WO2017199784A1 - Cutting method for processing material - Google Patents

Cutting method for processing material Download PDF

Info

Publication number
WO2017199784A1
WO2017199784A1 PCT/JP2017/017459 JP2017017459W WO2017199784A1 WO 2017199784 A1 WO2017199784 A1 WO 2017199784A1 JP 2017017459 W JP2017017459 W JP 2017017459W WO 2017199784 A1 WO2017199784 A1 WO 2017199784A1
Authority
WO
WIPO (PCT)
Prior art keywords
along
distance
crack
processed
laser light
Prior art date
Application number
PCT/JP2017/017459
Other languages
French (fr)
Japanese (ja)
Inventor
山下 憲二
宏一 難波江
Original Assignee
エルシード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルシード株式会社 filed Critical エルシード株式会社
Priority to JP2017546747A priority Critical patent/JP6246444B1/en
Publication of WO2017199784A1 publication Critical patent/WO2017199784A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for cutting a material to be processed.
  • the material to be processed such as SiC is cut mechanically using a wire saw or the like.
  • the processing using a wire saw or the like has a problem that the processing is performed at a low speed and the throughput is lowered.
  • a processing target material that forms a modified region inside by irradiating a pulse laser beam along a planned cutting surface of the processing target material and cuts the processing target material along the planned cutting surface.
  • a cutting method has been proposed (see Patent Document 1).
  • the laser light is relatively moved along a predetermined line in a state where the condensing point is aligned on the planned cutting surface inside the SiC material.
  • the plane to be cut forms an off-angle angle with the c-plane of the SiC crystal, and the pitch between one irradiation point of the laser beam and another irradiation point closest to the one irradiation point is 1 ⁇ m.
  • the thickness is in the range of less than 10 ⁇ m, c-plane cracking from the modified region is preferably caused.
  • This invention is made
  • the place made into the objective is to provide the cutting method of the material to be processed in which the cut surface finally obtained does not largely shift
  • a modified region is formed, and then the processing target material is cut into the cutting target surface.
  • a cutting method of a material to be processed that is cut along a line, wherein the normal line of the planned cutting surface forms a predetermined angle with the normal line of the c surface of the material to be processed, and the distance between the laser light irradiation lines
  • an additional line-shaped modified region is formed by forming a distance between adjacent laser light irradiation lines as a distance at which a crack along the c-plane extends.
  • the distance at which the cracks along the c-plane do not extend can be four times or more the width dimension of the modified region.
  • the distance along which the crack along the c-plane extends can be less than four times the width of the modified region.
  • a method of cutting a material to be processed that cuts the material to be processed along the surface to be cut after the laser beam is absorbed on the surface to be cut of the material to be processed to form a modified region.
  • the normal line of the scheduled cutting surface forms a predetermined angle with the normal line of the predetermined low index surface of the material to be processed, and the distance between the laser light irradiation lines is along the predetermined low index surface
  • an additional line is provided between the crack suppression processing step in which a plurality of line-shaped modified regions are arranged side by side and each line-shaped modified region formed in the crack suppression processing step.
  • the finally obtained cut surface does not greatly deviate from the planned cutting surface.
  • FIG. 1 is a schematic perspective view of a SiC material showing an embodiment of the present invention.
  • FIG. 2 is a schematic explanatory diagram of the laser irradiation apparatus.
  • FIG. 3 is a partial plan view of the SiC material in a state in which the pre-modified region is formed.
  • FIG. 4 is a partial plan view of the SiC material in a state in which the preceding modified region is formed, showing a modification.
  • FIG. 5 is a partial plan view of the SiC material in a state where the additional modified region is formed.
  • FIG. 6 is a partial plan view of the SiC material in a state where an additional modified region is formed, showing a modification.
  • FIG. 1 is a schematic perspective view of a SiC material showing an embodiment of the present invention.
  • FIG. 2 is a schematic explanatory diagram of the laser irradiation apparatus.
  • FIG. 3 is a partial plan view of the SiC material in a state in which the pre-modified region is formed.
  • FIG. 7 is a partial cross-sectional view of the SiC material in a state in which the pre-modified region is formed.
  • FIG. 8 is a partial cross-sectional view of the SiC material in a state where the additional modified region is formed.
  • FIG. 9 is a partial cross-sectional view of a SiC material showing a comparative example.
  • FIG. 1 is a schematic perspective view of a SiC material.
  • the SiC material 1 is formed in a cylindrical shape and is divided into a plurality of SiC substrates 210 by being cut along a predetermined scheduled cutting surface 100.
  • the SiC material 1 is made of 6H-type SiC and can have a diameter of, for example, 3 inches.
  • Each divided SiC substrate 210 is used as a substrate of a semiconductor device, for example.
  • each planned cutting surface 100 forms an off-angle angle with the c-plane orthogonal to the c-axis of 6H-type SiC. Therefore, by cutting SiC material 1 along each planned cutting surface 100, SiC substrate 210 having a main surface that forms an off-angle angle with c-plane can be manufactured.
  • the off angle is, for example, about 4 °.
  • FIG. 2 is a schematic explanatory diagram of the laser irradiation apparatus.
  • the laser irradiation apparatus 300 includes a laser oscillator 310 that oscillates a laser beam, a mirror 320 that changes the direction of the oscillated laser beam, an optical lens 330 that focuses the laser beam, And a stage 340 that supports the SiC laminated body 1 to be irradiated.
  • the laser irradiation apparatus 300 can adjust the focal position, adjust the beam shape, correct aberrations, and the like.
  • the laser irradiation apparatus 300 includes a housing 350 that maintains the laser beam path in a vacuum state.
  • the laser irradiation apparatus 300 is used to irradiate the 6H-type SiC SiC material 1 with laser light, thereby forming a modified region inside the SiC material 1 and cutting the SiC material 1.
  • the pulse width and wavelength of the laser light oscillated from the laser oscillator 310 can be arbitrarily selected.
  • the pulse width may be picoseconds and the wavelength region may be near infrared.
  • the laser light emitted from the laser oscillator 310 is reflected by the mirror 320 and its direction is changed.
  • a plurality of mirrors 320 are provided to change the direction of the laser light.
  • the optical lens 330 is positioned above the stage 340 and focuses laser light incident on the SiC material 1.
  • the stage 340 moves in the x direction and / or y direction by a moving means (not shown), and moves the SiC material 1 placed thereon. Furthermore, the stage 340 may be rotatable about the z direction. In other words, SiC material 1 can be moved relative to the laser beam, whereby a processed surface by the laser beam can be formed at a predetermined depth of SiC material 1.
  • the laser light is absorbed particularly near the focal point in the SiC material 1, whereby a modified region is formed in the SiC material 1.
  • a modified pattern composed of a plurality of line-shaped modified regions is formed on each planned cutting surface 100 by relatively moving the laser light along a predetermined line. Note that the direction in which the laser light is relatively moved is not limited to a straight line, and may be moved in a curved line, for example.
  • a line-shaped modified region is formed by performing one-pulse shots at predetermined intervals along each planned cutting surface 100.
  • a processing spot is formed in the portion where the one-pulse shot is performed, and examples of such a processing spot include a crack spot, a melting treatment spot, a refractive index change spot, or a mixture of at least two of these.
  • the laser light is adjusted so that a modified region is formed on the planned cutting surface 100 on one end side in the axial direction located on the laser light incident side, and the laser light is applied to the planned cutting surface 100. Is absorbed to form a modified pattern. At this time, it is preferable to polish the incident-side surface of the SiC material 1 so that the incidence of the laser beam into the SiC material 1 is not hindered.
  • FIG. 3 is a partial plan view of the SiC material in a state in which the pre-modified region is formed.
  • the preceding modified region 12 is formed along the laser light irradiation line 10 by linearly moving the condensing point of the laser light.
  • the preceding modified region 12 is formed as a set of modified spots formed by one-pulse shot of pulsed laser light.
  • the interval between one-pulse shots of laser light is set so that a part of adjacent condensing points overlap, and the laser light irradiation line 10 is formed continuously. As shown in FIG.
  • each preceding reforming region 12 is arbitrary, it can be, for example, 10 ⁇ m or more and 50 ⁇ m or less.
  • a plurality of line-shaped advance reforming regions 12 are formed side by side, with the distance between the laser light irradiation lines 10 being a distance P1 at which cracks along the c-plane do not extend (cracking suppression processing step).
  • the alignment direction of the respective advance reforming regions 12 is a direction substantially orthogonal to the off direction.
  • the angle formed by the alignment direction of the preceding reforming regions 12 and the direction orthogonal to the off direction can be within 30 degrees.
  • the distance P1 at which the crack along the c-plane does not extend is, for example, four times or more the width dimension of each of the preceding reformed regions 12.
  • FIG. 5 is a partial plan view of the SiC material in a state where the additional modified region is formed.
  • a line-shaped additional modified region 13 is formed between the preceding modified regions 12 formed in the crack suppression processing step, and the distance between adjacent laser light irradiation lines 10 is c. It forms as distance P2 where the crack along a surface extends (crack acceleration processing process).
  • the distance P2 at which the crack along the c-plane extends is, for example, less than four times the width dimension of each of the preceding reformed regions 12.
  • the additional reforming region 13 is formed in the middle of the adjacent preceding reforming region 12.
  • the additional modified region 13 is also formed as a set of modified spots formed by one-pulse shot of pulsed laser light.
  • the interval between one-pulse shots of laser light is set so that a part of adjacent condensing points overlap, and the laser light irradiation line 10 is formed continuously.
  • the interval between the one pulse shots of the laser light can be set so that adjacent condensing points do not overlap, and the laser light irradiation line 11 can be intermittent.
  • region 13 is arbitrary, it can be 10 micrometers or more and 50 micrometers or less, for example.
  • FIG. 7 is a partial cross-sectional view of the SiC material in a state where the preceding reformed region is formed
  • FIG. 8 is a partial cross-sectional view of the SiC material in a state where the additional modified region is formed.
  • a crack 110 is generated in the direction along the c-plane starting from each preceding reforming region 12 in the vicinity of each preceding reforming region 12. Absent.
  • Each preceding reforming region 12 is formed with a predetermined dimension in the depth direction (vertical direction in FIGS. 7 and 8).
  • each preceding reforming region 12 and each additional reforming region 13 are placed between each preceding reforming region 12 and each additional reforming region 13.
  • a crack 110 is independently generated in the direction along the c-plane as a starting point.
  • Each crack 110 is inclined with respect to the planned cutting surface 100 by an off angle.
  • each preceding reforming region 12 and each additional reforming region 13 have a depth dimension that can be reached by a crack 110 extending along the c-plane from an adjacent reforming region. preferable. If the depth dimension of each preceding reforming region 12 and each additional reforming region 13 is short, the crack 110 extending along the c-plane may not be properly extended between the reforming regions.
  • the other end side in the axial direction of the SiC material 1 is fixed and separated from the other end side in the axial direction on one end side in the axial direction
  • the SiC material 1 is cut by applying a force to.
  • the peeled surface of the substrate 210 and the new surface of the SiC material 1 are preferably flattened by polishing or the like.
  • the planned cutting surface 100 is not parallel to the c-plane and the peeled surface is jagged, so it is preferable to make it flat.
  • the preceding reformed regions 12 and the additional modified regions are similarly formed and cut.
  • a plurality of SiC substrates 210 can be obtained.
  • the crack 110 is independently generated in each of the preceding reformed regions 12 and each of the additional modified regions 13, and the modified region to which each crack 110 is adjacent is formed. Since it does not extend beyond this, the final cut surface does not greatly deviate from the planned cutting surface 100.
  • the crack 410 is not generated in the reformed region 412 formed first, adjacent reformed regions 412 are formed. While the region 412 is being processed, a crack extending along the c-plane may extend to the region to be processed. In this region, a crack 110 is generated at a position shifted from the planned cutting surface 100 by the off-angle, and when this region is laser processed, the laser beam is easily absorbed at the position where the crack 110 is generated. As shown in b), the modified region 412 is formed at a position shifted from the planned cutting surface 100. If the modified region 412 is continuously formed in this way, the crack 410 generated in the initial stage extends endlessly along the c-plane as shown in FIG. 9C, and finally obtained. The cut surface deviates greatly from the planned cutting surface 100.
  • Each preceding reforming region 12 and each additional reforming region 13 may be curved as well as linear as shown in FIGS.
  • each preceding reforming region and each additional reforming region may be formed in a spiral shape or may be concentric with a predetermined interval.
  • the present invention is applied to the 6H type SiC material 1, but other polytype hexagonal SiC materials such as 4H type as well as non-hexagonal type SiC materials, for example.
  • the present invention can also be applied to materials.
  • the present invention can be applied to materials other than SiC such as GaN, AlN, sapphire, and diamond.
  • the normal of the surface to be cut forms a predetermined angle with the normal of the predetermined low index surface of the material to be processed.
  • the cutting plane 100 has a low index plane and the c plane which is an off-angle angle. However, it is off from other low index planes such as the a plane and the m plane.
  • the angle may be an angle.
  • the method for cutting a material to be processed according to the present invention is industrially useful because the finally obtained cut surface does not greatly deviate from the planned cutting surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)

Abstract

Provided is a cutting method for a processing material by which the cut surface that is finally obtained does not deviate significantly from the planned cut surface. The cutting method for a processing material involves causing the planned cut surface of the processing material to absorb laser light thereby forming a modified region, and then cutting the processing material along the planned cut surface. The cutting method for a processing material is configured so that a normal line of the planned cut surface forms a prescribed angle with a normal line of a prescribed low-index surface of the processing material, and so as to include the following: a break suppression processing step for forming a plurality of linear modified regions in an aligned manner, with the distance between laser-light projection lines being a distance such that a break along the prescribed low-index surface does not extend; and a break promotion processing step for forming additional linear modified regions between each linear modified region formed in the break suppression processing step, with the distance between adjacent laser-light projection lines being a distance such that a break along the prescribed low-index surface extends.

Description

加工対象材料の切断方法Cutting method of material to be processed
 本発明は、加工対象材料の切断方法に関する。 The present invention relates to a method for cutting a material to be processed.
 SiC等の加工対象材料の切断は、ワイヤーソー等を用いて機械的に切断することが一般的である。しかし、ワイヤーソー等を用いた加工では、低速度での加工となってしまいスループットが低下するという問題点がある。 In general, the material to be processed such as SiC is cut mechanically using a wire saw or the like. However, the processing using a wire saw or the like has a problem that the processing is performed at a low speed and the throughput is lowered.
 この問題点を解消するため、加工対象材料の切断予定面に沿ってパルスレーザ光を照射することにより内部に改質領域を形成し、切断予定面に沿って加工対象材料を切断する加工対象材料の切断方法が提案されている(特許文献1参照)。特許文献1に記載の方法では、SiC材料の内部において切断予定面上に集光点を合わせた状態で、レーザ光を所定のラインに沿って相対的に移動させている。特許文献1では、切断予定面はSiC結晶のc面とオフ角分の角度をなしており、レーザ光の一の照射点と該一の照射点に最も近い他の照射点とのピッチが1μm以上10μm未満の範囲であるときに、改質領域からのc面割れが好適に生じるとされている。 In order to solve this problem, a processing target material that forms a modified region inside by irradiating a pulse laser beam along a planned cutting surface of the processing target material and cuts the processing target material along the planned cutting surface. A cutting method has been proposed (see Patent Document 1). In the method described in Patent Document 1, the laser light is relatively moved along a predetermined line in a state where the condensing point is aligned on the planned cutting surface inside the SiC material. In Patent Document 1, the plane to be cut forms an off-angle angle with the c-plane of the SiC crystal, and the pitch between one irradiation point of the laser beam and another irradiation point closest to the one irradiation point is 1 μm. When the thickness is in the range of less than 10 μm, c-plane cracking from the modified region is preferably caused.
 しかし、実際に特許文献1に示されているようにライン状の改質領域を並べて形成したところ、1本のライン状の改質領域のみでは改質領域からc面に沿って延びる割れは確認されず、2本のライン状の改質領域を形成した際にこれらの改質領域間にc面に沿った割れが確認された。 However, as shown in Patent Document 1, when the line-shaped reformed regions are formed side by side, cracks extending from the reformed region along the c-plane are confirmed with only one line-shaped reformed region. No crack was observed along the c-plane between these modified regions when two line-shaped modified regions were formed.
特開2013-49161号公報JP 2013-49161 A
 ところで、切断予定面の法線が所定の低指数面の法線とオフ角分の角度をなしている場合に、ライン状の改質領域を並べて形成した際に、所定の領域で生じた所定の低指数面に沿って延びる割れがレーザ加工前の加工予定領域まで伸展してしまうと、この領域においてはオフ角分だけ切断予定面からずれた位置に割れが生じてしまう。そして、この領域をレーザ加工すると、割れが生じた位置にレーザ光が吸収されやすいことから、切断予定面からずれた位置に改質領域が形成されてしまう。これを繰り返すことにより、初期に生じた割れが所定の低指数面に沿って際限なく伸展してしまい、最終的に得られる切断面が切断予定面から大きくずれてしまうおそれがあった。 By the way, when the normal line of the planned cutting surface forms an angle corresponding to the off-angle with the normal line of the predetermined low index surface, when the line-shaped modified region is formed side by side, the predetermined region generated in the predetermined region If the crack extending along the low index plane extends to the planned processing area before laser processing, the crack occurs at a position shifted from the planned cutting surface by the off angle in this area. When this region is laser processed, the laser beam is easily absorbed at the position where the crack has occurred, and thus a modified region is formed at a position shifted from the planned cutting surface. By repeating this, cracks generated at the initial stage extend endlessly along a predetermined low index surface, and there is a possibility that the finally obtained cut surface is greatly deviated from the planned cutting surface.
 本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、最終的に得られる切断面が切断予定面から大きくずれることのない加工対象材料の切断方法を提供することにある。 This invention is made | formed in view of the said situation, The place made into the objective is to provide the cutting method of the material to be processed in which the cut surface finally obtained does not largely shift | deviate from the planned cutting surface. is there.
 前記目的を達成するため、本発明では、六方晶系のSiCからなる加工対象材料の切断予定面に対しレーザ光を吸収させて改質領域を形成した後、前記加工対象材料を前記切断予定面に沿って切断する加工対象材料の切断方法であって、前記切断予定面の法線は、前記加工対象材料のc面の法線と所定の角度をなし、前記レーザ光の照射ライン同士の距離をc面に沿った割れが伸展しない距離として、複数のライン状の改質領域を並べて形成する割れ抑制加工工程と、前記割れ抑制加工工程にて形成されたライン状の各改質領域の間に、追加のライン状の改質領域を、隣接する前記レーザ光の照射ライン同士の距離をc面に沿った割れが伸展する距離として形成する割れ促進加工工程と、を含む加工対象材料の切断方法が提供される。 In order to achieve the above object, in the present invention, after the laser beam is absorbed to the cutting target surface of the processing target material made of hexagonal SiC, a modified region is formed, and then the processing target material is cut into the cutting target surface. A cutting method of a material to be processed that is cut along a line, wherein the normal line of the planned cutting surface forms a predetermined angle with the normal line of the c surface of the material to be processed, and the distance between the laser light irradiation lines Between the crack-reducing process step in which a plurality of line-shaped modified regions are formed side by side, and the line-shaped modified regions formed in the crack-restricting process step In addition, an additional line-shaped modified region is formed by forming a distance between adjacent laser light irradiation lines as a distance at which a crack along the c-plane extends. A method is provided.
 上記SiC材料の加工方法において、前記c面に沿った割れが伸展しない距離は、前記改質領域の幅寸法の4倍以上とすることができる。 In the SiC material processing method, the distance at which the cracks along the c-plane do not extend can be four times or more the width dimension of the modified region.
 上記SiC材料の加工方法において、前記c面に沿った割れが伸展する距離は、前記改質領域の幅寸法の4倍未満とすることができる。 In the SiC material processing method, the distance along which the crack along the c-plane extends can be less than four times the width of the modified region.
 また、本発明では、加工対象材料の切断予定面に対しレーザ光を吸収させて改質領域を形成した後、前記加工対象材料を前記切断予定面に沿って切断する加工対象材料の切断方法であって、前記切断予定面の法線は、前記加工対象材料の所定の低指数面の法線と所定の角度をなし、前記レーザ光の照射ライン同士の距離を前記所定の低指数面に沿った割れが伸展しない距離として、複数のライン状の改質領域を並べて形成する割れ抑制加工工程と、前記割れ抑制加工工程にて形成されたライン状の各改質領域の間に、追加のライン状の改質領域を、隣接する前記レーザ光の照射ライン同士の距離を前記所定の低指数面に沿った割れが伸展する距離として形成する割れ促進加工工程と、を含む加工対象材料の切断方法が提供される。 Further, in the present invention, a method of cutting a material to be processed that cuts the material to be processed along the surface to be cut after the laser beam is absorbed on the surface to be cut of the material to be processed to form a modified region. The normal line of the scheduled cutting surface forms a predetermined angle with the normal line of the predetermined low index surface of the material to be processed, and the distance between the laser light irradiation lines is along the predetermined low index surface As a distance at which cracks do not extend, an additional line is provided between the crack suppression processing step in which a plurality of line-shaped modified regions are arranged side by side and each line-shaped modified region formed in the crack suppression processing step. Forming a modified region in the form of a distance between adjacent laser light irradiation lines as a distance along which the crack along the predetermined low index surface extends, and a method for cutting a material to be processed, including: Is provided.
 本発明の加工対象材料の切断方法によれば、最終的に得られる切断面が切断予定面から大きくずれることはない。 According to the method for cutting a material to be processed according to the present invention, the finally obtained cut surface does not greatly deviate from the planned cutting surface.
図1は、本発明の一実施形態を示すSiC材料の概略斜視説明図である。FIG. 1 is a schematic perspective view of a SiC material showing an embodiment of the present invention. 図2は、レーザ照射装置の概略説明図である。FIG. 2 is a schematic explanatory diagram of the laser irradiation apparatus. 図3は、先行改質領域が形成された状態のSiC材料の一部平面図である。FIG. 3 is a partial plan view of the SiC material in a state in which the pre-modified region is formed. 図4は変形例を示し、先行改質領域が形成された状態のSiC材料の一部平面図である。FIG. 4 is a partial plan view of the SiC material in a state in which the preceding modified region is formed, showing a modification. 図5は、追加改質領域が形成された状態のSiC材料の一部平面図である。FIG. 5 is a partial plan view of the SiC material in a state where the additional modified region is formed. 図6は変形例を示し、追加改質領域が形成された状態のSiC材料の一部平面図である。FIG. 6 is a partial plan view of the SiC material in a state where an additional modified region is formed, showing a modification. 図7は、先行改質領域が形成された状態のSiC材料の一部断面図である。FIG. 7 is a partial cross-sectional view of the SiC material in a state in which the pre-modified region is formed. 図8は、追加改質領域が形成された状態のSiC材料の一部断面図である。FIG. 8 is a partial cross-sectional view of the SiC material in a state where the additional modified region is formed. 図9は、比較例を示すSiC材料の一部断面図である。FIG. 9 is a partial cross-sectional view of a SiC material showing a comparative example.
 図1、図2、図3、図5、図7及び図8は本発明の一実施形態を示すものであり、図1はSiC材料の概略斜視説明図である。
 図1に示すように、SiC材料1は、円筒状に形成され、所定の切断予定面100で切断されることにより、複数のSiC基板210に分割される。本実施形態においては、SiC材料1は6H型SiCからなり、直径を例えば3インチとすることができる。また、分割された各SiC基板210は、例えば半導体デバイスの基板として利用される。
1, FIG. 2, FIG. 3, FIG. 5, FIG. 7 and FIG. 8 show an embodiment of the present invention, and FIG. 1 is a schematic perspective view of a SiC material.
As shown in FIG. 1, the SiC material 1 is formed in a cylindrical shape and is divided into a plurality of SiC substrates 210 by being cut along a predetermined scheduled cutting surface 100. In the present embodiment, the SiC material 1 is made of 6H-type SiC and can have a diameter of, for example, 3 inches. Each divided SiC substrate 210 is used as a substrate of a semiconductor device, for example.
 ここで、各切断予定面100は6H型SiCのc軸に直交するc面とオフ角分の角度をなしている。したがって、各切断予定面100に沿ってSiC材料1を切断することにより、c面とオフ角分の角度を成す主面を有するSiC基板210を製造することができる。尚、オフ角は、例えば4°程度である。 Here, each planned cutting surface 100 forms an off-angle angle with the c-plane orthogonal to the c-axis of 6H-type SiC. Therefore, by cutting SiC material 1 along each planned cutting surface 100, SiC substrate 210 having a main surface that forms an off-angle angle with c-plane can be manufactured. The off angle is, for example, about 4 °.
 図2は、レーザ照射装置の概略説明図である。
 図2に示すように、レーザ照射装置300は、レーザ光をパルス発振するレーザ発振器310と、発振されたレーザ光の方向を変えるミラー320と、レーザ光をフォーカシングする光学レンズ330と、レーザ光の照射対象であるSiC積層体1を支持するステージ340と、を備えている。尚、図2には特に細かい光学系は図示していないが、レーザ照射装置300は、焦点位置調整、ビーム形状調整、収差補正等が可能となっている。また、レーザ照射装置300は、レーザ光の経路を真空状態に維持するハウジング350を有している。本実施形態においては、このレーザ照射装置300を用い、6H型SiCのSiC材料1にレーザ光を照射して、SiC材料1の内部に改質領域を形成し、SiC材料1を切断する。
FIG. 2 is a schematic explanatory diagram of the laser irradiation apparatus.
As shown in FIG. 2, the laser irradiation apparatus 300 includes a laser oscillator 310 that oscillates a laser beam, a mirror 320 that changes the direction of the oscillated laser beam, an optical lens 330 that focuses the laser beam, And a stage 340 that supports the SiC laminated body 1 to be irradiated. Although a particularly fine optical system is not shown in FIG. 2, the laser irradiation apparatus 300 can adjust the focal position, adjust the beam shape, correct aberrations, and the like. In addition, the laser irradiation apparatus 300 includes a housing 350 that maintains the laser beam path in a vacuum state. In the present embodiment, the laser irradiation apparatus 300 is used to irradiate the 6H-type SiC SiC material 1 with laser light, thereby forming a modified region inside the SiC material 1 and cutting the SiC material 1.
 レーザ発振器310から発振されるレーザ光のパルス幅、波長は任意に選択することができるが、例えば、パルス幅がピコ秒で波長域が近赤外のものとすることができる。レーザ発振器310で放出されたレーザ光は、ミラー320で反射されて方向が変更される。ミラー320は、レーザ光の方向を変更するために複数設けられる。また、光学レンズ330は、ステージ340の上方に位置し、SiC材料1に入射されるレーザ光をフォーカシングする。 The pulse width and wavelength of the laser light oscillated from the laser oscillator 310 can be arbitrarily selected. For example, the pulse width may be picoseconds and the wavelength region may be near infrared. The laser light emitted from the laser oscillator 310 is reflected by the mirror 320 and its direction is changed. A plurality of mirrors 320 are provided to change the direction of the laser light. The optical lens 330 is positioned above the stage 340 and focuses laser light incident on the SiC material 1.
 ステージ340は、図示しない移動手段によりx方向及び/又はy方向に移動し、その上に載置されたSiC材料1を移動する。さらに、ステージ340をz方向を軸として回転可能としてもよい。すなわち、SiC材料1をレーザ光に対して相対的に移動することができ、これによりSiC材料1の所定深さにレーザ光による加工面を形成することができる。 The stage 340 moves in the x direction and / or y direction by a moving means (not shown), and moves the SiC material 1 placed thereon. Furthermore, the stage 340 may be rotatable about the z direction. In other words, SiC material 1 can be moved relative to the laser beam, whereby a processed surface by the laser beam can be formed at a predetermined depth of SiC material 1.
 レーザ光は、SiC材料1内の集光点近傍にて特に吸収され、これによりSiC材料1に改質領域が形成される。本実施形態においては、レーザ光を所定のラインに沿って相対的に移動させることにより、各切断予定面100に複数のライン状の改質領域からなる改質パターンが形成される。なお、レーザ光を相対移動させる方向は直線状に限定されず、例えば曲線状に移動させることも可能である。 The laser light is absorbed particularly near the focal point in the SiC material 1, whereby a modified region is formed in the SiC material 1. In the present embodiment, a modified pattern composed of a plurality of line-shaped modified regions is formed on each planned cutting surface 100 by relatively moving the laser light along a predetermined line. Note that the direction in which the laser light is relatively moved is not limited to a straight line, and may be moved in a curved line, for example.
 また、本実施形態においては、各切断予定面100に沿って、所定間隔でワンパルスショットを行うことによりライン状の改質領域を形成している。ワンパルスショットが行われた部分には加工スポットが形成され、このような加工スポットとして、クラックスポット、溶融処理スポット、屈折率変化スポット又はこれらの少なくとも2つが混在するもの等が挙げられる。 In this embodiment, a line-shaped modified region is formed by performing one-pulse shots at predetermined intervals along each planned cutting surface 100. A processing spot is formed in the portion where the one-pulse shot is performed, and examples of such a processing spot include a crack spot, a melting treatment spot, a refractive index change spot, or a mixture of at least two of these.
 SiC材料1の切断にあたっては、まず、レーザ光の入射側に位置する軸方向一端側の切断予定面100に改質領域が形成されるようレーザ光を調整し、当該切断予定面100にレーザ光を吸収させて改質パターンを形成する。このとき、SiC材料1中へのレーザ光の入射が妨げられないように、SiC材料1の入射側の表面を研磨しておくことが好ましい。 When cutting the SiC material 1, first, the laser light is adjusted so that a modified region is formed on the planned cutting surface 100 on one end side in the axial direction located on the laser light incident side, and the laser light is applied to the planned cutting surface 100. Is absorbed to form a modified pattern. At this time, it is preferable to polish the incident-side surface of the SiC material 1 so that the incidence of the laser beam into the SiC material 1 is not hindered.
 図3は先行改質領域が形成された状態のSiC材料の一部平面図である。
 改質パターンの形成にあたり、まず、図3に示すように、レーザ光の集光点を直線的に移動させることで、レーザ光の照射ライン10に沿って先行改質領域12を形成する。先行改質領域12は、パルスレーザ光のワンパルスショットで形成される改質スポットの集合として形成されている。本実施形態においては、レーザ光のワンパルスショットの間隔は、隣接する集光点の一部が重なるように設定されており、レーザ光の照射ライン10は連続的に形成される。尚、図4に示すように、レーザ光のワンパルスショットの間隔を隣接する集光点が重ならないように設定し、レーザ光の照射ライン11を間欠的とすることもできる。各先行改質領域12の幅寸法は任意であるが、例えば10μm以上50μm以下とすることができる。本実施形態では、レーザ光の照射ライン10同士の距離をc面に沿った割れが伸展しない距離P1として、複数のライン状の先行改質領域12が並べて形成される(割れ抑制加工工程)。本実施形態においては、各先行改質領域12の並び方向は、オフ方向とほぼ直交する方向である。各先行改質領域12の並び方向は任意であるが、例えば、各先行改質領域12の並び方向と、オフ方向と直交する方向と、のなす角を30度以内とすることができる。c面に沿った割れが伸展しない距離P1は、例えば、各先行改質領域12の幅寸法の4倍以上である。
FIG. 3 is a partial plan view of the SiC material in a state in which the pre-modified region is formed.
In forming the modified pattern, first, as shown in FIG. 3, the preceding modified region 12 is formed along the laser light irradiation line 10 by linearly moving the condensing point of the laser light. The preceding modified region 12 is formed as a set of modified spots formed by one-pulse shot of pulsed laser light. In this embodiment, the interval between one-pulse shots of laser light is set so that a part of adjacent condensing points overlap, and the laser light irradiation line 10 is formed continuously. As shown in FIG. 4, the interval between one-pulse shots of the laser light can be set so that adjacent condensing points do not overlap, and the laser light irradiation line 11 can be intermittent. Although the width dimension of each preceding reforming region 12 is arbitrary, it can be, for example, 10 μm or more and 50 μm or less. In the present embodiment, a plurality of line-shaped advance reforming regions 12 are formed side by side, with the distance between the laser light irradiation lines 10 being a distance P1 at which cracks along the c-plane do not extend (cracking suppression processing step). In the present embodiment, the alignment direction of the respective advance reforming regions 12 is a direction substantially orthogonal to the off direction. For example, the angle formed by the alignment direction of the preceding reforming regions 12 and the direction orthogonal to the off direction can be within 30 degrees. The distance P1 at which the crack along the c-plane does not extend is, for example, four times or more the width dimension of each of the preceding reformed regions 12.
 図5は追加改質領域が形成された状態のSiC材料の一部平面図である。
 次いで、図5に示すように、割れ抑制加工工程にて形成された先行改質領域12の間に、ライン状の追加改質領域13を、隣接するレーザ光の照射ライン10同士の距離をc面に沿った割れが伸展する距離P2として形成する(割れ促進加工工程)。c面に沿った割れが伸展する距離P2は、例えば、各先行改質領域12の幅寸法の4倍未満である。本実施形態においては、追加改質領域13は、隣接する先行改質領域12の中間に形成される。追加改質領域13も先行改質領域12と同様に、パルスレーザ光のワンパルスショットで形成される改質スポットの集合として形成されている。本実施形態においては、レーザ光のワンパルスショットの間隔は、隣接する集光点の一部が重なるように設定されており、レーザ光の照射ライン10は連続的に形成される。尚、図6に示すように、レーザ光のワンパルスショットの間隔を隣接する集光点が重ならないように設定し、レーザ光の照射ライン11を間欠的とすることもできる。各追加改質領域13の幅寸法は任意であるが、例えば10μm以上50μm以下とすることができる。
FIG. 5 is a partial plan view of the SiC material in a state where the additional modified region is formed.
Next, as shown in FIG. 5, a line-shaped additional modified region 13 is formed between the preceding modified regions 12 formed in the crack suppression processing step, and the distance between adjacent laser light irradiation lines 10 is c. It forms as distance P2 where the crack along a surface extends (crack acceleration processing process). The distance P2 at which the crack along the c-plane extends is, for example, less than four times the width dimension of each of the preceding reformed regions 12. In the present embodiment, the additional reforming region 13 is formed in the middle of the adjacent preceding reforming region 12. Similar to the preceding modified region 12, the additional modified region 13 is also formed as a set of modified spots formed by one-pulse shot of pulsed laser light. In this embodiment, the interval between one-pulse shots of laser light is set so that a part of adjacent condensing points overlap, and the laser light irradiation line 10 is formed continuously. As shown in FIG. 6, the interval between the one pulse shots of the laser light can be set so that adjacent condensing points do not overlap, and the laser light irradiation line 11 can be intermittent. Although the width dimension of each additional modification area | region 13 is arbitrary, it can be 10 micrometers or more and 50 micrometers or less, for example.
 ここで、図7及び図8を参照して、SiC材料中のc面に沿った割れの伸展状態を説明する。図7は先行改質領域が形成された状態のSiC材料の一部断面図、図8は追加改質領域が形成された状態のSiC材料の一部断面図である。
 図7に示すように、各先行改質領域12が形成された状態では、各先行改質領域12の近傍に、各先行改質領域12を起点としてc面に沿う方向へ割れ110は生じていない。尚、各先行改質領域12は、深さ方向(図7及び図8の上下方向)について所定の寸法で形成されている。この状態から追加改質領域13を形成すると、図8に示すように、各先行改質領域12及び各追加改質領域13の間に、各先行改質領域12及び各追加改質領域13を起点としてc面に沿う方向へ割れ110が独立して生じる。各割れ110は、切断予定面100に対してオフ角だけ傾斜している。ここで、各先行改質領域12及び各追加改質領域13は、図8に示すように、隣接する改質領域からc面に沿って延びる割れ110が到達可能な深さ寸法を有することが好ましい。各先行改質領域12及び各追加改質領域13の深さ寸法が短いと、c面に沿って延びる割れ110を、各改質領域間で適切に伸展させられないおそれがある。
Here, with reference to FIG.7 and FIG.8, the extension state of the crack along c surface in SiC material is demonstrated. FIG. 7 is a partial cross-sectional view of the SiC material in a state where the preceding reformed region is formed, and FIG. 8 is a partial cross-sectional view of the SiC material in a state where the additional modified region is formed.
As shown in FIG. 7, in the state where each preceding reforming region 12 is formed, a crack 110 is generated in the direction along the c-plane starting from each preceding reforming region 12 in the vicinity of each preceding reforming region 12. Absent. Each preceding reforming region 12 is formed with a predetermined dimension in the depth direction (vertical direction in FIGS. 7 and 8). When the additional reforming region 13 is formed from this state, as shown in FIG. 8, each preceding reforming region 12 and each additional reforming region 13 are placed between each preceding reforming region 12 and each additional reforming region 13. A crack 110 is independently generated in the direction along the c-plane as a starting point. Each crack 110 is inclined with respect to the planned cutting surface 100 by an off angle. Here, as shown in FIG. 8, each preceding reforming region 12 and each additional reforming region 13 have a depth dimension that can be reached by a crack 110 extending along the c-plane from an adjacent reforming region. preferable. If the depth dimension of each preceding reforming region 12 and each additional reforming region 13 is short, the crack 110 extending along the c-plane may not be properly extended between the reforming regions.
 切断予定面100に各先行改質領域12及び各追加改質領域13を形成した後、SiC材料1の軸方向他端側を固定し、軸方向一端側に軸方向他端側から離間させる方向に力を加えることによりSiC材料1が切断される。剥離後は、剥離された基板210の表面及びSiC材料1の新たな表面を研磨等により平坦とすることが好ましい。本実施形態においては、切断予定面100がc面と平行でなく剥離面がギザギザとなるので、平坦とすることが好ましい。 After forming each preceding reformed region 12 and each additional modified region 13 on the planned cutting surface 100, the other end side in the axial direction of the SiC material 1 is fixed and separated from the other end side in the axial direction on one end side in the axial direction The SiC material 1 is cut by applying a force to. After peeling, the peeled surface of the substrate 210 and the new surface of the SiC material 1 are preferably flattened by polishing or the like. In the present embodiment, the planned cutting surface 100 is not parallel to the c-plane and the peeled surface is jagged, so it is preferable to make it flat.
 この後、基板210が剥離されたSiC材料1における軸方向一端側の切断予定面100について、同様に各先行改質領域12及び各追加改質領域を形成して切断する。このように、SiC材料1を全ての切断予定面100において軸方向他端側から順次切断していくことにより、複数のSiC基板210を得ることができる。 After this, similarly to the planned cutting surface 100 on one end side in the axial direction of the SiC material 1 from which the substrate 210 has been peeled off, the preceding reformed regions 12 and the additional modified regions are similarly formed and cut. In this way, by sequentially cutting the SiC material 1 from all the planned cutting surfaces 100 from the other axial end side, a plurality of SiC substrates 210 can be obtained.
 このように、本実施形態のSiC材料の加工方法によれば、各先行改質領域12と各追加改質領域13で割れ110を独立的に生じさせ、各割れ110が隣接する改質領域を超えて伸展しないようにしたので、最終的な切断面が切断予定面100から大きくずれることはない。 Thus, according to the processing method of the SiC material of the present embodiment, the crack 110 is independently generated in each of the preceding reformed regions 12 and each of the additional modified regions 13, and the modified region to which each crack 110 is adjacent is formed. Since it does not extend beyond this, the final cut surface does not greatly deviate from the planned cutting surface 100.
 これに対し、全ての改質領域412を並び順に形成していく場合、図9(a)に示すように最初に形成された改質領域412では割れ410が生じていないものの、隣接する改質領域412を加工している間にc面に沿って延びる割れが加工予定領域まで伸展する場合がある。この領域においてはオフ角分だけ切断予定面100からずれた位置に割れ110が生じており、この領域をレーザ加工すると、割れ110が生じた位置にレーザ光が吸収されやすいことから、図9(b)に示すように、切断予定面100からずれた位置に改質領域412が形成されてしまう。このように続けて改質領域412を形成していくと、図9(c)に示すように、初期に生じた割れ410がc面に沿って際限なく伸展してしまい、最終的に得られる切断面が切断予定面100から大きくずれてしまう On the other hand, when all the reformed regions 412 are formed in order, as shown in FIG. 9A, although the crack 410 is not generated in the reformed region 412 formed first, adjacent reformed regions 412 are formed. While the region 412 is being processed, a crack extending along the c-plane may extend to the region to be processed. In this region, a crack 110 is generated at a position shifted from the planned cutting surface 100 by the off-angle, and when this region is laser processed, the laser beam is easily absorbed at the position where the crack 110 is generated. As shown in b), the modified region 412 is formed at a position shifted from the planned cutting surface 100. If the modified region 412 is continuously formed in this way, the crack 410 generated in the initial stage extends endlessly along the c-plane as shown in FIG. 9C, and finally obtained. The cut surface deviates greatly from the planned cutting surface 100.
 尚、各先行改質領域12及び各追加改質領域13は、図3から図6に示すような直線状の他、曲線状とすることもできる。例えば、各先行改質領域及び各追加改質領域を渦巻き状に形成したり、所定間隔の同心円状とすることもできる。 Each preceding reforming region 12 and each additional reforming region 13 may be curved as well as linear as shown in FIGS. For example, each preceding reforming region and each additional reforming region may be formed in a spiral shape or may be concentric with a predetermined interval.
 また、前記実施形態においては、6H型のSiC材料1に本発明を適用したものを示したが、例えば4H型等の他のポリタイプの六方晶系SiC材料はもちろん、六方晶系以外のSiC材料にも本発明を適用することが可能である。さらには、例えば、GaN、AlN、サファイア、ダイヤモンド等のSiC以外の材料にも適用が可能である。要は、切断予定面の法線が加工対象材料の所定の低指数面の法線と所定の角度をなしていればよい。例えば、前記実施形態においては、切断予定面100が低指数面であるc面とオフ角分の角度をなしているものを示したが、a面、m面等の他の低指数面とオフ角分の角度をなしているものであってもよい。 In the above embodiment, the present invention is applied to the 6H type SiC material 1, but other polytype hexagonal SiC materials such as 4H type as well as non-hexagonal type SiC materials, for example. The present invention can also be applied to materials. Furthermore, the present invention can be applied to materials other than SiC such as GaN, AlN, sapphire, and diamond. In short, it is only necessary that the normal of the surface to be cut forms a predetermined angle with the normal of the predetermined low index surface of the material to be processed. For example, in the above-described embodiment, the cutting plane 100 has a low index plane and the c plane which is an off-angle angle. However, it is off from other low index planes such as the a plane and the m plane. The angle may be an angle.
 以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 As mentioned above, although embodiment of this invention was described, embodiment described above does not limit the invention which concerns on a claim. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.
 以上のように、本発明の加工対象材料の切断方法は、最終的に得られる切断面が切断予定面から大きくずれることがなく、産業上有用である。 As described above, the method for cutting a material to be processed according to the present invention is industrially useful because the finally obtained cut surface does not greatly deviate from the planned cutting surface.
 1  SiC材料
 12  先行改質領域
 13  追加改質領域
 100 切断予定面
 110 割れ
 210 SiC基板
 300 レーザ照射装置
 310 レーザ発振器
 320 ミラー
 330 光学レンズ
 340 ステージ
 350 ハウジング
 410 割れ
 412 改質領域
 P1  c面に沿った割れが伸展しない距離
 P2  c面に沿った割れが伸展する距離
DESCRIPTION OF SYMBOLS 1 SiC material 12 Prior modification area | region 13 Additional modification | reformation area | region 100 Plane cut surface 110 Crack 210 SiC substrate 300 Laser irradiation apparatus 310 Laser oscillator 320 Mirror 330 Optical lens 340 Stage 350 Housing 410 Crack 412 Modification area | region P1 Along c surface Distance at which cracks do not extend Distance at which cracks along the P2 c-plane extend

Claims (4)

  1.  六方晶系のSiCからなる加工対象材料の切断予定面に対しレーザ光を吸収させて改質領域を形成した後、前記加工対象材料を前記切断予定面に沿って切断する加工対象材料の切断方法であって、
     前記切断予定面の法線は、前記加工対象材料のc面の法線と所定の角度をなし、
     前記レーザ光の照射ライン同士の距離をc面に沿った割れが伸展しない距離として、複数のライン状の改質領域を並べて形成する割れ抑制加工工程と、
     前記割れ抑制加工工程にて形成されたライン状の各改質領域の間に、追加のライン状の改質領域を、隣接する前記レーザ光の照射ライン同士の距離をc面に沿った割れが伸展する距離として形成する割れ促進加工工程と、を含む加工対象材料の切断方法。
    A method for cutting a material to be processed, comprising: forming a modified region by absorbing laser light on a planned cutting surface of a processing target material made of hexagonal SiC; and cutting the processing target material along the planned cutting surface Because
    The normal line of the planned cutting surface forms a predetermined angle with the normal line of the c-plane of the material to be processed,
    As a distance between cracks along the c-plane the distance between the laser light irradiation lines, a crack suppression processing step of forming a plurality of line-shaped modified regions side by side,
    Between each of the line-shaped modified regions formed in the crack suppression processing step, an additional line-shaped modified region is formed, and the distance between adjacent irradiation lines of the laser light is divided along the c-plane. A method for cutting a material to be processed, including a crack promoting processing step formed as a distance to be extended.
  2.  前記c面に沿った割れが伸展しない距離は、前記改質領域の幅寸法の4倍以上である請求項1に記載の加工対象材料の切断方法。 The method for cutting a material to be processed according to claim 1, wherein a distance along which the crack along the c-plane does not extend is four times or more a width dimension of the modified region.
  3.  前記c面に沿った割れが伸展する距離は、前記改質領域の幅寸法の4倍未満である請求項1または2に記載の加工対象材料の切断方法。 The method for cutting a material to be processed according to claim 1 or 2, wherein a distance along which the crack along the c-plane extends is less than four times the width dimension of the modified region.
  4.  加工対象材料の切断予定面に対しレーザ光を吸収させて改質領域を形成した後、前記加工対象材料を前記切断予定面に沿って切断する加工対象材料の切断方法であって、
     前記切断予定面の法線は、前記加工対象材料の所定の低指数面の法線と所定の角度をなし、
     前記レーザ光の照射ライン同士の距離を前記所定の低指数面に沿った割れが伸展しない距離として、複数のライン状の改質領域を並べて形成する割れ抑制加工工程と、
     前記割れ抑制加工工程にて形成されたライン状の各改質領域の間に、追加のライン状の改質領域を、隣接する前記レーザ光の照射ライン同士の距離を前記所定の低指数面に沿った割れが伸展する距離として形成する割れ促進加工工程と、を含む加工対象材料の切断方法。
    A method of cutting a material to be processed that cuts the material to be processed along the surface to be cut after absorbing the laser light to the surface to be cut of the material to be processed to form a modified region,
    The normal line of the planned cutting surface forms a predetermined angle with the normal line of the predetermined low index surface of the material to be processed,
    As the distance between the irradiation lines of the laser light as a distance where the cracks along the predetermined low index surface do not extend, a crack suppression processing step that forms a plurality of line-shaped modified regions side by side,
    Between each of the line-shaped modified regions formed in the crack suppression processing step, an additional line-shaped modified region is provided, and the distance between adjacent laser light irradiation lines is set to the predetermined low index surface. And a crack acceleration processing step formed as a distance along which the crack along the extension extends.
PCT/JP2017/017459 2016-05-17 2017-05-09 Cutting method for processing material WO2017199784A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017546747A JP6246444B1 (en) 2016-05-17 2017-05-09 Cutting method of material to be processed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-099161 2016-05-17
JP2016099161 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017199784A1 true WO2017199784A1 (en) 2017-11-23

Family

ID=60325837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017459 WO2017199784A1 (en) 2016-05-17 2017-05-09 Cutting method for processing material

Country Status (2)

Country Link
JP (2) JP6246444B1 (en)
WO (1) WO2017199784A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170151627A1 (en) * 2015-06-05 2017-06-01 Disco Corporation Wafer producing method
CN110246758A (en) * 2018-03-09 2019-09-17 信越聚合物株式会社 Manufacture of substrates
WO2020130109A1 (en) * 2018-12-21 2020-06-25 浜松ホトニクス株式会社 Laser machining method and production method for semiconductor member
WO2020130055A1 (en) * 2018-12-21 2020-06-25 国立大学法人東海国立大学機構 Laser processing method, semiconductor member manufacturing method, and laser processing device
WO2020213478A1 (en) * 2019-04-19 2020-10-22 東京エレクトロン株式会社 Processing device and processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327920B2 (en) * 2018-09-28 2023-08-16 株式会社ディスコ Diamond substrate production method
KR20210038335A (en) 2019-09-30 2021-04-07 니치아 카가쿠 고교 가부시키가이샤 Method of manufacturing light-emitting element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049161A (en) * 2011-08-30 2013-03-14 Hamamatsu Photonics Kk Method of cutting workpiece
JP2015074004A (en) * 2013-10-07 2015-04-20 信越ポリマー株式会社 Internal processing layer-forming single crystal member, and manufacturing method for the same
JP2015123466A (en) * 2013-12-26 2015-07-06 信越ポリマー株式会社 Substrate processing device and substrate processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917677B1 (en) * 2014-12-26 2016-05-18 エルシード株式会社 Processing method of SiC material
JP6494457B2 (en) * 2015-07-16 2019-04-03 株式会社ディスコ Wafer generation method
JP6602207B2 (en) * 2016-01-07 2019-11-06 株式会社ディスコ Method for generating SiC wafer
JP6604891B2 (en) * 2016-04-06 2019-11-13 株式会社ディスコ Wafer generation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049161A (en) * 2011-08-30 2013-03-14 Hamamatsu Photonics Kk Method of cutting workpiece
JP2015074004A (en) * 2013-10-07 2015-04-20 信越ポリマー株式会社 Internal processing layer-forming single crystal member, and manufacturing method for the same
JP2015123466A (en) * 2013-12-26 2015-07-06 信越ポリマー株式会社 Substrate processing device and substrate processing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9981339B2 (en) * 2015-06-05 2018-05-29 Disco Corporation Wafer producing method
US20170151627A1 (en) * 2015-06-05 2017-06-01 Disco Corporation Wafer producing method
JP7121941B2 (en) 2018-03-09 2022-08-19 国立大学法人埼玉大学 Substrate manufacturing method
CN110246758A (en) * 2018-03-09 2019-09-17 信越聚合物株式会社 Manufacture of substrates
JP2019160915A (en) * 2018-03-09 2019-09-19 国立大学法人埼玉大学 Substrate manufacturing method
CN110246758B (en) * 2018-03-09 2023-11-24 信越聚合物株式会社 Method for manufacturing substrate
WO2020130109A1 (en) * 2018-12-21 2020-06-25 浜松ホトニクス株式会社 Laser machining method and production method for semiconductor member
JP2020102520A (en) * 2018-12-21 2020-07-02 浜松ホトニクス株式会社 Laser machining method and semiconductor member manufacturing method
CN113195185A (en) * 2018-12-21 2021-07-30 国立大学法人东海国立大学机构 Laser processing method, semiconductor member manufacturing method, and laser processing apparatus
CN113260492A (en) * 2018-12-21 2021-08-13 国立大学法人东海国立大学机构 Laser processing method, semiconductor member manufacturing method, and laser processing apparatus
WO2020130054A1 (en) * 2018-12-21 2020-06-25 国立大学法人東海国立大学機構 Laser processing method, semiconductor member manufacturing method, and laser processing device
JP7182456B2 (en) 2018-12-21 2022-12-02 浜松ホトニクス株式会社 LASER PROCESSING METHOD AND SEMICONDUCTOR MEMBER MANUFACTURING METHOD
WO2020130055A1 (en) * 2018-12-21 2020-06-25 国立大学法人東海国立大学機構 Laser processing method, semiconductor member manufacturing method, and laser processing device
CN113260492B (en) * 2018-12-21 2024-02-20 国立大学法人东海国立大学机构 Laser processing method, semiconductor member manufacturing method, and laser processing apparatus
WO2020213478A1 (en) * 2019-04-19 2020-10-22 東京エレクトロン株式会社 Processing device and processing method
JPWO2020213478A1 (en) * 2019-04-19 2020-10-22
JP7178491B2 (en) 2019-04-19 2022-11-25 東京エレクトロン株式会社 Processing equipment and processing method

Also Published As

Publication number Publication date
JPWO2017199784A1 (en) 2018-05-31
JP6902186B2 (en) 2021-07-14
JP2018050066A (en) 2018-03-29
JP6246444B1 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6246444B1 (en) Cutting method of material to be processed
JP5917677B1 (en) Processing method of SiC material
JP5917862B2 (en) Processing object cutting method
KR102354665B1 (en) Wafer producing method
TWI723087B (en) SiC wafer generation method
TWI683736B (en) Wafer generation method
JP6604891B2 (en) Wafer generation method
US10074565B2 (en) Method of laser processing for substrate cleaving or dicing through forming “spike-like” shaped damage structures
TWI687560B (en) Wafer generation method
JP5491761B2 (en) Laser processing equipment
JP6358940B2 (en) Wafer generation method
JP5670764B2 (en) Laser processing method
WO2013176089A1 (en) Cutting method for item to be processed, item to be processed and semiconductor element
WO2014030519A1 (en) Workpiece cutting method
WO2012096096A1 (en) Laser processing method
TWI528431B (en) Laser processing method
JP6366485B2 (en) Wafer generation method
JP6418927B2 (en) Wafer generation method
WO2012096092A1 (en) Laser processing method
JP2016015463A (en) METHOD FOR PROCESSING SiC MATERIAL AND SiC MATERIAL
WO2012096093A1 (en) Laser processing method
JP5361916B2 (en) Laser scribing method
JP6752232B2 (en) How to cut the object to be processed
JP7210292B2 (en) Wafer generation method
CN113195185A (en) Laser processing method, semiconductor member manufacturing method, and laser processing apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017546747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799209

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799209

Country of ref document: EP

Kind code of ref document: A1