WO2018154977A1 - Method for producing porous carbon particles, and porous carbon particles - Google Patents

Method for producing porous carbon particles, and porous carbon particles Download PDF

Info

Publication number
WO2018154977A1
WO2018154977A1 PCT/JP2018/000033 JP2018000033W WO2018154977A1 WO 2018154977 A1 WO2018154977 A1 WO 2018154977A1 JP 2018000033 W JP2018000033 W JP 2018000033W WO 2018154977 A1 WO2018154977 A1 WO 2018154977A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
porous carbon
coal
carbon particles
less
Prior art date
Application number
PCT/JP2018/000033
Other languages
French (fr)
Japanese (ja)
Inventor
濱口 眞基
祥平 和田
聡則 井上
豊田 昌宏
Original Assignee
株式会社神戸製鋼所
国立大学法人大分大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 国立大学法人大分大学 filed Critical 株式会社神戸製鋼所
Publication of WO2018154977A1 publication Critical patent/WO2018154977A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Definitions

  • the present invention relates to a method for producing porous carbon particles and porous carbon particles.
  • porous carbon particles having pores with a diameter of micron or nanometer order on the surface and a high specific surface area are useful as adsorbents.
  • a carbon raw material is activated with water vapor or an alkaline substance to increase the specific surface area
  • an organic resin is an oxide such as magnesium oxide (template)
  • a method of removing the oxide after mixing with carbon and carbonizing the particles (Japanese Patent Laid-Open No. 2016-41656).
  • the conventional porous carbon particles in addition to the step of carbonizing the raw material, a step of performing an activation treatment with an alkaline substance and a removal treatment of the template particles is necessary, which increases the production cost. Further, the pores formed by these treatments tend to have larger diameters as they are closer to the surface of the porous carbon particles. For this reason, in addition to pores (micropores) having a diameter of less than 2 nm, the conventional porous carbon particles also have pores (mesopores) having a diameter of 2 nm or more and less than 50 nm and pores (macropores) having a diameter of 50 nm or more. It has a relatively large amount and has a low density with respect to the specific surface area. Therefore, the strength of the conventional porous carbon particles tends to decrease. For this reason, the surface of the conventional porous carbon particles tends to be unstable, and it is difficult to increase the conductivity by applying a mechanical or chemical treatment.
  • the present invention has been made based on the above-mentioned circumstances, and an object thereof is to provide a method for producing relatively dense porous carbon particles and porous carbon particles at a low production cost.
  • porous carbon particles As a result of intensive studies on a method for producing porous carbon particles, the present inventors have spray-dried a solution in which ashless coal is dissolved in a solvent, so that the porous carbon particles can be made porous without performing activation treatment or treatment with template particles. It has been found that carbon particles can be produced. Moreover, the pores of the porous carbon particles produced in this way are mostly micropores, relatively few mesopores and macropores, and the porous carbon particles are denser than the specific surface area. I found out.
  • the invention made in order to solve the above-mentioned problems includes a spray-drying process for spray-drying a solution in which ashless coal is dissolved in a solvent, and a heating process for heat-treating the solid content obtained in the spray-drying process.
  • the solvent contains an oxygen atom or a nitrogen atom and has a boiling point at atmospheric pressure of 50 ° C. or higher and lower than 250 ° C. as a main component, and the content of ashless coal in the solution is 5% by mass or more 50 It is a manufacturing method of the porous carbon particle which is the mass% or less.
  • the method for producing the porous carbon particles includes spray drying a solution in which ashless coal is dissolved in a solvent mainly containing an organic compound containing an oxygen atom or a nitrogen atom and having a boiling point at atmospheric pressure within the above range. To do. Since ashless coal has a higher carbonization yield than coal and petroleum pitch, the production method of the porous carbon particles has high production efficiency of the porous carbon particles. Further, by using the above solvent and setting the content of ashless coal in the above solution within the above range, the solvent is rapidly desorbed from the state in which the ashless coal is dissolved in the spray drying step, so that the obtained solid content Many micropores are induced.
  • the ashless coal which is the main component of the solid content has a higher ratio of hetero elements such as oxygen than coal and petroleum pitch, it is difficult for crystals to grow during heat treatment. For this reason, micropores are maintained even in the heating step, and the method for producing the porous carbon particles can produce relatively dense porous carbon particles.
  • the manufacturing method of the said porous carbon particle does not require the activation process and the process by template particle
  • a mixing step of mixing coal and the solvent, an elution step of eluting components soluble in the solvent from the coal in the slurry obtained in the mixing step, and the slurry after elution in the elution step It is preferable to further include a liquid component containing a soluble component and a separation step for separating into a solvent-insoluble component, and the liquid component obtained in the separation step may be used as the solution in the spray drying step.
  • Ashless coal can be eluted into the solvent by solvent extraction of coal in the elution step. That is, ashless coal is dissolved in the solvent in the liquid. Therefore, the production cost of the porous carbon particles can be further reduced by using the liquid as it is as the solution.
  • the spray pressure and the liquid feeding speed may be adjusted so that the average diameter of the solid content is 1 ⁇ m or more and 20 ⁇ m or less.
  • the specific surface area of the porous carbon particles can be further increased by adjusting the spray pressure and the liquid feeding speed so that the average diameter of the solid content is 1 ⁇ m or more and 20 ⁇ m or less.
  • a carbon layer containing carbon as a main component and enclosing a hollow portion wherein the carbon layer has a plurality of pores, and the diameter of the pores is 0.
  • Porous carbon having a Log differential pore volume of 0.1 cm 3 / g or more for pores of 5 nm or less and a Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less of less than 0.05 cm 3 / g Particles.
  • the porous carbon particles have a Log differential pore volume of pores having a diameter of 0.5 nm or less above the lower limit and a Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less less than the upper limit. Precise.
  • the porous carbon particles include a carbon layer that encloses the hollow portion, the pores easily penetrate the carbon layer as compared with the solid porous carbon particles, and the diameter of each pore from the surface is reduced. It is easy to equalize regardless of the distance. For this reason, even if it is a pore of 0.5 nm or less in diameter, a hole is maintained to a comparatively deep position from an outer surface, without a diameter being crushed on the way. Therefore, even if the Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less is less than the above upper limit, the specific surface area can be maintained by the pores having a diameter of 0.5 nm or less.
  • main component means a component having the largest content, for example, a component having a content of 50% by mass or more, and “average diameter of solid content” is the same volume as the solid content. It means the diameter of a true sphere.
  • Log differential pore volume of pores at a certain diameter is a value calculated as follows. First, the pore distribution is measured by the HK method. By this measurement, an integrated pore volume distribution V with respect to the diameter D of the bottom surface when the pore is assumed to be cylindrical is obtained. Based on this distribution, the Log differential pore volume can be calculated by obtaining a value obtained by dividing the difference pore volume dV between the measurement points by the difference value d (LogD) in the logarithmic treatment of the pore diameter D.
  • porous carbon particles of the present invention by using the method for producing porous carbon particles of the present invention, relatively dense porous carbon particles can be obtained at a low production cost. Further, since the porous carbon particles of the present invention are relatively dense, the surface is relatively stable, and it is easy to increase the conductivity by applying a mechanical or chemical treatment. Therefore, the porous carbon particles can be suitably used as an adsorbent or an electronic component.
  • FIG. 1 is a schematic flow diagram showing a method for producing porous carbon particles according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow diagram showing a method for producing porous carbon particles according to an embodiment different from FIG.
  • FIG. 3 is a graph showing the pore size distribution of the porous carbon particles of Example 1.
  • the method for producing porous carbon particles mainly includes a mixing step S1, an elution step S2, a separation step S3, a spray drying step S4, and a heating step S5.
  • This mixing process S1 can be performed by a coal supply part, a solvent supply part, and a mixing part, for example.
  • the coal supply unit supplies coal to the mixing unit.
  • a coal supply part well-known coal hoppers, such as a normal pressure hopper used in a normal pressure state, a pressure hopper used in a normal pressure state and a pressurization state, can be used.
  • Coal supplied from the coal supply unit is coal that is a raw material for ashless coal.
  • various quality coals can be used.
  • bituminous coal with a high extraction rate of ashless coal or cheaper low-grade coal (subbituminous coal or lignite) is preferably used.
  • finely pulverized coal means, for example, coal in which the mass ratio of coal having a particle size of less than 1 mm to the mass of the entire coal is 80% or more.
  • lump coal can also be used as coal supplied from a coal supply part.
  • particle size refers to a value measured in accordance with JIS-Z8815: 1994 general screening test rules. For sorting according to the particle size of coal, for example, a metal net sieve specified in JIS-Z8801-1: 2006 can be used.
  • the lower limit of the carbon content of the low-grade coal is preferably 70% by mass.
  • the upper limit of the carbon content of the low-grade coal is preferably 85% by mass, and more preferably 82% by mass.
  • coal supplied to a mixing part from a coal supply part you may use the coal which mixed a small amount of solvent and made it slurry.
  • the coal By supplying the slurried coal from the coal supply unit to the mixing unit, the coal is easily mixed with the solvent in the mixing unit, and the coal can be dissolved more quickly.
  • the amount of the solvent to be mixed at the time of forming the slurry is large, the amount of heat for raising the slurry to the elution temperature in the temperature raising portion described later becomes unnecessarily large, which may increase the manufacturing cost.
  • the solvent supply unit supplies the solvent to the mixing unit.
  • the said solvent supply part has a solvent tank which stores a solvent, and supplies a solvent from this solvent tank to a mixing part.
  • the solvent supplied from the solvent supply unit is mixed with coal supplied from the coal supply unit in the mixing unit.
  • the solvent supplied from the solvent supply unit is mainly composed of an organic compound containing an oxygen atom or a nitrogen atom.
  • an organic compound containing an oxygen atom or a nitrogen atom may be one kind, and two or more kinds of organic compounds may be mixed.
  • the lower limit of the boiling point of the solvent at atmospheric pressure is 50 ° C., more preferably 60 ° C., and still more preferably 65 ° C. on the other hand.
  • the boiling point of the solvent is less than 250 ° C, more preferably less than 210 ° C, and even more preferably less than 160 ° C. If the boiling point of the solvent is less than the lower limit, the ashless coal may not be sufficiently dissolved and the content of ashless coal may not be increased. On the other hand, if the boiling point of the solvent is equal to or higher than the upper limit, the pressure associated with the desorption of the solvent is insufficient in the spray drying step S4, so that there is a possibility that the pores of the porous carbon material are not sufficiently formed.
  • the mixing unit mixes the coal supplied from the coal supply unit and the solvent supplied from the solvent supply unit.
  • a preparation tank can be used as the mixing unit.
  • the coal and solvent are supplied to the preparation tank through a supply pipe.
  • the preparation tank the supplied coal and solvent are mixed to prepare a slurry.
  • the said preparation tank has a stirrer, and maintains the mixing state of a slurry by hold
  • the lower limit of the coal concentration is preferably 5% by mass and more preferably 10% by mass.
  • the upper limit of the coal concentration is preferably 65% by mass, and more preferably 40% by mass. If the coal concentration is less than the lower limit, the elution amount of the solvent-soluble component eluted in the elution step S2 is less than the slurry processing amount, and therefore the content of ashless coal contained in the solution is insufficient. There is a risk. Conversely, if the coal concentration exceeds the upper limit, the solvent-soluble component is likely to be saturated in the solvent, and the elution rate of the solvent-soluble component may be reduced.
  • the slurry prepared in the preparation tank of the mixing unit is processed in the elution step S2.
  • elution step S2 coal components soluble in the solvent are eluted from the coal in the slurry obtained in the mixing step S1.
  • the elution step S2 can be performed by the temperature raising part and the elution part.
  • the temperature raising unit raises the temperature of the slurry obtained in the mixing step S1.
  • the temperature raising part is not particularly limited as long as it can raise the temperature of the slurry passing through the inside, and examples thereof include a resistance heating heater and an induction heating coil. Further, the temperature raising unit may be configured to raise the temperature using a heat medium, for example, has a heating tube disposed around the flow path of the slurry passing through the inside, and the heating tube The slurry may be heated by supplying a heat medium such as steam or oil.
  • the temperature of the slurry after the temperature rise by the temperature raising unit is appropriately determined according to the solvent to be used. If the temperature of the slurry is less than the lower limit, the elution rate may decrease. On the other hand, if the temperature of the slurry exceeds the upper limit, the solvent is excessively vaporized, which may make it difficult to control the concentration of the slurry.
  • the pressure of the temperature raising portion is not particularly limited, but can be normal pressure (0.1 MPa).
  • An elution part elutes a coal component soluble in a solvent from coal in a slurry obtained by the above-mentioned mixing part and heated at the above-mentioned temperature raising part.
  • an extraction tank can be used, and the slurry after the above temperature rise is supplied to this extraction tank.
  • the coal components soluble in the solvent are eluted from the coal while maintaining the temperature and pressure of the slurry.
  • the extraction tank has a stirrer. The elution can be promoted by stirring the slurry with this stirrer.
  • the elution time at the elution part is not particularly limited, but is preferably 10 minutes or more and 70 minutes or less from the viewpoint of the extraction amount of the solvent-soluble component and the extraction efficiency.
  • the separation step S3 the slurry eluted in the elution step S2 is separated into a liquid component containing a solvent-soluble component and a solvent-insoluble component.
  • This separation step S3 can be performed by a separation unit.
  • the solvent-insoluble component refers to an extraction residue that mainly contains ash and insoluble coal insoluble in the extraction solvent, and further contains an extraction solvent in addition to these.
  • Separatation part As a method for separating the liquid component and the solvent-insoluble component in the separation unit, for example, a gravity sedimentation method, a filtration method, and a centrifugal separation method can be used, and a sedimentation tank, a filter, and a centrifugal separator are used, respectively.
  • the gravitational sedimentation method is a separation method in which a solvent-insoluble component is settled by using gravity in a sedimentation tank to separate it into solid and liquid.
  • the liquid component containing the solvent-soluble component is accumulated in the upper part of the sedimentation tank. This liquid content is filtered using a filter unit as necessary, and then discharged to a spraying section to be described later.
  • the solvent-insoluble component is discharged from the lower part of the separation part.
  • the liquid component including the solvent-soluble component and the solvent-insoluble component can be discharged from the sedimentation tank while continuously supplying the slurry into the separation unit. Thereby, continuous solid-liquid separation processing becomes possible.
  • the time for maintaining the slurry in the separation part is not particularly limited, but can be, for example, 30 minutes or more and 120 minutes or less, and sedimentation separation in the separation part is performed within this time.
  • the time which maintains a slurry in a separation part can be shortened.
  • the temperature and pressure in the separation unit can be the same as the temperature and pressure of the slurry after the temperature is raised by the temperature raising unit.
  • the main component of the solvent-soluble component contained in the liquid component is ashless coal, and this liquid component can be used as a solution sprayed in the spraying section.
  • Ashless coal has an ash content of 5% by mass or less or 3% by mass or less, hardly contains ash, has no moisture, and exhibits a higher calorific value than, for example, raw coal.
  • the lower limit of the content of ashless coal in the liquid component is 5% by mass, and more preferably 8% by mass.
  • an upper limit of content of ashless coal in the said solution it is 50 mass%, 40 mass% is more preferable, and 25 mass% is further more preferable. If the content of the ashless coal is less than the lower limit, the amount of porous carbon particles obtained from the liquid content per unit amount is decreased, which may reduce the production efficiency. On the contrary, if the content of the ashless coal exceeds the upper limit, the amount of the solvent is relatively insufficient, and the momentum of detachment of the solvent becomes insufficient, so that micropores may not be sufficiently formed. .
  • content of the said ashless coal can be adjusted with the quantity of coal added to a solvent in a mixing part.
  • by-product coal can be obtained by evaporating and separating the solvent from the solvent-insoluble component.
  • By-product charcoal does not show softening and melting properties, but the oxygen-containing functional groups are eliminated. Therefore, by-product coal does not inhibit the softening and melting properties of other coals contained in this blended coal when used as a blended coal. Therefore, this blended coal can be used, for example, as a part of the blended coal of the coke raw material. Further, by-product coal may be used as fuel in the same manner as general coal.
  • Spray drying process S4 the solution which is the said liquid component in which ashless coal melt
  • This spray drying process S4 can be performed by a spraying part.
  • a sprayer can be used as the spray unit.
  • this atomizer a well-known flash distiller and a cyclone can be mentioned.
  • Such a sprayer has a spray nozzle that injects a spraying gas into a solution supplied to the spraying section through a supply pipe from the separation section.
  • the spray nozzle can be configured, for example, by connecting a supply pipe to a two-fluid nozzle or a four-fluid nozzle.
  • the solution is refined and dispersed by colliding the heated atomizing gas with the solution through a spray nozzle.
  • the solvent in the mist-like solution due to the collision of the atomizing gas evaporates in a flash distiller or a cyclone by self-sensible heat and the application of heat from the heated atomizing gas.
  • the solvent is rapidly desorbed from each droplet of the atomized solution.
  • the atomized solution is dried by rapid desorption of the solvent, and a solid content mainly composed of ashless coal is obtained.
  • the solvent is released from the state where the solvent is trapped inside the carbon layer mainly composed of carbon derived from ashless coal, and this solid content is formed.
  • a carbon layer constituting the hollow portion is provided.
  • the carbon layer has a plurality of micropores induced by the desorption of the solvent.
  • an inert gas such as nitrogen as the atomizing gas. Since the inert gas has low reactivity, it has little influence on the composition of the solid content produced. Further, since it is a gas even at a relatively low temperature below the boiling point of the solvent, it is easy to separate the evaporated solvent and the spray gas.
  • the lower limit of the pressure of the spray gas (spray pressure) that collides with the solution is preferably 0.1 MPa, and more preferably 0.2 MPa.
  • the upper limit of the spray pressure is preferably 1 MPa, and more preferably 0.5 MPa.
  • the lower limit of the temperature of the spray gas is preferably 100 ° C, more preferably 150 ° C.
  • the upper limit of the temperature of the spray gas is preferably 450 ° C., more preferably 400 ° C. If the temperature of the spray gas is lower than the lower limit, the solvent is not sufficiently released and the micropores may not be sufficiently formed. Conversely, if the temperature of the spray gas exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
  • the lower limit of the solution feeding speed of the solution supplied to the spraying part through the supply pipe from the separation part is preferably 0.5 kg / h, more preferably 0.7 kg / h.
  • the upper limit of the liquid feeding speed is preferably 2 kg / h, more preferably 1.5 kg / h.
  • the liquid feeding speed is less than the lower limit, the amount of porous carbon particles obtained per unit time is decreased, and thus production efficiency may be decreased.
  • the liquid feeding speed exceeds the upper limit, the amount of heat applied to the solution is insufficient, and the desorption of the solvent becomes insufficient, so that micropores may not be sufficiently formed.
  • the lower limit of the temperature of the solution supplied to the spraying part through the supply pipe from the separation part is preferably 60 ° C, more preferably 70 ° C, and further preferably 90 ° C.
  • an upper limit of the temperature of the said solution 160 degreeC is preferable and 150 degreeC is more preferable. If the temperature of the solution is less than the lower limit, the amount of heat applied to the solution is insufficient, and the desorption of the solvent becomes insufficient, so that micropores may not be sufficiently formed. Conversely, if the temperature of the solution exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
  • the temperature of the above solution is higher than the boiling point of the solvent.
  • the lower limit of the temperature difference between the solution temperature and the boiling point of the solvent is preferably 10 ° C, more preferably 20 ° C.
  • an upper limit of the said temperature difference 50 degreeC is preferable and 40 degreeC is more preferable. If the temperature difference is less than the lower limit, the desorption of the solvent becomes insufficient, and there is a possibility that micropores are not sufficiently formed. Conversely, if the temperature difference exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
  • the solid content obtained in the spraying part is naturally cooled in the spraying part and discharged at a temperature of 40 ° C. or more and 80 ° C. or less.
  • the lower limit of the average solid content is preferably 1 ⁇ m, more preferably 2 ⁇ m.
  • the upper limit of the average diameter of the solid content is preferably 20 ⁇ m and more preferably 10 ⁇ m.
  • the average diameter of the solid content is determined mainly by the size of the droplets of the solution sprayed in the spray drying step S4. Since the size of the droplets of the solution to be sprayed is mainly determined by the spray pressure and the liquid feeding speed, the spray pressure and the liquid feeding speed may be adjusted so that the average diameter of the solid content is within the above range. When the average diameter of the solid content is less than the lower limit, it means that the droplet size of the solution to be sprayed is small, and the amount of the solvent desorbed from the solution is small.
  • Heating step S5 the solid content obtained in the spray drying step S4 is heated.
  • This heating step S5 can be performed by a heating unit.
  • Heating part The heating unit carbonizes the solid content obtained in the spray unit. By this carbonization, porous carbon particles are obtained.
  • the heating unit for example, a known electric furnace or the like can be used. After inserting the solid content into the heating unit and replacing the inside with an inert gas, heating is performed while blowing the inert gas into the heating unit. Can carbonize solids. Although it does not specifically limit as said inert gas, For example, nitrogen, argon, etc. can be mentioned. Of these, inexpensive nitrogen is preferred.
  • the lower limit of the heating temperature is preferably 500 ° C, more preferably 700 ° C.
  • the upper limit of the heating temperature is preferably 3000 ° C and more preferably 2800 ° C. There exists a possibility that carbonization may become inadequate that the said heating temperature is less than the said minimum. Conversely, if the heating temperature exceeds the above upper limit, the production cost may increase from the viewpoint of improving the heat resistance of the equipment and fuel consumption.
  • a temperature increase rate it can be 0.01 degree-C / min or more and 10 degree-C / min or less, for example.
  • the lower limit of the heating time is preferably 10 minutes, and more preferably 20 minutes.
  • the upper limit of the heating time is preferably 10 hours, more preferably 8 hours. There exists a possibility that carbonization may become inadequate that heating temperature is less than the said minimum. Conversely, if the heating time exceeds the above upper limit, the production efficiency of the porous carbon particles may be reduced.
  • infusibilization may be performed before carbonization. This infusibilization treatment can prevent solids from fusing together. Infusibilization is performed, for example, by heating in an atmosphere containing oxygen using a known heating furnace. As an atmosphere containing oxygen, air is generally used.
  • the lower limit of the infusibilization temperature when infusibilizing is preferably 150 ° C., more preferably 180 ° C.
  • the upper limit of the infusibilization temperature is preferably 300 ° C, and more preferably 280 ° C. If the infusibilization treatment temperature is less than the lower limit, infusibilization may be insufficient, or the infusibilization treatment time may be increased, resulting in inefficiency. Conversely, if the infusibilization temperature exceeds the upper limit, the solid content may melt before being infusible.
  • the lower limit of the infusibilization time is preferably 10 minutes, more preferably 20 minutes.
  • the upper limit of the infusibilization time is preferably 120 minutes, and more preferably 90 minutes. If the infusibilization time is less than the lower limit, infusibilization may be insufficient. Conversely, if the infusibilization treatment time exceeds the upper limit, the production cost of the porous carbon particles may increase unnecessarily.
  • the lower limit of the carbonization yield in the method for producing porous carbon particles is preferably 30% by mass, more preferably 50% by mass. If the carbonization yield is less than the above lower limit, the effect of reducing the production cost may be insufficient, the micropores may be blocked by volatile components other than carbon, and the specific surface area of the produced porous carbon particles is May decrease. Since the method for producing the porous carbon particles uses ashless coal, this carbonization yield is high. Further, the carbonization yield can be adjusted by, for example, the content of ashless coal in the solution. On the other hand, the upper limit of the carbonization yield is not particularly limited, and may be 100% by mass, but is usually about 75% by mass when using ashless coal.
  • the “carbonization yield” represents the mass ratio of the carbon substance obtained by the heat treatment with respect to the mass of the organic substance in the raw material before the heating step S5.
  • spray drying is used. It represents the mass ratio of the porous carbon particles to the mass of the solid content obtained in step S4.
  • the method for producing porous carbon particles includes a solution in which ashless coal is dissolved in a solvent containing an organic compound containing oxygen atoms or nitrogen atoms and having a boiling point at atmospheric pressure of 0 ° C. or higher and lower than 250 ° C. as a main component. Spray dry. Since ashless coal has a higher carbonization yield than coal and petroleum pitch, the production method of the porous carbon particles has high production efficiency of the porous carbon particles. In addition, by using the solvent and setting the content of ashless coal in the solution to 5% by mass or more and 50% by mass or less, the solvent rapidly desorbs from the state in which the ashless coal is dissolved in the spray drying process. Many micropores are induced in the obtained solid content.
  • the ashless coal which is the main component of the solid content has a higher ratio of hetero elements such as oxygen than coal and petroleum pitch, it is difficult for crystals to grow during heat treatment. For this reason, micropores are maintained even in the heating step, and the method for producing the porous carbon particles can produce relatively dense porous carbon particles.
  • the manufacturing method of the said porous carbon particle does not require the activation process and the process by template particle
  • the liquid obtained in the separation step S3 is used as the solution in the spray drying step S4.
  • ashless coal can be eluted into the solvent by the solvent extraction treatment of coal in the elution step S2. That is, ashless coal is dissolved in the solvent in the liquid. Therefore, the production cost of the porous carbon particles can be further reduced by using the liquid as it is as the solution.
  • the porous carbon particle includes a carbon layer containing carbon as a main component and enclosing a hollow portion, and the carbon layer has a plurality of pores.
  • the said porous carbon particle can be manufactured with the manufacturing method of the said porous carbon particle mentioned above.
  • the porous carbon particles produced by the method for producing porous carbon particles usually include a hollow portion in the carbon layer, but carbon having a recess is obtained by dividing the porous carbon particle according to the application. It can be used as porous carbon particles comprising a layer.
  • the porous carbon particles have many micropores and few mesopores or macropores. That is, among the pores of the porous carbon particles, the Log differential pore volume of pores having a diameter of 0.5 nm or less is 0.1 cm 3 / g or more, and more preferably 0.15 cm 3 / g or more. Further, the Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less is less than 0.05 cm 3 / g, and more preferably less than 0.03 cm 3 / g.
  • the density of the porous carbon particles is The mechanical strength may be lowered.
  • the upper limit of the Log differential pore volume of pores having a diameter of 0.5 nm or less is not particularly limited, but is usually about 0.5 cm 3 / g.
  • the lower limit of the Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less is 0 cm 3 / g, and it is not necessary to have pores having a diameter of 2 nm or more and 4 nm or less.
  • the porous carbon particles Since the porous carbon particles have many micropores, the porous carbon particles are dense and have a relatively high specific surface area.
  • the porous the lower limit of the specific surface area of the carbon particles is preferably 100 m 2 / g, more preferably 150m 2 / g, 200m 2 / g is more preferred. If the specific surface area is less than the lower limit, it may be difficult to use as the porous material.
  • the upper limit of the specific surface area is not particularly limited, but is usually about 3000 m 2 / g.
  • the specific surface area of the said porous carbon particle can be adjusted with content of ashless coal in a solution, the kind of solvent, spray conditions, etc., for example.
  • the porous carbon particles have a Log differential pore volume of pores having a diameter of 0.5 nm or less of 0.1 cm 3 / g or more and a Log differential pore volume of pores of 2 nm or more and 4 nm or less in diameter of 0.05 cm 3. Since it is less than / g, it is relatively dense. In addition, since the porous carbon particles include a carbon layer that encloses the hollow portion, the pores easily penetrate the carbon layer as compared with the solid porous carbon particles, and the diameter of each pore from the surface is reduced. It is easy to equalize regardless of the distance.
  • the method for producing porous carbon particles mainly includes a dissolution step S6, a spray drying step S7, and a heating step S8 as shown in FIG.
  • a preparation tank can be used for this dissolution.
  • the adjustment tank comprised similarly to the mixing part of 1st embodiment, for example is mentioned.
  • the above solvent is mainly composed of an organic compound containing an oxygen atom or a nitrogen atom, and examples thereof include the same solvents as those in the first embodiment.
  • the ashless coal can be obtained, for example, by a method for producing ashless coal including a mixing step, an elution step, a separation step, and an evaporation step.
  • the mixing step in the method for producing ashless coal can be performed in the same manner as the mixing step S1 of the first embodiment.
  • the solvent to be mixed in the mixing step is not limited to a solvent mainly containing an organic compound containing an oxygen atom or a nitrogen atom, and any solvent that dissolves coal can be used.
  • a solvent include methyl naphthalene oil and naphthalene oil which are bicyclic aromatic compounds derived from coal.
  • the elution step in the method for producing ashless coal can be performed in the same manner as the elution step S2 of the first embodiment.
  • the lower limit of the temperature of the slurry after the temperature rise by the temperature raising portion in the elution step is preferably 300 ° C, and more preferably 360 ° C.
  • the upper limit of the temperature of the slurry is preferably 420 ° C., more preferably 400 ° C. If the temperature of the slurry is less than the lower limit, the bonds between the molecules constituting the coal cannot be sufficiently weakened, and the elution rate may decrease. On the contrary, when the temperature of the slurry exceeds the upper limit, the amount of heat for maintaining the temperature of the slurry becomes unnecessarily large, which may increase the production cost of the porous carbon particles.
  • the internal pressure of the said temperature rising part 1.1 MPa is preferable and 1.5 MPa is more preferable.
  • the upper limit of the internal pressure of the temperature raising part is preferably 5 MPa, and more preferably 4 MPa.
  • the internal pressure of the temperature raising part is less than the lower limit, the solvent is reduced by evaporation, and there is a possibility that coal may not be sufficiently dissolved.
  • the internal pressure of the said temperature rising part exceeds the said upper limit, there exists a possibility that the improvement effect of coal melt
  • Separatation process The separation process in the method for producing ashless coal can be performed in the same manner as the separation process S3 of the first embodiment.
  • the heating temperature is preferably 420 ° C., more preferably 400 ° C. If the heating temperature is less than the lower limit, the solvent-soluble component may be reprecipitated and the separation efficiency may be reduced. Conversely, if the heating temperature exceeds the upper limit, the operating cost for heating may increase.
  • the lower limit of the pressure in the separation part is preferably 1 MPa, more preferably 1.4 MPa.
  • the upper limit of the pressure is preferably 3 MPa, more preferably 2 MPa. If the pressure is less than the lower limit, the solvent-soluble component may be reprecipitated and the separation efficiency may be reduced. Conversely, when the pressure exceeds the upper limit, the operating cost for pressurization may increase.
  • a separation method including a general distillation method or an evaporation method (spray drying method or the like) can be used.
  • a separation method including a general distillation method or an evaporation method (spray drying method or the like) can be used.
  • the lower limit of the content of ashless coal in the above solution in which ashless coal is dissolved in the solvent is 5% by mass, and more preferably 8% by mass.
  • an upper limit of content of ashless coal in the said solution it is 50 mass%, and 40 mass% is more preferable. If the content of the ashless coal is less than the lower limit, the amount of porous carbon particles obtained from the liquid content per unit amount is decreased, which may reduce the production efficiency. On the contrary, if the content of the ashless coal exceeds the upper limit, the amount of the solvent is relatively insufficient, and the momentum of detachment of the solvent becomes insufficient, so that micropores may not be sufficiently formed. .
  • the solution is spray dried.
  • This spray drying process S7 can be performed similarly using the apparatus similar to the spray drying process S4 of 1st embodiment.
  • Heating step S8 the solid content obtained in the spray drying step S4 is heat-treated.
  • This heating process S8 can be performed similarly using the apparatus similar to heating process S5 of 1st embodiment.
  • the configuration in which the mixing unit of the mixing step S1 includes the preparation tank has been described.
  • the present invention is not limited to this configuration, and the preparation tank may be omitted as long as the solvent and coal can be mixed.
  • the preparation tank may be omitted and a line mixer may be provided between the supply pipe and the separation unit.
  • the apparatus structure used at each process is not limited to the said embodiment.
  • the method for producing ashless coal by solvent extraction has been described.
  • the method for producing ashless coal is not limited thereto, and for example, the ashless coal is produced by mixing and heating coal and a hydrogen donating solvent. Ashless charcoal can also be used.
  • Ashless coal produced by solvent extraction of sub-bituminous coal was prepared.
  • Table 1 shows the elemental analysis values of the ashless coal.
  • pyridine having a boiling point of 115 ° C. at atmospheric pressure was prepared as a solvent.
  • Pyridine is an organic compound (aromatic compound) containing nitrogen.
  • a solution in which the ashless coal was dissolved in the solvent was prepared by mixing the ashless coal and the solvent so that the content of the ashless coal in the solution was 10.7% by mass.
  • This solution was sprayed into a cyclone using a two-fluid nozzle under a spraying pressure of 0.3 MPa and a solution feeding speed of 1 kg / h to obtain a solid content.
  • the cyclone inlet temperature was 140 ° C. and the outlet temperature was 70 ° C.
  • the solid content was heated to 900 ° C. at a temperature rising rate of 5 ° C./min, and heat treatment (carbonization) for 30 minutes was performed to produce porous carbon particles of Example 1.
  • Table 2 shows the carbonization yield by this heat treatment.
  • Example 2 The solvent is tetrahydrofuran (THF) having a boiling point of 66 ° C. at atmospheric pressure, the content of ashless coal in the solution is 10.8% by mass, the cyclone inlet temperature is 100 ° C., and the outlet temperature is 50 ° C.
  • THF is an organic compound (polar organic compound) containing oxygen.
  • Example 3 Porous carbon particles of Example 3 were produced in the same manner as Example 2 except that the content of ashless coal in the solution was 35.8% by mass.
  • Comparative Example 1 In place of the ashless coal of Example 1, the porous material of Comparative Example 1 was used in the same manner as in Example 1 except that coal pitch produced from tar produced as a by-product in the high temperature carbonization process of coal produced by iron making coke was used. Carbon particles were obtained. Table 1 shows the elemental analysis values of this coal pitch.
  • the amount of oxygen means the amount of components other than carbon, hydrogen, nitrogen and sulfur, and is obtained by subtracting the components of carbon, hydrogen, nitrogen and sulfur from 100% by mass.
  • ⁇ Particle size> The particle size of the solid content was measured with an optical microscope. In the measurement, the particle diameter of each particle within the field of view of the optical microscope was measured, and the range was determined. The results are shown in Table 2.
  • ⁇ Pore size distribution> For the porous carbon particles of Example 1, the pore size distribution was measured by the HK method. The results are shown in FIG. The average pore diameter of the porous carbon particles of Example 1 measured by the BET method was 2 nm.
  • porous carbon particles having a specific surface area of 100 m 2 / g or more can be obtained by the production methods of Examples 1 to 3 within the scope of the present invention without performing activation treatment or treatment with template particles. I understand that.
  • the porous carbon particles obtained by the production method of Comparative Example 1 have a specific surface area of less than 100 m 2 / g. This is presumably because carbon pitch growth was likely to occur during the heat treatment because the coal pitch was used as a raw material, and the micropores were blocked.
  • the porous carbon particles of Example 1 from FIG. 3 have a log differential pore volume (denoted as dV / d (LogD) in FIG. 3) of pores having a diameter (denoted as D in FIG. 3) of 0.5 nm or less. Is 0.1 cm 3 / g or more, and the Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less is less than 0.05 cm 3 / g. That is, the pores of the porous carbon particles of Example 1 are mostly micropores, relatively few mesopores and macropores, and the porous carbon particles of Example 1 are dense with respect to the specific surface area. I understand that there is.
  • Example 2 when an Example is seen in detail, the direction of Example 2 which made content of ashless coal in the solution to spray into 10.8 mass% which is 25 mass% or less is 25 mass% of ashless coal.
  • the carbonization yield and the specific surface area are larger than those of Example 3 in which the amount is more than 35.8% by mass. From this, it can be seen that the content of ashless coal in the solution to be sprayed should be 25% by mass or less.
  • porous carbon particles of the present invention by using the method for producing porous carbon particles of the present invention, relatively dense porous carbon particles can be obtained at a low production cost. Further, since the porous carbon particles of the present invention are relatively dense, the surface is relatively stable, and it is easy to increase the conductivity by applying a mechanical or chemical treatment. Therefore, the porous carbon particles can be suitably used as an adsorbent or an electronic component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The purpose of the present invention is to provide a method for producing relatively dense porous carbon particles at a low production cost, and porous carbon particles. This method for producing porous carbon particles is provided with a spray-drying step in which a solution of ashless coal dissolved in a solvent is spray-dried, and a heating step in which a solids fraction obtained in the spray-drying step is heated. The solvent has as a main component an organic compound that includes an oxygen atom or nitrogen atom and has a boiling point of at least 50°C and less than 250°C at atmospheric pressure. The ashless coal content in the solution is 5-50% by mass. These porous carbon particles have carbon as the main component and are provided with a carbon layer that encloses a hollow portion. The carbon layer has a plurality of pores. The log differential pore volume of pores having a diameter of 0.5 nm or less from among the pores is 0.1 cm3/g or higher, and the log differential pore volume of pores having a diameter of 2-4 nm is less than 0.05 cm3/g.

Description

多孔質炭素粒子の製造方法及び多孔質炭素粒子Method for producing porous carbon particles and porous carbon particles
 本発明は、多孔質炭素粒子の製造方法及び多孔質炭素粒子に関する。 The present invention relates to a method for producing porous carbon particles and porous carbon particles.
 表面に直径がミクロン又はナノメーターオーダーの細孔を有し、高い比表面積を有する多孔質炭素粒子は、吸着材として有用である。この多孔質炭素粒子の製造方法としては、例えば炭素原料を水蒸気やアルカリ性物質により賦活して比表面積を増大させる方法(特開2012-41199号公報)、有機質樹脂を酸化マグネシウム等の酸化物(鋳型粒子)と混合し炭素化した後、上記酸化物を取り除く方法(特開2016-41656号公報)などが挙げられる。 The porous carbon particles having pores with a diameter of micron or nanometer order on the surface and a high specific surface area are useful as adsorbents. As a method for producing the porous carbon particles, for example, a carbon raw material is activated with water vapor or an alkaline substance to increase the specific surface area (Japanese Patent Laid-Open No. 2012-41199), an organic resin is an oxide such as magnesium oxide (template) For example, a method of removing the oxide after mixing with carbon) and carbonizing the particles (Japanese Patent Laid-Open No. 2016-41656).
 上記従来の多孔質炭素粒子の製造方法では、原料を炭素化する工程に加えて、アルカリ性物質による賦活処理や鋳型粒子の除去処理を行う工程が必要であり、製造コストが増大する。また、これらの処理により形成される細孔は、多孔質炭素粒子の表面に近いほど径が大きくなる傾向となる。このため、上記従来の多孔質炭素粒子は、直径2nm未満の細孔(ミクロ孔)に加えて、直径2nm以上50nm未満の細孔(メゾ孔)や直径50nm以上の細孔(マクロ孔)も比較的多く有し、比表面積に対して緻密性が低い。従って、上記従来の多孔質炭素粒子は強度が低下し易い。このため、上記従来の多孔質炭素粒子は表面が不安定となり易く、機械的又は化学的処理を施して導電性を高めることが難しい。 In the above conventional method for producing porous carbon particles, in addition to the step of carbonizing the raw material, a step of performing an activation treatment with an alkaline substance and a removal treatment of the template particles is necessary, which increases the production cost. Further, the pores formed by these treatments tend to have larger diameters as they are closer to the surface of the porous carbon particles. For this reason, in addition to pores (micropores) having a diameter of less than 2 nm, the conventional porous carbon particles also have pores (mesopores) having a diameter of 2 nm or more and less than 50 nm and pores (macropores) having a diameter of 50 nm or more. It has a relatively large amount and has a low density with respect to the specific surface area. Therefore, the strength of the conventional porous carbon particles tends to decrease. For this reason, the surface of the conventional porous carbon particles tends to be unstable, and it is difficult to increase the conductivity by applying a mechanical or chemical treatment.
特開2012-41199号公報JP 2012-41199 A 特開2016-41656号公報JP 2016-41656 A
 本発明は、上述のような事情に基づいてなされたものであり、低い製造コストで比較的緻密な多孔質炭素粒子の製造方法及び多孔質炭素粒子の提供を目的とする。 The present invention has been made based on the above-mentioned circumstances, and an object thereof is to provide a method for producing relatively dense porous carbon particles and porous carbon particles at a low production cost.
 本発明者らは、多孔質炭素粒子の製造方法について鋭意検討した結果、無灰炭を溶媒中に溶存させた溶液を噴霧乾燥させることで、賦活処理や鋳型粒子による処理を行わなくとも多孔質炭素粒子を製造できることを見出した。しかも、このようにして製造される多孔質炭素粒子の細孔は、ミクロ孔が大半であり、メゾ孔やマクロ孔が比較的少なく、多孔質炭素粒子が比表面積に比して緻密なものであることが分かった。 As a result of intensive studies on a method for producing porous carbon particles, the present inventors have spray-dried a solution in which ashless coal is dissolved in a solvent, so that the porous carbon particles can be made porous without performing activation treatment or treatment with template particles. It has been found that carbon particles can be produced. Moreover, the pores of the porous carbon particles produced in this way are mostly micropores, relatively few mesopores and macropores, and the porous carbon particles are denser than the specific surface area. I found out.
 すなわち、上記課題を解決するためになされた発明は、無灰炭が溶媒中に溶存する溶液を噴霧乾燥する噴霧乾燥工程と、上記噴霧乾燥工程で得られる固形分を加熱処理する加熱工程とを備え、上記溶媒が、酸素原子又は窒素原子を含み、かつ大気圧における沸点が50℃以上250℃未満である有機化合物を主成分とし、上記溶液における無灰炭の含有量が5質量%以上50質量%以下である多孔質炭素粒子の製造方法である。 That is, the invention made in order to solve the above-mentioned problems includes a spray-drying process for spray-drying a solution in which ashless coal is dissolved in a solvent, and a heating process for heat-treating the solid content obtained in the spray-drying process. The solvent contains an oxygen atom or a nitrogen atom and has a boiling point at atmospheric pressure of 50 ° C. or higher and lower than 250 ° C. as a main component, and the content of ashless coal in the solution is 5% by mass or more 50 It is a manufacturing method of the porous carbon particle which is the mass% or less.
 当該多孔質炭素粒子の製造方法は、酸素原子又は窒素原子を含み、かつ大気圧における沸点が上記範囲内である有機化合物を主成分とする溶媒中に無灰炭を溶存させた溶液を噴霧乾燥する。無灰炭は石炭や石油ピッチに比べ炭素化収率が高いので、当該多孔質炭素粒子の製造方法は多孔質炭素粒子の製造効率が高い。また、上記溶媒を用い、上記溶液における無灰炭の含有量を上記範囲内とすることで、噴霧乾燥工程において無灰炭が溶存した状態から溶媒が急激に脱離するので、得られる固形分に多数のミクロ孔が誘起される。さらに、上記固形分の主成分となる無灰炭は石炭や石油ピッチに比べ酸素等のヘテロ元素の割合が高いため、加熱処理時に結晶成長し難い。このため、加熱工程においてもミクロ孔が維持され、当該多孔質炭素粒子の製造方法は、比較的緻密な多孔質炭素粒子を製造することができる。また、当該多孔質炭素粒子の製造方法は、賦活処理や鋳型粒子による処理を必要としないので製造コストを低減できる。従って、当該多孔質炭素粒子の製造方法を用いることで、低い製造コストで比較的緻密な多孔質炭素粒子が製造できる。 The method for producing the porous carbon particles includes spray drying a solution in which ashless coal is dissolved in a solvent mainly containing an organic compound containing an oxygen atom or a nitrogen atom and having a boiling point at atmospheric pressure within the above range. To do. Since ashless coal has a higher carbonization yield than coal and petroleum pitch, the production method of the porous carbon particles has high production efficiency of the porous carbon particles. Further, by using the above solvent and setting the content of ashless coal in the above solution within the above range, the solvent is rapidly desorbed from the state in which the ashless coal is dissolved in the spray drying step, so that the obtained solid content Many micropores are induced. Furthermore, since the ashless coal which is the main component of the solid content has a higher ratio of hetero elements such as oxygen than coal and petroleum pitch, it is difficult for crystals to grow during heat treatment. For this reason, micropores are maintained even in the heating step, and the method for producing the porous carbon particles can produce relatively dense porous carbon particles. Moreover, since the manufacturing method of the said porous carbon particle does not require the activation process and the process by template particle | grains, it can reduce manufacturing cost. Therefore, by using the method for producing porous carbon particles, relatively dense porous carbon particles can be produced at a low production cost.
 石炭及び上記溶媒を混合する混合工程と、上記混合工程で得られたスラリー中の上記石炭から上記溶媒に可溶な成分を溶出させる溶出工程と、上記溶出工程で溶出後の上記スラリーを、溶媒可溶成分を含む液体分及び溶媒不溶成分に分離する分離工程とをさらに備え、上記噴霧乾燥工程における上記溶液として、上記分離工程で得られる液体分を用いるとよい。上記溶出工程での石炭の溶媒抽出処理により無灰炭が溶媒に溶出できる。つまり、上記液体分は、無灰炭が溶媒中に溶存する。従って、この液体分をそのまま上記溶液として用いることで、多孔質炭素粒子の製造コストをさらに低減できる。 A mixing step of mixing coal and the solvent, an elution step of eluting components soluble in the solvent from the coal in the slurry obtained in the mixing step, and the slurry after elution in the elution step It is preferable to further include a liquid component containing a soluble component and a separation step for separating into a solvent-insoluble component, and the liquid component obtained in the separation step may be used as the solution in the spray drying step. Ashless coal can be eluted into the solvent by solvent extraction of coal in the elution step. That is, ashless coal is dissolved in the solvent in the liquid. Therefore, the production cost of the porous carbon particles can be further reduced by using the liquid as it is as the solution.
 上記固形分の平均径が1μm以上20μm以下となるよう噴霧圧力及び送液速度を調整するとよい。このように上記固形分の平均径が1μm以上20μm以下となるよう噴霧圧力及び送液速度を調整することで、多孔質炭素粒子の比表面積をさらに大きくすることができる。 The spray pressure and the liquid feeding speed may be adjusted so that the average diameter of the solid content is 1 μm or more and 20 μm or less. Thus, the specific surface area of the porous carbon particles can be further increased by adjusting the spray pressure and the liquid feeding speed so that the average diameter of the solid content is 1 μm or more and 20 μm or less.
 上記課題を解決するためになされた別の発明は、炭素を主成分とし、中空部を内包する炭素層を備え、上記炭素層が複数の細孔を有し、上記細孔のうち、直径0.5nm以下の細孔のLog微分細孔容積が0.1cm/g以上であり、直径2nm以上4nm以下の細孔のLog微分細孔容積が0.05cm/g未満である多孔質炭素粒子である。 Another invention made in order to solve the above-mentioned problem is provided with a carbon layer containing carbon as a main component and enclosing a hollow portion, wherein the carbon layer has a plurality of pores, and the diameter of the pores is 0. Porous carbon having a Log differential pore volume of 0.1 cm 3 / g or more for pores of 5 nm or less and a Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less of less than 0.05 cm 3 / g Particles.
 当該多孔質炭素粒子は、直径0.5nm以下の細孔のLog微分細孔容積を上記下限以上とし、直径2nm以上4nm以下の細孔のLog微分細孔容積を上記上限未満とするので、比較的緻密である。また、当該多孔質炭素粒子は、中空部を内包する炭素層を備えるので、中実である多孔質炭素粒子に比べて細孔が炭素層を貫通し易く、個々の細孔において径が表面からの距離によらず均一化し易い。このため、直径0.5nm以下の細孔であっても、途中で径が潰れることなく外面から比較的深い位置まで孔が維持される。従って、直径2nm以上4nm以下の細孔のLog微分細孔容積が上記上限未満としても、直径0.5nm以下の細孔により比表面積を維持することができる。 The porous carbon particles have a Log differential pore volume of pores having a diameter of 0.5 nm or less above the lower limit and a Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less less than the upper limit. Precise. In addition, since the porous carbon particles include a carbon layer that encloses the hollow portion, the pores easily penetrate the carbon layer as compared with the solid porous carbon particles, and the diameter of each pore from the surface is reduced. It is easy to equalize regardless of the distance. For this reason, even if it is a pore of 0.5 nm or less in diameter, a hole is maintained to a comparatively deep position from an outer surface, without a diameter being crushed on the way. Therefore, even if the Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less is less than the above upper limit, the specific surface area can be maintained by the pores having a diameter of 0.5 nm or less.
 ここで、「主成分」とは、最も含有量の多い成分を意味し、例えば含有量が50質量%以上の成分をいい、「固形分の平均径」とは、固形分と同体積となる真球の直径を意味する。 Here, “main component” means a component having the largest content, for example, a component having a content of 50% by mass or more, and “average diameter of solid content” is the same volume as the solid content. It means the diameter of a true sphere.
 また、ある直径における「細孔のLog微分細孔容積」は、次のようにして算出される値である。まず、HK法により細孔分布を測定する。この測定により、細孔を円筒形と仮定した場合の底面の直径Dに対する積算細孔容積分布Vが得られる。この分布を元に測定ポイント間の差分細孔容積dVを細孔直径Dの対数扱いでの差分値d(LogD)で割った値を求めることで、Log微分細孔容積が算出できる。 Further, “Log differential pore volume of pores” at a certain diameter is a value calculated as follows. First, the pore distribution is measured by the HK method. By this measurement, an integrated pore volume distribution V with respect to the diameter D of the bottom surface when the pore is assumed to be cylindrical is obtained. Based on this distribution, the Log differential pore volume can be calculated by obtaining a value obtained by dividing the difference pore volume dV between the measurement points by the difference value d (LogD) in the logarithmic treatment of the pore diameter D.
 以上説明したように、本発明の多孔質炭素粒子の製造方法を用いることで、低い製造コストで比較的緻密な多孔質炭素粒子が得られる。また、本発明の多孔質炭素粒子は、比較的緻密であるため、表面が比較的安定しており、機械的又は化学的処理を施して導電性を高め易い。従って、当該多孔質炭素粒子は、吸着材や電子部品として好適に用いることができる。 As described above, by using the method for producing porous carbon particles of the present invention, relatively dense porous carbon particles can be obtained at a low production cost. Further, since the porous carbon particles of the present invention are relatively dense, the surface is relatively stable, and it is easy to increase the conductivity by applying a mechanical or chemical treatment. Therefore, the porous carbon particles can be suitably used as an adsorbent or an electronic component.
図1は、本発明の一実施形態に係る多孔質炭素粒子の製造方法を示す概略フロー図である。FIG. 1 is a schematic flow diagram showing a method for producing porous carbon particles according to an embodiment of the present invention. 図2は、図1とは異なる実施形態に係る多孔質炭素粒子の製造方法を示す概略フロー図である。FIG. 2 is a schematic flow diagram showing a method for producing porous carbon particles according to an embodiment different from FIG. 図3は、実施例1の多孔質炭素粒子の細孔径分布を示すグラフである。FIG. 3 is a graph showing the pore size distribution of the porous carbon particles of Example 1.
[第一実施形態]
 以下、本発明に係る多孔質炭素粒子の製造方法及び多孔質炭素粒子の第一実施形態について説明する。
[First embodiment]
Hereinafter, a method for producing porous carbon particles according to the present invention and a first embodiment of the porous carbon particles will be described.
〔多孔質炭素粒子の製造方法〕
 当該多孔質炭素粒子の製造方法は、図1に示すように、混合工程S1と、溶出工程S2と、分離工程S3と、噴霧乾燥工程S4と、加熱工程S5とを主に備える。
[Method for producing porous carbon particles]
As shown in FIG. 1, the method for producing porous carbon particles mainly includes a mixing step S1, an elution step S2, a separation step S3, a spray drying step S4, and a heating step S5.
<混合工程>
 混合工程S1では、石炭及び溶媒を混合する。この混合工程S1は、例えば石炭供給部、溶媒供給部、及び混合部により行える。
<Mixing process>
In the mixing step S1, coal and a solvent are mixed. This mixing process S1 can be performed by a coal supply part, a solvent supply part, and a mixing part, for example.
(石炭供給部)
 石炭供給部は、石炭を混合部へ供給する。石炭供給部としては、常圧状態で使用される常圧ホッパー、常圧状態及び加圧状態で使用される加圧ホッパー等の公知の石炭ホッパーを用いることができる。
(Coal supply department)
The coal supply unit supplies coal to the mixing unit. As a coal supply part, well-known coal hoppers, such as a normal pressure hopper used in a normal pressure state, a pressure hopper used in a normal pressure state and a pressurization state, can be used.
 石炭供給部から供給する石炭は、無灰炭の原料となる石炭である。上記石炭としては、様々な品質の石炭を用いることができる。例えば無灰炭の抽出率の高い瀝青炭や、より安価な低品位炭(亜瀝青炭や褐炭)が好適に用いられる。また、石炭を粒度で分類すると、細かく粉砕された石炭が好適に用いられる。ここで「細かく粉砕された石炭」とは、例えば石炭全体の質量に対する粒度1mm未満の石炭の質量割合が80%以上である石炭を意味する。また、石炭供給部から供給する石炭として塊炭を用いることもできる。ここで「塊炭」とは、例えば石炭全体の質量に対する粒度5mm以上の石炭の質量割合が50%以上である石炭を意味する。塊炭は、細かく粉砕された石炭に比べて未溶解な固体の石炭の粒度が大きく保たれるため、後述する分離部での分離を効率化することができる。ここで、「粒度(粒径)」とは、JIS-Z8815:1994のふるい分け試験通則に準拠して測定した値をいう。なお、石炭の粒度による仕分けには、例えばJIS-Z8801-1:2006に規定する金属製網ふるいを用いることができる。 Coal supplied from the coal supply unit is coal that is a raw material for ashless coal. As the coal, various quality coals can be used. For example, bituminous coal with a high extraction rate of ashless coal or cheaper low-grade coal (subbituminous coal or lignite) is preferably used. Further, when coal is classified by particle size, finely pulverized coal is preferably used. Here, “finely pulverized coal” means, for example, coal in which the mass ratio of coal having a particle size of less than 1 mm to the mass of the entire coal is 80% or more. Moreover, lump coal can also be used as coal supplied from a coal supply part. Here, “coal” means, for example, coal in which the mass ratio of coal having a particle size of 5 mm or more to the mass of the entire coal is 50% or more. The lump coal can maintain the particle size of undissolved solid coal larger than that of finely pulverized coal, so that the separation in the separation unit described later can be made more efficient. Here, “particle size (particle size)” refers to a value measured in accordance with JIS-Z8815: 1994 general screening test rules. For sorting according to the particle size of coal, for example, a metal net sieve specified in JIS-Z8801-1: 2006 can be used.
 上記低品位炭の炭素含有率の下限としては、70質量%が好ましい。一方、上記低品位炭の炭素含有率の上限としては、85質量%が好ましく、82質量%がより好ましい。上記低品位炭の炭素含有率が上記下限未満であると、溶媒可溶成分の溶出率が低下するおそれがある。逆に、上記低品位炭の炭素含有率が上記上限を超えると、供給する石炭のコストが高くなるおそれがある。 The lower limit of the carbon content of the low-grade coal is preferably 70% by mass. On the other hand, the upper limit of the carbon content of the low-grade coal is preferably 85% by mass, and more preferably 82% by mass. There exists a possibility that the elution rate of a solvent soluble component may fall that the carbon content rate of the said low grade coal is less than the said minimum. Conversely, if the carbon content of the low-grade coal exceeds the upper limit, the cost of the coal to be supplied may increase.
 なお、石炭供給部から混合部へ供給する石炭として、少量の溶媒を混合してスラリー化した石炭を用いてもよい。石炭供給部からスラリー化した石炭を混合部へ供給することにより、混合部において石炭が溶媒と混合し易くなり、石炭をより早く溶解させることができる。ただし、スラリー化する際に混合する溶媒の量が多いと、後述する昇温部でスラリーを溶出温度まで昇温するための熱量が不必要に大きくなるため、製造コストが増大するおそれがある。 In addition, as a coal supplied to a mixing part from a coal supply part, you may use the coal which mixed a small amount of solvent and made it slurry. By supplying the slurried coal from the coal supply unit to the mixing unit, the coal is easily mixed with the solvent in the mixing unit, and the coal can be dissolved more quickly. However, if the amount of the solvent to be mixed at the time of forming the slurry is large, the amount of heat for raising the slurry to the elution temperature in the temperature raising portion described later becomes unnecessarily large, which may increase the manufacturing cost.
(溶媒供給部)
 溶媒供給部は、溶媒を混合部へ供給する。上記溶媒供給部は、溶媒を貯留する溶媒タンクを有し、この溶媒タンクから溶媒を混合部へ供給する。上記溶媒供給部から供給する溶媒は、石炭供給部から供給する石炭と混合部で混合される。
(Solvent supply unit)
The solvent supply unit supplies the solvent to the mixing unit. The said solvent supply part has a solvent tank which stores a solvent, and supplies a solvent from this solvent tank to a mixing part. The solvent supplied from the solvent supply unit is mixed with coal supplied from the coal supply unit in the mixing unit.
 溶媒供給部から供給する溶媒は、酸素原子又は窒素原子を含む有機化合物を主成分とする。このように上記溶媒の主成分を酸素原子又は窒素原子を含む有機化合物とすることで、溶媒と無灰炭との親和性が高まり、抽出される溶液における無灰炭の含有量を高め易い。その結果、多孔質炭素粒子の収量が増加するので、多孔質炭素粒子の製造コストが低減できる。このような溶媒としては、ピリジン(CN)、テトラヒドロフラン(CO)、ジメチルホルムアミド((CHNCHO)、N-メチルピロリドン(CNO)などが挙げられる。中でも無灰炭と親和性が高いピリジン及びテトラヒドロフランが好ましい。なお、酸素原子又は窒素原子を含む有機化合物は1種類であってもよく、また2種類以上の有機化合物が混合されていてもよい。 The solvent supplied from the solvent supply unit is mainly composed of an organic compound containing an oxygen atom or a nitrogen atom. Thus, by making the main component of the said solvent into the organic compound containing an oxygen atom or a nitrogen atom, the affinity of a solvent and ashless coal increases, and it is easy to raise the content of ashless coal in the solution to be extracted. As a result, the yield of the porous carbon particles increases, so that the manufacturing cost of the porous carbon particles can be reduced. Examples of such a solvent include pyridine (C 5 H 5 N), tetrahydrofuran (C 4 H 8 O), dimethylformamide ((CH 3 ) 2 NCHO), N-methylpyrrolidone (C 5 H 9 NO), and the like. It is done. Of these, pyridine and tetrahydrofuran having high affinity with ashless coal are preferred. In addition, the organic compound containing an oxygen atom or a nitrogen atom may be one kind, and two or more kinds of organic compounds may be mixed.
 上記溶媒の大気圧における沸点の下限値としては、50℃であり、60℃がより好ましく、65℃がさらに好ましい。一方。上記溶媒の沸点は、250℃未満であり、210℃未満がより好ましく、160℃未満がさらに好ましい。上記溶媒の沸点が上記下限未満であると、無灰炭が十分に溶解せず無灰炭の含有量を高められないおそれがある。逆に、上記溶媒の沸点が上記上限以上であると、噴霧乾燥工程S4において溶媒の脱離に伴う圧力が不足するため、多孔質炭素材料の細孔が十分に形成されないおそれがある。 The lower limit of the boiling point of the solvent at atmospheric pressure is 50 ° C., more preferably 60 ° C., and still more preferably 65 ° C. on the other hand. The boiling point of the solvent is less than 250 ° C, more preferably less than 210 ° C, and even more preferably less than 160 ° C. If the boiling point of the solvent is less than the lower limit, the ashless coal may not be sufficiently dissolved and the content of ashless coal may not be increased. On the other hand, if the boiling point of the solvent is equal to or higher than the upper limit, the pressure associated with the desorption of the solvent is insufficient in the spray drying step S4, so that there is a possibility that the pores of the porous carbon material are not sufficiently formed.
(混合部)
 混合部は、石炭供給部から供給する石炭及び溶媒供給部から供給する溶媒を混合する。
(Mixing part)
The mixing unit mixes the coal supplied from the coal supply unit and the solvent supplied from the solvent supply unit.
 上記混合部としては、調製槽を用いることができる。この調製槽には、供給管を介して上記石炭及び溶媒が供給される。上記調製槽では、この供給された石炭及び溶媒が混合され、スラリーが調製される。また、上記調製槽は、攪拌機を有しており、混合したスラリーを攪拌機で攪拌しながら保持することによりスラリーの混合状態を維持する。 A preparation tank can be used as the mixing unit. The coal and solvent are supplied to the preparation tank through a supply pipe. In the preparation tank, the supplied coal and solvent are mixed to prepare a slurry. Moreover, the said preparation tank has a stirrer, and maintains the mixing state of a slurry by hold | maintaining the mixed slurry, stirring with a stirrer.
 調製槽におけるスラリー中の無水炭基準での石炭濃度は、溶媒の種類等により適宜決定されるが、上記石炭濃度の下限としては、5質量%が好ましく、10質量%がより好ましい。一方、上記石炭濃度の上限としては、65質量%が好ましく、40質量%がより好ましい。上記石炭濃度が上記下限未満であると、溶出工程S2で溶出される溶媒可溶成分の溶出量がスラリー処理量に対して少なくなるため、溶液に含まれる無灰炭の含有量が不十分となるおそれがある。逆に、上記石炭濃度が上記上限を超えると、溶媒中で上記溶媒可溶成分が飽和し易いため、上記溶媒可溶成分の溶出率が低下するおそれがある。 Although the coal concentration on the basis of anhydrous carbon in the slurry in the preparation tank is appropriately determined depending on the type of solvent and the like, the lower limit of the coal concentration is preferably 5% by mass and more preferably 10% by mass. On the other hand, the upper limit of the coal concentration is preferably 65% by mass, and more preferably 40% by mass. If the coal concentration is less than the lower limit, the elution amount of the solvent-soluble component eluted in the elution step S2 is less than the slurry processing amount, and therefore the content of ashless coal contained in the solution is insufficient. There is a risk. Conversely, if the coal concentration exceeds the upper limit, the solvent-soluble component is likely to be saturated in the solvent, and the elution rate of the solvent-soluble component may be reduced.
 なお、混合部の調製槽で調製されたスラリーは、溶出工程S2で処理される。 In addition, the slurry prepared in the preparation tank of the mixing unit is processed in the elution step S2.
<溶出工程>
 溶出工程S2では、上記混合工程S1で得られたスラリー中の石炭から溶媒に可溶な石炭成分を溶出させる。溶出工程S2は、昇温部及び溶出部により行うことができる。
<Elution process>
In the elution step S2, coal components soluble in the solvent are eluted from the coal in the slurry obtained in the mixing step S1. The elution step S2 can be performed by the temperature raising part and the elution part.
(昇温部)
 昇温部は、上記混合工程S1で得られたスラリーを昇温する。
(Temperature riser)
The temperature raising unit raises the temperature of the slurry obtained in the mixing step S1.
 昇温部としては、内部を通過するスラリーを昇温できるものであれば特に限定されないが、例えば抵抗加熱式ヒーターや誘導加熱コイルが挙げられる。また、昇温部は、熱媒を用いて昇温を行うよう構成されていてもよく、例えば内部を通過するスラリーの流路の周囲に配設される加熱管を有し、この加熱管に蒸気、油等の熱媒を供給することでスラリーを昇温可能に構成されていてもよい。 The temperature raising part is not particularly limited as long as it can raise the temperature of the slurry passing through the inside, and examples thereof include a resistance heating heater and an induction heating coil. Further, the temperature raising unit may be configured to raise the temperature using a heat medium, for example, has a heating tube disposed around the flow path of the slurry passing through the inside, and the heating tube The slurry may be heated by supplying a heat medium such as steam or oil.
 昇温部による昇温後のスラリーの温度は、使用する溶媒に応じて適宜決定されるが、例えば80℃以上120℃以下とできる。上記スラリーの温度が上記下限未満であると、溶出率が低下するおそれがある。逆に、上記スラリーの温度が上記上限を超えると、溶媒が気化し過ぎるためスラリーの濃度を制御することが困難となるおそれがある。 The temperature of the slurry after the temperature rise by the temperature raising unit is appropriately determined according to the solvent to be used. If the temperature of the slurry is less than the lower limit, the elution rate may decrease. On the other hand, if the temperature of the slurry exceeds the upper limit, the solvent is excessively vaporized, which may make it difficult to control the concentration of the slurry.
 また、昇温部の圧力としては、特に限定されないが、常圧(0.1MPa)とできる。 Further, the pressure of the temperature raising portion is not particularly limited, but can be normal pressure (0.1 MPa).
(溶出部)
 溶出部は、上記混合部で得られ、上記昇温部で昇温されたスラリー中の石炭から溶媒に可溶な石炭成分を溶出させる。
(Elution part)
An elution part elutes a coal component soluble in a solvent from coal in a slurry obtained by the above-mentioned mixing part and heated at the above-mentioned temperature raising part.
 溶出部としては、抽出槽を用いることができ、この抽出槽に上記昇温後のスラリーが供給される。上記抽出槽では、このスラリーの温度及び圧力を保持しながら溶媒に可溶な石炭成分を石炭から溶出させる。また、上記抽出槽は、攪拌機を有している。この攪拌機によりスラリーを攪拌することで上記溶出を促進できる。 As the elution part, an extraction tank can be used, and the slurry after the above temperature rise is supplied to this extraction tank. In the extraction tank, the coal components soluble in the solvent are eluted from the coal while maintaining the temperature and pressure of the slurry. The extraction tank has a stirrer. The elution can be promoted by stirring the slurry with this stirrer.
 なお、溶出部での溶出時間としては、特に限定されないが、溶媒可溶成分の抽出量と抽出効率との観点から10分以上70分以下が好ましい。 The elution time at the elution part is not particularly limited, but is preferably 10 minutes or more and 70 minutes or less from the viewpoint of the extraction amount of the solvent-soluble component and the extraction efficiency.
<分離工程>
 分離工程S3では、上記溶出工程S2で溶出後の上記スラリーを、溶媒可溶成分を含む液体分及び溶媒不溶成分に分離する。この分離工程S3は、分離部により行うことができる。なお、溶媒不溶成分は、抽出用溶媒に不溶な灰分と不溶石炭とを主として含み、これらに加え抽出用溶媒をさらに含む抽出残分をいう。
<Separation process>
In the separation step S3, the slurry eluted in the elution step S2 is separated into a liquid component containing a solvent-soluble component and a solvent-insoluble component. This separation step S3 can be performed by a separation unit. The solvent-insoluble component refers to an extraction residue that mainly contains ash and insoluble coal insoluble in the extraction solvent, and further contains an extraction solvent in addition to these.
(分離部)
 分離部における上記液体分及び溶媒不溶成分を分離する方法としては、例えば重力沈降法、濾過法、遠心分離法を用いることができ、それぞれ沈降槽、濾過器、遠心分離器が使用される。
(Separation part)
As a method for separating the liquid component and the solvent-insoluble component in the separation unit, for example, a gravity sedimentation method, a filtration method, and a centrifugal separation method can be used, and a sedimentation tank, a filter, and a centrifugal separator are used, respectively.
 以下、重力沈降法を例にとり分離方法について説明する。重力沈降法とは、沈降槽内で重力を利用して溶媒不溶成分を沈降させて固液分離する分離方法である。重力沈降法により分離を行う場合、溶媒可溶成分を含む液体分は、沈降槽の上部に溜まる。この液体分は必要に応じてフィルターユニットを用いて濾過した後、後述する噴霧部に排出される。一方、溶媒不溶成分は、分離部の下部から排出される。 Hereinafter, the separation method will be described by taking the gravity sedimentation method as an example. The gravitational sedimentation method is a separation method in which a solvent-insoluble component is settled by using gravity in a sedimentation tank to separate it into solid and liquid. When the separation is performed by the gravity sedimentation method, the liquid component containing the solvent-soluble component is accumulated in the upper part of the sedimentation tank. This liquid content is filtered using a filter unit as necessary, and then discharged to a spraying section to be described later. On the other hand, the solvent-insoluble component is discharged from the lower part of the separation part.
 また、重力沈降法により分離を行う場合、スラリーを分離部内に連続的に供給しながら溶媒可溶成分を含む液体分及び溶媒不溶成分を沈降槽から排出することができる。これにより連続的な固液分離処理が可能となる。 Further, when separation is performed by the gravity sedimentation method, the liquid component including the solvent-soluble component and the solvent-insoluble component can be discharged from the sedimentation tank while continuously supplying the slurry into the separation unit. Thereby, continuous solid-liquid separation processing becomes possible.
 分離部内でスラリーを維持する時間は、特に限定されないが、例えば30分以上120分以下とでき、この時間内で分離部内の沈降分離が行われる。なお、石炭として塊炭を使用する場合には、沈降分離が効率化されるので、分離部内でスラリーを維持する時間を短縮できる。 The time for maintaining the slurry in the separation part is not particularly limited, but can be, for example, 30 minutes or more and 120 minutes or less, and sedimentation separation in the separation part is performed within this time. In addition, when using lump coal as coal, since sedimentation separation is made efficient, the time which maintains a slurry in a separation part can be shortened.
 なお、分離部内の温度及び圧力としては、昇温部による昇温後のスラリーの温度及び圧力と同様とできる。 The temperature and pressure in the separation unit can be the same as the temperature and pressure of the slurry after the temperature is raised by the temperature raising unit.
 上記液体分に含まれる溶媒可溶成分の主成分は無灰炭であり、この液体分は、噴霧部で噴霧される溶液として用いることができる。なお、無灰炭は、灰分が5質量%以下又は3質量%以下であり、灰分をほとんど含まず、水分は皆無であり、また例えば原料石炭よりも高い発熱量を示す。 The main component of the solvent-soluble component contained in the liquid component is ashless coal, and this liquid component can be used as a solution sprayed in the spraying section. Ashless coal has an ash content of 5% by mass or less or 3% by mass or less, hardly contains ash, has no moisture, and exhibits a higher calorific value than, for example, raw coal.
 上記液体分、すなわち噴霧される上記溶液における無灰炭の含有量の下限としては、5質量%であり、8質量%がより好ましい。一方、上記溶液における無灰炭の含有量の上限としては、50質量%であり、40質量%がより好ましく、25質量%がさらに好ましい。上記無灰炭の含有量が上記下限未満であると、単位量あたりの液体分から得られる多孔質炭素粒子の量が減少するので、製造効率が低下するおそれがある。逆に、上記無灰炭の含有量が上記上限を超えると、相対的に溶媒の量が不足し、溶媒が脱離する勢いが不十分となるため、ミクロ孔が十分に形成されないおそれがある。なお、上記無灰炭の含有量は、混合部で溶媒に加える石炭の量により調整することができる。 The lower limit of the content of ashless coal in the liquid component, that is, the solution to be sprayed, is 5% by mass, and more preferably 8% by mass. On the other hand, as an upper limit of content of ashless coal in the said solution, it is 50 mass%, 40 mass% is more preferable, and 25 mass% is further more preferable. If the content of the ashless coal is less than the lower limit, the amount of porous carbon particles obtained from the liquid content per unit amount is decreased, which may reduce the production efficiency. On the contrary, if the content of the ashless coal exceeds the upper limit, the amount of the solvent is relatively insufficient, and the momentum of detachment of the solvent becomes insufficient, so that micropores may not be sufficiently formed. . In addition, content of the said ashless coal can be adjusted with the quantity of coal added to a solvent in a mixing part.
 一方、上記溶媒不溶成分からは、溶媒を蒸発分離させて副生炭を得ることができる。副生炭は、軟化溶融性は示さないが、含酸素官能基が脱離されている。そのため、副生炭は、配合炭として用いた場合にこの配合炭に含まれる他の石炭の軟化溶融性を阻害しない。従って、この配合炭は例えばコークス原料の配合炭の一部として使用することができる。また、副生炭は一般の石炭と同様に燃料として利用してもよい。 On the other hand, by-product coal can be obtained by evaporating and separating the solvent from the solvent-insoluble component. By-product charcoal does not show softening and melting properties, but the oxygen-containing functional groups are eliminated. Therefore, by-product coal does not inhibit the softening and melting properties of other coals contained in this blended coal when used as a blended coal. Therefore, this blended coal can be used, for example, as a part of the blended coal of the coke raw material. Further, by-product coal may be used as fuel in the same manner as general coal.
<噴霧乾燥工程>
 噴霧乾燥工程S4では、無灰炭が溶媒中に溶存する上記液体分である溶液を噴霧乾燥する。この噴霧乾燥工程S4は、噴霧部により行うことができる。
<Spray drying process>
In spray drying process S4, the solution which is the said liquid component in which ashless coal melt | dissolves in a solvent is spray-dried. This spray drying process S4 can be performed by a spraying part.
(噴霧部)
 上記噴霧部としては、噴霧器を用いることができる。この噴霧器としては、公知のフラッシュ蒸留器やサイクロンを挙げることができる。
(Spraying part)
A sprayer can be used as the spray unit. As this atomizer, a well-known flash distiller and a cyclone can be mentioned.
 このような噴霧器は、分離部からの供給配管を通じて噴霧部に供給される溶液に噴霧用ガスを噴射する噴霧ノズルを有する。上記噴霧ノズルは、例えば2流体ノズルや4流体ノズルに供給配管を接続した構成とすることができる。 Such a sprayer has a spray nozzle that injects a spraying gas into a solution supplied to the spraying section through a supply pipe from the separation section. The spray nozzle can be configured, for example, by connecting a supply pipe to a two-fluid nozzle or a four-fluid nozzle.
 上記噴霧器では、加熱された噴霧用ガスを噴霧ノズルにより上記溶液に衝突させることで上記溶液を微細化し分散させる。噴霧用ガスの衝突により霧状となった溶液のうち溶媒は、フラッシュ蒸留器やサイクロンの中で、自己顕熱及び加熱された噴霧用ガスからの熱量付与により蒸発する。当該多孔質炭素粒子の製造方法では、上記溶媒の大気圧における沸点が250℃未満であるので、霧状の溶液の各滴から溶媒が急激に脱離する。霧状となった溶液は、この溶媒の急激な脱離により乾燥し、無灰炭を主成分とする固形分が得られる。無灰炭に起因する炭素を主成分とする炭素層の内部に溶媒が閉じ込められた状態から溶媒が脱離してこの固形分が形成されるためと考えられるが、この固形分は、炭素を主成分とし、中空部を構成する炭素層を備える。また、上記炭素層は、溶媒の脱離により誘起される複数のミクロ孔を有する。 In the atomizer, the solution is refined and dispersed by colliding the heated atomizing gas with the solution through a spray nozzle. The solvent in the mist-like solution due to the collision of the atomizing gas evaporates in a flash distiller or a cyclone by self-sensible heat and the application of heat from the heated atomizing gas. In the method for producing porous carbon particles, since the boiling point of the solvent at atmospheric pressure is less than 250 ° C., the solvent is rapidly desorbed from each droplet of the atomized solution. The atomized solution is dried by rapid desorption of the solvent, and a solid content mainly composed of ashless coal is obtained. This is thought to be because the solvent is released from the state where the solvent is trapped inside the carbon layer mainly composed of carbon derived from ashless coal, and this solid content is formed. As a component, a carbon layer constituting the hollow portion is provided. The carbon layer has a plurality of micropores induced by the desorption of the solvent.
 上記噴霧ガスとしては、不活性ガス、例えば窒素を用いることが好ましい。不活性ガスは、反応性が低いので生成される固形分の組成に与える影響が少ない。また、溶媒の沸点以下の比較的低い温度においても気体であるため、蒸発した溶媒と噴霧ガスとの分離が容易である。 It is preferable to use an inert gas such as nitrogen as the atomizing gas. Since the inert gas has low reactivity, it has little influence on the composition of the solid content produced. Further, since it is a gas even at a relatively low temperature below the boiling point of the solvent, it is easy to separate the evaporated solvent and the spray gas.
 溶液に衝突させる上記噴霧ガスの圧力(噴霧圧力)の下限としては、0.1MPaが好ましく、0.2MPaがより好ましい。一方、上記噴霧圧力の上限としては、1MPaが好ましく、0.5MPaがより好ましい。上記噴霧圧力が上記下限未満であると、噴霧用ガスの衝突による溶液の分散が不足し、得られる多孔質炭素粒子の径が大きくなり易い。このため、多孔質炭素粒子の比表面積が不十分となるおそれがある。逆に、上記噴霧圧力が上記上限を超えると、溶媒が気化し難く、溶媒の脱離が不十分となるため、ミクロ孔が十分に形成されないおそれがある。 The lower limit of the pressure of the spray gas (spray pressure) that collides with the solution is preferably 0.1 MPa, and more preferably 0.2 MPa. On the other hand, the upper limit of the spray pressure is preferably 1 MPa, and more preferably 0.5 MPa. When the spray pressure is less than the lower limit, the dispersion of the solution due to the collision of the spray gas is insufficient, and the diameter of the obtained porous carbon particles tends to be large. For this reason, there exists a possibility that the specific surface area of a porous carbon particle may become inadequate. On the other hand, when the spray pressure exceeds the upper limit, the solvent is difficult to vaporize and the solvent is insufficiently desorbed, so that micropores may not be sufficiently formed.
 上記噴霧ガスの温度の下限としては、100℃が好ましく、150℃がより好ましい。一方、上記噴霧ガスの温度の上限としては、450℃が好ましく、400℃がより好ましい。上記噴霧ガスの温度が上記下限未満であると、溶媒に与えられる、溶媒の脱離が不十分となるため、ミクロ孔が十分に形成されないおそれがある。逆に、上記噴霧ガスの温度が上記上限を超えると、加熱のためのエネルギー消費量が不要に増大するおそれがある。 The lower limit of the temperature of the spray gas is preferably 100 ° C, more preferably 150 ° C. On the other hand, the upper limit of the temperature of the spray gas is preferably 450 ° C., more preferably 400 ° C. If the temperature of the spray gas is lower than the lower limit, the solvent is not sufficiently released and the micropores may not be sufficiently formed. Conversely, if the temperature of the spray gas exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
 分離部からの供給配管を通じて噴霧部に供給する上記溶液の送液速度の下限としては、0.5kg/hが好ましく、0.7kg/hがより好ましい。一方、上記送液速度の上限としては、2kg/hが好ましく、1.5kg/hがより好ましい。上記送液速度が上記下限未満であると、単位時間あたりに得られる多孔質炭素粒子の量が減少するので、製造効率が低下するおそれがある。逆に、上記送液速度が上記上限を超えると、上記溶液に付与される熱量が不足し、溶媒の脱離が不十分となるため、ミクロ孔が十分に形成されないおそれがある。 The lower limit of the solution feeding speed of the solution supplied to the spraying part through the supply pipe from the separation part is preferably 0.5 kg / h, more preferably 0.7 kg / h. On the other hand, the upper limit of the liquid feeding speed is preferably 2 kg / h, more preferably 1.5 kg / h. When the liquid feeding speed is less than the lower limit, the amount of porous carbon particles obtained per unit time is decreased, and thus production efficiency may be decreased. On the other hand, when the liquid feeding speed exceeds the upper limit, the amount of heat applied to the solution is insufficient, and the desorption of the solvent becomes insufficient, so that micropores may not be sufficiently formed.
 分離部からの供給配管を通じて噴霧部に供給する上記溶液の温度の下限としては、60℃が好ましく、70℃がより好ましく、90℃がさらに好ましい。一方、上記溶液の温度の上限としては、160℃が好ましく、150℃がより好ましい。上記溶液の温度が上記下限未満であると、上記溶液に付与される熱量が不足し、溶媒の脱離が不十分となるため、ミクロ孔が十分に形成されないおそれがある。逆に、上記溶液の温度が上記上限を超えると、加熱のためのエネルギー消費量が不要に増大するおそれがある。 The lower limit of the temperature of the solution supplied to the spraying part through the supply pipe from the separation part is preferably 60 ° C, more preferably 70 ° C, and further preferably 90 ° C. On the other hand, as an upper limit of the temperature of the said solution, 160 degreeC is preferable and 150 degreeC is more preferable. If the temperature of the solution is less than the lower limit, the amount of heat applied to the solution is insufficient, and the desorption of the solvent becomes insufficient, so that micropores may not be sufficiently formed. Conversely, if the temperature of the solution exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
 上記溶液の温度は、溶媒の沸点より高い。上記溶液の温度と溶媒の沸点との温度差の下限としては、10℃が好ましく、20℃がより好ましい。一方、上記温度差の上限としては、50℃が好ましく、40℃がより好ましい。上記温度差が上記下限未満であると、溶媒の脱離が不十分となるため、ミクロ孔が十分に形成されないおそれがある。逆に、上記温度差が上記上限を超えると、加熱のためのエネルギー消費量が不要に増大するおそれがある。 The temperature of the above solution is higher than the boiling point of the solvent. The lower limit of the temperature difference between the solution temperature and the boiling point of the solvent is preferably 10 ° C, more preferably 20 ° C. On the other hand, as an upper limit of the said temperature difference, 50 degreeC is preferable and 40 degreeC is more preferable. If the temperature difference is less than the lower limit, the desorption of the solvent becomes insufficient, and there is a possibility that micropores are not sufficiently formed. Conversely, if the temperature difference exceeds the upper limit, the energy consumption for heating may increase unnecessarily.
 また、噴霧部で得られる固形分は噴霧部内で自然冷却され、40℃以上80℃以下の温度で排出される。 Moreover, the solid content obtained in the spraying part is naturally cooled in the spraying part and discharged at a temperature of 40 ° C. or more and 80 ° C. or less.
 上記固形分の平均径の下限としては、1μmが好ましく、2μmがより好ましい。一方、上記固形分の平均径の上限としては、20μmが好ましく、10μmがより好ましい。上記固形分の平均径は、主に噴霧乾燥工程S4で噴霧する溶液の滴の大きさにより決まる。この噴霧する溶液の滴の大きさは主に噴霧圧力及び送液速度で決まるから、固形分の平均径が上記範囲内となるように噴霧圧力及び送液速度を調整するとよい。上記固形分の平均径が上記下限未満であると、それは噴霧する溶液の滴の大きさが小さいことを意味し、溶液から脱離する溶媒の量が少ない。このためミクロ孔が十分に形成されないおそれがある。逆に、上記固形分の平均径が上記上限を超えると、体積に対して表面積が小さくなるため、固形分の比表面積が不十分となるおそれがある。 The lower limit of the average solid content is preferably 1 μm, more preferably 2 μm. On the other hand, the upper limit of the average diameter of the solid content is preferably 20 μm and more preferably 10 μm. The average diameter of the solid content is determined mainly by the size of the droplets of the solution sprayed in the spray drying step S4. Since the size of the droplets of the solution to be sprayed is mainly determined by the spray pressure and the liquid feeding speed, the spray pressure and the liquid feeding speed may be adjusted so that the average diameter of the solid content is within the above range. When the average diameter of the solid content is less than the lower limit, it means that the droplet size of the solution to be sprayed is small, and the amount of the solvent desorbed from the solution is small. For this reason, there is a possibility that micropores are not sufficiently formed. On the other hand, if the average diameter of the solid content exceeds the upper limit, the surface area is small with respect to the volume, so that the specific surface area of the solid content may be insufficient.
<加熱工程>
 加熱工程S5では、上記噴霧乾燥工程S4で得られる固形分を加熱処理する。この加熱工程S5は、加熱部により行うことができる。
<Heating process>
In the heating step S5, the solid content obtained in the spray drying step S4 is heated. This heating step S5 can be performed by a heating unit.
(加熱部)
 加熱部は、上記噴霧部で得られた固形分を炭素化する。この炭素化により多孔質炭素粒子が得られる。
(Heating part)
The heating unit carbonizes the solid content obtained in the spray unit. By this carbonization, porous carbon particles are obtained.
 上記加熱部としては、例えば公知の電気炉等を用いることができ、固形分を加熱部へ挿入し、内部を不活性ガスで置換した後、加熱部内へ不活性ガスを吹き込みながら加熱を行うことで固形分の炭素化ができる。上記不活性ガスとしては、特に限定されないが、例えば窒素やアルゴン等を挙げることができる。中でも安価な窒素が好ましい。 As the heating unit, for example, a known electric furnace or the like can be used. After inserting the solid content into the heating unit and replacing the inside with an inert gas, heating is performed while blowing the inert gas into the heating unit. Can carbonize solids. Although it does not specifically limit as said inert gas, For example, nitrogen, argon, etc. can be mentioned. Of these, inexpensive nitrogen is preferred.
 噴霧部で溶媒の急激な脱離により生じたミクロ孔は、例えば炭素原料として石炭ピッチ等を用いる場合、この加熱部での加熱処理により固形分の炭素以外の成分の揮発や、炭素の結晶化が進むため、ミクロ孔が収縮して塞がれ易く、緻密な(多孔質ではない)炭素粒子となり易い。これに対し、当該多孔質炭素粒子の製造方法では、炭素原料に無灰炭を用いる。無灰炭は、石炭や石油ピッチに比べ酸素等のヘテロ元素の割合が高いため、加熱処理時に結晶成長し難く、また炭素以外の成分の割合が少ない。従って、当該多孔質炭素粒子の製造方法では、加熱部で加熱処理を行ってもミクロ孔が維持され易く、製造される炭素粒子の多孔質性を維持し易い。 For example, when coal pitch is used as a carbon raw material, micropores generated by the rapid desorption of the solvent in the spraying part are volatilization of components other than solid carbon or crystallization of carbon by heat treatment in this heating part. Therefore, the micropores are easily contracted and closed, and the carbon particles tend to be dense (not porous). On the other hand, in the manufacturing method of the said porous carbon particle, ashless coal is used for a carbon raw material. Ashless coal has a higher proportion of heteroelements such as oxygen than coal and petroleum pitch, so it is difficult for crystals to grow during heat treatment, and the proportion of components other than carbon is small. Therefore, in the method for producing porous carbon particles, the micropores are easily maintained even when heat treatment is performed in the heating unit, and the porosity of the produced carbon particles is easily maintained.
 上記加熱温度の下限としては、500℃が好ましく、700℃がより好ましい。一方、上記加熱温度の上限としては、3000℃が好ましく、2800℃がより好ましい。上記加熱温度が上記下限未満であると、炭素化が不十分となるおそれがある。逆に、加熱温度が上記上限を超えると、設備の耐熱性向上や燃料消費量の観点から製造コストが上昇するおそれがある。なお、昇温速度としては、例えば0.01℃/min以上10℃/min以下とすることができる。 The lower limit of the heating temperature is preferably 500 ° C, more preferably 700 ° C. On the other hand, the upper limit of the heating temperature is preferably 3000 ° C and more preferably 2800 ° C. There exists a possibility that carbonization may become inadequate that the said heating temperature is less than the said minimum. Conversely, if the heating temperature exceeds the above upper limit, the production cost may increase from the viewpoint of improving the heat resistance of the equipment and fuel consumption. In addition, as a temperature increase rate, it can be 0.01 degree-C / min or more and 10 degree-C / min or less, for example.
 また、加熱時間の下限としては、10分が好ましく、20分がより好ましい。一方、加熱時間の上限としては、10時間が好ましく、8時間がより好ましい。加熱温度が上記下限未満であると、炭素化が不十分となるおそれがある。逆に、加熱時間が上記上限を超えると、多孔質炭素粒子の製造効率が低下するおそれがある。 Further, the lower limit of the heating time is preferably 10 minutes, and more preferably 20 minutes. On the other hand, the upper limit of the heating time is preferably 10 hours, more preferably 8 hours. There exists a possibility that carbonization may become inadequate that heating temperature is less than the said minimum. Conversely, if the heating time exceeds the above upper limit, the production efficiency of the porous carbon particles may be reduced.
 なお、炭化を行う前に不融化を行ってもよい。この不融化処理により固形分が互いに融着することを防止できる。不融化は、例えば公知の加熱炉を用いて酸素を含む雰囲気中で加熱することにより行う。酸素を含む雰囲気としては、一般に空気が用いられる。 Note that infusibilization may be performed before carbonization. This infusibilization treatment can prevent solids from fusing together. Infusibilization is performed, for example, by heating in an atmosphere containing oxygen using a known heating furnace. As an atmosphere containing oxygen, air is generally used.
 不融化を行う場合の不融化処理温度の下限としては、150℃が好ましく、180℃がより好ましい。一方、上記不融化処理温度の上限としては、300℃が好ましく、280℃がより好ましい。上記不融化処理温度が上記下限未満であると、不融化が不十分となるおそれや、不融化処理時間が長くなり、非効率となるおそれがある。逆に、上記不融化処理温度が上記上限を超えると、不融化される前に固形分が溶融するおそれがある。 The lower limit of the infusibilization temperature when infusibilizing is preferably 150 ° C., more preferably 180 ° C. On the other hand, the upper limit of the infusibilization temperature is preferably 300 ° C, and more preferably 280 ° C. If the infusibilization treatment temperature is less than the lower limit, infusibilization may be insufficient, or the infusibilization treatment time may be increased, resulting in inefficiency. Conversely, if the infusibilization temperature exceeds the upper limit, the solid content may melt before being infusible.
 また、不融化処理時間の下限としては、10分が好ましく、20分がより好ましい。一方、上記不融化処理時間の上限としては、120分が好ましく、90分がより好ましい。上記不融化処理時間が上記下限未満であると、不融化が不十分となるおそれがある。逆に、上記不融化処理時間が上記上限を超えると、多孔質炭素粒子の製造コストが不必要に増大するおそれがある。 Also, the lower limit of the infusibilization time is preferably 10 minutes, more preferably 20 minutes. On the other hand, the upper limit of the infusibilization time is preferably 120 minutes, and more preferably 90 minutes. If the infusibilization time is less than the lower limit, infusibilization may be insufficient. Conversely, if the infusibilization treatment time exceeds the upper limit, the production cost of the porous carbon particles may increase unnecessarily.
 当該多孔質炭素粒子の製造方法における炭素化収率の下限としては、30質量%が好ましく、50質量%がより好ましい。上記炭素化収率が上記下限未満であると、製造コストの低減効果が不十分となるおそれや、炭素以外の揮発成分によりミクロ孔が塞がれ、製造される多孔質炭素粒子の比表面積が低下するおそれがある。当該多孔質炭素粒子の製造方法は、無灰炭を用いるので、この炭素化収率が高い。また、炭素化収率は例えば溶液中の無灰炭の含有量により調整できる。一方、炭素化収率の上限は、特に限定されず、100質量%であってもよいが、無灰炭を用いる場合、通常75質量%程度である。なお、「炭素化収率」とは、加熱工程S5前の原材料中の有機物質の質量に対する加熱処理により得られる炭素物質の質量比を表し、当該多孔質炭素粒子の製造方法においては、噴霧乾燥工程S4で得られる固形分の質量に対する多孔質炭素粒子の質量比を表す。 The lower limit of the carbonization yield in the method for producing porous carbon particles is preferably 30% by mass, more preferably 50% by mass. If the carbonization yield is less than the above lower limit, the effect of reducing the production cost may be insufficient, the micropores may be blocked by volatile components other than carbon, and the specific surface area of the produced porous carbon particles is May decrease. Since the method for producing the porous carbon particles uses ashless coal, this carbonization yield is high. Further, the carbonization yield can be adjusted by, for example, the content of ashless coal in the solution. On the other hand, the upper limit of the carbonization yield is not particularly limited, and may be 100% by mass, but is usually about 75% by mass when using ashless coal. The “carbonization yield” represents the mass ratio of the carbon substance obtained by the heat treatment with respect to the mass of the organic substance in the raw material before the heating step S5. In the method for producing porous carbon particles, spray drying is used. It represents the mass ratio of the porous carbon particles to the mass of the solid content obtained in step S4.
<利点>
 当該多孔質炭素粒子の製造方法は、酸素原子又は窒素原子を含み、かつ大気圧における沸点が0℃以上250℃未満である有機化合物を主成分とする溶媒中に無灰炭を溶存させた溶液を噴霧乾燥する。無灰炭は石炭や石油ピッチに比べ炭素化収率が高いので、当該多孔質炭素粒子の製造方法は多孔質炭素粒子の製造効率が高い。また、上記溶媒を用い、上記溶液における無灰炭の含有量を5質量%以上50質量%以下とすることで、噴霧乾燥工程において無灰炭が溶存した状態から溶媒が急激に脱離するので、得られる固形分に多数のミクロ孔が誘起される。さらに、上記固形分の主成分となる無灰炭は石炭や石油ピッチに比べ酸素等のヘテロ元素の割合が高いため、加熱処理時に結晶成長し難い。このため、加熱工程においてもミクロ孔が維持され、当該多孔質炭素粒子の製造方法は、比較的緻密な多孔質炭素粒子を製造することができる。また、当該多孔質炭素粒子の製造方法は、賦活処理や鋳型粒子による処理を必要としないので製造コストを低減できる。従って、当該多孔質炭素粒子の製造方法を用いることで、低い製造コストで比較的緻密な多孔質炭素粒子が製造できる。
<Advantages>
The method for producing porous carbon particles includes a solution in which ashless coal is dissolved in a solvent containing an organic compound containing oxygen atoms or nitrogen atoms and having a boiling point at atmospheric pressure of 0 ° C. or higher and lower than 250 ° C. as a main component. Spray dry. Since ashless coal has a higher carbonization yield than coal and petroleum pitch, the production method of the porous carbon particles has high production efficiency of the porous carbon particles. In addition, by using the solvent and setting the content of ashless coal in the solution to 5% by mass or more and 50% by mass or less, the solvent rapidly desorbs from the state in which the ashless coal is dissolved in the spray drying process. Many micropores are induced in the obtained solid content. Furthermore, since the ashless coal which is the main component of the solid content has a higher ratio of hetero elements such as oxygen than coal and petroleum pitch, it is difficult for crystals to grow during heat treatment. For this reason, micropores are maintained even in the heating step, and the method for producing the porous carbon particles can produce relatively dense porous carbon particles. Moreover, since the manufacturing method of the said porous carbon particle does not require the activation process and the process by template particle | grains, it can reduce manufacturing cost. Therefore, by using the method for producing porous carbon particles, relatively dense porous carbon particles can be produced at a low production cost.
 また、当該多孔質炭素粒子の製造方法は、上記噴霧乾燥工程S4における上記溶液として、上記分離工程S3で得られる液体分を用いる。当該多孔質炭素粒子の製造方法では、上記溶出工程S2での石炭の溶媒抽出処理により無灰炭が溶媒に溶出できる。つまり、上記液体分は、無灰炭が溶媒中に溶存する。従って、この液体分をそのまま上記溶液として用いることで、多孔質炭素粒子の製造コストをさらに低減できる。 Further, in the method for producing the porous carbon particles, the liquid obtained in the separation step S3 is used as the solution in the spray drying step S4. In the method for producing porous carbon particles, ashless coal can be eluted into the solvent by the solvent extraction treatment of coal in the elution step S2. That is, ashless coal is dissolved in the solvent in the liquid. Therefore, the production cost of the porous carbon particles can be further reduced by using the liquid as it is as the solution.
〔多孔質炭素粒子〕
 当該多孔質炭素粒子は、炭素を主成分とし、中空部を内包する炭素層を備え、上記炭素層が複数の細孔を有する。当該多孔質炭素粒子は、上述の当該多孔質炭素粒子の製造方法により製造することができる。なお、当該多孔質炭素粒子の製造方法により製造される多孔質炭素粒子は、通常炭素層により中空部が内包されるが、用途に応じてこの多孔質炭素粒子を割ることで、凹部を有する炭素層を備える多孔質炭素粒子として用いることができる。
[Porous carbon particles]
The porous carbon particle includes a carbon layer containing carbon as a main component and enclosing a hollow portion, and the carbon layer has a plurality of pores. The said porous carbon particle can be manufactured with the manufacturing method of the said porous carbon particle mentioned above. The porous carbon particles produced by the method for producing porous carbon particles usually include a hollow portion in the carbon layer, but carbon having a recess is obtained by dividing the porous carbon particle according to the application. It can be used as porous carbon particles comprising a layer.
 当該多孔質炭素粒子の細孔はミクロ孔が多く、メゾ孔やマクロ孔が少ない。つまり、当該多孔質炭素粒子の細孔のうち、直径0.5nm以下の細孔のLog微分細孔容積は、0.1cm/g以上であり、0.15cm/g以上がより好ましい。また、直径2nm以上4nm以下の細孔のLog微分細孔容積は、0.05cm/g未満であり、0.03cm/g未満がより好ましい。直径0.5nm以下の細孔のLog微分細孔容積が上記下限未満、又は直径2nm以上4nm以下の細孔のLog微分細孔容積が上記上限以上であると、当該多孔質炭素粒子の密度が低くなり、機械的強度が低下するおそれがある。なお、直径0.5nm以下の細孔のLog微分細孔容積の上限は、特に限定されないが、通常0.5cm/g程度である。また、直径2nm以上4nm以下の細孔のLog微分細孔容積の下限は、0cm/gであり、直径2nm以上4nm以下の細孔を有さなくともよい。 The porous carbon particles have many micropores and few mesopores or macropores. That is, among the pores of the porous carbon particles, the Log differential pore volume of pores having a diameter of 0.5 nm or less is 0.1 cm 3 / g or more, and more preferably 0.15 cm 3 / g or more. Further, the Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less is less than 0.05 cm 3 / g, and more preferably less than 0.03 cm 3 / g. When the Log differential pore volume of pores having a diameter of 0.5 nm or less is less than the above lower limit, or the Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less is more than the above upper limit, the density of the porous carbon particles is The mechanical strength may be lowered. The upper limit of the Log differential pore volume of pores having a diameter of 0.5 nm or less is not particularly limited, but is usually about 0.5 cm 3 / g. Further, the lower limit of the Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less is 0 cm 3 / g, and it is not necessary to have pores having a diameter of 2 nm or more and 4 nm or less.
 当該多孔質炭素粒子の細孔はミクロ孔が多いため、当該多孔質炭素粒子は緻密でありながら、比表面積が比較的高い。当該多孔質炭素粒子の比表面積の下限としては、100m/gが好ましく、150m/gがより好ましく、200m/gがさらに好ましい。上記比表面積が上記下限未満であると、多孔質材料として用いることが困難となるおそれがある。一方、上記比表面積の上限としては、特に限定されないが、通常3000m/g程度である。なお、当該多孔質炭素粒子の比表面積は例えば溶液中の無灰炭の含有量、溶剤の種類、噴霧条件等により調整できる。 Since the porous carbon particles have many micropores, the porous carbon particles are dense and have a relatively high specific surface area. The porous the lower limit of the specific surface area of the carbon particles is preferably 100 m 2 / g, more preferably 150m 2 / g, 200m 2 / g is more preferred. If the specific surface area is less than the lower limit, it may be difficult to use as the porous material. On the other hand, the upper limit of the specific surface area is not particularly limited, but is usually about 3000 m 2 / g. In addition, the specific surface area of the said porous carbon particle can be adjusted with content of ashless coal in a solution, the kind of solvent, spray conditions, etc., for example.
<利点>
 当該多孔質炭素粒子は、直径0.5nm以下の細孔のLog微分細孔容積を0.1cm/g以上とし、直径2nm以上4nm以下の細孔のLog微分細孔容積を0.05cm/g未満とするので、比較的緻密である。また、当該多孔質炭素粒子は、中空部を内包する炭素層を備えるので、中実である多孔質炭素粒子に比べて細孔が炭素層を貫通し易く、個々の細孔において径が表面からの距離によらず均一化し易い。このため、直径0.5nm以下の細孔であっても、途中で径が潰れることなく外面から比較的深い位置まで孔が維持される。従って、直径2nm以上4nm以下の細孔のLog微分細孔容積が上記上限未満としても、直径0.5nm以下の細孔により比表面積を維持することができる。
<Advantages>
The porous carbon particles have a Log differential pore volume of pores having a diameter of 0.5 nm or less of 0.1 cm 3 / g or more and a Log differential pore volume of pores of 2 nm or more and 4 nm or less in diameter of 0.05 cm 3. Since it is less than / g, it is relatively dense. In addition, since the porous carbon particles include a carbon layer that encloses the hollow portion, the pores easily penetrate the carbon layer as compared with the solid porous carbon particles, and the diameter of each pore from the surface is reduced. It is easy to equalize regardless of the distance. For this reason, even if it is a pore of 0.5 nm or less in diameter, a hole is maintained to a comparatively deep position from an outer surface, without a diameter being crushed on the way. Therefore, even if the Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less is less than the above upper limit, the specific surface area can be maintained by the pores having a diameter of 0.5 nm or less.
[第二実施形態]
 以下、本発明に係る多孔質炭素粒子の製造方法の第二実施形態について説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the method for producing porous carbon particles according to the present invention will be described.
 当該多孔質炭素粒子の製造方法は、図2に示すように、溶解工程S6と、噴霧乾燥工程S7と、加熱工程S8とを主に備える。 The method for producing porous carbon particles mainly includes a dissolution step S6, a spray drying step S7, and a heating step S8 as shown in FIG.
<溶解工程>
 溶解工程S6では、溶媒に無灰炭を溶解する。この溶解により無灰炭が溶媒中に溶存する溶液が得られる。
<Dissolution process>
In the dissolution step S6, ashless coal is dissolved in a solvent. By this dissolution, a solution in which ashless coal is dissolved in the solvent is obtained.
 この溶解には、調製槽を用いることができる。上記調整槽としては、例えば第一実施形態の混合部と同様に構成された調整槽が挙げられる。 A preparation tank can be used for this dissolution. As said adjustment tank, the adjustment tank comprised similarly to the mixing part of 1st embodiment, for example is mentioned.
 上記溶媒は、酸素原子又は窒素原子を含む有機化合物を主成分とするものであり、第一実施形態の溶媒と同様のものが挙げられる。 The above solvent is mainly composed of an organic compound containing an oxygen atom or a nitrogen atom, and examples thereof include the same solvents as those in the first embodiment.
 また、上記無灰炭は、例えば混合工程と、溶出工程と、分離工程と、蒸発工程とを備える無灰炭の製造方法により得ることができる。 Further, the ashless coal can be obtained, for example, by a method for producing ashless coal including a mixing step, an elution step, a separation step, and an evaporation step.
(混合工程)
 上記無灰炭の製造方法における混合工程は、第一実施形態の混合工程S1と同様に行える。
(Mixing process)
The mixing step in the method for producing ashless coal can be performed in the same manner as the mixing step S1 of the first embodiment.
 なお、混合工程で混合する溶媒は、酸素原子又は窒素原子を含む有機化合物を主成分とするものには限定されず、石炭を溶解するものであればよい。このような溶媒としては、例えば石炭由来の2環芳香族化合物であるメチルナフタレン油、ナフタレン油等を挙げることができる。 Note that the solvent to be mixed in the mixing step is not limited to a solvent mainly containing an organic compound containing an oxygen atom or a nitrogen atom, and any solvent that dissolves coal can be used. Examples of such a solvent include methyl naphthalene oil and naphthalene oil which are bicyclic aromatic compounds derived from coal.
(溶出工程)
 上記無灰炭の製造方法における溶出工程は、第一実施形態の溶出工程S2と同様に行える。
(Elution process)
The elution step in the method for producing ashless coal can be performed in the same manner as the elution step S2 of the first embodiment.
 上記溶出工程での昇温部による昇温後のスラリーの温度の下限としては、300℃が好ましく、360℃がより好ましい。一方、上記スラリーの温度の上限としては、420℃が好ましく、400℃がより好ましい。上記スラリーの温度が上記下限未満であると、石炭を構成する分子間の結合を十分に弱められず、溶出率が低下するおそれがある。逆に、上記スラリーの温度が上記上限を超えると、スラリーの温度を維持するための熱量が不必要に大きくなるため、多孔質炭素粒子の製造コストが増大するおそれがある。 The lower limit of the temperature of the slurry after the temperature rise by the temperature raising portion in the elution step is preferably 300 ° C, and more preferably 360 ° C. On the other hand, the upper limit of the temperature of the slurry is preferably 420 ° C., more preferably 400 ° C. If the temperature of the slurry is less than the lower limit, the bonds between the molecules constituting the coal cannot be sufficiently weakened, and the elution rate may decrease. On the contrary, when the temperature of the slurry exceeds the upper limit, the amount of heat for maintaining the temperature of the slurry becomes unnecessarily large, which may increase the production cost of the porous carbon particles.
 また、上記昇温部の内部圧力の下限としては、1.1MPaが好ましく、1.5MPaがより好ましい。一方、上記昇温部の内部圧力の上限としては、5MPaが好ましく、4MPaがより好ましい。上記昇温部の内部圧力が上記下限未満であると、溶剤が蒸発することで減少し、石炭の溶解が不十分となるおそれがある。逆に、上記昇温部の内部圧力が上記上限を超えると、圧力を維持するためのコスト上昇に対して得られる石炭溶解の向上効果が不十分となるおそれがある。 Moreover, as a minimum of the internal pressure of the said temperature rising part, 1.1 MPa is preferable and 1.5 MPa is more preferable. On the other hand, the upper limit of the internal pressure of the temperature raising part is preferably 5 MPa, and more preferably 4 MPa. When the internal pressure of the temperature raising part is less than the lower limit, the solvent is reduced by evaporation, and there is a possibility that coal may not be sufficiently dissolved. On the contrary, when the internal pressure of the said temperature rising part exceeds the said upper limit, there exists a possibility that the improvement effect of coal melt | dissolution obtained with respect to the cost increase for maintaining a pressure may become inadequate.
(分離工程)
 上記無灰炭の製造方法における分離工程は、第一実施形態の分離工程S3と同様に行える。
(Separation process)
The separation process in the method for producing ashless coal can be performed in the same manner as the separation process S3 of the first embodiment.
 上記分離工程での分離部内は、加熱及び加圧することが好ましい。上記分離部内の加熱温度の下限としては、300℃が好ましく、350℃がより好ましい。一方、上記加熱温度の上限としては、420℃が好ましく、400℃がより好ましい。上記加熱温度が上記下限未満であると、溶媒可溶成分が再析出し、分離効率が低下するおそれがある。逆に、上記加熱温度が上記上限を超えると、加熱のための運転コストが高くなるおそれがある。 It is preferable to heat and pressurize the inside of the separation part in the separation step. As a minimum of heating temperature in the above-mentioned separation part, 300 ° C is preferred and 350 ° C is more preferred. On the other hand, the upper limit of the heating temperature is preferably 420 ° C., more preferably 400 ° C. If the heating temperature is less than the lower limit, the solvent-soluble component may be reprecipitated and the separation efficiency may be reduced. Conversely, if the heating temperature exceeds the upper limit, the operating cost for heating may increase.
 また、分離部内の圧力の下限としては、1MPaが好ましく、1.4MPaがより好ましい。一方、上記圧力の上限としては、3MPaが好ましく、2MPaがより好ましい。上記圧力が上記下限未満であると、溶媒可溶成分が再析出し、分離効率が低下するおそれがある。逆に、上記圧力が上記上限を超えると、加圧のための運転コストが高くなるおそれがある。 Also, the lower limit of the pressure in the separation part is preferably 1 MPa, more preferably 1.4 MPa. On the other hand, the upper limit of the pressure is preferably 3 MPa, more preferably 2 MPa. If the pressure is less than the lower limit, the solvent-soluble component may be reprecipitated and the separation efficiency may be reduced. Conversely, when the pressure exceeds the upper limit, the operating cost for pressurization may increase.
(蒸発工程)
 蒸発工程では、上記分離工程で分離した液体分から溶媒を蒸発させる。この溶媒の蒸発分離により無灰炭(HPC)が得られる。
(Evaporation process)
In the evaporation step, the solvent is evaporated from the liquid component separated in the separation step. Ashless coal (HPC) is obtained by evaporating and separating the solvent.
 上記溶媒を蒸発分離する方法としては、一般的な蒸留法や蒸発法(スプレードライ法等)を含む分離方法を用いることができる。上記液体分からの溶媒の分離により、上記液体分から実質的に灰分を含まない無灰炭を得ることができる。 As a method for evaporating and separating the solvent, a separation method including a general distillation method or an evaporation method (spray drying method or the like) can be used. By separating the solvent from the liquid, ashless coal substantially free of ash can be obtained from the liquid.
 無灰炭が溶媒中に溶存する上記溶液における無灰炭の含有量の下限としては、5質量%であり、8質量%がより好ましい。一方、上記溶液における無灰炭の含有量の上限としては、50質量%であり、40質量%がより好ましい。上記無灰炭の含有量が上記下限未満であると、単位量あたりの液体分から得られる多孔質炭素粒子の量が減少するので、製造効率が低下するおそれがある。逆に、上記無灰炭の含有量が上記上限を超えると、相対的に溶媒の量が不足し、溶媒が脱離する勢いが不十分となるため、ミクロ孔が十分に形成されないおそれがある。 The lower limit of the content of ashless coal in the above solution in which ashless coal is dissolved in the solvent is 5% by mass, and more preferably 8% by mass. On the other hand, as an upper limit of content of ashless coal in the said solution, it is 50 mass%, and 40 mass% is more preferable. If the content of the ashless coal is less than the lower limit, the amount of porous carbon particles obtained from the liquid content per unit amount is decreased, which may reduce the production efficiency. On the contrary, if the content of the ashless coal exceeds the upper limit, the amount of the solvent is relatively insufficient, and the momentum of detachment of the solvent becomes insufficient, so that micropores may not be sufficiently formed. .
<噴霧乾燥工程>
 噴霧乾燥工程S7では、上記溶液を噴霧乾燥する。この噴霧乾燥工程S7は、第一実施形態の噴霧乾燥工程S4と同様の装置を用いて同様に行うことができる。
<Spray drying process>
In the spray drying step S7, the solution is spray dried. This spray drying process S7 can be performed similarly using the apparatus similar to the spray drying process S4 of 1st embodiment.
<加熱工程>
 加熱工程S8では、上記噴霧乾燥工程S4で得られる固形分を加熱処理する。この加熱工程S8は、第一実施形態の加熱工程S5と同様の装置を用い同様に行うことができる。
<Heating process>
In the heating step S8, the solid content obtained in the spray drying step S4 is heat-treated. This heating process S8 can be performed similarly using the apparatus similar to heating process S5 of 1st embodiment.
<利点>
 多孔質炭素粒子の製造方法では、無灰炭を直接溶媒に溶解することで、無灰炭が溶媒中に溶存する溶液を得る。このため、無灰炭を抽出する際に使用する溶媒と、多孔質炭素粒子を得るための溶液に使用する溶媒との種類を変えることができる。このため、無灰炭の抽出と多孔質炭素粒子の製造とをそれぞれ最適化できるので、多孔質炭素粒子の収率を高めることができる。
<Advantages>
In the method for producing porous carbon particles, a solution in which ashless coal is dissolved in a solvent is obtained by directly dissolving ashless coal in a solvent. For this reason, the kind of solvent used when extracting ashless coal and the solvent used for the solution for obtaining porous carbon particles can be changed. For this reason, since extraction of ashless coal and manufacture of porous carbon particles can each be optimized, the yield of porous carbon particles can be increased.
[その他の実施形態]
 なお、本発明は、上記実施形態に限定されるものではない。
[Other Embodiments]
The present invention is not limited to the above embodiment.
 上記第一実施形態では、混合工程S1の混合部が調製槽を有する構成について説明したが、この構成に限らず、溶媒と石炭との混合ができれば、調製槽を省略してもよい。例えばラインミキサーにより上記混合が完了するような場合には、調製槽を省略して供給管と分離部との間にラインミキサーを備える構成としてもよい。このように各工程で用いられる装置構成は、上記実施形態に限定されない。 In the first embodiment, the configuration in which the mixing unit of the mixing step S1 includes the preparation tank has been described. However, the present invention is not limited to this configuration, and the preparation tank may be omitted as long as the solvent and coal can be mixed. For example, when the above mixing is completed by a line mixer, the preparation tank may be omitted and a line mixer may be provided between the supply pipe and the separation unit. Thus, the apparatus structure used at each process is not limited to the said embodiment.
 上記第二実施形態では、無灰炭を溶媒抽出により製造する方法を説明したが、無灰炭の製造方法はこれに限定されず、例えば石炭と水素供与性溶剤との混合加熱により製造された無灰炭を用いることもできる。 In the second embodiment, the method for producing ashless coal by solvent extraction has been described. However, the method for producing ashless coal is not limited thereto, and for example, the ashless coal is produced by mixing and heating coal and a hydrogen donating solvent. Ashless charcoal can also be used.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[実施例1]
 亜瀝青炭の溶媒抽出により製造された無灰炭を準備した。この無灰炭の元素分析値を表1に示す。また、溶媒として大気圧における沸点が115℃であるピリジンを準備した。ピリジンは、窒素を含有する有機化合物(芳香族化合物)である。
[Example 1]
Ashless coal produced by solvent extraction of sub-bituminous coal was prepared. Table 1 shows the elemental analysis values of the ashless coal. Further, pyridine having a boiling point of 115 ° C. at atmospheric pressure was prepared as a solvent. Pyridine is an organic compound (aromatic compound) containing nitrogen.
 この無灰炭と溶媒との混合により、無灰炭が溶媒中に溶存する溶液を、溶液における無灰炭の含有量が10.7質量%となるように調製した。 A solution in which the ashless coal was dissolved in the solvent was prepared by mixing the ashless coal and the solvent so that the content of the ashless coal in the solution was 10.7% by mass.
 この溶液を、二流体ノズルを用いて噴霧圧力0.3MPa、溶液の送液速度1kg/hの条件でサイクロン中に噴霧し、固形分を得た。なお、上記サイクロンの入口温度は140℃、出口温度は70℃とした。 This solution was sprayed into a cyclone using a two-fluid nozzle under a spraying pressure of 0.3 MPa and a solution feeding speed of 1 kg / h to obtain a solid content. The cyclone inlet temperature was 140 ° C. and the outlet temperature was 70 ° C.
 さらに、上記固形分を5℃/分の昇温速度で900℃まで昇温し、30分間の加熱処理(炭素化)を行い、実施例1の多孔質炭素粒子を製造した。この加熱処理による炭素化収率を表2に示す。 Furthermore, the solid content was heated to 900 ° C. at a temperature rising rate of 5 ° C./min, and heat treatment (carbonization) for 30 minutes was performed to produce porous carbon particles of Example 1. Table 2 shows the carbonization yield by this heat treatment.
[実施例2]
 溶媒を大気圧における沸点が66℃であるテトラヒドロフラン(THF)とし、溶液における無灰炭の含有量を10.8質量%とし、サイクロンの入口温度を100℃、出口温度を50℃とした以外は、実施例1と同様にして実施例2の多孔質炭素粒子を製造した。なお、THFは、酸素を含有する有機化合物(極性有機化合物)である。
[Example 2]
The solvent is tetrahydrofuran (THF) having a boiling point of 66 ° C. at atmospheric pressure, the content of ashless coal in the solution is 10.8% by mass, the cyclone inlet temperature is 100 ° C., and the outlet temperature is 50 ° C. In the same manner as in Example 1, porous carbon particles of Example 2 were produced. Note that THF is an organic compound (polar organic compound) containing oxygen.
[実施例3]
 溶液における無灰炭の含有量を35.8質量%とした以外は、実施例2と同様にして実施例3の多孔質炭素粒子を製造した。
[Example 3]
Porous carbon particles of Example 3 were produced in the same manner as Example 2 except that the content of ashless coal in the solution was 35.8% by mass.
[比較例1]
 実施例1の無灰炭に代えて、製鉄コークス製造の石炭の高温乾留プロセスで副生するタールから製造された石炭ピッチを用いた以外は、実施例1と同様にして比較例1の多孔質炭素粒子を得た。この石炭ピッチの元素分析値を表1に示す。
[Comparative Example 1]
In place of the ashless coal of Example 1, the porous material of Comparative Example 1 was used in the same manner as in Example 1 except that coal pitch produced from tar produced as a by-product in the high temperature carbonization process of coal produced by iron making coke was used. Carbon particles were obtained. Table 1 shows the elemental analysis values of this coal pitch.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、酸素量は、炭素、水素、窒素及び硫黄以外の成分量を意味し、100質量%から炭素、水素、窒素及び硫黄の成分量を引いたものである。 In Table 1, the amount of oxygen means the amount of components other than carbon, hydrogen, nitrogen and sulfur, and is obtained by subtracting the components of carbon, hydrogen, nitrogen and sulfur from 100% by mass.
[評価方法]
 上記実施例1~3及び比較例1について、以下の測定を行った。
[Evaluation methods]
The following measurements were performed for Examples 1 to 3 and Comparative Example 1.
<粒子径>
 固形分の粒子径を光学顕微鏡により測定した。測定は、光学顕微鏡の視野内の個々の粒子の粒子径を計測し、その範囲を求めた。結果を表2に示す。
<Particle size>
The particle size of the solid content was measured with an optical microscope. In the measurement, the particle diameter of each particle within the field of view of the optical microscope was measured, and the range was determined. The results are shown in Table 2.
<比表面積>
 多孔質炭素粒子の比表面積をBET法により測定した。結果を表2に示す。
<Specific surface area>
The specific surface area of the porous carbon particles was measured by the BET method. The results are shown in Table 2.
<細孔径分布>
 実施例1の多孔質炭素粒子について、HK法により細孔径分布を測定した。結果を図3に示す。なお、BET法により測定した実施例1の多孔質炭素粒子の平均細孔径は2nmであった。
<Pore size distribution>
For the porous carbon particles of Example 1, the pore size distribution was measured by the HK method. The results are shown in FIG. The average pore diameter of the porous carbon particles of Example 1 measured by the BET method was 2 nm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、本発明の範囲内にある実施例1~3の製造方法により、賦活処理や鋳型粒子による処理を行わなくとも比表面積が100m/g以上の多孔質炭素粒子が得られることが分かる。これに対し、比較例1の製造方法で得られる多孔質炭素粒子は、比表面積が100m/gより小さい。これは、原料として石炭ピッチを用いたため、加熱処理時に炭素の結晶成長が生じ易くミクロ孔が塞がったためと考えられる。 From the results in Table 2, porous carbon particles having a specific surface area of 100 m 2 / g or more can be obtained by the production methods of Examples 1 to 3 within the scope of the present invention without performing activation treatment or treatment with template particles. I understand that. On the other hand, the porous carbon particles obtained by the production method of Comparative Example 1 have a specific surface area of less than 100 m 2 / g. This is presumably because carbon pitch growth was likely to occur during the heat treatment because the coal pitch was used as a raw material, and the micropores were blocked.
 また、実施例1~3の加熱処理時の炭素化収率は、比較例1の炭素化収率よりも大きく、特に原料以外が同条件である実施例1と比較例1とにおいてその差が顕著である。このことから、無灰炭を用いることで多孔質炭素粒子の製造効率を高められることが分かる。 In addition, the carbonization yield during the heat treatment of Examples 1 to 3 is larger than the carbonization yield of Comparative Example 1, and there is a difference between Example 1 and Comparative Example 1 where the conditions other than the raw materials are the same. It is remarkable. This shows that the production efficiency of porous carbon particles can be increased by using ashless coal.
 また、図3から実施例1の多孔質炭素粒子は、直径(図3ではDと表記)0.5nm以下の細孔のLog微分細孔容積(図3ではdV/d(LogD)と表記)が0.1cm/g以上であり、直径2nm以上4nm以下の細孔のLog微分細孔容積が0.05cm/g未満であることが分かる。つまり、実施例1の多孔質炭素粒子の細孔は、ミクロ孔が大半であり、メゾ孔やマクロ孔が比較的少なく、実施例1の多孔質炭素粒子が比表面積に対して緻密なものであることが分かる。 Also, the porous carbon particles of Example 1 from FIG. 3 have a log differential pore volume (denoted as dV / d (LogD) in FIG. 3) of pores having a diameter (denoted as D in FIG. 3) of 0.5 nm or less. Is 0.1 cm 3 / g or more, and the Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less is less than 0.05 cm 3 / g. That is, the pores of the porous carbon particles of Example 1 are mostly micropores, relatively few mesopores and macropores, and the porous carbon particles of Example 1 are dense with respect to the specific surface area. I understand that there is.
 さらに実施例を詳細に見ると、噴霧する溶液における無灰炭の含有量を25質量%以下である10.8質量%とした実施例2の方が、無灰炭の含有量を25質量%超である35.8質量%とした実施例3よりも炭素化収率及び比表面積が大きい。このことから、噴霧する溶液における無灰炭の含有量を25質量%以下とするとよいことが分かる。 Furthermore, when an Example is seen in detail, the direction of Example 2 which made content of ashless coal in the solution to spray into 10.8 mass% which is 25 mass% or less is 25 mass% of ashless coal. The carbonization yield and the specific surface area are larger than those of Example 3 in which the amount is more than 35.8% by mass. From this, it can be seen that the content of ashless coal in the solution to be sprayed should be 25% by mass or less.
 以上説明したように、本発明の多孔質炭素粒子の製造方法を用いることで、低い製造コストで比較的緻密な多孔質炭素粒子が得られる。また、本発明の多孔質炭素粒子は、比較的緻密であるため、表面が比較的安定しており、機械的又は化学的処理を施して導電性を高め易い。従って、当該多孔質炭素粒子は、吸着材や電子部品として好適に用いることができる。 As described above, by using the method for producing porous carbon particles of the present invention, relatively dense porous carbon particles can be obtained at a low production cost. Further, since the porous carbon particles of the present invention are relatively dense, the surface is relatively stable, and it is easy to increase the conductivity by applying a mechanical or chemical treatment. Therefore, the porous carbon particles can be suitably used as an adsorbent or an electronic component.
S1 混合工程
S2 溶出工程
S3 分離工程
S4、S7 噴霧乾燥工程
S5、S8 加熱工程
S6 溶解工程
S1 mixing step S2 elution step S3 separation step S4, S7 spray drying step S5, S8 heating step S6 dissolution step

Claims (4)

  1.  無灰炭が溶媒中に溶存する溶液を噴霧乾燥する噴霧乾燥工程と、
     上記噴霧乾燥工程で得られる固形分を加熱処理する加熱工程と
     を備え、
     上記溶媒が、酸素原子又は窒素原子を含み、かつ大気圧における沸点が50℃以上250℃未満である有機化合物を主成分とし、
     上記溶液における無灰炭の含有量が5質量%以上50質量%以下である多孔質炭素粒子の製造方法。
    A spray drying step of spray drying a solution in which ashless coal is dissolved in a solvent;
    A heating step of heat-treating the solid content obtained in the spray drying step,
    The solvent mainly contains an organic compound containing an oxygen atom or a nitrogen atom and having a boiling point at atmospheric pressure of 50 ° C. or higher and lower than 250 ° C.,
    The manufacturing method of the porous carbon particle whose content of ashless coal in the said solution is 5 mass% or more and 50 mass% or less.
  2.  石炭及び上記溶媒を混合する混合工程と、
     上記混合工程で得られたスラリー中の上記石炭から上記溶媒に可溶な成分を溶出させる溶出工程と、
     上記溶出工程で溶出後の上記スラリーを、溶媒可溶成分を含む液体分及び溶媒不溶成分に分離する分離工程と
     をさらに備え、
     上記噴霧乾燥工程における上記溶液として、上記分離工程で得られる液体分を用いる請求項1に記載の多孔質炭素粒子の製造方法。
    A mixing step of mixing coal and the solvent;
    An elution step for eluting components soluble in the solvent from the coal in the slurry obtained in the mixing step;
    A separation step of separating the slurry after the elution in the elution step into a liquid component containing a solvent-soluble component and a solvent-insoluble component;
    The method for producing porous carbon particles according to claim 1, wherein the liquid obtained in the separation step is used as the solution in the spray drying step.
  3.  上記固形分の平均径が1μm以上20μm以下となるよう噴霧圧力及び送液速度を調整する請求項1又は請求項2に記載の多孔質炭素粒子の製造方法。 The method for producing porous carbon particles according to claim 1 or 2, wherein the spray pressure and the liquid feeding speed are adjusted so that the average diameter of the solid content is 1 µm or more and 20 µm or less.
  4.  炭素を主成分とし、中空部を内包する炭素層を備え、
     上記炭素層が複数の細孔を有し、
     上記細孔のうち、直径0.5nm以下の細孔のLog微分細孔容積が0.1cm/g以上であり、直径2nm以上4nm以下の細孔のLog微分細孔容積が0.05cm/g未満である多孔質炭素粒子。
    A carbon layer containing carbon as a main component and enclosing a hollow part,
    The carbon layer has a plurality of pores;
    Among the above pores, the Log differential pore volume of pores having a diameter of 0.5 nm or less is 0.1 cm 3 / g or more, and the Log differential pore volume of pores having a diameter of 2 nm or more and 4 nm or less is 0.05 cm 3. Porous carbon particles less than / g.
PCT/JP2018/000033 2017-02-24 2018-01-04 Method for producing porous carbon particles, and porous carbon particles WO2018154977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017034120A JP2018140883A (en) 2017-02-24 2017-02-24 Method of producing porous carbon particle, and porous carbon particle
JP2017-034120 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018154977A1 true WO2018154977A1 (en) 2018-08-30

Family

ID=63252617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000033 WO2018154977A1 (en) 2017-02-24 2018-01-04 Method for producing porous carbon particles, and porous carbon particles

Country Status (2)

Country Link
JP (1) JP2018140883A (en)
WO (1) WO2018154977A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7276771B2 (en) * 2019-09-05 2023-05-18 株式会社神戸製鋼所 Method for producing porous carbon and method for producing porous carbon molding
CN115321535A (en) * 2022-07-28 2022-11-11 中国矿业大学 Preparation method of coal slime-based activated carbon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120185A (en) * 2003-10-15 2005-05-12 Kobe Steel Ltd Method for producing ashless coal
JP2009126951A (en) * 2007-11-22 2009-06-11 Kobe Steel Ltd Method for producing ashless coal
JP2010161337A (en) * 2008-09-29 2010-07-22 Sanwa Yushi Kk Plant baked body and electromagnetic wave shielding body
WO2016147743A1 (en) * 2015-03-17 2016-09-22 株式会社神戸製鋼所 Method for producing carbon fibers
JP2017014079A (en) * 2015-07-02 2017-01-19 株式会社神戸製鋼所 Method for producing active carbon, active carbon, and electrode material for electric double layer capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120185A (en) * 2003-10-15 2005-05-12 Kobe Steel Ltd Method for producing ashless coal
JP2009126951A (en) * 2007-11-22 2009-06-11 Kobe Steel Ltd Method for producing ashless coal
JP2010161337A (en) * 2008-09-29 2010-07-22 Sanwa Yushi Kk Plant baked body and electromagnetic wave shielding body
WO2016147743A1 (en) * 2015-03-17 2016-09-22 株式会社神戸製鋼所 Method for producing carbon fibers
JP2017014079A (en) * 2015-07-02 2017-01-19 株式会社神戸製鋼所 Method for producing active carbon, active carbon, and electrode material for electric double layer capacitor

Also Published As

Publication number Publication date
JP2018140883A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
Zakaria et al. Effect of impregnation ratio and activation temperature on the yield and adsorption performance of mangrove based activated carbon for methylene blue removal
Omri et al. Characterization of activated carbon prepared from a new raw lignocellulosic material: Ziziphus spina-christi seeds
JP6718517B2 (en) Halloysite powder and method for producing halloysite powder
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
WO2018154977A1 (en) Method for producing porous carbon particles, and porous carbon particles
JP2019182678A (en) Method for producing porous carbon
JP2008144114A (en) Manufacturing method and manufacturing apparatus of solid fuel
TWI588092B (en) Method for producing titanium carbide fine particles
CN115140726A (en) Novel method for carbonizing lignocellulosic material as powder
JP6571043B2 (en) Carbon fiber manufacturing method, carbon fiber, and electrode for electric double layer capacitor
JP2021535064A (en) Activated carbon and its manufacturing method
Behnam et al. Effects of synthesis method, feedstock type, and pyrolysis temperature on physicochemical properties of biochar nanoparticles
WO2018186003A1 (en) Method for producing porous carbon particles, and porous carbon particles
JP5882191B2 (en) Activated carbon and method for producing the same
CN111247097B (en) Activated carbon and preparation method thereof
Korobochkin et al. Production of activated carbon from rice husk Vietnam
CN100563478C (en) The phenolic materials of electric machining and method
JP2018177564A (en) Method for producing porous carbon particle
WO2018186018A1 (en) Method of manufacturing porous carbon fiber sheet and method of manufacturing porous carbon electrode
JP2018178285A (en) Manufacturing method of porous carbon fiber
JP6862317B2 (en) Carbon fiber manufacturing method
US20150299421A1 (en) Production of Boron Carbide Powder
JP6767918B2 (en) Method for producing composition for electric field spinning and porous carbon fiber
JP6193191B2 (en) Carbon material manufacturing method
JP4284314B2 (en) Method for producing modified coal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756713

Country of ref document: EP

Kind code of ref document: A1