WO2017199872A1 - リング状部材の熱処理方法、リング状部材の製造方法、転がり軸受の軌道輪および転がり軸受 - Google Patents

リング状部材の熱処理方法、リング状部材の製造方法、転がり軸受の軌道輪および転がり軸受 Download PDF

Info

Publication number
WO2017199872A1
WO2017199872A1 PCT/JP2017/018003 JP2017018003W WO2017199872A1 WO 2017199872 A1 WO2017199872 A1 WO 2017199872A1 JP 2017018003 W JP2017018003 W JP 2017018003W WO 2017199872 A1 WO2017199872 A1 WO 2017199872A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
shaped member
molded body
bearing
rolling bearing
Prior art date
Application number
PCT/JP2017/018003
Other languages
English (en)
French (fr)
Inventor
敬史 結城
大木 力
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017199872A1 publication Critical patent/WO2017199872A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a heat treatment method for a ring-shaped member, a method for manufacturing a ring-shaped member, a bearing ring for a rolling bearing, and a rolling bearing, and more specifically, a ring that is homogeneous in the circumferential direction while suppressing the manufacturing cost of a quenching device.
  • the present invention relates to a heat treatment method for a ring-shaped member capable of forming a quench-hardened region, a method for manufacturing the ring-shaped member, and a bearing ring and a rolling bearing of a rolling bearing manufactured by the manufacturing method.
  • Induction hardening may be employed as a quench hardening treatment for ring-shaped members made of steel such as rolling ring bearing rings.
  • This induction hardening can simplify the equipment and heat treatment in a short time compared to the general quench hardening process in which a ring-shaped member is heated in a furnace and then immersed in a coolant such as oil. It has the advantage that it becomes possible.
  • the ring-shaped member for induction heating so as to face the region. It is necessary to arrange an induction heating member such as a coil. Therefore, when quenching and curing a large ring-shaped member, a large-sized coil corresponding to that and a large-capacity power source corresponding to the coil are required, which raises a problem that the manufacturing cost of the quenching apparatus increases.
  • moving quenching using a small induction heating coil is employed.
  • high-frequency induction heating is performed using a coil that is arranged facing a part of an annular region to be heated of the ring-shaped member and moves relatively along the region.
  • a coolant such as water immediately after passing through the coil
  • the regions are sequentially quenched and hardened.
  • the coil turns once from the quenching start area (quenching start area) and finally quenches the area where quenching should be performed (quenching end area).
  • quenching start area and the quenching end area partially overlap.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-26633
  • the present invention has been made to solve the above-described problems, and its purpose is to form an annular quenching and hardening region that is homogeneous in the circumferential direction while suppressing the manufacturing cost of the quenching apparatus.
  • the heat treatment method for a ring-shaped member according to the present invention includes an induction heating member that is arranged so as to face a part of a ring-shaped formed body made of steel and that induction-heats the formed body along the circumferential direction of the formed body. And forming the annular heating region heated to a temperature of A 1 point or higher on the molded body by simultaneously rotating the molded body, and the step of simultaneously cooling the entire heating region to a temperature of the MS point or lower. ing. In the step of forming the heating region, the molded body is heated so that the average temperature rise rate becomes 60 ° C./min or more while the surface temperature of the molded body is heated from room temperature to 850 ° C.
  • the induction heating member disposed so as to face a part of the ring-shaped molded body relatively rotates along the circumferential direction, whereby the molded body is heated. Is formed. Therefore, it is possible to employ a small induction heating member with respect to the outer shape of the ring-shaped member. As a result, even when a large ring-shaped member is hardened by hardening, the manufacturing cost of the hardening device can be suppressed. Moreover, in the heat processing method of the ring-shaped member of this invention, the whole heating area
  • the heat treatment method for a ring-shaped member of the present invention the manufacturing cost of the quenching apparatus is suppressed, the ring is homogeneous in the circumferential direction, and the coarsening of crystal grains and the generation of mixed grains are suppressed. It is possible to provide a heat treatment method for a ring-shaped member capable of forming a high-quality quench-hardened region.
  • the induction heating member in the step of forming the heating region, may relatively rotate two or more times along the circumferential direction of the molded body. Thereby, the dispersion
  • a plurality of induction heating members may be arranged along the circumferential direction of the molded body in the step of forming the heating region.
  • the method for manufacturing a ring-shaped member according to the present invention includes a step of preparing a ring-shaped formed body made of steel and a step of quenching and hardening the formed body. Then, in the step of quenching and curing the molded body, the molded body is quenched and cured using the heat treatment method for a ring-shaped member of the present invention.
  • the method for producing a ring-shaped member of the present invention in the step of quenching and curing the molded body, the molded body is quenched and cured using the heat treatment method for the ring-shaped member of the present invention. Therefore, according to the method for manufacturing a ring-shaped member of the present invention, a method for manufacturing a ring-shaped member capable of forming an annular quenching and hardening region that is homogeneous in the circumferential direction while suppressing the manufacturing cost of the quenching apparatus. Can be provided.
  • the ring-shaped member according to the present invention is manufactured by the above-described method for manufacturing a ring-shaped member of the present invention.
  • the ring-shaped member is manufactured by the method for manufacturing the ring-shaped member of the present invention, so that a uniform quenching and hardening region is formed in the circumferential direction while suppressing the cost of heat treatment.
  • a ring-shaped member can be provided.
  • the bearing ring of the rolling bearing according to one aspect of the present invention is manufactured by the method for manufacturing a ring-shaped member of the present invention, and has an inner diameter of 1000 mm or more.
  • the ring-shaped member manufacturing method of the present invention produces a ring-shaped quench hardening region that is homogeneous in the circumferential direction while suppressing the cost of heat treatment.
  • a large-sized race ring formed so as to include a rolling surface can be provided.
  • the bearing ring of the rolling bearing according to another aspect of the present invention is a rolling bearing bearing ring having an inner diameter of 1000 mm or more.
  • the bearing ring of this rolling bearing is characterized in that a hardened hardened layer on the rolling surface, which is a surface on which the rolling elements roll, is formed to a uniform depth over the entire circumference by induction hardening.
  • the bearing ring of the rolling bearing according to another aspect of the present invention has an inner diameter of 1000 mm or more, is formed by induction hardening, and has a uniform ring-shaped depth along the circumferential direction.
  • the surface of the quench-hardened layer is a rolling surface.
  • the ring-shaped quench hardening layer along the circumferential direction means a quench hardening layer having a continuous thickness (not discontinuous) in the circumferential direction.
  • a large ring having excellent durability can be obtained by forming an annular hardened and hardened layer homogeneous in the circumferential direction by induction hardening. Can be provided.
  • the rolling bearing according to the present invention includes an inner ring, an outer ring arranged so as to surround the outer peripheral side of the inner ring, and a plurality of rolling elements arranged between the inner ring and the outer ring. And at least any one of the said inner ring
  • the bearing ring of the rolling bearing formed so that the annular quenching and hardening region that is uniform in the circumferential direction includes the rolling surface is employed in at least one of the inner ring and the outer ring. Therefore, it is possible to provide a rolling bearing having excellent durability.
  • the rolling bearing is a rolling device that rotatably supports the main shaft with respect to the housing by fixing the main shaft connected to the blade through the inner ring and fixing the outer ring with respect to the housing. It can be used as a bearing (rolling bearing for wind power generator).
  • the rolling bearing of the present invention having excellent durability is suitable as a rolling bearing for wind power generators.
  • point A when heated steel refers to a point that the structure of the steel corresponds to the temperature to start the transformation from ferrite to austenite.
  • M s point means a point corresponding to a temperature at which martensite formation starts when the austenitized steel is cooled.
  • the ring member heat treatment method and ring member manufacturing method of the present invention while suppressing the production cost of the quenching apparatus, it is homogeneous in the circumferential direction and has a crystal grain shape. It is possible to provide a ring-shaped member heat treatment method and a ring-shaped member manufacturing method capable of forming an annular quench-hardened region in which coarsening and mixed grain generation are suppressed.
  • FIG. 3 is a schematic sectional view showing a section taken along line III-III in FIG. 2.
  • FIG. 5 is a schematic diagram for explaining a quench hardening process in a second embodiment. It is the schematic which shows the structure of the wind power generator provided with the rolling bearing for wind power generators.
  • FIG. 6 is a schematic cross-sectional view showing an enlarged periphery of a main shaft bearing in FIG. 5. It is a figure which shows the residual stress distribution of the depth direction in the rolling surface vicinity. It is a figure which shows the hardness distribution of the depth direction in the rolling surface vicinity. It is a photograph which shows the state of the crystal grain after temperature rising of a molded object.
  • Embodiment 1 which is one embodiment of the present invention will be described by taking as an example a method for manufacturing a ring (inner ring) of a rolling bearing that is a ring-shaped member.
  • a molded body preparation step is first performed as a step (S ⁇ b> 10).
  • this step (S10) for example, a steel material made of JIS standard S53C is prepared, and by performing processing such as forging and turning, a molded body having a shape corresponding to the shape of a desired inner ring is produced.
  • This quench hardening process includes an induction heating process performed as the process (S20) and a cooling process performed as the process (S30).
  • step (S20) referring to FIG. 2 and FIG. 3, coil 21 as the induction heating member is a rolling surface on which the rolling element should roll in molded body 10 produced in step (S10). 11 is arranged so as to face a part of 11.
  • the surface of the coil 21 that faces the rolling surface 11 has a shape along the rolling surface 11 as shown in FIG.
  • the molded body 10 is rotated around the central axis, specifically in the direction of the arrow ⁇ , and a high frequency current is supplied to the coil 21 from a power source (not shown).
  • the surface layer region including the rolling surface 11 of the formed body 10 is induction-heated to a temperature of A 1 point or more, and an annular heating region 11A along the rolling surface 11 is formed.
  • the average rate of temperature increase is 60 ° C./min or more while the surface layer region including the rolling surface 11 of the compact 10 is heated from room temperature to 850 ° C.
  • room temperature means, for example, 10 ° C. or higher and 30 ° C. or lower.
  • the average temperature rising rate is more preferably 65 ° C. or higher, and further preferably 70 ° C. or higher.
  • step (S30) for example, water as a cooling liquid is sprayed onto the entire molded body 10 including the heating region 11A formed in the step (S20), so that the entire heating region 11A is M. Simultaneous cooling to a temperature below the S point. As a result, the heating region 11A is transformed into martensite and cured.
  • induction hardening is performed and the quench hardening process is completed.
  • a tempering step is performed as a step (S40).
  • a step (S20) and (S30) molding 10 which is quench-hardened in, for example, is charged into the furnace, is heated to a temperature of less than 1 point A is held for a predetermined period of time Thus, a tempering process is performed.
  • a finishing step is performed as a step (S50).
  • a finishing process such as a polishing process is performed on the rolling surface 11.
  • the heating region 11A is formed on the molded body 10 by relatively rotating the coil 21 disposed so as to face a part of the molded body 10 along the circumferential direction. It is formed. Therefore, it is possible to employ a small coil 21 with respect to the outer shape of the molded body 10, and the manufacturing cost of the quenching apparatus can be suppressed even when the large molded body 10 is quenched and hardened. .
  • the entire heating area 11A is simultaneously cooled to a temperature not higher than the MS point. Therefore, it becomes possible to form an annular quenching and hardening region that is homogeneous in the circumferential direction, and the residual stress is prevented from concentrating on a part of the region.
  • the inner ring manufacturing method according to the present embodiment is a ring that is homogeneous in the circumferential direction while suppressing the manufacturing cost of the quenching apparatus, and is high in that coarsening of crystal grains and generation of mixed grains are suppressed. This is a method for manufacturing a ring-shaped member capable of forming a quality hardened and hardened region.
  • the molded body 10 may be rotated at least once. However, in order to suppress temperature variation in the circumferential direction and achieve more uniform quench hardening, the molded body 10 is rotated a plurality of times. Is preferred. That is, it is preferable that the coil 21 as the induction heating member relatively rotate two or more times along the circumferential direction of the molded body 10.
  • Embodiment 2 which is another embodiment of the present invention will be described.
  • the manufacturing method of the inner ring as the ring-shaped member in the second embodiment is basically performed in the same manner as in the first embodiment, and has the same effect.
  • the inner ring manufacturing method according to the second embodiment is different from the first embodiment in the arrangement of the coil 21 in the step (S20).
  • a pair of coils 21 is arranged with the molded body 10 interposed therebetween. And while the molded object 10 rotates in the direction of arrow (alpha), the high frequency current is supplied with respect to the coil 21 from a power supply (not shown). Thereby, the surface layer region including the rolling surface 11 of the formed body 10 is induction-heated to a temperature of A 1 point or more, and an annular heating region 11A along the rolling surface 11 is formed.
  • the manufacturing method of the inner ring of the rolling bearing in the second embodiment is This is a method of manufacturing a ring-shaped member that can suppress temperature variation and realize uniform quench hardening.
  • the molded object 10 may be fixed and the coil 21 may be rotated in the circumferential direction of the molded object 10,
  • the coil 21 may be relatively rotated along the circumferential direction of the molded body 10 by rotating both the coil 21 and the molded body 10.
  • the coil 21 requires wiring for supplying a current to the coil 21, it is often reasonable to fix the coil 21 as described above.
  • the ring-shaped member to which the present invention is applicable is not limited thereto, For example, it may be an outer ring of a radial type rolling bearing or a raceway ring of a thrust type bearing.
  • the ring-shaped member to which the present invention can be applied is not limited to the bearing ring, and the present invention can be applied to heat treatment and production of various ring-shaped members made of steel.
  • the coil 21 may be disposed so as to face the rolling surface formed on the inner peripheral side of the molded body. Further, in the step (S20), for example, when heating the bearing ring of the thrust type rolling bearing, the coil 21 may be disposed so as to face the rolling surface formed on the end surface side of the molded body.
  • the length of the coil 21 as the induction heating member in the circumferential direction of the molded body 10 that is a ring-shaped member can be appropriately determined so as to achieve efficient and uniform heating.
  • a length at which the central angle with respect to the central axis of the ring-shaped member is 30 °.
  • specific conditions for induction hardening in the present invention can be set appropriately in consideration of conditions such as the size, thickness, material, and power supply capacity of the ring-shaped member (molded body).
  • the rotational speed of the molded body is 30 rpm
  • the frequency of the power source is 3 kHz
  • induction heating By setting the total heat generation amount to 250 kW, appropriate quenching can be achieved.
  • the temperature in the circumferential direction it is preferable to provide a step of holding the molded body in a state where the heating is stopped after the induction heating is completed and before cooling to a temperature equal to or lower than the MS point.
  • the temperature variation in the circumferential direction on the surface of the heated region is changed. It can suppress to about 20 degrees C or less.
  • Embodiment 3 in which the ring-shaped member of the present invention is used as a bearing ring constituting a bearing for a wind power generator (a rolling bearing for a wind power generator) will be described.
  • wind power generator 50 is connected to blade 52 that is a swirl blade, main shaft 51 that is connected to blade 52 at one end so as to include the central axis of blade 52, and the other end of main shaft 51.
  • the speed-up gear 54 is provided.
  • the speed increaser 54 includes an output shaft 55, and the output shaft 55 is connected to the generator 56.
  • the main shaft 51 is rotatably supported around the shaft by a main shaft bearing 3 which is a rolling bearing for a wind power generator.
  • a plurality (two in FIG. 5) of the main shaft bearings 3 are arranged in the axial direction of the main shaft 51, and are respectively held by the housing 53.
  • the main shaft bearing 3, the housing 53, the speed increaser 54, and the generator 56 are housed in a nacelle 59 that is a machine room.
  • the main shaft 51 protrudes from the nacelle 59 at one end and is connected to the blade 52.
  • the operation of the wind power generator 50 will be described.
  • the main shaft 51 connected to the blade 52 rotates around the shaft while being supported by the main shaft bearing 3 with respect to the housing 53.
  • the rotation of the main shaft 51 is transmitted to the speed increaser 54 to be accelerated, and converted into rotation around the output shaft 55.
  • the rotation of the output shaft 55 is transmitted to the generator 56, and an electromotive force is generated by the electromagnetic induction action to achieve power generation.
  • main shaft bearing 3 as a rolling bearing for wind power generator includes an annular outer ring 31 as a raceway of the wind bearing for rolling power generator, and wind power generation disposed on the inner peripheral side of outer ring 31.
  • An annular inner ring 32 as a bearing ring of the rolling bearing for the device, and a plurality of rollers 33 disposed between the outer ring 31 and the inner ring 32 and held by an annular retainer 34 are provided.
  • An outer ring rolling surface 31 ⁇ / b> A is formed on the inner circumferential surface of the outer ring 31, and two inner ring rolling surfaces 32 ⁇ / b> A are formed on the outer circumferential surface of the inner ring 32.
  • the outer ring 31 and the inner ring 32 are arranged so that the two inner ring rolling surfaces 32A face the outer ring rolling surface 31A.
  • the plurality of rollers 33 are in contact with the outer ring rolling surface 31A and the inner ring rolling surface 32A along the two inner ring rolling surfaces 32A at the roller contact surface 33A and are held by the cage 34. By being arranged at a predetermined pitch in the circumferential direction, it is rotatably held on a double row (two rows) annular track.
  • the outer ring 31 is formed with a through hole 31E that penetrates the outer ring 31 in the radial direction. Lubricant can be supplied to the space between the outer ring 31 and the inner ring 32 through the through hole 31E.
  • the main shaft 51 connected to the blade 52 passes through the inner ring 32 of the main shaft bearing 3 and contacts the inner peripheral surface 32F of the inner ring at the outer peripheral surface 51A and is fixed to the inner ring 32. Further, the outer ring 31 of the main shaft bearing 3 is fitted into an inner wall 53 ⁇ / b> A of a through-hole formed in the housing 53 so as to come into contact with the outer peripheral surface 31 ⁇ / b> F, and is fixed to the housing 53. With the above configuration, the main shaft 51 connected to the blade 52 can rotate about the shaft relative to the outer ring 31 and the housing 53 integrally with the inner ring 32.
  • flanges 32E projecting toward the outer ring 31 are formed at both ends in the width direction of the inner ring rolling surface 32A.
  • the outer ring rolling surface 31A has a spherical shape. Therefore, the outer ring 31 and the inner ring 32 can make an angle with each other around the center of the spherical surface in a cross section perpendicular to the rolling direction of the rollers 33. That is, the main shaft bearing 3 is a double-row self-aligning roller bearing. As a result, even when the main shaft 51 is bent due to the wind received by the blade 52, the housing 53 can stably and rotatably hold the main shaft 51 via the main shaft bearing 3.
  • outer ring 31 and the inner ring 32 as the races of the rolling bearing for wind power generator in the third embodiment are manufactured by, for example, the ring-shaped member manufacturing method described in the first or second embodiment.
  • the outer ring 31 and the inner ring 32 are raceways of a rolling bearing for a wind power generator having an inner diameter of 1000 mm or more.
  • the hardening hardening layer of 31 A of outer ring rolling surfaces and 32 A of inner ring rolling surfaces which are the surfaces where a rolling element rolls is formed in the uniform depth over the perimeter by induction hardening.
  • the outer ring 31 and the inner ring 32 have an inner diameter of 1000 mm or more, are formed by induction hardening, and have a hardened hardening layer having an annular shape with a uniform depth along the circumferential direction.
  • the surface of the hardened layer is an outer ring rolling surface 31A and an inner ring rolling surface 32A, respectively.
  • the outer ring 31 and the inner ring 32 are large-sized races formed so that an annular quenching and hardening region that is homogeneous in the circumferential direction includes a rolling surface while suppressing the cost of heat treatment.
  • the steel molded body (inner ring of the rolling bearing) was heat-treated using the heat treatment method for the ring-shaped member of the present invention, and an experiment was conducted to investigate the characteristics of the molded body.
  • the experimental procedure is as follows.
  • the outside diameter d 1 is 2400 mm
  • minimum diameter d 2 of the rolling surface 11 is 2350 mm
  • an inner diameter d 3 is 2200 mm
  • the compact 10 was subjected to induction hardening by performing the same steps as the steps (S20) and (S30) in the first embodiment.
  • the power of the power source was 65 kW
  • the frequency of the power source was 10 kHz
  • the rotational speed of the molded body 10 was 30 rpm.
  • the composition of the molded body 10 was as shown in Table 1 below. The unit of numerical values in Table 1 is mass%.
  • step (S20) the temperature of the rolling surface 11 is raised from 20 ° C., which is room temperature, to 950 ° C. over 15 minutes, and then in step (S30), the entire heating region 11A is simultaneously brought to a temperature below the MS point. (Example).
  • the average rate of temperature rise from at least room temperature to 850 ° C. was set to 60 ° C./min or more.
  • a molded body similar to that in the above example was prepared, and the conventional moving quenching was performed to leave the soft zone (Comparative Example 1).
  • a coil (Comparative Example 2) in which the formation of a soft zone was avoided using two coils that moved in the opposite directions in the circumferential direction was also produced.
  • the power of the power source was 65 kW
  • the frequency of the power source was 10 kHz
  • the coil feed rate was 2 mm / s.
  • the residual stress distribution and hardness distribution of the depth direction in the rolling surface vicinity were investigated about the molded object after the quenching of the said Example and comparative example.
  • the investigation was performed on the area where quenching was last performed. Further, the roundness was measured for the molded bodies after quenching in the above examples and comparative examples.
  • the horizontal axis indicates the depth from the rolling surface (surface).
  • shaft of FIG. 7 has shown the residual stress value which represented tensile stress as positive and compressive stress was negative, and the vertical axis
  • shaft of FIG. 8 has shown Vickers hardness.
  • Example B a maximum tensile stress of about 400 MPa remains inside, and there is a concern that fire cracks may occur.
  • the maximum value of the internal tensile stress is suppressed to about 200 MPa.
  • the hardness distribution in the depth direction in the vicinity of the rolling surface does not have a large difference between the example and the comparative example, and the example of the present invention has a good hardness distribution. It can be said.
  • the former austenite crystal grains of the example that is, the state in which the molded body 10 was heated to 950 ° C. at 60 ° C./min or more in the step (S20) (the subsequent cooling It was found that the crystal grains of the molded body 10 in (immediately before) could suppress coarsening.
  • the employable steel is not restricted to this.
  • various steels such as carbon steel for mechanical structure such as S55C and high carbon chromium bearing steel such as SUJ2 can be adopted as the steel constituting the ring-shaped member.
  • the bearing ring of the rolling bearing was illustrated as an example of a ring-shaped member, the ring-shaped member which can apply this invention is not restricted to this, A hardening hardening process is required.
  • the present invention can be applied to various ring-shaped members made of steel.
  • the present invention is applied to a raceway of a large-sized rolling bearing.
  • a rotary mount on which an X-ray irradiation unit of a CT scanner is installed is opposed to the rotary mount. It is particularly applied to a bearing ring of a rolling bearing for a CT scanner that is rotatably supported with respect to a fixed mount to be disposed, and a bearing ring of a bearing for a wind power generation device that supports a main shaft or a turning part of a wind turbine for wind power generation.
  • a bearing ring of a rolling bearing for a CT scanner that is rotatably supported with respect to a fixed mount to be disposed
  • a bearing ring of a bearing for a wind power generation device that supports a main shaft or a turning part of a wind turbine for wind power generation.
  • the ring-shaped member heat treatment method and ring-shaped member manufacturing method according to the present invention are required to form a uniform ring-shaped hardening region in the circumferential direction while suppressing the manufacturing cost of the quenching apparatus.
  • the present invention can be applied particularly advantageously to the heat treatment method and the ring member manufacturing method.

Abstract

リング状部材の熱処理方法は、鋼からなるリング状の成形体(10)の転走面(11)に面するように配置され、成形体(10)を誘導加熱するコイル(21)を、成形体(10)の周方向に沿って相対的に回転させることにより、成形体(10)にA点以上の温度に加熱された環状の加熱領域を形成する工程と、加熱領域全体をM点以下の温度に同時に冷却する工程とを備えている。加熱領域を形成する工程においては、成形体(10)の表面温度が常温から850℃まで加熱される間における平均昇温速度が60℃/min以上となるように、成形体(10)が加熱される。

Description

リング状部材の熱処理方法、リング状部材の製造方法、転がり軸受の軌道輪および転がり軸受
 本発明はリング状部材の熱処理方法、リング状部材の製造方法、転がり軸受の軌道輪および転がり軸受に関し、より特定的には、焼入装置の製作コストを抑制しつつ、周方向に均質な環状の焼入硬化領域を形成することが可能なリング状部材の熱処理方法およびリング状部材の製造方法、ならびに当該製造方法により製造された転がり軸受の軌道輪および転がり軸受に関するものである。
 転がり軸受の軌道輪などの鋼からなるリング状部材に対する焼入硬化処理として、高周波焼入が採用される場合がある。この高周波焼入は、リング状部材を炉内で加熱した後、油などの冷却液中に浸漬する一般的な焼入硬化処理に比べて、設備を簡略化できるとともに、短時間での熱処理が可能となるなどの利点を有している。
 しかし、高周波焼入において、リング状部材の周方向に沿った焼入硬化すべき環状の領域を同時に加熱するためには、当該領域に対向するように、当該リング状部材を誘導加熱するためのコイルなどの誘導加熱部材を配置する必要がある。そのため、大型のリング状部材を焼入硬化する場合、それに応じた大型のコイルや当該コイルに対応する大容量の電源が必要となり、焼入装置の製作コストが高くなるという問題がある。
 このような問題を回避する方策として、小型の誘導加熱コイルを用いた移動焼入が採用される場合がある。この移動焼入においては、リング状部材の加熱すべき環状の領域の一部に対向して配置され、当該領域に沿って相対的に移動するコイルを用いて高周波誘導加熱を実施し、加熱された領域に対してコイルの通過直後に水などの冷却液を噴射することにより、当該領域を順次焼入硬化する。しかし、単にこの移動焼入を採用した場合、焼入が開始された領域(焼入開始領域)からコイルが一回りし、最後に焼入を実施すべき領域(焼入終了領域)を焼入硬化する際、焼入開始領域と焼入終了領域とが部分的に重複する。そのため、重複した領域が再焼入されることによる焼割れの発生が懸念される。また、上記重複した領域に隣接する領域は、焼入終了領域の加熱に伴ってA点以下の温度に加熱されて焼戻されるため、硬度が低下するおそれもある。そのため、移動焼入が採用される場合、焼入開始領域と焼入終了領域との間に焼入を実施しない領域(ソフトゾーン)を残存させる対策が採られるのが一般的である。このソフトゾーンは、硬度が低いため、降伏強度が低く、また耐摩耗性も不十分である。そのため、たとえば転がり軸受の軌道輪にソフトゾーンを形成した場合、当該ソフトゾーンが負荷域とならないように配慮する必要がある。
 そこで、硬度の低いソフトゾーンの形成を回避し、かつ小型の誘導加熱コイルを用いた移動焼入が採用される方法が、たとえば特開2011-26633号公報(特許文献1)にて提案されている。
特開2011-26633号公報
 しかしながら、特開2011-26633号公報のような小型の誘導加熱コイルを含む移動焼入用の装置を用いて大型のリング状部材を誘導加熱する場合は、コストおよびサイズの都合により、容量が十分に大きくない電源を含む装置を用いざるを得ない場合がある。その場合、加熱時の昇温速度が遅くなり、焼入されるリング状部材の結晶粒の粗大化および混粒発生の原因となる。この現象は特に、炭化物によるピン止め効果を期待できない亜共析鋼において顕著となる。結晶粒の粗大化は、疲労強度の低下のような不具合を招来する。また混粒発生は、疲労強度の低下のような不具合を招来する。
 本発明は上述のような問題を解決するためになされたものであり、その目的は、焼入装置の製作コストを抑制しつつ、周方向に均質な環状の焼入硬化領域を形成することが可能であり、さらに結晶粒の粗大化を抑制することが可能なリング状部材の熱処理方法およびリング状部材の製造方法、ならびに当該製造方法により製造されたリング状部材、転がり軸受の軌道輪および転がり軸受を提供することである。
 本発明に従ったリング状部材の熱処理方法は、鋼からなるリング状の成形体の一部に面するように配置され、成形体を誘導加熱する誘導加熱部材を、成形体の周方向に沿って相対的に回転させることにより、成形体にA点以上の温度に加熱された環状の加熱領域を形成する工程と、加熱領域全体をM点以下の温度に同時に冷却する工程とを備えている。加熱領域を形成する工程においては、成形体の表面温度が常温から850℃まで加熱される間における平均昇温速度が60℃/min以上となるように、成形体が加熱される。
 本発明のリング状部材の熱処理方法においては、リング状の成形体の一部に面するように配置された誘導加熱部材が周方向に沿って相対的に回転することにより、成形体に加熱領域が形成される。そのため、リング状部材の外形形状に対して小さい誘導加熱部材を採用することが可能である。その結果、大型のリング状部材を焼入硬化する場合でも、焼入装置の製作コストを抑制することができる。また、本発明のリング状部材の熱処理方法においては、加熱領域全体がM点以下の温度に同時に冷却される。そのため、周方向に均質な環状の焼入硬化領域を形成することが可能となり、一部の領域に残留応力が集中することが抑制される。さらに、加熱工程において成形体の表面の平均昇温速度が上記のように比較的高くなるように制御されれば、焼入時の結晶粒の粗大化を抑制することができる。このように、本発明のリング状部材の熱処理方法によれば、焼入装置の製作コストを抑制しつつ、周方向に均質な環状であり、かつ結晶粒の粗大化および混粒の発生が抑制された高品質の焼入硬化領域を形成することが可能なリング状部材の熱処理方法を提供することができる。
 上記リング状部材の熱処理方法においては、加熱領域を形成する工程では、誘導加熱部材が成形体の周方向に沿って相対的に2周以上回転してもよい。これにより、周方向における温度のばらつきを抑制し、均質な焼入硬化を実現することができる。
 上記リング状部材の熱処理方法においては、加熱領域を形成する工程では、誘導加熱部材が成形体の周方向に沿って複数個配置されてもよい。これにより、周方向における温度のばらつきを抑制し、均質な焼入硬化を実現することができる。
 本発明に従ったリング状部材の製造方法は、鋼からなるリング状の成形体を準備する工程と、成形体を焼入硬化する工程とを備えている。そして、成形体を焼入硬化する工程では、上記本発明のリング状部材の熱処理方法を用いて成形体を焼入硬化する。
 本発明のリング状部材の製造方法では、成形体を焼入硬化する工程において、上記本発明のリング状部材の熱処理方法を用いて成形体が焼入硬化される。そのため、本発明のリング状部材の製造方法によれば、焼入装置の製作コストを抑制しつつ、周方向に均質な環状の焼入硬化領域を形成することが可能なリング状部材の製造方法を提供することができる。
 本発明に従ったリング状部材は、上記本発明のリング状部材の製造方法により製造される。本発明のリング状部材によれば、上記発明のリング状部材の製造方法により製造されていることにより、熱処理のコストが抑制されつつ、周方向に均質な環状の焼入硬化領域が形成されたリング状部材を提供することができる。
 本発明の一の局面における転がり軸受の軌道輪は、上記本発明のリング状部材の製造方法により製造され、1000mm以上の内径を有する。本発明の転がり軸受の軌道輪によれば、上記本発明のリング状部材の製造方法により製造されていることにより、熱処理のコストが抑制されつつ、周方向に均質な環状の焼入硬化領域が転走面を含むように形成された大型の軌道輪を提供することができる。
 また、本発明の他の局面における転がり軸受の軌道輪は、1000mm以上の内径を有する転がり軸受の軌道輪である。この転がり軸受の軌道輪は、転動体が転走する面である転走面の焼入硬化層が、高周波焼入により全周にわたって一様な深さに形成されたことを特徴とする。別の観点から説明すると、本発明の他の局面における転がり軸受の軌道輪は、1000mm以上の内径を有するとともに、高周波焼入により形成され、周方向に沿った円環形状の一様な深さの焼入硬化層を有し、当該焼入硬化層の表面が転走面となっている。なお、周方向に沿った円環形状の一様な深さの焼入硬化層とは、周方向において厚みが連続している(不連続となっていない)焼入硬化層を意味する。
 本発明の他の局面における転がり軸受の軌道輪によれば、周方向に均質な円環形状の焼入硬化層が高周波焼入により形成されていることにより、耐久性に優れた大型の軌道輪を提供することができる。
 本発明に従った転がり軸受は、内輪と、内輪の外周側を取り囲むように配置された外輪と、内輪と外輪との間に配置された複数の転動体とを備えている。そして、上記内輪および外輪の少なくともいずれか一方は上記本発明の転がり軸受の軌道輪である。
 本発明の転がり軸受によれば、周方向に均質な環状の焼入硬化領域が転走面を含むように形成された上記転がり軸受の軌道輪が、内輪および外輪の少なくともいずれか一方に採用されているため、耐久性に優れた転がり軸受を提供することができる。
 上記転がり軸受は、風力発電装置において、内輪にはブレードに接続された主軸が貫通して固定され、外輪はハウジングに対して固定されることにより、主軸をハウジングに対して回転自在に支持する転がり軸受(風力発電装置用転がり軸受)として用いることができる。上記耐久性に優れた本発明の転がり軸受は、風力発電装置用転がり軸受として好適である。
 なお、A点とは鋼を加熱した場合に、鋼の組織がフェライトからオーステナイトに変態を開始する温度に相当する点をいう。また、M点とはオーステナイト化した鋼が冷却される際に、マルテンサイト化を開始する温度に相当する点をいう。
 以上の説明から明らかなように、本発明のリング状部材の熱処理方法およびリング状部材の製造方法によれば、焼入装置の製作コストを抑制しつつ、周方向に均質でありかつ結晶粒の粗大化および混粒発生が抑制された環状の焼入硬化領域を形成することが可能なリング状部材の熱処理方法およびリング状部材の製造方法を提供することができる。
転がり軸受内輪の製造方法の概略を示すフローチャートである。 焼入硬化工程を説明するための概略図である。 図2の線分III-IIIに沿う断面を示す概略断面図である。 実施の形態2における焼入硬化工程を説明するための概略図である。 風力発電装置用転がり軸受を備えた風力発電装置の構成を示す概略図である。 図5における主軸用軸受の周辺を拡大して示す概略断面図である。 転走面付近における深さ方向の残留応力分布を示す図である。 転走面付近における深さ方向の硬度分布を示す図である。 成形体の昇温後における結晶粒の状態を示す写真である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
 (実施の形態1)
 まず、リング状部材である転がり軸受の軌道輪(内輪)の製造方法を例に、本発明の一実施の形態である実施の形態1について説明する。図1を参照して、本実施の形態における内輪の製造方法では、まず工程(S10)として成形体準備工程が実施される。この工程(S10)では、たとえばJIS規格S53Cからなる鋼材が準備され、鍛造、旋削などの加工が実施されることにより、所望の内輪の形状に応じた形状を有する成形体が作製される。
 次に、図1を参照して、焼入硬化工程が実施される。この焼入硬化工程は、工程(S20)として実施される誘導加熱工程と、工程(S30)として実施される冷却工程とを含んでいる。工程(S20)では、図2および図3を参照して、誘導加熱部材としてのコイル21が、工程(S10)において作製された成形体10において転動体が転走すべき面である転走面11の一部に面するように配置される。ここで、コイル21において転走面11に対向する面は、図3に示すように転走面11に沿った形状を有している。次に、成形体10が中心軸周り、具体的には矢印αの向きに回転されるとともに、コイル21に対して電源(図示しない)から高周波電流が供給される。これにより、成形体10の転走面11を含む表層領域がA点以上の温度に誘導加熱され、転走面11に沿った円環状の加熱領域11Aが形成される。
 この誘導加熱の際には、成形体10の転走面11を含む表層領域が常温から850℃まで加熱される間における平均昇温速度が60℃/min以上とされる。ここでは常温とはたとえば10℃以上30℃以下を意味する。なお平均昇温速度は65℃以上であることがより好ましく、70℃以上であることがさらに好ましい。
 次に、工程(S30)においては、工程(S20)において形成された加熱領域11Aを含む成形体10全体に対して、たとえば冷却液としての水が噴射されることにより、加熱領域11A全体がM点以下の温度に同時に冷却される。これにより、加熱領域11Aがマルテンサイトに変態し、硬化する。以上の手順により、高周波焼入が実施され、焼入硬化工程が完了する。
 次に、工程(S40)として焼戻工程が実施される。この工程(S40)では、工程(S20)および(S30)において焼入硬化された成形体10が、たとえば炉内に装入され、A点以下の温度に加熱されて所定の時間保持されることにより、焼戻処理が実施される。
 次に、工程(S50)として仕上げ工程が実施される。この工程(S50)では、たとえば転走面11に対して研磨加工などの仕上げ加工が実施される。以上のプロセスにより、転がり軸受の内輪が完成し、本実施の形態における内輪の製造は完了する。
 本実施の形態では、工程(S20)において、成形体10の一部に面するように配置されたコイル21を周方向に沿って相対的に回転させることにより、成形体10に加熱領域11Aが形成される。そのため、成形体10の外形形状に対して小さいコイル21を採用することが可能となっており、大型の成形体10を焼入硬化する場合でも、焼入装置の製作コストを抑制することができる。また、本実施の形態では、加熱領域11A全体がM点以下の温度に同時に冷却される。そのため、周方向に均質な環状の焼入硬化領域を形成することが可能となり、一部の領域に残留応力が集中することが抑制される。さらに本実施の形態では、加熱工程において成形体10の転走面11を含む表層領域の平均昇温速度が上記のように比較的高くなるように制御されるため、成形体10の結晶粒の粗大化および当該結晶への混粒発生を抑制することができる。その結果、本実施の形態における内輪の製造方法は、焼入装置の製作コストを抑制しつつ、周方向に均質な環状であり、かつ結晶粒の粗大化および混粒の発生が抑制された高品質の焼入硬化領域を形成することが可能なリング状部材の製造方法となっている。
 ここで、上記工程(S20)では、成形体10は少なくとも1回転すればよいが、周方向における温度のばらつきを抑制し、より均質な焼入硬化を実現するためには、複数回回転することが好ましい。すなわち、誘導加熱部材としてのコイル21は、成形体10の周方向に沿って相対的に2周以上回転することが好ましい。
 (実施の形態2)
 次に、本発明の他の実施の形態である実施の形態2について説明する。実施の形態2におけるリング状部材としての内輪の製造方法は、基本的には実施の形態1の場合と同様に実施され、同様の効果を奏する。しかし、実施の形態2における内輪の製造方法は、工程(S20)におけるコイル21の配置において、実施の形態1の場合とは異なっている。
 すなわち、図4を参照して、実施の形態2における工程(S20)では、成形体10を挟んで一対のコイル21が配置される。そして、成形体10が矢印αの向きに回転されるとともに、コイル21に対して電源(図示しない)から高周波電流が供給される。これにより、成形体10の転走面11を含む表層領域がA点以上の温度に誘導加熱され、転走面11に沿った円環状の加熱領域11Aが形成される。
 このように、コイル21が成形体10の周方向に沿って複数個(本実施の形態では2個)配置されることにより、実施の形態2における転がり軸受の内輪の製造方法は、周方向における温度のばらつきを抑制し、均質な焼入硬化を実現可能なリング状部材の製造方法となっている。
 なお、上記実施の形態においてはコイル21を固定し、成形体10を回転させる場合について説明したが、成形体10を固定し、コイル21を成形体10の周方向に回転させてもよいし、コイル21および成形体10の両方を回転させることにより、コイル21を成形体10の周方向に沿って相対的に回転させてもよい。ただし、コイル21には、コイル21に電流を供給する配線などが必要であるため、上述のようにコイル21を固定することが合理的である場合が多い。
 また、上記実施の形態においては、リング状部材の一例としてラジアル型転がり軸受の内輪の熱処理および製造が実施される場合について説明したが、本発明を適用可能なリング状部材はこれに限られず、たとえばラジアル型転がり軸受の外輪であってもよいし、スラスト型軸受の軌道輪であってもよい。さらに、本発明を適用可能なリング状部材は軸受の軌道輪に限られず、鋼からなるリング状の種々の部材の熱処理および製造に、本発明を適用することができる。ここで、工程(S20)において、たとえばラジアル型転がり軸受の外輪を加熱する場合、コイル21を成形体の内周側に形成された転走面に面するように配置すればよい。また、工程(S20)において、たとえばスラスト型転がり軸受の軌道輪を加熱する場合、コイル21を成形体の端面側に形成された転走面に面するように配置すればよい。
 さらに、上記実施の形態では、被処理物を部分的に焼入硬化することが可能な高周波焼入の特徴を利用して、転がり軸受の軌道輪の転走面を含む表層部のみを焼入硬化する部分焼入が実施される場合について説明したが、本発明は部分焼入のみに適用可能なものではなく、たとえば軌道輪の全体を焼入硬化する場合にも適用可能である。
 また、リング状部材である成形体10の周方向における誘導加熱部材としてのコイル21の長さは、効率よく均質な加熱を実現するように適切に決定することができるが、たとえば加熱すべき領域の長さの1/12程度、すなわちリング状部材の中心軸に対する中心角が30°となる程度の長さとすることができる。
 さらに、本発明における高周波焼入の具体的な条件は、リング状部材(成形体)の大きさ、肉厚、材質、電源の容量など条件を考慮して、適切に設定することができる。具体的には、たとえばJIS規格S53からなり、外形φ2000mm、内径φ1860mm、幅t100mmの成形体の表層部を高周波焼入する場合、成形体の回転速度は30rpm、電源の周波数は3kHz、誘導加熱による総発熱量は250kWとすることにより、適切な焼入を達成することができる。
 また、周方向における温度のばらつきを抑制するためには、誘導加熱完了後、M点以下の温度への冷却前に、成形体を加熱が停止された状態に保持する工程を設けることが好ましい。より具体的には、上記成形体の形状および加熱条件の下においては、たとえば加熱完了後3秒間加熱を停止した状態に保持することにより、加熱された領域の表面における周方向の温度のばらつきを20℃以下程度にまで抑制することができる。
 (実施の形態3)
 次に、本発明のリング状部材が風力発電装置用軸受(風力発電装置用転がり軸受)を構成する軌道輪として用いられる実施の形態3について説明する。
 図5を参照して、風力発電装置50は、旋回翼であるブレード52と、ブレード52の中心軸を含むように、一端においてブレード52に接続された主軸51と、主軸51の他端に接続された増速機54とを備えている。さらに、増速機54は、出力軸55を含んでおり、出力軸55は、発電機56に接続されている。主軸51は、風力発電装置用転がり軸受である主軸用軸受3により、軸まわりに回転自在に支持されている。また、主軸用軸受3は、主軸51の軸方向に複数個(図5では2個)並べて配置されており、それぞれハウジング53により保持されている。主軸用軸受3、ハウジング53、増速機54および発電機56は、機械室であるナセル59の内部に格納されている。そして、主軸51は一端においてナセル59から突出し、ブレード52に接続されている。
 次に、風力発電装置50の動作について説明する。図5を参照して、風力を受けてブレード52が周方向に回転すると、ブレード52に接続された主軸51は、主軸用軸受3によりハウジング53に対して支持されつつ、軸まわりに回転する。主軸51の回転は、増速機54に伝達されて増速され、出力軸55の軸まわりの回転に変換される。そして、出力軸55の回転は、発電機56に伝達され、電磁誘導作用により起電力が発生して発電が達成される。
 次に、風力発電装置50の主軸51の支持構造について説明する。図6を参照して、風力発電装置用転がり軸受としての主軸用軸受3は、風力発電装置用転がり軸受の軌道輪としての環状の外輪31と、外輪31の内周側に配置された風力発電装置用転がり軸受の軌道輪としての環状の内輪32と、外輪31と内輪32との間に配置され、円環状の保持器34に保持された複数のころ33とを備えている。外輪31の内周面には外輪転走面31Aが形成されており、内輪32の外周面には2つの内輪転走面32Aが形成されている。そして、2つの内輪転走面32Aが、外輪転走面31Aに対向するように、外輪31と内輪32とは配置されている。さらに、複数のころ33は、2つの内輪転走面32Aのそれぞれに沿って、外輪転走面31Aと内輪転走面32Aとに、ころ接触面33Aにおいて接触し、かつ保持器34に保持されて周方向に所定のピッチで配置されることにより複列(2列)の円環状の軌道上に転動自在に保持されている。また、外輪31には、外輪31を径方向に貫通する貫通孔31Eが形成されている。この貫通孔31Eを通して、外輪31と内輪32との間の空間に潤滑剤を供給することができる。以上の構成により、主軸用軸受3の外輪31および内輪32は、互いに相対的に回転可能となっている。
 一方、ブレード52に接続された主軸51は、主軸用軸受3の内輪32を貫通するとともに、外周面51Aにおいて内輪の内周面32Fに接触し、内輪32に対して固定されている。また、主軸用軸受3の外輪31は、ハウジング53に形成された貫通孔の内壁53Aに外周面31Fにおいて接触するように嵌め込まれ、ハウジング53に対して固定されている。以上の構成により、ブレード52に接続された主軸51は、内輪32と一体に、外輪31およびハウジング53に対して軸まわりに回転可能となっている。
 さらに、内輪転走面32Aの幅方向両端には、外輪31に向けて突出する鍔部32Eが形成されている。これにより、ブレード52が風を受けることにより発生する主軸51の軸方向(アキシャル方向)の荷重が支持される。また、外輪転走面31Aは、球面形状を有している。そのため、外輪31と内輪32とは、ころ33の転走方向に垂直な断面において、当該球面の中心を中心として互いに角度をなすことができる。すなわち、主軸用軸受3は、複列自動調心ころ軸受である。その結果、ブレード52が風を受けることにより主軸51が撓んだ場合であっても、ハウジング53は、主軸用軸受3を介して主軸51を安定して回転自在に保持することができる。
 そして、実施の形態3における風力発電装置用転がり軸受の軌道輪としての外輪31および内輪32は、たとえば上記実施の形態1または2に記載のリング状部材の製造方法により製造されている。この外輪31および内輪32は、1000mm以上の内径を有する風力発電装置用転がり軸受の軌道輪である。そして、転動体が転走する面である外輪転走面31Aおよび内輪転走面32Aの焼入硬化層は、高周波焼入により全周にわたって一様な深さに形成されている。すなわち、外輪31および内輪32は、1000mm以上の内径を有するとともに、高周波焼入により形成され、周方向に沿った円環形状の一様な深さの焼入硬化層を有し、当該焼入硬化層の表面が、それぞれ外輪転走面31Aおよび内輪転走面32Aとなっている。その結果、上記外輪31および内輪32は、熱処理のコストが抑制されつつ、周方向に均質な環状の焼入硬化領域が転走面を含むように形成された大型の軌道輪となっており、過酷な環境下においても使用可能な風力発電装置用軸受を構成する軌道輪となっている。
 本発明のリング状部材の熱処理方法を用いて鋼製の成形体(転がり軸受の内輪)を熱処理し、当該成形体の特性を調査する実験を行なった。実験の手順は以下の通りである。
 まず、図2および図3を参照して、JIS規格S53Cからなり、外径dが2400mm、転走面11の最小径dが2350mm、内径dが2200mm、幅100mmの成形体10を準備し、上記実施の形態1における工程(S20)および(S30)と同様の工程を実施することにより、成形体10に高周波焼入れを施した。このとき、電源の電力は65kW、電源の周波数は10kHz、成形体10の回転速度は30rpmとした。なお成形体10の組成は以下の表1のとおりとした。表1中の数値の単位は質量%である。
Figure JPOXMLDOC01-appb-T000001
 そして、工程(S20)において転走面11の温度が常温である20℃から950℃まで15分間で昇温された後、工程(S30)において加熱領域11A全体を同時にM点以下の温度にまで冷却した(実施例)。なお工程(S20)での転走面11の昇温工程においては、少なくとも常温から850℃までの平均昇温速度は60℃/min以上とされた。
 一方、上記実施例と同様の成形体を準備し、上記従来の移動焼入を実施してソフトゾーンを残存させたもの(比較例1)、および上記特許文献2に記載のように、成形体の周方向反対向きに移動する2つのコイルを用いて、ソフトゾーンの形成を回避したもの(比較例2)も作製した。比較例においては、電源の電力を65kW、電源の周波数を10kHz、コイルの送り速度を2mm/sとした。そして、上記実施例および比較例の焼入後の成形体について、転走面付近における深さ方向の残留応力分布および硬度分布を調査した。なお、比較例2については、当該調査は最後に焼入が実施された領域について行なった。また、上記実施例および比較例の焼入後の成形体について、真円度の測定を行なった。
 次に、実験の結果について図7、図8および図9を参照して説明する。ここで、図7および図8において、横軸は転走面(表面)からの深さを示している。また、図7の縦軸は引張応力を正、圧縮応力を負として表した残留応力値、図8の縦軸はビッカース硬度を示している。
 図7を参照して、実施例Bでは最大400MPa程度の引張応力が内部に残留しており、焼割れが発生する懸念がある。これに対し、本発明の実施例では、内部における引張応力の最大値は200MPa程度に抑制されている。また、図8を参照して、転走面付近における深さ方向の硬度分布は、実施例および比較例において大きな差は存在せず、本発明の実施例は良好な硬度分布を有しているといえる。
 一方、真円度の測定を行なった結果、実施例の真円度が最も優れており、比較例Aと比較例Bとの間には有意な差は見られなかった。
 また図9を参照して、この写真より、実施例の旧オーステナイト結晶粒、すなわち工程(S20)にて成形体10を950℃まで60℃/min以上で昇温させた状態(その後の冷却の直前)における成形体10の結晶粒は、粗大化が抑制できていることが分かった。
 以上の実験結果より、本発明のリング状部材の熱処理方法およびリング状部材の製造方法によれば、周方向に均質な環状の焼入硬化領域を形成し、焼割れの発生等を抑制できることが確認された。またリング状部材の結晶粒の粗大化を抑制できることが確認された。
 なお、上記実施の形態および実施例においては、リング状部材(成形体)を構成する鋼としてJIS規格S53Cが採用される場合について説明したが、採用可能な鋼はこれに限られない。たとえば、リング状部材を構成する鋼としては、S55Cなどの機械構造用炭素鋼、SUJ2などの高炭素クロム軸受鋼など、種々の鋼を採用することができる。また、上記実施の形態および実施例においては、リング状部材の一例として転がり軸受の軌道輪を例示したが、本発明を適用可能なリング状部材はこれに限られず、焼入硬化処理が必要な鋼からなる種々のリング状部材に本発明を適用することができる。さらに、本発明は、大型の転がり軸受の軌道輪に適用されることが特に好ましく、具体的には、CTスキャナのX線照射部が設置された回転架台を、当該回転架台に対向するように配置される固定架台に対して回転自在に支持するCTスキャナ用転がり軸受の軌道輪や、風力発電用風車の主軸や旋回部を支持する風力発電装置用軸受の軌道輪に適用されることが特に好ましい。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明のリング状部材の熱処理方法およびリング状部材の製造方法は、焼入装置の製作コストを抑制しつつ、周方向に均質な環状の焼入硬化領域を形成することが求められるリング状部材の熱処理方法およびリング状部材の製造方法に、特に有利に適用され得る。
 3 主軸用軸受、10 成形体、11 転走面、11A 加熱領域、21 コイル、31 外輪、31A 外輪転走面、31E 貫通孔、31F 外周面、32 内輪、32A 内輪転走面、32E 鍔部、32F 内周面、33 ころ、33A ころ接触面、34 保持器、50 風力発電装置、51 主軸、51A 外周面、52 ブレード、53 ハウジング、53A 内壁、54 増速機、55 出力軸、56 発電機、59 ナセル。

Claims (7)

  1.  鋼からなるリング状の成形体の一部に面するように配置され、前記成形体を誘導加熱する誘導加熱部材を、前記成形体の周方向に沿って相対的に回転させることにより、前記成形体にA点以上の温度に加熱された環状の加熱領域を形成する工程と、
     前記加熱領域全体をM点以下の温度に同時に冷却する工程とを備え、
     前記加熱領域を形成する工程においては、前記成形体の表面温度が常温から850℃まで加熱される間における平均昇温速度が60℃/min以上となるように、前記成形体が加熱される、リング状部材の熱処理方法。
  2.  前記加熱領域を形成する工程では、前記誘導加熱部材は、前記成形体の周方向に沿って相対的に2周以上回転する、請求項1に記載のリング状部材の熱処理方法。
  3.  前記加熱領域を形成する工程では、前記誘導加熱部材は、前記成形体の周方向に沿って複数個配置される、請求項1または2に記載のリング状部材の熱処理方法。
  4.  鋼からなるリング状の成形体を準備する工程と、
     前記成形体を焼入硬化する工程とを備え、
     前記成形体を焼入硬化する工程では、請求項1~3のいずれか1項に記載のリング状部材の熱処理方法を用いて前記成形体を焼入硬化する、リング状部材の製造方法。
  5.  1000mm以上の内径を有する転がり軸受の軌道輪であって、
     転動体が転走する面である転走面の焼入硬化層が、高周波焼入により全周にわたって一様な深さに形成されたことを特徴とする、転がり軸受の軌道輪。
  6.  内輪と、
     前記内輪の外周側を取り囲むように配置された外輪と、
     前記内輪と前記外輪との間に配置された複数の転動体とを備え、
     前記内輪および前記外輪の少なくともいずれか一方は請求項5に記載の転がり軸受の軌道輪である、転がり軸受。
  7.  風力発電装置において、前記内輪にはブレードに接続された主軸が貫通して固定され、前記外輪はハウジングに対して固定されることにより、前記主軸を前記ハウジングに対して回転自在に支持する、請求項6に記載の転がり軸受。
PCT/JP2017/018003 2016-05-20 2017-05-12 リング状部材の熱処理方法、リング状部材の製造方法、転がり軸受の軌道輪および転がり軸受 WO2017199872A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016101499A JP2017206758A (ja) 2016-05-20 2016-05-20 リング状部材の熱処理方法、リング状部材の製造方法、転がり軸受の軌道輪および転がり軸受
JP2016-101499 2016-05-20

Publications (1)

Publication Number Publication Date
WO2017199872A1 true WO2017199872A1 (ja) 2017-11-23

Family

ID=60324938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018003 WO2017199872A1 (ja) 2016-05-20 2017-05-12 リング状部材の熱処理方法、リング状部材の製造方法、転がり軸受の軌道輪および転がり軸受

Country Status (2)

Country Link
JP (1) JP2017206758A (ja)
WO (1) WO2017199872A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139706A (zh) * 2018-09-20 2019-01-04 中机洛阳精密装备科技股份有限公司 中小型外齿淬火转盘轴承外圈加工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110248023A1 (en) * 2010-04-13 2011-10-13 Doyon Gary A Induction heat treatment of an annular workpiece
JP2012149327A (ja) * 2011-01-21 2012-08-09 Ntn Corp 軌道輪の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110248023A1 (en) * 2010-04-13 2011-10-13 Doyon Gary A Induction heat treatment of an annular workpiece
JP2012149327A (ja) * 2011-01-21 2012-08-09 Ntn Corp 軌道輪の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139706A (zh) * 2018-09-20 2019-01-04 中机洛阳精密装备科技股份有限公司 中小型外齿淬火转盘轴承外圈加工方法

Also Published As

Publication number Publication date
JP2017206758A (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2011010664A1 (ja) リング状部材の熱処理方法、リング状部材の製造方法、リング状部材、軌道輪、転がり軸受および軌道輪の製造方法
WO2012098988A1 (ja) 軌道輪の製造方法、軌道輪および転がり軸受
JP5775422B2 (ja) リング状部材の熱処理方法およびリング状部材の製造方法
JP5773348B2 (ja) 軌道輪の製造方法、軌道輪および転がり軸受
JP5665564B2 (ja) 軌道輪の製造方法
JP5557235B2 (ja) リング状部材の熱処理方法、リング状部材の製造方法
WO2017203915A1 (ja) リング状部材の熱処理方法、リング状部材の製造方法、転がり軸受の軌道輪および転がり軸受
US10718377B2 (en) Method for producing bearing ring, double row tapered roller bearing, and method for producing double row tapered roller bearing
JP2015180783A (ja) 軌道輪および転がり軸受の製造方法
JP6023493B2 (ja) 軌道輪の製造方法、軌道輪および転がり軸受
JP5455031B2 (ja) 軌道輪の製造方法および転がり軸受の製造方法
JP5773349B2 (ja) 軌道輪および転がり軸受の製造方法
JP5534403B2 (ja) 軌道輪および転がり軸受
JP2014095154A (ja) リング状部材の熱処理方法、リング状部材の製造方法、リング状部材、転がり軸受の軌道輪および転がり軸受
WO2017199872A1 (ja) リング状部材の熱処理方法、リング状部材の製造方法、転がり軸受の軌道輪および転がり軸受
JP2015212404A (ja) 軌道輪の製造方法、軌道輪および転がり軸受
JP2015193936A (ja) 軌道輪および転がり軸受の製造方法
JP2015187310A (ja) 軌道輪の製造方法、軌道輪および転がり軸受
JP6072145B2 (ja) 軌道輪の製造方法
JP6178365B2 (ja) 軌道輪、円筒ころ軸受および円すいころ軸受の製造方法
JP2014025097A (ja) 軌道輪の製造方法、軌道輪および転がり軸受
JP5721449B2 (ja) 軌道輪および転がり軸受
JP5665565B2 (ja) 軌道輪の製造方法
JP2017082300A (ja) 軌道輪の製造方法および複列円すいころ軸受
JP2017082943A (ja) 軌道輪の製造方法および複列円すいころ軸受の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799296

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799296

Country of ref document: EP

Kind code of ref document: A1