WO2017199824A1 - Multilayer substrate and electronic appliance - Google Patents

Multilayer substrate and electronic appliance Download PDF

Info

Publication number
WO2017199824A1
WO2017199824A1 PCT/JP2017/017773 JP2017017773W WO2017199824A1 WO 2017199824 A1 WO2017199824 A1 WO 2017199824A1 JP 2017017773 W JP2017017773 W JP 2017017773W WO 2017199824 A1 WO2017199824 A1 WO 2017199824A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
conductor
multilayer substrate
resin layer
ground conductor
Prior art date
Application number
PCT/JP2017/017773
Other languages
French (fr)
Japanese (ja)
Inventor
邦明 用水
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201790000681.9U priority Critical patent/CN209462743U/en
Publication of WO2017199824A1 publication Critical patent/WO2017199824A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a multilayer substrate in which a plurality of resin layers are laminated and a signal conductor and a ground conductor are formed, and an electronic device using the multilayer substrate.
  • Patent Document 1 describes a high-frequency signal line using a dielectric body.
  • the dielectric body is a multilayer substrate in which a plurality of dielectric sheets (resin layers) are stacked.
  • the dielectric body is provided with a signal conductor layer and a ground conductor layer. The ground conductor layer and the signal conductor layer are opposed to each other.
  • the dielectric body has a first region and a second region in the direction in which the signal conductor extends.
  • the first region is adjacent to the second region.
  • the interval between the signal conductor layer and the ground conductor layer in the first region is smaller than the interval between the signal conductor layer and the ground conductor layer in the second region.
  • the thickness of the laminated body in the first region is smaller than the thickness of the laminated body in the second region.
  • the ground conductor layer in the first region and the ground conductor layer in the second region are different layers in the stacking direction of the dielectric element bodies.
  • the ground conductor layer in the first region and the ground conductor layer in the second region are connected by an interlayer connection conductor.
  • an interlayer connection conductor is provided at the end of the first region that is highly flexible and easy to bend, and there is a possibility that the interlayer connection conductor is disconnected by bending.
  • the ground conductor layer in the first region and the ground conductor layer in the second region are disconnected. That is, the ground conductor layer is partially disconnected.
  • the object of the present invention is to have a high-flexibility region and a low-flexibility region, and a ground conductor extending over these high-flexibility region and low-flexibility region.
  • Another object of the present invention is to provide a multilayer substrate capable of suppressing disconnection of the ground conductor, and an electronic apparatus using the multilayer substrate.
  • the multilayer substrate of the present invention includes a laminate, a signal conductor, and a first ground conductor.
  • the laminate is formed by laminating a plurality of resin layers each having flexibility.
  • the signal conductor has a shape that is disposed at an intermediate position in the stacking direction of the plurality of resin layers in the stacked body and extends in the signal transmission direction.
  • the first ground conductor is formed in the multilayer body and is disposed apart from the signal conductor in the stacking direction.
  • the laminate has a first region and a second region along the direction in which the signal conductor extends.
  • the number of resin layers between the signal conductor and the first ground conductor in the first region is smaller than the number of resin layers between the signal conductor and the first ground conductor in the second region.
  • the resin layer in which the first ground conductor in the first region is formed and the resin layer in which the first ground conductor in the second region is formed are the same resin layer.
  • the distance between the signal conductor and the first ground conductor in the first region is shorter than the distance between the signal conductor and the first ground conductor in the second region.
  • the first ground conductor is disposed over both the first region and the second region along a step at the boundary between the first region and the second region.
  • the resin layer in which the signal conductor in the first region is formed and the resin layer in which the signal conductor in the second region are formed are preferably the same resin layer.
  • the signal conductor in the first region and the signal conductor in the second region are connected as one conductor pattern without using the interlayer connection conductor. Thereby, there is little transmission loss of a signal conductor, and the disconnection of a signal conductor is suppressed.
  • the multilayer substrate of the present invention preferably has the following configuration.
  • the multilayer substrate includes a second ground conductor.
  • the second ground conductor is formed in the multilayer body, and is arranged on the opposite side of the signal conductor from the signal conductor in the stacking direction and spaced from the signal conductor.
  • the number of resin layers between the signal conductor and the second ground conductor in the first region is smaller than the number of resin layers between the signal conductor and the second ground conductor in the second region.
  • the resin layer in which the second ground conductor in the first region is formed and the resin layer in which the second ground conductor in the second region is formed are the same resin layer.
  • a strip line is formed by the multilayer substrate, and the second ground conductor is also arranged over both the first region and the second region along the step of the boundary between the first region and the second region. Is done.
  • the first ground conductor or the second ground conductor in the first region may have a conductor non-forming portion that overlaps the signal conductor in plan view.
  • the proportion of the conductor shown in the entire first region is reduced, and the flexibility of the first region is improved.
  • capacitive coupling between the signal conductor and the first ground conductor or the second ground conductor in the first region is reduced. Therefore, the width of the signal conductor can be increased and transmission loss is suppressed as compared with the case where no conductor non-forming portion is provided. In the first region, it is easy to match the characteristic impedance even if the thickness of the multilayer substrate is reduced.
  • the width of the signal conductor in the first region is preferably narrower than the width of the signal conductor in the second region.
  • the characteristic impedance of the first region and the characteristic impedance of the second region can be easily approximated.
  • the first region is preferably a bent portion.
  • the multilayer substrate can be bent easily.
  • an electronic device of the present invention includes any one of the multilayer substrates described above and a mounting substrate having a function of an electronic circuit.
  • the multilayer body includes an external connection conductor in the second region.
  • the multilayer substrate is connected to the mounting substrate by an external connection conductor.
  • the multilayer substrate is connected to the mounting substrate in the second region having low flexibility.
  • the first region is not directly connected to the mounting board and is easily used for routing. Thereby, the multilayer substrate is easily connected to the mounting substrate in a predetermined posture.
  • the electronic device of the present invention may include a plurality of multilayer substrates, and the plurality of multilayer substrates may be overlapped with each other in the first region and intersected with each other and connected to the mounting substrate.
  • a ground conductor that has a highly flexible region and a lowly flexible region and spans the highly flexible region and the less flexible region. Disconnection can be suppressed.
  • 1 is a side view showing a main configuration of a multilayer board according to a first embodiment of the present invention.
  • 1 is an external perspective view of a multilayer substrate according to a first embodiment of the present invention.
  • 1 is an exploded perspective view of a multilayer substrate according to a first embodiment of the present invention.
  • 1 is an exploded plan view of a multilayer substrate according to a first embodiment of the present invention. It is a side view which shows the main structures of the multilayer board
  • substrate which concerns on the 2nd Embodiment of this invention.
  • It is an external appearance perspective view of the multilayer substrate which concerns on the 3rd Embodiment of this invention.
  • It is an external appearance perspective view of the multilayer substrate which concerns on the 4th Embodiment of this invention.
  • FIG. 1 is a side view showing the main configuration of the multilayer substrate according to the first embodiment of the present invention.
  • FIG. 2 is an external perspective view of the multilayer substrate according to the first embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of the multilayer substrate according to the first embodiment of the present invention.
  • FIG. 4 is an exploded plan view of the multilayer substrate according to the first embodiment of the present invention.
  • the multilayer substrate 10 includes a multilayer body 20, a signal conductor 30, a ground conductor 40, and a ground conductor 50.
  • the laminate 20 includes a plurality of resin layers 21, 221, 222, 23, 24, 251, 252, and 26.
  • the plurality of resin layers 21, 221, 222, 23, 24, 251, 252, and 26 have thermoplasticity and flexibility.
  • the plurality of resin layers 21, 221, 222, 23, 24, 251, 252, and 26 have a liquid crystal polymer as a main component. Since the plurality of resin layers 21, 221, 222, 23, 24, 251, 252 and 26 have flexibility, the laminate 20 also has flexibility.
  • the plurality of resin layers 21, 221, 222, 23, 24, 251, 252, and 26 have substantially the same thickness.
  • the laminated body 20 is long along the direction in which the signal conductor 30 disposed inside extends, and has a short outer shape in a direction orthogonal to the extending direction, and is rectangular in plan view.
  • the external shape of the laminated body 20 is not restricted to this.
  • the stacked body 20 has regions 110, 121, and 122 along the direction in which the signal conductor 30 extends.
  • the region 110 is sandwiched between the region 121 and the region 122 along the direction in which the signal conductor 30 extends.
  • a region 121 is connected to one end of the region 110 and a region 122 is connected to the other end.
  • the area 110 corresponds to the “first area” of the present invention, and the areas 121 and 122 correspond to the “second area” of the present invention.
  • the laminate 20 is formed by laminating a resin layer 21, a resin layer 23, a resin layer 24, and a resin layer 26.
  • the resin layer 21, the resin layer 23, the resin layer 24, and the resin layer 26 are laminated in this order from the first main surface to the second main surface of the region 110.
  • the laminate 20 is formed by laminating a resin layer 21, a resin layer 221, a resin layer 23, a resin layer 24, a resin layer 251, and a resin layer 26.
  • the resin layer 21, the resin layer 221, the resin layer 23, the resin layer 24, the resin layer 251, and the resin layer 26 are laminated in this order from the first main surface to the second main surface of the region 121.
  • the laminate 20 is formed by laminating the resin layer 21, the resin layer 222, the resin layer 23, the resin layer 24, the resin layer 252, and the resin layer 26.
  • the resin layer 21, the resin layer 222, the resin layer 23, the resin layer 24, the resin layer 252, and the resin layer 26 are laminated in this order from the first main surface to the second main surface of the region 122.
  • the resin layer 21, the resin layer 23, the resin layer 24, and the resin layer 26 are disposed over all the regions 110, 121, and 122 of the stacked body 20.
  • the resin layer 221 and the resin layer 251 are disposed only in the region 121, and the resin layer 222 and the resin layer 252 are disposed only in the region 122.
  • the number of resin layers forming the region 110 is smaller than the number of resin layers forming the region 121 and the number of resin layers forming the region 122.
  • the thickness D110 of the region 110 is smaller than the thickness D121 of the region 121 and the thickness D122 of the region 122.
  • the thickness D121 of the region 121 and the thickness D122 of the region 122 are the same.
  • the flexibility of the region 110 is higher than the flexibility of the region 121 and the flexibility of the region 122. Therefore, the multilayer substrate 10 can be easily folded by setting the region 110 as a bent portion.
  • the laminate 20 has a plurality of steps UE41, UE42, UE51, and UE52 because the thickness is different between the region 110, the region 121, and the region 122 as described above.
  • the step UE41 occurs at the boundary between the region 110 and the region 121 on the first main surface of the stacked body 20.
  • the step UE42 occurs at the boundary between the region 110 and the region 122 on the first main surface of the stacked body 20.
  • the step UE51 occurs at the boundary between the region 110 and the region 121 on the second main surface of the stacked body 20.
  • the step UE52 occurs at the boundary between the region 110 and the region 122 on the first main surface of the stacked body 20.
  • the signal conductor 30 is disposed on the first main surface of the resin layer 24, that is, the interface between the resin layer 23 and the resin layer 24. As a result, the signal conductor 30 is disposed at an intermediate position in the stacking direction of the plurality of resin layers in the stacked body 20.
  • the signal conductor 30 has a shape extending along the signal transmission direction, and includes a first portion 31, a second portion 32, and a third portion 33 along the extending direction.
  • the first portion 31 is a portion disposed in the region 121 in the signal conductor 30.
  • the second portion 32 is a portion disposed in the region 122 in the signal conductor 30.
  • the third portion 33 is a portion disposed in the region 110 in the signal conductor 30.
  • the width of the third portion 33 is narrower than the width of the first portion 31 and the width of the second portion 32.
  • the ground conductor 40 is disposed on the first main surface of the resin layer 21, that is, the first main surface of the multilayer body 20.
  • the ground conductor 40 is disposed on substantially the entire first main surface of the resin layer 21.
  • the ground conductor 40 corresponds to the “first ground conductor” of the present invention.
  • the ground conductor 50 is disposed on the second main surface of the resin layer 26, that is, the second main surface of the multilayer body 20. In other words, the ground conductor 50 is disposed on the side opposite to the ground conductor 40 with respect to the signal conductor 30 in the stacking direction of the plurality of resin layers.
  • the ground conductor 50 is disposed on substantially the entire second main surface of the resin layer 26 excluding the region where the external connection conductor 51 and the external connection conductor 52 are formed. Between the ground conductor 50, the external connection conductor 51, and the external connection conductor 52, a conductor non-formation portion is provided.
  • the ground conductor 50 corresponds to the “second ground conductor” of the present invention.
  • the ground conductor 50 is connected to the ground conductor 40 by a plurality of interlayer connection conductors 63.
  • the external connection conductor 51 is disposed on the second main surface of the resin layer 26 in the region 121, that is, on the second main surface of the multilayer body 20.
  • the external connection conductor 51 is connected to the first portion 31 of the signal conductor 30 by the interlayer connection conductor 61.
  • the external connection conductor 52 is disposed on the second main surface of the resin layer 26 in the region 122, that is, on the second main surface of the multilayer body 20.
  • the external connection conductor 52 is connected to the second portion 32 of the signal conductor 30 by the interlayer connection conductor 62.
  • the multilayer substrate 10 realizes a strip line in which the signal conductor 30 is sandwiched between the ground conductor 40 and the ground conductor 50 in the stacking direction of the plurality of resin layers.
  • the number of resin layers between the signal conductor 30 and the ground conductor 40 in the region 110 is smaller than the number of resin layers between the signal conductor 30 and the ground conductor 40 in the regions 121 and 122.
  • the number of resin layers between the signal conductor 30 and the ground conductor 50 in the region 110 is smaller than the number of resin layers between the signal conductor 30 and the ground conductor 50 in the regions 121 and 122. Accordingly, the region 110 is easier to bend than the regions 121 and 122.
  • the first main surface side of the stacked body 20 has the steps UE41 and UE42 as described above.
  • the ground conductor 40 is formed in a planar shape on the first main surface of the resin layer 21 (the first main surface of the multilayer body 20). That is, the resin layer in which the ground conductor 40 in the region 110 is formed and the resin layer in which the ground conductor 40 in the regions 121 and 122 is formed are the same resin layer. Therefore, the ground conductor 40 is curved following the step shape at the steps UE41 and UE42, and is arranged in a shape that continues across the region 110 and the regions 121 and 122.
  • the second main surface side of the stacked body 20 has the steps UE51 and UE52 as described above.
  • the ground conductor 50 is formed in a planar shape on the second main surface of the resin layer 26 (second main surface of the multilayer body 20). That is, the resin layer in which the ground conductor 50 in the region 110 is formed and the resin layer in which the ground conductor 50 in the regions 121 and 122 is formed are the same resin layer. Accordingly, the ground conductor 50 is curved following the step shape at the steps UE51 and UE52, and is arranged in a shape continuous over the region 110 and the regions 121 and 122.
  • the multilayer substrate 10 of the present embodiment has a highly flexible region (region 110) and a low flexibility region (regions 121 and 122), and a highly flexible region (region). 110). Furthermore, even when the highly flexible region (region 110) is bent, the multilayer substrate 10 can greatly suppress the disconnection of the ground conductors 40 and 50.
  • the ground conductors 40 and 50 are planar conductors, and are continuous in a highly flexible region (region 110) and a low flexibility region (regions 121 and 122). It is connected to.
  • the interlayer connection conductor is linear as described above, it is difficult to form a conductor having a large line width. As a result, the interlayer connection conductor is likely to have L property.
  • the inductor is connected in a high frequency manner between the ground conductor in the highly flexible region and the ground conductor in the less flexible region. Therefore, a potential difference is likely to occur between the ground conductor in the highly flexible region and the ground conductor in the less flexible region, and the ground is difficult to stabilize.
  • the multilayer substrate 10 of the present embodiment is a planar conductor, it can be suppressed that an inductor is connected in high frequency between the ground conductor 40 and the ground conductor 50, and the ground potential can be stabilized. Therefore, deterioration of the high frequency transmission characteristics of the multilayer substrate 10 can be suppressed.
  • the width of the third portion 33 disposed in the region 110 is the first portion 31 and the second portion disposed in the regions 121 and 122, respectively. It is narrower than the width of the portion 32. Therefore, in the region 110, even if the distance between the signal conductor 30 and the ground conductors 40 and 50 is small compared to the regions 121 and 122, the capacitive coupling between the signal conductor 30 and the ground conductors 40 and 50 can be reduced. it can. Thereby, the characteristic impedance of the region 110 and the characteristic impedance of the regions 121 and 122 can be matched or brought close to each other, and the characteristic impedance can be matched.
  • the plurality of interlayer connection conductors 63 are formed in the region 121 and the region 122 and are not formed in the region 110. Thereby, the fall of the flexibility of the area
  • region 110 can be suppressed.
  • the plurality of interlayer connection conductors 63 are arranged at positions separated from the boundary between the region 110 in the region 121 and the region 122. Thus, disconnection of the plurality of interlayer connection conductors 63 when the region 110 is bent is suppressed.
  • the external connection conductor 51 is disposed in the low flexibility region 121, and the external connection conductor 52 is disposed in the low flexibility region 122. Thereby, the external connection conductors 51 and 52 are not easily deformed, and the multilayer substrate 10 is easily mounted on the external mounting substrate.
  • the signal conductor 30 is formed only on the first main surface of one resin layer 24. That is, the resin layer in which the signal conductor 30 in the region 110 is formed and the resin layer in which the signal conductor 30 in the regions 121 and 122 are formed are the same resin layer. Further, the signal conductor 30 has a shape that extends continuously over the region 110 and the regions 121 and 122. Therefore, disconnection of the signal conductor 30 due to the above-described bending can be suppressed.
  • the multilayer substrate 10 having such a configuration is manufactured by the following method. First, a resin sheet for forming the resin layer 21, a resin sheet for forming the resin layers 221 and 222, a resin sheet for forming the resin layer 23, a resin sheet for forming the resin layer 24, and a resin sheet for forming the resin layers 251 and 252 A resin sheet for forming the resin layer 26 is prepared.
  • the resin sheet for forming the resin layer 21, the resin sheet for forming the resin layer 23, and the resin sheet for forming the resin layer 26 are single-sided copper-bonded resin sheets.
  • the resin sheet for forming the resin layers 221 and 222, the resin sheet for forming the resin layer 23, and the resin sheet for forming the resin layers 251 and 252 do not need to be copper-attached.
  • the resin sheet for forming the resin layer 21 is patterned to form the ground conductor 40.
  • the signal conductor 30 is formed by patterning the resin sheet on which the resin layer 23 is formed. A patterning process is performed on the resin sheet forming the resin layer 26 to form the ground conductor 50 and the external connection conductors 51 and 52.
  • Through holes are formed in the resin sheets for forming the resin layers 221 and 222 by laser, die punching, or the like. Through holes are formed in the resin sheets for forming the resin layers 251 and 252 by laser, die punching, or the like.
  • a through hole for interlayer connection is formed in each resin sheet, and the through hole for interlayer connection is filled with a conductive paste.
  • FIG. 5 is a side view showing the main configuration of the multilayer substrate according to the second embodiment of the present invention.
  • the multilayer substrate 10A according to the present embodiment is different from the multilayer substrate 10 according to the first embodiment in that there is no step on the second main surface side of the stacked body 20A.
  • Other configurations of the multilayer substrate 10A are the same as those of the multilayer substrate 10 according to the first embodiment, and the description of the same portions is omitted.
  • the laminate 20A is obtained by eliminating the resin layers 251 and 252 from the laminate 20 according to the first embodiment. Accordingly, the stacked body 20A has the steps UE41 and UE42 on the first main surface, but does not have the steps on the second main surface.
  • the multilayer substrate 10A can be easily folded by using the region 110 as a bent portion, and the ground conductors 40 and 50 by this bending can be easily bent. Breakage can be suppressed. Further, similarly to the multilayer substrate 10 according to the first embodiment, the multilayer substrate 10A can prevent generation of unnecessary radiation from the signal conductor 30 to the outside of the multilayer substrate 10A.
  • FIG. 6 is an external perspective view of the multilayer substrate according to the third embodiment of the present invention.
  • the multilayer substrate 10B according to the present embodiment is different from the multilayer substrate 10 according to the first embodiment in that the ground conductor 40 has a conductor non-forming portion 400 and the shape of the third portion 33B of the signal conductor 30B. Different. Other configurations of the multilayer substrate 10B are the same as those of the multilayer substrate 10 according to the first embodiment, and the description of the same portions is omitted.
  • the ground conductor 40 has a conductor non-forming portion 400 in the region 110. Thereby, the flexibility of the region 110 of the multilayer substrate 10B is further increased, and the bending in the region 110 becomes easier.
  • the width of the third portion 33B of the signal conductor 30B is wider than the width of the third portion 33 of the signal conductor 30 according to the first embodiment. Since the ground conductor 40 includes the conductor non-forming portion 400, the capacitive coupling between the third portion 33B of the signal conductor 30B and the ground conductor 40 is increased even if the width of the third portion 33B of the signal conductor 30B is wide. Can be suppressed. As a result, the characteristic impedance of the region 110 can be matched with or close to the characteristic impedance of the regions 121 and 122. And the conductor loss by the signal conductor 30B can be reduced by the width
  • the multilayer substrate 10B can be easily folded by setting the region 110 as a bent portion in the same manner as the multilayer substrate 10 according to the first embodiment, and the ground conductors 40 and 50 by this bending can be easily bent. Breakage can be suppressed. Furthermore, the multilayer substrate 10B is easier to bend in the region 110, and the transmission loss is low.
  • FIG. 7 is an external perspective view of a multilayer substrate according to the fourth embodiment of the present invention.
  • the multilayer substrate 10C according to this embodiment is different from the multilayer substrate 10 according to the first embodiment in that the ground conductor 40 is not formed in the region 110 and in the shape of the third portion 33C of the signal conductor 30C. Different. Other configurations of the multilayer substrate 10C are the same as those of the multilayer substrate 10 according to the first embodiment, and the description of the same portions is omitted.
  • the ground conductor 41 ⁇ / b> B is formed on the first main surface of the region 121 of the multilayer body 20.
  • the ground conductor 42 ⁇ / b> B is formed on the first main surface of the region 122 of the multilayer body 20.
  • a ground conductor is not formed on the first main surface of the region 110 of the multilayer body 20.
  • the width of the third portion 33C of the signal conductor 30C is wider than the width of the third portion 33 of the signal conductor 30 according to the first embodiment. Due to the absence of the ground conductor in the region 110, even if the width of the third portion 33C of the signal conductor 30C is wide, the third portion 33C of the signal conductor 30C has capacitive coupling on the first main surface side of the multilayer body 20. Absent. As a result, the characteristic impedance of the region 110 can be matched with or close to the characteristic impedance of the regions 121 and 122. The conductor loss of the signal conductor 30C can be reduced by increasing the width of the third portion 33C.
  • the third portion 33C is equal to the width of the first portion 31 and the width of the second portion 32, or is larger than the width of the first portion 31 and the width of the second portion 32. It can also be widened.
  • the signal conductor has one aspect, but the above-described configuration can be applied even in an aspect in which a plurality of signal conductors are arranged in the width direction, that is, in a multicore configuration. A working effect can be obtained.
  • the multilayer substrate shown in each of the above-described embodiments can be used for electronic devices in the following various modes.
  • FIG. 8 is a diagram showing a first aspect of the electronic device according to the embodiment of the present invention.
  • the electronic device 1 includes a multilayer substrate 10 and mounting substrates 91 and 92.
  • the mounting boards 91 and 92 are each formed with a circuit that realizes a function of a different electronic circuit, and mounted components are mounted as necessary.
  • the mounting board 91 and the mounting board 92 are different in thickness. Therefore, the position of the surface of the mounting board 91 in the height direction of the electronic device 1 is different from the position of the surface of the mounting board 92.
  • Land conductors 911 are formed on the surface of the mounting substrate 91.
  • Land conductors 921 are formed on the surface of the mounting substrate 92.
  • the external connection conductor (corresponding to the external connection conductor 51 in FIG. 1) in the region 121 in the multilayer substrate 10 is connected to the land conductor 911.
  • the external connection conductor (corresponding to the external connection conductor 52 in FIG. 1) in the region 122 in the multilayer substrate 10 is connected to the land conductor 921.
  • the ground conductor (the ground conductor 50 in FIG. 1) of the multilayer substrate 10 is connected to the ground conductors (not shown) of the land conductors 911 and 921.
  • the multilayer substrate 10 Since the multilayer substrate 10 has high flexibility in the region 110, even if the region 121 and the region 122 are connected to the mounting substrate 91 and the mounting substrate 92 having different surface positions, the region 110 becomes a bent portion. Therefore, the multilayer substrate 10 is securely connected to the mounting substrate 91 and the mounting substrate 92.
  • FIG. 8 the aspect which connects the two mounting substrates 91 and 92 by the multilayer substrate 10 was shown.
  • two land conductors having different height positions on one mounting substrate can be connected by the multilayer substrate 10.
  • FIG. 9 is a diagram showing a second aspect of the electronic device according to the embodiment of the present invention.
  • the electronic apparatus 1 ⁇ / b> A includes multilayer substrates 10 ⁇ / b> D ⁇ b> 1 and 10 ⁇ / b> D ⁇ b> 2 and a mounting substrate 93.
  • the multilayer substrate 10D1 and the multilayer substrate 10D2 have the same structure as the multilayer substrate 10 according to the first embodiment.
  • the extending directions of the multilayer substrate 10D1 and the multilayer substrate 10D2 intersect each other.
  • the region 110D1 of the multilayer substrate 10D1 and the region 110D2 of the multilayer substrate 10D2 overlap.
  • the region 110D1 of the multilayer substrate 10D1 is curved in the thickness direction. Accordingly, the multilayer substrate 10D1 and the multilayer substrate 10D2 can be reliably connected to the mounting substrate 93 while the multilayer substrate 10D1 and the multilayer substrate 10D2 intersect.
  • the configurations of the multilayer substrates 10B and 10C according to the third and fourth embodiments can be used as the multilayer substrates 10D1 and 10D2.
  • FIG. 10 is a diagram showing a third aspect of the electronic apparatus according to the embodiment of the present invention.
  • the electronic device 1 ⁇ / b> B includes multilayer substrates 10 ⁇ / b> E ⁇ b> 1 and 10 ⁇ / b> E ⁇ b> 2 and a mounting substrate 93.
  • the multilayer substrate 10E1 has the same structure as the multilayer substrate 10A according to the second embodiment.
  • the multilayer substrate 10E2 is different from the multilayer substrate 10A according to the second embodiment in that the main surface forming the step is different.
  • the extending directions of the multilayer substrate 10E1 and the multilayer substrate 10E2 intersect each other.
  • the region 110E1 of the multilayer substrate 10E1 and the region 110E2 of the multilayer substrate 10E2 overlap.
  • the main surface having the step of the multilayer substrate 10E1 and the main surface having the step of the multilayer substrate 10E2 face each other. Accordingly, the multilayer substrate 10E1 and the multilayer substrate 10E2 can be reliably connected to the mounting substrate 93 while the multilayer substrate 10E1 and the multilayer substrate 10E2 intersect.
  • one multilayer substrate may be the multilayer substrate of the present invention, and the other multilayer substrate may be a multilayer substrate having a constant constant thickness.
  • 1, 1A, 1B Electronic device 10, 10A, 10B, 10C, 10D1, 10D2, 10E1, 10E2: Multilayer substrate 20, 20A: Laminate 21, 23, 24, 26, 221, 222, 251, 252: Resin layer 30, 30B, 30C: signal conductor 31: first part 32: second part 33, 33B, 33C: third part 40, 41B, 42B, 50: ground conductor 51, 52: external connection conductors 61, 62, 63: Interlayer connection conductors 91, 92, 93: mounting substrate 110: region 110D1: region 110D2: region 110E1: region 110E2: region 121: region 122: region 400: conductor non-forming portion 911, 921: land conductors UE41, UE42, UE51, UE52: Level difference

Abstract

A laminate (20) constituting a multilayer substrate (10) is formed by stacking a plurality of resin layers each having flexibility. A signal conductor (30) is disposed at an intermediate position along the stacking direction of the plurality of resin layers in the laminate (20). A ground conductor (40) is formed on the laminate (20) and is disposed with a gap from the signal conductor (30) in the stacking direction. The laminate (20) includes a region (110) and a region (121) along the extending direction of the signal conductor (30). The number of resin layers between the signal conductor (30) and the ground conductor (40) in the region (110) is less than the number of resin layers between the signal conductor (30) and the ground conductor (40) in the region (121). The ground conductor (40) in the region (110) and the ground conductor (40) in the region (121) exist on a first principal face of the resin layer (21) and are connected to each other.

Description

多層基板、および、電子機器Multilayer substrate and electronic device
 本発明は、複数の樹脂層が積層され、信号導体とグランド導体とが形成された多層基板、および、該多層基板を用いた電子機器に関する。 The present invention relates to a multilayer substrate in which a plurality of resin layers are laminated and a signal conductor and a ground conductor are formed, and an electronic device using the multilayer substrate.
 特許文献1には、誘電体素体を用いた高周波信号線路が記載されている。誘電体素体は、複数の誘電体シート(樹脂層)を積層した多層基板である。誘電体素体には、信号導体層とグランド導体層とが設けられている。グランド導体層と信号導体層とは対向している。 Patent Document 1 describes a high-frequency signal line using a dielectric body. The dielectric body is a multilayer substrate in which a plurality of dielectric sheets (resin layers) are stacked. The dielectric body is provided with a signal conductor layer and a ground conductor layer. The ground conductor layer and the signal conductor layer are opposed to each other.
 誘電体素体は、信号導体の延びる方向において、第1領域および第2領域を有する。第1領域は、第2領域に隣接している。第1領域における信号導体層とグランド導体層との間隔は、第2領域における信号導体層とグランド導体層との間隔よりも小さい。第1領域における積層体の厚みは、第2領域における積層体の厚みよりも小さい。これにより、誘電体素体は、第1領域で可撓性が高く、第2領域および第3領域で可撓性が低い。 The dielectric body has a first region and a second region in the direction in which the signal conductor extends. The first region is adjacent to the second region. The interval between the signal conductor layer and the ground conductor layer in the first region is smaller than the interval between the signal conductor layer and the ground conductor layer in the second region. The thickness of the laminated body in the first region is smaller than the thickness of the laminated body in the second region. Thereby, the dielectric element body has high flexibility in the first region and low flexibility in the second region and the third region.
 この構造を実現するため、第1領域のグランド導体層と第2領域のグランド導体層とは、誘電体素体の積層方向における異なる層である。第1領域のグランド導体層と第2領域のグランド導体層とは、層間接続導体によって接続されている。 In order to realize this structure, the ground conductor layer in the first region and the ground conductor layer in the second region are different layers in the stacking direction of the dielectric element bodies. The ground conductor layer in the first region and the ground conductor layer in the second region are connected by an interlayer connection conductor.
国際公開第2013/069763号パンフレットInternational Publication No. 2013/069763 Pamphlet
 しかしながら、特許文献1に示す構成では、可撓性が高く、折り曲げが容易な第1領域の端に層間接続導体が備えられており、折り曲げによって層間接続導体が断線する可能性が生じる。この層間接続導体の断線が生じると、第1領域のグランド導体層と第2領域のグランド導体層との間が断線する。すなわち、グランド導体層が部分的に断線する。 However, in the configuration shown in Patent Document 1, an interlayer connection conductor is provided at the end of the first region that is highly flexible and easy to bend, and there is a possibility that the interlayer connection conductor is disconnected by bending. When the disconnection of the interlayer connection conductor occurs, the ground conductor layer in the first region and the ground conductor layer in the second region are disconnected. That is, the ground conductor layer is partially disconnected.
 したがって、本発明の目的は、可撓性の高い領域と可撓性の低い領域を有し、これら可撓性の高い領域と可撓性の低い領域とに亘るグランド導体を有していても、当該グランド導体の断線を抑制できる多層基板、および、当該多層基板を用いた電子機器を提供することにある。 Therefore, the object of the present invention is to have a high-flexibility region and a low-flexibility region, and a ground conductor extending over these high-flexibility region and low-flexibility region. Another object of the present invention is to provide a multilayer substrate capable of suppressing disconnection of the ground conductor, and an electronic apparatus using the multilayer substrate.
 この発明の多層基板は、積層体、信号導体、および、第1グランド導体を備える。積層体は、それぞれが可撓性を有する複数の樹脂層が積層されてなる。信号導体は、積層体における複数の樹脂層の積層方向の途中位置に配置され、信号の伝送方向に延びる形状である。第1グランド導体は、積層体に形成され、積層方向において信号導体から離間して配置されている。積層体は、信号導体の延びる方向に沿って第1領域と第2領域とを有する。第1領域における信号導体と第1グランド導体との間の樹脂層の層数は、第2領域における信号導体と第1グランド導体との間の樹脂層の層数よりも少ない。第1領域における第1グランド導体が形成される樹脂層と、第2領域における第1グランド導体が形成される樹脂層とは、同一の樹脂層である。 The multilayer substrate of the present invention includes a laminate, a signal conductor, and a first ground conductor. The laminate is formed by laminating a plurality of resin layers each having flexibility. The signal conductor has a shape that is disposed at an intermediate position in the stacking direction of the plurality of resin layers in the stacked body and extends in the signal transmission direction. The first ground conductor is formed in the multilayer body and is disposed apart from the signal conductor in the stacking direction. The laminate has a first region and a second region along the direction in which the signal conductor extends. The number of resin layers between the signal conductor and the first ground conductor in the first region is smaller than the number of resin layers between the signal conductor and the first ground conductor in the second region. The resin layer in which the first ground conductor in the first region is formed and the resin layer in which the first ground conductor in the second region is formed are the same resin layer.
 この構成では、第1領域における信号導体と第1グランド導体との距離が、第2領域における信号導体と第1グランド導体との距離よりも短くなる。その上で、第1グランド導体は、第1領域と第2領域との境界の段差に沿って、第1領域と第2領域との両方に亘って配置される。 In this configuration, the distance between the signal conductor and the first ground conductor in the first region is shorter than the distance between the signal conductor and the first ground conductor in the second region. In addition, the first ground conductor is disposed over both the first region and the second region along a step at the boundary between the first region and the second region.
 また、この発明の多層基板は、第1領域における信号導体が形成される樹脂層と、第2領域における信号導体が形成される樹脂層とは、同一の樹脂層であることが好ましい。 In the multilayer substrate of the present invention, the resin layer in which the signal conductor in the first region is formed and the resin layer in which the signal conductor in the second region are formed are preferably the same resin layer.
 この構成では、第1領域の信号導体と第2領域の信号導体とが、層間接続導体を利用せずに、一つの導体パターンとして繋がっている。これにより、信号導体の伝送損失が少なく、また、信号導体の断線が抑制される。 In this configuration, the signal conductor in the first region and the signal conductor in the second region are connected as one conductor pattern without using the interlayer connection conductor. Thereby, there is little transmission loss of a signal conductor, and the disconnection of a signal conductor is suppressed.
 また、この発明の多層基板は、次の構成であることが好ましい。多層基板は、第2グランド導体を備える。第2グランド導体は、積層体に形成され、積層方向において信号導体に対して第1グランド導体と反対側に、信号導体から離間して配置されている。第1領域における信号導体と第2グランド導体との間の樹脂層の層数は、第2領域における信号導体と第2グランド導体との間の樹脂層の層数よりも少ない。第1領域における第2グランド導体が形成される樹脂層と、第2領域における第2グランド導体が形成される樹脂層とは、同一の樹脂層である。 The multilayer substrate of the present invention preferably has the following configuration. The multilayer substrate includes a second ground conductor. The second ground conductor is formed in the multilayer body, and is arranged on the opposite side of the signal conductor from the signal conductor in the stacking direction and spaced from the signal conductor. The number of resin layers between the signal conductor and the second ground conductor in the first region is smaller than the number of resin layers between the signal conductor and the second ground conductor in the second region. The resin layer in which the second ground conductor in the first region is formed and the resin layer in which the second ground conductor in the second region is formed are the same resin layer.
 この構成では、多層基板によってストリップラインが形成され、第2グランド導体についても、第1領域と第2領域との境界の段差に沿って、第1領域と第2領域との両方に亘って配置される。 In this configuration, a strip line is formed by the multilayer substrate, and the second ground conductor is also arranged over both the first region and the second region along the step of the boundary between the first region and the second region. Is done.
 また、この発明の多層基板では、第1領域における第1グランド導体または第2グランド導体は、信号導体に平面視で重なる導体非形成部を有していていもよい。 In the multilayer substrate of the present invention, the first ground conductor or the second ground conductor in the first region may have a conductor non-forming portion that overlaps the signal conductor in plan view.
 この構成では、第1領域の全体に示す導体の割合が小さくなり、第1領域の可撓性が向上する。また、第1領域における信号導体と第1グランド導体または第2グランド導体との容量結合が低下する。したがって、導体非形成部を有さない場合と比較して、信号導体の幅が広くでき、伝送損失が抑制される。また、第1領域において、多層基板の厚みを薄くしても、特性インピーダンスの整合を取りやすくなる。 In this configuration, the proportion of the conductor shown in the entire first region is reduced, and the flexibility of the first region is improved. In addition, capacitive coupling between the signal conductor and the first ground conductor or the second ground conductor in the first region is reduced. Therefore, the width of the signal conductor can be increased and transmission loss is suppressed as compared with the case where no conductor non-forming portion is provided. In the first region, it is easy to match the characteristic impedance even if the thickness of the multilayer substrate is reduced.
 また、この発明の多層基板では、第1領域の信号導体の幅は、第2領域の信号導体の幅よりも狭いことが好ましい。 In the multilayer substrate of the present invention, the width of the signal conductor in the first region is preferably narrower than the width of the signal conductor in the second region.
 この構成では、第1領域の特性インピーダンスと第2領域の特性インピーダンスを容易に近づけられる。 In this configuration, the characteristic impedance of the first region and the characteristic impedance of the second region can be easily approximated.
 また、この発明の多層基板では、第1領域が折り曲げ部分であることが好ましい。 In the multilayer substrate of the present invention, the first region is preferably a bent portion.
 この構成では、多層基板を容易に折り曲げられる。 In this configuration, the multilayer substrate can be bent easily.
 また、この発明の電子機器は、上述のいずれかに記載の多層基板と、電子回路の機能を有する実装基板と、を備える。積層体は、第2領域に外部接続導体を備える。多層基板は、外部接続導体によって実装基板に接続されている。 Further, an electronic device of the present invention includes any one of the multilayer substrates described above and a mounting substrate having a function of an electronic circuit. The multilayer body includes an external connection conductor in the second region. The multilayer substrate is connected to the mounting substrate by an external connection conductor.
 この構成では、可撓性の低い第2領域で多層基板が実装基板に接続される。一方、第1領域は、実装基板に直接接続されておらず、引き回しに利用し易い。これにより、実装基板に対して多層基板が所定の姿勢で容易に接続される。 In this configuration, the multilayer substrate is connected to the mounting substrate in the second region having low flexibility. On the other hand, the first region is not directly connected to the mounting board and is easily used for routing. Thereby, the multilayer substrate is easily connected to the mounting substrate in a predetermined posture.
 また、この発明の電子機器は、多層基板は、複数であり、これら複数の多層基板は、それぞれの第1領域において重ね合わせられ、且つ互いに交差して、実装基板に接続されていてもよい。 Further, the electronic device of the present invention may include a plurality of multilayer substrates, and the plurality of multilayer substrates may be overlapped with each other in the first region and intersected with each other and connected to the mounting substrate.
 この構成では、複数の多層基板が互いに交差しても低背になり、且つ、複数の多層基板が実装基板に容易に接続される。 In this configuration, even if a plurality of multilayer substrates cross each other, the height is reduced, and the plurality of multilayer substrates are easily connected to the mounting substrate.
 この発明によれば、可撓性の高い領域と可撓性の低い領域を有し、これら可撓性の高い領域と可撓性の低い領域とに亘るグランド導体を実現し、当該グランド導体の断線を抑制できる。 According to the present invention, a ground conductor is provided that has a highly flexible region and a lowly flexible region and spans the highly flexible region and the less flexible region. Disconnection can be suppressed.
本発明の第1の実施形態に係る多層基板の主要構成を示す側面図である。1 is a side view showing a main configuration of a multilayer board according to a first embodiment of the present invention. 本発明の第1の実施形態に係る多層基板の外観斜視図である。1 is an external perspective view of a multilayer substrate according to a first embodiment of the present invention. 本発明の第1の実施形態に係る多層基板の分解斜視図である。1 is an exploded perspective view of a multilayer substrate according to a first embodiment of the present invention. 本発明の第1の実施形態に係る多層基板の分解平面図である。1 is an exploded plan view of a multilayer substrate according to a first embodiment of the present invention. 本発明の第2の実施形態に係る多層基板の主要構成を示す側面図である。It is a side view which shows the main structures of the multilayer board | substrate which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る多層基板の外観斜視図である。It is an external appearance perspective view of the multilayer substrate which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る多層基板の外観斜視図である。It is an external appearance perspective view of the multilayer substrate which concerns on the 4th Embodiment of this invention. 本発明の実施形態に係る電子機器の第1態様を示す図である。It is a figure which shows the 1st aspect of the electronic device which concerns on embodiment of this invention. 本発明の実施形態に係る電子機器の第2態様を示す図である。It is a figure which shows the 2nd aspect of the electronic device which concerns on embodiment of this invention. 本発明の実施形態に係る電子機器の第3態様を示す図である。It is a figure which shows the 3rd aspect of the electronic device which concerns on embodiment of this invention.
 本発明の第1の実施形態に係る多層基板について、図を参照して説明する。図1は、本発明の第1の実施形態に係る多層基板の主要構成を示す側面図である。図2は、本発明の第1の実施形態に係る多層基板の外観斜視図である。図3は、本発明の第1の実施形態に係る多層基板の分解斜視図である。図4は、本発明の第1の実施形態に係る多層基板の分解平面図である。 The multilayer substrate according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side view showing the main configuration of the multilayer substrate according to the first embodiment of the present invention. FIG. 2 is an external perspective view of the multilayer substrate according to the first embodiment of the present invention. FIG. 3 is an exploded perspective view of the multilayer substrate according to the first embodiment of the present invention. FIG. 4 is an exploded plan view of the multilayer substrate according to the first embodiment of the present invention.
 図1、図2、図3、および、図4に示すように、多層基板10は、積層体20、信号導体30、グランド導体40、および、グランド導体50を備える。 As shown in FIGS. 1, 2, 3, and 4, the multilayer substrate 10 includes a multilayer body 20, a signal conductor 30, a ground conductor 40, and a ground conductor 50.
 積層体20は、複数の樹脂層21、221、222、23、24、251、252、26を備える。複数の樹脂層21、221、222、23、24、251、252、26は、熱可塑性を有し、可撓性を有する。具体的には、例えば、複数の樹脂層21、221、222、23、24、251、252、26は液晶ポリマを主成分とする。複数の樹脂層21、221、222、23、24、251、252、26が可撓性を有することによって、積層体20も可撓性を有する。複数の樹脂層21、221、222、23、24、251、252、26の厚みは略同じである。 The laminate 20 includes a plurality of resin layers 21, 221, 222, 23, 24, 251, 252, and 26. The plurality of resin layers 21, 221, 222, 23, 24, 251, 252, and 26 have thermoplasticity and flexibility. Specifically, for example, the plurality of resin layers 21, 221, 222, 23, 24, 251, 252, and 26 have a liquid crystal polymer as a main component. Since the plurality of resin layers 21, 221, 222, 23, 24, 251, 252 and 26 have flexibility, the laminate 20 also has flexibility. The plurality of resin layers 21, 221, 222, 23, 24, 251, 252, and 26 have substantially the same thickness.
 積層体20は、内部に配置される信号導体30の延びる方向に沿って長く、当該延びる方向に直交する方向に短い外形形状を有し、平面視して矩形である。なお、積層体20の外形形状はこれに限るものではない。 The laminated body 20 is long along the direction in which the signal conductor 30 disposed inside extends, and has a short outer shape in a direction orthogonal to the extending direction, and is rectangular in plan view. In addition, the external shape of the laminated body 20 is not restricted to this.
 積層体20は、信号導体30の延びる方向に沿って、領域110、121、122を有する。信号導体30の延びる方向に沿って、領域110は、領域121と領域122とに挟まれている。領域110の一方端に領域121が繋がっており、他方端に領域122が繋がっている。領域110が本発明の「第1領域」に対応し、領域121、122が本発明の「第2領域」に対応する。 The stacked body 20 has regions 110, 121, and 122 along the direction in which the signal conductor 30 extends. The region 110 is sandwiched between the region 121 and the region 122 along the direction in which the signal conductor 30 extends. A region 121 is connected to one end of the region 110 and a region 122 is connected to the other end. The area 110 corresponds to the “first area” of the present invention, and the areas 121 and 122 correspond to the “second area” of the present invention.
 領域110において、積層体20は、樹脂層21、樹脂層23、樹脂層24、および、樹脂層26が積層されてなる。樹脂層21、樹脂層23、樹脂層24、および、樹脂層26は、領域110の第1主面から第2主面に、この順で積層されている。 In the region 110, the laminate 20 is formed by laminating a resin layer 21, a resin layer 23, a resin layer 24, and a resin layer 26. The resin layer 21, the resin layer 23, the resin layer 24, and the resin layer 26 are laminated in this order from the first main surface to the second main surface of the region 110.
 領域121において、積層体20は、樹脂層21、樹脂層221、樹脂層23、樹脂層24、樹脂層251、および、樹脂層26が積層されてなる。樹脂層21、樹脂層221、樹脂層23、樹脂層24、樹脂層251、および、樹脂層26は、領域121の第1主面から第2主面に、この順で積層されている。 In the region 121, the laminate 20 is formed by laminating a resin layer 21, a resin layer 221, a resin layer 23, a resin layer 24, a resin layer 251, and a resin layer 26. The resin layer 21, the resin layer 221, the resin layer 23, the resin layer 24, the resin layer 251, and the resin layer 26 are laminated in this order from the first main surface to the second main surface of the region 121.
 領域122において、積層体20は、樹脂層21、樹脂層222、樹脂層23、樹脂層24、樹脂層252、および、樹脂層26が積層されてなる。樹脂層21、樹脂層222、樹脂層23、樹脂層24、樹脂層252、および、樹脂層26は、領域122の第1主面から第2主面に、この順で積層されている。 In the region 122, the laminate 20 is formed by laminating the resin layer 21, the resin layer 222, the resin layer 23, the resin layer 24, the resin layer 252, and the resin layer 26. The resin layer 21, the resin layer 222, the resin layer 23, the resin layer 24, the resin layer 252, and the resin layer 26 are laminated in this order from the first main surface to the second main surface of the region 122.
 言い換えると、樹脂層21、樹脂層23、樹脂層24、および、樹脂層26は、積層体20の領域110、121、122の全てに亘って配置されている。一方、樹脂層221および樹脂層251は、領域121のみに配置され、樹脂層222および樹脂層252は、領域122のみに配置されている。 In other words, the resin layer 21, the resin layer 23, the resin layer 24, and the resin layer 26 are disposed over all the regions 110, 121, and 122 of the stacked body 20. On the other hand, the resin layer 221 and the resin layer 251 are disposed only in the region 121, and the resin layer 222 and the resin layer 252 are disposed only in the region 122.
 したがって、領域110を形成する樹脂層の層数は、領域121を形成する樹脂層の層数および領域122を形成する樹脂層の層数よりも少ない。領域110の厚みD110は、領域121の厚みD121と領域122の厚みD122よりも小さい。領域121の厚みD121と領域122の厚みD122は同じである。これにより、領域110の可撓性は、領域121の可撓性および領域122の可撓性よりも高い。したがって、多層基板10は、領域110を折り曲げ部分とすることで、折り曲げが容易になる。 Therefore, the number of resin layers forming the region 110 is smaller than the number of resin layers forming the region 121 and the number of resin layers forming the region 122. The thickness D110 of the region 110 is smaller than the thickness D121 of the region 121 and the thickness D122 of the region 122. The thickness D121 of the region 121 and the thickness D122 of the region 122 are the same. Thereby, the flexibility of the region 110 is higher than the flexibility of the region 121 and the flexibility of the region 122. Therefore, the multilayer substrate 10 can be easily folded by setting the region 110 as a bent portion.
 積層体20は、上述のように領域110と領域121および領域122とで厚みが異なることから、複数の段差UE41、UE42、UE51、UE52を有する。段差UE41は、積層体20の第1主面における領域110と領域121との境界に生じる。段差UE42は、積層体20の第1主面における領域110と領域122との境界に生じる。段差UE51は、積層体20の第2主面における領域110と領域121との境界に生じる。段差UE52は、積層体20の第1主面における領域110と領域122との境界に生じる。 The laminate 20 has a plurality of steps UE41, UE42, UE51, and UE52 because the thickness is different between the region 110, the region 121, and the region 122 as described above. The step UE41 occurs at the boundary between the region 110 and the region 121 on the first main surface of the stacked body 20. The step UE42 occurs at the boundary between the region 110 and the region 122 on the first main surface of the stacked body 20. The step UE51 occurs at the boundary between the region 110 and the region 121 on the second main surface of the stacked body 20. The step UE52 occurs at the boundary between the region 110 and the region 122 on the first main surface of the stacked body 20.
 信号導体30は、樹脂層24の第1主面、すなわち、樹脂層23と樹脂層24との界面に配置されている。これにより、信号導体30は、積層体20における複数の樹脂層の積層方向の途中位置に配置されている。 The signal conductor 30 is disposed on the first main surface of the resin layer 24, that is, the interface between the resin layer 23 and the resin layer 24. As a result, the signal conductor 30 is disposed at an intermediate position in the stacking direction of the plurality of resin layers in the stacked body 20.
 信号導体30は、信号伝送方向に沿って延びる形状であり、当該延びる方向に沿って、第1部分31、第2部分32および第3部分33を有する。第1部分31は、信号導体30における領域121に配置される部分である。第2部分32は、信号導体30における領域122に配置される部分である。第3部分33は、信号導体30における領域110に配置される部分である。第3部分33の幅は、第1部分31の幅および第2部分32の幅よりも狭い。 The signal conductor 30 has a shape extending along the signal transmission direction, and includes a first portion 31, a second portion 32, and a third portion 33 along the extending direction. The first portion 31 is a portion disposed in the region 121 in the signal conductor 30. The second portion 32 is a portion disposed in the region 122 in the signal conductor 30. The third portion 33 is a portion disposed in the region 110 in the signal conductor 30. The width of the third portion 33 is narrower than the width of the first portion 31 and the width of the second portion 32.
 グランド導体40は、樹脂層21の第1主面、すなわち、積層体20の第1主面に配置されている。グランド導体40は、樹脂層21の第1主面の略全面に配置されている。グランド導体40が、本発明の「第1グランド導体」に対応する。 The ground conductor 40 is disposed on the first main surface of the resin layer 21, that is, the first main surface of the multilayer body 20. The ground conductor 40 is disposed on substantially the entire first main surface of the resin layer 21. The ground conductor 40 corresponds to the “first ground conductor” of the present invention.
 グランド導体50は、樹脂層26の第2主面、すなわち、積層体20の第2主面に配置されている。言い換えると、グランド導体50は、複数の樹脂層の積層方向において、信号導体30に対して、グランド導体40と反対側に配置されている。グランド導体50は、外部接続導体51、外部接続導体52の形成領域を除く樹脂層26の第2主面の略全面に配置されている。グランド導体50と外部接続導体51および外部接続導体52との間には、導体の非形成部が設けられている。グランド導体50が、本発明の「第2グランド導体」に対応する。 The ground conductor 50 is disposed on the second main surface of the resin layer 26, that is, the second main surface of the multilayer body 20. In other words, the ground conductor 50 is disposed on the side opposite to the ground conductor 40 with respect to the signal conductor 30 in the stacking direction of the plurality of resin layers. The ground conductor 50 is disposed on substantially the entire second main surface of the resin layer 26 excluding the region where the external connection conductor 51 and the external connection conductor 52 are formed. Between the ground conductor 50, the external connection conductor 51, and the external connection conductor 52, a conductor non-formation portion is provided. The ground conductor 50 corresponds to the “second ground conductor” of the present invention.
 グランド導体50は、複数の層間接続導体63によって、グランド導体40に接続されている。 The ground conductor 50 is connected to the ground conductor 40 by a plurality of interlayer connection conductors 63.
 外部接続導体51は、領域121における樹脂層26の第2主面、すなわち、積層体20の第2主面に配置されている。外部接続導体51は、層間接続導体61によって、信号導体30の第1部分31に接続されている。 The external connection conductor 51 is disposed on the second main surface of the resin layer 26 in the region 121, that is, on the second main surface of the multilayer body 20. The external connection conductor 51 is connected to the first portion 31 of the signal conductor 30 by the interlayer connection conductor 61.
 外部接続導体52は、領域122における樹脂層26の第2主面、すなわち、積層体20の第2主面に配置されている。外部接続導体52は、層間接続導体62によって、信号導体30の第2部分32に接続されている。 The external connection conductor 52 is disposed on the second main surface of the resin layer 26 in the region 122, that is, on the second main surface of the multilayer body 20. The external connection conductor 52 is connected to the second portion 32 of the signal conductor 30 by the interlayer connection conductor 62.
 この構成により、多層基板10は、複数の樹脂層の積層方向においてグランド導体40とグランド導体50とによって信号導体30が挟まれたストリップラインを実現している。この際、領域110における信号導体30とグランド導体40と間の樹脂層の層数は、領域121、122における信号導体30とグランド導体40との間の樹脂層の層数よりも少ない。また、領域110における信号導体30とグランド導体50と間の樹脂層の層数は、領域121、122における信号導体30とグランド導体50との間の樹脂層の層数よりも少ない。これにより、領域110が領域121、122よりも折り曲げ易くなる。 With this configuration, the multilayer substrate 10 realizes a strip line in which the signal conductor 30 is sandwiched between the ground conductor 40 and the ground conductor 50 in the stacking direction of the plurality of resin layers. At this time, the number of resin layers between the signal conductor 30 and the ground conductor 40 in the region 110 is smaller than the number of resin layers between the signal conductor 30 and the ground conductor 40 in the regions 121 and 122. The number of resin layers between the signal conductor 30 and the ground conductor 50 in the region 110 is smaller than the number of resin layers between the signal conductor 30 and the ground conductor 50 in the regions 121 and 122. Accordingly, the region 110 is easier to bend than the regions 121 and 122.
 また、積層体20の第1主面側は、上述のように段差UE41、UE42を有している。しかしながら、グランド導体40は、樹脂層21の第1主面(積層体20の第1主面)に面状に形成されている。すなわち、領域110のグランド導体40が形成された樹脂層と領域121、122のグランド導体40が形成された樹脂層は同一の樹脂層である。したがって、グランド導体40は、段差UE41、UE42において段差形状に追従して湾曲して、領域110と領域121、122に亘って連続する形状で配置される。これにより、領域110が折り曲げられても、グランド導体40の破断によるグランド導体40の断線が大幅に抑制される。あるいは、グランド導体40の部分的な破断による信号導体から外部への不要輻射が発生することを抑制できる。 Further, the first main surface side of the stacked body 20 has the steps UE41 and UE42 as described above. However, the ground conductor 40 is formed in a planar shape on the first main surface of the resin layer 21 (the first main surface of the multilayer body 20). That is, the resin layer in which the ground conductor 40 in the region 110 is formed and the resin layer in which the ground conductor 40 in the regions 121 and 122 is formed are the same resin layer. Therefore, the ground conductor 40 is curved following the step shape at the steps UE41 and UE42, and is arranged in a shape that continues across the region 110 and the regions 121 and 122. Thereby, even if the area | region 110 is bent, the disconnection of the ground conductor 40 by the fracture | rupture of the ground conductor 40 is suppressed significantly. Or generation | occurrence | production of the unnecessary radiation from the signal conductor by the partial fracture | rupture of the ground conductor 40 to the exterior can be suppressed.
 同様に、積層体20の第2主面側は、上述のように段差UE51、UE52を有している。しかしながら、グランド導体50は、樹脂層26の第2主面(積層体20の第2主面)に面状に形成されている。すなわち、領域110のグランド導体50が形成された樹脂層と領域121、122のグランド導体50が形成された樹脂層は同一の樹脂層である。したがって、グランド導体50は、段差UE51、UE52において段差形状に追従して湾曲して、領域110と領域121、122に亘って連続する形状で配置される。これにより、領域110が折り曲げられても、グランド導体50の破断によるグランド導体50の断線が大幅に抑制される。あるいは、グランド導体50が傷つくことによる信号導体から外部への不要輻射が発生することを抑制できる。 Similarly, the second main surface side of the stacked body 20 has the steps UE51 and UE52 as described above. However, the ground conductor 50 is formed in a planar shape on the second main surface of the resin layer 26 (second main surface of the multilayer body 20). That is, the resin layer in which the ground conductor 50 in the region 110 is formed and the resin layer in which the ground conductor 50 in the regions 121 and 122 is formed are the same resin layer. Accordingly, the ground conductor 50 is curved following the step shape at the steps UE51 and UE52, and is arranged in a shape continuous over the region 110 and the regions 121 and 122. Thereby, even if the area | region 110 is bent, the disconnection of the ground conductor 50 by the fracture | rupture of the ground conductor 50 is suppressed significantly. Or generation | occurrence | production of the unnecessary radiation from a signal conductor by the ground conductor 50 being damaged can be suppressed.
 以上のように、本実施形態の多層基板10は、可撓性の高い領域(領域110)と可撓性の低い領域(領域121、122)とを有し、可撓性の高い領域(領域110)において折り曲げ易い。さらに、多層基板10は、可撓性の高い領域(領域110)が折り曲げられても、グランド導体40、50の断線を大幅に抑制できる。 As described above, the multilayer substrate 10 of the present embodiment has a highly flexible region (region 110) and a low flexibility region (regions 121 and 122), and a highly flexible region (region). 110). Furthermore, even when the highly flexible region (region 110) is bent, the multilayer substrate 10 can greatly suppress the disconnection of the ground conductors 40 and 50.
 さらに、従来の構成では、可撓性の高い領域のグランド導体と、可撓性の低い領域のグランド導体とが層間接続導体によって接続されていた。層間接続導体は、線状であるので、可撓性の高い領域のグランド導体と可撓性の低い領域のグランド導体とを複数の層間接続導体で接続しても、層間接続導体間の隙間を介して信号導体から外部へ不要な輻射が発生してしまう。しかしながら、本実施形態の多層基板10は、グランド導体40、50が面状導体であり、可撓性の高い領域(領域110)と可撓性の低い領域(領域121、122)とで連続的に繋がっている。したがって、従来の層間接続導体を用いる場合に生じる不要な輻射の発生を防止できる。また、層間接続導体は、上述のとおり線状であるため、線幅が大きいものを形成しにくい。このことにより、層間接続導体は、L性が出現し易い。この場合、可撓性の高い領域のグランド導体と可撓性の低い領域のグランド導体との間に高周波的にインダクタが接続されたようになる。したがって、可撓性の高い領域のグランド導体と可撓性の低い領域のグランド導体との間で電位差が生じ易く、グランドが安定し難い。しかし、本実施形態の多層基板10は、面状導体であるためグランド導体40とグランド導体50との間に高周波的にインダクタが接続されることを抑制でき、グランド電位を安定化できる。したがって、多層基板10の高周波伝送特性の劣化を抑制できる。 Furthermore, in the conventional configuration, a ground conductor in a highly flexible region and a ground conductor in a region with low flexibility are connected by an interlayer connection conductor. Since the interlayer connection conductor is linear, the gap between the interlayer connection conductors is not affected even when the ground conductor in the highly flexible region and the ground conductor in the low flexibility region are connected by a plurality of interlayer connection conductors. Thus, unnecessary radiation is generated from the signal conductor to the outside. However, in the multilayer substrate 10 of this embodiment, the ground conductors 40 and 50 are planar conductors, and are continuous in a highly flexible region (region 110) and a low flexibility region (regions 121 and 122). It is connected to. Therefore, it is possible to prevent unnecessary radiation generated when the conventional interlayer connection conductor is used. Further, since the interlayer connection conductor is linear as described above, it is difficult to form a conductor having a large line width. As a result, the interlayer connection conductor is likely to have L property. In this case, the inductor is connected in a high frequency manner between the ground conductor in the highly flexible region and the ground conductor in the less flexible region. Therefore, a potential difference is likely to occur between the ground conductor in the highly flexible region and the ground conductor in the less flexible region, and the ground is difficult to stabilize. However, since the multilayer substrate 10 of the present embodiment is a planar conductor, it can be suppressed that an inductor is connected in high frequency between the ground conductor 40 and the ground conductor 50, and the ground potential can be stabilized. Therefore, deterioration of the high frequency transmission characteristics of the multilayer substrate 10 can be suppressed.
 また、本実施形態の多層基板10の信号導体30では、上述のように、領域110に配置される第3部分33の幅は、領域121、122にそれぞれ配置される第1部分31、第2部分32の幅よりも狭い。したがって、領域110では、領域121、122に対して、信号導体30とグランド導体40、50との間隔が小さくても、信号導体30とグランド導体40、50との容量性結合を低下させることができる。これにより、領域110の特性インピーダンスと領域121、122の特性インピーダンスとを一致または近づけることができ、特性インピーダンスの整合をとることができる。 In the signal conductor 30 of the multilayer substrate 10 of the present embodiment, as described above, the width of the third portion 33 disposed in the region 110 is the first portion 31 and the second portion disposed in the regions 121 and 122, respectively. It is narrower than the width of the portion 32. Therefore, in the region 110, even if the distance between the signal conductor 30 and the ground conductors 40 and 50 is small compared to the regions 121 and 122, the capacitive coupling between the signal conductor 30 and the ground conductors 40 and 50 can be reduced. it can. Thereby, the characteristic impedance of the region 110 and the characteristic impedance of the regions 121 and 122 can be matched or brought close to each other, and the characteristic impedance can be matched.
 また、本実施形態の多層基板10では、複数の層間接続導体63は、領域121と領域122とに形成されており、領域110に形成されていない。これにより、領域110の可撓性の低下を抑制できる。また、複数の層間接続導体63は、領域121と領域122とにおける領域110との境界から離間した位置に配置されている。これにより、領域110を折り曲げた際に、複数の層間接続導体63が断線することが抑制される。 Further, in the multilayer substrate 10 of the present embodiment, the plurality of interlayer connection conductors 63 are formed in the region 121 and the region 122 and are not formed in the region 110. Thereby, the fall of the flexibility of the area | region 110 can be suppressed. The plurality of interlayer connection conductors 63 are arranged at positions separated from the boundary between the region 110 in the region 121 and the region 122. Thus, disconnection of the plurality of interlayer connection conductors 63 when the region 110 is bent is suppressed.
 また、本実施形態の多層基板10では、外部接続導体51は可撓性の低い領域121に配置され、外部接続導体52は可撓性の低い領域122に配置される。これにより、外部接続導体51、52が変形し難く、多層基板10を外部の実装基板に実装し易い。 In the multilayer substrate 10 of the present embodiment, the external connection conductor 51 is disposed in the low flexibility region 121, and the external connection conductor 52 is disposed in the low flexibility region 122. Thereby, the external connection conductors 51 and 52 are not easily deformed, and the multilayer substrate 10 is easily mounted on the external mounting substrate.
 また、本実施形態の多層基板10では、信号導体30が一つの樹脂層24の第1主面のみに形成されている。すなわち、領域110の信号導体30が形成された樹脂層と領域121、122の信号導体30が形成された樹脂層は同一の樹脂層である。また、信号導体30は、領域110および領域121、122に亘って連続する形状である。したがって、上述の折り曲げによる信号導体30の断線も抑制できる。 Further, in the multilayer substrate 10 of the present embodiment, the signal conductor 30 is formed only on the first main surface of one resin layer 24. That is, the resin layer in which the signal conductor 30 in the region 110 is formed and the resin layer in which the signal conductor 30 in the regions 121 and 122 are formed are the same resin layer. Further, the signal conductor 30 has a shape that extends continuously over the region 110 and the regions 121 and 122. Therefore, disconnection of the signal conductor 30 due to the above-described bending can be suppressed.
 このような構成からなる多層基板10は、次に示す方法で製造される。まず、樹脂層21を形成する樹脂シート、樹脂層221、222を形成する樹脂シート、樹脂層23を形成する樹脂シート、樹脂層24を形成する樹脂シート、樹脂層251、252を形成する樹脂シート、および、樹脂層26を形成する樹脂シートを用意する。 The multilayer substrate 10 having such a configuration is manufactured by the following method. First, a resin sheet for forming the resin layer 21, a resin sheet for forming the resin layers 221 and 222, a resin sheet for forming the resin layer 23, a resin sheet for forming the resin layer 24, and a resin sheet for forming the resin layers 251 and 252 A resin sheet for forming the resin layer 26 is prepared.
 樹脂層21を形成する樹脂シート、樹脂層23を形成する樹脂シート、および、樹脂層26を形成する樹脂シートは、片面銅貼りの樹脂シートである。樹脂層221、222を形成する樹脂シート、樹脂層23を形成する樹脂シート、および、樹脂層251、252を形成する樹脂シートは、銅貼りである必要はない。 The resin sheet for forming the resin layer 21, the resin sheet for forming the resin layer 23, and the resin sheet for forming the resin layer 26 are single-sided copper-bonded resin sheets. The resin sheet for forming the resin layers 221 and 222, the resin sheet for forming the resin layer 23, and the resin sheet for forming the resin layers 251 and 252 do not need to be copper-attached.
 樹脂層21を形成する樹脂シートにパターニング処理を行い、グランド導体40を形成する。樹脂層23を形成する樹脂シートに対してパターニング処理を行い、信号導体30を形成する。樹脂層26を形成する樹脂シートに対してパターニング処理を行い、グランド導体50、外部接続導体51、52を形成する。 The resin sheet for forming the resin layer 21 is patterned to form the ground conductor 40. The signal conductor 30 is formed by patterning the resin sheet on which the resin layer 23 is formed. A patterning process is performed on the resin sheet forming the resin layer 26 to form the ground conductor 50 and the external connection conductors 51 and 52.
 樹脂層221、222を形成する樹脂シートに、レーザ、金型の打ち抜き等によって貫通孔を形成する。樹脂層251、252を形成する樹脂シートに、レーザ、金型の打ち抜き等によって貫通孔を形成する。 Through holes are formed in the resin sheets for forming the resin layers 221 and 222 by laser, die punching, or the like. Through holes are formed in the resin sheets for forming the resin layers 251 and 252 by laser, die punching, or the like.
 各樹脂シートに層間接続用の貫通孔を形成し、当該層間接続用の貫通孔に導電ペーストを充填する。 A through hole for interlayer connection is formed in each resin sheet, and the through hole for interlayer connection is filled with a conductive paste.
 上述の複数の樹脂シートを積層し、加熱プレスする。この際、樹脂層221、222を形成する樹脂シートの貫通孔と、樹脂層251、252を形成する樹脂シートの貫通孔とが重なり、これらが信号導体30の第3部分33に重なるように配置する。加熱プレスは、樹脂層221、222を形成する樹脂シートの貫通孔と樹脂層251、252を形成する樹脂シートの貫通孔とに重なる部分に凸部を有する金型を、積層方向の両側から当接させて行われ、等方圧プレスによって実現される。あるいは、平板上の金型と最表面の樹脂シートとの間に圧縮性のある部材を介在させてプレスを行ってもよい。この際に、導電ペーストが固化して、層間接続導体61、62、63が形成される。 積 層 Laminate the above resin sheets and heat-press. At this time, the through holes of the resin sheets that form the resin layers 221 and 222 and the through holes of the resin sheets that form the resin layers 251 and 252 overlap so that they overlap the third portion 33 of the signal conductor 30. To do. In the heat press, a mold having convex portions at portions overlapping the through holes of the resin sheets forming the resin layers 221 and 222 and the through holes of the resin sheets forming the resin layers 251 and 252 is applied from both sides in the stacking direction. It is carried out in contact and is realized by an isotropic pressure press. Or you may press by interposing a compressible member between the metal mold | die on a flat plate, and the resin sheet of the outermost surface. At this time, the conductive paste is solidified to form interlayer connection conductors 61, 62, and 63.
 次に、本発明の第2の実施形態に係る多層基板について、図を参照して説明する。図5は、本発明の第2の実施形態に係る多層基板の主要構成を示す側面図である。 Next, a multilayer substrate according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a side view showing the main configuration of the multilayer substrate according to the second embodiment of the present invention.
 本実施形態に係る多層基板10Aは、第1の実施形態に係る多層基板10に対して、積層体20Aの第2主面側の段差が無い点において異なる。多層基板10Aのその他の構成は、第1の実施形態に係る多層基板10と同じであり、同じ箇所の説明は省略する。 The multilayer substrate 10A according to the present embodiment is different from the multilayer substrate 10 according to the first embodiment in that there is no step on the second main surface side of the stacked body 20A. Other configurations of the multilayer substrate 10A are the same as those of the multilayer substrate 10 according to the first embodiment, and the description of the same portions is omitted.
 積層体20Aは、第1の実施形態に係る積層体20に対して、樹脂層251、252を無くしたものである。これにより、積層体20Aは、第1主面に段差UE41、UE42を有するが、第2主面に段差を有さない。 The laminate 20A is obtained by eliminating the resin layers 251 and 252 from the laminate 20 according to the first embodiment. Accordingly, the stacked body 20A has the steps UE41 and UE42 on the first main surface, but does not have the steps on the second main surface.
 このような構成によって、多層基板10Aは、第1の実施形態に係る多層基板10と同様に、領域110を折り曲げ部分とすることで、折り曲げが容易になり、この折り曲げによるグランド導体40、50の破断を抑制できる。また、多層基板10Aは、第1の実施形態に係る多層基板10と同様に、信号導体30から多層基板10Aの外部への不要な輻射の発生を防止できる。 With such a configuration, similarly to the multilayer substrate 10 according to the first embodiment, the multilayer substrate 10A can be easily folded by using the region 110 as a bent portion, and the ground conductors 40 and 50 by this bending can be easily bent. Breakage can be suppressed. Further, similarly to the multilayer substrate 10 according to the first embodiment, the multilayer substrate 10A can prevent generation of unnecessary radiation from the signal conductor 30 to the outside of the multilayer substrate 10A.
 次に、本発明の第3の実施形態に係る多層基板について、図を参照して説明する。図6は、本発明の第3の実施形態に係る多層基板の外観斜視図である。 Next, a multilayer substrate according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 6 is an external perspective view of the multilayer substrate according to the third embodiment of the present invention.
 本実施形態に係る多層基板10Bは、第1の実施形態に係る多層基板10に対して、グランド導体40に導体非形成部400を有する点、および、信号導体30Bの第3部分33Bの形状において異なる。多層基板10Bの他の構成は、第1の実施形態に係る多層基板10と同じであり、同じ箇所の説明は省略する。 The multilayer substrate 10B according to the present embodiment is different from the multilayer substrate 10 according to the first embodiment in that the ground conductor 40 has a conductor non-forming portion 400 and the shape of the third portion 33B of the signal conductor 30B. Different. Other configurations of the multilayer substrate 10B are the same as those of the multilayer substrate 10 according to the first embodiment, and the description of the same portions is omitted.
 グランド導体40は、領域110の部分に導体非形成部400を有する。これにより、多層基板10Bの領域110の可撓性がさらに高くなり、領域110における折り曲げがより容易になる。 The ground conductor 40 has a conductor non-forming portion 400 in the region 110. Thereby, the flexibility of the region 110 of the multilayer substrate 10B is further increased, and the bending in the region 110 becomes easier.
 信号導体30Bの第3部分33Bの幅は、第1の実施形態に係る信号導体30の第3部分33の幅よりも広い。グランド導体40が導体非形成部400を有することによって、信号導体30Bの第3部分33Bの幅が広くても、信号導体30Bの第3部分33Bとグランド導体40との容量性結合が高くなることを抑制できる。これにより、領域110の特性インピーダンスを領域121、122の特性インピーダンスに一致させる、あるいは近づけることができる。そして、第3部分33Bの幅が広くなることによって、信号導体30Bによる導体損を低下させることができる。 The width of the third portion 33B of the signal conductor 30B is wider than the width of the third portion 33 of the signal conductor 30 according to the first embodiment. Since the ground conductor 40 includes the conductor non-forming portion 400, the capacitive coupling between the third portion 33B of the signal conductor 30B and the ground conductor 40 is increased even if the width of the third portion 33B of the signal conductor 30B is wide. Can be suppressed. As a result, the characteristic impedance of the region 110 can be matched with or close to the characteristic impedance of the regions 121 and 122. And the conductor loss by the signal conductor 30B can be reduced by the width | variety of the 3rd part 33B becoming wide.
 このような構成によって、多層基板10Bは、第1の実施形態に係る多層基板10と同様に、領域110を折り曲げ部分とすることで、折り曲げが容易になり、この折り曲げによるグランド導体40、50の破断を抑制できる。さらに、多層基板10Bは、領域110において、より折り曲げ易く、伝送損失が低い。 With such a configuration, the multilayer substrate 10B can be easily folded by setting the region 110 as a bent portion in the same manner as the multilayer substrate 10 according to the first embodiment, and the ground conductors 40 and 50 by this bending can be easily bent. Breakage can be suppressed. Furthermore, the multilayer substrate 10B is easier to bend in the region 110, and the transmission loss is low.
 次に、本発明の第4の実施形態に係る多層基板について、図を参照して説明する。図7は、本発明の第4の実施形態に係る多層基板の外観斜視図である。 Next, a multilayer substrate according to a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 7 is an external perspective view of a multilayer substrate according to the fourth embodiment of the present invention.
 本実施形態に係る多層基板10Cは、第1の実施形態に係る多層基板10に対して、領域110にグランド導体40が形成されていない点、および、信号導体30Cの第3部分33Cの形状において異なる。多層基板10Cの他の構成は、第1の実施形態に係る多層基板10と同じであり、同じ箇所の説明は省略する。 The multilayer substrate 10C according to this embodiment is different from the multilayer substrate 10 according to the first embodiment in that the ground conductor 40 is not formed in the region 110 and in the shape of the third portion 33C of the signal conductor 30C. Different. Other configurations of the multilayer substrate 10C are the same as those of the multilayer substrate 10 according to the first embodiment, and the description of the same portions is omitted.
 グランド導体41Bは、積層体20の領域121の第1主面に形成されている。グランド導体42Bは、積層体20の領域122の第1主面に形成されている。積層体20の領域110の第1主面にはグランド導体は形成されていない。この構成により、多層基板10Cでは、領域110は、マイクロストリップラインからなり、領域121、122は、ストリップラインからなる。 The ground conductor 41 </ b> B is formed on the first main surface of the region 121 of the multilayer body 20. The ground conductor 42 </ b> B is formed on the first main surface of the region 122 of the multilayer body 20. A ground conductor is not formed on the first main surface of the region 110 of the multilayer body 20. With this configuration, in the multilayer substrate 10C, the region 110 is formed of a microstrip line, and the regions 121 and 122 are formed of strip lines.
 信号導体30Cの第3部分33Cの幅は、第1の実施形態に係る信号導体30の第3部分33の幅よりも広い。領域110にグランド導体が無いことによって、信号導体30Cの第3部分33Cの幅が広くても、信号導体30Cの第3部分33Cは、積層体20の第1主面側に容量性結合が生じない。これにより、領域110の特性インピーダンスを領域121、122の特性インピーダンスに一致させる、あるいは近づけることができる。そして、第3部分33Cの幅が広くなることによって、信号導体30Cの導体損を低下させることができる。なお、この際、信号導体30Cの位置によって、第3部分33Cを第1部分31の幅および第2部分32の幅と同じ、もしくは、第1部分31の幅および第2部分32の幅よりも広くすることも可能である。 The width of the third portion 33C of the signal conductor 30C is wider than the width of the third portion 33 of the signal conductor 30 according to the first embodiment. Due to the absence of the ground conductor in the region 110, even if the width of the third portion 33C of the signal conductor 30C is wide, the third portion 33C of the signal conductor 30C has capacitive coupling on the first main surface side of the multilayer body 20. Absent. As a result, the characteristic impedance of the region 110 can be matched with or close to the characteristic impedance of the regions 121 and 122. The conductor loss of the signal conductor 30C can be reduced by increasing the width of the third portion 33C. At this time, depending on the position of the signal conductor 30C, the third portion 33C is equal to the width of the first portion 31 and the width of the second portion 32, or is larger than the width of the first portion 31 and the width of the second portion 32. It can also be widened.
 なお、上述の第3、第4の実施形態に係る多層基板の構成を、第2の実施形態に係る多層基板10Aに適用することもできる。 Note that the configuration of the multilayer substrate according to the third and fourth embodiments described above can also be applied to the multilayer substrate 10A according to the second embodiment.
 また、上述の各実施形態では、信号導体が一つの態様を示したが、信号導体が幅方向に複数配列された態様、すなわち、多芯であっても、上述の構成を適用でき、同様の作用効果を得られる。 Further, in each of the above-described embodiments, the signal conductor has one aspect, but the above-described configuration can be applied even in an aspect in which a plurality of signal conductors are arranged in the width direction, that is, in a multicore configuration. A working effect can be obtained.
 上述の各実施形態に示した多層基板は、次に示す各種の態様で電子機器に利用できる。 The multilayer substrate shown in each of the above-described embodiments can be used for electronic devices in the following various modes.
 図8は、本発明の実施形態に係る電子機器の第1態様を示す図である。図8に示すように、電子機器1は、多層基板10、実装基板91、92を備える。図示を省略しているが、実装基板91、92は、それぞれに異なる電子回路の機能を実現する回路が形成され、必要に応じて実装部品が実装されている。 FIG. 8 is a diagram showing a first aspect of the electronic device according to the embodiment of the present invention. As shown in FIG. 8, the electronic device 1 includes a multilayer substrate 10 and mounting substrates 91 and 92. Although not shown in the drawings, the mounting boards 91 and 92 are each formed with a circuit that realizes a function of a different electronic circuit, and mounted components are mounted as necessary.
 実装基板91と実装基板92は、厚みが異なる。したがって、電子機器1の高さ方向における実装基板91の表面の位置と実装基板92の表面の位置とは異なる。実装基板91の表面には、ランド導体911が形成されている。実装基板92の表面には、ランド導体921が形成されている。 The mounting board 91 and the mounting board 92 are different in thickness. Therefore, the position of the surface of the mounting board 91 in the height direction of the electronic device 1 is different from the position of the surface of the mounting board 92. Land conductors 911 are formed on the surface of the mounting substrate 91. Land conductors 921 are formed on the surface of the mounting substrate 92.
 多層基板10における領域121の外部接続導体(図1の外部接続導体51に対応)は、ランド導体911に接続されている。多層基板10における領域122の外部接続導体(図1の外部接続導体52に対応)は、ランド導体921に接続されている。なお、多層基板10のグランド導体(図1のグランド導体50)は、ランド導体911、921のグランド導体(図示せず)に接続されている。 The external connection conductor (corresponding to the external connection conductor 51 in FIG. 1) in the region 121 in the multilayer substrate 10 is connected to the land conductor 911. The external connection conductor (corresponding to the external connection conductor 52 in FIG. 1) in the region 122 in the multilayer substrate 10 is connected to the land conductor 921. The ground conductor (the ground conductor 50 in FIG. 1) of the multilayer substrate 10 is connected to the ground conductors (not shown) of the land conductors 911 and 921.
 多層基板10は、領域110の可撓性が高いので、表面の位置が異なる実装基板91と実装基板92とに領域121と領域122とをそれぞれ接続しても、領域110が折り曲げ部となる。したがって、多層基板10は、実装基板91および実装基板92に確実に接続される。 Since the multilayer substrate 10 has high flexibility in the region 110, even if the region 121 and the region 122 are connected to the mounting substrate 91 and the mounting substrate 92 having different surface positions, the region 110 becomes a bent portion. Therefore, the multilayer substrate 10 is securely connected to the mounting substrate 91 and the mounting substrate 92.
 なお、図8では、多層基板10によって二つの実装基板91、92を接続する態様を示した。しかしながら、一つの実装基板における高さ位置の異なる二つのランド導体を多層基板10で接続することもできる。 In addition, in FIG. 8, the aspect which connects the two mounting substrates 91 and 92 by the multilayer substrate 10 was shown. However, two land conductors having different height positions on one mounting substrate can be connected by the multilayer substrate 10.
 図9は、本発明の実施形態に係る電子機器の第2態様を示す図である。図9に示すように、電子機器1Aは、多層基板10D1、10D2、実装基板93を備える。多層基板10D1および多層基板10D2は、第1の実施形態に係る多層基板10と同じ構造を備える。 FIG. 9 is a diagram showing a second aspect of the electronic device according to the embodiment of the present invention. As shown in FIG. 9, the electronic apparatus 1 </ b> A includes multilayer substrates 10 </ b> D <b> 1 and 10 </ b> D <b> 2 and a mounting substrate 93. The multilayer substrate 10D1 and the multilayer substrate 10D2 have the same structure as the multilayer substrate 10 according to the first embodiment.
 多層基板10D1と多層基板10D2とは、それぞれの延びる方向が交差している。多層基板10D1の領域110D1と多層基板10D2の領域110D2とは、重なっている。多層基板10D1の領域110D1は厚み方向に湾曲している。これにより、多層基板10D1と多層基板10D2とが交差しながら、多層基板10D1と多層基板10D2とを実装基板93に確実に接続できる。 The extending directions of the multilayer substrate 10D1 and the multilayer substrate 10D2 intersect each other. The region 110D1 of the multilayer substrate 10D1 and the region 110D2 of the multilayer substrate 10D2 overlap. The region 110D1 of the multilayer substrate 10D1 is curved in the thickness direction. Accordingly, the multilayer substrate 10D1 and the multilayer substrate 10D2 can be reliably connected to the mounting substrate 93 while the multilayer substrate 10D1 and the multilayer substrate 10D2 intersect.
 この構成により、複数の多層基板を実装基板の表面に接続した態様でありながら、複数の多層基板の引き回しが容易で、簡素な構成の電子機器1Aを実現できる。また、多層基板10D1の領域110D1と多層基板10D2の領域110D2とが重なっていることで、重なり部分の高さを抑えられ、低背な電子機器1Aが実現できる。 With this configuration, it is possible to realize an electronic device 1A having a simple configuration in which a plurality of multilayer substrates can be easily routed while being in a form in which a plurality of multilayer substrates are connected to the surface of the mounting substrate. Further, since the region 110D1 of the multilayer substrate 10D1 and the region 110D2 of the multilayer substrate 10D2 overlap, the height of the overlapping portion can be suppressed, and a low-profile electronic device 1A can be realized.
 なお、図9の構成において、多層基板10D1、10D2は、第3、第4の実施形態に係る多層基板10B、10Cの構成を用いることも可能である。 In the configuration of FIG. 9, the configurations of the multilayer substrates 10B and 10C according to the third and fourth embodiments can be used as the multilayer substrates 10D1 and 10D2.
 図10は、本発明の実施形態に係る電子機器の第3態様を示す図である。図10に示すように、電子機器1Bは、多層基板10E1、10E2、実装基板93を備える。多層基板10E1は、第2の実施形態に係る多層基板10Aと同じ構造を備える。多層基板10E2は、第2の実施形態に係る多層基板10Aにおいて、段差を形成する主面が異ならせたものである。 FIG. 10 is a diagram showing a third aspect of the electronic apparatus according to the embodiment of the present invention. As shown in FIG. 10, the electronic device 1 </ b> B includes multilayer substrates 10 </ b> E <b> 1 and 10 </ b> E <b> 2 and a mounting substrate 93. The multilayer substrate 10E1 has the same structure as the multilayer substrate 10A according to the second embodiment. The multilayer substrate 10E2 is different from the multilayer substrate 10A according to the second embodiment in that the main surface forming the step is different.
 多層基板10E1と多層基板10E2とは、それぞれの延びる方向が交差している。多層基板10E1の領域110E1と多層基板10E2の領域110E2とは、重なっている。多層基板10E1の段差を有する主面と多層基板10E2の段差を有する主面とは対向している。これにより、多層基板10E1と多層基板10E2とが交差しながら、多層基板10E1と多層基板10E2とを実装基板93に確実に接続できる。 The extending directions of the multilayer substrate 10E1 and the multilayer substrate 10E2 intersect each other. The region 110E1 of the multilayer substrate 10E1 and the region 110E2 of the multilayer substrate 10E2 overlap. The main surface having the step of the multilayer substrate 10E1 and the main surface having the step of the multilayer substrate 10E2 face each other. Accordingly, the multilayer substrate 10E1 and the multilayer substrate 10E2 can be reliably connected to the mounting substrate 93 while the multilayer substrate 10E1 and the multilayer substrate 10E2 intersect.
 この構成により、複数の多層基板を実装基板の表面に接続した態様でありながら、複数の多層基板の引き回しが容易で、簡素な構成の電子機器1Bを実現できる。また、多層基板10E1の領域110E1と多層基板10E2の領域110E2とが重なっていることで、重なり部分の高さを抑えられ、低背な電子機器1Bが実現できる。 With this configuration, it is possible to realize an electronic apparatus 1B having a simple configuration in which a plurality of multilayer substrates can be easily routed, while the multilayer substrates are connected to the surface of the mounting substrate. Further, since the region 110E1 of the multilayer substrate 10E1 and the region 110E2 of the multilayer substrate 10E2 overlap, the height of the overlapping portion can be suppressed, and a low-profile electronic device 1B can be realized.
 なお、図9、図10では、多層基板が二つの場合を示したが、三つ以上であってもよい。また、二つの多層基板を交差させて配置する場合、一方の多層基板を本発明の多層基板とし、他方の多層基板を通常の厚みが一定の多層基板としてもよい。 9 and 10 show the case where there are two multilayer substrates, three or more may be used. When two multilayer substrates are arranged so as to cross each other, one multilayer substrate may be the multilayer substrate of the present invention, and the other multilayer substrate may be a multilayer substrate having a constant constant thickness.
 また、図8、図9、図10では、多層基板の外部接続導体を実装基板のランド導体に接続するとだけ記載したが、これらは、はんだ等によって接続する態様、異方性導電膜を用いて接続する態様、外部接続導体およびランド導体にコネクタを実装して、これらのコネクタで接続する態様のいずれを採用することもできる。 8, 9, and 10, only the external connection conductor of the multilayer board is described as being connected to the land conductor of the mounting board, but these are connected by solder or the like, using an anisotropic conductive film. It is possible to employ any of a mode in which a connector is mounted on a connection mode, an external connection conductor, and a land conductor, and these connectors are connected.
1、1A、1B:電子機器
10、10A、10B、10C、10D1、10D2、10E1、10E2:多層基板
20、20A:積層体
21、23、24、26、221、222、251、252:樹脂層
30、30B、30C:信号導体
31:第1部分
32:第2部分
33、33B、33C:第3部分
40、41B、42B、50:グランド導体
51、52:外部接続導体
61、62、63:層間接続導体
91、92、93:実装基板
110:領域
110D1:領域
110D2:領域
110E1:領域
110E2:領域
121:領域
122:領域
400:導体非形成部
911、921:ランド導体
UE41、UE42、UE51、UE52:段差
1, 1A, 1B: Electronic device 10, 10A, 10B, 10C, 10D1, 10D2, 10E1, 10E2: Multilayer substrate 20, 20A: Laminate 21, 23, 24, 26, 221, 222, 251, 252: Resin layer 30, 30B, 30C: signal conductor 31: first part 32: second part 33, 33B, 33C: third part 40, 41B, 42B, 50: ground conductor 51, 52: external connection conductors 61, 62, 63: Interlayer connection conductors 91, 92, 93: mounting substrate 110: region 110D1: region 110D2: region 110E1: region 110E2: region 121: region 122: region 400: conductor non-forming portion 911, 921: land conductors UE41, UE42, UE51, UE52: Level difference

Claims (8)

  1.  それぞれが可撓性を有する複数の樹脂層が積層された積層体と、
     前記積層体における前記複数の樹脂層の積層方向の途中位置に配置され、信号伝送方向に延びる形状の信号導体と、
     前記積層体に形成され、前記積層方向において前記信号導体から離間して配置された第1グランド導体と、を備え、
     前記積層体は、前記信号導体の延びる方向に沿って第1領域と第2領域とを有し、
     前記第1領域における前記信号導体と前記第1グランド導体との間の樹脂層の層数は、前記第2領域における前記信号導体と前記第1グランド導体との間の樹脂層の層数よりも少なく、
     前記第1領域における前記第1グランド導体が形成される樹脂層と、前記第2領域における前記第1グランド導体が形成される樹脂層とは、同一の樹脂層である、
     多層基板。
    A laminate in which a plurality of resin layers each having flexibility are laminated;
    A signal conductor in a shape extending in the signal transmission direction, disposed in the middle of the lamination direction of the plurality of resin layers in the laminate;
    A first ground conductor formed in the multilayer body and spaced apart from the signal conductor in the stacking direction,
    The laminate includes a first region and a second region along a direction in which the signal conductor extends,
    The number of resin layers between the signal conductor and the first ground conductor in the first region is greater than the number of resin layers between the signal conductor and the first ground conductor in the second region. Less
    The resin layer in which the first ground conductor in the first region is formed and the resin layer in which the first ground conductor in the second region is formed are the same resin layer.
    Multilayer board.
  2.  前記第1領域における前記信号導体が形成される樹脂層と、前記第2領域における前記信号導体が形成される樹脂層とは、同一の樹脂層である、
     請求項1に記載の多層基板。
    The resin layer in which the signal conductor in the first region is formed and the resin layer in which the signal conductor in the second region is formed are the same resin layer.
    The multilayer substrate according to claim 1.
  3.  前記積層体に形成され、前記積層方向において前記信号導体に対して前記第1グランド導体と反対側に、前記信号導体から離間して配置された第2グランド導体を、備え、
     前記第1領域における前記信号導体と前記第2グランド導体との間の樹脂層の層数は、前記第2領域における前記信号導体と前記第2グランド導体との間の樹脂層の層数よりも少なく、
     前記第1領域における前記第2グランド導体が形成される樹脂層と、前記第2領域における前記第2グランド導体が形成される樹脂層とは、同一の樹脂層である、
     請求項1または請求項2に記載の多層基板。
    A second ground conductor formed in the multilayer body and disposed away from the signal conductor on the side opposite to the first ground conductor in the stacking direction;
    The number of resin layers between the signal conductor and the second ground conductor in the first region is greater than the number of resin layers between the signal conductor and the second ground conductor in the second region. Less
    The resin layer in which the second ground conductor in the first region is formed and the resin layer in which the second ground conductor in the second region is formed are the same resin layer.
    The multilayer substrate according to claim 1 or 2.
  4.  前記第1領域における前記第1グランド導体または前記第2グランド導体は、前記信号導体に平面視で重なる導体非形成部を有する、
     請求項3に記載の多層基板。
    The first ground conductor or the second ground conductor in the first region has a conductor non-forming portion that overlaps the signal conductor in plan view.
    The multilayer substrate according to claim 3.
  5.  前記第1領域の前記信号導体の幅は、前記第2領域の前記信号導体の幅よりも狭い、
     請求項1乃至請求項4のいずれかに記載の多層基板。
    The width of the signal conductor in the first region is narrower than the width of the signal conductor in the second region,
    The multilayer substrate according to any one of claims 1 to 4.
  6.  前記第1領域が折り曲げ部分である、
     請求項1乃至請求項5のいずれかに記載の多層基板。
    The first region is a bent portion;
    The multilayer substrate according to any one of claims 1 to 5.
  7.  請求項1乃至請求項6のいずれかに記載の多層基板と、電子回路の機能を有する実装基板と、を備え、
     前記第2領域は、外部接続導体を備え、
     前記多層基板は、前記外部接続導体によって前記実装基板に接続されている、
     電子機器。
    A multilayer substrate according to any one of claims 1 to 6 and a mounting substrate having a function of an electronic circuit,
    The second region includes an external connection conductor,
    The multilayer substrate is connected to the mounting substrate by the external connection conductor,
    Electronics.
  8.  前記多層基板は、複数であり、
     前記複数の多層基板は、それぞれの第1領域において重ね合わせられ、且つ互いに交差して、前記実装基板に接続されている、
     請求項7に記載の電子機器。
    The multilayer substrate is plural,
    The plurality of multilayer substrates are overlapped in each first region and intersect with each other and connected to the mounting substrate.
    The electronic device according to claim 7.
PCT/JP2017/017773 2016-05-18 2017-05-11 Multilayer substrate and electronic appliance WO2017199824A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201790000681.9U CN209462743U (en) 2016-05-18 2017-05-11 Multilager base plate and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016099450 2016-05-18
JP2016-099450 2016-05-18

Publications (1)

Publication Number Publication Date
WO2017199824A1 true WO2017199824A1 (en) 2017-11-23

Family

ID=60326510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017773 WO2017199824A1 (en) 2016-05-18 2017-05-11 Multilayer substrate and electronic appliance

Country Status (2)

Country Link
CN (1) CN209462743U (en)
WO (1) WO2017199824A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135931A1 (en) * 2022-01-13 2023-07-20 株式会社村田製作所 Multilayer substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100842A (en) * 2000-09-22 2002-04-05 Sumitomo Wiring Syst Ltd Flexible flat wiring board and method of adjusting its impedance
JP2002280675A (en) * 2001-03-22 2002-09-27 Nippon Mektron Ltd Flexible printed circuit board having cables of different phases
JP2006173239A (en) * 2004-12-14 2006-06-29 Matsushita Electric Ind Co Ltd Wiring substrate, its manufacturing method, and electronic equipment using the same
JP2009054876A (en) * 2007-08-28 2009-03-12 Sumitomo Bakelite Co Ltd Printed wiring board
WO2011018979A1 (en) * 2009-08-11 2011-02-17 株式会社村田製作所 Multilayered substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100842A (en) * 2000-09-22 2002-04-05 Sumitomo Wiring Syst Ltd Flexible flat wiring board and method of adjusting its impedance
JP2002280675A (en) * 2001-03-22 2002-09-27 Nippon Mektron Ltd Flexible printed circuit board having cables of different phases
JP2006173239A (en) * 2004-12-14 2006-06-29 Matsushita Electric Ind Co Ltd Wiring substrate, its manufacturing method, and electronic equipment using the same
JP2009054876A (en) * 2007-08-28 2009-03-12 Sumitomo Bakelite Co Ltd Printed wiring board
WO2011018979A1 (en) * 2009-08-11 2011-02-17 株式会社村田製作所 Multilayered substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135931A1 (en) * 2022-01-13 2023-07-20 株式会社村田製作所 Multilayer substrate

Also Published As

Publication number Publication date
CN209462743U (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP5743037B2 (en) Resin multilayer substrate and electronic equipment
JP6540847B2 (en) Transmission line and electronic equipment
WO2015033737A1 (en) Multilayer substrate
JP5811306B1 (en) Signal transmission parts and electronic equipment
JP6183553B2 (en) Transmission line member
JP5943169B2 (en) Transmission line member
JP5867621B2 (en) High frequency signal line and manufacturing method thereof
US10225928B2 (en) Flexible board and electronic device
JP5696819B2 (en) Transmission line and electronic equipment
JP2014086655A (en) Flexible substrate
WO2020130010A1 (en) Transmission line member
JP5472555B2 (en) High frequency signal transmission line and electronic equipment
JP5637340B2 (en) Flat cable
JP2016092561A (en) Transmission line and flat cable
WO2015108094A1 (en) Signal line
WO2014157031A1 (en) High-frequency transmission line and electronic device
WO2017199824A1 (en) Multilayer substrate and electronic appliance
US9583809B2 (en) High-frequency signal line
WO2020121984A1 (en) Electronic device and flat cable
WO2018003383A1 (en) Multilayered substrate
JP6135825B2 (en) Transmission line member
WO2014065172A1 (en) Flexible substrate
US9583810B2 (en) High-frequency signal line
JP5958122B2 (en) High frequency signal line and method for manufacturing substrate layer with signal line
JP5949220B2 (en) Transmission line

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799248

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP