WO2018186003A1 - Method for producing porous carbon particles, and porous carbon particles - Google Patents

Method for producing porous carbon particles, and porous carbon particles Download PDF

Info

Publication number
WO2018186003A1
WO2018186003A1 PCT/JP2018/002240 JP2018002240W WO2018186003A1 WO 2018186003 A1 WO2018186003 A1 WO 2018186003A1 JP 2018002240 W JP2018002240 W JP 2018002240W WO 2018186003 A1 WO2018186003 A1 WO 2018186003A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
porous carbon
coal
carbon particles
polymer compound
Prior art date
Application number
PCT/JP2018/002240
Other languages
French (fr)
Japanese (ja)
Inventor
濱口 眞基
祥平 和田
聡則 井上
豊田 昌宏
Original Assignee
株式会社神戸製鋼所
国立大学法人大分大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 国立大学法人大分大学 filed Critical 株式会社神戸製鋼所
Publication of WO2018186003A1 publication Critical patent/WO2018186003A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a method for producing porous carbon particles and porous carbon particles.
  • porous carbon particles having pores with a diameter of micron or nanometer order on the surface and a high specific surface area are useful as adsorbents.
  • a carbon raw material is activated with water vapor or an alkaline substance to increase the specific surface area
  • an organic resin is an oxide such as magnesium oxide (template)
  • a method of removing the oxide after mixing with carbon and carbonizing the particles (Japanese Patent Laid-Open No. 2016-41656).
  • the conventional method for producing porous carbon particles in addition to the step of carbonizing the raw material, a step of performing an activation treatment with an alkaline substance and a removal treatment of the template particles is necessary, which increases the production cost and the production efficiency. Decreases. Further, the pores formed by these treatments tend to have larger diameters as they are closer to the surface of the porous carbon particles. For this reason, the conventional porous carbon particles have relatively small pores (mesopores) having a diameter of 2 nm or more and less than 50 nm or pores (macropores) having a diameter of 50 nm or more than pores (micropores) having a diameter of less than 2 nm. It has many, and its specific surface area is low with respect to denseness. Therefore, in the conventional method for producing porous carbon particles, there is room for improvement in production cost, production efficiency, and specific surface area.
  • the present invention has been made based on the circumstances as described above, and aims to provide a method for producing porous carbon particles having relatively high production efficiency and production cost and a large specific surface area, and porous carbon particles. To do.
  • porous carbon particles As a result of intensive studies on a method for producing porous carbon particles, the present inventors spray-dried a solution in which ashless coal and a polymer compound are dissolved in a solvent, so that the porous carbon particles have micropores and It has been found that it has a relatively large number of mesopores and can increase its specific surface area. Moreover, the present inventors have learned that porous carbon particles can be produced by this production method by spray drying without performing activation treatment or treatment with template particles, and have completed the present invention.
  • the invention made to solve the above problems includes a step of spray-drying a solution in which ashless coal and a polymer compound are dissolved in a solvent, and a step of heat-treating the solid content obtained in the spray-drying step.
  • the solvent contains oxygen atoms or nitrogen atoms, and has a boiling point at atmospheric pressure of 50 ° C. or higher and lower than 250 ° C., and a method for producing porous carbon particles mainly comprising an organic compound.
  • the method for producing the porous carbon particles uses ashless coal as a carbon material. Since ashless coal has a higher carbonization yield than coal and petroleum pitch, the production method of the porous carbon particles has high production efficiency of the porous carbon particles. In the method for producing porous carbon particles, in the spray drying process, the solvent is rapidly desorbed from the state in which ashless coal is dissolved, so that a large number of micropores are induced in the obtained solid content. Moreover, since the ratio of heteroelements, such as oxygen, is high in the ashless coal used as the main component of the said solid compared with coal and petroleum pitch, it is hard to carry out crystal growth at the time of heat processing. For this reason, micropores are maintained in the heating process.
  • the mesopores in the solid content mainly increase due to decomposition and dissipation of the polymer compound during carbonization in the heating step.
  • a solvent containing an organic compound containing oxygen atoms or nitrogen atoms and having a boiling point at atmospheric pressure within the above range as a main component is used. Since the ashless coal and the polymer compound can be dissolved in such a solvent at a high concentration, the production efficiency can be increased. Therefore, by using the method for producing porous carbon particles, porous carbon particles having relatively high production efficiency and production cost and a large specific surface area can be produced.
  • the content of ashless coal in the above solution is preferably 5% by mass or more and 50% by mass or less.
  • a step of mixing coal and a solvent, a step of eluting components soluble in the solvent from the coal in the slurry obtained in the mixing step, and the slurry after elution in the elution step May be further provided with a step of separating the solvent into a liquid component containing a solvent-soluble component and a solvent-insoluble component, and a step of mixing a polymer compound with the liquid component.
  • Ashless coal can be eluted into the solvent by solvent extraction of coal in the elution step. Therefore, the production cost of the porous carbon particles can be further reduced by using a solution in which the polymer compound is mixed with the liquid component in which the ashless coal is dissolved in the solvent.
  • the spray pressure and the liquid feeding speed may be adjusted so that the average diameter of the solid content is 1 ⁇ m or more and 20 ⁇ m or less.
  • the specific surface area of the porous carbon particles can be further increased by adjusting the spray pressure and the liquid feeding speed so that the average diameter of the solid content is within the above range.
  • the content of the polymer compound relative to the total amount of the ashless coal and the polymer compound is preferably 1% by mass or more and 15% by mass or less.
  • Another invention made in order to solve the above-mentioned problems is provided with a carbon layer containing carbon as a main component and enclosing a hollow portion, the carbon layer having a plurality of pores, and a specific surface area of 200 cm 2 / g or more. It is the porous carbon particle which is.
  • the porous carbon particles have a carbon layer that encloses the hollow portion, the pores are more likely to penetrate the carbon layer than the solid porous carbon particles, and the diameter of each pore is the distance from the surface. It is easy to make it uniform regardless. For this reason, even if it is a micro hole, a hole is maintained to a comparatively deep position from an outer surface, without a diameter being crushed in the middle. Moreover, since the said specific surface area is more than the said minimum, the said porous carbon particle is excellent in porosity.
  • main component means a component having the largest content, for example, a component having a content of 50% by mass or more, and “average diameter of solid content” is the same volume as the solid content. It means the diameter of a true sphere.
  • porous carbon particles having a large specific surface area can be produced with relatively good production efficiency and production cost.
  • the porous carbon particle of this invention has a large specific surface area, it can be used suitably as an adsorbent or an electronic component.
  • FIG. 1 is a schematic flow diagram showing a method for producing porous carbon particles according to an embodiment of the present invention. It is a schematic flowchart of the spray-drying process of FIG. It is a schematic flowchart which shows the manufacturing method of the porous carbon particle which concerns on embodiment different from FIG.
  • the method for producing porous carbon particles mainly includes a spray drying step S1 and a heating step S2, as shown in FIG.
  • the production method of the porous carbon particles mainly includes, for example, a coal supply unit, a solvent supply unit, a mixing unit, a temperature raising unit, an elution unit, a separation unit, a spraying unit, and a heating unit. It can be done by the device.
  • spray drying process S1 solid content is obtained by spray drying of the solution in which ashless coal and a high molecular compound are dissolved.
  • the spray drying step S1 includes a first mixing step S11, an elution step S12, a solid-liquid separation step S13, a second mixing step S14, and a solid content generating step S15.
  • This 1st mixing process S11 can be performed by a coal supply part, a solvent supply part, and a mixing part, for example.
  • the coal supply unit supplies coal to the mixing unit.
  • a coal supply part well-known coal hoppers, such as a normal pressure hopper used in a normal pressure state, a pressure hopper used in a normal pressure state and a pressurization state, can be used.
  • Coal supplied from the coal supply unit is coal that is a raw material for ashless coal.
  • various quality coals can be used.
  • bituminous coal with a high extraction rate of ashless coal or cheaper low-grade coal (subbituminous coal or lignite) is preferably used.
  • finely pulverized coal means coal having a mass ratio of coal having a particle size of less than 1 mm to 80% or more of the mass of the entire coal.
  • lump coal can also be used as coal supplied from a coal supply part.
  • particle size refers to a value measured in accordance with JIS-Z8815: 1994 general screening test rules. For sorting according to the particle size of coal, for example, a metal net sieve specified in JIS-Z8801-1: 2006 can be used.
  • the lower limit of the carbon content of the low-grade coal is preferably 70% by mass.
  • the upper limit of the carbon content of the low-grade coal is preferably 85% by mass, and more preferably 82% by mass.
  • coal supplied to a mixing part from a coal supply part you may use the coal which mixed a small amount of solvent and made it slurry.
  • the coal By supplying the slurried coal from the coal supply unit to the mixing unit, the coal is easily mixed with the solvent in the mixing unit, and the coal can be dissolved more quickly.
  • the amount of the solvent to be mixed at the time of forming the slurry is large, the amount of heat for raising the slurry to the elution temperature in the temperature raising portion described later becomes unnecessarily large, which may increase the manufacturing cost.
  • the solvent supply unit supplies the solvent to the mixing unit.
  • the said solvent supply part has a solvent tank which stores a solvent, and supplies a solvent from this solvent tank to a mixing part.
  • the solvent supplied from the solvent supply unit is mixed with coal supplied from the coal supply unit in the mixing unit.
  • the solvent supplied from the solvent supply unit is mainly composed of an organic compound containing an oxygen atom or a nitrogen atom.
  • an organic compound containing an oxygen atom or a nitrogen atom may be one kind, and two or more kinds of organic compounds may be mixed.
  • the lower limit of the boiling point of the solvent at atmospheric pressure is 50 ° C., more preferably 60 ° C., and still more preferably 65 ° C.
  • the boiling point of the solvent is less than 250 ° C, more preferably less than 210 ° C, and even more preferably less than 160 ° C. If the boiling point of the solvent is less than the lower limit, the ashless coal may not be sufficiently dissolved and the content of ashless coal may not be increased. Conversely, if the boiling point of the solvent is equal to or higher than the upper limit, the pressure associated with the desorption of the solvent is insufficient in the solid content generation step S15, so that the pores of the porous carbon particles may not be sufficiently formed.
  • the mixing unit mixes the coal supplied from the coal supply unit and the solvent supplied from the solvent supply unit.
  • a preparation tank can be used as the mixing unit.
  • the coal and solvent are supplied to the preparation tank through a supply pipe.
  • the preparation tank the supplied coal and solvent are mixed to prepare a slurry.
  • the said preparation tank has a stirrer, and maintains the mixing state of a slurry by hold
  • the lower limit of the coal concentration is preferably 5% by mass and more preferably 10% by mass.
  • the upper limit of the coal concentration is preferably 65% by mass, and more preferably 40% by mass. If the coal concentration is less than the lower limit, the elution amount of the solvent-soluble component eluted in the elution step S12 is less than the slurry processing amount, and therefore the content of ashless coal contained in the solution is insufficient. There is a risk. Conversely, if the coal concentration exceeds the upper limit, the solvent-soluble component is likely to be saturated in the solvent, and the elution rate of the solvent-soluble component may be reduced.
  • elution step S12 coal components soluble in the solvent are eluted from the coal in the slurry obtained in the first mixing step S11.
  • the elution step S12 can be performed by the temperature raising part and the elution part.
  • the temperature raising unit raises the temperature of the slurry obtained in the first mixing step S11.
  • the temperature raising part is not particularly limited as long as it can raise the temperature of the slurry passing through the inside, and examples thereof include a resistance heating heater and an induction heating coil. Further, the temperature raising unit may be configured to raise the temperature using a heat medium, for example, has a heating tube disposed around the flow path of the slurry passing through the inside, and the heating tube The slurry may be heated by supplying a heat medium such as steam or oil.
  • the temperature of the slurry after the temperature rise by the temperature raising unit is appropriately determined according to the solvent to be used. If the temperature of the slurry is less than the lower limit, the elution rate may decrease. On the other hand, if the temperature of the slurry exceeds the upper limit, the solvent is excessively vaporized, which may make it difficult to control the concentration of the slurry.
  • the pressure of the temperature raising portion is not particularly limited, but can be normal pressure (0.1 MPa).
  • An elution part elutes a coal component soluble in a solvent from coal in a slurry obtained by the above-mentioned mixing part and heated at the above-mentioned temperature raising part.
  • an extraction tank can be used, and the slurry after the above temperature rise is supplied to this extraction tank.
  • the coal components soluble in the solvent are eluted from the coal while maintaining the temperature and pressure of the slurry.
  • the extraction tank has a stirrer. The elution can be promoted by stirring the slurry with this stirrer.
  • the elution time at the elution part is not particularly limited, but is preferably 10 minutes or more and 70 minutes or less from the viewpoint of the extraction amount of the solvent-soluble component and the extraction efficiency.
  • Solid-liquid separation process In the solid-liquid separation step S13, the slurry that has been eluted in the elution step S12 is separated into a liquid component containing a solvent-soluble component and a solvent-insoluble component.
  • This solid-liquid separation step S13 can be performed by a separation unit.
  • the solvent-insoluble component refers to an extraction residue that mainly contains ash and insoluble coal insoluble in the extraction solvent, and further contains an extraction solvent in addition to these.
  • Separatation part As a method for separating the liquid component and the solvent-insoluble component in the separation unit, for example, a gravity sedimentation method, a filtration method, and a centrifugal separation method can be used, and a sedimentation tank, a filter, and a centrifugal separator are used, respectively.
  • the gravitational sedimentation method is a separation method in which a solvent-insoluble component is settled by using gravity in a sedimentation tank to separate it into solid and liquid.
  • the liquid component containing the solvent-soluble component is accumulated in the upper part of the sedimentation tank. This liquid content is filtered using a filter unit as necessary, and then discharged to a spraying section to be described later.
  • the solvent-insoluble component is discharged from the lower part of the separation part.
  • the liquid component including the solvent-soluble component and the solvent-insoluble component can be discharged from the sedimentation tank while continuously supplying the slurry into the separation unit. Thereby, continuous solid-liquid separation processing becomes possible.
  • the time for maintaining the slurry in the separation part is not particularly limited, but can be, for example, 30 minutes or more and 120 minutes or less, and sedimentation separation in the separation part is performed within this time.
  • the time which maintains a slurry in a separation part can be shortened.
  • the temperature and pressure in the separation unit can be the same as the temperature and pressure of the slurry after the temperature is raised by the temperature raising unit.
  • the main component of the solvent-soluble component contained in the liquid is ashless coal.
  • Ashless coal has an ash content of 5% by mass or less or 3% by mass or less, hardly contains ash, has no moisture, and exhibits a higher calorific value than, for example, raw coal.
  • by-product coal can be obtained by evaporating and separating the solvent from the solvent-insoluble component.
  • By-product charcoal does not show softening and melting properties, but the oxygen-containing functional groups are eliminated. Therefore, by-product coal does not inhibit the softening and melting properties of other coals contained in this blended coal when used as a blended coal. Therefore, this blended coal can be used, for example, as a part of the blended coal of the coke raw material. Further, by-product coal may be used as fuel in the same manner as general coal.
  • ⁇ Second mixing step> the polymer compound is mixed with the liquid component in which the ashless coal obtained in the solid-liquid separation step S13 is dissolved. By this dissolution, a solution in which the ashless coal and the polymer compound are dissolved is obtained.
  • the polymer compound is not particularly limited as long as a solvent that can be dissolved with ashless coal is present, but an organic polymer compound is preferable, and an organic polymer compound having a carbon yield lower than that of ashless coal is preferable. preferable. Since the carbon yield of ashless coal is usually 30% by mass or more and 70% by mass or less, the upper limit of the carbon yield of the polymer compound is preferably 25% by mass, more preferably 15% by mass, and more preferably 5% by mass. Is more preferable. By using a polymer compound having a low carbon yield in this way, the mesopore increasing effect in the heating step S2 described later can be easily promoted.
  • the lower limit of the carbon yield of the polymer compound is not particularly limited, and may be 0% by mass.
  • examples of such a polymer compound include polymethyl methacrylate (carbon yield 4% by mass), polyvinylpyrrolidone (carbon yield 0% by mass), polystyrene (carbon yield 10% by mass), and the like.
  • the lower limit of the content of ashless coal in the above solution is preferably 5% by mass, and more preferably 8% by mass.
  • an upper limit of content of ashless coal in the said solution 50 mass% is preferable, 40 mass% is more preferable, and 25 mass% is further more preferable. If the content of the ashless coal is less than the lower limit, the resulting porous carbon particles are excessively pulverized and the handling of the porous carbon particles may be difficult. Moreover, since the quantity of the porous carbon particles obtained from the liquid per unit quantity decreases, there exists a possibility that manufacturing efficiency may fall.
  • the content of the ashless coal exceeds the upper limit, the amount of the solvent is relatively insufficient, and undissolved ashless coal is likely to be generated, so that porous carbon particles may not be obtained. is there.
  • content of the said ashless coal can be adjusted with the quantity of coal added to a solvent by 1st mixing part S11.
  • the lower limit of the content of the polymer compound relative to the total amount of the ashless coal and the polymer compound is preferably 1% by mass, more preferably 3% by mass, and even more preferably 5% by mass.
  • the upper limit of the content of the polymer compound relative to the total amount of the ashless coal and the polymer compound is preferably 15% by mass, and more preferably 10% by mass.
  • the polymer compound may be directly dissolved in the solution, or a solution prepared by dissolving the polymer compound in a solvent is mixed with the liquid component. Also good.
  • Solid content generation step S15 the solution in which the ashless coal and the polymer compound are dissolved in the solvent is spray-dried.
  • generation process S15 can be performed by the spraying part.
  • a sprayer can be used as the spray unit.
  • this atomizer a well-known flash distiller and a cyclone can be mentioned.
  • Such a sprayer has a spray nozzle that injects a spraying gas into a solution supplied to the spraying section through a supply pipe from the separation section.
  • the spray nozzle can be configured, for example, by connecting a supply pipe to a two-fluid nozzle or a four-fluid nozzle.
  • the solution is refined and dispersed by colliding the heated atomizing gas with the solution through a spray nozzle.
  • the solvent in the mist-like solution due to the collision of the atomizing gas evaporates in a flash distiller or a cyclone by self-sensible heat and the application of heat from the heated atomizing gas.
  • the solvent is rapidly desorbed from each droplet of the atomized solution.
  • the atomized solution is dried by rapid desorption of the solvent, and a solid content mainly composed of ashless coal is obtained.
  • the solvent is released from the state where the solvent is trapped inside the carbon layer mainly composed of carbon derived from ashless coal, and this solid content is formed.
  • a carbon layer constituting the hollow portion is provided.
  • the carbon layer has a plurality of micropores induced by the desorption of the solvent.
  • an inert gas such as nitrogen as the atomizing gas. Since the inert gas has low reactivity, it has little influence on the composition of the solid content produced. Further, since it is a gas even at a relatively low temperature below the boiling point of the solvent, it is easy to separate the evaporated solvent and the spray gas.
  • the lower limit of the pressure of the spray gas (spray pressure) that collides with the solution is preferably 0.1 MPa, and more preferably 0.2 MPa.
  • the upper limit of the spray pressure is preferably 1 MPa, and more preferably 0.5 MPa.
  • the lower limit of the temperature of the spray gas is preferably 100 ° C, more preferably 150 ° C.
  • the upper limit of the temperature of the spray gas is preferably 450 ° C., more preferably 400 ° C. If the temperature of the atomizing gas is less than the lower limit, the solvent will not be sufficiently desorbed, so that micropores may not be sufficiently formed. Conversely, if the temperature of the spray gas exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
  • the lower limit of the solution feeding speed of the solution supplied to the spraying part through the supply pipe from the separation part is preferably 0.5 kg / h, more preferably 0.7 kg / h.
  • the upper limit of the liquid feeding speed is preferably 2 kg / h, more preferably 1.5 kg / h.
  • the liquid feeding speed is less than the lower limit, the amount of porous carbon particles obtained per unit time is decreased, and thus production efficiency may be decreased.
  • the liquid feeding speed exceeds the upper limit, the amount of heat applied to the solution is insufficient, and the desorption of the solvent becomes insufficient, so that micropores may not be sufficiently formed.
  • the lower limit of the temperature of the solution supplied to the spraying part through the supply pipe from the separation part is preferably 60 ° C, more preferably 70 ° C, and further preferably 90 ° C.
  • an upper limit of the temperature of the said solution 160 degreeC is preferable and 150 degreeC is more preferable. If the temperature of the solution is less than the lower limit, the amount of heat applied to the solution is insufficient, and the desorption of the solvent becomes insufficient, so that micropores may not be sufficiently formed. Conversely, if the temperature of the solution exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
  • the temperature of the above solution is higher than the boiling point of the solvent.
  • the lower limit of the temperature difference between the solution temperature and the boiling point of the solvent is preferably 10 ° C, more preferably 20 ° C.
  • an upper limit of the said temperature difference 50 degreeC is preferable and 40 degreeC is more preferable. If the temperature difference is less than the lower limit, the desorption of the solvent becomes insufficient, and there is a possibility that micropores are not sufficiently formed. Conversely, if the temperature difference exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
  • the solid content obtained in the spraying part is naturally cooled in the spraying part and discharged at a temperature of 40 ° C. or more and 80 ° C. or less.
  • the lower limit of the average solid content is preferably 1 ⁇ m, more preferably 2 ⁇ m.
  • the upper limit of the average diameter of the solid content is preferably 20 ⁇ m and more preferably 10 ⁇ m.
  • the average diameter of the solid content is determined mainly by the size of the solution droplet sprayed in the solid content generation step S15. Since the size of the droplets of the solution to be sprayed is mainly determined by the spray pressure and the liquid feeding speed, the spray pressure and the liquid feeding speed may be adjusted so that the average diameter of the solid content is within the above range. When the average diameter of the solid content is less than the lower limit, it means that the droplet size of the solution to be sprayed is small, and the amount of the solvent desorbed from the solution is small.
  • Heating step S2 the solid content obtained in the spray drying step S1 is heated.
  • This heating process S2 can be performed by a heating part.
  • Heating part The heating unit carbonizes the solid content obtained in the spray unit. By this carbonization, porous carbon particles are obtained.
  • the heating unit for example, a known electric furnace or the like can be used. After inserting the solid content into the heating unit and replacing the inside with an inert gas, heating is performed while blowing the inert gas into the heating unit. Can carbonize solids. Although it does not specifically limit as said inert gas, For example, nitrogen, argon, etc. can be mentioned. Of these, inexpensive nitrogen is preferred.
  • the polymer compound dispersed in the solid content in the spray drying step S1 is mostly decomposed and dissipated in the heating step S2, so that it is considered that fine voids (mesopores) remain in the ashless coal. .
  • Simply mixing ashless charcoal and a polymer compound will cause phase separation between the two so that no mesopores are produced.
  • mesopores are likely to increase due to decomposition and dissipation of the polymer compound in the heating step S2.
  • the lower limit of the heating temperature is preferably 500 ° C, more preferably 700 ° C.
  • the upper limit of the heating temperature is preferably 3000 ° C and more preferably 2800 ° C. There exists a possibility that carbonization may become inadequate that the said heating temperature is less than the said minimum. Conversely, if the heating temperature exceeds the above upper limit, the production cost may increase from the viewpoint of improving the heat resistance of the equipment and fuel consumption.
  • a temperature increase rate it can be 0.01 degree-C / min or more and 10 degree-C / min or less, for example.
  • the lower limit of the heating time is preferably 10 minutes, and more preferably 20 minutes.
  • the upper limit of the heating time is preferably 10 hours, more preferably 8 hours. There exists a possibility that carbonization may become inadequate that heating temperature is less than the said minimum. Conversely, if the heating time exceeds the above upper limit, the production efficiency of the porous carbon fiber may be reduced.
  • infusibilization may be performed before carbonization. This infusibilization treatment can prevent solids from fusing together. Infusibilization is performed, for example, by heating in an atmosphere containing oxygen using a known heating furnace. As an atmosphere containing oxygen, air is generally used.
  • the lower limit of the infusibilization temperature when infusibilizing is preferably 150 ° C., more preferably 180 ° C.
  • the upper limit of the infusibilization temperature is preferably 300 ° C, and more preferably 280 ° C. If the infusibilization treatment temperature is less than the lower limit, infusibilization may be insufficient, or the infusibilization treatment time may be increased, and production efficiency may be reduced. Conversely, if the infusibilization temperature exceeds the upper limit, the solid content may melt before being infusible.
  • the lower limit of the infusibilization time is preferably 10 minutes, more preferably 20 minutes.
  • the upper limit of the infusibilization time is preferably 120 minutes, and more preferably 90 minutes. If the infusibilization time is less than the lower limit, infusibilization may be insufficient. Conversely, if the infusibilization treatment time exceeds the upper limit, the production efficiency of the porous carbon particles may be reduced.
  • a solvent containing an organic compound containing oxygen atoms or nitrogen atoms and having a boiling point at atmospheric pressure within the above range as a main component is used. Since the ashless coal and the polymer compound can be dissolved in such a solvent at a high concentration, the production efficiency can be increased. Therefore, by using the method for producing porous carbon particles, porous carbon particles having relatively high production efficiency and production cost and a large specific surface area can be produced.
  • ashless coal can be eluted into the solvent by the solvent extraction treatment of coal in the elution step S12. Therefore, the production cost of the porous carbon particles can be further reduced by using a solution in which the polymer compound is mixed with the liquid component in which the ashless coal is dissolved in the solvent.
  • the porous carbon particle includes a carbon layer containing carbon as a main component and enclosing a hollow portion, and the carbon layer has a plurality of pores.
  • the said porous carbon particle can be manufactured with the manufacturing method of the said porous carbon particle mentioned above.
  • the porous carbon particles produced by the method for producing porous carbon particles usually include a hollow portion in the carbon layer, but carbon having a recess is obtained by dividing the porous carbon particle according to the application. It can be used as porous carbon particles comprising a layer.
  • the lower limit of the specific surface area of the porous carbon particles is 200 m 2 / g, more preferably 250 m 2 / g, and even more preferably 300 m 2 / g. If the specific surface area is less than the lower limit, it may be difficult to use as the porous material.
  • the upper limit of the specific surface area is not particularly limited, but is usually about 3000 m 2 / g.
  • the specific surface area of the said porous carbon particle can be adjusted with content of ashless coal in a solution, the kind of solvent, spray conditions, etc., for example.
  • the porous carbon particles have a carbon layer that encloses the hollow portion, the pores are more likely to penetrate the carbon layer than the solid porous carbon particles, and the diameter of each pore is the distance from the surface. It is easy to make it uniform regardless. For this reason, even if it is a micro hole, a hole is maintained to a comparatively deep position from an outer surface, without a diameter being crushed in the middle. Moreover, since the said specific surface area is more than the said minimum, the said porous carbon particle is excellent in porosity.
  • the method for producing porous carbon particles mainly includes a dissolution step S3, a spray drying step S4, and a heating step S5 as shown in FIG.
  • ⁇ Dissolution process> In the dissolution step S3, ashless coal and a polymer compound are dissolved in a solvent. By this dissolution, a solution in which the ashless coal and the polymer compound are dissolved is obtained.
  • a preparation tank can be used for this dissolution.
  • the adjustment tank comprised similarly to the mixing part of 1st embodiment, for example is mentioned.
  • the above solvent is mainly composed of an organic compound containing an oxygen atom or a nitrogen atom, and examples thereof include the same solvents as those in the first embodiment.
  • the solvent has a boiling point at atmospheric pressure of 50 ° C. or higher and lower than 250 ° C.
  • Examples of the polymer compound include those similar to the first embodiment.
  • the ashless coal can be obtained, for example, by a method for producing ashless coal comprising a mixing step, an elution step, a solid-liquid separation step, and an evaporation step.
  • the mixing step in the method for producing ashless coal can be performed in the same manner as the first mixing step S11 of the first embodiment.
  • the solvent to be mixed in the mixing step is not limited to a solvent mainly containing an organic compound containing an oxygen atom or a nitrogen atom, and any solvent that dissolves coal can be used.
  • solvents include methyl naphthalene oil and naphthalene oil which are bicyclic aromatic compounds derived from coal.
  • the elution step in the method for producing ashless coal can be performed in the same manner as the elution step S12 of the first embodiment.
  • the lower limit of the temperature of the slurry after the temperature rise by the temperature raising portion in the elution step is preferably 300 ° C, and more preferably 360 ° C.
  • the upper limit of the temperature of the slurry is preferably 420 ° C., more preferably 400 ° C. If the temperature of the slurry is less than the lower limit, the bonds between the molecules constituting the coal cannot be sufficiently weakened, and the elution rate may decrease. On the contrary, when the temperature of the slurry exceeds the upper limit, the amount of heat for maintaining the temperature of the slurry becomes unnecessarily large, which may increase the production cost of the porous carbon particles.
  • the internal pressure of the said temperature rising part 1.1 MPa is preferable and 1.5 MPa is more preferable.
  • the upper limit of the internal pressure of the temperature raising part is preferably 5 MPa, and more preferably 4 MPa.
  • the internal pressure of the temperature raising part is less than the lower limit, the solvent is reduced by evaporation, and there is a possibility that coal may not be sufficiently dissolved.
  • the internal pressure of the said temperature rising part exceeds the said upper limit, there exists a possibility that the improvement effect of coal melt
  • Solid-liquid separation process The solid-liquid separation step in the ashless coal production method can be performed in the same manner as the solid-liquid separation step S13 of the first embodiment.
  • the heating temperature is preferably 420 ° C., more preferably 400 ° C. If the heating temperature is less than the lower limit, the solvent-soluble component may be reprecipitated and the separation efficiency may be reduced. Conversely, if the heating temperature exceeds the upper limit, the operating cost for heating may increase.
  • the lower limit of the pressure in the separation part is preferably 1 MPa, more preferably 1.4 MPa.
  • the upper limit of the pressure is preferably 3 MPa, more preferably 2 MPa. If the pressure is less than the lower limit, the solvent-soluble component may be reprecipitated and the separation efficiency may be reduced. Conversely, when the pressure exceeds the upper limit, the operating cost for pressurization may increase.
  • a separation method including a general distillation method or an evaporation method (spray drying method or the like) can be used.
  • a separation method including a general distillation method or an evaporation method (spray drying method or the like) can be used.
  • the content of the ashless coal and the content of the polymer compound in the solution in which the ashless coal and the polymer compound are dissolved by the above dissolution can be the same as in the first embodiment.
  • Heating step S5 the solid content obtained in the spray drying step S4 is heated.
  • This heating process S5 can be performed similarly using the apparatus similar to heating process S2 of 1st embodiment.
  • the configuration in which the mixing unit in the first mixing step has the preparation tank has been described.
  • the present invention is not limited to this configuration, and the preparation tank may be omitted as long as the solvent and coal can be mixed.
  • the preparation tank may be omitted and a line mixer may be provided between the supply pipe and the separation unit.
  • the apparatus structure used at each process is not limited to the said embodiment.
  • the method for producing ashless coal by solvent extraction has been described.
  • the method for producing ashless coal is not limited thereto, and for example, the ashless coal is produced by mixing and heating coal and a hydrogen donating solvent. Ashless charcoal can also be used.
  • Ashless coal produced by solvent extraction of bituminous coal was prepared as a carbon raw material.
  • Table 1 shows the elemental analysis values of the ashless coal. Moreover, the carbon yield of this ashless coal was 55 mass%.
  • the amount of oxygen means the amount of components other than carbon, hydrogen, nitrogen and sulfur, and is obtained by subtracting the components of carbon, hydrogen, nitrogen and sulfur from 100% by mass.
  • polymethyl methacrylate (PMMA, carbon yield 4 mass%) was prepared.
  • pyridine having a boiling point of 115 ° C. at atmospheric pressure was prepared.
  • Pyridine is an organic compound (aromatic compound) containing nitrogen.
  • the ashless coal and the polymer compound are dissolved in this solvent, and the content of the ashless coal in the solution is 10% by mass, and the content of the polymer compound with respect to the total amount of the ashless coal and the polymer compound is 2% by mass. It was prepared as follows.
  • This solution was sprayed into a cyclone using a two-fluid nozzle under the conditions of a spraying pressure of 0.3 MPa and a solution feeding speed of 1 kg / h to obtain a solid content.
  • the cyclone inlet temperature was 140 ° C. and the outlet temperature was 70 ° C.
  • the solid content was heated to 900 ° C. at a temperature rising rate of 5 ° C./min, and heat treatment (carbonization) for 30 minutes was performed to produce porous carbon particles of Example 1.
  • Example 2 Porous carbon particles were produced in the same manner as in Example 1 except that the content of ashless coal in the solution was 30% by mass.
  • Example 3 The porous carbon particles of Example 3 were the same as Example 1 except that the solvent was tetrahydrofuran (THF) having a boiling point of 66 ° C. at atmospheric pressure, the cyclone inlet temperature was 100 ° C., and the outlet temperature was 50 ° C. Manufactured. Note that THF is an organic compound (polar organic compound) containing oxygen.
  • Examples 4 and 5 are PMMA
  • Examples 6 and 7 are polyvinyl pyrrolidone (PVP, carbon yield 0% by mass)
  • Example 8 is polystyrene (PSt, carbon yield 10% by mass).
  • a solution was prepared so that the content of the molecular compound was as shown in Table 2.
  • the polymer compound was not dissolved in the solution.
  • Porous carbon particles of Examples 4 to 8 and Comparative Example 1 were produced in the same manner as Example 1 except that the above solution was used.
  • ⁇ Particle size> The particle size of the solid content was measured with an optical microscope. In the measurement, the particle diameter of each particle within the field of view of the optical microscope was measured, and the range was determined. The results are shown in Table 2.
  • porous carbon particles having a large specific surface area can be produced with relatively good production efficiency and production cost.
  • the porous carbon particle of this invention has a large specific surface area, it can be used suitably as an adsorbent or an electronic component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Glanulating (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The purpose of the present invention is to provide a method for producing porous carbon particles of large specific surface area having excellent comparative production efficiency and production cost, and porous carbon particles. This method for producing porous carbon particles is provided with a step for spray-drying a solution of ashless coal and a polymer compound dissolved in a solvent and a step for heating the solids fraction obtained in the spray-drying step. The solvent has as a main component an organic compound that includes an oxygen atom or nitrogen atom and has a boiling point of 50°C to less than 250°C at atmospheric pressure. The spraying pressure and feed rate may be adjusted so that the average diameter of the solids fraction is 1-20 μm. The content of polymer compound relative to the total amount of ashless coal and polymer compound is preferably 1-15 mass%. These porous carbon particles have carbon as a main component and are provided with a carbon layer enclosing a hollow portion. The carbon layer has a plurality of pores, and the specific surface area is 200 cm2/g or higher.

Description

多孔質炭素粒子の製造方法及び多孔質炭素粒子Method for producing porous carbon particles and porous carbon particles
 本発明は、多孔質炭素粒子の製造方法及び多孔質炭素粒子に関する。 The present invention relates to a method for producing porous carbon particles and porous carbon particles.
 表面に直径がミクロン又はナノメーターオーダーの細孔を有し、高い比表面積を有する多孔質炭素粒子は、吸着材として有用である。この多孔質炭素粒子の製造方法としては、例えば炭素原料を水蒸気やアルカリ性物質により賦活して比表面積を増大させる方法(特開2012-41199号公報)、有機質樹脂を酸化マグネシウム等の酸化物(鋳型粒子)と混合し炭素化した後、上記酸化物を取り除く方法(特開2016-41656号公報)などが挙げられる。 The porous carbon particles having pores with a diameter of micron or nanometer order on the surface and a high specific surface area are useful as adsorbents. As a method for producing the porous carbon particles, for example, a carbon raw material is activated with water vapor or an alkaline substance to increase the specific surface area (Japanese Patent Laid-Open No. 2012-41199), an organic resin is an oxide such as magnesium oxide (template) For example, a method of removing the oxide after mixing with carbon) and carbonizing the particles (Japanese Patent Laid-Open No. 2016-41656).
 上記従来の多孔質炭素粒子の製造方法では、原料を炭素化する工程に加えて、アルカリ性物質による賦活処理や鋳型粒子の除去処理を行う工程が必要であり、製造コストが増大する上に製造効率が低下する。また、これらの処理により形成される細孔は、多孔質炭素粒子の表面に近いほど径が大きくなる傾向となる。このため、上記従来の多孔質炭素粒子は、直径2nm未満の細孔(ミクロ孔)よりも直径2nm以上50nm未満の細孔(メゾ孔)や直径50nm以上の細孔(マクロ孔)を比較的多く有し、緻密性に対し比表面積が低い。従って、従来の多孔質炭素粒子の製造方法では、製造コスト、製造効率及び比表面積に改善の余地がある。 In the conventional method for producing porous carbon particles, in addition to the step of carbonizing the raw material, a step of performing an activation treatment with an alkaline substance and a removal treatment of the template particles is necessary, which increases the production cost and the production efficiency. Decreases. Further, the pores formed by these treatments tend to have larger diameters as they are closer to the surface of the porous carbon particles. For this reason, the conventional porous carbon particles have relatively small pores (mesopores) having a diameter of 2 nm or more and less than 50 nm or pores (macropores) having a diameter of 50 nm or more than pores (micropores) having a diameter of less than 2 nm. It has many, and its specific surface area is low with respect to denseness. Therefore, in the conventional method for producing porous carbon particles, there is room for improvement in production cost, production efficiency, and specific surface area.
特開2012-41199号公報JP 2012-41199 A 特開2016-41656号公報JP 2016-41656 A
 本発明は、上述のような事情に基づいてなされたものであり、比較的製造効率及び製造コストに優れ、かつ比表面積の大きい多孔質炭素粒子の製造方法及び多孔質炭素粒子の提供を目的とする。 The present invention has been made based on the circumstances as described above, and aims to provide a method for producing porous carbon particles having relatively high production efficiency and production cost and a large specific surface area, and porous carbon particles. To do.
 本発明者らは、多孔質炭素粒子の製造方法について鋭意検討した結果、無灰炭と高分子化合物とを溶媒中に溶存させた溶液を噴霧乾燥させることで、多孔質炭素粒子がミクロ孔及びメゾ孔を比較的多く有し、その比表面積を増大できることを見出した。しかも、本発明者らは、この噴霧乾燥による製造方法により賦活処理や鋳型粒子による処理を行わなくとも多孔質炭素粒子を製造できることを知得し、本発明を完成させた。 As a result of intensive studies on a method for producing porous carbon particles, the present inventors spray-dried a solution in which ashless coal and a polymer compound are dissolved in a solvent, so that the porous carbon particles have micropores and It has been found that it has a relatively large number of mesopores and can increase its specific surface area. Moreover, the present inventors have learned that porous carbon particles can be produced by this production method by spray drying without performing activation treatment or treatment with template particles, and have completed the present invention.
 すなわち、上記課題を解決するためになされた発明は、無灰炭及び高分子化合物が溶媒中に溶存する溶液を噴霧乾燥する工程と、上記噴霧乾燥工程で得られる固形分を加熱処理する工程とを備え、上記溶媒が、酸素原子又は窒素原子を含み、かつ大気圧における沸点が50℃以上250℃未満である有機化合物を主成分とする多孔質炭素粒子の製造方法である。 That is, the invention made to solve the above problems includes a step of spray-drying a solution in which ashless coal and a polymer compound are dissolved in a solvent, and a step of heat-treating the solid content obtained in the spray-drying step. And the solvent contains oxygen atoms or nitrogen atoms, and has a boiling point at atmospheric pressure of 50 ° C. or higher and lower than 250 ° C., and a method for producing porous carbon particles mainly comprising an organic compound.
 当該多孔質炭素粒子の製造方法は、炭素材料として無灰炭を用いる。無灰炭は石炭や石油ピッチに比べ炭素化収率が高いので、当該多孔質炭素粒子の製造方法は多孔質炭素粒子の製造効率が高い。当該多孔質炭素粒子の製造方法では、噴霧乾燥工程において、無灰炭が溶存した状態から溶媒が急激に脱離するので、得られる固形分に多数のミクロ孔が誘起される。また、上記固形分の主成分となる無灰炭は石炭や石油ピッチに比べ酸素等のヘテロ元素の割合が高いため、加熱処理時に結晶成長し難い。このため、加熱工程においてもミクロ孔が維持される。さらに、加熱工程で炭素化する際に高分子化合物の分解及び散逸により主に固形分中のメゾ孔が増加する。また、当該多孔質炭素粒子の製造方法では、酸素原子又は窒素原子を含み、かつ大気圧における沸点が上記範囲内である有機化合物を主成分とする溶媒を用いる。このような溶媒には無灰炭及び高分子化合物を高濃度に溶解することができるので、製造効率を高められる。従って、当該多孔質炭素粒子の製造方法を用いることで、比較的製造効率及び製造コストに優れ、かつ比表面積の大きい多孔質炭素粒子が製造できる。 The method for producing the porous carbon particles uses ashless coal as a carbon material. Since ashless coal has a higher carbonization yield than coal and petroleum pitch, the production method of the porous carbon particles has high production efficiency of the porous carbon particles. In the method for producing porous carbon particles, in the spray drying process, the solvent is rapidly desorbed from the state in which ashless coal is dissolved, so that a large number of micropores are induced in the obtained solid content. Moreover, since the ratio of heteroelements, such as oxygen, is high in the ashless coal used as the main component of the said solid compared with coal and petroleum pitch, it is hard to carry out crystal growth at the time of heat processing. For this reason, micropores are maintained in the heating process. Furthermore, the mesopores in the solid content mainly increase due to decomposition and dissipation of the polymer compound during carbonization in the heating step. In the method for producing porous carbon particles, a solvent containing an organic compound containing oxygen atoms or nitrogen atoms and having a boiling point at atmospheric pressure within the above range as a main component is used. Since the ashless coal and the polymer compound can be dissolved in such a solvent at a high concentration, the production efficiency can be increased. Therefore, by using the method for producing porous carbon particles, porous carbon particles having relatively high production efficiency and production cost and a large specific surface area can be produced.
 上記溶液における無灰炭の含有量としては、5質量%以上50質量%以下が好ましい。上記溶液における無灰炭の含有量を上記範囲内とすることで、噴霧乾燥工程において無灰炭が溶存した状態から溶媒が急激に脱離し易くなるため、得られる固形分に多数のミクロ孔が誘起される。このため、得られる多孔質炭素粒子の比表面積をさらに大きくすることができる。 The content of ashless coal in the above solution is preferably 5% by mass or more and 50% by mass or less. By making the content of ashless coal in the above solution within the above range, the solvent is likely to be rapidly desorbed from the state in which the ashless coal is dissolved in the spray drying step. Induced. For this reason, the specific surface area of the obtained porous carbon particles can be further increased.
 上記噴霧乾燥工程として、石炭及び溶媒を混合する工程と、上記混合工程で得られたスラリー中の上記石炭から上記溶媒に可溶な成分を溶出させる工程と、上記溶出工程で溶出後の上記スラリーを、溶媒可溶成分を含む液体分及び溶媒不溶成分に分離する工程と、上記液体分に高分子化合物を混合する工程とをさらに備えるとよい。上記溶出工程での石炭の溶媒抽出処理により無灰炭が溶媒に溶出できる。従って、この無灰炭が溶媒中に溶存する液体分に高分子化合物を混合した溶液を用いることで、多孔質炭素粒子の製造コストをさらに低減することができる。 As the spray-drying step, a step of mixing coal and a solvent, a step of eluting components soluble in the solvent from the coal in the slurry obtained in the mixing step, and the slurry after elution in the elution step May be further provided with a step of separating the solvent into a liquid component containing a solvent-soluble component and a solvent-insoluble component, and a step of mixing a polymer compound with the liquid component. Ashless coal can be eluted into the solvent by solvent extraction of coal in the elution step. Therefore, the production cost of the porous carbon particles can be further reduced by using a solution in which the polymer compound is mixed with the liquid component in which the ashless coal is dissolved in the solvent.
 上記固形分の平均径が1μm以上20μm以下となるよう噴霧圧力及び送液速度を調整するとよい。このように上記固形分の平均径が上記範囲内となるよう噴霧圧力及び送液速度を調整することで、多孔質炭素粒子の比表面積をさらに大きくすることができる。 The spray pressure and the liquid feeding speed may be adjusted so that the average diameter of the solid content is 1 μm or more and 20 μm or less. Thus, the specific surface area of the porous carbon particles can be further increased by adjusting the spray pressure and the liquid feeding speed so that the average diameter of the solid content is within the above range.
 上記無灰炭及び高分子化合物の合計量に対する高分子化合物の含有量としては、1質量%以上15質量%以下が好ましい。このように上記無灰炭及び高分子化合物の合計量に対する高分子化合物の含有量を上記範囲内とすることで、細孔の増加効果を高められ、比表面積をさらに大きくすることができる。 The content of the polymer compound relative to the total amount of the ashless coal and the polymer compound is preferably 1% by mass or more and 15% by mass or less. Thus, by making content of the high molecular compound with respect to the total amount of the said ashless coal and a high molecular compound into the said range, the increase effect of a pore can be heightened and a specific surface area can be enlarged further.
 上記課題を解決するためになされた別の発明は、炭素を主成分とし、中空部を内包する炭素層を備え、上記炭素層が複数の細孔を有し、比表面積が200cm/g以上である多孔質炭素粒子である。 Another invention made in order to solve the above-mentioned problems is provided with a carbon layer containing carbon as a main component and enclosing a hollow portion, the carbon layer having a plurality of pores, and a specific surface area of 200 cm 2 / g or more. It is the porous carbon particle which is.
 当該多孔質炭素粒子は、中空部を内包する炭素層を備えるので、中実である多孔質炭素粒子に比べて細孔が炭素層を貫通し易く、個々の細孔において径が表面からの距離によらず均一化し易い。このため、ミクロ孔であっても、途中で径が潰れることなく外面から比較的深い位置まで孔が維持される。また、当該多孔質炭素粒子は、比表面積が上記下限以上であるので、多孔性に優れる。 Since the porous carbon particles have a carbon layer that encloses the hollow portion, the pores are more likely to penetrate the carbon layer than the solid porous carbon particles, and the diameter of each pore is the distance from the surface. It is easy to make it uniform regardless. For this reason, even if it is a micro hole, a hole is maintained to a comparatively deep position from an outer surface, without a diameter being crushed in the middle. Moreover, since the said specific surface area is more than the said minimum, the said porous carbon particle is excellent in porosity.
 ここで、「主成分」とは、最も含有量の多い成分を意味し、例えば含有量が50質量%以上の成分をいい、「固形分の平均径」とは、固形分と同体積となる真球の直径を意味する。 Here, “main component” means a component having the largest content, for example, a component having a content of 50% by mass or more, and “average diameter of solid content” is the same volume as the solid content. It means the diameter of a true sphere.
 以上説明したように、本発明の多孔質炭素粒子の製造方法を用いることで、比較的良好な製造効率及び製造コストで、比表面積の大きい多孔質炭素粒子を製造できる。また、本発明の多孔質炭素粒子は、比表面積が大きいので、吸着材や電子部品として好適に用いることができる。 As described above, by using the method for producing porous carbon particles of the present invention, porous carbon particles having a large specific surface area can be produced with relatively good production efficiency and production cost. Moreover, since the porous carbon particle of this invention has a large specific surface area, it can be used suitably as an adsorbent or an electronic component.
図1は、本発明の一実施形態に係る多孔質炭素粒子の製造方法を示す概略フロー図である。FIG. 1 is a schematic flow diagram showing a method for producing porous carbon particles according to an embodiment of the present invention. 図1の噴霧乾燥工程の概略フロー図である。It is a schematic flowchart of the spray-drying process of FIG. 図1とは異なる実施形態に係る多孔質炭素粒子の製造方法を示す概略フロー図である。It is a schematic flowchart which shows the manufacturing method of the porous carbon particle which concerns on embodiment different from FIG.
[第一実施形態]
 以下、本発明に係る多孔質炭素粒子の製造方法及び多孔質炭素粒子の第一実施形態について説明する。
[First embodiment]
Hereinafter, a method for producing porous carbon particles according to the present invention and a first embodiment of the porous carbon particles will be described.
〔多孔質炭素粒子の製造方法〕
 当該多孔質炭素粒子の製造方法は、図1に示すように、噴霧乾燥工程S1と、加熱工程S2とを主に備える。当該多孔質炭素粒子の製造方法は、例えば石炭供給部と、溶媒供給部と、混合部と、昇温部と、溶出部と、分離部と、噴霧部と、加熱部とを主に備える製造装置により行うことができる。
[Method for producing porous carbon particles]
The method for producing porous carbon particles mainly includes a spray drying step S1 and a heating step S2, as shown in FIG. The production method of the porous carbon particles mainly includes, for example, a coal supply unit, a solvent supply unit, a mixing unit, a temperature raising unit, an elution unit, a separation unit, a spraying unit, and a heating unit. It can be done by the device.
[噴霧乾燥工程]
 噴霧乾燥工程S1では、無灰炭及び高分子化合物が溶存する溶液の噴霧乾燥により、固形分を得る。噴霧乾燥工程S1は、図2に示すように第1混合工程S11と、溶出工程S12と、固液分離工程S13と、第2混合工程S14と、固形分生成工程S15とを備える。
[Spray drying process]
In spray drying process S1, solid content is obtained by spray drying of the solution in which ashless coal and a high molecular compound are dissolved. As shown in FIG. 2, the spray drying step S1 includes a first mixing step S11, an elution step S12, a solid-liquid separation step S13, a second mixing step S14, and a solid content generating step S15.
<第1混合工程>
 第1混合工程S11では、石炭及び溶媒を混合する。この第1混合工程S11は、例えば石炭供給部、溶媒供給部、及び混合部により行える。
<First mixing step>
In the first mixing step S11, coal and a solvent are mixed. This 1st mixing process S11 can be performed by a coal supply part, a solvent supply part, and a mixing part, for example.
(石炭供給部)
 石炭供給部は、石炭を混合部へ供給する。石炭供給部としては、常圧状態で使用される常圧ホッパー、常圧状態及び加圧状態で使用される加圧ホッパー等の公知の石炭ホッパーを用いることができる。
(Coal supply department)
The coal supply unit supplies coal to the mixing unit. As a coal supply part, well-known coal hoppers, such as a normal pressure hopper used in a normal pressure state, a pressure hopper used in a normal pressure state and a pressurization state, can be used.
 石炭供給部から供給する石炭は、無灰炭の原料となる石炭である。上記石炭としては、様々な品質の石炭を用いることができる。例えば無灰炭の抽出率の高い瀝青炭や、より安価な低品位炭(亜瀝青炭や褐炭)が好適に用いられる。また、石炭を粒度で分類すると、細かく粉砕された石炭が好適に用いられる。ここで「細かく粉砕された石炭」とは、石炭全体の質量に対する粒度1mm未満の石炭の質量割合が80%以上である石炭を意味する。また、石炭供給部から供給する石炭として塊炭を用いることもできる。ここで「塊炭」とは、石炭全体の質量に対する粒度5mm以上の石炭の質量割合が50%以上である石炭を意味する。塊炭は、細かく粉砕された石炭に比べて未溶解な固体の石炭の粒度が大きく保たれるため、後述する分離部での分離を効率化することができる。ここで、「粒度(粒径)」とは、JIS-Z8815:1994のふるい分け試験通則に準拠して測定した値をいう。なお、石炭の粒度による仕分けには、例えばJIS-Z8801-1:2006に規定する金属製網ふるいを用いることができる。 Coal supplied from the coal supply unit is coal that is a raw material for ashless coal. As the coal, various quality coals can be used. For example, bituminous coal with a high extraction rate of ashless coal or cheaper low-grade coal (subbituminous coal or lignite) is preferably used. Further, when coal is classified by particle size, finely pulverized coal is preferably used. Here, “finely pulverized coal” means coal having a mass ratio of coal having a particle size of less than 1 mm to 80% or more of the mass of the entire coal. Moreover, lump coal can also be used as coal supplied from a coal supply part. Here, “coal” means coal in which the mass ratio of coal having a particle size of 5 mm or more to the mass of the entire coal is 50% or more. The lump coal can maintain the particle size of undissolved solid coal larger than that of finely pulverized coal, so that the separation in the separation unit described later can be made more efficient. Here, “particle size (particle size)” refers to a value measured in accordance with JIS-Z8815: 1994 general screening test rules. For sorting according to the particle size of coal, for example, a metal net sieve specified in JIS-Z8801-1: 2006 can be used.
 上記低品位炭の炭素含有率の下限としては、70質量%が好ましい。一方、上記低品位炭の炭素含有率の上限としては、85質量%が好ましく、82質量%がより好ましい。上記低品位炭の炭素含有率が上記下限未満であると、溶媒可溶成分の溶出率が低下するおそれがある。逆に、上記低品位炭の炭素含有率が上記上限を超えると、供給する石炭のコストが高くなるおそれがある。 The lower limit of the carbon content of the low-grade coal is preferably 70% by mass. On the other hand, the upper limit of the carbon content of the low-grade coal is preferably 85% by mass, and more preferably 82% by mass. There exists a possibility that the elution rate of a solvent soluble component may fall that the carbon content rate of the said low grade coal is less than the said minimum. Conversely, if the carbon content of the low-grade coal exceeds the upper limit, the cost of the coal to be supplied may increase.
 なお、石炭供給部から混合部へ供給する石炭として、少量の溶媒を混合してスラリー化した石炭を用いてもよい。石炭供給部からスラリー化した石炭を混合部へ供給することにより、混合部において石炭が溶媒と混合し易くなり、石炭をより早く溶解させることができる。ただし、スラリー化する際に混合する溶媒の量が多いと、後述する昇温部でスラリーを溶出温度まで昇温するための熱量が不必要に大きくなるため、製造コストが増大するおそれがある。 In addition, as a coal supplied to a mixing part from a coal supply part, you may use the coal which mixed a small amount of solvent and made it slurry. By supplying the slurried coal from the coal supply unit to the mixing unit, the coal is easily mixed with the solvent in the mixing unit, and the coal can be dissolved more quickly. However, if the amount of the solvent to be mixed at the time of forming the slurry is large, the amount of heat for raising the slurry to the elution temperature in the temperature raising portion described later becomes unnecessarily large, which may increase the manufacturing cost.
(溶媒供給部)
 溶媒供給部は、溶媒を混合部へ供給する。上記溶媒供給部は、溶媒を貯留する溶媒タンクを有し、この溶媒タンクから溶媒を混合部へ供給する。上記溶媒供給部から供給する溶媒は、石炭供給部から供給する石炭と混合部で混合される。
(Solvent supply unit)
The solvent supply unit supplies the solvent to the mixing unit. The said solvent supply part has a solvent tank which stores a solvent, and supplies a solvent from this solvent tank to a mixing part. The solvent supplied from the solvent supply unit is mixed with coal supplied from the coal supply unit in the mixing unit.
 溶媒供給部から供給する溶媒は、酸素原子又は窒素原子を含む有機化合物を主成分とする。このように上記溶媒の主成分を酸素原子又は窒素原子を含む有機化合物とすることで、溶媒と無灰炭との親和性が高まり、抽出される溶液における無灰炭の含有量を高め易い。その結果、多孔質炭素粒子の収量が増加するので、多孔質炭素粒子の製造コストが低減できる。このような溶媒としては、ピリジン(CN)、テトラヒドロフラン(CO)、ジメチルホルムアミド((CHNCHO)、N-メチルピロリドン(CNO)などが挙げられる。中でも無灰炭と親和性が高いピリジン及びテトラヒドロフランが好ましい。なお、酸素原子又は窒素原子を含む有機化合物は1種類であってもよく、また2種類以上の有機化合物が混合されていてもよい。 The solvent supplied from the solvent supply unit is mainly composed of an organic compound containing an oxygen atom or a nitrogen atom. Thus, by making the main component of the said solvent into the organic compound containing an oxygen atom or a nitrogen atom, the affinity of a solvent and ashless coal increases, and it is easy to raise the content of ashless coal in the solution to be extracted. As a result, the yield of the porous carbon particles increases, so that the manufacturing cost of the porous carbon particles can be reduced. Examples of such a solvent include pyridine (C 5 H 5 N), tetrahydrofuran (C 4 H 8 O), dimethylformamide ((CH 3 ) 2 NCHO), N-methylpyrrolidone (C 5 H 9 NO), and the like. It is done. Of these, pyridine and tetrahydrofuran having high affinity with ashless coal are preferred. In addition, the organic compound containing an oxygen atom or a nitrogen atom may be one kind, and two or more kinds of organic compounds may be mixed.
 上記溶媒の大気圧における沸点の下限値としては、50℃であり、60℃がより好ましく、65℃がさらに好ましい。一方、上記溶媒の沸点は、250℃未満であり、210℃未満がより好ましく、160℃未満がさらに好ましい。上記溶媒の沸点が上記下限未満であると、無灰炭が十分に溶解せず無灰炭の含有量を高められないおそれがある。逆に、上記溶媒の沸点が上記上限以上であると、固形分生成工程S15において溶媒の脱離に伴う圧力が不足するため、多孔質炭素粒子の細孔が十分に形成されないおそれがある。 The lower limit of the boiling point of the solvent at atmospheric pressure is 50 ° C., more preferably 60 ° C., and still more preferably 65 ° C. On the other hand, the boiling point of the solvent is less than 250 ° C, more preferably less than 210 ° C, and even more preferably less than 160 ° C. If the boiling point of the solvent is less than the lower limit, the ashless coal may not be sufficiently dissolved and the content of ashless coal may not be increased. Conversely, if the boiling point of the solvent is equal to or higher than the upper limit, the pressure associated with the desorption of the solvent is insufficient in the solid content generation step S15, so that the pores of the porous carbon particles may not be sufficiently formed.
(混合部)
 混合部は、石炭供給部から供給する石炭及び溶媒供給部から供給する溶媒を混合する。
(Mixing part)
The mixing unit mixes the coal supplied from the coal supply unit and the solvent supplied from the solvent supply unit.
 上記混合部としては、調製槽を用いることができる。この調製槽には、供給管を介して上記石炭及び溶媒が供給される。上記調製槽では、この供給された石炭及び溶媒が混合され、スラリーが調製される。また、上記調製槽は、攪拌機を有しており、混合したスラリーを攪拌機で攪拌しながら保持することによりスラリーの混合状態を維持する。 A preparation tank can be used as the mixing unit. The coal and solvent are supplied to the preparation tank through a supply pipe. In the preparation tank, the supplied coal and solvent are mixed to prepare a slurry. Moreover, the said preparation tank has a stirrer, and maintains the mixing state of a slurry by hold | maintaining the mixed slurry, stirring with a stirrer.
 調製槽におけるスラリー中の無水炭基準での石炭濃度は、溶媒の種類等により適宜決定されるが、上記石炭濃度の下限としては、5質量%が好ましく、10質量%がより好ましい。一方、上記石炭濃度の上限としては、65質量%が好ましく、40質量%がより好ましい。上記石炭濃度が上記下限未満であると、溶出工程S12で溶出される溶媒可溶成分の溶出量がスラリー処理量に対して少なくなるため、溶液に含まれる無灰炭の含有量が不十分となるおそれがある。逆に、上記石炭濃度が上記上限を超えると、溶媒中で上記溶媒可溶成分が飽和し易いため、上記溶媒可溶成分の溶出率が低下するおそれがある。 Although the coal concentration on the basis of anhydrous carbon in the slurry in the preparation tank is appropriately determined depending on the type of solvent and the like, the lower limit of the coal concentration is preferably 5% by mass and more preferably 10% by mass. On the other hand, the upper limit of the coal concentration is preferably 65% by mass, and more preferably 40% by mass. If the coal concentration is less than the lower limit, the elution amount of the solvent-soluble component eluted in the elution step S12 is less than the slurry processing amount, and therefore the content of ashless coal contained in the solution is insufficient. There is a risk. Conversely, if the coal concentration exceeds the upper limit, the solvent-soluble component is likely to be saturated in the solvent, and the elution rate of the solvent-soluble component may be reduced.
<溶出工程>
 溶出工程S12では、上記第1混合工程S11で得られたスラリー中の石炭から溶媒に可溶な石炭成分を溶出させる。溶出工程S12は、昇温部及び溶出部により行うことができる。
<Elution process>
In the elution step S12, coal components soluble in the solvent are eluted from the coal in the slurry obtained in the first mixing step S11. The elution step S12 can be performed by the temperature raising part and the elution part.
(昇温部)
 昇温部は、上記第1混合工程S11で得られたスラリーを昇温する。
(Temperature riser)
The temperature raising unit raises the temperature of the slurry obtained in the first mixing step S11.
 昇温部としては、内部を通過するスラリーを昇温できるものであれば特に限定されないが、例えば抵抗加熱式ヒーターや誘導加熱コイルが挙げられる。また、昇温部は、熱媒を用いて昇温を行うよう構成されていてもよく、例えば内部を通過するスラリーの流路の周囲に配設される加熱管を有し、この加熱管に蒸気、油等の熱媒を供給することでスラリーを昇温可能に構成されていてもよい。 The temperature raising part is not particularly limited as long as it can raise the temperature of the slurry passing through the inside, and examples thereof include a resistance heating heater and an induction heating coil. Further, the temperature raising unit may be configured to raise the temperature using a heat medium, for example, has a heating tube disposed around the flow path of the slurry passing through the inside, and the heating tube The slurry may be heated by supplying a heat medium such as steam or oil.
 昇温部による昇温後のスラリーの温度は、使用する溶媒に応じて適宜決定されるが、例えば80℃以上120℃以下とできる。上記スラリーの温度が上記下限未満であると、溶出率が低下するおそれがある。逆に、上記スラリーの温度が上記上限を超えると、溶媒が気化し過ぎるためスラリーの濃度を制御することが困難となるおそれがある。 The temperature of the slurry after the temperature rise by the temperature raising unit is appropriately determined according to the solvent to be used. If the temperature of the slurry is less than the lower limit, the elution rate may decrease. On the other hand, if the temperature of the slurry exceeds the upper limit, the solvent is excessively vaporized, which may make it difficult to control the concentration of the slurry.
 また、昇温部の圧力としては、特に限定されないが、常圧(0.1MPa)とできる。 Further, the pressure of the temperature raising portion is not particularly limited, but can be normal pressure (0.1 MPa).
(溶出部)
 溶出部は、上記混合部で得られ、上記昇温部で昇温されたスラリー中の石炭から溶媒に可溶な石炭成分を溶出させる。
(Elution part)
An elution part elutes a coal component soluble in a solvent from coal in a slurry obtained by the above-mentioned mixing part and heated at the above-mentioned temperature raising part.
 溶出部としては、抽出槽を用いることができ、この抽出槽に上記昇温後のスラリーが供給される。上記抽出槽では、このスラリーの温度及び圧力を保持しながら溶媒に可溶な石炭成分を石炭から溶出させる。また、上記抽出槽は、攪拌機を有している。この攪拌機によりスラリーを攪拌することで上記溶出を促進できる。 As the elution part, an extraction tank can be used, and the slurry after the above temperature rise is supplied to this extraction tank. In the extraction tank, the coal components soluble in the solvent are eluted from the coal while maintaining the temperature and pressure of the slurry. The extraction tank has a stirrer. The elution can be promoted by stirring the slurry with this stirrer.
 なお、溶出部での溶出時間としては、特に限定されないが、溶媒可溶成分の抽出量と抽出効率との観点から10分以上70分以下が好ましい。 The elution time at the elution part is not particularly limited, but is preferably 10 minutes or more and 70 minutes or less from the viewpoint of the extraction amount of the solvent-soluble component and the extraction efficiency.
<固液分離工程>
 固液分離工程S13では、上記溶出工程S12で溶出後の上記スラリーを、溶媒可溶成分を含む液体分及び溶媒不溶成分に分離する。この固液分離工程S13は、分離部により行うことができる。なお、溶媒不溶成分は、抽出用溶媒に不溶な灰分と不溶石炭とを主として含み、これらに加え抽出用溶媒をさらに含む抽出残分をいう。
<Solid-liquid separation process>
In the solid-liquid separation step S13, the slurry that has been eluted in the elution step S12 is separated into a liquid component containing a solvent-soluble component and a solvent-insoluble component. This solid-liquid separation step S13 can be performed by a separation unit. The solvent-insoluble component refers to an extraction residue that mainly contains ash and insoluble coal insoluble in the extraction solvent, and further contains an extraction solvent in addition to these.
(分離部)
 分離部における上記液体分及び溶媒不溶成分を分離する方法としては、例えば重力沈降法、濾過法、遠心分離法を用いることができ、それぞれ沈降槽、濾過器、遠心分離器が使用される。
(Separation part)
As a method for separating the liquid component and the solvent-insoluble component in the separation unit, for example, a gravity sedimentation method, a filtration method, and a centrifugal separation method can be used, and a sedimentation tank, a filter, and a centrifugal separator are used, respectively.
 以下、重力沈降法を例にとり分離方法について説明する。重力沈降法とは、沈降槽内で重力を利用して溶媒不溶成分を沈降させて固液分離する分離方法である。重力沈降法により分離を行う場合、溶媒可溶成分を含む液体分は、沈降槽の上部に溜まる。この液体分は必要に応じてフィルターユニットを用いて濾過した後、後述する噴霧部に排出される。一方、溶媒不溶成分は、分離部の下部から排出される。 Hereinafter, the separation method will be described by taking the gravity sedimentation method as an example. The gravitational sedimentation method is a separation method in which a solvent-insoluble component is settled by using gravity in a sedimentation tank to separate it into solid and liquid. When the separation is performed by the gravity sedimentation method, the liquid component containing the solvent-soluble component is accumulated in the upper part of the sedimentation tank. This liquid content is filtered using a filter unit as necessary, and then discharged to a spraying section to be described later. On the other hand, the solvent-insoluble component is discharged from the lower part of the separation part.
 また、重力沈降法により分離を行う場合、スラリーを分離部内に連続的に供給しながら溶媒可溶成分を含む液体分及び溶媒不溶成分を沈降槽から排出することができる。これにより連続的な固液分離処理が可能となる。 Further, when separation is performed by the gravity sedimentation method, the liquid component including the solvent-soluble component and the solvent-insoluble component can be discharged from the sedimentation tank while continuously supplying the slurry into the separation unit. Thereby, continuous solid-liquid separation processing becomes possible.
 分離部内でスラリーを維持する時間は、特に限定されないが、例えば30分以上120分以下とでき、この時間内で分離部内の沈降分離が行われる。なお、石炭として塊炭を使用する場合には、沈降分離が効率化されるので、分離部内でスラリーを維持する時間を短縮できる。 The time for maintaining the slurry in the separation part is not particularly limited, but can be, for example, 30 minutes or more and 120 minutes or less, and sedimentation separation in the separation part is performed within this time. In addition, when using lump coal as coal, since sedimentation separation is made efficient, the time which maintains a slurry in a separation part can be shortened.
 なお、分離部内の温度及び圧力としては、昇温部による昇温後のスラリーの温度及び圧力と同様とできる。 The temperature and pressure in the separation unit can be the same as the temperature and pressure of the slurry after the temperature is raised by the temperature raising unit.
 上記液体分に含まれる溶媒可溶成分の主成分は無灰炭である。なお、無灰炭は、灰分が5質量%以下又は3質量%以下であり、灰分をほとんど含まず、水分は皆無であり、また例えば原料石炭よりも高い発熱量を示す。 The main component of the solvent-soluble component contained in the liquid is ashless coal. Ashless coal has an ash content of 5% by mass or less or 3% by mass or less, hardly contains ash, has no moisture, and exhibits a higher calorific value than, for example, raw coal.
 一方、上記溶媒不溶成分からは、溶媒を蒸発分離させて副生炭を得ることができる。副生炭は、軟化溶融性は示さないが、含酸素官能基が脱離されている。そのため、副生炭は、配合炭として用いた場合にこの配合炭に含まれる他の石炭の軟化溶融性を阻害しない。従って、この配合炭は例えばコークス原料の配合炭の一部として使用することができる。また、副生炭は一般の石炭と同様に燃料として利用してもよい。 On the other hand, by-product coal can be obtained by evaporating and separating the solvent from the solvent-insoluble component. By-product charcoal does not show softening and melting properties, but the oxygen-containing functional groups are eliminated. Therefore, by-product coal does not inhibit the softening and melting properties of other coals contained in this blended coal when used as a blended coal. Therefore, this blended coal can be used, for example, as a part of the blended coal of the coke raw material. Further, by-product coal may be used as fuel in the same manner as general coal.
<第2混合工程>
 第2混合工程S14では、上記固液分離工程S13で得た無灰炭が溶解した液体分に高分子化合物を混合する。この溶解により無灰炭及び高分子化合物が溶存する溶液が得られる。
<Second mixing step>
In the second mixing step S14, the polymer compound is mixed with the liquid component in which the ashless coal obtained in the solid-liquid separation step S13 is dissolved. By this dissolution, a solution in which the ashless coal and the polymer compound are dissolved is obtained.
 上記高分子化合物としては、無灰炭と共に溶解可能な溶媒が存在するものであれば特に限定されないが、有機高分子化合物が好ましく、中でも無灰炭よりも炭素収率が低い有機高分子化合物が好ましい。無灰炭の炭素収率は通常30質量%以上70質量%以下であるので、上記高分子化合物の炭素収率の上限としては、25質量%が好ましく、15質量%がより好ましく、5質量%がさらに好ましい。このように炭素収率の低い高分子化合物を用いることで後述する加熱工程S2でのメゾ孔の増加効果が促進され易い。一方、上記高分子化合物の炭素収率の下限としては、特に限定されず0質量%であってもよい。このような高分子化合物としては、ポリメタクリル酸メチル(炭素収率4質量%)、ポリビニルピロリドン(炭素収率0質量%)、ポリスチレン(炭素収率10質量%)等を挙げることができる。 The polymer compound is not particularly limited as long as a solvent that can be dissolved with ashless coal is present, but an organic polymer compound is preferable, and an organic polymer compound having a carbon yield lower than that of ashless coal is preferable. preferable. Since the carbon yield of ashless coal is usually 30% by mass or more and 70% by mass or less, the upper limit of the carbon yield of the polymer compound is preferably 25% by mass, more preferably 15% by mass, and more preferably 5% by mass. Is more preferable. By using a polymer compound having a low carbon yield in this way, the mesopore increasing effect in the heating step S2 described later can be easily promoted. On the other hand, the lower limit of the carbon yield of the polymer compound is not particularly limited, and may be 0% by mass. Examples of such a polymer compound include polymethyl methacrylate (carbon yield 4% by mass), polyvinylpyrrolidone (carbon yield 0% by mass), polystyrene (carbon yield 10% by mass), and the like.
 上記溶液における無灰炭の含有量の下限としては、5質量%が好ましく、8質量%がより好ましい。一方、上記溶液における無灰炭の含有量の上限としては、50質量%が好ましく、40質量%がより好ましく、25質量%がさらに好ましい。上記無灰炭の含有量が上記下限未満であると、得られる多孔質炭素粒子の微粉化が進み過ぎ、多孔質炭素粒子の取扱いが困難となるおそれがある。また、単位量あたりの液体分から得られる多孔質炭素粒子の量が減少するので、製造効率が低下するおそれがある。逆に、上記無灰炭の含有量が上記上限を超えると、相対的に溶媒の量が不足し、未溶解の無灰炭が生じ易くなるため、多孔質な炭素粒子が得られないおそれがある。なお、上記無灰炭の含有量は、第1混合部S11で溶媒に加える石炭の量により調整することができる。 The lower limit of the content of ashless coal in the above solution is preferably 5% by mass, and more preferably 8% by mass. On the other hand, as an upper limit of content of ashless coal in the said solution, 50 mass% is preferable, 40 mass% is more preferable, and 25 mass% is further more preferable. If the content of the ashless coal is less than the lower limit, the resulting porous carbon particles are excessively pulverized and the handling of the porous carbon particles may be difficult. Moreover, since the quantity of the porous carbon particles obtained from the liquid per unit quantity decreases, there exists a possibility that manufacturing efficiency may fall. On the other hand, if the content of the ashless coal exceeds the upper limit, the amount of the solvent is relatively insufficient, and undissolved ashless coal is likely to be generated, so that porous carbon particles may not be obtained. is there. In addition, content of the said ashless coal can be adjusted with the quantity of coal added to a solvent by 1st mixing part S11.
 上記無灰炭及び高分子化合物の合計量に対する高分子化合物の含有量の下限としては、1質量%が好ましく、3質量%がより好ましく、5質量%がさらに好ましい。一方、上記無灰炭及び高分子化合物の合計量に対する高分子化合物の含有量の上限としては、15質量%が好ましく、10質量%がより好ましい。上記無灰炭及び高分子化合物の合計量に対する高分子化合物の含有量が上記下限未満であると、細孔の増加効果が不十分となるおそれがある。逆に、上記無灰炭及び高分子化合物の合計量に対する高分子化合物の含有量が上記上限を超えると、無灰炭との相分離が発生し易くなるため、細孔の増加効果が不十分となるおそれがある。 The lower limit of the content of the polymer compound relative to the total amount of the ashless coal and the polymer compound is preferably 1% by mass, more preferably 3% by mass, and even more preferably 5% by mass. On the other hand, the upper limit of the content of the polymer compound relative to the total amount of the ashless coal and the polymer compound is preferably 15% by mass, and more preferably 10% by mass. There exists a possibility that the increase effect of a pore may become inadequate that content of the high molecular compound with respect to the total amount of the said ashless coal and a high molecular compound is less than the said minimum. Conversely, if the content of the polymer compound relative to the total amount of the ashless coal and the polymer compound exceeds the upper limit, phase separation from the ashless coal is likely to occur, and the effect of increasing pores is insufficient. There is a risk of becoming.
 なお、上記液体分に高分子化合物を混合する方法としては、上記溶液に高分子化合物を直接溶解させてもよく、高分子化合物を溶媒に溶解した液を上記液体分と混合して調製してもよい。 As a method of mixing the polymer compound with the liquid component, the polymer compound may be directly dissolved in the solution, or a solution prepared by dissolving the polymer compound in a solvent is mixed with the liquid component. Also good.
<固形分生成工程>
 固形分生成工程S15では、無灰炭及び高分子化合物が溶媒中に溶存する上記溶液を噴霧乾燥する。この固形分生成工程S15は、噴霧部により行うことができる。
<Solid content generation step>
In the solid content generation step S15, the solution in which the ashless coal and the polymer compound are dissolved in the solvent is spray-dried. This solid content production | generation process S15 can be performed by the spraying part.
(噴霧部)
 上記噴霧部としては、噴霧器を用いることができる。この噴霧器としては、公知のフラッシュ蒸留器やサイクロンを挙げることができる。
(Spraying part)
A sprayer can be used as the spray unit. As this atomizer, a well-known flash distiller and a cyclone can be mentioned.
 このような噴霧器は、分離部からの供給配管を通じて噴霧部に供給される溶液に噴霧用ガスを噴射する噴霧ノズルを有する。上記噴霧ノズルは、例えば2流体ノズルや4流体ノズルに供給配管を接続した構成とすることができる。 Such a sprayer has a spray nozzle that injects a spraying gas into a solution supplied to the spraying section through a supply pipe from the separation section. The spray nozzle can be configured, for example, by connecting a supply pipe to a two-fluid nozzle or a four-fluid nozzle.
 上記噴霧器では、加熱された噴霧用ガスを噴霧ノズルにより上記溶液に衝突させることで上記溶液を微細化し分散させる。噴霧用ガスの衝突により霧状となった溶液のうち溶媒は、フラッシュ蒸留器やサイクロンの中で、自己顕熱及び加熱された噴霧用ガスからの熱量付与により蒸発する。当該多孔質炭素粒子の製造方法では、上記溶媒の大気圧における沸点が250℃未満であるので、霧状の溶液の各滴から溶媒が急激に脱離する。霧状となった溶液は、この溶媒の急激な脱離により乾燥し、無灰炭を主成分とする固形分が得られる。無灰炭に起因する炭素を主成分とする炭素層の内部に溶媒が閉じ込められた状態から溶媒が脱離してこの固形分が形成されるためと考えられるが、この固形分は、炭素を主成分とし、中空部を構成する炭素層を備える。また、上記炭素層は、溶媒の脱離により誘起される複数のミクロ孔を有する。 In the atomizer, the solution is refined and dispersed by colliding the heated atomizing gas with the solution through a spray nozzle. The solvent in the mist-like solution due to the collision of the atomizing gas evaporates in a flash distiller or a cyclone by self-sensible heat and the application of heat from the heated atomizing gas. In the method for producing porous carbon particles, since the boiling point of the solvent at atmospheric pressure is less than 250 ° C., the solvent is rapidly desorbed from each droplet of the atomized solution. The atomized solution is dried by rapid desorption of the solvent, and a solid content mainly composed of ashless coal is obtained. This is thought to be because the solvent is released from the state where the solvent is trapped inside the carbon layer mainly composed of carbon derived from ashless coal, and this solid content is formed. As a component, a carbon layer constituting the hollow portion is provided. The carbon layer has a plurality of micropores induced by the desorption of the solvent.
 上記噴霧ガスとしては、不活性ガス、例えば窒素を用いることが好ましい。不活性ガスは、反応性が低いので生成される固形分の組成に与える影響が少ない。また、溶媒の沸点以下の比較的低い温度においても気体であるため、蒸発した溶媒と噴霧ガスとの分離が容易である。 It is preferable to use an inert gas such as nitrogen as the atomizing gas. Since the inert gas has low reactivity, it has little influence on the composition of the solid content produced. Further, since it is a gas even at a relatively low temperature below the boiling point of the solvent, it is easy to separate the evaporated solvent and the spray gas.
 溶液に衝突させる上記噴霧ガスの圧力(噴霧圧力)の下限としては、0.1MPaが好ましく、0.2MPaがより好ましい。一方、上記噴霧圧力の上限としては、1MPaが好ましく、0.5MPaがより好ましい。上記噴霧圧力が上記下限未満であると、噴霧用ガスの衝突による溶液の分散が不足し、得られる多孔質炭素粒子の径が大きくなり易い。このため、多孔質炭素粒子の比表面積が不十分となるおそれがある。逆に、上記噴霧圧力が上記上限を超えると、溶媒が気化し難く、溶媒の脱離が不十分となるため、ミクロ孔が十分に形成されないおそれがある。 The lower limit of the pressure of the spray gas (spray pressure) that collides with the solution is preferably 0.1 MPa, and more preferably 0.2 MPa. On the other hand, the upper limit of the spray pressure is preferably 1 MPa, and more preferably 0.5 MPa. When the spray pressure is less than the lower limit, the dispersion of the solution due to the collision of the spray gas is insufficient, and the diameter of the obtained porous carbon particles tends to be large. For this reason, there exists a possibility that the specific surface area of a porous carbon particle may become inadequate. On the other hand, when the spray pressure exceeds the upper limit, the solvent is difficult to vaporize and the solvent is insufficiently desorbed, so that micropores may not be sufficiently formed.
 上記噴霧ガスの温度の下限としては、100℃が好ましく、150℃がより好ましい。一方、上記噴霧ガスの温度の上限としては、450℃が好ましく、400℃がより好ましい。上記噴霧ガスの温度が上記下限未満であると、溶媒の脱離が不十分となるため、ミクロ孔が十分に形成されないおそれがある。逆に、上記噴霧ガスの温度が上記上限を超えると、加熱のためのエネルギー消費量が不要に増大するおそれがある。 The lower limit of the temperature of the spray gas is preferably 100 ° C, more preferably 150 ° C. On the other hand, the upper limit of the temperature of the spray gas is preferably 450 ° C., more preferably 400 ° C. If the temperature of the atomizing gas is less than the lower limit, the solvent will not be sufficiently desorbed, so that micropores may not be sufficiently formed. Conversely, if the temperature of the spray gas exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
 分離部からの供給配管を通じて噴霧部に供給する上記溶液の送液速度の下限としては、0.5kg/hが好ましく、0.7kg/hがより好ましい。一方、上記送液速度の上限としては、2kg/hが好ましく、1.5kg/hがより好ましい。上記送液速度が上記下限未満であると、単位時間あたりに得られる多孔質炭素粒子の量が減少するので、製造効率が低下するおそれがある。逆に、上記送液速度が上記上限を超えると、上記溶液に付与される熱量が不足し、溶媒の脱離が不十分となるため、ミクロ孔が十分に形成されないおそれがある。 The lower limit of the solution feeding speed of the solution supplied to the spraying part through the supply pipe from the separation part is preferably 0.5 kg / h, more preferably 0.7 kg / h. On the other hand, the upper limit of the liquid feeding speed is preferably 2 kg / h, more preferably 1.5 kg / h. When the liquid feeding speed is less than the lower limit, the amount of porous carbon particles obtained per unit time is decreased, and thus production efficiency may be decreased. On the other hand, when the liquid feeding speed exceeds the upper limit, the amount of heat applied to the solution is insufficient, and the desorption of the solvent becomes insufficient, so that micropores may not be sufficiently formed.
 分離部からの供給配管を通じて噴霧部に供給する上記溶液の温度の下限としては、60℃が好ましく、70℃がより好ましく、90℃がさらに好ましい。一方、上記溶液の温度の上限としては、160℃が好ましく、150℃がより好ましい。上記溶液の温度が上記下限未満であると、上記溶液に付与される熱量が不足し、溶媒の脱離が不十分となるため、ミクロ孔が十分に形成されないおそれがある。逆に、上記溶液の温度が上記上限を超えると、加熱のためのエネルギー消費量が不要に増大するおそれがある。 The lower limit of the temperature of the solution supplied to the spraying part through the supply pipe from the separation part is preferably 60 ° C, more preferably 70 ° C, and further preferably 90 ° C. On the other hand, as an upper limit of the temperature of the said solution, 160 degreeC is preferable and 150 degreeC is more preferable. If the temperature of the solution is less than the lower limit, the amount of heat applied to the solution is insufficient, and the desorption of the solvent becomes insufficient, so that micropores may not be sufficiently formed. Conversely, if the temperature of the solution exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
 上記溶液の温度は、溶媒の沸点より高い。上記溶液の温度と溶媒の沸点との温度差の下限としては、10℃が好ましく、20℃がより好ましい。一方、上記温度差の上限としては、50℃が好ましく、40℃がより好ましい。上記温度差が上記下限未満であると、溶媒の脱離が不十分となるため、ミクロ孔が十分に形成されないおそれがある。逆に、上記温度差が上記上限を超えると、加熱のためのエネルギー消費量が不要に増大するおそれがある。 The temperature of the above solution is higher than the boiling point of the solvent. The lower limit of the temperature difference between the solution temperature and the boiling point of the solvent is preferably 10 ° C, more preferably 20 ° C. On the other hand, as an upper limit of the said temperature difference, 50 degreeC is preferable and 40 degreeC is more preferable. If the temperature difference is less than the lower limit, the desorption of the solvent becomes insufficient, and there is a possibility that micropores are not sufficiently formed. Conversely, if the temperature difference exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
 また、噴霧部で得られる固形分は噴霧部内で自然冷却され、40℃以上80℃以下の温度で排出される。 Moreover, the solid content obtained in the spraying part is naturally cooled in the spraying part and discharged at a temperature of 40 ° C. or more and 80 ° C. or less.
 上記固形分の平均径の下限としては、1μmが好ましく、2μmがより好ましい。一方、上記固形分の平均径の上限としては、20μmが好ましく、10μmがより好ましい。上記固形分の平均径は、主に固形分生成工程S15で噴霧する溶液の滴の大きさにより決まる。この噴霧する溶液の滴の大きさは主に噴霧圧力及び送液速度で決まるから、固形分の平均径が上記範囲内となるように噴霧圧力及び送液速度を調整するとよい。上記固形分の平均径が上記下限未満であると、それは噴霧する溶液の滴の大きさが小さいことを意味し、溶液から脱離する溶媒の量が少ない。このためミクロ孔が十分に形成されないおそれがある。逆に、上記固形分の平均径が上記上限を超えると、体積に対して表面積が小さくなるため、固形分の比表面積が不十分となるおそれがある。 The lower limit of the average solid content is preferably 1 μm, more preferably 2 μm. On the other hand, the upper limit of the average diameter of the solid content is preferably 20 μm and more preferably 10 μm. The average diameter of the solid content is determined mainly by the size of the solution droplet sprayed in the solid content generation step S15. Since the size of the droplets of the solution to be sprayed is mainly determined by the spray pressure and the liquid feeding speed, the spray pressure and the liquid feeding speed may be adjusted so that the average diameter of the solid content is within the above range. When the average diameter of the solid content is less than the lower limit, it means that the droplet size of the solution to be sprayed is small, and the amount of the solvent desorbed from the solution is small. For this reason, there is a possibility that micropores are not sufficiently formed. On the other hand, if the average diameter of the solid content exceeds the upper limit, the surface area is small with respect to the volume, so that the specific surface area of the solid content may be insufficient.
<加熱工程>
 加熱工程S2では、上記噴霧乾燥工程S1で得られる固形分を加熱処理する。この加熱工程S2は、加熱部により行うことができる。
<Heating process>
In the heating step S2, the solid content obtained in the spray drying step S1 is heated. This heating process S2 can be performed by a heating part.
(加熱部)
 加熱部は、上記噴霧部で得られた固形分を炭素化する。この炭素化により多孔質炭素粒子が得られる。
(Heating part)
The heating unit carbonizes the solid content obtained in the spray unit. By this carbonization, porous carbon particles are obtained.
 上記加熱部としては、例えば公知の電気炉等を用いることができ、固形分を加熱部へ挿入し、内部を不活性ガスで置換した後、加熱部内へ不活性ガスを吹き込みながら加熱を行うことで固形分の炭素化ができる。上記不活性ガスとしては、特に限定されないが、例えば窒素やアルゴン等を挙げることができる。中でも安価な窒素が好ましい。 As the heating unit, for example, a known electric furnace or the like can be used. After inserting the solid content into the heating unit and replacing the inside with an inert gas, heating is performed while blowing the inert gas into the heating unit. Can carbonize solids. Although it does not specifically limit as said inert gas, For example, nitrogen, argon, etc. can be mentioned. Of these, inexpensive nitrogen is preferred.
 噴霧部で溶媒の急激な脱離により生じたミクロ孔は、例えば炭素原料として石炭ピッチ等を用いる場合、この加熱部での加熱処理により固形分の炭素以外の成分の揮発や、炭素の結晶化が進むため、ミクロ孔が収縮して塞がれ易く、緻密な(多孔質ではない)炭素粒子となり易い。これに対し、当該多孔質炭素粒子の製造方法では、炭素原料に無灰炭を用いる。無灰炭は、石炭や石油ピッチに比べ酸素等のヘテロ元素の割合が高いため、加熱処理時に結晶成長し難く、また炭素以外の成分の割合が少ない。従って、当該多孔質炭素粒子の製造方法では、加熱部で加熱処理を行ってもミクロ孔が維持され易く、製造される炭素粒子の多孔質性を維持し易い。 For example, when coal pitch is used as a carbon raw material, micropores generated by the rapid desorption of the solvent in the spraying part are volatilization of components other than solid carbon or crystallization of carbon by heat treatment in this heating part. Therefore, the micropores are easily contracted and closed, and the carbon particles tend to be dense (not porous). On the other hand, in the manufacturing method of the said porous carbon particle, ashless coal is used for a carbon raw material. Ashless coal has a higher proportion of heteroelements such as oxygen than coal and petroleum pitch, so it is difficult for crystals to grow during heat treatment, and the proportion of components other than carbon is small. Therefore, in the method for producing porous carbon particles, the micropores are easily maintained even when heat treatment is performed in the heating unit, and the porosity of the produced carbon particles is easily maintained.
 また、噴霧乾燥工程S1で固形分中に分散した高分子化合物は、この加熱工程S2でその大部分が分解し散逸するため、無灰炭中に微細な空隙(メゾ孔)を残すと考えられる。単に無灰炭と高分子化合物とを混合したのみでは両者は相分離するためメゾ孔は生じないが、当該多孔質炭素粒子の製造方法では、噴霧乾燥工程S1での急激な溶媒の脱離により無灰炭と高分子化合物との混合状態が形成されるためと考えられる。従って、加熱工程S2での高分子化合物の分解及び散逸によりメゾ孔が増加し易い。 In addition, the polymer compound dispersed in the solid content in the spray drying step S1 is mostly decomposed and dissipated in the heating step S2, so that it is considered that fine voids (mesopores) remain in the ashless coal. . Simply mixing ashless charcoal and a polymer compound will cause phase separation between the two so that no mesopores are produced. However, in the method for producing porous carbon particles, due to the rapid desorption of the solvent in the spray drying step S1. This is probably because a mixed state of ashless coal and a polymer compound is formed. Therefore, mesopores are likely to increase due to decomposition and dissipation of the polymer compound in the heating step S2.
 上記加熱温度の下限としては、500℃が好ましく、700℃がより好ましい。一方、上記加熱温度の上限としては、3000℃が好ましく、2800℃がより好ましい。上記加熱温度が上記下限未満であると、炭素化が不十分となるおそれがある。逆に、加熱温度が上記上限を超えると、設備の耐熱性向上や燃料消費量の観点から製造コストが上昇するおそれがある。なお、昇温速度としては、例えば0.01℃/min以上10℃/min以下とすることができる。 The lower limit of the heating temperature is preferably 500 ° C, more preferably 700 ° C. On the other hand, the upper limit of the heating temperature is preferably 3000 ° C and more preferably 2800 ° C. There exists a possibility that carbonization may become inadequate that the said heating temperature is less than the said minimum. Conversely, if the heating temperature exceeds the above upper limit, the production cost may increase from the viewpoint of improving the heat resistance of the equipment and fuel consumption. In addition, as a temperature increase rate, it can be 0.01 degree-C / min or more and 10 degree-C / min or less, for example.
 また、加熱時間の下限としては、10分が好ましく、20分がより好ましい。一方、加熱時間の上限としては、10時間が好ましく、8時間がより好ましい。加熱温度が上記下限未満であると、炭素化が不十分となるおそれがある。逆に、加熱時間が上記上限を超えると、多孔質炭素繊維の製造効率が低下するおそれがある。 Further, the lower limit of the heating time is preferably 10 minutes, and more preferably 20 minutes. On the other hand, the upper limit of the heating time is preferably 10 hours, more preferably 8 hours. There exists a possibility that carbonization may become inadequate that heating temperature is less than the said minimum. Conversely, if the heating time exceeds the above upper limit, the production efficiency of the porous carbon fiber may be reduced.
 なお、炭化を行う前に不融化を行ってもよい。この不融化処理により固形分が互いに融着することを防止できる。不融化は、例えば公知の加熱炉を用いて酸素を含む雰囲気中で加熱することにより行う。酸素を含む雰囲気としては、一般に空気が用いられる。 Note that infusibilization may be performed before carbonization. This infusibilization treatment can prevent solids from fusing together. Infusibilization is performed, for example, by heating in an atmosphere containing oxygen using a known heating furnace. As an atmosphere containing oxygen, air is generally used.
 不融化を行う場合の不融化処理温度の下限としては、150℃が好ましく、180℃がより好ましい。一方、上記不融化処理温度の上限としては、300℃が好ましく、280℃がより好ましい。上記不融化処理温度が上記下限未満であると、不融化が不十分となるおそれや、不融化処理時間が長くなり、製造効率が低下するおそれがある。逆に、上記不融化処理温度が上記上限を超えると、不融化される前に固形分が溶融するおそれがある。 The lower limit of the infusibilization temperature when infusibilizing is preferably 150 ° C., more preferably 180 ° C. On the other hand, the upper limit of the infusibilization temperature is preferably 300 ° C, and more preferably 280 ° C. If the infusibilization treatment temperature is less than the lower limit, infusibilization may be insufficient, or the infusibilization treatment time may be increased, and production efficiency may be reduced. Conversely, if the infusibilization temperature exceeds the upper limit, the solid content may melt before being infusible.
 また、不融化処理時間の下限としては、10分が好ましく、20分がより好ましい。一方、上記不融化処理時間の上限としては、120分が好ましく、90分がより好ましい。上記不融化処理時間が上記下限未満であると、不融化が不十分となるおそれがある。逆に、上記不融化処理時間が上記上限を超えると、多孔質炭素粒子の製造効率が低下するおそれがある。 Also, the lower limit of the infusibilization time is preferably 10 minutes, more preferably 20 minutes. On the other hand, the upper limit of the infusibilization time is preferably 120 minutes, and more preferably 90 minutes. If the infusibilization time is less than the lower limit, infusibilization may be insufficient. Conversely, if the infusibilization treatment time exceeds the upper limit, the production efficiency of the porous carbon particles may be reduced.
<利点>
 当該多孔質炭素粒子の製造方法では、溶媒中に無灰炭を溶存させた溶液を噴霧乾燥する。無灰炭は石炭や石油ピッチに比べ炭素化収率が高いので、当該多孔質炭素粒子の製造方法は多孔質炭素粒子の製造効率が高い。また、上記固形分の主成分となる無灰炭は石炭や石油ピッチに比べ酸素等のヘテロ元素の割合が高いため、加熱処理時に結晶成長し難い。このため、加熱工程S2においてもミクロ孔が維持される。さらに、加熱工程S2で炭素化する際に高分子化合物の分解及び散逸により主に固形分中のメゾ孔が増加する。また、当該多孔質炭素粒子の製造方法では、酸素原子又は窒素原子を含み、かつ大気圧における沸点が上記範囲内である有機化合物を主成分とする溶媒を用いる。このような溶媒には無灰炭及び高分子化合物を高濃度に溶解することができるので、製造効率を高められる。従って、当該多孔質炭素粒子の製造方法を用いることで、比較的製造効率及び製造コストに優れ、かつ比表面積の大きい多孔質炭素粒子が製造できる。
<Advantages>
In the method for producing porous carbon particles, a solution in which ashless coal is dissolved in a solvent is spray-dried. Since ashless coal has a higher carbonization yield than coal and petroleum pitch, the production method of the porous carbon particles has high production efficiency of the porous carbon particles. Moreover, since the ratio of heteroelements, such as oxygen, is high in the ashless coal used as the main component of the said solid compared with coal and petroleum pitch, it is hard to carry out crystal growth at the time of heat processing. For this reason, micropores are maintained also in heating process S2. Furthermore, the mesopores in the solid content mainly increase due to decomposition and dissipation of the polymer compound when carbonized in the heating step S2. In the method for producing porous carbon particles, a solvent containing an organic compound containing oxygen atoms or nitrogen atoms and having a boiling point at atmospheric pressure within the above range as a main component is used. Since the ashless coal and the polymer compound can be dissolved in such a solvent at a high concentration, the production efficiency can be increased. Therefore, by using the method for producing porous carbon particles, porous carbon particles having relatively high production efficiency and production cost and a large specific surface area can be produced.
 また、当該多孔質炭素粒子の製造方法では、溶出工程S12での石炭の溶媒抽出処理により無灰炭が溶媒に溶出できる。従って、この無灰炭が溶媒中に溶存する液体分に高分子化合物を混合した溶液を用いることで、多孔質炭素粒子の製造コストをさらに低減することができる。 Further, in the method for producing porous carbon particles, ashless coal can be eluted into the solvent by the solvent extraction treatment of coal in the elution step S12. Therefore, the production cost of the porous carbon particles can be further reduced by using a solution in which the polymer compound is mixed with the liquid component in which the ashless coal is dissolved in the solvent.
〔多孔質炭素粒子〕
 当該多孔質炭素粒子は、炭素を主成分とし、中空部を内包する炭素層を備え、上記炭素層が複数の細孔を有する。当該多孔質炭素粒子は、上述の当該多孔質炭素粒子の製造方法により製造することができる。なお、当該多孔質炭素粒子の製造方法により製造される多孔質炭素粒子は、通常炭素層により中空部が内包されるが、用途に応じてこの多孔質炭素粒子を割ることで、凹部を有する炭素層を備える多孔質炭素粒子として用いることができる。
[Porous carbon particles]
The porous carbon particle includes a carbon layer containing carbon as a main component and enclosing a hollow portion, and the carbon layer has a plurality of pores. The said porous carbon particle can be manufactured with the manufacturing method of the said porous carbon particle mentioned above. The porous carbon particles produced by the method for producing porous carbon particles usually include a hollow portion in the carbon layer, but carbon having a recess is obtained by dividing the porous carbon particle according to the application. It can be used as porous carbon particles comprising a layer.
 当該多孔質炭素粒子の比表面積の下限としては、200m/gであり、250m/gがより好ましく、300m/gがさらに好ましい。上記比表面積が上記下限未満であると、多孔質材料として用いることが困難となるおそれがある。一方、上記比表面積の上限としては、特に限定されないが、通常3000m/g程度である。なお、当該多孔質炭素粒子の比表面積は例えば溶液中の無灰炭の含有量、溶剤の種類、噴霧条件等により調整できる。 The lower limit of the specific surface area of the porous carbon particles is 200 m 2 / g, more preferably 250 m 2 / g, and even more preferably 300 m 2 / g. If the specific surface area is less than the lower limit, it may be difficult to use as the porous material. On the other hand, the upper limit of the specific surface area is not particularly limited, but is usually about 3000 m 2 / g. In addition, the specific surface area of the said porous carbon particle can be adjusted with content of ashless coal in a solution, the kind of solvent, spray conditions, etc., for example.
<利点>
 当該多孔質炭素粒子は、中空部を内包する炭素層を備えるので、中実である多孔質炭素粒子に比べて細孔が炭素層を貫通し易く、個々の細孔において径が表面からの距離によらず均一化し易い。このため、ミクロ孔であっても、途中で径が潰れることなく外面から比較的深い位置まで孔が維持される。また、当該多孔質炭素粒子は、比表面積が上記下限以上であるので、多孔性に優れる。
<Advantages>
Since the porous carbon particles have a carbon layer that encloses the hollow portion, the pores are more likely to penetrate the carbon layer than the solid porous carbon particles, and the diameter of each pore is the distance from the surface. It is easy to make it uniform regardless. For this reason, even if it is a micro hole, a hole is maintained to a comparatively deep position from an outer surface, without a diameter being crushed in the middle. Moreover, since the said specific surface area is more than the said minimum, the said porous carbon particle is excellent in porosity.
[第二実施形態]
 以下、本発明に係る多孔質炭素粒子の製造方法の第二実施形態について説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the method for producing porous carbon particles according to the present invention will be described.
 当該多孔質炭素粒子の製造方法は、図3に示すように、溶解工程S3と、噴霧乾燥工程S4と、加熱工程S5とを主に備える。 The method for producing porous carbon particles mainly includes a dissolution step S3, a spray drying step S4, and a heating step S5 as shown in FIG.
<溶解工程>
 溶解工程S3では、無灰炭と高分子化合物とを溶媒に溶解する。この溶解により無灰炭及び高分子化合物が溶存する溶液が得られる。
<Dissolution process>
In the dissolution step S3, ashless coal and a polymer compound are dissolved in a solvent. By this dissolution, a solution in which the ashless coal and the polymer compound are dissolved is obtained.
 この溶解には、調製槽を用いることができる。上記調整槽としては、例えば第一実施形態の混合部と同様に構成された調整槽が挙げられる。 A preparation tank can be used for this dissolution. As said adjustment tank, the adjustment tank comprised similarly to the mixing part of 1st embodiment, for example is mentioned.
 上記溶媒は、酸素原子又は窒素原子を含む有機化合物を主成分とするものであり、第一実施形態の溶媒と同様のものが挙げられる。また、上記溶媒は、大気圧における沸点が50℃以上250℃未満である。 The above solvent is mainly composed of an organic compound containing an oxygen atom or a nitrogen atom, and examples thereof include the same solvents as those in the first embodiment. The solvent has a boiling point at atmospheric pressure of 50 ° C. or higher and lower than 250 ° C.
 上記高分子化合物としては、第一実施形態と同様のものが挙げられる。 Examples of the polymer compound include those similar to the first embodiment.
 また、上記無灰炭は、例えば混合工程と、溶出工程と、固液分離工程と、蒸発工程とを備える無灰炭の製造方法により得ることができる。 Further, the ashless coal can be obtained, for example, by a method for producing ashless coal comprising a mixing step, an elution step, a solid-liquid separation step, and an evaporation step.
(混合工程)
 上記無灰炭の製造方法における混合工程は、第一実施形態の第1混合工程S11と同様に行える。
(Mixing process)
The mixing step in the method for producing ashless coal can be performed in the same manner as the first mixing step S11 of the first embodiment.
 なお、混合工程で混合する溶媒は、酸素原子又は窒素原子を含む有機化合物を主成分とするものには限定されず、石炭を溶解するものであればよい。このような溶媒としては、例えば石炭由来の二環芳香族化合物であるメチルナフタレン油、ナフタレン油等を挙げることができる。 Note that the solvent to be mixed in the mixing step is not limited to a solvent mainly containing an organic compound containing an oxygen atom or a nitrogen atom, and any solvent that dissolves coal can be used. Examples of such solvents include methyl naphthalene oil and naphthalene oil which are bicyclic aromatic compounds derived from coal.
(溶出工程)
 上記無灰炭の製造方法における溶出工程は、第一実施形態の溶出工程S12と同様に行える。
(Elution process)
The elution step in the method for producing ashless coal can be performed in the same manner as the elution step S12 of the first embodiment.
 上記溶出工程での昇温部による昇温後のスラリーの温度の下限としては、300℃が好ましく、360℃がより好ましい。一方、上記スラリーの温度の上限としては、420℃が好ましく、400℃がより好ましい。上記スラリーの温度が上記下限未満であると、石炭を構成する分子間の結合を十分に弱められず、溶出率が低下するおそれがある。逆に、上記スラリーの温度が上記上限を超えると、スラリーの温度を維持するための熱量が不必要に大きくなるため、多孔質炭素粒子の製造コストが増大するおそれがある。 The lower limit of the temperature of the slurry after the temperature rise by the temperature raising portion in the elution step is preferably 300 ° C, and more preferably 360 ° C. On the other hand, the upper limit of the temperature of the slurry is preferably 420 ° C., more preferably 400 ° C. If the temperature of the slurry is less than the lower limit, the bonds between the molecules constituting the coal cannot be sufficiently weakened, and the elution rate may decrease. On the contrary, when the temperature of the slurry exceeds the upper limit, the amount of heat for maintaining the temperature of the slurry becomes unnecessarily large, which may increase the production cost of the porous carbon particles.
 また、上記昇温部の内部圧力の下限としては、1.1MPaが好ましく、1.5MPaがより好ましい。一方、上記昇温部の内部圧力の上限としては、5MPaが好ましく、4MPaがより好ましい。上記昇温部の内部圧力が上記下限未満であると、溶剤が蒸発することで減少し、石炭の溶解が不十分となるおそれがある。逆に、上記昇温部の内部圧力が上記上限を超えると、圧力を維持するためのコスト上昇に対して得られる石炭溶解の向上効果が不十分となるおそれがある。 Moreover, as a minimum of the internal pressure of the said temperature rising part, 1.1 MPa is preferable and 1.5 MPa is more preferable. On the other hand, the upper limit of the internal pressure of the temperature raising part is preferably 5 MPa, and more preferably 4 MPa. When the internal pressure of the temperature raising part is less than the lower limit, the solvent is reduced by evaporation, and there is a possibility that coal may not be sufficiently dissolved. On the contrary, when the internal pressure of the said temperature rising part exceeds the said upper limit, there exists a possibility that the improvement effect of coal melt | dissolution obtained with respect to the cost increase for maintaining a pressure may become inadequate.
(固液分離工程)
 上記無灰炭の製造方法における固液分離工程は、第一実施形態の固液分離工程S13と同様に行える。
(Solid-liquid separation process)
The solid-liquid separation step in the ashless coal production method can be performed in the same manner as the solid-liquid separation step S13 of the first embodiment.
 上記分離工程での分離部内は、加熱及び加圧することが好ましい。上記分離部内の加熱温度の下限としては、300℃が好ましく、350℃がより好ましい。一方、上記加熱温度の上限としては、420℃が好ましく、400℃がより好ましい。上記加熱温度が上記下限未満であると、溶媒可溶成分が再析出し、分離効率が低下するおそれがある。逆に、上記加熱温度が上記上限を超えると、加熱のための運転コストが高くなるおそれがある。 It is preferable to heat and pressurize the inside of the separation part in the separation step. As a minimum of heating temperature in the above-mentioned separation part, 300 ° C is preferred and 350 ° C is more preferred. On the other hand, the upper limit of the heating temperature is preferably 420 ° C., more preferably 400 ° C. If the heating temperature is less than the lower limit, the solvent-soluble component may be reprecipitated and the separation efficiency may be reduced. Conversely, if the heating temperature exceeds the upper limit, the operating cost for heating may increase.
 また、分離部内の圧力の下限としては、1MPaが好ましく、1.4MPaがより好ましい。一方、上記圧力の上限としては、3MPaが好ましく、2MPaがより好ましい。上記圧力が上記下限未満であると、溶媒可溶成分が再析出し、分離効率が低下するおそれがある。逆に、上記圧力が上記上限を超えると、加圧のための運転コストが高くなるおそれがある。 Also, the lower limit of the pressure in the separation part is preferably 1 MPa, more preferably 1.4 MPa. On the other hand, the upper limit of the pressure is preferably 3 MPa, more preferably 2 MPa. If the pressure is less than the lower limit, the solvent-soluble component may be reprecipitated and the separation efficiency may be reduced. Conversely, when the pressure exceeds the upper limit, the operating cost for pressurization may increase.
(蒸発工程)
 蒸発工程では、上記分離工程で分離した液体分から溶媒を蒸発させる。この溶媒の蒸発分離により無灰炭(HPC)が得られる。
(Evaporation process)
In the evaporation step, the solvent is evaporated from the liquid component separated in the separation step. Ashless coal (HPC) is obtained by evaporating and separating the solvent.
 上記溶媒を蒸発分離する方法としては、一般的な蒸留法や蒸発法(スプレードライ法等)を含む分離方法を用いることができる。上記液体分からの溶媒の分離により、上記液体分から実質的に灰分を含まない無灰炭を得ることができる。 As a method for evaporating and separating the solvent, a separation method including a general distillation method or an evaporation method (spray drying method or the like) can be used. By separating the solvent from the liquid, ashless coal substantially free of ash can be obtained from the liquid.
 上記溶解により無灰炭及び高分子化合物が溶存する溶液の無灰炭の含有量及び高分子化合物の含有量は第一実施形態と同様とできる。 The content of the ashless coal and the content of the polymer compound in the solution in which the ashless coal and the polymer compound are dissolved by the above dissolution can be the same as in the first embodiment.
<噴霧乾燥工程>
 噴霧乾燥工程S4では、上記溶液を噴霧乾燥する。この噴霧乾燥工程S4は、第一実施形態の固形分生成工程S15と同様の装置を用いて同様に行うことができる。
<Spray drying process>
In the spray drying step S4, the solution is spray dried. This spray drying process S4 can be performed similarly using the apparatus similar to solid content production | generation process S15 of 1st embodiment.
<加熱工程>
 加熱工程S5では、上記噴霧乾燥工程S4で得られる固形分を加熱処理する。この加熱工程S5は、第一実施形態の加熱工程S2と同様の装置を用い同様に行うことができる。
<Heating process>
In the heating step S5, the solid content obtained in the spray drying step S4 is heated. This heating process S5 can be performed similarly using the apparatus similar to heating process S2 of 1st embodiment.
<利点>
 当該多孔質炭素粒子の製造方法では、無灰炭及び高分子化合物を直接溶媒に溶解することで、無灰炭及び高分子化合物が溶媒中に溶存する溶液を得る。このため、無灰炭を抽出する際に使用する溶媒と、多孔質炭素粒子を得るための溶液に使用する溶媒との種類を変えることができる。従って、無灰炭の抽出と多孔質炭素粒子の製造とをそれぞれ最適化できるので、多孔質炭素粒子の収率を高めることができる。
<Advantages>
In the method for producing porous carbon particles, the ashless coal and the polymer compound are directly dissolved in the solvent to obtain a solution in which the ashless coal and the polymer compound are dissolved in the solvent. For this reason, the kind of solvent used when extracting ashless coal and the solvent used for the solution for obtaining porous carbon particles can be changed. Therefore, since the extraction of ashless coal and the production of porous carbon particles can be optimized, the yield of porous carbon particles can be increased.
[その他の実施形態]
 なお、本発明は、上記実施形態に限定されるものではない。
[Other Embodiments]
The present invention is not limited to the above embodiment.
 上記第一実施形態では、第1混合工程の混合部が調製槽を有する構成について説明したが、この構成に限らず、溶媒と石炭との混合ができれば、調製槽を省略してもよい。例えばラインミキサーにより上記混合が完了するような場合には、調製槽を省略して供給管と分離部との間にラインミキサーを備える構成としてもよい。このように各工程で用いられる装置構成は、上記実施形態に限定されない。 In the first embodiment, the configuration in which the mixing unit in the first mixing step has the preparation tank has been described. However, the present invention is not limited to this configuration, and the preparation tank may be omitted as long as the solvent and coal can be mixed. For example, when the above mixing is completed by a line mixer, the preparation tank may be omitted and a line mixer may be provided between the supply pipe and the separation unit. Thus, the apparatus structure used at each process is not limited to the said embodiment.
 上記第二実施形態では、無灰炭を溶媒抽出により製造する方法を説明したが、無灰炭の製造方法はこれに限定されず、例えば石炭と水素供与性溶剤との混合加熱により製造された無灰炭を用いることもできる。 In the second embodiment, the method for producing ashless coal by solvent extraction has been described. However, the method for producing ashless coal is not limited thereto, and for example, the ashless coal is produced by mixing and heating coal and a hydrogen donating solvent. Ashless charcoal can also be used.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[実施例1]
 瀝青炭の溶媒抽出により製造された無灰炭を炭素原料として準備した。この無灰炭の元素分析値を表1に示す。また、この無灰炭の炭素収率は55質量%であった。
[Example 1]
Ashless coal produced by solvent extraction of bituminous coal was prepared as a carbon raw material. Table 1 shows the elemental analysis values of the ashless coal. Moreover, the carbon yield of this ashless coal was 55 mass%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、酸素量は、炭素、水素、窒素及び硫黄以外の成分量を意味し、100質量%から炭素、水素、窒素及び硫黄の成分量を引いたものである。 In Table 1, the amount of oxygen means the amount of components other than carbon, hydrogen, nitrogen and sulfur, and is obtained by subtracting the components of carbon, hydrogen, nitrogen and sulfur from 100% by mass.
 高分子化合物としては、ポリメタクリル酸メチル(PMMA、炭素収率4質量%)を準備した。 As the polymer compound, polymethyl methacrylate (PMMA, carbon yield 4 mass%) was prepared.
 溶媒として大気圧における沸点が115℃であるピリジンを準備した。ピリジンは、窒素を含有する有機化合物(芳香族化合物)である。 As a solvent, pyridine having a boiling point of 115 ° C. at atmospheric pressure was prepared. Pyridine is an organic compound (aromatic compound) containing nitrogen.
 この溶媒に無灰炭及び高分子化合物を溶解し、溶液における無灰炭の含有量が10質量%、無灰炭及び高分子化合物の合計量に対する高分子化合物の含有量が2質量%となるように調製した。 The ashless coal and the polymer compound are dissolved in this solvent, and the content of the ashless coal in the solution is 10% by mass, and the content of the polymer compound with respect to the total amount of the ashless coal and the polymer compound is 2% by mass. It was prepared as follows.
 この溶液を、2流体ノズルを用いて噴霧圧力0.3MPa、溶液の送液速度1kg/hの条件でサイクロン中に噴霧し、固形分を得た。なお、上記サイクロンの入口温度は140℃、出口温度は70℃とした。 This solution was sprayed into a cyclone using a two-fluid nozzle under the conditions of a spraying pressure of 0.3 MPa and a solution feeding speed of 1 kg / h to obtain a solid content. The cyclone inlet temperature was 140 ° C. and the outlet temperature was 70 ° C.
 さらに、上記固形分を5℃/分の昇温速度で900℃まで昇温し、30分間の加熱処理(炭素化)を行い、実施例1の多孔質炭素粒子を製造した。 Furthermore, the solid content was heated to 900 ° C. at a temperature rising rate of 5 ° C./min, and heat treatment (carbonization) for 30 minutes was performed to produce porous carbon particles of Example 1.
[実施例2]
 溶液における無灰炭の含有量を30質量%とした以外は、実施例1と同様にして多孔質炭素粒子を製造した。
[Example 2]
Porous carbon particles were produced in the same manner as in Example 1 except that the content of ashless coal in the solution was 30% by mass.
[実施例3]
 溶媒を大気圧における沸点が66℃であるテトラヒドロフラン(THF)とし、サイクロンの入口温度を100℃、出口温度を50℃とした以外は、実施例1と同様にして実施例3の多孔質炭素粒子を製造した。なお、THFは、酸素を含有する有機化合物(極性有機化合物)である。
[Example 3]
The porous carbon particles of Example 3 were the same as Example 1 except that the solvent was tetrahydrofuran (THF) having a boiling point of 66 ° C. at atmospheric pressure, the cyclone inlet temperature was 100 ° C., and the outlet temperature was 50 ° C. Manufactured. Note that THF is an organic compound (polar organic compound) containing oxygen.
[実施例4~8、比較例1]
 高分子化合物として実施例4、5ではPMMA、実施例6、7ではポリビニルピロリドン(PVP、炭素収率0質量%)、実施例8ではポリスチレン(PSt、炭素収率10質量%)を用い、高分子化合物の含有量を表2となるように溶液を調製した。また、比較例1では溶液に高分子化合物を溶存させなかった。上記溶液を用いた以外は実施例1と同様にして実施例4~8及び比較例1の多孔質炭素粒子を製造した。
[Examples 4 to 8, Comparative Example 1]
Examples 4 and 5 are PMMA, Examples 6 and 7 are polyvinyl pyrrolidone (PVP, carbon yield 0% by mass), and Example 8 is polystyrene (PSt, carbon yield 10% by mass). A solution was prepared so that the content of the molecular compound was as shown in Table 2. In Comparative Example 1, the polymer compound was not dissolved in the solution. Porous carbon particles of Examples 4 to 8 and Comparative Example 1 were produced in the same manner as Example 1 except that the above solution was used.
[評価方法]
 上記実施例1~8及び比較例1について、以下の測定を行った。
[Evaluation methods]
For the above Examples 1 to 8 and Comparative Example 1, the following measurements were performed.
<粒子径>
 固形分の粒子径を光学顕微鏡により測定した。測定は、光学顕微鏡の視野内の個々の粒子の粒子径を計測し、その範囲を求めた。結果を表2に示す。
<Particle size>
The particle size of the solid content was measured with an optical microscope. In the measurement, the particle diameter of each particle within the field of view of the optical microscope was measured, and the range was determined. The results are shown in Table 2.
<比表面積>
 多孔質炭素粒子の比表面積をBET法により測定した。結果を表2に示す。
<Specific surface area>
The specific surface area of the porous carbon particles was measured by the BET method. The results are shown in Table 2.
<細孔径>
 実施例1の多孔質炭素粒子について、BET法により平均細孔径を測定した。実施例1の多孔質炭素粒子の平均細孔径は2nmであった。
<Pore diameter>
About the porous carbon particle of Example 1, the average pore diameter was measured by BET method. The average pore diameter of the porous carbon particles of Example 1 was 2 nm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2中で「―」は、溶液に高分子化合物を溶存させなかったことを意味する。 In Table 2, “-” means that the polymer compound was not dissolved in the solution.
 表2の結果から、高分子化合物の種類や含有量によらず、溶液に高分子化合物を溶存させた実施例1~8は、高分子化合物を溶存させていない比較例1に比べて比表面積が大きい。このことから溶液に高分子化合物を混合することで、得られる炭素粒子の比表面積を大きくできることが分かる。 From the results of Table 2, regardless of the type and content of the polymer compound, Examples 1 to 8 in which the polymer compound was dissolved in the solution had a specific surface area as compared with Comparative Example 1 in which the polymer compound was not dissolved. Is big. This shows that the specific surface area of the obtained carbon particles can be increased by mixing the polymer compound with the solution.
 以上説明したように、本発明の多孔質炭素粒子の製造方法を用いることで、比較的良好な製造効率及び製造コストで、比表面積の大きい多孔質炭素粒子を製造できる。また、本発明の多孔質炭素粒子は、比表面積が大きいので、吸着材や電子部品として好適に用いることができる。 As described above, by using the method for producing porous carbon particles of the present invention, porous carbon particles having a large specific surface area can be produced with relatively good production efficiency and production cost. Moreover, since the porous carbon particle of this invention has a large specific surface area, it can be used suitably as an adsorbent or an electronic component.
S1、S4 噴霧乾燥工程
S2、S5 加熱工程
S3 溶解工程
S11 第1混合工程
S12 溶出工程
S13 固液分離工程
S14 第2混合工程
S15 固形分生成工程
S1, S4 Spray drying step S2, S5 Heating step S3 Dissolution step S11 First mixing step S12 Elution step S13 Solid-liquid separation step S14 Second mixing step S15 Solid content generation step

Claims (6)

  1.  無灰炭及び高分子化合物が溶媒中に溶存する溶液を噴霧乾燥する工程と、
     上記噴霧乾燥工程で得られる固形分を加熱処理する工程と
     を備え、
     上記溶媒が、酸素原子又は窒素原子を含み、かつ大気圧における沸点が50℃以上250℃未満である有機化合物を主成分とする多孔質炭素粒子の製造方法。
    Spray drying a solution in which ashless coal and a polymer compound are dissolved in a solvent;
    A step of heat-treating the solid content obtained in the spray drying step,
    The manufacturing method of the porous carbon particle which has as a main component the organic compound whose said solvent contains an oxygen atom or a nitrogen atom, and whose boiling point in atmospheric pressure is 50 degreeC or more and less than 250 degreeC.
  2.  上記溶液における無灰炭の含有量が5質量%以上50質量%以下である請求項1に記載の多孔質炭素粒子の製造方法。 The method for producing porous carbon particles according to claim 1, wherein the content of ashless coal in the solution is 5 mass% or more and 50 mass% or less.
  3.  上記噴霧乾燥工程として、
     石炭及び溶媒を混合する工程と、
     上記混合工程で得られたスラリー中の上記石炭から上記溶媒に可溶な成分を溶出させる工程と、
     上記溶出工程で溶出後の上記スラリーを、溶媒可溶成分を含む液体分及び溶媒不溶成分に分離する工程と、
     上記液体分に高分子化合物を混合する工程と
     をさらに備える請求項1又は請求項2に記載の多孔質炭素粒子の製造方法。
    As the spray drying step,
    Mixing coal and solvent;
    Eluting components soluble in the solvent from the coal in the slurry obtained in the mixing step;
    Separating the slurry after elution in the elution step into a liquid component containing a solvent-soluble component and a solvent-insoluble component;
    The method for producing porous carbon particles according to claim 1, further comprising: mixing a polymer compound with the liquid component.
  4.  上記固形分の平均径が1μm以上20μm以下となるよう噴霧圧力及び送液速度を調整する請求項1又は請求項2に記載の多孔質炭素粒子の製造方法。 The method for producing porous carbon particles according to claim 1 or 2, wherein the spray pressure and the liquid feeding speed are adjusted so that the average diameter of the solid content is 1 µm or more and 20 µm or less.
  5.  上記無灰炭及び高分子化合物の合計量に対する高分子化合物の含有量を1質量%以上15質量%以下とする請求項1又は請求項2に記載の多孔質炭素粒子の製造方法。 The method for producing porous carbon particles according to claim 1 or 2, wherein the content of the polymer compound relative to the total amount of the ashless coal and the polymer compound is 1% by mass or more and 15% by mass or less.
  6.  炭素を主成分とし、中空部を内包する炭素層を備え、
     上記炭素層が複数の細孔を有し、
     比表面積が200cm/g以上である多孔質炭素粒子。
    A carbon layer containing carbon as a main component and enclosing a hollow part,
    The carbon layer has a plurality of pores;
    Porous carbon particles having a specific surface area of 200 cm 2 / g or more.
PCT/JP2018/002240 2017-04-07 2018-01-25 Method for producing porous carbon particles, and porous carbon particles WO2018186003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-076393 2017-04-07
JP2017076393A JP2018177563A (en) 2017-04-07 2017-04-07 Porous carbon particle production method and porous carbon particle

Publications (1)

Publication Number Publication Date
WO2018186003A1 true WO2018186003A1 (en) 2018-10-11

Family

ID=63712462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002240 WO2018186003A1 (en) 2017-04-07 2018-01-25 Method for producing porous carbon particles, and porous carbon particles

Country Status (2)

Country Link
JP (1) JP2018177563A (en)
WO (1) WO2018186003A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403041A (en) * 2022-09-15 2022-11-29 中国地质大学(北京) Hemicellulose-based hollow porous carbon, preparation method thereof and application thereof in zinc ion energy storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161337A (en) * 2008-09-29 2010-07-22 Sanwa Yushi Kk Plant baked body and electromagnetic wave shielding body
WO2016052981A1 (en) * 2014-09-30 2016-04-07 주식회사 엘지화학 Hollow carbon capsule manufacturing method
JP2017014079A (en) * 2015-07-02 2017-01-19 株式会社神戸製鋼所 Method for producing active carbon, active carbon, and electrode material for electric double layer capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161337A (en) * 2008-09-29 2010-07-22 Sanwa Yushi Kk Plant baked body and electromagnetic wave shielding body
WO2016052981A1 (en) * 2014-09-30 2016-04-07 주식회사 엘지화학 Hollow carbon capsule manufacturing method
JP2017014079A (en) * 2015-07-02 2017-01-19 株式会社神戸製鋼所 Method for producing active carbon, active carbon, and electrode material for electric double layer capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403041A (en) * 2022-09-15 2022-11-29 中国地质大学(北京) Hemicellulose-based hollow porous carbon, preparation method thereof and application thereof in zinc ion energy storage device
CN115403041B (en) * 2022-09-15 2023-11-21 中国地质大学(北京) Hemicellulose-based hollow porous carbon, preparation method thereof and application thereof in zinc ion energy storage device

Also Published As

Publication number Publication date
JP2018177563A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP5351277B2 (en) Carbon nanofiber having skin-core structure, method for producing the same, and product containing said carbon nanofiber
JP2006347864A (en) Method for producing mesoporous carbon, and mesoporous carbon
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
JP6718517B2 (en) Halloysite powder and method for producing halloysite powder
CN110184685B (en) Coal-based activated carbon fiber, and preparation method and application thereof
TWI651266B (en) Spherical activated carbon and method of producing the same
JP2019182678A (en) Method for producing porous carbon
JP2021535064A (en) Activated carbon and its manufacturing method
WO2018154977A1 (en) Method for producing porous carbon particles, and porous carbon particles
KR20180128071A (en) Method for producing carbon fiber, electrode for carbon fiber and electric double layer capacitor
US7781370B2 (en) Process for producing spherical activated carbon
WO2018186003A1 (en) Method for producing porous carbon particles, and porous carbon particles
JP5882191B2 (en) Activated carbon and method for producing the same
JP4349627B2 (en) Method for producing spherical activated carbon
CN111247097B (en) Activated carbon and preparation method thereof
JP2018177564A (en) Method for producing porous carbon particle
CN100563478C (en) The phenolic materials of electric machining and method
JP2004014762A (en) Carbon material for electric double layered capacitor and its manufacturing method
JP2018178285A (en) Manufacturing method of porous carbon fiber
WO2018186018A1 (en) Method of manufacturing porous carbon fiber sheet and method of manufacturing porous carbon electrode
JP6767918B2 (en) Method for producing composition for electric field spinning and porous carbon fiber
JP6862317B2 (en) Carbon fiber manufacturing method
JP7276771B2 (en) Method for producing porous carbon and method for producing porous carbon molding
WO2014171460A1 (en) Method for producing ash-free coal
JP3986938B2 (en) Manufacturing method of carbonized material used for manufacturing activated carbon for electrode of electric double layer capacitor and organic material for carbonized material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781395

Country of ref document: EP

Kind code of ref document: A1