JP6749001B2 - Graphite production method - Google Patents

Graphite production method Download PDF

Info

Publication number
JP6749001B2
JP6749001B2 JP2016255705A JP2016255705A JP6749001B2 JP 6749001 B2 JP6749001 B2 JP 6749001B2 JP 2016255705 A JP2016255705 A JP 2016255705A JP 2016255705 A JP2016255705 A JP 2016255705A JP 6749001 B2 JP6749001 B2 JP 6749001B2
Authority
JP
Japan
Prior art keywords
graphite
coal
graphite powder
crystallinity
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016255705A
Other languages
Japanese (ja)
Other versions
JP2018104259A (en
Inventor
濱口 眞基
眞基 濱口
祥平 和田
祥平 和田
聡則 井上
聡則 井上
聖昊 尹
聖昊 尹
仁 宮脇
仁 宮脇
康治 中林
康治 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kobe Steel Ltd
Original Assignee
Kyushu University NUC
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kobe Steel Ltd filed Critical Kyushu University NUC
Priority to JP2016255705A priority Critical patent/JP6749001B2/en
Priority to PCT/JP2017/042056 priority patent/WO2018123371A1/en
Publication of JP2018104259A publication Critical patent/JP2018104259A/en
Application granted granted Critical
Publication of JP6749001B2 publication Critical patent/JP6749001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、黒鉛の製造方法に関する。 The present invention relates to a method for producing graphite.

黒鉛は、潤滑性、導電性、耐熱性、耐酸耐アルカリ性等に優れ、耐火物、製綱用保温材等の構造材料や、電極用ペースト、電池等の導電材料として有用である。特に近年では、黒鉛はリチウムイオン二次電池の負極活物質等として現代生活を支える重要な材料となっており、高い結晶性が要求されている。 Graphite is excellent in lubricity, conductivity, heat resistance, acid resistance and alkali resistance, and is useful as a structural material such as a refractory material, a heat insulating material for steelmaking, a conductive material for an electrode paste, a battery and the like. Particularly in recent years, graphite has become an important material supporting modern life as a negative electrode active material of a lithium ion secondary battery, and high crystallinity is required.

このような黒鉛は、例えばピッチやコークス等の黒鉛化原料に必要に応じて界面活性剤、可塑剤等の添加剤を加え、2000℃〜2800℃の高温で熱処理することにより製造される(特開2014−196211号公報参照)。 Such graphite is produced, for example, by adding an additive such as a surfactant or a plasticizer to a graphitizing raw material such as pitch or coke and heat-treating at a high temperature of 2000 to 2800° C. See Open 2014-19621).

ピッチやコークスは、5〜10の芳香族環からなる縮合多環芳香族化合物の混合物であり、平面性が高い。上記従来の製造方法では、このピッチやコークスを黒鉛化原料として用いることで高い結晶性を有する人造黒鉛を得ている。しかし、ピッチやコークスは製造コストが高く、これらを用いて安価な人造黒鉛を提供することは難しい。これに対し、黒鉛化原料として安価に製造できる無灰炭を用いる方法が考えられる。しかし、無灰炭は3〜4の芳香族環からなる化合物であり、ピッチやコークスに比べて平面性に劣る。このため、無灰炭にそのまま高温の熱処理を行っても結晶性の高い黒鉛を得ることは難しい。このように従来の黒鉛の製造方法では、安価に結晶性の高い人造黒鉛を製造することが難しい。 Pitch and coke are a mixture of condensed polycyclic aromatic compounds composed of 5 to 10 aromatic rings and have high planarity. In the above conventional manufacturing method, artificial pitch having high crystallinity is obtained by using this pitch or coke as a graphitizing raw material. However, pitch and coke have high manufacturing costs, and it is difficult to provide inexpensive artificial graphite using them. On the other hand, a method using ashless coal, which can be inexpensively manufactured, as a graphitization raw material can be considered. However, ashless charcoal is a compound composed of 3 to 4 aromatic rings and is inferior in flatness to pitch and coke. Therefore, it is difficult to obtain highly crystalline graphite even if the ashless coal is directly subjected to high temperature heat treatment. As described above, it is difficult to inexpensively manufacture artificial graphite having high crystallinity by the conventional graphite manufacturing method.

特開2014−196211号公報JP, 2014-19621, A

本発明は、上述のような事情に基づいてなされたものであり、比較的製造コストが低く、かつ結晶性の高い人造黒鉛の製造方法を提供することを目的とする。 The present invention has been made under the circumstances described above, and an object of the present invention is to provide a method for producing artificial graphite that has a relatively low production cost and high crystallinity.

本発明者らは、安価に製造可能な無灰炭に結晶性の高い黒鉛粉末を混合して熱処理することで結晶性の高い人造黒鉛を得られることを見出し、本発明を完成させた。 The present inventors have found that artificial graphite with high crystallinity can be obtained by mixing graphite powder with high crystallinity into ashless coal that can be manufactured at low cost and then heat-treating it, and completed the present invention.

すなわち、上記課題を解決するためになされた発明は、無灰炭に黒鉛粉末を混合する工程と、上記混合物を熱処理する工程とを備え、上記黒鉛粉末のX線広角回折法による002面の面間隔が3.38Å以下であることを特徴とする黒鉛の製造方法である。 That is, the invention made to solve the above problems includes a step of mixing graphite powder with ashless coal and a step of heat-treating the mixture, and a surface of 002 surface of the graphite powder by an X-ray wide-angle diffraction method. The method for producing graphite is characterized in that the interval is 3.38 Å or less.

当該黒鉛の製造方法で用いる黒鉛粉末は、X線広角回折法による002面の面間隔が3.38Å以下であり、結晶性が高い。当該黒鉛の製造方法では、熱処理工程においてこの結晶性の高い黒鉛粉末を核として無灰炭の黒鉛化が進むと考えられる。このため、無灰炭の結晶性が改善されつつ黒鉛化が進み、結晶性の高い人造黒鉛が得られる。また、当該黒鉛の製造方法は、安価な無灰炭を黒鉛化原料とするため、製造コストが比較的低い。 The graphite powder used in the method for producing the graphite has a crystal spacing of 002 planes of 3.38 Å or less according to the X-ray wide angle diffraction method, and has high crystallinity. In the method for producing graphite, it is considered that graphitization of ashless coal proceeds with the graphite powder having high crystallinity as a nucleus in the heat treatment step. Therefore, the crystallinity of ashless coal is improved and graphitization proceeds, and artificial graphite having high crystallinity can be obtained. In addition, since the graphite manufacturing method uses inexpensive ashless coal as the graphitization raw material, the manufacturing cost is relatively low.

上記混合物における上記黒鉛粉末の含有量としては、5質量%以上50質量%以下が好ましい。上記黒鉛粉末の含有量を上記範囲内とすることで、製造される黒鉛の結晶性を維持しつつ、製造コストをさらに低減できる。 The content of the graphite powder in the mixture is preferably 5% by mass or more and 50% by mass or less. By setting the content of the graphite powder within the above range, the production cost can be further reduced while maintaining the crystallinity of the produced graphite.

上記黒鉛粉末の質量累計90%の粒子径(D90粒子径)としては、50μm以下が好ましい。上記黒鉛粉末のD90粒子径を上記上限以下とすることで、結晶性をさらに高めることができる。 The particle diameter of 90% by mass of the graphite powder (D90 particle diameter) is preferably 50 μm or less. By setting the D90 particle size of the graphite powder to be the above upper limit or less, the crystallinity can be further enhanced.

上記黒鉛粉末が、上記熱処理工程で得られる黒鉛を粉砕したものを含むとよい。このように上記黒鉛粉末に上記熱処理工程で得られる黒鉛を粉砕したものを含ませることで、黒鉛粉末の製造に必要なコストを低減できるので、黒鉛の製造コストをさらに低減できる。 The graphite powder may include crushed graphite obtained in the heat treatment step. In this way, by including the graphite powder obtained by crushing the graphite obtained in the heat treatment step in the graphite powder, the cost required for producing the graphite powder can be reduced, and thus the production cost of the graphite can be further reduced.

ここで、無灰炭(ハイパーコール、HPC)とは、石炭を改質した改質炭の一種であり、溶剤を用いて石炭から灰分と非溶解性成分とを可能な限り除去した改質炭である。しかしながら、無灰炭の流動性や膨張性を著しく損ねない範囲で、無灰炭は灰分を含んでもよい。一般に石炭は7質量%以上20質量%以下の灰分を含むが、無灰炭においては2質量%程度、場合によっては5%質量程度の灰分を含んでもよい。なお、「灰分」とは、JIS−M8812:2004に準拠して測定される値を意味する。 Here, ashless coal (Hyper-Coal, HPC) is a type of reformed coal obtained by reforming coal, and is a reformed coal obtained by removing ash and insoluble components from coal using a solvent as much as possible. Is. However, the ashless coal may contain ash as long as the fluidity and expandability of the ashless coal are not significantly impaired. Generally, coal contains 7% by mass or more and 20% by mass or less of ash, but ashless coal may contain about 2% by mass, and in some cases about 5% by mass. The "ash content" means a value measured according to JIS-M8812:2004.

また、「質量累計90%の粒子径」とは、全粒子をJIS−Z8801−1:2006に規定される金属製網篩で篩分けした際に、粒子全体の90質量%の粒子が篩を通過できる篩の目開きの値を意味する。 In addition, “the particle diameter of 90% of the total mass” means that when all the particles are sieved by a metal net sieve specified in JIS-Z8801-1:2006, 90% by weight of all the particles are sieved. It means the value of the mesh size of the sieve that can pass through.

以上説明したように、本発明の黒鉛の製造方法を用いることで、比較的製造コストが低く、かつ結晶性の高い人造黒鉛が製造できる。 As described above, by using the graphite manufacturing method of the present invention, artificial graphite having relatively low manufacturing cost and high crystallinity can be manufactured.

本発明の一実施形態の黒鉛の製造方法を示すフロー図である。It is a flow figure showing the manufacturing method of graphite of one embodiment of the present invention.

以下、本発明に係る黒鉛の製造方法の実施形態について詳説する。 Hereinafter, an embodiment of the method for producing graphite according to the present invention will be described in detail.

当該黒鉛の製造方法は、図1に示すように、混合工程S1と、熱処理工程S2とを備える。 As shown in FIG. 1, the graphite manufacturing method includes a mixing step S1 and a heat treatment step S2.

<無灰炭>
当該黒鉛の製造方法では、黒鉛化原料として無灰炭を用いる。この無灰炭は、各種公知の製造方法で得ることができ、例えば石炭の溶剤抽出物から溶剤を除去することによって得ることができる。この溶剤抽出により無灰炭を得る製造方法は、例えばスラリー加熱工程、分離工程、及び無灰炭回収工程を備える。
<ashless charcoal>
In the graphite manufacturing method, ashless coal is used as a graphitization raw material. This ashless coal can be obtained by various known production methods, for example, by removing the solvent from the solvent extract of coal. The manufacturing method for obtaining ashless coal by this solvent extraction includes, for example, a slurry heating step, a separation step, and an ashless coal recovery step.

(スラリー加熱工程)
スラリー加熱工程では、石炭と溶剤とを混合してスラリーを調製し、加熱処理して溶剤に石炭の可溶成分(溶剤可溶成分)を抽出する。
(Slurry heating process)
In the slurry heating step, coal and solvent are mixed to prepare a slurry, which is heat-treated to extract a soluble component of coal (solvent-soluble component) in the solvent.

無灰炭の原料石炭の種類は特に限定されず、例えば瀝青炭、亜瀝青炭、褐炭、亜炭等の各種公知の石炭を使用できる。これらの中でも、無灰炭の抽出率の高い瀝青炭や、より安価な低品位炭(亜瀝青炭や褐炭)が好適に用いられる。 The type of raw coal for the ashless coal is not particularly limited, and various known coals such as bituminous coal, subbituminous coal, lignite, and lignite can be used. Among these, bituminous coal having a high extraction rate of ashless coal and less expensive low-grade coal (subbituminous coal or brown coal) are preferably used.

上記溶剤としては、石炭を溶解するものであれば特に限定されず、例えば石炭由来の2環芳香族化合物が好適に用いられる。この2環芳香族化合物は、基本的な構造が石炭の構造分子と類似していることから石炭との親和性が高く、比較的高い抽出率を得ることができる。石炭由来の2環芳香族化合物としては、例えば石炭を乾留してコークスを製造する際の副生油の蒸留油であるメチルナフタレン油、ナフタレン油等を挙げることができる。 The solvent is not particularly limited as long as it dissolves coal, and for example, a bicyclic aromatic compound derived from coal is preferably used. This two-ring aromatic compound has a basic structure similar to that of a structural molecule of coal, and thus has a high affinity with coal and a relatively high extraction rate can be obtained. Examples of the bicyclic aromatic compound derived from coal include methylnaphthalene oil and naphthalene oil, which are distillation oils as by-product oils when coal is carbonized to produce coke.

上記スラリー中の無水炭基準での石炭濃度の下限としては、10質量%が好ましく、13質量%がより好ましい。一方、上記石炭濃度の上限としては、25質量%が好ましく、20質量%がより好ましい。上記石炭濃度が上記下限未満であると、溶剤可溶成分の溶出量がスラリー処理量に対して少なくなるため、無灰炭の製造効率が低下するおそれがある。逆に、上記石炭濃度が上記上限を超えると、溶剤中で上記溶剤可溶成分が飽和し易いため、上記溶剤可溶成分の溶出率が低下するおそれがある。 As a minimum of coal concentration in the above-mentioned slurry based on anhydrous coal, 10 mass% is preferred and 13 mass% is more preferred. On the other hand, the upper limit of the coal concentration is preferably 25% by mass, more preferably 20% by mass. If the coal concentration is less than the lower limit, the elution amount of the solvent-soluble component becomes smaller than the amount of the slurry processed, and thus the ashless coal production efficiency may decrease. On the other hand, when the coal concentration exceeds the upper limit, the solvent-soluble component is likely to be saturated in the solvent, so that the elution rate of the solvent-soluble component may decrease.

スラリーの加熱条件としては、特に限定されず、例えば350℃以上470℃以下の温度、1MPa以上2MPa以下の圧力で10分以上60分以下の加熱時間とすることができる。 The heating conditions of the slurry are not particularly limited, and may be, for example, a temperature of 350° C. or higher and 470° C. or lower, a pressure of 1 MPa or higher and 2 MPa or lower, and a heating time of 10 minutes or longer and 60 minutes or shorter.

(分離工程)
分離工程では、スラリー加熱工程後の上記スラリーを、溶剤可溶成分を含む液体分及び溶剤不溶成分を含む固形分に分離する。なお、溶剤不溶成分は、抽出用溶剤に不溶な灰分と不溶石炭とを主として含み、これらに加え抽出用溶剤をさらに含む抽出残分をいう。
(Separation process)
In the separation step, the slurry after the slurry heating step is separated into a liquid component containing a solvent-soluble component and a solid component containing a solvent-insoluble component. The solvent-insoluble component is an extraction residue that mainly contains ash and insoluble coal that are insoluble in the extraction solvent and further contains the extraction solvent.

上記スラリーを液体分と固体分とに分離する方法としては、特に限定されず、濾過法、遠心分離法、重力沈降法等の公知の分離方法を採用できる。これらの中でも、流体の連続処理が可能であり、低コストで大量処理にも適している重力沈降法が好ましい。重力沈降法では、重力沈降槽の上部に溶剤に抽出された石炭成分を含む液体分である上澄液が分離され、重力沈降槽の下部に固体分として溶剤に不溶な灰分と石炭成分とを含む固形分濃縮液が分離される。 The method for separating the slurry into a liquid content and a solid content is not particularly limited, and a known separation method such as a filtration method, a centrifugal separation method, or a gravity sedimentation method can be adopted. Among these, the gravity sedimentation method is preferable because it allows continuous treatment of a fluid, is low in cost, and is suitable for large-scale treatment. In the gravity settling method, a supernatant liquid that is a liquid component containing the coal component extracted in the solvent is separated in the upper part of the gravity settling tank, and the ash content and the coal component which are insoluble in the solvent as a solid component are separated in the lower part of the gravity settling tank. The containing solids concentrate is separated.

(無灰炭回収工程)
無灰炭回収工程では、上記分離工程で得たスラリーの液体分から溶剤を分離して灰分の極めて低い無灰炭を回収する。
(Ashless coal recovery process)
In the ashless coal recovery step, the solvent is separated from the liquid content of the slurry obtained in the above separation step to recover ashless coal having an extremely low ash content.

スラリーの液体分から溶剤を分離する方法は特に限定されず、一般的な蒸留法や蒸発法(例えばスプレードライ法)等を用いることができる。この溶剤の分離により、上記液体分から無灰炭が得られる。なお、分離回収された溶剤はスラリー加熱工程の溶剤として循環使用することができる。 The method for separating the solvent from the liquid component of the slurry is not particularly limited, and a general distillation method, an evaporation method (for example, a spray dry method) or the like can be used. By separating the solvent, ashless coal can be obtained from the liquid content. The separated and recovered solvent can be reused as a solvent in the slurry heating step.

<混合工程>
混合工程S1では、無灰炭に黒鉛粉末を混合する。
<Mixing process>
In the mixing step S1, ashless coal is mixed with graphite powder.

上記黒鉛粉末は、X線広角回折法による002面の面間隔(d002)が3.38Å以下であり、結晶性が高い。当該黒鉛の製造方法では、この結晶性の高い黒鉛粉末を混合することで、熱処理工程S2で無灰炭の結晶化が改善され、結晶性の高い黒鉛を得ることができる。この無灰炭の結晶化が改善される理由は必ずしも明らかではないが、結晶性の高い黒鉛粉末を核として無灰炭の黒鉛化が進むこと、及び無灰炭を黒鉛化する過程で生じ易い膨張や収縮による結晶の歪みの発生を結晶性の高い黒鉛粉末が抑止することによると考えられる。 The graphite powder has a crystal spacing of 002 planes (d002) of 3.38Å or less as measured by the X-ray wide-angle diffraction method, and has high crystallinity. In the method for producing graphite, by mixing the graphite powder having high crystallinity, crystallization of ashless coal is improved in the heat treatment step S2, and graphite having high crystallinity can be obtained. The reason why the crystallization of this ashless coal is improved is not always clear, but the graphitization of the ashless coal proceeds with the graphite powder having high crystallinity as a nucleus, and it easily occurs in the process of graphitizing the ashless coal. It is considered that the graphite powder having high crystallinity suppresses the occurrence of crystal strain due to expansion and contraction.

上記黒鉛粉末は、結晶性の高い、すなわちd002が3.38Å以下である黒鉛であれば特に限定されず、例えば天然黒鉛や、ピッチやコークス等を高温処理して得られる人造黒鉛、当該黒鉛の製造方法により製造された黒鉛を挙げることができる。 The graphite powder is not particularly limited as long as it has high crystallinity, that is, d002 is 3.38Å or less. For example, natural graphite, artificial graphite obtained by high-temperature treatment of pitch, coke, or the like, The graphite manufactured by the manufacturing method can be mentioned.

中でも上記黒鉛粉末として当該黒鉛の製造方法により製造された黒鉛、つまり後述する熱処理工程で得られる黒鉛を粉砕したものを含むとよい。当該黒鉛の製造方法により製造される黒鉛は結晶性が高いので、上記黒鉛粉末として用いることができる。この黒鉛を黒鉛粉末として用いることで、一度、天然黒鉛や、ピッチやコークス等を高温処理して得られる人造黒鉛といった高価な黒鉛を使用して黒鉛を製造すると、以降の製造では上述のような高価な黒鉛を使用する必要がない。従って、上記黒鉛粉末として当該黒鉛の製造方法により製造された黒鉛を粉砕して用いることで、黒鉛粉末の製造に必要なコストを低減できるので、黒鉛の製造コストをさらに低減できる。 Above all, it is preferable to include, as the above-mentioned graphite powder, graphite manufactured by the method for manufacturing the graphite, that is, crushed graphite obtained in the heat treatment step described later. Since graphite produced by the graphite production method has high crystallinity, it can be used as the above graphite powder. When this graphite is used as graphite powder to produce graphite using expensive graphite such as natural graphite or artificial graphite obtained by subjecting pitch, coke, etc. to high temperature treatment, the following production is performed as described above. There is no need to use expensive graphite. Therefore, by crushing and using the graphite manufactured by the method for manufacturing the graphite as the graphite powder, the cost required for manufacturing the graphite powder can be reduced, and thus the manufacturing cost of the graphite can be further reduced.

上記黒鉛粉末のD90粒子径の上限としては、50μmが好ましく、40μmがより好ましい。上記黒鉛粉末のD90粒子径が上記上限を超えると、無灰炭の黒鉛化を進めるために必要な核の数を確保する際、無灰炭と黒鉛粉末との混合物における黒鉛粉末の含有量が大きくなり過ぎ、製造コストの低減効果が不十分となるおそれがある。一方、上記黒鉛粉末のD90粒子径の下限は特に限定されないが、1μmが好ましく、10μmがより好ましい。上記黒鉛粉末のD90粒子径が上記下限未満であると、上記黒鉛粉末が結晶性を高める核として十分に機能せず、無灰炭を黒鉛化する際の結晶性向上効果が十分に得られないおそれがある。 The upper limit of the D90 particle size of the graphite powder is preferably 50 μm, more preferably 40 μm. When the D90 particle size of the graphite powder exceeds the above upper limit, the content of the graphite powder in the mixture of the ashless coal and the graphite powder is large when securing the number of nuclei necessary for promoting the graphitization of the ashless coal. It may become too large, and the effect of reducing the manufacturing cost may become insufficient. On the other hand, the lower limit of the D90 particle diameter of the graphite powder is not particularly limited, but is preferably 1 μm, more preferably 10 μm. If the D90 particle size of the graphite powder is less than the lower limit, the graphite powder does not sufficiently function as a nucleus for enhancing the crystallinity, and the effect of improving the crystallinity when graphitizing ashless coal cannot be sufficiently obtained. There is a risk.

無灰炭と黒鉛粉末との混合物における上記黒鉛粉末の含有量の下限としては、5質量%が好ましく、15質量%がより好ましく、25質量%がさらに好ましい。一方、上記黒鉛粉末の含有量の上限としては、50質量%が好ましく、40質量%がより好ましく、35質量%がさらに好ましい。上記黒鉛粉末の含有量が上記下限未満であると、無灰炭を黒鉛化する際の結晶性向上効果が十分に得られないおそれがある。逆に、上記黒鉛粉末の含有量が上記上限を超えると、黒鉛粉末の増量に対して得られる結晶性向上効果が小さくなり、費用対効果が不十分となるおそれがある。 As a minimum of content of the above-mentioned graphite powder in a mixture of ashless charcoal and graphite powder, 5 mass% is preferred, 15 mass% is more preferred, and 25 mass% is still more preferred. On the other hand, the upper limit of the content of the graphite powder is preferably 50% by mass, more preferably 40% by mass, and even more preferably 35% by mass. If the content of the graphite powder is less than the lower limit, the effect of improving the crystallinity when graphitizing the ashless coal may not be sufficiently obtained. On the contrary, when the content of the graphite powder exceeds the upper limit, the crystallinity-improving effect obtained with the increase of the graphite powder becomes small, and the cost-effectiveness may be insufficient.

なお、無灰炭と黒鉛粉末と混合には、リボンミキサー、万能ミキサー等の公知の装置を用いることができる。 A known device such as a ribbon mixer or a universal mixer can be used for mixing the ashless coal and the graphite powder.

<熱処理工程>
熱処理工程S2では、上記混合物を熱処理する。この熱処理工程S2は、公知の黒鉛化炉を用いて行うことができる。また、この熱処理工程S2は、窒素、アルゴン等の不活性ガス雰囲気下で行うとよい。
<Heat treatment process>
In the heat treatment step S2, the mixture is heat treated. This heat treatment step S2 can be performed using a known graphitization furnace. Further, this heat treatment step S2 is preferably performed in an atmosphere of an inert gas such as nitrogen or argon.

上記熱処理工程S2は、炭素化工程と、黒鉛化工程とを備える。以下、各工程について説明する。 The heat treatment step S2 includes a carbonization step and a graphitization step. Each step will be described below.

(炭素化工程)
上記炭素化工程では、上記混合物を加熱することで揮発成分を除き、また脱水、熱分解を促進し、次工程の黒鉛化工程で得られる黒鉛の結晶性を高める。
(Carbonization process)
In the carbonization step, the mixture is heated to remove volatile components, accelerate dehydration and thermal decomposition, and enhance the crystallinity of graphite obtained in the next graphitization step.

上記炭素化工程における加熱温度の下限としては、500℃が好ましく、700℃がより好ましい。一方、上記炭素化工程における加熱温度の上限としては、1500℃が好ましく、1000℃がより好ましい。上記炭素化工程における加熱温度が上記下限未満であると、黒鉛の結晶性向上効果が十分に得られないおそれがある。逆に、上記炭素化工程における加熱温度が上記上限を超えると、炭素化工程の段階で黒鉛化が進行し、黒鉛の結晶性が十分に高められないおそれがある。 As a minimum of heating temperature in the above-mentioned carbonization process, 500 °C is preferred and 700 °C is more preferred. On the other hand, the upper limit of the heating temperature in the carbonization step is preferably 1500°C, more preferably 1000°C. If the heating temperature in the carbonization step is less than the above lower limit, the effect of improving the crystallinity of graphite may not be sufficiently obtained. On the contrary, when the heating temperature in the carbonization step exceeds the upper limit, graphitization may proceed in the carbonization step, and the crystallinity of graphite may not be sufficiently enhanced.

上記炭素化工程における加熱時間は、加熱温度等にもよるが、例えば0.5時間以上10時間以下とできる。上記加熱時間が上記下限未満であると、黒鉛の結晶性向上効果が十分に得られないおそれがある。逆に。上記加熱時間が上記上限を超えると、加熱時間の増加に対して得られる結晶性向上効果が小さくなり、費用対効果が不十分となるおそれがある。 The heating time in the carbonization step may be, for example, 0.5 hours or more and 10 hours or less, depending on the heating temperature and the like. If the heating time is less than the lower limit, the effect of improving the crystallinity of graphite may not be sufficiently obtained. vice versa. When the heating time exceeds the upper limit, the crystallinity-improving effect obtained with an increase in heating time becomes small, and the cost effectiveness may be insufficient.

(黒鉛化工程)
上記黒鉛化工程では、上記炭素化工程後の混合物を高温で熱処理することで、黒鉛を得る。
(Graphitization process)
In the graphitization step, graphite is obtained by heat-treating the mixture after the carbonization step at a high temperature.

上記黒鉛化工程における加熱温度の下限としては、2000℃が好ましく、2500℃がより好ましい。一方、上記黒鉛化工程における加熱温度の上限としては、3500℃が好ましく、3000℃がより好ましい。上記黒鉛化工程における加熱温度が上記下限未満であると、結晶性の高い黒鉛が得られないおそれがある。逆に、上記黒鉛化工程における加熱温度が上記上限を超えると、加熱温度の上昇に対して得られる結晶性向上効果が小さくなり、費用対効果が不十分となるおそれがある。 As a minimum of heating temperature in the above-mentioned graphitization process, 2000 °C is preferred and 2500 °C is more preferred. On the other hand, the upper limit of the heating temperature in the graphitization step is preferably 3500°C, more preferably 3000°C. If the heating temperature in the graphitization step is less than the above lower limit, graphite with high crystallinity may not be obtained. On the other hand, if the heating temperature in the graphitization step exceeds the upper limit, the effect of improving the crystallinity obtained when the heating temperature rises becomes small, and the cost effectiveness may become insufficient.

上記黒鉛化工程における加熱時間は、加熱温度等にもよるが、例えば0.5時間以上10時間以下とできる。上記加熱時間が上記下限未満であると、黒鉛化が不十分となるおそれがある。逆に、上記加熱時間が上記上限を超えると、加熱時間の増加に対して黒鉛化がそれ以上進行し難くなり、費用対効果が不十分となるおそれがある。 The heating time in the graphitization step depends on the heating temperature and the like, but can be, for example, 0.5 hours or more and 10 hours or less. If the heating time is less than the lower limit, graphitization may be insufficient. On the other hand, if the heating time exceeds the upper limit, graphitization becomes difficult to proceed with the increase of the heating time, which may result in insufficient cost effectiveness.

<黒鉛>
当該黒鉛の製造方法により製造される黒鉛は、結晶性が高い。上記黒鉛のX線広角回折法による002面の面間隔(d002)の上限としては、3.38Åが好ましく、3.37Åがより好ましい。上記d002が上記上限を超えると、リチウムイオン二次電池の負極活物質等に利用できないおそれがある。一方、d002の下限は特に限定されないが、例えば黒鉛の理論値である3.354Åとできる。なお、d002は、例えば混合工程S1において混合する黒鉛粉末の含有量を変更することで調整できる。
<Graphite>
The graphite produced by the graphite production method has high crystallinity. As the upper limit of the interplanar spacing (d002) of the 002 plane of the above graphite by the X-ray wide angle diffraction method, 3.38Å is preferable, and 3.37Å is more preferable. When the above-mentioned d002 exceeds the above-mentioned upper limit, there is a possibility that it cannot be used as a negative electrode active material of a lithium ion secondary battery. On the other hand, the lower limit of d002 is not particularly limited, but can be set to, for example, 3.354Å which is the theoretical value of graphite. In addition, d002 can be adjusted by changing the content of the graphite powder mixed in the mixing step S1, for example.

上記黒鉛のラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピーク強度(ダイヤモンド状炭素のピーク強度I)と、1580〜1620cm−1の範囲にあるピーク強度(黒鉛状炭素のピーク強度I)との強度比I/I(R値)の上限としては、0.2が好ましく、0.15がより好ましい。上記R値が上記上限を超えると、結晶性が不十分となり、リチウムイオン二次電池の負極活物質等に利用できないおそれがある。一方、上記R値の下限は特に限定されず、低いほどよいが、一般に0.05である。なお、このR値は小さいほど結晶性が高いことを示している。また、R値は、例えば混合工程S1において混合する黒鉛粉末の含有量を変更することで調整できる。 And the peak intensity (peak intensity I D of diamond-like carbon) in the range of 1300~1400Cm -1 measured by Raman spectrum of the graphite, the peak intensity (peak of graphitic carbon in the range of 1580~1620Cm -1 The upper limit of the intensity ratio I D /I G (R value) with respect to the intensity I G ) is preferably 0.2, and more preferably 0.15. When the R value exceeds the upper limit, the crystallinity becomes insufficient and there is a possibility that the R value cannot be used as a negative electrode active material of a lithium ion secondary battery. On the other hand, the lower limit of the R value is not particularly limited, and the lower the better, the better, but it is generally 0.05. The smaller the R value, the higher the crystallinity. Further, the R value can be adjusted by, for example, changing the content of the graphite powder mixed in the mixing step S1.

<利点>
当該黒鉛の製造方法で用いる黒鉛粉末は、X線広角回折法による002面の面間隔が3.38Å以下であり、結晶性が高い。当該黒鉛の製造方法では、熱処理工程S2においてこの結晶性の高い黒鉛粉末を核として無灰炭の黒鉛化が進むと考えられる。このため、無灰炭の結晶性が改善されつつ黒鉛化が進み、結晶性の高い人造黒鉛が得られる。また、当該黒鉛の製造方法は、安価な無灰炭を黒鉛化原料とするため、製造コストが比較的低い。
<Advantages>
The graphite powder used in the method for producing the graphite has a crystal spacing of 002 planes of 3.38 Å or less according to the X-ray wide angle diffraction method, and has high crystallinity. In the method for producing graphite, it is considered that in the heat treatment step S2, the graphite powder having high crystallinity is used as a nucleus to promote graphitization of ashless coal. Therefore, the crystallinity of ashless coal is improved and graphitization proceeds, and artificial graphite having high crystallinity can be obtained. In addition, since the graphite manufacturing method uses inexpensive ashless coal as the graphitization raw material, the manufacturing cost is relatively low.

[その他の実施形態]
なお、本発明の黒鉛の製造方法は、上記実施形態に限定されるものではない。
[Other Embodiments]
The method for producing graphite of the present invention is not limited to the above embodiment.

上記実施形態では、熱処理工程が炭素化工程と黒鉛化工程とを備える場合を説明したが、炭素化工程は必須の工程ではなく、省略することができる。炭素化工程を省略しても黒鉛化工程のみにより黒鉛を製造することができる。 In the above embodiment, the case where the heat treatment step includes the carbonization step and the graphitization step has been described, but the carbonization step is not an essential step and can be omitted. Even if the carbonization step is omitted, graphite can be produced only by the graphitization step.

また、上記黒鉛化工程の前に粉砕工程を設け、混合物の粉砕を行ってもよい。黒鉛は用途に応じて所定の大きさに粉砕して用いられるが、黒鉛化工程後に粉砕を行うと結晶構造に歪が導入され易いため、予め粉砕を行ってから黒鉛化工程を行うことで黒鉛の結晶性を維持できる。粉砕を行う場合の粉砕後の平均粒子径の上限としては、黒鉛の用途にも依存するが、100μmが好ましく、50μmがより好ましい。 A crushing step may be provided before the graphitization step to crush the mixture. Graphite is used after being crushed to a predetermined size according to the application, but if crushing is performed after the graphitizing step, strain is likely to be introduced into the crystal structure. The crystallinity of can be maintained. The upper limit of the average particle size after crushing in the case of crushing depends on the use of graphite, but is preferably 100 μm, more preferably 50 μm.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

<黒鉛の製造>
黒鉛化原料として、石炭の溶剤抽出物から溶剤を除去する方法により無灰炭を製造した。無灰炭は、原料石炭としてインドネシア産の亜瀝青炭を用いたもの、及びオーストラリア産の瀝青炭を用いたものの2種類を用意した。
<Production of graphite>
Ashless coal was manufactured as a graphitization raw material by the method of removing the solvent from the solvent extract of coal. Two types of ashless coal were prepared: one using Indonesian sub-bituminous coal as the raw material coal, and one using Australian-produced bituminous coal.

準備した2種類の無灰炭それぞれについて、黒鉛粉末を表1に示す含有量で混合した混合物をそれぞれ準備した。上記黒鉛粉末には、市販の天然黒鉛(日本黒鉛社の「SP−20」)をD90粒子径が50μm以下となるように粉砕したものを用いた。なお、表1中でNo.1、及びNo.5は含有量0質量%、すなわち黒鉛粉末を混合していない。 With respect to each of the prepared two types of ashless coal, a mixture was prepared in which graphite powder was mixed in the content shown in Table 1. As the above graphite powder, commercially available natural graphite (“SP-20” manufactured by Nippon Graphite Co., Ltd.) was pulverized to have a D90 particle size of 50 μm or less. In Table 1, No. 1, and No. The content of No. 5 was 0% by mass, that is, no graphite powder was mixed.

次に、上記混合物をそれぞれ800℃で1時間の炭素化を行い、さらに2800℃で1時間の黒鉛化を行い、No.1〜No.8の黒鉛を得た。 Next, the above mixture was carbonized at 800° C. for 1 hour, and further graphitized at 2800° C. for 1 hour. 1-No. Graphite 8 was obtained.

<評価>
上記No.1〜No.8の黒鉛について、X線広角回折法による002面の面間隔(d002)、及びラマン分光スペクトルで測定されるダイヤモンド状炭素のピーク強度Iと黒鉛状炭素のピーク強度Iとの強度比I/I(R値)を測定した。結果を表1に示す。
<Evaluation>
The above No. 1-No. For graphite of No. 8, the interplanar spacing (d002) of the 002 plane by the X-ray wide-angle diffraction method and the intensity ratio I between the peak intensity I D of diamond-like carbon and the peak intensity I G of graphite-like carbon measured by Raman spectroscopy. D / IG (R value) was measured. The results are shown in Table 1.

Figure 0006749001
Figure 0006749001

表1から、黒鉛粉末を混合して製造したNo.2〜No.4及びNo.6〜No.8の黒鉛は、黒鉛粉末を混合しないで製造したNo.1及びNo.5の黒鉛よりも結晶性が高い。つまり、黒鉛粉末を混合して製造することにより黒鉛の結晶性を高められることが分かる。 From Table 1, No. manufactured by mixing graphite powder. 2 to No. 4 and No. 6-No. The graphite of No. 8 was No. 8 manufactured without mixing graphite powder. 1 and No. The crystallinity is higher than that of graphite of No. 5. That is, it can be seen that the crystallinity of graphite can be increased by mixing graphite powder for production.

さらに詳細に見ると、原料石炭として亜瀝青炭を用いた場合も瀝青炭を用いた場合も、黒鉛粉末の含有量を30質量%としたNo.3及びNo.7付近で黒鉛粉末を混合することによる黒鉛の結晶性の改善効果が飽和している。つまり、黒鉛粉末の含有量を25質量%以上35質量%以下とすることで、製造コストを低減しつつ、結晶性の高い黒鉛を得られることが分かる。 Looking in more detail, no. No. with the graphite powder content of 30 mass% was used regardless of whether sub-bituminous coal or bituminous coal was used as the raw material coal. 3 and No. In the vicinity of 7, the effect of improving the crystallinity of graphite by mixing the graphite powder is saturated. That is, it can be seen that by setting the content of the graphite powder to 25% by mass or more and 35% by mass or less, graphite having high crystallinity can be obtained while reducing the manufacturing cost.

以上説明したように、本発明の黒鉛の製造方法を用いることで、比較的製造コストが低く、かつ結晶性の高い人造黒鉛が製造できる。従って、本発明の黒鉛の製造方法により製造された黒鉛は、リチウムイオン二次電池の負極活物質等の材料として好適に用いることができる。 As described above, by using the graphite manufacturing method of the present invention, artificial graphite having relatively low manufacturing cost and high crystallinity can be manufactured. Therefore, the graphite produced by the method for producing graphite of the present invention can be suitably used as a material such as a negative electrode active material of a lithium ion secondary battery.

S1 混合工程
S2 熱処理工程
S1 mixing process S2 heat treatment process

Claims (3)

無灰炭に黒鉛粉末を混合する工程と、
上記混合物を熱処理する工程と
を備え、
上記黒鉛粉末のX線広角回折法による002面の面間隔が3.38Å以下であり、
上記混合物における上記黒鉛粉末の含有量が5質量%以上50質量%以下であることを特徴とする黒鉛の製造方法。
A step of mixing graphite powder with ashless coal,
A step of heat treating the above mixture,
Spacing of 002 surface by X-ray wide angle diffraction method of the graphite powder Ri der less 3.38 Å,
Method for producing a graphite, characterized in der Rukoto content of 50 mass% or more 5% by weight of the graphite powder in the mixture.
上記黒鉛粉末の質量累計90%の粒子径が50μm以下である請求項1に記載の黒鉛の製造方法。 The method for producing graphite according to claim 1, wherein a particle diameter of 90% by mass of the graphite powder is 50 μm or less. 上記黒鉛粉末が、上記熱処理工程で得られる黒鉛を粉砕したものを含む請求項1又は請求項2に記載の黒鉛の製造方法。
The method for producing graphite according to claim 1 or 2 , wherein the graphite powder contains crushed graphite obtained in the heat treatment step.
JP2016255705A 2016-12-28 2016-12-28 Graphite production method Active JP6749001B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016255705A JP6749001B2 (en) 2016-12-28 2016-12-28 Graphite production method
PCT/JP2017/042056 WO2018123371A1 (en) 2016-12-28 2017-11-22 Method for producing graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016255705A JP6749001B2 (en) 2016-12-28 2016-12-28 Graphite production method

Publications (2)

Publication Number Publication Date
JP2018104259A JP2018104259A (en) 2018-07-05
JP6749001B2 true JP6749001B2 (en) 2020-09-02

Family

ID=62707432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016255705A Active JP6749001B2 (en) 2016-12-28 2016-12-28 Graphite production method

Country Status (2)

Country Link
JP (1) JP6749001B2 (en)
WO (1) WO2018123371A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7178270B2 (en) * 2019-01-15 2022-11-25 Eneos株式会社 Artificial graphite material, method for producing artificial graphite material, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN113258042A (en) * 2021-04-22 2021-08-13 湖南镕锂新材料科技有限公司 Graphite negative electrode material and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426832B2 (en) * 2008-03-19 2014-02-26 株式会社神戸製鋼所 Production method of ashless coal
CN102930919A (en) * 2012-11-19 2013-02-13 濮方正 Application of anthracite in manufacturing of conductor material and conductor material manufactured by anthracite
JP6273166B2 (en) * 2014-05-19 2018-01-31 株式会社神戸製鋼所 Carbon material manufacturing method

Also Published As

Publication number Publication date
WO2018123371A1 (en) 2018-07-05
JP2018104259A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP4061351B1 (en) Production method of ashless coal
US20110248212A1 (en) Methods of preparing carbonaceous material
JP5241105B2 (en) Coke manufacturing method and pig iron manufacturing method
KR20120026561A (en) Method for producing carbon materials
JP6749001B2 (en) Graphite production method
US20170096340A1 (en) Method for producing carbon material, and carbon material
JP2009215505A (en) Method of manufacturing ashless coal
WO2017199966A1 (en) Method for producing carbon fibers, carbon fibers, and electrode for electric double layer capacitors
WO2014175121A1 (en) Method for manufacturing ashless coal, and method for manufacturing carbon material
JP3000272B2 (en) Method for producing carbonaceous powder for negative electrode active material of lithium ion secondary battery
JPS5858284B2 (en) Tansozaino Seizouhouhou
JP6193191B2 (en) Carbon material manufacturing method
JPH07126659A (en) Production of meso-carbon microbead
JP2011032370A (en) Iron ore-containing coke and method for producing the iron ore-containing coke
US20180320083A1 (en) Method for producing coke, and coke
JP2989295B2 (en) Method for producing coke for isotropic high-density carbon material
Coutinho et al. Preparing and characterizing electrode grade carbons from eucalyptus pyrolysis products
US9751764B2 (en) Carbon material production method and carbon material
KR800001640B1 (en) Process for preparing coke of high quality
JPH02296894A (en) Production of needle coke
JPH07169458A (en) Manufacture of meso-carbon microbeads
JPS6220126B2 (en)
JP2000230178A (en) Production of mesophase microbeads
WO2018043101A1 (en) Method for producing coke for ironmaking, coke for ironmaking, and method for producing pig iron
JPH0158124B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R150 Certificate of patent or registration of utility model

Ref document number: 6749001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250