WO2016052981A1 - Hollow carbon capsule manufacturing method - Google Patents

Hollow carbon capsule manufacturing method Download PDF

Info

Publication number
WO2016052981A1
WO2016052981A1 PCT/KR2015/010295 KR2015010295W WO2016052981A1 WO 2016052981 A1 WO2016052981 A1 WO 2016052981A1 KR 2015010295 W KR2015010295 W KR 2015010295W WO 2016052981 A1 WO2016052981 A1 WO 2016052981A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
acid
polymer particles
particles
hollow carbon
Prior art date
Application number
PCT/KR2015/010295
Other languages
French (fr)
Korean (ko)
Inventor
김인영
이진영
손권남
황의용
권원종
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150137058A external-priority patent/KR101783446B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017508968A priority Critical patent/JP6524215B2/en
Priority to CN201580051800.9A priority patent/CN106794990B/en
Priority to US15/512,694 priority patent/US10821687B2/en
Publication of WO2016052981A1 publication Critical patent/WO2016052981A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Definitions

  • the present invention relates to a production method capable of mass production of hollow carbon capsules.
  • Hoi low carbon capsule refers to particles in which the shell having a pore inside and forming a p 0re is made of carbon. Due to the internal pore of the hollow carbon capsule, the surface area is wide, and the pore can serve as a storage space.
  • the hollow carbon capsulum has various uses such as adsorbents, hydrogen storage materials, additives, catalyst supports, and lubricants.
  • the manufacturing principle of the hollow carbon capsule is to form the structure of the template core and the carbon precursor shell, and then remove the template. At this time, it is divided into a method of using a hard template and a method of using a sof t template according to the type of template used.
  • the method of using a hard template is a method of using an inorganic material of silica or metal oxide film as a template.
  • Hard template is easy to maintain the pore structure because there is almost no change in shape during carbonization, there is an advantage that the shape of the pore can be easily adjusted by adjusting the shape of the hard template.
  • the carbonization process requires the formation of a carbon shell and then the removal of the hard template. The shell formation and the pore formation are divided into two stages. In general, the removal of the hard template with toxic acidic or basic materials causes environmental problems. have.
  • the method of using a soft template is a method of using an organic material capable of thermal decomposition such as a polymer as a template.
  • the polymer used as a template is thermally decomposed and removed, and at the same time, carbonization of the carbon precursor proceeds at the same time, so the process is simple and no toxic substance is used.
  • the pyrolysis and carbonization of the polymer proceed simultaneously and the form of the formed pore is likely to collapse, care must be taken in selecting the material compared to the method using a hard template.
  • the method of using a soft template has two main considerations, one is to prepare particles of the core part of the soft template and the shell part of the carbon precursor before the carbonization process, and the other is the material of the soft template and the carbon precursor.
  • thermal properties of the two materials are similar, an additional process is required because the shape of the formed pore is likely to collapse.
  • a method of carbon-coating the surface of polystyrene particles with glucose having similar thermal properties to form a core (polystyrene) / shell (carbon) structure and heat-treating the same has been reported (Robin J). White et al., J. Am. Chem. Soc., 2010, 132: 17360-17363).
  • this method requires about 24 hours of glucose pretreatment in the autoclave to form carbon shells, which is not suitable for mass production because of the long process time. not. Therefore, the thermal properties of the soft template and the carbon precursor must be distinguished.
  • the carbon precursor forms the carbon shell
  • a material that can maintain the structure of the carbon shell to be formed must be selected. Therefore, there is a need for a method for producing hollow carbon capsules that are suitable for mass production while using soft templates and that can maintain the shape of pore well. Therefore, the inventors of the present invention while studying a method for mass production of hollow carbon capsules, using the polymer particles as a soft template, spray and drying (spray-drying) method, using a simple and effective production of hollow carbon capsules It was confirmed that the present invention was completed.
  • the present invention is to provide a manufacturing method capable of producing a hollow carbon capsule simply and effectively.
  • the present invention is to provide a vacuum-type carbon capsule produced by the above production method.
  • the present invention provides a method of manufacturing a hollow carbon capsule comprising the following steps:
  • Step 1 Preparing a spray solution comprising a carbon precursor, polymer particles, and a solvent (step 1);
  • the term "hol low carbon capsule” refers to a particle having a core / shell structure in which the core portion is a pore and the shell portion is made of carbon.
  • the hollow carbon capsule prepared in the present invention may be prepared in a form in which they are aggregated together. When manufactured in a clustered form, each shell has a structure that connects to another shell. An example of a hollow carbon capsule according to the present invention is shown in FIG. 6.
  • the pore can be used as an adsorbent, a hydrogen storage material, an additive, a catalyst support, a lubricant, and the like.
  • the principle of producing hollow carbon capsules according to the invention is to produce particles of the core / shell structure and then to remove the material of the core while maintaining the structure of the shell. In other words, removal of the core material and formation of the carbon shell must occur simultaneously through the heat treatment.
  • step 1 is a step of preparing a spray solution for spraying and drying, the step of preparing a spray solution containing a carbon precursor, polymer particles and a solvent.
  • the polymer of the polymer particles may be used one or more, and may be polystyrene, poly (methyl methacrylate), polypropylene, polyethylene, polyurethane, polyvinyl alcohol, polyvinylacetate or ethylene-vinyl acetate.
  • the polymer of the polymer particles is polystyrene.
  • the polymer particles can be easily purchased commercially, in the case of polystyrene particles can be easily prepared by the emulsion polymerization method.
  • the emulsion polymerization process comprises the steps of adding to a polystyrene monomer and an emulsifier * solvent; And it can be prepared by the step of polymerization by adding an initiator. Water may be used as the solvent, and SDS (sodium dodecyl sul fate) may be used as the emulsifier.
  • the emulsion polymerization method has the advantage of controlling the size of the polystyrene particles by controlling the content of the emulsifier and monomer.
  • the carbon precursor is characterized in that it crosslinks at a temperature lower than the thermal decomposition temperature of the polymer particles. That is, the carbon precursor and the polymer particles have different thermal behavior depending on temperature.
  • FIG. 2 Experimental Example 1
  • polystyrene particles are pyrolyzed at 400-450 ° C.
  • lignosulfonate an example of a carbon precursor that can be used in the present invention
  • the carbon precursor is crosslinked in the vicinity of 200 ° C.
  • the core portion may be thermally decomposed to form empty spaces occupying the space, and carbon precursors in the shell portion may be carbonized to form carbon shells.
  • the carbon precursor may be used one or more, preferably a substance having aromaticity and soluble in water. Examples of carbon precursors having the above characteristics include lignosulfonate, tannic acid, gallic acid, vanillic acid, dopamine, folic acid, and caffe.
  • Acids (caffeic acid, rosmarinic acid, chlorogenic acid, ferulic acid, sinapinic acid, ellagic acid and ellagitannins).
  • the ellagitannin-based compounds include castalazine, castal in, casuarictin, grandinin, punicalagin and punicalin, Roburin A, telimagrandin, and terflavin B.
  • lignosulfonate may be used as the carbon precursor.
  • the diameter of the polymer particles corresponds to the pore diameter of the hollow carbon capsule to be finally produced, and may be appropriately selected depending on the intended use.
  • polymer particles having a diameter of 10 nm to 20,000 nm may be used.
  • the weight ratio of the carbon precursor and the polymer particles in the spray solution is preferably 0.07: 3 to 70: 3.
  • the thickness of the carbon shell can be controlled by adjusting the content of the carbon precursor, and the higher the content of the carbon precursor, the thicker the carbon shell.
  • the spray solution may further include carbon nanotubes. When the carbon nanotubes are used together, the carbon nanotubes remain during the heat treatment to be described later, so that the structure of the carbon shell can be stably maintained, and the electrical conductivity and the mechanical properties can be improved by the inherent characteristics of the carbon nanotubes.
  • the carbon nanotubes may be single-walled carbon nanotubes, double-walled carbon nanotubes and multi-walled carbon nanotubes.
  • the length of the carbon nanotubes is preferably 0.5 ⁇ ⁇ to 50 ⁇ ⁇ . It is preferable to sonicate the spray solution containing the carbon nanotubes so that the carbon nanotubes may be well dispersed in the spray solution.
  • the weight ratio of the carbon nanotubes and the carbon precursor in the spray solution is preferably 1.5: 1 to 10: 1.
  • Step 2 is a step of preparing particles of the core / shell structure, the step of preparing the particles by spraying and drying the spray solution prepared in step 1.
  • the spray-drying method is a method widely used in the manufacture of foods, medicines, ceramics, and the like.
  • Step 3 is a step of finally manufacturing the hollow carbon capsule, and heat treating the particles prepared in step 2 to carbonize the carbon precursor and remove the polymer particles.
  • the polymer particles are thermally removed through the heat treatment to form pores, and the carbon precursors are carbonized to form carbon shells.
  • the heat treatment temperature is controlled to a temperature that pyrolyzes the polymer particles and carbonizes the carbon precursor, preferably 200-35 (first treatment at C and second treatment at 400-60CTC. thermal polymer i zat ion,
  • the shell-shaped solid carbon through a primary treatment, it is possible to generate.
  • the secondary treatment temperature is a temperature at which the polymer particles are pyrolyzed, and the polymer particles may be removed through the secondary treatment to form pores.
  • the primary silver and the secondary temperature may be applied respectively, or a method of gradually increasing the temperature in a range including both the primary temperature and the secondary temperature may be applied.
  • the temperature was raised from room temperature (25 ° C) to 400 ⁇ 600 ° C, it is preferred to heat treatment for 2 hours at 400 ⁇ 600 ° C.
  • the temperature is preferably raised to 10 ° C / min.
  • the carbon nanotubes are additionally used in the step 1, since the carbon nanotubes are maintained as they are, the structure of the intertwined carbon nanotubes is maintained, and the polymer particles are removed by pyrolysis. It is possible to maintain the formed empty space (pore) stably.
  • the carbon nanotubes can impart electrical conductivity and mechanical strength to the hollow carbon capsule, and thus, the shape can be stably maintained even when the hollow carbon capsule is used under severe conditions.
  • the method for producing the hollow carbon capsule according to the present invention has the advantage of using a spraying and drying method to form a core / shell structure, using no toxic substances, reducing environmental problems, and being suitable for mass production.
  • the spray solution is an aqueous solution
  • a material that is well dispersed in water may be applied to change the properties of the hollow carbon capsule to be manufactured.
  • polymer particles which are soft templates by using polymer particles which are soft templates, pore formation and carbon shell formation are possible at the same time, and there is an advantage that the process is simple.
  • a carbon precursor a material that is inexpensive and easy to handle may be used, and thus, the process may be easy and manufacturing cost may be reduced.
  • the present invention provides a hollow carbon capsule prepared by the above production method. An example of a hollow carbon capsule made in accordance with the present invention is shown in FIG. 6. In the hollow carbon capsul, the diameter of the inner pore is 10 nm to 20, 000 mm 3.
  • the carbon shell has a thickness of 1 nm to 1,000 nm.
  • the diameter of the entire hollow carbon capsule is 12 nm to 22,000 nm.
  • Hollow carbon capsules produced according to the present invention is characterized in that the pore is uniformly formed as a rigid shell, and the shape of the shell is well maintained without being broken. Accordingly, the hollow carbon capsule manufactured according to the present invention can be used as an adsorbent, a hydrogen storage material, an additive, a catalyst support, a lubricant, and the like by utilizing a large surface area and an inner space.
  • the hollow carbon capsule can be produced simply and effectively by using the polymer particles as a soft template and by using a spray-drying method.
  • FIG. 1 schematically shows a method of manufacturing the hollow carbon capsule of the present invention.
  • FIG. 2 graphically shows the TGA results of polystyrene (PS) and lignosulfonate (LS). '
  • Figure 3 is a graph showing the TGA results with the increased carbon capsule according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the BET surface area and the pore distribution (FIG. 4A) and the Isotherm dot result (FIG. 4B) of the hollow carbon capsule according to the embodiment of the present invention.
  • FIG. 5A shows polystyrene particles
  • FIG. 5B shows particles of PS core / LS shell before heat treatment
  • FIG. 5C shows particles of PS core / LS shell after heat treatment.
  • Figure 6 shows the pore and carbon shell of the hollow carbon capsule according to an embodiment of the present invention.
  • Figure 7 shows an SEM image of a hollow carbon capsule according to an embodiment of the present invention.
  • Figure 8 shows a TEM image of a hollow carbon capsule according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the BET surface area (FIG. 9A) and the pore distribution (FIG. 9B) of the vaporized carbon capsule according to the embodiment of the present invention.
  • Figure 10 shows the powder resistance measurement results of the hollow carbon capsule according to an embodiment of the present invention.
  • polystyrene particles used as soft templates were prepared. Specifically, 0.1 g of sodium dodecyl sulfate (SDS) was added to 90 mL of distilled water, followed by stirring (300 rpm) while raising the temperature to 80 ° C. to dissolve SDS. 10 g of styrene was added to the solution and mixed for 10 minutes. 0.1 g of the initiator KPSCpotassium persulfate) was completely dissolved in 10 mL of distilled water, which was then added to the styrene-dissolved solution and polymerized for 6 hours to prepare the polystyrene particles in a sol state (10 wt% PS sol.) . The prepared polystyrene particles are shown in Figure 5 (a), the diameter of the particles was about 200 nm.
  • SDS sodium dodecyl sulfate
  • the manufacturing method of the hollow carbon capsule according to the present invention is schematically illustrated in FIG. 1. Specifically, 1 g of lignosulfonate was added to 200 mL of distilled water, and completely dissolved using bath sonication. 10 wt PS sol prepared in Preparation Example in the solution. 30 mL was added and mixed with a homogenizer to prepare a spray solution. Spray and dry the spray solution with a Spray-dryer (Outlet temp .: 180 ° C, aspirator: 95%, feeding rate: 15%), and heat the temperature up to 600 ° C at a rate of 10 ° C / min in a tube furnace. After raising for 2 hours at 600 ° C. (Ar condition), a hollow carbon capsule was prepared.
  • Thermogravimetric analysis was performed to confirm the temperature-dependent behavior of lignosulfonate and polystyrene in the heat treatment process. Specifically, the weight according to temperature was measured for each of the used lignosulfonate (LS) and the polystyrene particles, and the results are shown in FIG. 2. As shown in FIG. 2, the lignosulfonate (LS) exhibited a constant mass loss with increasing temperature, and thermal polymerization occurred at about 200-35 CTC, indicating that about 45 wt% of carbon remained after the entire process.
  • the lignosulfonate can be assumed to have about 45% by weight of carbon remaining. Therefore, the content of lignosulfonate in the final hollow carbon capsule is theoretically about 11% by weight (0.25 X 0.45), which is consistent with the result of FIG.
  • the specific surface area and pore volume of the prepared hollow carbon capsule were measured as shown in FIG. 4. As a result, the BET surface area was measured to be 126.9483 m 2 / g and the pore volume was 0.328744 cmVg. 5) Observation of hollow carbon capsule
  • the prepared hollow carbon capsule was observed in a microscope as shown in FIG. 5, and polystyrene particles and core / shell particles before the heat treatment process were also observed for comparison.
  • Fig. 5 (a) shows the polystyrene particles before spraying, which are spherical particles having a diameter of about 200 nm.
  • Figure 5 (b) shows the core / shell particles before the heat treatment process, the total diameter is about 1000-3000 nm and polystyrene particles were observed inside.
  • 5 (c) shows the hollow carbon capsule after the heat treatment process, where pore was observed in the place where the polystyrene was removed, and it was observed that the carbon shell did not collapse and maintained its shape well. 6, the hollow carbon capsule was observed in more detail with a microscope.
  • the spray solution Spray-dryer (Out 1 et temp .: 180 ° C, aspirator ⁇ '95%, feeding rate: 15%) by spraying and drying, in a tube furnace at a rate of TC / min to a temperature 600 ° C After raising and calcining at 600 ° C. for 2 hours (Ar conditions), hollow carbon capsules were prepared. 2) Observation of the hollow carbon cap
  • the hollow carbon capsule prepared in Example was observed under a microscope.
  • FIG. 7 SEM images are shown in FIG. 7 and TEM images are shown in FIG. 8.
  • FIG. 7 it was confirmed that the form of pore was well maintained after carbonization, and the pore diameter was about 20C 220 nm, which was almost the same as the diameter of the polystyrene particles prepared in Preparation Example. From this, it was confirmed that the space in which the polystyrene particles were removed was well maintained as a pore.
  • FIG. 8 it was confirmed that the carbon nanotubes in the form of entangled in the hollow carbon capsule maintains the pore structure.
  • the BET surface area was 133.5264 m 2 / g
  • the pore volume was 0.309500 cm 3 / g.
  • the powder resistance of the hollow carbon capsule prepared in the above example was measured.
  • the powder resistance of the hollow carbon capsule prepared in Example 1 was also measured for comparison. Specifically, 1 g of each hollow carbon capsule was placed in a powder holder, and a bar was added. This was mounted on a powder resistance measuring device (HPRM-1000, Hantech Co., Ltd.), and then the sheet resistance, electrical conductivity, and packing density were measured while pressing the cylindrical bar at a constant pressure. The results are shown in FIG. 10 and Table 1 below.
  • the hollow carbon kaepseul of Example 2 containing the carbon nanotubes showing a high electric conductivity of approximately 10 5 times greater than that in Example 1.
  • the hollow carbon capsule according to the present invention can be confirmed that the conductive pathways are formed internally and externally due to the carbon nanotubes, thereby significantly improving the electrical conductivity.
  • the conductivity increased as the measured pressure increased.

Abstract

The present invention relates to a hollow carbon capsule manufacturing method using polymer particles as a soft template and uses a spray-drying method, thereby simply and effectively manufacturing the hollow carbon capsules.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
중공형 탄소 캡슐의 제조 방법  Method for producing hollow carbon capsule
【관련 출원 (들)과의 상호 인용】  [Cross Citation with Related Application (s)]
본 출원은 2014년 9월 30일자 한국 특허 출원 제 10-2014-0131859호, This application is filed with Korean Patent Application No. 10-2014-0131859, filed on September 30, 2014.
2014년 9월 30일자 한국 특허 출원 제 10-2014-0131860호 및 2015년 9월 25일자 한국 특허 출원 제 10-2015-0137058호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든.내용은 본 명세서의 일부로서 포함된다.Claims the benefit of priority based on Korean Patent Application No. 10-2014-0131860 filed on September 30, 2014 and Korean Patent Application No. 10-2015-0137058 filed on September 25, 2015, and is disclosed in the literature of such Korean patent applications. All content is included as part of this specification.
【기술분야】 Technical Field
본 발명은 중공형 탄소 캡슐을 대량 생산할 수 있는 제조 방법에 관한 것이다.  The present invention relates to a production method capable of mass production of hollow carbon capsules.
【배경기술】  Background Art
증공형 탄소 캡술 (hoi low carbon capsule)은 내부에 빈 공간 (pore)을 가지고 있고 p0re를 형성하는 쉘이 탄소로 이루어진 입자를 의미한다. 중공형 탄소 캡슐의 내부 pore로 인하여 표면적이 넓고, pore는 저장 공간의 역할을 할 수 있는바, 중공형 탄소 캡술은 흡착제, 수소 저장 물질, 첨가제, 촉매 지지체, 윤활제 등 그 웅용분야가 다양하다. 중공형 탄소 캡슐의 제조 원리는 템플레이트 (template) 코어와 탄소 전구체 (carbon precursor ) 쉘의 구조를 형성한 다음, 템플레이트를 제거하는 것이다. 이때 사용하는 템플레이트의 종류에 따라 크게 하드 (hard) 템플레이트를 이용하는 방법과 소프트 (sof t ) 템플레이트를 이용하는 방법으로 구분된다. 하드 템플레이트를 이용하는 방법은, 실리카 또는 금속 산화물 증의 무기소재를 템플레이트로 사용하는 방법이다. 하드 템플레이트는 탄화시 형상 변화가 거의 없기 때문에 pore 구조를 유지하기가 쉽고, 하드 템플레이트의 형상을 조절하여 pore의 형상도 용이하게 조절할 수 있는 이점이 있다. 그러나, 탄화 공정으로 탄소 쉘을 형성한 다음 하드 템플레이트를 제거하여야 하므로, 쉘 형성과 pore 형성이 두 단계로 구분되어 있고, 일반적으로 유독성의 산성 또는 염기성 물질로 하드 템플레이트를 제거하는 것이어서 환경적인 문제가 있다. 소프트 템플레이트를 이용하는 방법은, 고분자와 같은 열분해 (thermal decomposition)가 가능한 유기 소재를 템플레이트로 사용하는 방법이다. 탄화 공정에서 template로 사용된 고분자가 열분해 되어 제거됨과 동시에 탄소 전구체의 탄화가 동시에 진행되어 공정이 단순하고 유독성 물질도 사용되지 않으므로 환경 문제가 적은 이점이 있다. 그러나, 고분자의 열분해와 탄화가 동시에 진행되어, 형성되는 pore의 형태가 무너지기 쉽기 때문에, 하드 템플레이트를 이용하는 방법에 비하여 재료의 선택에 유의하여야 한다. 소프트 템플레이트를 이용하는 방법은 크게 두 가지를 고려하여야 하는데 하나는 탄화 공정 전에 소프트 템플레이트로 이루어진 코어 부분과 탄소 전구체로 이루어진 쉘 부분의 입자를 제조하는 것이고, 다른 하나는 소프트 템플레이트 및 탄소 전구체의 소재이다. 종래, 폴리스티렌 입자의 표면을 sulfonation하고 여기에 아닐린이 개질될 수 있도록 한 다음, 아닐린을 중합하여 코어 (폴리스티렌 )/쉘 (폴리아닐린)의 구조를 형성하고 이를 열처리하여 증공형 탄소 입자를 제조하는 방법이 보고된 바 있다 (DAI Xiao-ying et al. , New Carbon Materials, 2011, 26(5): 389-395) . 그러나, 상기 방법은 sulfonation 방법올 사용하기 때문에 황산 등이 사용되어야 하므로 환경 문제가 있고, 또한 대량 생산 방식에는 적합하지 않다. 또한, 소프트 템플레이트 및 탄소 전구체의 소재 선택도 중요한데, 만일 두 소재의 열적 특성이 유사하다면 형성되는 pore의 형태가 무너지기 쉽기 때문에 추가적인 공정이 필요하다. 일례로, 폴리스티렌 입자의 표면을 열적 특성이 유사한 glucose로 탄소 코팅하여 코어 (폴리스티렌 )/쉘 (탄소)의 구조를 형성하고 이를 열처리하여 중공형 탄소 입자를 제조하는 방법이 보고된 바 있다 (Robin J. White et al. , J. Am. Chem. Soc. , 2010, 132 : 17360-17363). 그러나, 상기 방법은 탄소 쉘 형성을 위하여 autoclave에서 약 24시간 동안 glucose의 전처리가 필요하여 공정 시간이 길어 대량 생산 방식에는 적합하지 않다. 따라서, 소프트 템플레이트와 탄소 전구체의 열적 특성이 구분되어야 한다ᅳ 또한, 탄소 전구체는 탄소 쉘을 형성하는 것이므로, 형성되는 탄소 쉘의 구조를 잘 유지할 수 있는 물질을 선택하여야 한다. 따라서, 소프트 템플레이트를 사용하면서도 대량 생산에 적합하고, 또한 pore의 형태가 잘 유지될 수 있는 중공형 탄소 캡슐의 제조 방법이 필요하다. 이에 본 발명자들은 중공형 탄소 캡슐을 대량 생산할 수 있는 방법을 연구하던 중, 고분자 입자를 소프트 템플레이트로 사용하고, 분무 및 건조 (spray-drying) 방법을 사용할 경우, 중공형 탄소 캡술을 간단하면서도 효과적으로 제조할 수 있음을 확인하고 본 발명을 완성하였다. Hoi low carbon capsule refers to particles in which the shell having a pore inside and forming a p 0re is made of carbon. Due to the internal pore of the hollow carbon capsule, the surface area is wide, and the pore can serve as a storage space. The hollow carbon capsulum has various uses such as adsorbents, hydrogen storage materials, additives, catalyst supports, and lubricants. The manufacturing principle of the hollow carbon capsule is to form the structure of the template core and the carbon precursor shell, and then remove the template. At this time, it is divided into a method of using a hard template and a method of using a sof t template according to the type of template used. The method of using a hard template is a method of using an inorganic material of silica or metal oxide film as a template. Hard template is easy to maintain the pore structure because there is almost no change in shape during carbonization, there is an advantage that the shape of the pore can be easily adjusted by adjusting the shape of the hard template. However, the carbonization process requires the formation of a carbon shell and then the removal of the hard template. The shell formation and the pore formation are divided into two stages. In general, the removal of the hard template with toxic acidic or basic materials causes environmental problems. have. The method of using a soft template is a method of using an organic material capable of thermal decomposition such as a polymer as a template. In the carbonization process, the polymer used as a template is thermally decomposed and removed, and at the same time, carbonization of the carbon precursor proceeds at the same time, so the process is simple and no toxic substance is used. However, since the pyrolysis and carbonization of the polymer proceed simultaneously and the form of the formed pore is likely to collapse, care must be taken in selecting the material compared to the method using a hard template. The method of using a soft template has two main considerations, one is to prepare particles of the core part of the soft template and the shell part of the carbon precursor before the carbonization process, and the other is the material of the soft template and the carbon precursor. Conventionally, a method of sulfonating the surface of polystyrene particles and allowing aniline to be modified therein, and then polymerizing aniline to form the structure of the core (polystyrene) / shell (polyaniline) and heat-treating them to produce the vaporized carbon particles It has been reported (DAI Xiao-ying et al., New Carbon Materials, 2011, 26 (5): 389-395). However, since the sulfuric acid should be used because the sulfonation method is used, there is an environmental problem and is not suitable for mass production. In addition, the material selection of the soft template and the carbon precursor is also important. If the thermal properties of the two materials are similar, an additional process is required because the shape of the formed pore is likely to collapse. For example, a method of carbon-coating the surface of polystyrene particles with glucose having similar thermal properties to form a core (polystyrene) / shell (carbon) structure and heat-treating the same has been reported (Robin J). White et al., J. Am. Chem. Soc., 2010, 132: 17360-17363). However, this method requires about 24 hours of glucose pretreatment in the autoclave to form carbon shells, which is not suitable for mass production because of the long process time. not. Therefore, the thermal properties of the soft template and the carbon precursor must be distinguished. In addition, since the carbon precursor forms the carbon shell, a material that can maintain the structure of the carbon shell to be formed must be selected. Therefore, there is a need for a method for producing hollow carbon capsules that are suitable for mass production while using soft templates and that can maintain the shape of pore well. Therefore, the inventors of the present invention while studying a method for mass production of hollow carbon capsules, using the polymer particles as a soft template, spray and drying (spray-drying) method, using a simple and effective production of hollow carbon capsules It was confirmed that the present invention was completed.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 중공형 탄소 캡슐을 간단하면서도 효과적으로 제조할 수 있는 제조 방법을 제공하기 위한 것이다.  The present invention is to provide a manufacturing method capable of producing a hollow carbon capsule simply and effectively.
또한, 본 발명은 상기의 제조방법으로 제조된 증공형 탄소 캡슬을 제공하기 위한 것이다.  In addition, the present invention is to provide a vacuum-type carbon capsule produced by the above production method.
【과제의 해결 수단】  [Measures of problem]
상기 과제를 해결하기 위하여, 본 발명은 하기의 단계를 포함하는 중공형 탄소 캡술의 제조 방법을 제공한다:  In order to solve the above problems, the present invention provides a method of manufacturing a hollow carbon capsule comprising the following steps:
탄소 전구체, 고분자 입자 및 용매를 포함하는 분무 용액을 제조하는 단계 (단계 1) ;  Preparing a spray solution comprising a carbon precursor, polymer particles, and a solvent (step 1);
상기 분무 용액을 분무 및 건조하여 입자를 제조하는 단계 (단계 2) ; 및 상기 입자를 열처리하여 탄소 전구체를 탄화시키고 고분자 입자를 제거하는 단계 (단계 3) . 본 발명에서 사용되는 용어 "중공형 탄소 캡슐 (hol low carbon capsule) "은, 코어 /쉘의 구조를 가지는 입자에서, 코어 부분은 빈 공간 (pore)이고 쉘 부분은 탄소로 이루어져 있는 입자를 의미한다. 또한, 본 발명에서 제조되는 중공형 탄소 캡술은 서로 뭉쳐있는 형태로 제조될 수 있다. 뭉쳐있는 형태로 제조되는 경우, 각 쉘은 다른 쉘과 연결되는 구조를 가지고 있다. 본 발명에 따른 중공형 탄소 캡슐의 일례를 도 6에 나타내었다. 중공형 탄소 캡슐 내부에는 pore가 다수 존재하고, 이러한 pore에 의하여 표면적이 넓고 내부에 저장 공간이 있기 때문에, 이를 활용하여 흡착제, 수소 저장 물질, 첨가제, 촉매 지지체, 윤활제 등에 웅용될 수 있다. 본 발명에 따른 중공형 탄소 캡슐을 제조하는 원리는, 코어 /쉘 구조의 입자를 제조한 다음 쉘의 구조를 유지하면서 동시에 코어의 물질을 제거하는 것이다. 즉, 열처리를 통하여 코어 물질의 제거와 탄소 쉘의 형성이 동시에 일어나야 한다. 이에 본 발명에서는 쉘 물질로 탄소 전구체를, 코어 물질로 고분자 입자를 사용하고, 이를 분무 및 건조 (spray-drying) 방법으로 코어 /쉘 구조의 입자를 제조한 다음,' 열처리하여 중공형 탄소 캡술을 제조하는 것을 특징으로 한다. 먼저, 상기 단계 1은 분무 및 건조를 위한 분무 용액을 제조하는 단계로서, 탄소 전구체, 고분자 입자 및 용매를 포함하는 분무 용액을 제조하는 단계이다. 상기 고분자 입자의 고분자는, 1종 이상을 사용할수 있으며 폴리스티렌, 폴리 (메틸 메타크릴레이트), 폴리프로필렌 , 폴리에틸렌, 폴리우레탄, 폴리비닐알코올, 폴리비닐아세테이트 또는 에틸렌 -비닐 아세테이트일 수 있다. 바람직하게는, 상기 고분자 입자의 고분자는 폴리스티렌이다. 상기 고분자 입자는 상업적으로 쉽게 구입할 수 있으며, 폴리스티렌 입자의 경우에는 에멀젼 중합 방법으로 쉽게 제조할 수 있다. 에멀견 중합 방법은 폴리스티렌 단량체 및 유화제 * 용매에 첨가하는 단계; 및 개시제를 첨가하여 중합하는 단계로 제조할 수 있다. 상기 용매로 물을 사용할 수 있으며, 상기 유화제로 SDS(sodium dodecyl sul fate)를 사용할 수 있다. 에멀견 중합 방법은 유화제 및 모노머 함량을 조절하여 폴리스티렌 입자의 크기를 조절할 수 있는 이점이 있다. 상기 탄소 전구체는 상기 고분자 입자의 열분해 온도 보다 낮은 온도에서 가교된다는 특징이 있다. 즉, 상기 탄소 전구체와 고분자 입자는 온도에 따른 열적 거동이 상이하다 . 예를 들어, 도 2(실험예 1)에 나타난 바와 같이, 400-450°C에서 폴리스티렌 입자는 열분해되지만, 본 발명에서 사용할 수 있는 탄소 전구체의 한 예인 리그노술포네이트는 약 45 중량 %의 탄소가 남는 것을 확인할 수 있다. 이에 따라, 두 물질이 코어 /쉘의 구조인 경우 도 3(실험예 2)와 같이 200°C 부근에서 탄소 전구체가 가교되면서 쉘이 먼저 형성된 다음, 400-450°C에서 고분자 입자의 열분해가 일어난다. 이를 통하여 코어 부분의 고분자를 모두 열분해시켜 차지하고 있던 공간올 빈 공간 (pore)으로 형성하고 쉘 부분의 탄소 전구체는 탄화시켜 탄소 쉘을 형성할 수 있다. 또한, 탄소 전구체는 탄화되면서 셀에 메소포어 (mesopore)가 형성될 수 있다. 또한, 상기 탄소 전구체는 1종 이상을 사용할 수 있으며, 방향족성을 가지며 물에 녹는 물질이 바람직하다. 상기와 같은 특성을 가지는 탄소전구체의 예로, 리그노술포네이트 (lignosulfonate), 탄닌산 (tannic acid), 갈산 (gallic acid) , 바닐린산 (vanillic acid) , 도파민 (dopamine), 엽산 (folic acid) , 카페산 (caffeic acid) , 로즈마리산 (rosmarinic acid) , 클로로겐산 (chlorogenic acid), 페를산 (ferulic acid), 시나핀산 (sinapinic acid), 엘라그산 (ellagic acid) 및 엘라지탄닌계 (ellagitannins)를 들 수 있다. 상기 엘라지탄닌계 화합물로는, 카스탈라진 (castalagin), 카스탈린 (castal in), 카수아릭틴 (casuarictin), 그란디닌 (grandinin) , 푸니칼라긴 (punicalagin)ᅳ 푸니칼린 (pimicalin), 로부린 A(roburin A), 텔리마그란딘 (tel 1 imagrandin) 및 테르플라빈 B(terflavin B)를 들 수 있다. 바람직하게는, 상기 탄소 전구체로 리그노술포네이트를 사용할 수 있다. 상기 고분자 입자의 직경은 최종 제조되는 중공형 탄소 캡슐의 pore 직경에 상웅하며, 용도에 따라 적절히 선택할 수 있다. 바람직하게는, 10 nm 내지 20,000 nm 직경의 고분자 입자를 사용할 수 있다. 상기 분무 용액의 용매는 물을 사용할 수 있다. 상기 분무 용액 내에서 탄소 전구체 및 고분자 입자의 중량비는 0.07 : 3 내지 70 : 3인 것이 바람직하다. 탄소 전구체의 함량을 조절하여 탄소 쉘의 두께를 조절할 수 있으며, 탄소 전구체의 함량이 높을수록 탄소 쉘의 두께가 두꺼워진다. 또한, 탄소 전구체가 고분자 입자의 표면에 잘 흡착될 수 있도록 상기 분무 용액을 교반하는 것이 바람직하다. ― 또한, 상기 단계 1에서, 상기 분무 용액은 탄소나노튜브를 추가로 포함할 수 있다. 탄소나노튜브를 함께 사용할 경우, 후술할 열처리시 탄소나노튜브가 잔류하여 탄소 쉘의 구조를 안정적으로 유지할 수 있고, 또한 탄소나노튜브 고유의 특성에 의하여 전기전도도 및 기계적 물성을 향상시킬 수 있다. 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 및 다중벽 탄소나노튜브를 사용할 수 있다. 상기 탄소나노튜브의 길이는 0.5 μ ιτι 내지 50 μ ιτι 인 것이 바람직하다. 상기 탄소나노튜브가 분무 용액 내에서 잘 분산될 수 있도록, 상기 탄소나노튜브가 포함된 분무 용액을 초음파 처리하는 것이 바람직하다. 상기 분무 용액 내에서 탄소나노튜브 및 탄소 전구체의 중량비는 1.5 : 1 내지 10 : 1인 것이 바람직하다. 상기 단계 2는, 코어 /쉘 구조의 입자를 제조하는 단계로서, 상기 단계 1에서 제조한 분무 용액을 분무 및 건조하여 입자를 제조하는 단계이다. 상기 분무 및 건조 (spray-drying) 방법은, 식품, 의약품 및 세라믹 등의 제조에 광범위하게 사용되는 방법으로서, 원하는 크기의 구형 입자를 균일하게 제조하기 때문에 추가적인 가공이 필요 없어 대량 생산 방식에 적합한 방법이다. 상기 단계 1에서 제조한 분무 용액을 분무하게 되면, 표면적이 큰 고분자 입자의 표면에 탄소 전구체가 흡착되고, 이를 건조하여 코어 /쉘 구조의 입자를 제조할 수 있다. 이에 따라 고분자 입자가 코어 부분을 형성하고, 탄소 전구체가 쉘 부분을 형성하게 된다. 또한, 복수의 코어 /쉘 구조의 입자가 뭉쳐지게 되며, 전체적으로는 구형에 가까운 형태가 된다. 상기 단계 3은, 중공형 탄소 캡슬을 최종적으로 제조하는 단계로서, 상기 단계 2에서 제조한 입자를 열처리하여 탄소 전구체를 탄화시키고 고분자 입자를 제거하는 단계이다. 상기 열처리를 통하여 고분자 입자를 열분해로 제거하여 빈 공간 (pore)을 형성하고, 탄소 전구체를 탄화시켜 탄소 쉘을 형성한다. 상기 열처리 온도는 고분자 입자를 열분해시키고 탄소 전구체를 탄화시키는 온도로 조절하며, 바람직하게는 200-35( C에서 1차로 처리하고, 400-60CTC에서 2차로 처리한다. 1차 처리 온도는 탄소 전구체가 thermal polymer i zat ion되는 은도로서,Spraying and drying the spray solution to prepare particles (step 2); And heat treating the particles to carbonize the carbon precursor and remove the polymer particles (step 3). As used herein, the term "hol low carbon capsule" refers to a particle having a core / shell structure in which the core portion is a pore and the shell portion is made of carbon. . In addition, the hollow carbon capsule prepared in the present invention may be prepared in a form in which they are aggregated together. When manufactured in a clustered form, each shell has a structure that connects to another shell. An example of a hollow carbon capsule according to the present invention is shown in FIG. 6. Since a large number of pore is present in the hollow carbon capsule, and the pore has a large surface area and a storage space therein, the pore can be used as an adsorbent, a hydrogen storage material, an additive, a catalyst support, a lubricant, and the like. The principle of producing hollow carbon capsules according to the invention is to produce particles of the core / shell structure and then to remove the material of the core while maintaining the structure of the shell. In other words, removal of the core material and formation of the carbon shell must occur simultaneously through the heat treatment. Accordingly, in the present invention, the carbon precursor is used as the shell material and the polymer particles are used as the core material, and the core / shell structured particles are prepared by spraying and spray-drying, and then the ' heat-treated hollow carbon capsule is used. It is characterized by manufacturing. First, step 1 is a step of preparing a spray solution for spraying and drying, the step of preparing a spray solution containing a carbon precursor, polymer particles and a solvent. The polymer of the polymer particles may be used one or more, and may be polystyrene, poly (methyl methacrylate), polypropylene, polyethylene, polyurethane, polyvinyl alcohol, polyvinylacetate or ethylene-vinyl acetate. Preferably, the polymer of the polymer particles is polystyrene. The polymer particles can be easily purchased commercially, in the case of polystyrene particles can be easily prepared by the emulsion polymerization method. The emulsion polymerization process comprises the steps of adding to a polystyrene monomer and an emulsifier * solvent; And it can be prepared by the step of polymerization by adding an initiator. Water may be used as the solvent, and SDS (sodium dodecyl sul fate) may be used as the emulsifier. The emulsion polymerization method has the advantage of controlling the size of the polystyrene particles by controlling the content of the emulsifier and monomer. The carbon precursor is characterized in that it crosslinks at a temperature lower than the thermal decomposition temperature of the polymer particles. That is, the carbon precursor and the polymer particles have different thermal behavior depending on temperature. For example, as shown in FIG. 2 (Experimental Example 1), polystyrene particles are pyrolyzed at 400-450 ° C., but lignosulfonate, an example of a carbon precursor that can be used in the present invention, is about 45% by weight of carbon. You can see that is left. Accordingly, in the case where the two materials have a core / shell structure, as shown in FIG. 3 (Experimental Example 2), the carbon precursor is crosslinked in the vicinity of 200 ° C. to form a shell first, and then thermal decomposition of the polymer particles occurs at 400-450 ° C. . Through this, all polymers in the core portion may be thermally decomposed to form empty spaces occupying the space, and carbon precursors in the shell portion may be carbonized to form carbon shells. In addition, as the carbon precursor is carbonized, mesopores may be formed in the cell. In addition, the carbon precursor may be used one or more, preferably a substance having aromaticity and soluble in water. Examples of carbon precursors having the above characteristics include lignosulfonate, tannic acid, gallic acid, vanillic acid, dopamine, folic acid, and caffe. Acids (caffeic acid, rosmarinic acid, chlorogenic acid, ferulic acid, sinapinic acid, ellagic acid and ellagitannins). Can be. Examples of the ellagitannin-based compounds include castalazine, castal in, casuarictin, grandinin, punicalagin and punicalin, Roburin A, telimagrandin, and terflavin B. Preferably, lignosulfonate may be used as the carbon precursor. The diameter of the polymer particles corresponds to the pore diameter of the hollow carbon capsule to be finally produced, and may be appropriately selected depending on the intended use. Preferably, polymer particles having a diameter of 10 nm to 20,000 nm may be used. Water may be used as the solvent of the spray solution. The weight ratio of the carbon precursor and the polymer particles in the spray solution is preferably 0.07: 3 to 70: 3. The thickness of the carbon shell can be controlled by adjusting the content of the carbon precursor, and the higher the content of the carbon precursor, the thicker the carbon shell. In addition, it is preferable to stir the spray solution so that the carbon precursor can be adsorbed well on the surface of the polymer particles. In addition, in step 1, the spray solution may further include carbon nanotubes. When the carbon nanotubes are used together, the carbon nanotubes remain during the heat treatment to be described later, so that the structure of the carbon shell can be stably maintained, and the electrical conductivity and the mechanical properties can be improved by the inherent characteristics of the carbon nanotubes. The carbon nanotubes may be single-walled carbon nanotubes, double-walled carbon nanotubes and multi-walled carbon nanotubes. The length of the carbon nanotubes is preferably 0.5 μ ιτι to 50 μ ιτι. It is preferable to sonicate the spray solution containing the carbon nanotubes so that the carbon nanotubes may be well dispersed in the spray solution. The weight ratio of the carbon nanotubes and the carbon precursor in the spray solution is preferably 1.5: 1 to 10: 1. Step 2 is a step of preparing particles of the core / shell structure, the step of preparing the particles by spraying and drying the spray solution prepared in step 1. The spray-drying method is a method widely used in the manufacture of foods, medicines, ceramics, and the like. Since the spherical particles of the desired size are uniformly produced, no additional processing is required, and thus the method is suitable for mass production. to be. When spraying the spray solution prepared in step 1, the surface area of the polymer A carbon precursor is adsorbed on the surface of the particles, and dried to prepare particles having a core / shell structure. As a result, the polymer particles form the core portion, and the carbon precursor forms the shell portion. In addition, the particles of a plurality of core / shell structures are aggregated, and the overall shape is close to a spherical shape. Step 3 is a step of finally manufacturing the hollow carbon capsule, and heat treating the particles prepared in step 2 to carbonize the carbon precursor and remove the polymer particles. The polymer particles are thermally removed through the heat treatment to form pores, and the carbon precursors are carbonized to form carbon shells. The heat treatment temperature is controlled to a temperature that pyrolyzes the polymer particles and carbonizes the carbon precursor, preferably 200-35 (first treatment at C and second treatment at 400-60CTC. thermal polymer i zat ion,
1차 처리를 통하여 견고한 탄소 쉘을 형,성할 수 있다. 2차 처리 온도는 고분자 입자를 열분해시키는 온도로서, 2차 처리를 통하여 고분자 입자를 제거하여 빈 공간 (pore)을 형성할 수 있다. 1차 은도와 2차 온도를 각각 적용할 수도 있고, 1차 온도와 2차 온도를 모두 포함하는 범위로 온도를 서서히 상승시키는 방법을 적용할 수도 있다. 바람직하게는, 상온 (25°C )에서 400~600°C까지 온도를 상승시키고, 400~600°C에서 2시간 동안 열처리하는 것이 바람직하다. 상기 온도는 10°C /min으로 상승시키는 것이 바람직하다. 또한, 앞서 설명한 -바와 같이, 상기 단계 1에서 탄소나노튜브를 추가로 사용한 경우에는, 탄소나노튜브는 그대로 유지되기 때문에, 복잡하게 얽혀있는 탄소나노튜브의 구조가 유지되어, 고분자 입자가 열분해로 제거되어 형성된 빈 공간 (pore)을 안정적으로 유지할 수 있다. 또한, 탄소나토튜브로 인하여 중공형 탄소 캡술에 전기전도도와 기계적 강도를 부여할 수 있으며, 따라서 가혹한 조건에서 중공형 탄소 캡술이 사용되는 경우에도 그 형태를 안정적으로 유지할 수 있다. 본 발명에 따른 중공형 탄소 캡슬의 제조 방법은, 코어 /쉘 구조를 형성하기 위하여 분무 및 건조 방법을 사용함으로써, 유독성 물질을 사용하지 않아 환경 문제가 적고, 대량 생산 방식에 적합하다는 이점이 있다. 또한, 분무 용액은 수계 용액이기 때문에 제조하고자 하는 중공형 탄소 캡슬의 특성을 변화시키기 위하여 물에 잘 분산되는 물질을 응용할 수도 있다. 또한, 소프트 템플레이트인 고분자 입자를 사용함으로써, pore 형성과 탄소 쉘 형성이 동시에 가능하여, 공정이 단순하다는 이점이 있다. 또한, 탄소 전구체로는 값이 저렴하고 취급이 용이한 물질을 사용하여, 공정이 용이하고 제조 단가를 낮출 수 있다. 또한, 본 발명은 상기의 제조방법으로 제조된 중공형 탄소 캡슐을 제공한다. 본 발명에 따라 제조되는 중공형 탄소 캡슐의 일례를 도 6에 나타내었다. 상기 중공형 탄소 캡술에서, 내부 pore의 직경은 10 nm 내지 20 , 000 皿이다. 또한, 상기 탄소 쉘의 두께는 1 nm 내지 1 , 000 nm이다. 또한, 중공형 탄소 캡슐은 서로 뭉쳐았는 형태로 제조하는 .경우, 전체 중공형 탄소 캡슐의 직경은 12 nm 내지 22 , 000 nm이다. 본 발명에 따라 제조되는 중공형 탄소 캡슐은 견고한 쉘로 pore가 균일하게 형성되어 있으며, 쉘의 구형이 무너지지 않고 그 형태를 잘 유지하고 있다는 특징이 있다. 이에 따라, 본 발명에 따라 제조된 중공형 탄소 캡슬은 넓은 표면적과 내부 공간을 활용하여, 흡착제, 수소 저장 물질, 첨가제, 촉매 지지체, 윤활제 등으로 사용할 수 있다. The shell-shaped solid carbon through a primary treatment, it is possible to generate. The secondary treatment temperature is a temperature at which the polymer particles are pyrolyzed, and the polymer particles may be removed through the secondary treatment to form pores. The primary silver and the secondary temperature may be applied respectively, or a method of gradually increasing the temperature in a range including both the primary temperature and the secondary temperature may be applied. Preferably, the temperature was raised from room temperature (25 ° C) to 400 ~ 600 ° C, it is preferred to heat treatment for 2 hours at 400 ~ 600 ° C. The temperature is preferably raised to 10 ° C / min. In addition, as described above, when the carbon nanotubes are additionally used in the step 1, since the carbon nanotubes are maintained as they are, the structure of the intertwined carbon nanotubes is maintained, and the polymer particles are removed by pyrolysis. It is possible to maintain the formed empty space (pore) stably. In addition, the carbon nanotubes can impart electrical conductivity and mechanical strength to the hollow carbon capsule, and thus, the shape can be stably maintained even when the hollow carbon capsule is used under severe conditions. The method for producing the hollow carbon capsule according to the present invention has the advantage of using a spraying and drying method to form a core / shell structure, using no toxic substances, reducing environmental problems, and being suitable for mass production. In addition, since the spray solution is an aqueous solution, a material that is well dispersed in water may be applied to change the properties of the hollow carbon capsule to be manufactured. In addition, by using polymer particles which are soft templates, pore formation and carbon shell formation are possible at the same time, and there is an advantage that the process is simple. In addition, as a carbon precursor, a material that is inexpensive and easy to handle may be used, and thus, the process may be easy and manufacturing cost may be reduced. In addition, the present invention provides a hollow carbon capsule prepared by the above production method. An example of a hollow carbon capsule made in accordance with the present invention is shown in FIG. 6. In the hollow carbon capsul, the diameter of the inner pore is 10 nm to 20, 000 mm 3. In addition, the carbon shell has a thickness of 1 nm to 1,000 nm. In addition, when the hollow carbon capsule is manufactured in the form of agglomeration with each other, the diameter of the entire hollow carbon capsule is 12 nm to 22,000 nm. Hollow carbon capsules produced according to the present invention is characterized in that the pore is uniformly formed as a rigid shell, and the shape of the shell is well maintained without being broken. Accordingly, the hollow carbon capsule manufactured according to the present invention can be used as an adsorbent, a hydrogen storage material, an additive, a catalyst support, a lubricant, and the like by utilizing a large surface area and an inner space.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 증공형 탄소 캡슐의 제조 방법은, 고분자 입자를 소프트 템플레이트로 사용하고, 분무 및 건조 (spray-drying) 방법을 사용함으로써, 중공형 탄소 캡슐을 간단하면서도 효과적으로 제조할 수 있다. 【도면의 간단한 설명】 In the method for producing a vaporized carbon capsule according to the present invention, the hollow carbon capsule can be produced simply and effectively by using the polymer particles as a soft template and by using a spray-drying method. [Brief Description of Drawings]
도 1은, 본 발명의 중공형 탄소 캡슐의 제조 방법을 도식적으로 나타낸 것이다. ^ 도 2는, 폴리스티렌 (PS)과 리그노술포네이트 (LS)의 TGA 결과를 그래프로 나타낸 것이다. ' 1 schematically shows a method of manufacturing the hollow carbon capsule of the present invention. ^ FIG. 2 graphically shows the TGA results of polystyrene (PS) and lignosulfonate (LS). '
도 3은, 본 발명의 일실시예에 따른 증공형 탄소 캡술와 TGA 결과를 그래프로 나타낸 것이다.  Figure 3 is a graph showing the TGA results with the increased carbon capsule according to an embodiment of the present invention.
도 4는, 본 발명의 일실시예에 따른 중공형 탄소 캡슬의 BET 표면적 및 pore 분포 (도 4a) , Isotherm pl ot 결과 (도 4b)를 그래프로 나타낸 것이다.  4 is a graph showing the BET surface area and the pore distribution (FIG. 4A) and the Isotherm dot result (FIG. 4B) of the hollow carbon capsule according to the embodiment of the present invention.
도 5a는 폴리스티렌 입자를, 도 5b는 열처리 전의 PS 코어 /LS 쉘의 입자를, 도 5c는 열처리 후의 PS 코어 /LS 쉘의 입자를 나타낸 것이다.  FIG. 5A shows polystyrene particles, FIG. 5B shows particles of PS core / LS shell before heat treatment, and FIG. 5C shows particles of PS core / LS shell after heat treatment.
도 6은, 본 발명의 일실시예에 따른 중공형 탄소 캡술의 pore 및 탄소 쉘을 나타낸 것이다.  Figure 6 shows the pore and carbon shell of the hollow carbon capsule according to an embodiment of the present invention.
도 7은, 본 발명의 일실시예에 따른 중공형 탄소 캡슐의 SEM 이미지를 나타낸 것이다.  Figure 7 shows an SEM image of a hollow carbon capsule according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 중공형 탄소 캡슐의 TEM 이미지를 나타낸 것이다.  Figure 8 shows a TEM image of a hollow carbon capsule according to an embodiment of the present invention.
도 9는, 본 발명의 일실시예에 따른 증공형 탄소 캡슐의 BET 표면적 (도 9a) , pore 분포 (도 9b)를 그래프로 나타낸 것이다.  9 is a graph showing the BET surface area (FIG. 9A) and the pore distribution (FIG. 9B) of the vaporized carbon capsule according to the embodiment of the present invention.
도 10은, 본 발명의 일실시예에 따른 중공형 탄소 캡슐의 분체 저항 측정 결과를 나타낸 것이다.  Figure 10 shows the powder resistance measurement results of the hollow carbon capsule according to an embodiment of the present invention.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 하기 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다. 제조예: 폴리스티렌 입자의 제조  Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto. Preparation Example: Preparation of Polystyrene Particles
본 발명에 따른 중공형 탄소 캡술의 제조에 앞서, 소프트 템플레이트로 사용되는 폴리스티렌 입자를 제조하였다. 구체적으로, 증류수 90 mL에 SDS(sodium dodecyl sulfate) 0.1 g을 첨가한 다음, 80°C까지 온도를 높이면서 교반 (300 rpm)하여 SDS를 용해시켰다. 스티렌 (styrene) 10 g을 상기 용액에 첨가하고 10분 동안 흔합하였다. 개시제인 KPSCpotassium persulfate) 0.1 g을 증류수 10 mL에 완전히 용해시킨 후, 이를 스티렌이 용해된 상기 용액에 첨가하고 6시간 동안 중합 반웅시켜 플리스티렌 입자를 졸 상태로 제조하였다 (10 wt% PS sol.). 제조된 폴리스티렌 입자는 도 5(a)에 나타내었으며, 입자의 직경은 약 200 nm이었다. 실시예 1: 중공형 탄소 캡술의 제조 Prior to the preparation of the hollow carbon capsules according to the invention, polystyrene particles used as soft templates were prepared. Specifically, 0.1 g of sodium dodecyl sulfate (SDS) was added to 90 mL of distilled water, followed by stirring (300 rpm) while raising the temperature to 80 ° C. to dissolve SDS. 10 g of styrene was added to the solution and mixed for 10 minutes. 0.1 g of the initiator KPSCpotassium persulfate) was completely dissolved in 10 mL of distilled water, which was then added to the styrene-dissolved solution and polymerized for 6 hours to prepare the polystyrene particles in a sol state (10 wt% PS sol.) . The prepared polystyrene particles are shown in Figure 5 (a), the diameter of the particles was about 200 nm. Example 1 Preparation of Hollow Carbon Capsule
1) 중공형 탄소 캡술의 제조  1) Preparation of hollow carbon capsul
본 발명에 따른 중공형 탄소 캡슐의 제조 방법을 도 1에 개략적으로 도시하였다. 구체적으로, 리그노술포네이트 (lignosulfonate) 1 g을 증류수 200 mL에 첨가하고, bath sonication을 사용하여 완전히 녹였다. 상기 용액에 상기 제조예에서 제조한 10 wt PS sol. 30 mL를 첨가하여 homogenizer로 흔합하여 분무 용액을 제조하였다. 상기 분무 용액을 Spray-dryer (Outlet temp.: 180 °C, aspirator: 95%, feeding rate: 15%)로 분무 및 건조하고, tube furnace에서 10°C/min의 속도로 600°C까지 온도를 올린 후 600°C에서 2시간 동안 소성하여 (Ar 조건), 중공형 탄소 캡슐을 제조하였다. The manufacturing method of the hollow carbon capsule according to the present invention is schematically illustrated in FIG. 1. Specifically, 1 g of lignosulfonate was added to 200 mL of distilled water, and completely dissolved using bath sonication. 10 wt PS sol prepared in Preparation Example in the solution. 30 mL was added and mixed with a homogenizer to prepare a spray solution. Spray and dry the spray solution with a Spray-dryer (Outlet temp .: 180 ° C, aspirator: 95%, feeding rate: 15%), and heat the temperature up to 600 ° C at a rate of 10 ° C / min in a tube furnace. After raising for 2 hours at 600 ° C. (Ar condition), a hollow carbon capsule was prepared.
2) 열중량분석 2) Thermogravimetric Analysis
열처리 공정에서 리그노술포네이트 및 폴리스티렌의 온도에 따른 거동을 확인하기 위한 열중량 분석 (thermogravimetric analysis)을 실시하였다. 구체적으로, 상기 사용한 리그노술포네이트 (LS)와 폴리스티렌 입자 각각에 대하여 온도에 따른 중량을 측정하였으며, 그 결과를 도 2에 나타내었다. 도 2에 나타난 바와 같이, 리그노술포네이트 (LS)는 온도가 증가하면서 일정한 질량 손실을 나타내다가 약 200-35CTC에서 thermal polymerization이 일어나면서 전체 공정 후에 약 45 중량 %의 탄소가 남는 것이 확인되었다. 반면, 폴리스티렌 (PS)은 온도가 증가함에 따라 질량 손실이 일어나지 않다가 약 400- 450°C에서 급격한 질량 손실이 일어나고 약 45CTC 이상에서 거의 모든 폴리스티렌이 열분해되는 것을 확인할 수 있었다. 상기의 결과로부터, 리그노술포네이트와 폴리스티렌의 열적 특성이 상이하고, 폴리스티렌이 모두 열분해되는 은도 이전에 리그노술포네이트가 thermal polymer i zat i on 될 수 있음을 확인하였다. Thermogravimetric analysis was performed to confirm the temperature-dependent behavior of lignosulfonate and polystyrene in the heat treatment process. Specifically, the weight according to temperature was measured for each of the used lignosulfonate (LS) and the polystyrene particles, and the results are shown in FIG. 2. As shown in FIG. 2, the lignosulfonate (LS) exhibited a constant mass loss with increasing temperature, and thermal polymerization occurred at about 200-35 CTC, indicating that about 45 wt% of carbon remained after the entire process. On the other hand, Polystyrene (PS) was found that no mass loss occurs with increasing temperature, but sudden mass loss occurs at about 400-450 ° C., and almost all polystyrene is pyrolyzed above about 45 CTC. From the above results, it was confirmed that the thermal characteristics of lignosulfonate and polystyrene are different, and that lignosulfonate may be thermal polymer i zat i on before silver, in which all of polystyrene is pyrolyzed.
3) 열중량분석 3) Thermogravimetric Analysis
상기 열중량 분석과 동일한 방법으로 실험하되, 상기 실시예에서 분무 및 건조하여 제조된 입자를 사용하여 은도에 따른 중량을 측정하였으며, 그 결과를 도 3에 나타내었다. 도 3에 나타난 바와 같이, 폴리스티렌 코어로 인하여 약 4C C 부근에서 급격한 질량 손실이 나타났다. 그러나, 리그노술포네이트가 thermal polymer i zat ion되어 입자가 전부 분해되지는 않았으며, 약 11 중량 %가 최종적으로 남아있는 것이 확인되었으며, 이렇게 남아 있는 물질이 중공형 탄소 캡술의 쉘을 형성하는 것으로 확 되었다. 또한, 이의 결과는 도 2의 결과와도 일치하는 것이다. 구체적으로, 상기 실시예에서 분무 및 건조하여 제조된 입자는 리그노술포네이트가 25 중량 ¾로 포함되어 있고 (PS/LS=3/1) , 도 2에 따르면 전체 공정 후에 폴리스티렌은 모두 제거되고, 리그노술포네이트는 약 45 중량 %의 탄소가 남아있는 것으로 가정할 수 있다. 따라서, 최종 제조되는 중공형 탄소 캡슐에서 리그노술포네이트의 함량은 이론상 약 11 중량 %(0.25 X 0.45)인데, 이는 도 3의 결과와 일치하는 것이다.  The experiment was carried out in the same manner as the thermogravimetric analysis, using the particles prepared by spraying and drying in the above example to determine the weight according to the degree of silver, the results are shown in FIG. As shown in FIG. 3, a sharp mass loss was observed around 4 C C due to the polystyrene core. However, it was confirmed that lignosulfonate was not thermally decomposed due to thermal polymer i zat ion, and about 11% by weight was finally left. Thus, the remaining material formed a shell of hollow carbon capsul. It was confirmed. In addition, the result is also consistent with the result of FIG. Specifically, the particles prepared by spraying and drying in the above example contains lignosulfonate at 25 weight ¾ (PS / LS = 3/1), and according to FIG. 2, all polystyrene is removed after the whole process, The lignosulfonate can be assumed to have about 45% by weight of carbon remaining. Therefore, the content of lignosulfonate in the final hollow carbon capsule is theoretically about 11% by weight (0.25 X 0.45), which is consistent with the result of FIG.
4) 중공형 탄소 캡술의 비표면적 및 pore부피 측정 4) Measurement of specific surface area and pore volume of hollow carbon capsule
상기 제조한 중공형 탄소 캡슐의 비표면적 및 pore 부피를 도 4와 같이 측정하였으며, 그 결과 BET surface area는 126.9483 m2/g , pore 부피는 0.328744 cmVg으로 측정되었다. 5) 중공형 탄소캡슐의 관찰 The specific surface area and pore volume of the prepared hollow carbon capsule were measured as shown in FIG. 4. As a result, the BET surface area was measured to be 126.9483 m 2 / g and the pore volume was 0.328744 cmVg. 5) Observation of hollow carbon capsule
상기 제조한 중공형 탄소 캡슐을 현미경으로 관찰하여 도 5에 나타내었으며, 비교를 위하여 폴리스티렌 입자, 열처리 공정 전의 코어 /쉘 입자도 함께 관찰하였다. 도 5(a)는 분무 전의 폴리스티렌 입자를 나타낸 것으로, 직경 약 200 nm의 구형의 입자이다. 도 5(b)는 열처리 공정 전의 코어 /쉘 입자를 나타낸 것으로, 전체 직경 약 1000-3000 nm이고 내부에 폴리스티렌 입자가 관찰되었다. 도 5(c)는 열처리 공정 후의 중공형 탄소 캡슐을 나타낸 것으로, 폴리스티렌이 제거된 자리에 pore가 관찰되며, 탄소 쉘이 무너지지 않고 형태를 잘 유지하고 있음이 관찰되었다. 또한, 도 6에 중공형 탄소 캡슐을 현미경으로 보다 세밀히 관찰하여 나타내었다. 도 6a에 나타난 바와 같이, 전체적으로 구형의 중공형 탄소 캡슬이 관찰되었고, 내부에 pore가 존재함을 확인할 수 있었다. 또한, 도 6b에 나타난 바와 같이 , 쉘의 두께는 약 20 mn임을 확인할 수 있었다. 실시예 2: 탄소나노튜브를포함하는중공형 탄소 캠슐의 제조  The prepared hollow carbon capsule was observed in a microscope as shown in FIG. 5, and polystyrene particles and core / shell particles before the heat treatment process were also observed for comparison. Fig. 5 (a) shows the polystyrene particles before spraying, which are spherical particles having a diameter of about 200 nm. Figure 5 (b) shows the core / shell particles before the heat treatment process, the total diameter is about 1000-3000 nm and polystyrene particles were observed inside. 5 (c) shows the hollow carbon capsule after the heat treatment process, where pore was observed in the place where the polystyrene was removed, and it was observed that the carbon shell did not collapse and maintained its shape well. 6, the hollow carbon capsule was observed in more detail with a microscope. As shown in FIG. 6a, a spherical hollow carbon capsule was observed as a whole, and it was confirmed that pore was present therein. In addition, as shown in Figure 6b, it was confirmed that the thickness of the shell is about 20 mn. Example 2 Preparation of Hollow Carbon Capsules Containing Carbon Nanotubes
1) 탄소나노튜브를포함하는중공형 탄소캡슬의 제조  1) Preparation of hollow carbon caps containing carbon nanotubes
증류수 125 mL에 CNT (효성, 10~30 μτη) 1.5 g 및 PSS—Li 수용액 (Aldrich, 30 wt%) 2.5 g을 첨가한 다음, 10분 동안 세 번 초음파 처리하여, 탄소나노튜브 수분산액을 제조하였다. 리그노술포네이트 (lignosulfonate) 1 g을 증류수 150 mL에 첨가하고, bath sonication을 사용하여 완전히 녹인 후, 상기 탄소나노튜브 수분산액에 첨가하였다. 여기에, 상기 제조예에서 제조한 10 wt% PS sol. 30 mL를 첨가하여 homogenizer로 흔합하여 분무 용액을 제조하였다. 상기 분무 용액을 Spray-dryer (Out 1 et temp.: 180 °C , aspirator ·' 95%, feeding rate: 15 %)로 분무 및 건조하고, tube furnace에서 TC/min의 속도로 600°C까지 온도를 올린 후 600°C에서 2시간 동안 소성하여 (Ar 조건), 중공형 탄소 캡슐을 제조하였다. 2) 중공형 탄소캡슬의 관찰 1.5 g of CNT (Hyosung, 10-30 μτη) and 2.5 g of PSS-Li aqueous solution (Aldrich, 30 wt%) were added to 125 mL of distilled water, followed by sonication three times for 10 minutes to prepare an aqueous carbon nanotube dispersion. It was. 1 g of lignosulfonate was added to 150 mL of distilled water, completely dissolved by bath sonication, and then added to the aqueous carbon nanotube dispersion. Here, 10 wt% PS sol. 30 mL was added and mixed with a homogenizer to prepare a spray solution. The spray solution Spray-dryer (Out 1 et temp .: 180 ° C, aspirator · '95%, feeding rate: 15%) by spraying and drying, in a tube furnace at a rate of TC / min to a temperature 600 ° C After raising and calcining at 600 ° C. for 2 hours (Ar conditions), hollow carbon capsules were prepared. 2) Observation of the hollow carbon cap
상기 실시예에서 제조한 중공형 탄소 캡슐을 현미경으로 관찰하였으며, The hollow carbon capsule prepared in Example was observed under a microscope.
SEM 이미지를 도 7에 TEM 이미지를 도 8에 각각 나타내었다. 도 7에 나타난 바와 같이, 탄화 후에도 pore의 형태가 잘 유지됨을 확인할 수 있었으며, pore의 직경이 약 20C 220 nm로서 제조예에서 제조한 폴리스티렌 입자의 직경과 거의 동일하였다. 이로부터 폴리스티렌 입자가 제거된 공간이 pore로서 그 형태가 잘 유지됨을 확인할 수 있었다. 또한, 도 8에 나타난 바와 같이, 중공형 탄소 캡슐에 탄소나노튜브가 얽혀있는 형태로 pore 구조를 유지하고 있음을 확인할 수 있었다. SEM images are shown in FIG. 7 and TEM images are shown in FIG. 8. As shown in FIG. 7, it was confirmed that the form of pore was well maintained after carbonization, and the pore diameter was about 20C 220 nm, which was almost the same as the diameter of the polystyrene particles prepared in Preparation Example. From this, it was confirmed that the space in which the polystyrene particles were removed was well maintained as a pore. In addition, as shown in Figure 8, it was confirmed that the carbon nanotubes in the form of entangled in the hollow carbon capsule maintains the pore structure.
3) 중공형 탄소 캡술의 비표면적 및 pore부피 측정 3) Measurement of specific surface area and pore volume of hollow carbon capsule
상기 실시예에서 제조한 중공형 탄소 캡슬의 비표면적 및 pore 부피를 도 The specific surface area and pore volume of the hollow carbon capsule prepared in the above example
9과 같이 측정하였으며, 그 결과 BET surface area는 133.5264 m2/g , pore 부피는 0.309500 cm3/g으로 측정되었다. 9, the BET surface area was 133.5264 m 2 / g, the pore volume was 0.309500 cm 3 / g.
4) 중공형 탄소 캡슬의 분체저항측정 4) Powder Resistance Measurement of Hollow Carbon Cap
상기 실시예에서 제조한 중공형 탄소 캡슐의 분체저항을 측정하였다. 또한, 비교를 위하여 실시예 1에서 제조한 중공형 탄소 캡술의 분체저항도 함께 측정하였다. 구체적으로, 각각의 중공형 탄소 캡슐 1 g을 분말 홀더에 넣고 원기등 바를 넣었다. 이를 분체 저항 측정 장치 (HPRM-1000 , 한테크 사)에 장착한 다음 일정한 압력으로 원기둥 바를 눌러주면서 면저항값 및 전기전도도, packing dens i ty를 측정하였다. 상기 결과를 도 10 및 하기 표 1에 나타내었다.  The powder resistance of the hollow carbon capsule prepared in the above example was measured. In addition, the powder resistance of the hollow carbon capsule prepared in Example 1 was also measured for comparison. Specifically, 1 g of each hollow carbon capsule was placed in a powder holder, and a bar was added. This was mounted on a powder resistance measuring device (HPRM-1000, Hantech Co., Ltd.), and then the sheet resistance, electrical conductivity, and packing density were measured while pressing the cylindrical bar at a constant pressure. The results are shown in FIG. 10 and Table 1 below.
【표 1】 실시예 1 실시예 2 Table 1 Example 1 Example 2
Load Press Packing Packing  Load Press Packing Packing
Conductivity Conduct ivity  Conductivity Conduct ivity
(kg) (Mpa) densi ty densi ty  (kg) (Mpa) densi ty densi ty
(S/cm) (S/cm)  (S / cm) (S / cm)
(g/cc) (g/cc)  (g / cc) (g / cc)
400 0.13 5.42X10"5 3.26X10"1 2.57 3.92X10— 1 400 0.13 5.42X10 "5 3.26X10 " 1 2.57 3.92X10— 1
800 0.25 1.08 10"4 4.44X10"1 . _ 5.21 5.57X10— 1 800 0.25 1.08 10 "4 4.44X10 " 1 . _ 5.21 5.57X10— 1
1200 0.37 1.56X10— 4 5,44X10— 1 7.93 7.33X10"1 1200 0.37 1.56X10— 4 5,44X10— 1 7.93 7.33X10 "1
1600 0.5 2.00X10"4 6.26ΧΚΓ1 10.3 8.79X10— 1 1600 0.5 2.00X10 "4 6.26ΧΚΓ 1 10.3 8.79X10— 1
2000 0.62 2.52X10—4 7.24X10— 1 12.8 1.03 2000 0.62 2.52X10— 4 7.24X10— 1 12.8 1.03
도 10 및 표 1에 나타난 바와 같이, 탄소나노튜브가 포함된 실시예 2의 중공형 탄소 캡슬은, 탄소나노튜브가 포함되지 않은 실시예 1에 비하여 약 105배 정도의 높은 전기전도도를 나타내었다. 이를 통하여 탄소나노튜브를 사용할 경우 본 발명에 따른 중공형 탄소 캡슐은, 탄소나노튜브로 인하여 내부 및 외부로 conductive pathway가 형성되어 전기전도도가 현저히 향상됨올 확인할 수 있었다. 또한, 실시예 1 및 2 모두 측정 압력이 증가할수록 전가전도도가 향상되는 것을 확인할 수 있었다. As shown in Figure 10 and Table 1, the hollow carbon kaepseul of Example 2 containing the carbon nanotubes, showing a high electric conductivity of approximately 10 5 times greater than that in Example 1. The carbon nanotubes that do not contain . Through this, when the carbon nanotubes are used, the hollow carbon capsule according to the present invention can be confirmed that the conductive pathways are formed internally and externally due to the carbon nanotubes, thereby significantly improving the electrical conductivity. In addition, it could be seen that in both Examples 1 and 2, the conductivity increased as the measured pressure increased.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
탄소 전구체, 고분자 입자 및 용매를 포함하는 분무 용액을 제조하는 단계;  Preparing a spray solution comprising a carbon precursor, polymer particles, and a solvent;
상기 분무 용액을 분무 및 건조하여 입자를 제조하는 단계; 및  Spraying and drying the spray solution to produce particles; And
상기 입자를 열처리하여 탄소 전구체를 탄화시키고 고분자 입자를 제거하는 단계를 포함하는,  Heat treating the particles to carbonize a carbon precursor and remove polymer particles;
중공형 탄소 캡슬의 제조 방법 .  Method for producing hollow carbon capsules.
[청구항 2】 [Claim 2]
제 1항에 있어서, 상기 분무 용액은 탄소나노튜브를 포함하는 것을 특징으로 하는 , 제조 방법 .  The method of claim 1, wherein the spray solution comprises carbon nanotubes.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 탄소 전구체는 상기 고분자 입자의 열분해 온도 보다 낮은 온도에서 가교되는 것을 특징으로 하는,  The carbon precursor is crosslinked at a temperature lower than the thermal decomposition temperature of the polymer particles,
중공형 탄소 캡슐의 제조 방법.  Method for producing hollow carbon capsules.
[청구항 4】 [Claim 4]
제 1항에 있어서, 상기 탄소 전구체는, 리그노술포네이트, 탄닌산, 갈산, 바닐린산, 도파민, 엽산, 카페산, 로즈마리산, 클로로겐산, 페를산, 시나핀산, 엘라그산, 카스탈라진, 카스탈린, 카수아릭틴, 그란디닌, 푸니칼라긴, 푸니칼린, 로부린 A , 텔리마그란딘 및 테르플라빈 B으로 구성되는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 제조 방법.  The method of claim 1, wherein the carbon precursor, lignosulfonate, tannic acid, gallic acid, vanillic acid, dopamine, folic acid, caffeic acid, rosemary acid, chlorogenic acid, perlic acid, cinafinic acid, ellagic acid, castalazine, car Stalin, casuaritin, grandinin, punicalgin, punicalin, lobulin A, tellimagrandin and terflavin B, at least one member selected from the group consisting of.
【청구항 5】 [Claim 5]
제 1항에 있어서, 상기 고분자 입자의 고분자는, 폴리스티렌, 폴리 (메틸 메타크릴레이트), 폴리프로필렌, 폴리에틸렌, 폴리우레탄, 폴리비닐알코올, 폴리비닐아세테이트 및 에틸렌 -비닐 아세테이트로 구성되는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 제조 방법 The method of claim 1, wherein the polymer of the polymer particles is selected from the group consisting of polystyrene, poly (methyl methacrylate), polypropylene, polyethylene, polyurethane, polyvinyl alcohol, polyvinylacetate and ethylene-vinyl acetate. The production method characterized by one or more
【청구항 6] [Claim 6]
제 5항에 있어서, 상기 고분자 입자의 직경은 10 nm 내지 20 μηι인 것을 특징으로 하는, 제조 방법 . The method of claim 5, wherein the polymer particles have a diameter of 10 nm to 20 μ η ι.
【청구항 7】 [Claim 7]
게 2항에 있어서, 상기 탄소나노튜브의 길이는 0.5 ym 내지 50 μιη인 것을 특징으로 하는, 제조 방법.  The method of claim 2, wherein the carbon nanotube has a length of 0.5 ym to 50 μιη.
【청구항 8] [Claim 8]
제 1항에 있어서, 상기 용매는 물인 것을 특징으로 하는, 제조 방법.  The method according to claim 1, wherein the solvent is water.
【청구항 9】 [Claim 9]
제 1항에 있어서, 상기 탄소 전구체 및 고분자 입자의 중량비는 0.07:3 내지 70 :3인 것을 특징으로 하는, 제조 방법 .  The method of claim 1, wherein the weight ratio of the carbon precursor and the polymer particles is 0.07: 3 to 70: 3.
【청구항 10】 [Claim 10]
제 2항에 있어서, 상기 탄소나노튜브 및 탄소 전구체의 중량비는 1.5:1 내지 10:1인 것을 특징으로 하는, 제조 방법.  The method of claim 2, wherein the weight ratio of the carbon nanotubes and the carbon precursor is 1.5: 1 to 10: 1.
【청구항 11】 [Claim 11]
제 1항에 있어서, 상기 탄소 전구체 및 고분자 입자의 중량비는 1:3 내지 1:45인 것을 특징으로 하는, 제조 방법.  The method of claim 1, wherein the weight ratio of the carbon precursor and the polymer particles is 1: 3 to 1:45.
【청구항 12】 ^ [Claim 12] ^
제 1항에 있어서, 상기 열처리는 200-350°C에서 1차로 처리하고, 400~600°C에서 2차로 처리하는 것을 특징으로 하는, 제조 방법 . The method of claim 1, wherein the heat treatment is first performed at 200-350 ° C., and secondly at 400 ° C.-600 ° C.
【청구항 13】 거 U항에 있어서, 상기 열처리는 400~600°C까지 은도를 상승시키는 것을 특징으로 하는, 제조 방법 . [Claim 13] According to claim U, The heat treatment is characterized in that to raise the silver to 400 ~ 600 ° C, manufacturing method.
【청구항 14】 [Claim 14]
제 1항에 있어서, 상기 중공형 탄소 캡슬의 pore 직경은 10 nm 내지 20 μ ηι인 것을 특징으로 하는, 제조 방법 .  The method of claim 1, wherein the hollow carbon capsule has a pore diameter of 10 nm to 20 μηι.
【청구항 15】 [Claim 15]
제 1항에 있어서, 상기 중공형 탄소 캡슐의 쉘 두께는 1 nm 내지 1 ,000 nm인 것을 특징으로 하는, 제조 방법 .  The method of claim 1, wherein the shell thickness of the hollow carbon capsule is 1 nm to 1,000 nm.
【청구항 16] [Claim 16]
제 1항 내지 제 15항 증 어느 한 항의 제조 방법으로 제조된, 중공형 탄소 캡슐.  A hollow carbon capsule prepared by the method of any one of claims 1 to 15.
PCT/KR2015/010295 2014-09-30 2015-09-30 Hollow carbon capsule manufacturing method WO2016052981A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017508968A JP6524215B2 (en) 2014-09-30 2015-09-30 Method for producing hollow carbon capsule
CN201580051800.9A CN106794990B (en) 2014-09-30 2015-09-30 The preparation method of hollow carbon capsule
US15/512,694 US10821687B2 (en) 2014-09-30 2015-09-30 Method for producing hollow carbon capsules

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20140131860 2014-09-30
KR20140131859 2014-09-30
KR10-2014-0131859 2014-09-30
KR10-2014-0131860 2014-09-30
KR1020150137058A KR101783446B1 (en) 2014-09-30 2015-09-25 Method for preparation of hollow carbon capsule
KR10-2015-0137058 2015-09-25

Publications (1)

Publication Number Publication Date
WO2016052981A1 true WO2016052981A1 (en) 2016-04-07

Family

ID=55630936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010295 WO2016052981A1 (en) 2014-09-30 2015-09-30 Hollow carbon capsule manufacturing method

Country Status (1)

Country Link
WO (1) WO2016052981A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186003A1 (en) * 2017-04-07 2018-10-11 株式会社神戸製鋼所 Method for producing porous carbon particles, and porous carbon particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068765A (en) * 2002-02-18 2003-08-25 재단법인서울대학교산학협력재단 Synthesis of nanoporous capsule-structure body having hollow core with mesoporous shell(hcms)
KR20040064056A (en) * 2003-01-09 2004-07-16 주식회사 동운인터내셔널 Method of preparing carbon capsules with nano hollow structure and carbon nano-capsules prepared therefrom
KR20080053229A (en) * 2006-12-08 2008-06-12 주식회사 엘지화학 Manufacturing method of mesoporous carbon structure with spray drying or spray pyrolysis and composition thereof
KR20090126058A (en) * 2008-06-03 2009-12-08 이화여자대학교 산학협력단 Hollow graphene multilayed nanospheres
KR101207624B1 (en) * 2010-08-23 2012-12-03 이장훈 Method of manufacturing multiple graphene-ball and multiple combined graphene-ball using the metal salts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068765A (en) * 2002-02-18 2003-08-25 재단법인서울대학교산학협력재단 Synthesis of nanoporous capsule-structure body having hollow core with mesoporous shell(hcms)
KR20040064056A (en) * 2003-01-09 2004-07-16 주식회사 동운인터내셔널 Method of preparing carbon capsules with nano hollow structure and carbon nano-capsules prepared therefrom
KR20080053229A (en) * 2006-12-08 2008-06-12 주식회사 엘지화학 Manufacturing method of mesoporous carbon structure with spray drying or spray pyrolysis and composition thereof
KR20090126058A (en) * 2008-06-03 2009-12-08 이화여자대학교 산학협력단 Hollow graphene multilayed nanospheres
KR101207624B1 (en) * 2010-08-23 2012-12-03 이장훈 Method of manufacturing multiple graphene-ball and multiple combined graphene-ball using the metal salts

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BALGIS, RATNA ET AL.: "Self-organized macroporous carbon structure derived from phenolic resin via spray pyrolysis for high-performance electrocatalyst", ACS APPLIED MATERIALS & INTERFACES, vol. 5, 2013, pages 11944 - 11950 *
HONG, JINKEE ET AL.: "Hollow capsules of reduced graphene oxide nanosheets assembled on a sacrificial colloidal particle", J. PHYS. CHEM. LETT., vol. 1, no. 24, 2010, pages 3442 - 3445 *
KISAKIBARU, YUTAKA ET AL.: "Preparation of porous carbon particles using a spray-drying method with colloidal template", INTERNATIONAL JOURNAL OF CHEMICAL AND BIOLOGICAL ENGINEERING, vol. 6, 2012, pages 57 - 60 *
NANDIYANTO, ASEP BAYU DANI ET AL.: "Synthesis of additive-free cationic polystyrene particles with controllable size for hollow template applications", COLLOIDS AND SURFACES A: PHYSICOCHEM. ENG. ASPECTS, vol. 396, 2012, pages 96 - 105, XP028898031, doi:10.1016/j.colsurfa.2011.12.048 *
OGI, TAKASHI ET AL.: "Synthesis of nanostructured carbon particle materials via spray method", PROCEEDINGS OF AICHE CONFERENCE, 3 November 2013 (2013-11-03), San Francisco, CA, Retrieved from the Internet <URL:http://www3.siche.org/Proceedings/content/Annual-2013/extended-abstracts/P334484.pdf> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186003A1 (en) * 2017-04-07 2018-10-11 株式会社神戸製鋼所 Method for producing porous carbon particles, and porous carbon particles

Similar Documents

Publication Publication Date Title
JP6524215B2 (en) Method for producing hollow carbon capsule
KR101963139B1 (en) Producing method of carbon aerogel and carbon aerogel made by the same
Zhang et al. Recent advances in carbon nanospheres: synthetic routes and applications
Allahbakhsh et al. Self-assembled and pyrolyzed carbon aerogels: an overview of their preparation mechanisms, properties and applications
Fan et al. A layered‐nanospace‐confinement strategy for the synthesis of two‐dimensional porous carbon nanosheets for high‐rate performance supercapacitors
Li et al. Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin
US20180251377A1 (en) Aerogels
Sevilla et al. Fabrication of porous carbon monoliths with a graphitic framework
Inagaki et al. Morphology and pore control in carbon materials via templating
Whitby et al. Geometric control and tuneable pore size distribution of buckypaper and buckydiscs
EP3529207A1 (en) Methods for producing carbon material-graphene composite films
Gao et al. Three-dimensional paper-like graphene framework with highly orientated laminar structure as binder-free supercapacitor electrode
US10083800B2 (en) Activated carbon for use in electrode of power-storage device, and method for producing same
JP2021084852A (en) Mesoporous carbon, production method therefor, and solid polymer fuel cell
RU2577273C1 (en) Method of producing of aerogels based on multilayer carbon nanotubes
Ghimbeu et al. Hierarchical porous nitrogen-doped carbon beads derived from biosourced chitosan polymer
Zhang et al. Ultrahigh surface area carbon from carbonated beverages: combining self-templating process and in situ activation
KR20160100268A (en) Graphene having pores made by irregular and random, and Manufacturing method of the same
CN106395802B (en) Preparation method of graphene porous membrane
Oschatz et al. Emulsion soft templating of carbide-derived carbon nanospheres with controllable porosity for capacitive electrochemical energy storage
Almuhamed et al. Electrospinning of PAN nanofibers incorporating SBA-15-type ordered mesoporous silica particles
US20180201508A1 (en) Carbon Nanotube Foams with Controllable Architecture and Methods
Wang et al. Transition metal ions enable the transition from electrospun prolamin protein fibers to nitrogen-doped freestanding carbon films for flexible supercapacitors
WO2016052981A1 (en) Hollow carbon capsule manufacturing method
Davydov et al. Preparation of a platelike carbon nanomaterial using MgO as a template

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508968

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15512694

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847192

Country of ref document: EP

Kind code of ref document: A1