電界紡糸の後に炭素化を行う比較的簡易な工程で多孔質の炭素繊維を製造できる。
[advantage]
The carbon fiber manufacturing method uses ashless coal as a raw material, and electrospinning ashless coal together with a solvent and then carbonizing to obtain porous carbon fibers in which fine pores are formed by volatilization of the solvent. be able to. That is, according to the carbon fiber manufacturing method, porous carbon fibers can be manufactured by a relatively simple process of carbonization after electrospinning.
 また、当該炭素繊維は、比較的簡易な工程で製造でき、かつ微細孔を多数有する多孔質材として有効使用できる。さらに、当該電気二重層キャパシタ用電極は、当該炭素繊維を用いるため製造コストに優れる。 Further, the carbon fiber can be produced by a relatively simple process and can be effectively used as a porous material having many fine pores. Furthermore, since the said electrode for electric double layer capacitors uses the said carbon fiber, it is excellent in manufacturing cost.
[その他の実施形態]
 当該炭素繊維の製造方法は、上記実施形態に限定されるものではない。
[Other Embodiments]
The method for producing the carbon fiber is not limited to the above embodiment.
 当該炭素繊維の製造方法は、必要に応じて上述以外の工程を備えてもよい。具体的には、各工程に悪影響を与えない範囲において、各工程間又は前後に、例えば原料石炭を粉砕する工程、異物等を除去する工程等の工程があってもよい。 The carbon fiber manufacturing method may include steps other than those described above as necessary. Specifically, within a range that does not adversely affect each step, there may be a step such as a step of pulverizing raw coal, a step of removing foreign matters, or the like between or before and after each step.
 以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not construed as being limited based on the description of the examples.
<実施例1、2>
 原料石炭として1mm以下に粉砕した瀝青炭1kgをメチルナフタレン5kgに混合してオートクレーブに装填し、窒素雰囲気中で400℃で1時間保持してから冷却して熱分解物を得た。次に、この熱分解物を濾過し、得られた濾液を減圧蒸留して可溶成分を分離し、固形の無灰炭を得た。この無灰炭の元素分析値を表1に示す。なお、酸素の含有量は、それ以外の元素の含有量からの差分により算出した。
<Examples 1 and 2>
1 kg of bituminous coal pulverized to 1 mm or less as raw material coal was mixed with 5 kg of methylnaphthalene, charged in an autoclave, held at 400 ° C. for 1 hour in a nitrogen atmosphere, and then cooled to obtain a pyrolyzate. Next, this pyrolyzate was filtered, and the obtained filtrate was distilled under reduced pressure to separate soluble components, thereby obtaining solid ashless coal. Table 1 shows the elemental analysis values of the ashless coal. The oxygen content was calculated from the difference from the content of other elements.
 得られた無灰炭にピリジンを混合し、無灰炭の濃度が35.9質量%の無灰炭溶解液を得た。この無灰炭溶解液を用いて、電圧14~18kV、流量0.7~0.9ml/h、ノズルとコレクタとの距離(紡糸間距離)15cm、ノズル内径0.48mmとして、電界紡糸を行い、アルミニウム箔上に糸状体を形成した。なお、実施例1と実施例2とでは糸条件を変えて電界紡糸をした。 The resulting ashless coal was mixed with pyridine to obtain an ashless coal solution having a concentration of 35.9% by mass. Using this ashless coal solution, electrospinning was performed at a voltage of 14 to 18 kV, a flow rate of 0.7 to 0.9 ml / h, a distance between the nozzle and the collector (inter-spinning distance) of 15 cm, and an inner diameter of the nozzle of 0.48 mm. A filamentous body was formed on the aluminum foil. In Example 1 and Example 2, electrospinning was performed by changing the yarn conditions.
 上記糸状体をアルミニウム箔から剥離後、3.3℃/分の昇温束度で900℃まで加熱し炭素化することで、平均径1μmの炭素繊維を得た。 After the filament was peeled from the aluminum foil, it was heated to 900 ° C. at a heating rate of 3.3 ° C./min to carbonize to obtain carbon fibers having an average diameter of 1 μm.
<比較例>
 石炭の高温乾溜プロセス(製鉄コークスの製造工程)で副生するタールから製造された市販の石炭系ピッチを電界紡糸の原料として用い、実施例と同じ条件で電界紡糸を行うことで平均径1μmの炭素繊維を得た。なお、原料として用いた石炭系ピッチの元素分析値を表1に示す。
<Comparative example>
Using a commercially available coal-based pitch produced from tar produced as a by-product in the high-temperature coal distillation process (steel coke production process) as the raw material for electrospinning, electrospinning is performed under the same conditions as in the examples, and the average diameter is 1 μm. Carbon fiber was obtained. In addition, Table 1 shows elemental analysis values of the coal-based pitch used as a raw material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<参考例>
 ヤシガラを原料とし、水蒸気賦活法で多孔質化することで径が50μm以下の粉末状の活性炭を得た。
<Reference example>
Powdered activated carbon having a diameter of 50 μm or less was obtained by using coconut shell as a raw material and making it porous by a steam activation method.
<評価>
 上記実施例及び比較例の炭素繊維の酸素含有量を測定した。また、実施例及び比較例の炭素繊維並びに参考例の活性炭について、比表面積及び静電容量を測定した。これらの結果を表2に示す。また、実施例1の炭素繊維について、細孔分布の測定結果を図2に、走査電子顕微鏡写真を図3に示す。
<Evaluation>
The oxygen content of the carbon fibers of the above examples and comparative examples was measured. Moreover, the specific surface area and the electrostatic capacity of the carbon fibers of the examples and comparative examples and the activated carbon of the reference example were measured. These results are shown in Table 2. Moreover, about the carbon fiber of Example 1, the measurement result of pore distribution is shown in FIG. 2, and a scanning electron micrograph is shown in FIG.
 なお、比表面積はマイクロトラック・ベル社の「BELSORP-max」を用いて測定した。また、静電容量は、炭素繊維又は活性炭を用いて電気二重層キャパシタ用電極を作成し、この電極を使用したキャパシタにおいて、1MのHSO電解液中での充放電特性を計測し、100mA/gにおける静電容量を求めた。 The specific surface area was measured using “BELSORP-max” manufactured by Microtrac Bell. In addition, the capacitance is obtained by creating an electrode for an electric double layer capacitor using carbon fiber or activated carbon, and measuring the charge / discharge characteristics in a 1 M H 2 SO 4 electrolyte in a capacitor using this electrode, The capacitance at 100 mA / g was determined.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、無灰炭を原料とし、溶剤と共に無灰炭を電界紡糸した後に炭素化した実施例1、2の炭素繊維は、比較例に比べて比表面積が大きく、十分に多孔質化されていることがわかる。実施例1については、図2からもわかるように、微細孔の径はほぼ10nm以下である。さらに、図3より求めた繊維の平均径は1.1μmであった。また、実施例1、2の炭素繊維は比較例の炭素繊維及び参考例の活性炭に比べて静電容量にも優れる。 From Table 2, the carbon fibers of Examples 1 and 2, which were carbonized after electrospinning ashless coal with a solvent using ashless coal as a raw material, had a large specific surface area compared to the comparative example and were sufficiently porous. You can see that In Example 1, as can be seen from FIG. 2, the diameter of the micropores is approximately 10 nm or less. Furthermore, the average fiber diameter determined from FIG. 3 was 1.1 μm. Further, the carbon fibers of Examples 1 and 2 are excellent in capacitance as compared with the carbon fiber of the comparative example and the activated carbon of the reference example.
 比較例の炭素繊維は、芳香族化合物の割合が高い石炭系ピッチを用いたため、電界紡糸において分子が平行に積層する配向を形成しながら凝縮することで、結晶性が高く細孔が発達しない構造となったと推測される。 The carbon fiber of the comparative example uses a coal-based pitch with a high ratio of aromatic compounds, and therefore, by condensing while forming an orientation in which molecules are stacked in parallel in electrospinning, a structure with high crystallinity and no development of pores It is speculated that it became.
 一方、参考例の活性炭は、比表面積は実施例1、2の炭素繊維よりも大きいが、静電容量が小さい。これは孔構造の違いによるものと考えられる。 On the other hand, the activated carbon of the reference example is larger in specific surface area than the carbon fibers of Examples 1 and 2, but has a small capacitance. This is thought to be due to the difference in pore structure.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2016年5月19日出願の日本特許出願(特願2016-100345)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on May 19, 2016 (Japanese Patent Application No. 2016-100345), the contents of which are incorporated herein by reference.
 当該炭素繊維の製造方法で得られる炭素繊維及び当該炭素繊維は、比較的簡易な工程で多孔質の炭素繊維を製造できるので、吸着材や電極の原料として好適に使用できる。 Since the carbon fiber obtained by the carbon fiber production method and the carbon fiber can produce porous carbon fiber by a relatively simple process, they can be suitably used as an adsorbent or an electrode raw material.
S1 無灰炭取得工程
S2 電界紡糸工程
S3 炭素化工程
S1 Ashless coal acquisition process S2 Electrospinning process S3 Carbonization process

Claims (4)

  1.  石炭の溶剤抽出処理により無灰炭を得る工程と、
     上記無灰炭取得工程で得られた無灰炭を溶剤と共に電界紡糸する工程と、
     上記電界紡糸工程で得られた糸状体を炭素化する工程と
    を備える炭素繊維の製造方法。
    Obtaining ashless coal by solvent extraction treatment of coal;
    A step of electrospinning the ashless coal obtained in the ashless coal acquisition step together with a solvent;
    A carbon fiber manufacturing method comprising: carbonizing the filament obtained in the electrospinning step.
  2.  上記炭素化を700℃以上1200℃以下まで糸状体を加熱することで行う請求項1に記載の炭素繊維の製造方法。 The method for producing carbon fiber according to claim 1, wherein the carbonization is performed by heating the filament to 700 ° C or more and 1200 ° C or less.
  3.  石炭を原料とする炭素繊維であって、
     比表面積が300m/g以上3000m/g以下、平均径が0.5μm以上5μm以下、酸素含有量が0.4質量%以上であることを特徴とする炭素繊維。
    Carbon fiber made from coal,
    A carbon fiber having a specific surface area of 300 m 2 / g to 3000 m 2 / g, an average diameter of 0.5 μm to 5 μm, and an oxygen content of 0.4% by mass or more.
  4.  請求項3に記載の炭素繊維を用いた電気二重層キャパシタ用電極。 An electrode for an electric double layer capacitor using the carbon fiber according to claim 3.
PCT/JP2017/018391 2016-05-19 2017-05-16 Method for producing carbon fibers, carbon fibers, and electrode for electric double layer capacitors WO2017199966A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187033029A KR102118943B1 (en) 2016-05-19 2017-05-16 Method for manufacturing carbon fiber, electrode for carbon fiber and electric double layer capacitor
CN201780030160.2A CN109154108A (en) 2016-05-19 2017-05-16 Manufacturing method, carbon fiber and the electric double layer capacitor pole of carbon fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-100345 2016-05-19
JP2016100345A JP6571043B2 (en) 2016-05-19 2016-05-19 Carbon fiber manufacturing method, carbon fiber, and electrode for electric double layer capacitor

Publications (1)

Publication Number Publication Date
WO2017199966A1 true WO2017199966A1 (en) 2017-11-23

Family

ID=60326272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018391 WO2017199966A1 (en) 2016-05-19 2017-05-16 Method for producing carbon fibers, carbon fibers, and electrode for electric double layer capacitors

Country Status (4)

Country Link
JP (1) JP6571043B2 (en)
KR (1) KR102118943B1 (en)
CN (1) CN109154108A (en)
WO (1) WO2017199966A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178284A (en) * 2017-04-07 2018-11-15 株式会社神戸製鋼所 Manufacturing method of porous carbon fiber sheet and manufacturing method of porous caron electrode
KR102069839B1 (en) * 2017-12-13 2020-01-23 한국에너지기술연구원 Activated carbon for supercapacitor electrode, electrode for supercapacitor containing the same, and method for preparing the activated carbon
KR102585145B1 (en) * 2021-09-16 2023-10-05 경상국립대학교산학협력단 Surface-activated carbon fiber electrode, manufacturing method of the same, flexible fibrous supercapacitor comprising the same and manufacturing method of flexible fibrous supercapacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067498A (en) * 2002-06-13 2004-03-04 Kashima Oil Co Ltd Activated carbon and electrical double layer capacitor using the same
JP2007142204A (en) * 2005-11-18 2007-06-07 Gunma Univ Carbon material for electric double layer capacitor and manufacturing method
JP2009203565A (en) * 2008-02-26 2009-09-10 Jfe Chemical Corp Method for producing fiber pitch, and method for producing carbon fiber
WO2016147743A1 (en) * 2015-03-17 2016-09-22 株式会社神戸製鋼所 Method for producing carbon fibers

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181191A (en) * 1984-02-28 1985-09-14 Kawasaki Steel Corp Production of precursor pitch for carbon fiber
CN100417709C (en) * 2003-10-16 2008-09-10 淄博矿业集团有限责任公司许厂煤矿 Method for preparing refined coal tar
KR100894481B1 (en) * 2007-04-16 2009-04-22 한국과학기술연구원 Electrode for supercapacitor having metal oxide deposited onto ultrafine carbon fiber and the fabrication method thereof
WO2011070893A1 (en) 2009-12-09 2011-06-16 日清紡ホールディングス株式会社 Flexible carbon fiber nonwoven fabric
JP2011157606A (en) * 2010-02-02 2011-08-18 Kobe Steel Ltd Method for producing carbon anode
JP2011157668A (en) 2010-02-03 2011-08-18 Jfe Chemical Corp Method for pitch fiber spinning, method for producing carbon fiber, and carbon nanofiber
CN102477595A (en) * 2010-11-22 2012-05-30 大连创达技术交易市场有限公司 Pitch-based carbon fiber and preparation method thereof
JP5636356B2 (en) 2011-12-01 2014-12-03 株式会社神戸製鋼所 Method for producing ashless coal molding
CN102733008A (en) * 2012-06-21 2012-10-17 中国科学院过程工程研究所 Method of preparing carbon fiber by using coal to directly liquefy residue-based asphalt vinyl material
CN103509576B (en) * 2012-06-25 2016-01-06 神华集团有限责任公司 Method for separating inorganic substances from direct coal liquefaction residues
CN103215693B (en) * 2013-02-01 2015-05-20 清华大学 Graphene-oxide-modified phenolic-resin-based ultrafine porous carbon fiber and preparation method thereof
CN103882559B (en) * 2014-03-13 2016-01-20 中国科学院化学研究所 High-ratio surface porous carbon fiber and preparation method thereof and application
CN105322193B (en) * 2014-07-30 2018-06-12 中国科学院大连化学物理研究所 A kind of carbon nano-fiber film and its preparation and the application in lithium air battery positive electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067498A (en) * 2002-06-13 2004-03-04 Kashima Oil Co Ltd Activated carbon and electrical double layer capacitor using the same
JP2007142204A (en) * 2005-11-18 2007-06-07 Gunma Univ Carbon material for electric double layer capacitor and manufacturing method
JP2009203565A (en) * 2008-02-26 2009-09-10 Jfe Chemical Corp Method for producing fiber pitch, and method for producing carbon fiber
WO2016147743A1 (en) * 2015-03-17 2016-09-22 株式会社神戸製鋼所 Method for producing carbon fibers

Also Published As

Publication number Publication date
JP6571043B2 (en) 2019-09-04
JP2017206794A (en) 2017-11-24
CN109154108A (en) 2019-01-04
KR20180128071A (en) 2018-11-30
KR102118943B1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6437355B2 (en) Carbon fiber manufacturing method
WO2017199966A1 (en) Method for producing carbon fibers, carbon fibers, and electrode for electric double layer capacitors
JP2012101948A (en) Method for producing activated carbon
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
JP2016179923A (en) Manufacturing method of carbon material, and carbon material
JP2008135587A (en) Method for manufacturing electrode active material for electric double layer capacitor and the electric double layer capacitor
JP5503196B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP6749001B2 (en) Graphite production method
JP5619367B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP6392701B2 (en) Raw material pitch for carbon fiber production
JPH0149316B2 (en)
JP7276771B2 (en) Method for producing porous carbon and method for producing porous carbon molding
JP3986938B2 (en) Manufacturing method of carbonized material used for manufacturing activated carbon for electrode of electric double layer capacitor and organic material for carbonized material
WO2018186003A1 (en) Method for producing porous carbon particles, and porous carbon particles
JP6174004B2 (en) Carbon material manufacturing method
JP2018177564A (en) Method for producing porous carbon particle
JP2009260112A (en) Producing method of positive-electrode active material for electrochemical capacitor
JP5945257B2 (en) Carbon material manufacturing method
WO2018021386A1 (en) Method for manufacturing carbon fiber
JP2004083398A5 (en)
JP2018178285A (en) Manufacturing method of porous carbon fiber
JPH0583115B2 (en)
JP2018016921A (en) Method for manufacturing carbon fiber
JP2019044313A (en) Production method of carbon fiber
JP2018178284A (en) Manufacturing method of porous carbon fiber sheet and manufacturing method of porous caron electrode

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187033029

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799390

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799390

Country of ref document: EP

Kind code of ref document: A1